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The increasing adoption of smart systems in our daily life has led to the development of new applications
with varying performance and energy constraints, and suitable computing architectures need to be developed
for these new applications. In this paper, we present gem5-X, a system-level simulation framework, based on
gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities
of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video
encoding and image classification using convolutional neural networks (CNNs). First, we explore through
gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations.
Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous
architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous
architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel,
giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order
systems, respectively. Furthermore, thanks to gem5-X we conclude that ARM Out-of-Order clusters with
HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by
up to 30% both in terms of performance and energy savings.
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1 INTRODUCTION
The rapid growth of online services and increasing adoption of digital products have influenced
all spheres of our lives. This increased digitization of the society has led to the emergence of new
applications, which are deployed all the way from High Performance Computing (HPC) systems
and cloud servers to mobile devices. Consequently, this situation has led to data centers consuming
0.8% (200 TWh) of the global energy in 2019 [24]. These new emerging applications like video
analytics [2], autonomous driving, natural language processing, content recommendation [37],
bio-informatics and genome sequencing [49], have different performance/energy requirements, and
are deployed on a variety of different platforms. To optimize these performance/energy constraints,
a system level simulator is required which is capable of simulating multi-threaded applications in a
full-system environment with a complete operating system (OS), on a heterogeneous multi-core
system. Furthermore, the simulator should also be capable of a detailed system-level profiling to
identify the bottlenecks, therefore, helping in designing strategies and architectures to alleviate
these bottlenecks.

In this paper, we present gem5-X ("a gem5-based full-system simulator with architectural eXten-
sions"), and demonstrate its capabilities to seamlessly analyze multi-threaded applications, enable
various architectural extensions both for the compute and memory sub-systems, and explore vari-
ous architecture parameters, to have an overall performance-energy optimized architecture. The
video analytics application is used as a case study to demonstrate the architectural and system-level
characterization capabilities of the gem5-X framework. Moreover, gem5-X is generic enough to be
used for detailed architectural analysis in any other application. Then, we present an optimization
methodology based on local exploration and optimization for each individual kernel and then a
global optimization for the whole application to have complete optimized system. Each kernel can
have its own optimized architecture, which might be different from another kernel, but collectively
all those locally optimized kernels make up the complete optimized application. Hence, we develop
a heterogeneous system level architecture, and ensure that all the kernels and system components
are working coherently with each other.
As previously mentioned, real-time video analytics dubbed as the next-generation "killer-app"

[2], is used in a wide range of domains, from video surveillance, for security and monitoring,
safety on construction sites, traffic monitoring and thermal monitoring to identify patients with
fever as well as for fire hazards [35], [57]. Real-time video analytics is also used for autonomous
drone navigation and rescue drone missions, e.g. during earthquakes, floods or rescuing people
at sea [36], [25]. Autonomous drones are also being deployed for deliveries of parcels by many
companies around the globe. The emerging market of smart autonomous cars along with their
Advance Driver-Assistance Systems (ADAS), use video analytics as one of the core components
of the system to detect obstacles, traffic signs and signals to navigate the car accordingly [46],
[45]. Hence, this "killer-app" is being deployed all the way from low power edge devices to high
performance cloud servers.
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Video analytics is a combination of two kernels, namely, video processing (or video encoding)
along with image classification and detection. The video encoding kernel has to meet the perfor-
mance and Quality-of-Service (QoS) constraints of processing at 24 frames-per-second (FPS) for a
seamless user viewing experience. Image classification has real-time constraints in real scenarios
like in surveillance to identify and alert of a potential security breach or safety alert on a con-
struction site, collision avoidance in drone navigation and safety features and decision processing
in autonomous cars and ADAS systems. These different use-cases of video analytics on different
architectures, like surveillance in the cloud and drone navigation on the edge, require to have
a performance and energy optimized architecture while meeting the real-time constraints. The
optimized architecture will enable longer battery life for edge devices and lower energy costs as
well availability of resources to serve more users on the cloud. Hence, a system level simulator
is required to optimize the performance and energy of the complete system for multi-threaded
applications on different architectures, either on the edge or in the cloud.

The main contributions of the paper are as follows,
• We present the new gem5-X simulation platform, capable of simulating heterogeneous
compute cores clusters and accelerators along with heterogeneous memory types like the
traditional DDR4 and 3D stacked memories.

• The 3D stacked High Bandwidth Memory v2 (HBM2) memory model in gem5-X is updated
with improved interleaving to uniformly distribute the memory traffic. It is then analysed
with the STREAM benchmark, giving insight into memory bandwidth (BW) scaling and the
potential BW bottlenecks in the system.

• A two-step architectural exploration and optimization methodology, capitalizing on our new
gem5-X platform, is presented and showcased for a complex application like video analytics,
composed of two kernels, namely, video encoding and image recognition using CNNs.

• We explore and optimize the architecture, with video analytics application as a case-study,
using the two-step methodology. We demonstrate a fully functional heterogeneous archi-
tecture with ARMv8 in-order cores with an in-cache computing engine called BLADE [55]
for video encoding, along with ARMv8 Out-of-Order (OoO) cores on a separate cluster in
the system for visual recognition tasks. For video encoding kernel, we achieve 20% and
54% performance improvement when using ARM in-order cores with BLADE compared
to baseline ARM in-order and OoO core system, respectively. Additionally, replacing the
DDR4 by HBM2 further improves the performance and energy efficiency by 10%. In the
heterogeneous system along with HBM2, we achieve both performance and energy benefits
of up to 30% in comparison to an equivalent system with DDR4, which in fact cannot meet
the performance requirements for visual recognition tasks on OoO cores.

2 RELATEDWORK
State-of-the-art complex applications deployed across the range of compute devices from edge
devices to servers in the cloud require new innovative and heterogeneous architectures to run
optimally in terms of performance and energy efficiency [54]. Full system architectural simulators
are required for fast architectural exploration with accurate estimations of performance and energy,
to give an insight during the initial design phase by enabling early deployment of the application
on the simulation platform, and reduce the time-to-market of new products [14], [59].
Quite a lot of research has gone into developing architectural simulators, but each has its own

shortcomings. Sniper [12] is a multi-core simulator with fast turnaround time, but only supports
traditional x86 architectures. Simics [33] is another architectural simulator enabling applications
to run on different hardware platforms. It is combined with Simflex [18] for timing information,
but is limited to SPARC architectures only. Gem5 [9] is a full-system (FS) architectural simulator
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being widely used both in academia and industry as it supports multiple ISAs, like x86, ARMv7
ARMv8, MIPS and ALPHA. In addition to a variety of ISAs, it also supports different CPU models
for these ISAs, like atomic, in-order and OoO CPU models, as well as multiple caching protocols
and coherences. On the memory side, it supports many traditional and emerging memories. Further,
gem5 supports full system simulations via different Linux based operating systems like Ubuntu and
Android, enabling applications to run as they would on a real platform. However, gem5 is quite
slow with long simulation turnaround times. Also, not all configurations in gem5 are tested, and
many models do not work in conjunction with others straight out-of-the-box (OOB).
Our initial version of gem5-X [50] was a simulation platform that enhanced gem5 with OOB

architectural extensions and new memory models. It enabled seamless FS simulation with profiling
support, to analyze the speedup and gains of the functional blocks within the application as a result
of new architectural extensions and optimizations. It also provided file sharing support between
the host machine and the simulated system using workload automation (WA), which is built into
the Linux kernel provided for gem5-X. Therefore, it reduced the simulation turnaround time, when
debugging the application on a novel architecture within gem5-X.
In this new version of gem5-X we support heterogeneous architectures, like in-order and OoO

cores along with custom accelerators like an in-cache computing engine [55]. In addition to hetero-
geneity at the compute side, it also supports heterogeneous memory types like DDR4 alongside 3D
stacked HBM2, thus, enabling a highly heterogeneous system, with full Linux stack. To the best of
our knowledge, this is the first work that simulates a complete Linux based system with clustered
heterogeneous compute cores (in-order and OoO) with in-cache computing engine along with 3D
stacked HBM2 memory. In this paper, we also perform the bandwidth (BW) analysis on HBM2
memory model in the new gem5-X using the STREAM benchmark [34] to validate that it provides
the required BW in comparison to DDR4, as will be discussed in Section 4.3.

With increasing growth and popularity of cloud-based services, many of the emerging workloads
can be deployed either on the cloud or on HPC systems. Gem5-X supports virtual machines (VMs)
which can be deployed in the cloud infra-structure, as discussed in [44]. It can also be used to explore
and optimize architectures for HPC workloads. In particular, the work in [49] demonstrates the use
of gem5-X in enabling architectural exploration for the next-generation of genome sequencing
HPC workloads.

3 VIDEO ANALYTICS APPLICATION
The gem5-X simulation framework supports full Linux stack and is generic enough to run and
optimize any multi-threaded application, but to demonstrate its capabilities, a real-time video
analytics application is used as a case-study in the context of this paper. The choice of this particular
application is due to two reasons. Firstly, video analytics is deployed and used in different spheres
of our daily life, e.g., in surveillance for safety and security, drone navigation and autonomous
cars. These different scenarios also present a challenge to system architectures because of different
compute capabilities and energy constraints of the systems, all the way from the edge device to the
cloud servers. The second reason for using video analytics as a case-study application is because
of the complexity of the application itself and the fact that it is composed of two distinct kernels,
video encoding and image classification using CNNs. This gives us the opportunity to exploit and
demonstrate the capabilities of gem5-X in optimizing various memory and compute sub-systems
to have an overall optimized architecture.

3.1 Video Analytics Application Structure
As depicted in Fig. 1, real-time video analytics consists of two kernels running in parallel alongside
each other, namely, video encoding/processing and image classification and detection [32, 51].
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Table 1. Video Analytics Application Scenarios

Case Video Resolution
(pixels)

Image Classifica-
tion (FPS)

Surveillance: Construction Site/Pedestrians [35], [57] 640x480 5
Drone Navigation [36], [25] 300x200 10
Autonomous Driving and ADAS [46], [45] 640x480 15

Video encoding is used to encode the video stream and transmit it to the end user or to store it in
the cloud, e.g. in a security video surveillance system the video is being streamed to a control room
or stored in the cloud [35]; in case of a drone navigation system it is being transmitted to the drone
pilot [25]. In addition, to video encoding, the video frames from the video stream are being analyzed
simultaneously by the image classification application. CNN-based image classification may be
used for facial recognition, counting people, potential hazard on a construction site in case of
surveillance application [57]. It is also used for obstacle detection in drone navigation [36], [25] and
autonomous cars [46], [45]. In a drone rescue mission, it can be used by drones to identify people at
sea, in flood or in the rubble during an earthquake. In essence, both the video encoding and image
classification needs to run side-by-side for a fully functional video analytics. The video encoding
needs to process 24 frames-per-second for a seamless user experience. Simultaneously, the image
classification needs to classify a number of frames-per-second (FPS) depending on the application
scenario. Table 1, summarizes the various application scenarios of video analytics application with
different resolutions for video encoding and image classification/detection rate.
In the following sections, we will present the video encoding and image classification kernels,

both of which together make up the video analytics.

3.2 Video Encoding
Video encoding is an essential part of video analytics. It also has significant importance in online
video streaming services which contributed 58% of downstream internet traffic in 2018 [53], hence,
the need for a performance-energy optimized video encoding application. For this purpose, Kvazaar
[60], a state-of-the-art open source High Efficiency Video Coding (HEVC) application, compliant
with H.265 coding standard, is used as real time video encoding kernel. HEVC offers twice the
compression of its predecessors, but at the cost of significantly increased computational cost [10].
In HEVC encoder, the most complex block is the motion estimation of the video, which plays

a critical role in compression (and therefore, bandwidth) and quality. The goal of encoding is to
serve videos to users in real-time, i.e. achieving a sustained frame rate of 24FPS, regardless of the
video resolution. Real-time HEVC encoding is achieved by means of thread-level parallelization
of different blocks. In this work we choose Kvazaar as it comes with a wider range of parallel
processing capabilities. Kvazaar is very well optimized for software, leaving limited headroom for
further software-based optimization.

Video 
Encoding

Image Classification/
Detection
Using CNNs 

Camera Cloud/Storage/User

Control‐Decision 
system/User 

Fig. 1. Video analytics application composed of two kernels running concurrently, i.e., video encoding using
Kvazaar [60] and image classification/detection using CNNs.
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As discussed in [50], FIR filter and the Sum of Absolute Transform Differences (SATD) are the
two dominating blocks in Kvazaar that represent 21% and 26% of overall instructions executed,
respectively. The remaining 53% of the computation is spread in chunks of less than 10% (in average
7%) instructions in other blocks. Hence, we will focus on defining a suitable architecture with
gem5-X to optimize the execution of the FIR filter and SATD block in Kvazaar.
3.3 Image classification using CNNs
The video analytics includes video encoding, which is either send to the end user or stored in the
cloud, and CNN based visual recognition as discussed in [13, 32, 51]. CNN based image recognition
is now becoming a standard in both the industry and academia for computer vision tasks because
of the impressive results they have achieved [30]. All the case study scenarios of surveillance, drone
navigation and ADAS use CNNs for the visual recognition part of the application, as discussed in
[57], [25] and [46], respectively. Because of ample research in CNN architectures, there are a variety
of CNNs to choose from [8]. The choice to deploy a particular CNN depends on various factors
such as accuracy, inference time, memory requirements, computation complexity and the size of
the network. As the video analytics scenarios presented in Table 1 vary from being deployed on the
edge device like in drone navigation all the way up to high end cloud servers like in a surveillance
system. Therefore, the CNN we select should meet the memory, computational complexity and
performance requirements in all the scenarios.
MobileNet [20], is an efficient CNN architecture that can be deployed on the edge as well as in

the cloud. It has a Top-1 accuracy of 70.4% on the Imagenet benchmark, which is better than other
complex popular CNNs, like GoogleNet, Alexnet and Squeezenet. MobileNet-v1 is also quite small
in size and complexity, and feasible to be deployed on the edge node. MobileNet has previously
been used in surveillance [57], drone navigation [26], [61] and autonomous cars and ADAS [29].
As most of the edge nodes are based on ARM architectures, we use the ARM Compute Library
(ACL) [5] framework to deploy MobileNet. The limitation of MobileNet is that it can only process
image sizes of up to 224x224 pixels, smaller than the case study scenarios listed in Table 1. Hence,
for these images to be processed by MobileNet, we perform image partitioning and resizing (if
required) as shown in Fig. 2. For the 300x200 pixel frame, we partition it into two 224x224 images.
Since, the resolution of the resulting two 224x224 images is greater than the original image, we use
the extra pixels to overlap the split images horizontally. This overlap allows us to detect objects that
would have otherwise been split between images. The unused pixels at the bottom of the images
are ignored and filled with black, as shown in Fig. 2.a. For the frame resolution of 640x480, we first
resize it to 640x448 pixels, so that it can evenly be distributed vertically to 224 pixel size. After that
we partition it to six 224x224 pixel images, with the extra pixels being used to overlap the adjacent
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Fig. 2. Image partitioning and resize for input image resolution of (a) 300x200 pixels, (b) 640x480 pixels.
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images to avoid splitting of objects between images, as shown in Fig. 2.b. The partitioned images
are then sent to MobileNet-v1 for image recognition.
MobileNet has been used in our case study as it is a small, fast and high accuracy CNN, which

makes it feasible to be used both on the energy constrained edge device, as well as on the servers
in the cloud. It has also previously been used in our case study scenarios in Table 1. However, any
other CNN can be used instead of MobileNet, but the methodology we will use in the following
sections will remain the same.

4 GEM5-X SIMULATION PLATFORM
The proposed gem5-X simulation platform [50] is the enabler for the architectural exploration and
optimization of our case study real-time video analytics application (cf. Section 3). The platform is
composed of compute cores and memory devices. It simulates an ARMv8 64-bit ISA full system (FS)
simulation with Linux kernel 4.3 and Ubuntu 16.04/18.04 as the OS. It also has application profiling
support provided by the gperf profiler [17], with minimal overhead, to identify bottlenecks within
the application executing in the simulator. In addition, gem5-X also supports 9P [28] over virtual
IO [42], for fast modification and sharing of files between the simulated and host system.
The video analytics application has both high compute and memory requirements. Hence, we

will now look into the compute and memory sub-systems of the gem5-X platform, as shown in Fig.
3, with different exploration parameters highlighted in red.

4.1 Compute Sub-system
Gem5-X enables different strategies and aspects of the compute sub-system.

• Type of Cores: Gem5-X supports ARMv8 64-bit energy-efficient in-order cores as well as
high performance out-of-order (OoO) cores, both with a validation error of up to 4% as
shown in our previous work [50]. We have added support for heterogeneous architecture
simulation allowing both in-order and OoO cores to be simulated simultaneously, with
different applications or application kernels being allocated efficiently to different core types
to maximize performance, as well as energy efficiency, as described in Section 6.3.1.

• Clustering: Gem5-X enables clustering of the compute cores, both for heterogeneous as well
as homogeneous core types. Each cluster has it own last-level-cache (LLC). System architects
can further expand the cluster implementation with each cluster having its own independent
clock. Clustering enables independent applications or independent kernels of the application
that do not share resources with other kernels of the application to execute on independent
multi-core cluster with its own LLC.

• Accelerator Support: Gem5-X supports adding custom accelerators for specific tasks. To
utilize the added accelerator, in FS mode simulation, one can either memory map or trigger
it via a custom instruction. In case of memory mapping of the accelerator, it acts as an
external device in the system. For an accelerator tightly integrated within the CPU pipeline,
adding a custom instruction is the more feasible approach. For the video encoding part of our
case-study application, an in-cache computational engine called BLADE [55] was added to the
L1-D cache for increased performance and energy efficient execution of Kvazaar, accelerating
certain FIR filter and the SATD blocks within it, as presented in [50]. The accelerator is
supported in conjunction with heterogeneous compute cores as well as clustering.

• ISAExtension:To support an accelerator or to add a new functional unit within the CPU core,
gem5-X supports ISA extension, using the reserved op-codes of the original ISA specifications.
To support BLADE in FSmode, we added a custom instruction using one of the unused opcodes
in ARMv8 ISA specification [4]. The accelerator can be used by issuing in-line assembly calls
to the new instruction in C/C++.
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Fig. 3. Gem5-X platform with architectural exploration
parameters.
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Fig. 4. 3D stacked HBM2 Architecture.

• Core Count: Gem5-X enables many-core simulation with support for 256 cores simulation.
In this work, the number of cores we need are up to 31 cores, as discussed in Section 4.3.2.

4.2 Memory Sub-system
The memory sub-system is as essential as the compute sub-system, especially in the case of memory
intensive applications, like the video analytics application. During video encoding, the raw video
frames are read from memory and the encoded frames written back to it. During MobileNet CNN
image classification, the input image, the weights and the parameters of the network are both
stored in memory, and have to be accessed for each image inference. Hence, memories with high
bandwidth help in alleviating the memory bottleneck in these memory intensive applications.

The 3D High Bandwidth Memory v2 (HBM2) [58] can achieve a bandwidth of up to 307.2 GB/s,
enabled by multiple channels and the Through Silicon Vias (TSVs) which connect the 3D stacked
DRAM banks. Gem5-X implements the HBM2 memory model with timing estimates as in [50].
Thus, we have updated the memory interleaving among different channels for the HBM2 model, so
as to uniformly distribute the memory accesses among different channels. No additional support is
required from the software perspective, thus enabling any application to be executed either on a
traditional DDR4 or HBM2 based memory system in FS mode, without modifying the software.
Figure 4 shows the 3D stacked HBM2 with multiple channels in gem5-X. Each channel is 128-bits
wide; hence, for 8-channels HBM2, the system bus is configured to be 1024-bits wide.

Gem5-X also supports heterogeneous memory types like traditional DDR4 along with 3D HBM2
simultaneously in the same system. Both memories aremmapped separately in the gem5-X configu-
ration file. During the Linux boot-up, one of the memories is defined as the base memory, with the
full address space available to the kernel. The other memory can then be allocated using mmap(),
from within the application, if required. By default, allocations are done to the base memory defined
during the kernel boot.
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4.3 HBM2 Bandwidth Analysis
The gem5-X ARMv8 compute cores were already tuned to have a validation error of up to 4% in
our previous work. In this paper, we now perform the bandwidth (BW) analysis on HBM2 memory
model in gem5-X so to validate that it provides the required BW in comparison to DDR4 and also
to check that the memory traffic is being uniformly distributed among different memory channels,
as mentioned previously in Section 2. STREAM [34], which is a well-known memory bandwidth
benchmark is used for the HBM2 bandwidth analysis.

4.3.1 BW Analysis Methodology. Figure 5 shows the methodology for the analysis of HBM2 BW
and its comparison to DDR4 in gem5-X using the STREAM benchmark, by changing various
architectural parameters in the system.

• Input: The STREAM benchmark is used as a benchmark on the ARM based platform. The
input array size of the benchmark is set to 100 million, which is equivalent to a memory
requirement of 2.2GB. The array size is chosen to have a trade-off between memory utilization
and simulation turnaround time, which increases linearly with the increase in array size.

• Memory Channels: We run STREAM for HBM2 with 1, 2, 4 and 8 memory channels, to see
the effect of channel count on BW.

• Memory Types: We use bothHBM2 andDDR4 asmemory types to compare their performance.
DDR4 is used with 1, 2 and 4 memory channels, as the number of channels scale from 1 to
4 in commercially available DDR4 based systems, when we move from low-power mobile
devices to high-end server-class systems [21–23].

• Core Types: All the benchmark experiments are run for both ARMv8 in-order and OoO cores.
• Core Frequency: We repeat all the benchmark experiments at 1GHz, 2GHz and 4GHz core
frequencies. The 4GHz frequency is used just for scaling analysis, as we are not aware of any
ARM cores operating at 4GHz.

• Core Count: As we want to analyze the effect of core count on BW, we benchmark core
counts of 8 and 16 cores.

• Cache Hierarchy: We also look into changes of the cache hierarchy, namely, the effects of
no-LLC system in comparison to system with LLC.

• Analysis: In addition to analysing the results after changing each architectural parameter
discussed in this methodology, we globally analyse the results, and run the experiment with
a change in any architectural parameters necessary.

4.3.2 Bandwidth Analysis Results. We now look into the BW analysis results of HBM2 in compari-
son to DDR4.

• Figure 6 shows the scaling of HBM2 bandwidth with the number of channels and core
frequency, as compared to DDR4 with 1, 2 and 4 channels, for 8-core ARM in-order and OoO
systems with a LLC (L2) of 1MB. We see that the BW increases with the number of channels.
HBM2 performs better than DDR4 by 5% for both in-order and OoO cores for same number
of channels, whereas 8-channel HBM2 gives up to 34% and 48% more BW as compared to
single channel DDR4, for in-order and OoO cores, respectively. Moreover, 8-channel HBM2
gives up to 12% and 19% more BW as compared to 4-channel DDR4. BW scales with the core
frequency for 8 in-order cores as in Fig. 6a. We also see that OoO cores utilize much more of

Core Count
STREAM

Benchmark
Analysis

Core 
Types

Core 
Frequency

Cache Hierarchy
 LLC/No‐LLC

HBM2 
Memory
Channels

Memory 
Types

Fig. 5. Methodology for BW analysis using STREAM benchmark.
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Fig. 6. BW scaling of HBM2 with respect to the number of channels and core frequency in comparison to
DDR4, for both 8 in-order and OoO cores when running the STREAM benchmark.

the available BW as compared to in-order cores at the same frequency. However, the BW
scaling with frequency is low after 2 GHz. To investigate this further, we run STREAM with
higher number of cores as discussed below.

• We run the STREAM benchmark for 16 ARM in-order and OoO cores, both with LLC. Figure
7 shows that BW saturates for OoO cores at higher frequency, and BW utilization of in-order
cores converge to that of OoO cores. If we compare the BW of 8-OoO cores in Fig. 6b to that
of 16-OoO cores in Fig. 7, the BW does not scale with the increase in the core count of OoO
cores. However, it does scale with the number of in-order cores. The BW of 8-channel HBM2
is 44%-46% higher than 1-channel DDR4, and 17%-19% higher than 4-channel DDR4. Hence,
we limit ourselves to 8-channel HBM2 BW scaling analysis for now.

• Through our analysis of the data path between the compute cores and memory, we observe
that the LLC is the bottleneck on the available BW, which explains why OoO cores do not
exhibit a linear scaling with the number of cores. On the other hand, the reduced bandwidth
scaling is also an indication of better performance as the memory is being accessed less
frequently due to the caching effects of LLC. However, we remove the LLC from the system
and run the STREAM benchmark again. As shown in Fig. 8, the BW scales with number
of cores both for in-order and OoO cores without the LLC. From Fig. 8a and Fig. 8b, it is
also evident that OoO cores can utilize almost 2x more BW as compared to in-order cores.
Also, these figures show that the BW utilization depends on the core count and type of cores.
Thus, the BW provided by HBM2 is available, the greater the number of cores, the more its
utilization. However, we observe that the BW utilization does not scale linearly in relation to
the core frequency and remains almost constant.

• We investigate the L1 cache to see if it is causing any bottlenecks in relation to BW scaling
with frequency. We change the size of miss-status-holding-registers (MSHR) 1 from 4 to 10.
However, there was no change in BW for in-order cores, and around 16% BW improvement for
OoO cores when using 10 MSHRs instead of 4. However, the change with frequency scaling
was still quite constant. Hence, the reason for almost constant BW being accessed across

1MSHRs keep track of outstanding cache misses, thus enabling multiple accesses and outstanding misses in the cache
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Fig. 7. BW scaling with frequency for 16 cores.
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Fig. 8. BW scaling of HBM2 with core count and core frequency with no LLC.

different frequencies is not due to L1, but results from the fact that the core frequency to
issue memory request is high compared to HBM2 serving those requests. Thus, whenever the
request goes to HBM2, the cores are stalled waiting for memory to respond to those read/write
accesses. As STREAM is a memory intensive benchmark, changing the core frequency does
not improve the stressed BW of the memory.

4.4 Power Models and Area
In addition to performance analysis using gem5-X, we are also interested in the power and energy
consumption of the systems. However, we did not use gem5 or McPAT power model, as proposed
by [52] and [11], respectively, as they both are for ARMv7 32-bit ISA, whereas we are using ARMv8
64-bit cores. For the CPU energy analysis, we use the power model for 28nm CMOS bulk technology
node for ARM 64-bit in-order and OoO cores proposed in [44] and [50]. This power model includes
the core active, static and wait-for-memory (WFM) energy, LLC read/write and static cache energy.
For the memory power models, power values as reported in [31] and [43] are used for DDR4 and
HBM2, respectively. Counters in gem5-X statistics like active CPU cycles, wait-for-memory (WFM)
cycles, cache read and writes hits and main memory accesses are used for power modeling.

For area estimates, we use the values reported in [16] and [15] for ARM OoO and in-order cores,
respectively.
5 ARCHITECTURAL EXPLORATION AND OPTIMIZATION METHODOLOGY
We propose a methodology to explore and optimize architectures for applications that are com-
posed of multiple kernels like the video analytics application, or multiple independent applications
allocated simultaneously on a platform. Figure 9 shows the two-step methodology for architectural
exploration and optimization of this multiple kernel scenario. The first step is the local architectural
optimization for each kernel based on its own bottlenecks and compute/memory requirements.
The optimization is on both compute and memory fronts, exploiting their respective architectural
parameters as presented in Fig. 9, Step 1 and also discussed in Fig. 3 in Section 4. Once all the
kernels are independently architecturally optimized, we co-allocate them together and globally
optimize the architecture for all kernels, if further necessary, as in Fig. 9, Step 2. The optimization
strategy in Step 2 is the same as for local optimization in Step 1, both on compute and memory

Global 
Architectural Exploration/Optimization

Kernel‐1 Kernel‐2 Kernel‐N

Local Architectural 
Exploration/
Optimization
Kernel‐1

Local Architectural 
Exploration/
Optimization
Kernel‐2

Local Architectural 
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Optimization
Kernel‐N

Local/Global

Architectural Exploration/Optimization

Step 2

Step 1

Compute Side 

 Core Types
 Core count
 CPU utilization 

and core sharing
 Frequency
 Clustering
 Accelerators
 ISA extensions 

Memory Side 

 Memory Types 
– DDR4

       – HBM2
 Memory Size
 Caches

Fig. 9. Architectural exploration and optimization methodology.
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side, hence leaving limited room for further optimization, unless there are conflicting architec-
tural requirements between different applications. In such a scenario, the focus is on minimum
performance requirements or QoS for each kernel, and then further explore the architecture.

Our case study video analytics application is composed of two kernels, video encoding and CNN
based image recognition. Hence, the complexity of the methodology in Fig. 9 is linear. However, if
there is an application with more than two independent kernels i.e. N > 2, the complexity for the
exploration methodology will still be linear. In such scenario, we would co-allocate all independent
architecturally optimized kernels as in Step 2, because they do not share any resources except for
at shared cache or the main memory level. The shared caches can be made independent and private
for each kernel with the clustering approach.
6 COMPUTE RESOURCE ANALYSIS AND OPTIMIZATION FOR REAL-TIME VIDEO

ANALYTICS
To have an optimal architecture in terms of performance and energy efficiency for our case-study
video analytics, we use the two-step explorationmethodology discussed in Section 5. Therefore, as in
Step 1 of the methodology in Fig. 9, we do a separate architectural exploration and optimization for
Kvazaar and MobileNet. Then we co-allocate them together on a single platform as a video-analytics
application and perform global optimization as in Step 2 of the methodology.

6.1 Kvazaar Video Encoding
Kvazaar [60] is an open-source HEVC transcoding application, capable of performing both online
encoding and decoding. For video analytics, we are interested only in the video encoding part of
Kvazaar. The performance requirement for encoding is 24 FPS to have a seamless user experience.
Hence, for all video resolutions in Table 1, we need to meet 24 FPS requirement. As discussed in
section 3.2 and in [50], FIR filter and SATD are the two dominating blocks in the Kvazaar encoder.
Hence, we will focus on optimizing the architecture for these significantly contributing blocks to
have an architecture optimized for the overall application.

6.1.1 Experimental Setup. We use ARMv8 64-bit cores booted in Ubuntu 16.04 OS. As a starting
point, gem5-X is configured as the ARM JUNO platform [3], which is a validated configuration as
in our previous work [50]. The initial configuration is summarized in Table 2.
Our experimental setup is based on general-purpose compute cores (ARMv8 cores) and not

ASICs, as quite a lot of effort and time is required for the development of an ASIC. A software-based
solution can ease this with just downloading and optimizing the code and running it on available
general-purpose compute system. Furthermore, applications developed to run on ASIC cannot be
updated/upgraded if there are new improvements to the algorithm. However, CPU-based system
allows for updating the currently deployed application with updated or new algorithms on the
same platform.

6.1.2 Profiling, Bottlenecks and Sweeping Parameters. We profiled Kvazaar using Valgrind [38] on
ARM JUNO and gperf [17] in gem5-X. On the computational dominancy end, FIR and SATD blocks
were dominatingwith 21% and 26% instructions respectively, and hence they are potential candidates
for optimization. The remaining 53% was distributed among other blocks with contributions of less

Table 2. Initial Experimental Setup.

Parameter Value Parameter Value Parameter Value
Number of Cores 4 Core Frequency 2GHz DDR4 size 4GB
L1-I cache, L1-D cache 32KB, 32KB L1-I, L1-D associativity 2 L1 MSHRS 4
LLC size 1MB LLC associativity 2 LLC MSHRS 20
Cache Coherence Protocol MOESI
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Fig. 10. Cache subarray with AND/NOR/XOR bitline computing on values A=0 and B=0. Bitwise operations
are performed by first (a) precharging the bitlines, then (b) activating multiple wordlines, thus discharging
the bitlines through the connected bitcells.

than 10% and hence not considered for optimization. This profiling data was consistent for both
ARM in-order and OoO cores and also both in gem5-X as well as ARM JUNO.

On the memory side, the L1 cache miss rate was 4.8% and 5.2% for FIR and SATD, respectively,
indicating high locality. Hence, we sweep the sizes of both L1 and LLC from 8KB to 128KB and
512KB to 16MB, respectively, to find the optimal size. The L1 size of 32KB along with a LLC of 1MB
is found to be optimal in terms of both performance and area, as also discussed in [50].

6.1.3 BLADE - In-cache Computing Engine. BLADE is a hardware extension for CPU caches that
enables computing directly within the cache. Blade operations are performed by first precharging
the bitlines of the cache subarray, as illustrated in Figure 10-a. Then, 2 wordlines are activated
simultaneously, thus allowing the contents of two rows of bitcells to be connected to the bitlines,
as illustrated in Figure 10-b. The bitlines are discharged according to the contents of the bitcells,
resulting in an and operation on the bitline and a nor operation on the inverse bitline. These signals
can be further combined via a nor gate to achieve a xor operation. Finally, further processing allows
complex operations such as addition and multiplication to be performed [55, 56]. The operation
results are then written back to the cache. Application runtime is improved in two respects; first,
data movement is reduced, and second, Single Operation Multiple Data (SIMD) operations can
be performed on multiple operands simultaneously, for example 128 1-byte operations in a cache
with 2 subarrays and 64-byte wordlines. It also reduces energy consumption, as the computation is
performed in the cache, hence saving energy both on the internal bus transactions as well as static
energy for the idle core, when the data is being fetched.
BLADE provides acceleration primarily for applications that exhibit high cache locality, as it

performs SIMD operations on many physically successive operands. Since FIR and SATD perform
simple operations with high cache locality, they are potential candidates for BLADE acceleration as
discussed in [50], and have this been modified at the source code level to support BLADE operations.
BLADE has been incorporated in the L1 cache for ARM in-order cores.

6.1.4 Architecture Exploration - Results and Analysis. There are two video resolutions, 300x200 pix-
els and 640x480 pixels that cover all three-video analytic case study scenarios, namely, surveillance,
drone navigation and autonomous cars as presented in Table 1. Therefore, for the architectural
exploration and optimization of Kvazaar, we will be using these two resolutions. Our baseline
architecture will be as in Table 2, with ARMv8 64-bit in-order cores with the core count dependent
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on video resolution to meet the 24 FPS requirement. BLADE will be used as an accelerator along
with ARMv8 in-order cores. We will also be comparing the performance to ARMv8 OoO cores.

• 300x200 Resolution:
Figure 11a shows the performance and energy benefits of ARM 4-core in-order system with
BLADE and ARM 4 OoO cores in comparison to the baseline of ARM 4 in-order cores,
all operating at 2GHz and DDR4 as main memory, while processing 300x200 resolution
video at 24 FPS or more. We observe that 4 in-order cores with BLADE are around 8%
performance efficient, with a negligible energy overhead of 1% as compared to in-order
system without BLADE. OoO cores on the other hand improve performance by 45% but at
the cost of consuming 44.44% more energy than 4 in-order cores. Hence,we scale the OoO
core count to 2-cores, to just meet the 24 FPS and not more.
Also, we select 4 in-order cores with BLADE as our reference, and compare their energy and
area to 2-OoO cores. Now both systems have the same performance to encode at 24 FPS,
but 2 OoO cores consume 45% more energy along with an area overhead of 31% as depicted
in Fig. 11b. Therefore, a 4-core in-order system with BLADE is the optimal architecture for
300x200 resolution video.

• 640x480 Resolution: For 640x480 resolution video we start with a core count of 4-cores for
ARM in-order, in-order with BLADE and OoO cores at 2GHz. As shown in Fig. 12a, 4 in-
order cores with BLADE perform 20% better than in-order cores without BLADE in terms
of FPS, along with 18% less energy consumption. The performance and energy benefit for
in-order cores with BLADE is more in comparison to 300x200 resolution video, as a larger
data set exploits more cache capacity and provides more opportunities for using BLADE
vector processing in the cache. The OoO cores improve performance by 45%, but consume 44%
percent more energy in comparison to in-order without BLADE, similar to 300x200 resolution
video. However, with 4-cores none of these architectures meet the 24 FPS requirement. Hence,
we increase the core count until the 24 FPS requirement is met. For in-order cores without
BLADE, we increase the number of cores to 12, to reach 24 FPS, whereas, with BLADE only
10 cores are necessary, indicating a performance benefit of 20%. The number of OoO cores at
2GHz required to encode 24 FPS is 6. While processing 24 FPS for a 640x480 resolution video,
we compare the energy and area required for OoO cores in comparison to in-order cores with
BLADE. We find that 10 in-order cores with BLADE are 54% more energy efficient compared
to 6 OoO cores, and at the same time taking 43% less area as well, as shown in Fig. 12b.

The BLADE in-cache computing engine reduces the energy consumption, as it operates on
larger data set using the single-instruction-multiple-data (SIMD) approach as discussed in [50, 55].
Furthermore, it reduces the data movement between cache and the functional units in the CPU,
as the operations are performed in cache, which reduces the energy consumption. For the video
encoding kernel, Table 3 shows the core and memory power for 300x200 and 640x480 resolution
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Fig. 11. Performance, energy and area comparison for Kvazaar video encoding of 300x200 resolution video.
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Table 3. Time, core power (at 2GHz) andmemory power for video encoding, while meeting 24 FPS requirement.

Parameter 300x200 Video Resolution 640x480 Video Resolution
In-order
4-Cores

OoO
2-Cores

In-order 4-Cores
with BLADE

In-order
12-Cores

OoO
6-Cores

In-order 10-Cores
with BLADE

Time (s) 1.002 1.0942 0.918 1.006 1.092 0.962
Core
Power (W)

0.872 1.460 0.8567 3.835 6.448 2.987

Memory
Power (W)

0.0291 0.0259 0.141 0.175 0.137 0.444

videos, while meeting the 24 FPS requirement. Here we see that the energy reductions mainly
come from the core power. In-order cores with BLADE in-cache computing has the least power, as
compared to OoO cores, as well as the in-order cores without BLADE. In summary, this situation
leads to low power ARM in-order cores with BLADE to match the performance of high-performance
ARM OoO cores with 54% less energy budget.

Therefore, for the video encoding portion of video analytics, we will be using ARM64 bit in-order
cores along with BLADE in-cache computing engine, as it produces the best energy efficiency and
area occupancy, while achieving the required 24 FPS. All the cores in the system are 100% utilized.
Hence, there cannot be any resource sharing.
6.2 MobileNet
MobileNet [20] is a state-of-the-art CNN used for image classification, with low computational
cost designed for deployment on mobile and edge devices. As image classification and detection
is necessary for video analytics, we will be using MobileNet for this purpose. The ARM ACL [5]
framework is used to deploy an ARM optimized version of MobileNet, which we use in our gem5-X
based experiments to look into further architectural exploration and optimization choices.

MobileNet allows input image size of 224x224 pixels, whereas our three case study scenarios in
Table 1 have 300x200 and 640x480 pixel resolution. As discussed in Section 3.3, each 300x200 and
640x480 frame is split into 2 and 6 images of 224x224 pixels as inputs to MobileNet, respectively.
Therefore, the resulting FPS requirement for MobileNet is higher as shown in Table 4.

6.2.1 Performance Comparison - CPU vs GPU. GPUs are increasingly being used both in training
and inference of the CNNs architectures due to their high performance capability of processing
vectored data, making them a perfect fit for CNNs [27],[62]. Then, as our case study scenarios
involve edge devices, we looked into energy efficient GPUs for mobile and edge computing.
Nvidia Jetson Nano is low power state-of-the-art GPU designed for artificial intelligence (AI)

tasks on embedded and edge devices [41]. We compare the performance and energy consumption
for MobileNet inference between ARM in-order cores, OoO cores and Jetson Nano. The Nvidia
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Fig. 12. Performance, energy and area comparison for video encoding of 640x480 resolution video.
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Table 4. MobileNet classification rate for various application scenarios

Case FPS - Original Resolution FPS - Split Images
Surveillance (640x480) 5 30
Drone Navigation (300x200) 10 20
Autonomous Driving and ADAS (640x480) 15 90

Jetson Nano platform [40, 41] comes with 128 Nvidia Maxwell GPU cores integrated with 4 ARM
Cortex A-57 cores. Furthermore, the Nvidia Jetson Nano has better software support, as compared to
other platforms like ARMMali GPU [7] and Ethos NPU [6]. It can run the networks implemented in
Tensorflow directly and has the optimized versions of the networks in TensorRT[39], an optimized
framework to deploy CNNs on Nvidia GPUs. MobileNet is deployed on Jetson Nano using the
Nvidia TensorRT framework [39]. The energy statistics on Jetson Nano are collected using the
Nvidia tegrastats utility. Jetson Nano is set to its high-performance mode (10W mode) with its 128
GPU cores operating at 921MHz. The CPU and GPU in the Jetson Nano are in separate power
domains [40], and in high-performance mode, the power rails VDD_CPU and VDD_GPU for CPU
and GPU, respectively, are both set to 1.322V. These power rails only account for the CPU and GPU
compute cores of Jetson Nano and not any other peripherals or I/Os, as they are in separate power
domains. Both ARM in-order and OoO cores are configured in gem5-X to operate at 2GHz with
32KB L1 instruction and data cache. The LLC is configured to 1MB for 4 cores. As we will discuss
later in Section 6.2.2, MobileNet performance scales linearly with multiple threads on multi-core
system up to 4 cores. Hence, for an 8-core simulation, we launch two instances of Mobilenet,
each using 4-cores independently, so that the performance scales with core count. Thus, we use a
clustering approach which we discuss in detail in Section 6.2.2. Then, HBM2 is used as memory
instead of DDR4, which is an architectural optimization that we discuss in detail in Section 6.2.3.

Figure 13 shows the performance in terms of FPS achieved byMobileNet on different architectures.
This figure shows that ARM 8 in-order and 4 OoO cores surpass the performance of Jetson nano,
by 3.3% and 11%, respectively. Hence, 4 OoO cores achieves the highest performance. The reason as
to why the lower number of ARM CPU-based system matches or outperforms Jetson Nano comes
from the fact that ARM CPU-based system is operating at 2GHz, whereas, Jetson Nano GPU-based
platform with 128 GPU cores is operating at 921MHz. Regarding energy comparison, we computed
the energy for processing 21 MobileNet images. Jetson Nano consumes the highest energy as can
be seen in Fig. 13, whereas OoO cores are the most energy efficient. OoO cores are 27% more energy
efficient as compared to Jetson Nano and 6% in comparison to 8 in-order cores. The energy of 8
in-order cores is the same as 4-in-order cores, as 8 in-order cores achieve double the FPS (half the
execution time) in comparison to 4 in-order cores. Overall, OoO cores with HBM2 are the best both
in terms of performance and energy efficiency for processing MobileNet. Jetson Nano consumes
more energy in comparison to ARM CPU-based system because the high number of GPU compute
cores (128 cores) in Jetson contribute largely towards the high energy consumption [19]. Secondly,
the energy for the Jetson Nano platform includes the GPU energy as well as the 4 ARM Cortex-A57
cores which are mostly idle and not used for the actual computation of the MobileNet CNN, but
are used as the host cores for the GPU. As these cores are mostly idle, their static energy adds to
the total energy of the Jetson Nano platform.
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Fig. 13. MobileNet performance and energy comparison.
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Fig. 14. Clustered architecture for multiple MobileNet instances.

6.2.2 MobileNet Scaling and Clustering. To achieve higher FPS, e.g., 90 FPS for an ADAS system,
more cores are required to process the images, as well as the use of multiple threads with one
thread per core. Therefore, we investigate how MobileNet scales with the number of cores.

We find that FPS scales linearly up to 4 cores, however, after that the performance does not scale
up with core counts and number of threads. This is due to the fact that since MobileNet is a light
weight network, the cost of sharing data among higher number of cores affects the performance
per core, thus suppressing the overall performance.
To overcome this issue of scaling, we launch multiple independent MobileNet instances, with

each instance using a maximum of 4 cores. Hence, we instantiate 4 core clusters in gem5-X, each
with its own LLC, so that there is no thrashing in the cache. The clustered architecture with 3
clusters is shown in Fig. 14.

6.2.3 Architecture Exploration - Results and Analysis. For the compute side optimization of Mo-
bileNet we already concluded in Sections 6.2.1 and 6.2.2 that ARM OoO cores are the best in terms
of compute core performance, and that to use clustering for parallel processing and launching
separate instance of MobileNet on each cluster.
Next, regarding the memory side exploration, we consider 8-channel high bandwidth memory

(HBM2), as CNNs are memory intensive applications due to weight and bias accesses of the network.
For our three-video analytics application case study scenarios, we need to meet the FPS requirement
for the visual recognition portion, as in Table 4. Hence, we run experiments with ARM OoO cores
at 2GHz, with the architecture shown in Fig. 14, both with DDR4 and HBM2 memory types.

Figure 15 shows that 4 OoO cores with HBM2 meets the FPS requirement for drone navigation
and surveillance scenarios, whereas, 4 OoO cores with DDR4 (1 to 4 channels) only meet the FPS
requirement for drone navigation. However, using HBM2 instead of DDR4 results in energy benefit
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Fig. 15. MobileNet FPS scaling with core count (OoO) for HBM2 (8-Ch) and DDR4 with different number of
channels. The horizontal lines are the threshold that should be met for scenarios in Table 1.
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Fig. 16. MobileNet performance and energy benefit of using HBM2 (8-Ch) over DDR4 with different number
of channels for OoO cores.

of up to 21%, as shown in Fig. 16b. For ADAS and autonomous smart cars, where the requirement is
90 FPS, we launch 3 instances of MobileNet, each on a 4-core cluster. Figure 15 shows that 12 OoO
cores with HBM2 meet the 90 FPS requirement. Again 12 OoO cores with DDR4 (1 to 4 channels) fail
to reach the required FPS. We also launch the experiments with 8 OoO cores with two MobileNet
instances, and see that it scales well with our clustering approach, from 4-core to 8-core to 12-core
systems.
Finally, we compare the percentage performance and energy benefit of using 8-channel HBM2

instead of DDR4, with number of channels varying from 1 to 4, for MobileNet. Figure 16a shows
that the performance benefit varies from 8% to 28%, as it scales with the number of cores as well as
with the number of DDR4 channels. Similarly, as shown in Fig. 16b, there are energy savings of up
to 32% for 12 core system, when using HBM2 instead of single channel DDR4. The energy savings
when using HBM2 instead of 4-channel DDR4 is between 16% to 20%, depending on the number of
compute cores.

Therefore, ARM OoO core system with 8-channel HBM2 is the best performing system both in
terms of performance and energy efficiency for MobileNet based visual recognition tasks.

6.3 Video Analytics
Once the Kvazaar video encoding and MobileNet visual recognition kernels are independently
optimized for performance and energy efficiency, we move to Step 2 of the methodology in Fig. 9.
Then, the global architectural optimization and exploration is performed with all the application
kernels co-allocated on the same platform, running in parallel. This can result in heterogeneous
architectures with different clusters, as each locally optimized architecture might be different from
one kernel to another, which share the crossbar interconnect and memory.

6.3.1 Heterogeneous Architecture. Figure 17 shows the heterogeneous architecture for the complete
video analytics application. There is a separate compute cluster for Kvazaar, with ARM in-order
cores and ISA extensions to use the in-cache computing engine, BLADE, integrated into the L1-D.
Similarly, there are multiple clusters for MobileNet with 4 ARM OoO cores per cluster. The number
of clusters depend on the required FPS. All of the clusters, have their own LLC. HBM2 is used as
the main memory in the system, as it offers more BW compared to DDR4 and it is necessary for
MobileNet to achieve the required FPS. All the cores and clusters are 100% utilized for both the
Kvazaar and MobileNet kernels. Hence, there will be no resource sharing between different kernels
in terms of compute cores and their components, as it will not benefit the application performance.
We will look into the performance and energy benefits of using HBM2 for Kvazaar as well as the
overall system in the next section.

6.3.2 Architecture Exploration - Results and Analysis. For video analytics, our primary goal is to
meet the QoS and performance requirements as set out in Tables 1 and 4 and improve the energy
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Fig. 17. Heterogeneous architecture for video analytics.

efficiency as much as possible. As there are three scenarios, one with a resolution of 300x200 pixels
(drone navigation) and two with 640x480 pixels (surveillance and autonomous cars), we will explore
and discuss the results according to the video resolutions.

• 300x200 resolution: We concluded in Section 6.1.4, that 4 in-order cores at 2GHz with
BLADE in-cache computing is the optimal architecture to meet 24 FPS requirement for the
Kvazaar video encoding part of video analytics. For visual recognition using MobileNet,
4 OoO cores at 2GHz were optimal in terms of performance and energy to meet the FPS
requirement of 20 FPS for drone navigation, with HBM2 as the main memory. Hence, the
architecture in Fig. 17 will have one Kvazaar cluster with 4-cores and LLC of 1-MB and one
Mobilenet cluster of 4 OoO cores.
Figure 19a shows that performance benefit of 10% and 16.6% for Kvazaar and MobileNet
clusters, respectively, when HBM2 is utilized instead of single-channel DDR4. The FPS values
for both clusters with HBM2 and DDR4 are shown in Fig. 18. The performance benefit is
approximately 9% for both clusters when using HBM2 instead of 4-channel DDR4. We also
observe an energy benefit of 6% and 20.7% for Kvazaar and MobileNet, respectively, when
HBM2 is compared to single-channel DDR4. When compared to 4-channel DDR4, the energy
benefit is 2.5% and 18% for Kvazaar and MobileNet, respectively. The FPS requirement of
Kvazaar is that of 24 FPS, whereas that of MobileNet is 20 FPS, and we are above these
minimum requirements for both applications, as shown in Fig. 18. Moreover, we also compare
our proposed architecture with HBM2 to commercially available ARM big.LITTLE Hikey960
platform [1], which has 4 in-order and 4 OoO ARM cores. As shown in Fig. 18, the Hikey960
achieves the least FPS, leading to 18% and 35% performance benefit of our proposed archi-
tecture using HBM2 over Hikey960, for Kvazaar cluster and MobileNet cluster, respectively,
as shown in Fig. 19a. With regards to energy we achieve 18% and 43% energy savings over
Hikey960, for Kvazaar and MobileNet clusters, respectively, as shown in Fig. 19b.
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Fig. 18. Video Analytics FPS for Kvazaar and Mobilenet clusters for 300x200 resolution video for drone
navigation when using HBM2, DDR4 and on Hikey960 platform.
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Fig. 19. Percentage performance and energy benefit when using HBM2 (8-Ch) in comparison to DDR4 with
different number of channels and Hikey960 platform for video analytics of 300x200 resolution video for drone
navigation.

To further optimize the architecture, we use Step 2 of our optimization methodology, to
optimize for energy efficiency as we have already met the performance requirements. Both
kernels scale linearly with frequency. Hence, we reduce the frequencies of both clusters, to
meetminimumperformance requirements, therefore, enablingmore energy savings. Reducing
the frequency of Kvazaar 4-core cluster from 2GHz to 1.72GHz, results in an energy saving
of 32% while achieving 24 FPS. Similarly, for the MobileNet cluster we reduce the frequency
from 2GHZ to 1.2 GHz resulting in an energy saving of 59%.

• 640x480 resolution: For the 640x480 resolution, two case study scenarios exist. First, one
of video surveillance with MobileNet requirement of 30 FPS. Second, autonomous cars and
ADAS with MobileNet are used for image recognition with a requirement of 90 FPS. The
video encoding for both scenarios is required to execute at 24 FPS. Hence, as discussed in
Section 6.1.4, a 10-core in-order cluster at 2GHz with BLADE is instantiated for Kvazaar, with
HBM2 as main memory instead of DDR4. For MobileNet clusters, a 4-core OoO cluster at
2GHz meets the 30 FPS requirement and three 4-core clusters meet the 90 FPS requirement
as discussed in Section 6.2.3.
The performance benefit of 10-core Kvazaar cluster varies from 6.5% to 10.5% when using
HBM2 instead of single-channel DDR4, while meeting the 24 FPS requirement, as shown
in Fig. 20a, and between 2.8% to 4.3% when comparing HBM2 to 4-channel DDR4. We can
see that the percentage benefit of the Kvazaar cluster for 640x480 resolution video, when
HBM2 is being used instead of DDR4, is less as compared to 300x200 video resolution as
in Fig. 19a. The reason being that, the higher the resolution, the more efficiently BLADE
in-cache computing and caching is used as compared to lower resolution video. Hence, lower
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Fig. 20. Video Analytics for 640x480 resolution video for video surveillance and autonomous cars and ADAS
systems. 10-core Kvazaar cluster is used for video encoding in both scenarios. A 4-core OoO cluster is used
for MobileNet in case of surveillance, and three 4-core OoO clusters are used for autonomous cars and ADAS.
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BW utilization of main memory and less performance benefit. The corresponding energy
savings of using HBM2 for the Kvazaar cluster is between 6% to 10% and 2.6% to 3.3%, in
comparison to single-channel and quad-channel DDR4, respectively, as depicted in Fig. 20b.
For the MobileNet clusters, the performance as well as energy efficiency scale, as we increase
the 4-core clusters from 1 to 3 for surveillance and ADAS, respectively. The performance
improvement of using HBM2 is up to 30% with a corresponding energy benefit of 30% in
comparison to single-channel DDR4. When compared to 4-channel DDR4, the performance
and energy benefits of using HBM2 are up to 12% and 10%, respectively, for the MobileNet
clusters. Comparing the results of MobileNet cluster in Fig. 20 to that of in Fig. 19, it can be
observed that the performance and energy savings are higher for three 4-core MobileNet
clusters when it is co-allocated with Kvazaar than when it is standalone. This is because,
when more applications are being allocated on a single platform sharing the same memory,
the memory BW requirements increase, which HBM2 serves better than DDR4.
The overall energy reduction when using HBM2 instead of DDR4, is due to the fact that
HBM2 not only has lower energy per access in comparison to DDR4 [31, 43], but also enables
faster memory access via 8 memory channels. The faster access in turn implies less stalling
of the processor pipelines when waiting for data, resulting in overall energy reduction. Table
5 summarizes the core power, memory power, and execution time per frame for both kernels
of video analytics in drone navigation, surveillance and ADAS scenarios. We see that the
run-time to process each frame is less when using HBM2 instead of DDR4. Secondly, the
memory power when using HBM2 is less as compared to when using DDR4. Therefore,
lower memory power and fast processing time for each frame (both for video encoding and
MobileNet kernels), contributes to the energy benefits we see when using HBM2 instead of
DDR4.
In these case study scenarios for surveillance and autonomous cars, we do not use Step
2 of the methodology, as the performance requirements are just met with the proposed
architectures. Thus, we cannot further reduce the frequency to optimize for energy, as we
did in the case of drone navigation, because this will degrade the performance below the
minimum requirement.

In summary, capitalizing on our new gem5-X simulation platform, we propose an optimized
heterogeneous architecture for a video analytics application, composed of ARM in-order cores

Table 5. Time, core cluster power (at 2GHz) and memory power for video analytics case study scenarios.

Parameter Clustered Architecture with HBM2 Clustered Architecture with DDR4
Drone
Navigation

Surveillance ADAS Drone
Navigation

Surveillance ADAS

Time Kvazaar Frame
(ms)

35.45 38.11 39.47 39.29 40.76 42.83

Core Power Kvazaar
Cluster (W)

0.865 2.943 2.873 0.832 2.924 2.940

Time MobileNet
Frame (ms)

29.55 29.41 10.465 35.44 35.17 15.015

Core Power
MobileNet Cluster
(W)

4.490 4.738 14.215 4.723 4.732 15.645

Memory Power (W) 0.198 0.511 1.222 0.631 1.672 3.302

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 00.



000:22 Qureshi, et al.

along with BLADE in-cache computing engine being used for the video encoding portion and
ARM OoO core clusters for CNN based image recognition with HBM2 as the main memory. This
heterogeneous architecture meets all the performance requirements and at the same time is energy
efficient in all the three case study scenarios. In this case study, Step 2 of the methodology, was used
to optimize for energy by reducing the frequency for drone navigation scenario. Other than this,
as the two kernels of the application do not give rise to any conflicting requirements, hence, no
trade-offs have to be made. Moreover, the methodology is generic if an application requires further
architectural exploration during Step 2, it can be performed. For instance, in case of different kernels
of the application running on different cores, when allocated together on a single system, might all
share the same LLC. In that case, the strategy to follow in Step 2 would be to optimize LLC size to
fit the working data set of all kernels. In another instance, the memory requirement for individual
kernels might be sufficient, but when co-allocated, the application might run out-of-memory. Thus,
in Step 2 we will select appropriate memory size, forcing us to even change the memory technology
being used, as some memories like the 3D stacked HBM2 are limited in terms of the memory size,
as compared to traditional DDR4 memories. Therefore, Step 2 of the methodology can be used
to optimize the architecture for the compute and memory sub-systems in cases when conflicting
requirements arise after co-allocating all the kernels of the application together, in addition to
the tuning of core frequencies for optimal performance and energy. Furthermore, the two-step
methodology is generic and not specific to any application or application domain. It can be used
to explore and optimize architecture for any application domain. The advantage of using the
methodology for a general-purpose CPU-based system, is that it gives an optimized architecture
for the application domain and not specific to an application. This enables updating the application
or replacing the application or one of its kernels with a better application or kernel, which is not
possible in ASICs, as they are application specific. This has been demonstrated by using MobileNet
for image classification kernel in this work, instead of AlexNet, which was used in our previous
work in [50]. From Fig. 19, we can see that using an 8-core system with 4-cores allocated to Kvazaar
and 4-cores for MobilNet, the performance benefit of using HBM2 instead of DDR4 is up to 10%
and 16.6% for Kvazaar and MobileNet, respectively, in comparison to 7.72% and 8.35% performance
benefit for Kvazaar and AlexNet, respectively, in the previous work in [50], in a similar 8-core
system.

7 CONCLUSION
In this paper, we have presented the new gem5-X simulation platform to enable exploration of
many-core heterogeneous architectures to optimize performance and energy consumption in
new emerging dynamic applications, such as CNNs for image classification and multi-view video
encoding. Compared to gem5, the latest version presented in this paper of gem5-X supports validated
ARMv8 in-order and OoO cores in FS mode with a validation error of up to 4%. Also, gem5-X
supports multiple heterogeneous ARMv8 cores along with heterogeneous memories including
DDR4 and the new 3D stacked HBM2 in FS mode, completely integrated and tested, which gem5
does not support straight out-of-the-box. In addition to heterogeneous compute cores, gem5-X
enables exploration of clustering configurations of compute cores. Moreover, gem5-X supports
accelerators to be integrated within the system like the BLADE in-cache computing engine, by
capitalizing on an ISA extension support. Furthermore, in comparison to gem5, gem5-X enables
profiling support using the gperf profiler, supports advanced check-pointing to help reduce the
simulation turnaround time and comes with workload-automation (WA) to enable file sharing
between host machine and the simulated system. All in all, in this work we have proposed a new
two-step architectural exploration and optimization methodology of new many-core architectures
for new dynamic applications and benchmarks.
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Using the system configuration capabilities of our new gem5-X framework and exploration
methodology for many-core systems, we have analyzed the benefits of HBM2 vs. DDR4 in the
STREAM benchmark. Then, real-time video analytics was used as a complete case-study application,
to explore and optimize architectures in different execution scenarios. In particular, we have used
three scenarios of video analytics, namely, surveillance, drone navigation and autonomous cars and
ADAS, for architecture exploration and optimization, as each has different performance requirement.
In the end, thanks to gem5-X and our exploration methodology, an optimal clustered heterogeneous
architecture with ARM in-order cores cluster along with a BLADE in-cache computing engine,
embedded within L1-D cache was defined as optimal option to process the video encoding kernel,
as well as an OoO core cluster was included to process the CNN based image classification kernel.
Overall, gem5-X allows to select the right number of clusters and their operating frequencies for
different case-study scenarios according to the performance requirement in each case. Furthermore,
on the memory side, gem5-X proved that the use of HBM2 for the video analytics application led to
both performance and energy benefits of up to 30%, compared to similar DDR4 based system. Hence,
we demonstrated that using gem5-X enables a truly complete and fast design space exploration for
many-core architectures.

The gem5-X simulation framework is open-sourced to the community, enabling out-of-the-box,
fast simulation of many-core ARM 64-bit heterogeneous architectures with innovative architectural
extensions. It is readily available for download on-line in this link: https://esl.epfl.ch/gem5-x. [48].
A technical reference manual for gem5-X has also been published online [47], which includes a
quick start guide, as well as instruction on how to use different architectural extensions and support
enhancements in gem5-X.

ACKNOWLEDGMENTS
This work has been partially supported by the ERC Consolidator Grant COMPUSAPIEN (GA No.
725657), the EC H2020 WiPLASH (GA No. 863337), the EC H2020 RECIPE (GA No. 801137), the
Spanish CM (S2018/TCS-4423), the EU FEDER and the Spanish MINECO (GA No. RTI2018-093684-
B-I00).

REFERENCES
[1] 96Boards. 2018. HiKey960. URL: https://www.96boards.org/product/hikey960/ (2018).
[2] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha. 2017. Real-Time

Video Analytics: The Killer App for Edge Computing. Computer 50, 10 (2017), 58–67.
[3] ARM. 2015. ARM Versatile Express Juno r2 Development Platform.
[4] ARM. 2017. ARM Architecture Reference Manual ARMv8.
[5] ARM. 2018. ARM Compute Library Framework. https://developer.arm.com/technologies/compute-library.
[6] ARM. 2021. Arm Ethos-N series processors. URL: https://developer.arm.com/ip-products/processors/machine-learning/arm-

ethos-n (2021).
[7] ARM. 2021. Mali GPUs for Graphics Processing. URL:https://www.arm.com/products/silicon-ip-multimedia (2021).
[8] S. Bianco, R. Cadene, L. Celona, and P. Napoletano. 2018. Benchmark Analysis of Representative Deep Neural Network

Architectures. IEEE Access 6 (2018), 64270–64277.
[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7.
https://doi.org/10.1145/2024716.2024718

[10] Benjamin Bross. 2012. High efficiency video coding (HEVC) text specification draft 9 (SoDIS). In 11th JCT-VC meeting.
[11] A. Butko, F. Bruguier, A. Gamatié, G. Sassatelli, D. Novo, L. Torres, and M. Robert. 2016. Full-System Simulation of

big.LITTLE Multicore Architecture for Performance and Energy Exploration. In MCSOC. 201–208. https://doi.org/10.
1109/MCSoC.2016.20

[12] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the Level of Abstraction for Scalable
and Accurate Parallel Multi-core Simulation. In SC. 1–12.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 00.

https://developer.arm.com/technologies/compute-library
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MCSoC.2016.20
https://doi.org/10.1109/MCSoC.2016.20


000:24 Qureshi, et al.

[13] Tarek Elgamal, Shu Shi, Varun Gupta, Rittwik Jana, and Klara Nahrstedt. 2020. SiEVE: Semantically Encoded Video
Analytics on Edge and Cloud. arXiv:cs.DC/2006.01318

[14] Cagkan Erbas, Andy D. Pimentel, Mark Thompson, and Simon Polstra. 2007. A Framework for System-Level Modeling
and Simulation of Embedded Systems Architectures. EURASIP Journal on Embedded Systems 2007 (2007), 1–11.
https://doi.org/10.1155/2007/82123

[15] A. Frumusanu and R. Smith. 2015. Cortex A53 - Performance and Power. https://www.anandtech.com/show/8718/the-
samsung-galaxy-note-4-exynos-review/4. Accessed Sep. 11, 2018.

[16] A. Frumusanu and R. Smith. 2015. Cortex A57 - Performance and Power. https://www.anandtech.com/show/8718/the-
samsung-galaxy-note-4-exynos-review/6. Accessed Sep. 11, 2018.

[17] Google. 2011. gperftools. https://github.com/gperftools/gperftools.
[18] Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch, Roland E. Wunderlich, Shelley Chen, Jangwoo Kim, Babak

Falsafi, James C. Hoe, and Andreas G. Nowatzyk. 2004. SimFlex: A Fast, Accurate, Flexible Full-system Simulation
Framework for Performance Evaluation of Server Architecture. SIGMETRICS Perform. Eval. Rev. (2004), 31–34.

[19] Sunpyo Hong and Hyesoon Kim. 2010. An Integrated GPU Power and Performance Model. SIGARCH Comput. Archit.
News 38, 3 (June 2010), 280–289.

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[21] Intel. 2015. Intel Xeon Processor E5-1620. URL: https://ark.intel.com/content/www/us/en/ark/products/64621/intel-xeon-
processor-e5-1620-10m-cache-3-60-ghz-0-0-gt-s-intel-qpi.html (2015).

[22] Intel. 2016. Intel Atom x5-Z8350 Processor. URL: https://ark.intel.com/content/www/us/en/ark/products/93361/intel-atom-
x5-z8350-processor-2m-cache-up-to-1-92-ghz.html (2016).

[23] Intel. 2017. Intel Core i7-4790 Processor. URL: https://ark.intel.com/content/www/us/en/ark/products/80806/intel-core-i7-
4790-processor-8m-cache-up-to-4-00-ghz.html (2017).

[24] George Kamiya. 2020. Data centres and data transmission networks - Analysis - IEA. https://www.iea.org/reports/data-
centres-and-data-transmission-networks

[25] Elia Kaufmann, Antonio Loquercio, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza. 2018.
Deep Drone Racing: Learning Agile Flight in Dynamic Environments. CoRR abs/1806.08548 (2018). arXiv:1806.08548
http://arxiv.org/abs/1806.08548

[26] Dong-Hyun Kim, Yong-Guk Go, and Soo-Mi Choi. 2018. First-Person-View Drone Flying in Mixed Reality. In SIGGRAPH
Asia 2018 Posters (Tokyo, Japan) (SA ’18). Association for Computing Machinery, New York, NY, USA, Article 43,
2 pages. https://doi.org/10.1145/3283289.3283346

[27] H. Kim, H. Nam,W. Jung, and J. Lee. 2017. Performance analysis of CNN frameworks for GPUs. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 55–64.

[28] Bell Labs. 2018. Plan 9 from Bell Labs. URL: https://9p.io/plan9/about.html (2018).
[29] Y. Lai, C. Ho, Y. Huang, C. Huang, Y. Kuo, and Y. Chung. 2018. Intelligent Vehicle Collision-Avoidance System with

Deep Learning. In 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 123–126.
[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (May 2015), 436–444.

https://doi.org/10.1038/nature14539
[31] S. Lee, H. Cho, Y. H. Son, Y. Ro, N. S. Kim, and J. H. Ahn. 2018. Leveraging Power-Performance Relationship of

Energy-Efficient Modern DRAM Devices. IEEE Access (2018), 31387–31398.
[32] Yuyang Liu, Ce Zhu, Min Mao, Fangliang Song, Frederic Dufaux, and Xiang Zhang. 2018. Video analytical coding:

When video coding meets video analysis. Signal Processing: Image Communication 67 (2018), 48 – 57. https://doi.org/
10.1016/j.image.2018.05.012

[33] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B.
Werner. 2002. Simics: A full system simulation platform. Computer (2002), 50–58.

[34] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current High Performance Computers. IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[35] Anup Mohan, Ahmed S. Kaseb, Kent W. Gauen, Yung-Hsiang Lu, Amy R. Reibman, and Thomas J. Hacker. 2018.
Determining the Necessary Frame Rate of Video Data for Object Tracking under Accuracy Constraints. In 2018 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE. https://doi.org/10.1109/mipr.2018.00081

[36] Viacheslav Moskalenko, Alona Moskalenko, Artem Korobov, and Viktor Semashko. 2018. The Model and Training
Algorithm of Compact Drone Autonomous Visual Navigation System. Data 4, 1 (Dec. 2018), 4. https://doi.org/10.3390/
data4010004

[37] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park,
Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 00.

http://arxiv.org/abs/cs.DC/2006.01318
https://doi.org/10.1155/2007/82123
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://github.com/gperftools/gperftools
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
http://arxiv.org/abs/1806.08548
http://arxiv.org/abs/1806.08548
https://doi.org/10.1145/3283289.3283346
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.image.2018.05.012
https://doi.org/10.1016/j.image.2018.05.012
https://doi.org/10.1109/mipr.2018.00081
https://doi.org/10.3390/data4010004
https://doi.org/10.3390/data4010004


Gem5-X : A Many-Core Heterogeneous Simulation Platform for Architectural Exploration and Optimization 000:25

Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation
Model for Personalization and Recommendation Systems. arXiv:cs.IR/1906.00091

[38] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumenta-
tion. In SIGPLAN PLDI. 89–100.

[39] Nvidia. [n.d.]. Nvidia TensorRT. URL:https://github.com/NVIDIA/TensorRT ([n. d.]).
[40] Nvidia. 2019. DATA SHEET NVIDIA Jetson Nano System-on-Module. URL:

https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet (2019).
[41] Nvidia. 2019. Nvidia Jetson Nano. URL: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-

nano/ (2019).
[42] OSDev. 2017. Virtio. https://wiki.osdev.org/Virtio (2017).
[43] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya Agrawal, Stephen W. Keckler, and William J.

Dally. 2017. Fine-grained DRAM: Energy-efficient DRAM for Extreme Bandwidth Systems. In MICRO. 41–54.
[44] A. Pahlevan, Y. M. Qureshi, M. Zapater, A. Bartolini, D. Rossi, L. Benini, and D. Atienza. 2018. Energy proportionality

in near-threshold computing servers and cloud data centers: Consolidating or Not?. In DATE. 147–152.
[45] Jeng-Shyang Pan, S. Ma, S.-H Chen, and C.-S Yang. 2015. Vision-based vehicle forward collision warning system using

optical flow algorithm. Journal of Information Hiding and Multimedia Signal Processing 6 (07 2015), 1029–1042.
[46] G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar. 2017. Obstacle detection and classification using deep learning

for tracking in high-speed autonomous driving. In 2017 IEEE Region 10 Symposium (TENSYMP). 1–6.
[47] Yasir Qureshi, William Simon, Marina Zapater, Katzalin Olcoz, and David Atienza. 2020. Gem5-X Full System Manual.

https://eslweb.epfl.ch/masters/img/20200814gem5_X_TechnicalManual_v1.pdf.
[48] YasirMahmoodQureshi. 2020. Gem5-X: A gem5-based simulator with architectural eXtensions. https://esl.epfl.ch/gem5-

x.
[49] Y. M. Qureshi, J. M. Herruzo, M. Zapater, K. Olcoz, S. Gonzalez Navarro, O. Plata, and D. Atienza. 2020. Genome

Sequence Alignment - Design Space Exploration for Optimal Performance and Energy Architectures. IEEE Trans.
Comput. (2020), 1–1. https://doi.org/10.1109/TC.2020.3041402

[50] Yasir Mahmood Qureshi, William Andrew Simon, Marina Zapater, David Atienza, and Katzalin Olcoz. 2019. GEM5-X:
A GEM5-Based System Level Simulation Framework to Optimize Many-Core Platforms. In Proceedings of the High
Performance Computing Symposium (Tucson, Arizona) (HPC ’19). Society for Computer Simulation International, San
Diego, CA, USA, Article 8, 12 pages.

[51] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. 2018. DeepDecision: A Mobile Deep Learning Framework for Edge Video
Analytics. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 1421–1429.

[52] B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-Hashimi, and G. V. Merrett. 2017. Empirical CPU power
modelling and estimation in the gem5 simulator. In PATMOS. 1–8. https://doi.org/10.1109/PATMOS.2017.8106988

[53] SANDVINE. 2018. Global Internet Phenomena Report. 2018. URL: https://www.sandvine.com/hubfs/downloads/phenomena/2018-
phenomena-report.pdf (2018).

[54] H. Shim, S. Lee, Y. Woo, M. Chung, J. Lee, and C. Kyung. 2006. Cycle-accurate Verification of AHB-based RTL IP with
Transaction-level System Environment. In VLSI-DAT. 1–4. https://doi.org/10.1109/VDAT.2006.258143

[55] William Andrew Simon, Yasir Mahmood Qureshi, Alexandre Levisse, Marina Zapater, and David Atienza. 2019. BLADE:
A BitLine Accelerator for Devices on the Edge. In Proceedings of the 2019 on Great Lakes Symposium on VLSI (Tysons
Corner, VA, USA) (GLSVLSI ’19). Association for Computing Machinery, New York, NY, USA, 207–212.

[56] W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and D. Atienza. 2020. BLADE: An in-Cache Computing
Architecture for Edge Devices. IEEE Trans. Comput. 69, 9 (2020), 1349–1363. https://doi.org/10.1109/TC.2020.2972528

[57] A. Sobti, C. Arora, and M. Balakrishnan. 2018. Object Detection in Real-Time Systems: Going Beyond Precision. In
2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 1020–1028.

[58] K. Sohn, W. Yun, R. Oh, C. Oh, S. Seo, M. Park, D. Shin, W. Jung, S. Shin, J. Ryu, H. Yu, J. Jung, H. Lee, S. Kang, Y. Sohn,
J. Choi, Y. Bae, S. Jang, and G. Jin. 2017. A 1.2 V 20 nm 307 GB/s HBM DRAM With At-Speed Wafer-Level IO Test
Scheme and Adaptive Refresh Considering Temperature Distribution. JSSC (Jan 2017), 250–260.

[59] R. Varona-Gómez and E. Villar. 2009. AADL Simulation and Performance Analysis in SystemC. In 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems. 323–328.

[60] Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Ylä-Outinen, Jarno Vanne, and Timo D Hämäläinen. 2016. Kvazaar:
Open-Source HEVC/H. 265 Encoder. In Multimedia Conference. 1179–1182.

[61] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and M. Satyanarayanan. 2018. Bandwidth-Efficient Live
Video Analytics for Drones Via Edge Computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC). 159–173.

[62] Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin Zheng, Mu Li, and Yida Wang. 2019. A Unified Optimization
Approach for CNN Model Inference on Integrated GPUs. In Proceedings of the 48th International Conference on Parallel
Processing (Kyoto, Japan) (ICPP 2019). Association for Computing Machinery, New York, NY, USA, Article 99, 10 pages.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 00.

http://arxiv.org/abs/cs.IR/1906.00091
https://eslweb.epfl.ch/masters/img/20200814gem5_X_TechnicalManual_v1.pdf
https://esl.epfl.ch/gem5-x
https://esl.epfl.ch/gem5-x
https://doi.org/10.1109/TC.2020.3041402
https://doi.org/10.1109/PATMOS.2017.8106988
https://doi.org/10.1109/VDAT.2006.258143
https://doi.org/10.1109/TC.2020.2972528

	Abstract
	1 Introduction
	2 Related work
	3 Video Analytics Application
	3.1 Video Analytics Application Structure
	3.2 Video Encoding
	3.3 Image classification using CNNs

	4 Gem5-X Simulation Platform 
	4.1 Compute Sub-system
	4.2 Memory Sub-system
	4.3 HBM2 Bandwidth Analysis
	4.4 Power Models and Area

	5 Architectural Exploration and Optimization Methodology
	6 Compute Resource Analysis and Optimization for Real-Time Video Analytics
	6.1 Kvazaar Video Encoding
	6.2 MobileNet
	6.3 Video Analytics

	7 Conclusion
	Acknowledgments
	References

