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Abstract

Neuromorphic computing is a wide research field aimed to the realization of brain-inspired

hardware, apt to tackle computation of unstructured data more efficiently than currently

done with standard computer architectures. Oscillatory neural networks are known for their

associative memory capability, which enables to retrieve the information stored in the system

from noisy or incomplete data. The development of phase-transition materials such as

vanadium dioxide (VO2) allows to design compact relaxation oscillator units which can be

coupled in frequency and phase to realize an oscillatory neural network in hardware. In this

thesis, we investigate the oscillatory neural network technology from the realization of the

basic oscillator components with VO2 to the exploitation of the coupled oscillators as analog

filters in convolutional neural networks applications.

VO2 phase-transition devices are realized in a CMOS compatible process in two geometries, a

planar and a crossbar configuration. The impact of the polycrystallinity of the VO2 film on the

insulator-to-metal transition of the device is analyzed; through the contacting of a single grain

we demonstrate the realization of a VO2 device with a single, sharp phase transition.

The VO2 devices are connected in circuits to build networks of coupled oscillators. Through

coupling with resistive and capacitive elements, experimental demonstrations of a 4-VO2

coupled oscillator network is shown. The network encodes the input and output information

in the relative phase of the oscillators. The associative memory capability of the system is

used to extract features from hand-written digits. By expanding the network to a 3×3 coupled

oscillator system, we demonstrate in simulations how an oscillatory neural network can

replace up to five digital filters in a convolutional neural network, retaining the same image

processing capabilities.

Keywords: oscillatory neural network • vanadium dioxide (VO2) • relaxation oscillator •
frequency locking • phase locking • associative memory • neuromorphic computing • convo-

lutional neural networks • time encoded information
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Zusammenfassung

Neuromorphic Computing ist ein weites Forschungsfeld, das auf die Realisierung von hirn-

inspirierter Hardware abzielt und dazu geeignet ist, unstrukturierte Daten effizienter als mit

derzeitigen Prozessoren zu berechnen. Oszillierende neuronale Netzwerke sind für ihre as-

soziativen Speicherfähigkeiten bekannt, die es ermöglichen, die im System gespeicherten

Informationen aus verrauschten oder unvollständigen Daten zu gewinnen. Die Nutzung von

Phasenübergangsmaterialien wie Vanadiumdioxid (VO2) ermöglicht den Entwurf kompakter

Relaxationsoszillatoreinheiten, die in Frequenz und Phase gekoppelt werden können, um ein

oszillierendes neuronales Netzwerk in Hardware zu realisieren. In dieser Arbeit untersuchen

wir die oszillierende neuronale Netzwerktechnologie von der Realisierung der grundlegenden

Oszillatorkomponenten mit VO2 bis zur Nutzung der gekoppelten Oszillatoren als analoge

Filter in Anwendungen von faltenden neuronalen Netzwerken.

VO2 Phasenübergangsbauelemente werden in einem CMOS-kompatiblen Prozess in zwei

Geometrien realisiert, einer planaren und einer crossbar-Konfiguration. Der Einfluss der

Polykristallinität des VO2 -Films auf den Metall-Isolator-Übergang der Bauelemente wird ana-

lysiert. Durch die Kontaktierung eines einzelnen Kristallits demonstrieren wir die Realisierung

eines VO2 Bauelements mit einem einzelnen, scharfen Phasenübergang.

Die VO2 Bauelemente sind in Schaltungen verbunden, um Netzwerke gekoppelter Oszilla-

toren aufzubauen. Durch Kopplung mit resistiven und kapazitiven Elementen werden ex-

perimentelle Demonstrationen eines 4-VO2-gekoppelten Oszillatornetzwerks gezeigt. Das

Netzwerk codiert die Eingangs- und Ausgangsinformationen in der relativen Phase der Oszilla-

toren. Die assoziativen Speicherfunktionen des Systems werden verwendet, um Merkmale

aus handgeschriebenen Ziffern zu extrahieren. Durch die Erweiterung des Netzwerks auf

ein 3×3-gekoppeltes Oszillatorsystem zeigen wir in Simulationen, wie ein oszillatorisches

neuronales Netzwerk verwendet werden kann, um bis zu fünf digitale Filter in einem fal-

tendem neuronalem Netzwerk zu ersetzen, wobei die gleichen Bildverarbeitungsfähigkeiten

beibehalten werden.

Stichwörter: Oszillierende neuronale Netzwerke • Vanadiumdioxid (VO2) • Relaxationsos-

zillatoreinheiten • Frequenz locking • Phase locking • assoziativen Speicherfähigkeiten •
neuromorphic computing • convolutional neural networks • zeitcodierte Information
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1 Introduction

1.1 The Computational Challenge of Deep Learning

The 21st century, with the development of advanced electronic technologies, has seen an

exponential increase in the amount of data that is daily created and processed worldwide. A

recent report from the International Data Corporation [1] predicts that 59 zettabytes of data

will be produced, copied or consumed only this year. With the growth of edge computing,

it is estimated that in the next three years we will further create more data than what has

been generated in the last thirty years world wide [1]. In parallel to the extended availability

of information, machine learning algorithms have arisen with the aim to extract relevant

knowledge from diverse and unstructured data. These algorithms, which rely on multi-level

layered networks and back propagation training, have been devised theoretically in the 80’s.

However, as they require high computational power and a large amount of data for training,

they have been only recently brought to commercial use. The advances in hardware technolo-

gies, which enabled to have faster, more powerful computing machines, together with the

increased data-availability, allowed the exploitation of machine learning, and in particular,

deep neural networks to perform data analysis and information extraction that was not easily

implementable in the past. Therefore, the need of processing the spectacular amount of data

available today required the employment of deep-learning techniques. At the same time, deep

learning would have never been possible without the availability of large datasets [2].

Deep learning is a branch of machine learning which uses brain-inspired concepts to perform

learning of a task on a machine. Deep learning nowadays powers many aspects of our soci-

ety: it is used in web searches to select relevant results, content filtering and personalized

advertisements in social networks, facial recognition and speech recognition. Moreover, it

is successfully employed also for aiding the synthesis of new drugs [3], for diagnostics [4]

and cybersecurity [5]. These algorithms are based on a representation-learning method for

which raw data is fed into a network. The network automatically computes and discovers

the set of features needed to perform a classification or a detection task [6]. The deep neural

network algorithms are constructed on a set of subsequent layers, which are composed by
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simple, non-linear modules. Each module transforms the raw data from the previous level,

performing a weighted sum of the various inputs, which on a high level resembles the accu-

mulation of spikes from the incoming synapses performed by neurons in the human brain.

After undergoing a non-linear activation function, the output of each layer results in a more

abstract representation of the information; the last module structures the output information

as, for example, a classification vector for an image classification application. The training

of the network consists in the tuning of the weights between the network nodes, usually

performed by a back-propagation algorithm. Per definition, the higher the number of layers in

the network, the deeper the network is. It has been shown that deeper networks perform with

better accuracy than shallow networks [7]. Naturally, the bigger the network, the higher is the

number of weights to be trained. State-of-the-art deep neural networks, such as the VGG [8]

or ResNet [9] architectures, comprise hundreds of layers and millions of weights [10]. The

training of such networks becomes extremely energy and time consuming and requires to run

on powerful or specialized hardware, such as graphic unit cards (GPUs) or field programmable

gate arrays (FPGA). The success of GPUs as a platform to run neural network algorithms is

found in the parallelization of the basic operation behind neural networks computation, the

vector-matrix multiplication [11]. The best performing NVIDIA GPU, the Tesla A100, released

in May 2020 with a 7 nm transistor technology, can operate at 312 GFLOPS/W for single-

precision floating-point data format. It is reported that a ResNet-101 (where 101 refers to the

number of layers in the network) can be trained on the ImageNet dataset [12] in about 5 hours

using 8 of such GPUs [13], for a total power consumption of 16 kWh. This power consumption

is almost four times what an European household needs in average for one day [14] and can

increase steeply when the training is performed on older generation hardware platforms [15].

One of the major limitations of standard computer architectures in performing deep learning

computation is the so-called von Neumann bottleneck, that results from the physical sep-

aration between the memory and the computation units. The imbalance arising from the

difference between the speed of the computation and the speed of data retrieval from the

Random Access Memory (RAM), causes the processor to remain idle during the time needed

to access the RAM or the cache memories [16, 17, 18, 19]. Moreover, the access to the memory

is also responsible for a high power consumption [20]. For each operation in a deep neural

network, the data to be processed, together with the connection weights of the layers, need to

be transferred from the memory to the computational unit. The result of this operation is then

moved back to the memory. These algorithms require therefore an extensive usage of memory

resources, which contributes to increase the time needed for performing the computation.

In comparison, the human brain can perform tasks as recognition and classification much

more efficiently than modern processors. Counting around 1010 neurons and 1015 synapses,

the massively parallel, plastic structure of the brain serves as an inspiration to design novel

hardware architectures, or neuromorphic chips, which are devised to bring the memory and

the computation unit close together, with the aim of increasing the computing performance.
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1.2 Neuromorphic Computing: an Overview of the State of the Art

The concept of neuromorphic computing was first proposed by Carver Mead in 1990 [21] and

relies on using analog electronic circuits and systems to mimic the biological architecture

of the human brain. Multiple approaches to realize specialized hardware for neuromorphic

computing applications are currently under investigation, with the aim of designing a highly

parallel, interconnected and reconfigurable system which does not suffer from the separation

between computational and memory unity. In [11], Kendall et al. have identified 10 character-

istics for a successful neuromorphic hardware: the neuromorphic system should be highly

parallel (1) and perform in-memory computing (2), therefore storing the information next to

the computational units; it should perform analog, low precision but noise resilient computa-

tion similarly to the human brain (3); therefore, it should be accepted that its output will be a

probabilistic solution (4) and should allow for mistakes produced by causality (5); plasticity (6)

is needed to reconfigure the state of the system and enable learning (7); non-linearity (8) is es-

sential to reproduce neural network behaviors; finally the system should be highly scalable (9)

and implement sparsity (10) of the neuron-to-neuron connections. Building a system that

respects all these characteristics is very challenging and there is no clear direction on which

architecture is ultimately more apt to embed the expectation of neuromorphic hardware.

Neuromorphic engineering is a very wide research field, featuring thousands of contributions

which often follow diverging paths. The research attention nowadays spans from new systems

and architecture designs, to the re-thinking of silicon based technology, in favor of novel

materials and devices which offer more flexibility for an analog approach to computing [22,

23]. One common ground among neural network algorithms and the various computing

platforms, including the oscillating neural network concept discussed in this thesis, is the

original inspiration to the massively-parallel architecture of the brain. Following the steps

of [24, 11], we distinguish between research projects that aim to build hardware accelerators

for deep neural networks and those more directly inspired by neuroscience.

1.2.1 Biologically-Inspired Platforms

The primary goal of biologically-inspired platforms is the emulation of large-scale biological

neural networks. These platforms often rely on the hardware implementation of spiking

neural networks (SNNs), in which the information is communicated through asynchronous

and sparse binary events, or spikes, between neurons [25]. The neurons are connected via

synaptic weights, whose value can be tuned during the training of the SNN through the spike-

timing dependent plasticity (STDP) concept [26, 27]: a synaptic connection between two

neurons is strengthened when the post-synaptic neuron spikes after the pre-synaptic neuron;

vice versa, it is weakened when the post-synaptic neuron spikes before the pre-synaptic

one. With STDP, contrary to what happens in deep neural networks (DNNs), it is possible

to implement unsupervised learning; however, the STDP-based learning architectures so far

devised are not as reliable as the supervised learning implemented with the backpropagation

algorithm in DNNs [28].
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Many realization of SNNs have been developed with standard CMOS technology, offering pro-

totypes containing millions of neurons and synapses. Between the most complex realizations,

we mention IBM’s True North chip in 2014, counting one million neurons and 256 million

synapses [29]; the SpiNNaker system, which counts low power ARM cores to perform real

time simulations of SNNs [30, 31]; Loihi from Intel [32, 33], which counts 130’000 neurons

and 130 million synapses. Even though the primary purpose of these implementations is the

emulation of biological networks, they are also increasingly considered as accelerators for

deep neural networks algorithms, even though so far they demonstrated lower accuracy than

DNNs running on standard GPU hardware [24, 34, 35, 36, 37].

Special attention is also given to the realization of the single neuron or synapse unit [38, 27].

Many efforts have been carried out to design neuron models in CMOS technology, spanning

from biologically-plausible designs [39, 40] to simpler compact models [41, 42]. With CMOS

technology, multiple transistors are usually required to implement a spiking element. As an

alternative, emerging technologies have been proposed, which can reproduce the spiking

behavior with single compact components, from electrochemical metallization neurons [43,

44], to resistive random access memory (RRAM) technologies [45, 46], to volatile phase-

transition oxides neurons [47, 48]. Similarly, nanoscale emerging memory technologies which

can encode multiple memory states have been studied to realize the synapses. Resistive

RAMs [49, 50], phase change memories (PCM) [51], and magneto-resistive random-access

memories (MRAM) [52] have the potential to improve the circuit integration density and to

greatly reduce the power dissipation in neuromorphic systems [53, 54].

1.2.2 Neuromorphic Accelerators for Neural Networks

As mentioned before, in contrast to SNNs, DNNs lack of biological realism, favouring linear

algebra techniques of vector-matrix multiplication combined with non-linear activation

functions to compute. They are based on supervised learning through back-propagation

techniques, which require large, labelled datasets and benefit from the highly parallel matrix

multiplication techniques offered by modern GPUs. The second branch of neuromorphic

engineering is devoted to the design of neuromorphic accelerators, which are fast, energy

efficient platforms specialized for DNN algorithms and able to bridge the physical separation

between the memory and the processor units.

From an architecture point of view, many accelerators have been produced bringing the com-

putational units next to the memory, therefore increasing the bandwidth between CPU and

the storage units [55]. In the past, the efforts of realizing in-processing memory by positioning

dynamic RAMs and CPU close together have been hindered by the technological challenge of

bridging the manufacturing differences between the processes utilized to realize them [56].

Recent advances in 3-D memory stacking pose a promising route in this direction [57, 58].

One of the most encouraging emerging concepts for neural networks hardware accelera-

tors consists in implementing in-memory computing with memristive devices (RRAM, PCM,
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MRAM). The idea comes from the consideration that analog resistive memory elements can

perform the multiply-accumulate operations, which are at the heart of DNNs, exploiting the

physical attributes of nanoscale devices. By building a crossbar array of memristive devices,

the multiply operation can be performed at the crosspoint of each memory element by Ohm’s

law; similarly, the summation can be computed through the sum of currents following Kirch-

hoff’s first law, as explained in [28]. Therefore, the memory itself, while storing the information,

can also perform the computation. By avoiding the movement of data, it is expected to allow

for a significant reduction of the power consumption and an increased computation speed [59,

60]. The entrance to the market of this technology is currently impeded by problems like

non-linear conductance response, limited dynamic range, variability and drifts, which hinder

the mapping of DNNs weights and the recognition performances of such platforms [59, 61,

62]. However multiple efforts are carried out to allow scaling of memristive arrays to large

dimension [63] and to design more fault-tolerant approaches for mapping DNNs in these

accelerators [64].

1.2.3 Beyond Neural and Synaptic Behaviors

Parallelism and in-memory computation are key ingredients in neuromorphic computing. To

build a memory platform capable to perform also computation, it is of interest to understand

how the biological memory works. In particular, it has been demonstrated that rhythmic

firing of neurons is connected to long-term information processing in the memory [65, 66].

Following this observation, algorithms have been designed that use the evolving dynamics

of non-linear systems to perform computation. In particular, Hopfield in 1980s proposed

a recurrent, fully-connected network based on the collective behavior of simple non-linear

elements (neurons) to perform several tasks, including image recognition [67]. This network

has the unique function of possessing an associative memory, that can be programmed by

tuning the connection weights between the neurons. The associative memory is able to identify

accurately objects (or input electrical signals) even if they are contaminated by noise [68].

One of the possible realization of such a memory system is through the exploitation of the

frequency and phase synchronization of coupled oscillators [69, 70]. Designing an Oscillatory

Neural Network (ONN) in hardware is interesting as it yields the advantages of utilizing the

same devices that are storing the patterns to perform the computing, therefore representing

another kind of in-memory computing platform. Second, the nature of the associative memory

provides a more robust way of pattern recognition compared to algorithms based on content-

addressable memories, as it is highly resilient to input pattern distortion and noise [71].

Figure 1.1 attempts to put into context the research of ONN hardware with the major players

in neuromorphic computing discussed above. Coupled oscillators systems are traditionally

researched as hardware computing platforms for Oscillatory Neural Networks. In this work,

we will bring the research a step forward, and investigate the possible exploitation of the

associative memory of coupled oscillators as hardware accelerators for convolutional filters in

neural networks.
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Figure 1.1 | Brain-inspired computing is a wide technological field which comprises the design of
neural networks algorithms and the realization of neuromorphic computing hardware. Neuromorphic
computing platforms can be classified in hardware accelerators for neural network applications and
biologically-inspired systems. An important example in the first category is the development of in-
memory computing concepts such as the crossbar arrays for vector-matrix multiplication discussed in
the previous section. The research of coupled oscillator hardware for ONNs also falls under this category.
In particular, a principal investigation of this thesis concerns the exploitation of ONNs for convolutional
neural networks applications. Spiking neural networks belong instead to the biologically-inspired
platforms, which more closely mimic the human brain behavior. The neuromorphic computing field is
however much more complex and varied than what exposed in this brief discussion and showed in this
figure.

Apart from pattern retrieval, other problems can be successfully tackled by computing with

Hopfield neural networks and oscillatory devices. For example, networks of chaotic oscillators

can solve constrained optimization problems better than many state-of-the-art GPUs or

ASIC designs [72]. In other works, it was shown that coupled oscillators can solve NP-hard

combinatorial optimization problems such as vertex graph coloring [73] and the travelling

salesman problem [74], or can be used as an Ising machine [75].

1.2.4 Motivation for Oscillatory Neural Networks

Compared to the more mature platforms described in the previous sections, the realization

of neuromorphic computing hardware based on coupled oscillator technology is still in

the first stage of development, and presents numerous challenges. In order to build an

associative memory based on oscillators, it is necessary to build a network of oscillators, which

can be synchronized with tunable coupling elements. Until now, image recognition with

coupled oscillators requires relatively large networks, with many tunable interconnecting

elements [76]. This demands for material and device research in order to fabricate reliable
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oscillating devices, which can work over a high number of cycles and have low device-to-device

variability. The attractiveness of oscillatory neural networks largely depends on designing a

suitable oscillator as a building block. Even though they were invented more than 40 years

ago, the research on ONNs has only recently gained momentum thanks to the advances

in nanoscale device technology, which now allow to realize very compact, energy efficient

oscillators based on the non-linearity of novel material such as phase-transition materials [77,

78, 79] or spintronic nano-devices [80, 81, 76]. It is argued that the physical realization of

the oscillators is determinant for their success in real-life applications [82]. Between the

various technologies, oscillators realized with the phase-change material vanadium dioxide

(VO2) have been widely researched for ONN applications [78, 48, 83, 84]. VO2 presents several

characteristics that make it one of the top candidate for oscillatory neural network technology:

it shows a phase transition with a large jump between the insulating and the metallic state [85];

the phase transition happens near room-temperature, which is an important requirement for

hardware applications; the phase transition can be triggered by an electrical stimuli [86] and

it has been proven to be ultra-fast [87]; finally, VO2 oscillators can be coupled with standard

electrical components, such as capacitors [78].

Given the early stage of the research, it is challenging to precisely state the advantage of

this technology compared to other very promising neuromorphic computing implementa-

tions. Almost no benchmarks have been drawn between oscillator-based computing versus

other digital or analog solutions so far. As mentioned in [82], there are several reasons why

researching this technology is interesting:

• Firstly, oscillatory neural networks are noise-tolerant: their associative memory is re-

silient to noisy or distorted input.

• Moreover, they allow for computing with the synchronization time or with the relative

phase of the oscillators, which can be an advantage compared to systems working with

a very scaled voltage power supply as they do not use the amplitude of the electrical

variables of the system to process information.

• Lastly, they can be flexibly used for a wide range of possibly disruptive applications,

from pattern retrieval to the solving of NP-hard problems.

Ultimately, networks of coupled oscillators require still extensive research spanning between

various fields: from the materials and device, to fabricate reliable, power efficient oscillators; to

the design of circuit for the interconnection and the read-out of the input and out signal; to the

algorithms and computational models, to adapt them to the circuit and device technologies

and to allow for practical fast, power efficient applications of these networks.
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1.3 Aim of the Thesis

The scope of this thesis is to demonstrate that systems of coupled oscillators can be used as

hardware accelerators for neural network algorithms. With specific attention to convolutional

neural networks, we aim to demonstrate how the associative memory capabilities of an

oscillatory neural network can be used to perform different filtering actions on an image,

exploiting the fault-tolerant, time-encoded information processing of the oscillatory system.

This work combines the research of a novel oscillatory device, based on the phase change

material vanadium dioxide (VO2), with the circuit implementation of small networks of cou-

pled oscillators. Starting from the realization of VO2 devices, we explore their integration on a

silicon platform and the scaling of their dimensions down to 70 nm. The phase-transition of

the film in planar and crossbar devices is investigated, with special attention to the character-

istic of the transition in the polycrystalline material and its impact on the device-to-device

variability. We explore the frequency and phase synchronization of the compact oscillators

with a coupling scheme realized with simple electrical components. In particular, we focus on

the realization and encoding of the system memory with resistive coupling elements, which in

perspective can be realized with the emerging memory technologies exploited for in-memory

computation (RRAM, PCMs). With the aim of realizing a computing unit which works en-

tirely through the timing of the electrical signals, we investigate the injection of the input

information based on the relative delays between the voltage signals of the devices, rather

than with amplitude-encoded schemes. Finally, we simulate a network design which can

be integrated as an analog filter in convolutional neural networks, replacing several digital

convolutional filters. The convolutional neural network accelerated by the oscillatory neural

network hardware is tested on an image classification task, but can ultimately be flexibly used

for other applications employing convolutional neural networks.

The thesis is structured as follows:

Chapter 1: Introduction

In the first chapter the topic has been introduced and placed in a wider scientific context.

Chapter 2: VO2 Oscillators: from the Material to the Applications

The second chapter presents a theoretical overview of oscillatory neural network technology

based on VO2 devices. Starting from the analysis of the material, we discuss the origin of the

phase transition and how to exploit it in order to realize compact relaxation oscillators, which

can be coupled in frequency with simple electrical connections. We then offer a brief overview

of the oscillatory neural networks, from the mathematical theory of their associative memory

capabilities, to the available demonstrations of coupled oscillator computing. Finally, we intro-

duce convolutional neural network algorithms and their application for image classification

tasks.
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Chapter 3: Experimental Methods

In this chapter the experimental methods which are relevant for this thesis are presented.

Starting from the deposition of VO2 thin films, we discuss the fabrication and characteriza-

tion techniques of planar and cross-bar devices, including a scanning thermal microscopy

technique for the mapping of the temperature inside the device. We briefly present the device

model used for the circuit simulation.

Chapter 4: Characterization of the Phase Transition in Scaled VO2 Devices

In this chapter the phase transition in planar and crossbar VO2 devices is presented. Through

electrical characterization and scanning thermal probe microscopy technique the impact of

the polycrystallinity of the VO2 film deposited on a SiO2/Si substrate is analyzed. Finally, we

present the realization of a sharp transition in a single-grain device.

Chapter 5: Coupled Oscillator Networks based on VO2 Devices

In chapter 5 we present the experimental implementation of an Oscillatory Neural Network

based on the phase-transition of VO2 devices. The information is computed in the time-

relations of the network signals. In particular, the storage of multiple output patterns in the

relative phase of the oscillators is presented. Moreover, we offer experimental demonstrations

of a computational scheme based on the encoding of the input information in the time-delays

of the voltage signals in the oscillatory nodes. A demonstration of feature edge-extraction

operated by a network of 4-VO2 on Si oscillators is presented.

Chapter 6: VO2 Coupled Oscillators as Filters in Convolutional Neural Networks

In chapter 6 the integration of oscillatory neural networks as analog filters in convolutional

neural networks is discussed. Through a simulation framework, we demonstrate that a single

oscillatory neural network unit is able to replace five convolutional filters. A backpropagation

algorithm which can train the ONN is also presented. Lastly, envisioning the connection of the

oscillatory neural unit in multi-layered networks, we examine a phase detector circuit which

could buffer the information from the previous to the subsequent layer.

Chapter 7: Conclusion

The last chapter presents a conclusion of the thesis followed by an outlook for future develop-

ments.
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2 VO2 Oscillators: from the Material to
the Applications

This chapter provides the fundamentals of devices based on vanadium dioxide. We discuss

the origins of the phase transition of vanadium dioxide and how it can be exploited to build

compact relaxation oscillators. We further present the theory on Oscillatory Neural Networks

and review the state of the art of its technological applications. Finally, we briefly introduce the

architecture of conventional convolutional neural networks employed for image recognition

tasks.

2.1 Vanadium Dioxide

Vanadium oxides are strongly correlated materials, which have been extensively studied due

to the possible applications of their insulating to metallic (IMT) transition [88]. They can be

synthesized with standard deposition techniques, as chemical vapour deposition or atomic

layer deposition. They present a variety of stoichiometries, which, given their different crystal

structure and band diagrams, can be identified with standard Raman and X-ray spectroscopy

characterization. When present, the insulator-to-metal phase transition happens at different

temperature for the different oxidation states. An overview of the stable vanadium oxides that

present an IMT is given in table 2.1.

Between the various stoichiometries, V2O3, VO2 and V2O5 are the most researched for practical

Table 2.1 | Table listing various vanadium compound, their crystalline structure and phase transition
temperatures. Information from [88].

cristal structure transition temperature
V2O3 monoclinic/trigonal 150 - 160 K
VnO2n-1 triclinic 250 - 70 K
VO2 monoclinic-tetragonal rutile 340 K
V2O5 orthorombic none
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Figure 2.2 | Vanadium dioxide presents a phase transition around 340 K that comprises a change in
the resistivity of the material of 3 to 5 orders of magnitude. The phase change is accompanied by a
structural transition from a monoclinic to a rutile crystal structure. Adapted from [93] with permission
from AAAS.

applications. In particular, V2O3 is investigated for its well defined Mott phase transition

characteristics [89], which happens at a temperature of around 150 K. Vanadium pentoxide

(V2O5) is the most stable compound, that features the highest oxidation state of vanadium

oxides [90]. It does not present an IMT transition, however it is extensively researched for its

electrochromic applications [91, 92].

In recent years, vanadium dioxide (VO2) attracted the interest of the scientific community

given its near-room temperature insulator to metal (IMT) phase transition, which enables

more practical applications for novel electronic devices. The phase transition in VO2 happens

in fact at a critical temperature T C = 68° C (340 K) and it is accompanied by a change in its

structural and electronic properties [94]. At room temperature, VO2 presents a monoclinic

(M1) crystal structure and semiconducting properties, with a resistivity of about 10Ω· cm, as

depicted in figure 2.2. In this phase, the crystal structure sees a doubling of the unit cell, with

the formation of V-V dimers that are responsible for the opening of the VO2 band gap and

consequently for the low conductance of the material. Above 340 K the material experiences

an insulator to metal transition with a rise of several orders of magnitude in its electrical

conductivity, accompanied by a structural transition to a tetragonal, rutile crystal structure

[95, 93, 96, 97]. The phase change is volatile, meaning that when the external stimuli inducing

the phase change is removed, the material goes back to its insulating state. In figure 2.3
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Figure 2.3 | Left: the band diagram of the monoclinic phase presents an energy gap between the d//

and the d//* orbitals. Right: in the rutile phase the Fermi level is position in the conduction band,
justifying the metallic nature of this phase. Adapted from [98], by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature Physics, 2013.

we can see a schematic representation of the VO2 band diagram. The phase transition is

determined by the vanadium d electrons, whose bonding modifies the electronic structure

near the Fermi level (EF) across the phase transition. In fact, the V 3d orbitals hybridize with

the O 2p orbitals, forming σ, π and d// orbitals. In the metallic state, the d// orbitals are

parallel to the rutile c-axis and not bonded. They partially overlap with π∗ orbitals and result

not completely filled, therefore leading to the metallic properties of the material [98]. Across

the phase transition, the formation of V-V dimers results in a splitting of the d// orbitals in a

bond and anti-bond configuration, in which the d //
∗ is empty . In addition, the π∗ orbitals

are shifted to higher energy [99]. The formed band gap is responsible for the semiconductive

nature of the monoclinic VO2.

Apart from the electrical conductivity, other properties of the material are affected by the phase

transition, in particular optical properties [100, 101] and thermal properties like the thermal

conductivity [102, 103] and the Seeback coefficient [104]. This wide range of effects makes

this material an attractive candidate for various applications, spanning from fast electrical

switches [105], to optical devices [106, 107], to thermochromic coatings [108].

Researchers still debate about the nature of the phase transition of VO2. The strong electron-

electron interaction would classify the material along the Mott transition materials [109, 110,

111]. Following this theory, the study of the material usually proceeds from the Hubbard

hamiltonian for strongly correlated fermions [112]:

H =− ∑︂
i j (σ)

ti j c+iσc jσ+U
∑︂

i
ni↑ni↓. (2.1)

In this equation, ti j represents the probability for a non-interacting electron to hop between
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sites i and j . The operator ciσ is the creation operator for the electron at site i , and c+iσ the

corresponding annihilation operator. This first summation term is a kinetic energy term that

describes the energy needed for an electron to hop from site to site in the lattice, therefore from

atom to atom. The second summation term takes instead into account the Coulomb repulsion

between two electrons present in the same site i . In particular, niσ = c+iσciσ represents the

density of electrons with spinσ at a site i , while U is the Coulomb energy cost for two electrons

to occupy the same site. A qualitative explanation of the meaning of the Hubbard hamiltonian

can be given considering the outermost electronic orbital in a one dimensional chain of atoms.

In the non interacting limit, i.e. without considering the Coulomb repulsion (second term

equal to 0), the first term would favor the sharing of the electrons among the lattice, therefore

the material would be a metal. In contrast, when the second term is predominant, charge

localization is favored. Consequently, for increasing values of U , a material that is traditionally

a metal can transition to an insulating behavior, with the opening of an energy gap in the band

structure of the material proportional to the energy U [113, 114]. From this basic principle,

materials which traditionally would be considered metallic present instead a transition to a

so-called Mott insulator. It is to be noted that Mott transition materials are not subject to a

structural phase change. However, as already briefly discussed, the VO2 IMT is accompanied

by a structural transition, which suggests the presence of a Peierls instability in the material,

caused by electrons-lattice interactions [115, 95]. The origins of a Peierls instability can be

also qualitatively explained by considering a one-dimensional chain of atoms. Assuming the

presence of one electron at each site of the chain and assuming the outermost energy band of

the system half-filled, the Fermi wavevector falls at half of the Brillouin zone π/a (figure 2.4). If

a periodic distortion is introduced in the lattice, bringing two atoms closer together of a factor

δ, such that the lattice periodicity is doubled, a band gap opens exactly at the Fermi energy

of the material, decreasing the electron energy. This decrease of the electron energy would

compensate the increase of the lattice energy introduced by the distortions [116]. Two bands

form, one filled and one empty, therefore changing the material from a metal to an insulator.

In support of the Peierls transition is the fact that in the monoclinic phase the V-V bonds are

dimerized and cause a doubling of the lattice constant compared to the rutile phase, therefore

justifying a splitting of the bands.

Many studies have shown that the two contribution (Peierls and Mott mechanism), cannot

really be separated and therefore attribute the phase change to an interplay between the

two effects [118, 119]. However, more recent works have shown that the IMT in VO2 can

happen without the occurrence of the structural phase transition [120, 121]. In addition, the

IMT was obtained also by pure carrier injections, which would support the idea of a band

splitting occurring because of the contrasting energy terms in the Hubbard hamiltonian, in

the framework of the Mott transition [122]. Even though the origin of the transition is still

debated, the change in conductivity of VO2 was recorded multiple times in experiments and

achieved through various techniques, comprising electrical activation [123, 124, 125, 126],

optical activation [127, 128], and strain [129, 130], for exploitation in various technological

applications.
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Figure 2.4 | Dispersion relation E(k) of undistorted (left) and distorted (right) atom chain. The dimer-
ization of the atom chain causes the appearance of a band gap in the first Brillouin zone [117].

2.1.1 VO2 Fabrication

The sharpness, as well as the width of the vanadium dioxide phase transition are greatly

impacted by the quality of the material, and specifically by impurities and crystal defects

[131]. It is recorded that the resistivity ratio between the insulating and the metallic state

can be as high as 105 in bulk [132]. However, the on/off ratio, the sharpness and the width

of the hysteresis can be greatly impaired when fabricating VO2 thin films [133]. VO2 has

been synthesized with various deposition techniques, such as pulsed layer deposition (PLD),

chemical vapour deposition [134], atomic layer deposition (ALD) [135], sputtering [136] and

sol-gel techniques [137]. The quality of the film and the impact on the phase transition for film

deposited on different substrates has been extensively studied. For epitaxial growth, Al2O3 and

TiO2 are the most used substrates [138]. Film grown on Al2O3 report a very narrow hysteresis

width and quite large on/off ratio. In particular, experiments have shown that the hysteresis

width can be as narrow as 1° C when VO2 is deposited with PLD on sapphire (101̄0) [132]. A

narrow hysteresis is desirable for practical implementation of VO2 devices, as it reduces the

power needed for switching the phase. It is known that the phase transition characteristics of

VO2 can degrade in polycrystalline films, due to the presence of grain boundaries [139]. In

particular, it has been shown that films which present smaller grains result in a widening of

the hysteresis and a reduced on/off ratio, while bigger grains are associated with narrower

hysteresis and larger on/off ratio [133].

In addition, stress introduced by lattice mismatch with the substrate has proven to have an

effect on the temperature at which the phase transition occurs. In particular, tensile stress

results in an increase of the transition temperature, while compressive strain brings to a

decrease of the transition temperature. This has been demonstrated with VO2 deposited on

sapphire and on TiO2 [140, 141]. When deposited on Si, the VO2 relaxes in a polycrystalline

film, where no stress in the lattice is introduced [142]. In particular, many works utilize SiO2 as
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a buffer layer, on top of which the VO2 breaks in granular films. As in this case no tensile stress

is present, the phase transition is reported to happen at 68° C, however, it is affected by the

widening of the hysteresis and the reduction of the on/off ration mentioned above [143].

Apart from stress, also doping can change the temperature transition of VO2. Introduction

of dopants like Fe, Co, Ni lower the transition temperature [144], while it is experimentally

demonstrated that Ge can bring the transition temperature up to 90° C [145, 146, 147]. For

technological reasons, it would be advantageous to control the transition temperature and

engineer it to higher values. In fact, envisioning commercial electronics applications, any

VO2-based technology should guarantee its functionality up to temperatures higher then 80° C,

which is the temperature commonly reached by a computer processor.

2.1.2 VO2 Electrically-Triggered Transition

Already in 1959 it was shown that the insulator to metal transition of VO2 can be electrically

triggered in planar devices [104]. In these early works, it was possible to image with an

optical microscope the portion of the film that was undergoing the IMT transition, therefore

highlighting the filamentary character of the transition. The transition was attributed to the

reaching of the temperature threshold by Joule heating in the device [148]. However, recent

investigations of the IMT on scaled devices, mostly conducted through simulation efforts,

pointed out that the Joule-heating effect could be insufficient to justify the transition and

consequently opened a debate on the concurrence of non-thermal effects in the phase change.

In this section the origin of the electrically-driven transition is briefly discussed, with a focus

on the hypothesis regarding the nucleation of the phase transition and the evolution of the

metallic filament in electrical devices.

A typical current versus voltage (I-V) curve of a vanadium dioxide device is shown in figure 2.5.

In the first part of the curve, the VO2 device is in its insulating state and acts as as a high

impedance resistance. The power dissipated in form of Joule heat increases the local tem-

perature of the device. When hitting a threshold voltage value VTH, the device undergoes

the insulator to metal transition. During this process, the voltage measured on the device

decreases even though the current increases, which is reported as a feature of negative dif-

ferential resistances [149]. After the transition, the device stabilizes to a low resistance value.

Upon lowering of the voltage applied to the device, the voltage threshold VTL for the metal to

insulator phase transition is reached. The device therefore switches back to its high impedance

state.

As the phase transition in vanadium dioxide happens as a function of temperature, it would be

natural to assume that Joule heating is responsible for the transition to the metallic state in an

electrically activated device. However, the nature of the electrically driven transition, similarly

to the nature of the transition itself, is greatly disputed in literature. In fact, many studies

suggest that the Joule heating generated in the devices is insufficient to rise the temperature of

the device above the phase transition. In addition, it has been shown that the phase transition
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Figure 2.5 | The current vs. voltage characteristic of a VO2 device presents three regions: at first, the
device is in its insulating state. As the voltage drop across the device is high enough to trigger the phase
transition, the material undergoes the phase change and a negative differential resistance regime is
formed. Lastly, the device stabilizes in its metallic state. The measurement was conducted sourcing a
current and measuring the voltage across a VO2 device.

can be triggered by carrier injection with the use of electrolyte gating [124] and it is predicted

to occur upon the application of high electric fields, on the order of 1-10 MV/cm2 [150], which

might be reached in very scaled devices.

Multiple experiments conducted with a DC bias or with low frequency input signals, combined

with measurements of the temperature of the device, sustain the theory that the electrically-

driven phase transition is triggered by Joule heating. To cite just a few works, Mun et al. [151]

showed an agreement between the Joule heating models of the device and measured voltage

thresholds when sweeping the ambient temperature of the measurement setup. Similarly,

Radu et al. [152] studied the threshold voltage dependence on the device dimensions, specifi-

cally the electrode separation, and on the power needed to trigger the IMT in the device. They

find that when the stage temperature is increased, the power needed to switch the device

diminishes, which is an indication of a temperature-triggered transition. In addition, the

time delay for the metal to insulator transition (MIT) when the external voltage stimulus

is removed is in agreement with the time needed to dissipate the heat of the device. Lee

et al. [153] performed the same analysis utilizing a low frequency input signal, integrating

also the impact of load resistor, temperature stage and frequency on the threshold voltage

value, and found the experimental results in agreement with a numerical Joule heating model.

In other works, the local temperature of VO2 devices is measured with optical techniques

during the electrical activation of the phase transition. In particular, Zimmers et al. in [154]

integrated fluorescent particles on the surface of lateral devices and used them to monitor the

temperature of the material. They observed that in all the cases the temperature of the device

at the IMT corresponded to the temperature Tc expected at the phase transition (Tc = 68° C).
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However, other evidences support the hypothesis of a non-thermally induced transition. In

particular, in contrast to what stated in [151, 152, 153], many simulation works show that

temperature rise due to Joule heating of the device is not enough to reach the transition tem-

perature. In particular, in [155], Gopalakrishan et al. suggest that the phase transition happens

at a temperature lower than the phase transition temperature; however, upon switching to

the metallic state, the increase in current would develop enough Joule heat to increase the

temperature above Tc, therefore explaining why temperature measurement techniques have

found in plural occasions the local temperature of the device higher than Tc. In addition, ex-

perimental evidences suggest that the transition in nanoscale device can arise from electrical

activation. Fast voltage or light pulse measurements were used to monitor the delay time for

the transition, and found that this time was too short to justify a thermal process [156, 157].

To complicate the picture, is the fact that the phase transition doesn’t occur uniformly in the

device but rather proceeds from a filament formation [158]. Li et al. have argued that the

discrepancy between the results supporting the Joule heating and the field induced transitions

can be overcome when including filament formation models in simulations, showing that

the temperature of the filament can be as high as the Tc [159]. Moreover, Aetukuri reported

that the fast transition times registered for VO2 would also agree with a Joule heating driven

transition when the dependence of the insulating resistance with temperature is taken into

account [114]. All these new studies would point to the conclusion that the phase transition in

VO2 scaled devices is temperature driven. However, a more recent, experimental study from

Kalcheim et al., suggests that defects in VO2 can also play an important role for the phase

transition [122]. The authors fabricated high quality VO2 nanowires with scaled widths to

obtain single-domain crystals. With careful temperature calibration, they studied the Joule-

heating induced transition in the nanowire and concluded that for high quality material the

transition results to be temperature driven. In addition, they systematically created local

defects damaging the wires with an ion beam and showed experimental proof that this time

the IMT was occurring before the device could reach Tc. They explained the change in behavior

of the nanowires with the Poole-Frenkel effect, in which an applied electric field reduces the

energy barrier for excitation of carriers trapped in defects. The excited carriers can occupy

the upper Hubbard band, therefore destabilizing the insulating phase and provoking the IMT

similarly to a carrier injection technique. The mechanism responsible for the phase transition

of electrically-driven devices remains therefore unclear, specially for devices fabricated on

lattice-mismatched substrates, where the reduced quality of the material and the higher

number of defects can play an important role in defining the IMT.

2.2 VO2 Relaxation Oscillators

Vanadium dioxide can be used to build compact relaxation oscillators, exploiting its volatile

phase transition. The first oscillations produced by VO2 were already observed in 1975 by

Taketa et al. [160]. However, it was not until 2008 that this phenomenon was systematically

investigated [161, 162]. VO2 two-terminal devices are fabricated and connected in series with
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Figure 2.6 | a) Schematic of the circuit implementation of a VO2-based oscillator. b) The series resis-
tance biases the VO2 device in the negative differential resistance regime. As the VO2 device cannot
stabilize either in the metallic or in the insulating states, the phase transition is self-sustained and
relaxation oscillations form at the voltage output. c) and d) Voltage and current waveforms of the VO2

device.

a standard resistor to generate the oscillating circuit. No inductance or transistors connected

in a positive feedback loop are required. The circuit configuration used to build an oscillator is

shown in figure 2.6. The oscillations are present in the system when the VO2 is biased through

the series resistance Rs in its negative differential resistance regime (figure 2.6 (b)). With this

biasing conditions, the VO2 resistor cannot settle either in the metallic or the insulating state,

resulting in relaxation oscillation at the output voltage V out. The output waveform of such a

system is a periodic, non-linear oscillation that can be classified as a relaxation oscillator, and

it is shown in figure 2.6 (c) and (d).

A mathematical analysis of the output waveform can be conducted and the oscillation con-

ditions can be found knowing the voltage thresholds V TL and V TH [163, 164, 161]. At the

beginning, the device is in its insulating condition and the output voltage V out charges with

the exponential dependence:

Vout =Vss + (Vst −Vss)e−
t
τ , (2.2)
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where V ss and V st are respectively the steady state condition and the starting value of V osc

and τ is the time constant of the rising exponential. In particular, defining R ins the insulating

resistance of the VO2 device, upon the first rising edge we can calculate:

Vss|i ns = Ri ns

Ri ns +Rs
Vi n (2.3)

Vst = 0 (2.4)

τi ns = Ri nsRs

Ri ns +Rs
C (2.5)

The condition for the device to undergo the IMT is:

Vss|i ns >VT H . (2.6)

When reaching the voltage V TH, the device undergoes the IMT and becomes metallic, and the

voltage V osc starts to discharge following equation 2.2 with:

Vss|met = Rmet

Rmet +Rs
Vi n (2.7)

Vst =VT H (2.8)

τmet = Rmet Rs

Rmet +Rs
C , (2.9)

where Rmet is the valued of the resistance fo the VO2 device in its metallic state. For the circuit

to oscillate, the device needs to undergo the MIT, therefore it needs to reach the voltage V TL:

Vss|met <VT L . (2.10)

Putting together equation 2.6 and 2.10, we can conclude that the conditions on V IN and Rsfor

obtaining oscillations in the circuit are:

Ri ns +Rs

Ri ns
VT H <Vi n < Rmet +Rs

Rmet
VT L (2.11)

Vi n −VT L

VT L
Rmet < Rs < Vi n −VT H

VT H
Ri ns (2.12)

From equation 2.2, solving for the rising and falling edges of the oscillations and for the limits
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V TL and V TH, the oscillation frequency can be calculated:

1

f
= tr i se + t f al l = τi ns ln(

Ri ns
Ri ns+Rs

VI N −VT L

Ri ns
Ri ns+Rs

VI N −VT H

)+τmet ln(

Rmet
Rmet+Rs

VI N −VT L

Rmet
Rmet+Rs

VI N −VT H

) (2.13)

The equations so far presented show the dependency of the frequency of the VO2 oscilla-

tors from the electrical parameters. The oscillators normally report a maximum operating

frequency in the order of 100 kHz [165], with a few exception that reported frequencies in

the order of MHz [166]. The maximum frequency obtained by the oscillator depends on the

various circuit parameters. The simplest way for achieving high frequency oscillations is a

reduction of the capacitance C , that in the experimental realizations is mostly represented

by parasitics in the connections with the circuit elements and in the set-up used to measure

the devices. However, also the device parameters, and in particular the hysteresis width

(VT H −VT L) influence the oscillation frequency. From the equations presented above it is clear

that a narrower hysteresis is desirable for faster oscillations. However, not only the electrical

parameters, but also the thermal parameters influence the device frequency. In particular, for

very small electric constants, the thermal constant can become a decisive limiting factor of

the oscillation frequency [159, 167]. In addition, Driscoll in [168] also discusses the role of

domains in the device in influencing the oscillating behavior.

2.2.1 Coupled Oscillators

Frequency locking of coupled oscillators is a well known phenomenon, comprising effects

like frequency injection locking, frequency pulling and frequency and phase synchronizations,

widely used for application in synthesizers, transmitters and receivers [169, 170]. Oscillators

that present a weak coupling can interfere with each other and eventually lock in frequency and

phase. In [163] Shukla et al. have demonstrated the frequency locking of two VO2 oscillators

using a capacitor as a coupling element. Figure 2.7 (b) shows the different, natural frequencies

of two uncoupled VO2 oscillators. When the oscillators are connected with a capacitive

element, the two oscillators lock at a frequency lower respect to their natural ones. The locking

to a lower frequency can be easily explained taking into account the additional capacitive

element, i.e. the coupling capacitance, which increases the electrical time constant of the

circuit. A model describing the coupling dynamics of the oscillators is presented in [83], and

applied to different coupling schemes. In this work, it is simulated that purely capacitive

coupling between two identical VO2 oscillators leads to out-of-phase synchronization of the

waveforms, while in-phase synchronization could be obtained with purely resistive coupling.

An R-C coupling scheme would in addition allow for more complex phase relations. After

this pioneering work, other implementation of VO2 coupled oscillators were proposed. For

example, Velichko et al. in [171] achieved frequency synchronization exploiting the thermal

coupling between two closely-fabricated VO2 devices.
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Figure 2.7 | The figure shows the circuit schematic (a) and the frequency locking (b) of two coupled
oscillators based on VO2. The oscillators are coupled through a capacitive element. Even though the
natural frequency of the oscillators is not the same, with the introduction of the coupling element, the
oscillators lock in frequency. Reproduced with permission from [163], licensed under CC BY-NC-ND
3.0.

2.3 Oscillatory Neural Networks

Synchronization of large systems of oscillators is ubiquitous in nature and dominates many

of our essential living processes. For example, pacemaker cells in the heart produce syn-

chronized periodical electrical impulses that allow our hearts to beat; insulin cells in the

pancreas release insulin in a synchronized, oscillating mechanism. Other examples include

synchronized behavior of different organisms, such as the cricketing of crickets at night [172],

and more impressively the synchronization of the light flickering in fireflies [173]. Coupled

oscillators systems have been studied mostly in biology, specially exploring the synchronous

behavior in the brain activity and its role in our cognitive process. It has been theorized

that different neural groups in the brain can communicate only through synchronization of

their rhythmic behavior [174, 175]. In particular, oscillatory fluctuations in the brain have

been associated with our capability to memorize sequence of events, to recognize novelty,

process sensorial signals and the retrieval of stored memories [65, 66, 176]. In this section we

discuss the computation capabilities of oscillators. In particular we focus on the definition of

associative memory in Hopfield Neural Networks and we describe in detail the Hoppensteadt

and Izhikevich’s model for coupled oscillators computation. Finally, we give a brief overview

of the oscillators’ technologies and the computing capabilities that were demonstrated in

literature.
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2.3.1 Hopfield Neural Network

The Hopfield network is one of the most studied neural networks. It is a form of recurrent

neural network, meaning that the timing evolution of the network has an influence on the

network output, or equivalently, that the network has a memory. The Hopfield network is

organized by neurons that are fully-connected to each other through synaptic weights. In the

Hopfield network, each neuron xi can assume only two predefined states, namely xi =+1 or

xi =−1 (other combination are possible, such as xi =+1 or xi = 0 ). The connection between

a neuron i and a neuron j is represented by the weight wi j , that can be either positive or

negative. We define as a state X of the network the collective values of the neurons in a certain

point in time; the network state is progressively updated over time:

X = [x1, x2, . . . , xN ]T . (2.14)

At each point in time, the state, or output, of the neuron i is calculated as the sum of the inputs

coming from the other neurons, processed by the weigths wi j and the biases b j , activated by

a non-linear function f :

xi = f (
N∑︂

j=1
wi j x j +b j ). (2.15)

The non linear function can be represented by a sign function, that would automatically set

the state value to xi =±1. As Hopfield himself describes in his paper [67], such a system, that

derives from a multitude of simple components, presents spontaneous computing capabilities

when its collective behavior is considered. In particular, given an ensemble of connections

wi j , the system has only a certain number of states that are stable [82]. Defining as Xa , Xb , Xc ...

the stable states in the system, if in a certain point in time the system state is X = Xa +∆, it

will relax in time to the state Xa . The stable states of the system are called attractors, as they

attract each unstable state in the network to converge to them. Alternatively, the attractors

can be seen as local minima in the energy landscape of the system:

E =−1

2

N∑︂
j=1

N∑︂
i=1

wi j xi x j . (2.16)

The approaching of a given state to the nearest attractor can be seen as a relaxation of the

system to a lower energy configuration [177]. The system can therefore be seen as a general

content addressable memory, also called associative memory. The memory of the circuit can

be controlled to memorize specific patterns, by careful choice of the coupling weights, for
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example with the Hebbian learning rule:

wi j = 1

N

M∑︂
s=1

xs
i xs

j (2.17)

where s is the state to be memorized, xs
i is the value of the neuron i in the state s, and the sum

is done over the total number M of states that need to be memorized. The Hopfield model also

wants the connection wi i = 0 and wi j = w j i . It has to be noted that, as Hopfield explains in

his paper, the state of "all equal neurons", i.e. the state in which all the neurons have the same

value, is always a stable state [67]. A network with N neurons has however just limited storage

capabilities. In particular, it was found that the maximum number M of memorizable stable

states scales linearly with N and is limited to M < aN , with a = 0.14 [178]. When this limit is

violated, spurious attractors are formed in the system, and the pattern retrieval is impaired.

By relaxing the condition wi j = w j i , it is however possible to increase the maximum number

of pattern to M = N [179]. The linear scaling of the memory storage’s limit is a problem for the

practical implementation of such a network. In fact, as the network is fully connected (FC),

the number of weights scales exponentially with the number of neurons. Therefore for going

to higher capacity of the memory, more neurons are needed, but we encounter the problem of

providing the connections for such large networks. More recent studies focused on how to

increase the memory capacity of the Hopfield network. In particular, Folli et al. found that

the storage limitation can be extended without loosing in retrieval accuracy for M >> N , with

imposing wi i ̸= 0 [180].

The Hopfield network has proven to be robust to deviations in the model, such as the defini-

tion of the neuron behavior or the implemented coupling scheme. Hopfield himself in his

manuscript predicted that with adding details or implementing small parameters changes,

the working principle of the network will not be modified. This robustness to deviation from

the canonical model contributes to practical implementation of the neuron and synapses with

a variety of electronic components representing the neurons and the synapses in the Hopfield

network, as documented in the following session.

2.3.2 Models of Oscillatory Neural Networks

One variation of the Hopfield model was proposed in [69, 181], where the possibility of using

more complex neuron models is explored. In particular, the Hopfield model was modified to

introduce oscillatory states instead of the bistable states of the neurons; the information of the

network would therefore be encoded in the relative phase of the oscillators, and the computing

is performed by the complex synchronization dynamics of the network. The oscillatory neural

network (ONN) retains the main properties of the Hopfield neural network: it is in fact an

attractor network, meaning that only specific dynamics between the oscillators are stable

(attractors), and any deviation from the stable state will naturally relax to one of the attractors.

In the case of ONNs, the attractors are not represented as a single point in state values as in
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Figure 2.8 | Periodic attractor of an oscillator in a plane. While the oscillator makes exactly one period,
the phase goes from 0 to 2π. For an electrical oscillator, the x-y space can represent the I-V curve of the
oscillator. When the oscillator is initiated to a state next to the attractor, it will eventually relax to the
attractor [182].

the Hopfield network, but rather as the relative phase of the oscillating neurons. This means

that the attractor is a periodic attractor, that can be represented as a periodic orbit, or limit

cycle (figure 2.8). In this case, the analysis of the network is done utilizing a phase model, i.e. a

mathematical model that describes the phase relations between the oscillators. In this section

the phase model of an oscillatory neural network will be discussed following the formalism

described in [182].

The phase model to describe the oscillator system is based on the observation that, once the

oscillator relaxes to its limit cycle, it can be described by only one variable, its phase ϑ [183]:

ϑ̇(t ) =Ω, (2.18)

where t is the time,Ω is the frequency of the motion on the attractor. As depicted in figure 2.8,

every point on the attractor corresponds to a specific value of the variable ϑ. Any oscillating

configuration that does not start on the attractor, but will relax on the attractor, can be

equivalently described by the phase model [184]. In addition, if a neuron x evolves in time

with a dynamic activity represented by a function f :

ẋ(t ) = f (x), (2.19)

it has been demonstrated that if this dynamic is periodic, any solution x(t ) can be projected

near an attractor ϑ(t ) in the canonical phase model of equation 2.18. In other words, the phase

model of equation 2.18 can describe the periodic activity of an oscillatory neuron expressed

by any state equation like equation 2.19. Independently on the form of the oscillatory neuron,
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the phase model can describe the periodic behavior of its attractors and of the unstable

states tending to the attractors. Similarly, in a network of coupled oscillatory neurons, the

dynamics of the network can be described with the phase model of the collective periodic

activity of the neuron, independently from the specific neural model used to describe the

neuron activity [182]. The phase equation of such a system has the form of:

ϑ̇i =Ωi +ε
N∑︂

j=1
hi j (ϑi ,ϑ j ,ε), (2.20)

where ε is a term that represents the collective strength of the coupling in the network, N

is the number of the oscillators present in the network and hi j is a function that represent

the coupling between an oscillator i and an oscillator j . This phase model proceeds from

Kuramoto model on a network of coupled oscillators and it models phenomena as frequency

and phase locking of the oscillators. If the natural frequency of the oscillators is similar, we

can describe the frequency of each oscillator as a deviation ω from the mean frequencyΩ0 of

the oscillators:

Ωi =Ω0 +εωi . (2.21)

Subsequently, the phase of the oscillators can be represented as:

ϑi =Ω0t +ϕi . (2.22)

Substituting equation 2.22 in equation 2.20, we obtain:

dϕi

d(εt )
=ωi t +

N∑︂
j=1

Hi j (ϕi −ϕ j )+o(ε). (2.23)

The term o(ε) collects the higher order terms of ε, and can be discarded in the approximation

of weakly coupled oscillators. Under the assumption of symmetry of a pairwise odd form of

the term Hi j , the energy landscape of the system can be described by the formula:

E = 1

2

N∑︂
j=1

N∑︂
i=1

Ri j (ϕi −ϕ j ), (2.24)

where
dRi j

dεt = Hi j . Similarly to what happened in the Hopfield model, the energy function of

the oscillatory neural network presents local minima that act as attractors for the dynamic

system. This assures the stabilization of all the frequency-locked oscillators to determined

phase-relations, that represent the associative memory of the system. This memory can be
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Recognized Pattern: 
nxm pixels

Test Pattern: 
nxm pixels

nxm ONN

Memorized Patterns

Figure 2.9 | Example of image recognition with a system of coupled oscillators. In this figure, each white
(black) pixel is an oscillator in phase (out-pf-phase) with a reference. Three patterns are memorized
in the oscillators’ net. When a search pattern is presented to the network, the network relaxes to the
nearest attractor, therefore recognizing the digit "1" [70].

controlled with the Hebbian rule as in equation 2.17. It has to be noted that this model does

not make any assumption on the nature of the oscillators, therefore any type of weakly coupled

oscillator can be used to build such a system. As Izhikevich mentions in [182], "everything

that can oscillate, can also compute".

To give a schematic representation on how computing with oscillators works in practice, we

refer to figure 2.9. In the digit images presented in this figure, each pixel is an oscillator. All

the oscillators are locked in frequency and the information is carried in their relative phase

relation. White pixels are oscillators that oscillate in-phase with a reference, black pixels

are oscillators that oscillate in out-of-phase with a reference. The connections between the

oscillators are programmed so that the memory of the network stores the digits "1", "2", "3".

To recognize a distorted pattern (also referred as test pattern), the oscillators are initialized

to a phase condition which encodes the value of the pixels of the search pattern. As we will

discuss later, in various experimental implementation of such networks this initialization is

carried out with different techniques. After the initialization, the oscillators are left to relax to

the nearest collective attractor, therefore recognizing the correct digit.

As in the Hopfield model, the oscillatory neural networks are limited in their storing capabili-

ties to a number of patterns that scales linearly with the number of oscillators, or neurons,

that are present in the network. Therefore, to store a high number of patterns, large networks

are required. The network is fully-connected, meaning that each oscillator i is connected to

each oscillator j . This becomes an important limitation in practical implementations, as it is

difficult to realize such heavily interconnected networks in large sizes. A different design, that

tries to overcome these limitations, has been proposed by Izhikevich and Hoppensteadt in

1998 and has featured since then many experimental implementations [70]. In this alternative
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A(t)

Fully connected network Frequency modulated network

Figure 2.10 | Example of fully connected oscillatory neural network (left) and the frequency modulated
oscillatory neural network (right). Adapted from [70].

approach, instead of using separate connections for coupling all the oscillators, the oscillators

are connected to a single node, that virtually provides all the coupling through an externally

injected signal (figure 2.10). This configuration takes the name of Frequency Modulated (FM)

oscillatory neural network [185].

The idea of this network is to implement the coupling of the oscillators with a input time-

dependant signal a(t), rather then with physical connections. This has been demonstrated

with a mathematical model that envisions sinusoidal oscillators. In this case the phase shift

dynamics of equation 2.20 reduce to:

ϑ̇i =Ωi +εa(t )
n∑︂

j=1
si n(ϑi −ϑ j ). (2.25)

By choosing a coupling matrix wi j and a periodic input signal a(t ) of the form:

a(t ) = a0 +
n∑︂

i=1

n∑︂
j=1

wi j cos((Ωi −Ω j )t ), (2.26)

and making similar assumptions on Ω and ε as for the fully connected network, the phase

shift dynamics reduce once again to:

dϕi

d(εt )
=

n∑︂
j=1

wi j +w j i

2
si n(ϕi −ϕ j ). (2.27)

The associative memory properties of the network are retained. The coupling coefficients wi j
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can be calculated again with the Hebbian learning rule (equation 2.17), therefore encoding

the patterns to memorize in the network. The retrieval process is however in this case more

complicated. In fact, a(t ) is at the same time the signal used to input the search pattern and

the memory of the system. Therefore a pattern search needs to proceed in two steps:

(1) Defining a search pattern ξ= [ξi ,ξ j , ...ξN ], the black pixels have ξ=−1 and the white

pixels a value ξ=+1. The input signal a(t ) is initialized by choosing wi j = ξiξ j . In this

way all the oscillators corresponding to a black pixel in the search pattern will stabilize

to a phase value ϕ−, while the ones corresponding to a white pixel will stabilize to ϕ+.

The oscillatory network therefore oscillates stably to phase differences corresponding to

the search pattern

(2) At this point the recognition process begins. The search pattern should be recognized as

one of the memorized patterns. Therefore the input signal a(t ) needs to be changed to

provide the memory of the system: a(t) is therefore altered according to the Hebbian

learning rule corresponding to the memorized patterns. At this point the oscillator

network evolves relaxing to the newly encoded attractors of the system, and therefore

finalizing the recognition process.

Even though this second technique allows for realization of large nets with limited inter-

connections, the practical implementation in compact electronic circuits is hindered by the

complex waveform generator needed to synthesize the signal a(t). In the following section,

an overview of the oscillatory neural networks implemented with these two techniques, FC

and FM, will be given. However, for the scope of this thesis only the FC implementation will

be taken in consideration. As explained in Chapter 5 and 6, the disadvantage of the high

interconnectivity of the FC-ONN can be overcome by utilizing the ONN in combination with

other neural network concepts, like convolutional neural networks, that require very small

matrices of ONN to compute.

To summarize, an oscillatory neural network is a type of network that computes with the phase

of periodic, dynamical systems. The system relies on the following properties to perform

computation [84]:

(1) The oscillatory network system has associative memory properties.

(2) Under the assumption of weak coupling between the oscillatory neurons, the phase

dynamics model can be linearised and expressed with a set of linear equations. The

model is independent from the actual waveform of the oscillator.

(3) The information of the system is encoded in the relative phase of the oscillators and/or

in the frequency coupling of the system.

(4) The periodicity of the system makes it possible to read the phase difference over multiple

cycles, which allows to suppress jitter and noise.
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2.4 Technologies that Compute with Oscillators: an Overview

In this section we review some experimental demonstrations of oscillatory neural networks,

that use different materials and devices to build the oscillators as well as different system

architectures to implement the computation. We will also talk briefly about different compu-

tation schemes realized with oscillators, that do not exploit a neural network concept, but are

still important in their signal processing functionalities to understand the ideas of this work.

2.4.1 Materials and Devices for Oscillatory Neural Networks

Many types of oscillators have been proposed as a building block for ONN. The most popular

are electrical oscillators, i.e. oscillators that rely on the exchange of charges. Given that an elec-

trical signal originates the periodic behavior, the coupling elements are usually implemented

with simple circuit components.

The most straightforward way to realize an electrical oscillator is to build an LC oscillator.

However, as inductors are notoriously difficult to scale, the practical implementation of

ONNs with LC components cannot easily meet the industry standards for a competitive

technology. One of the most successful experimental demonstrations of an ONN in hardware

was however realized with 8 LC-oscillators coupled in the FM configuration in [186]. Other

theoretical works are based on LC oscillators as their sinusoidal voltage oscillation allows

for a simpler mathematical model. For example, in [187], a simulation work comprising LC

oscillators coupled with a differential amplifying stage is suggested. Alongside analog electrical

oscillators, also digital oscillators, such as ring oscillators (RO) have been proposed as building

blocks for ONNs [188, 189]. As an ONN is an analog circuit, Hopfield networks realized with

RO also behave as analog circuits, despite the digital nature of the individual components. The

power consumption of these devices is quite limited, with the best performing ones achieving

a dissipation of only 24 nW @ 5.24 MHz [190].

Metal-insulator transition materials, such as VO2, have been explored for ONN technology

given their compact structure and the low power consumption of the devices. In [78] it is envi-

sioned that VO2 oscillators, when scaled to 20 nm dimensions can consume 0.5 µW @ 1.6 GHz,

for a total energy consumption per cycle of E ≈ 10−16 J. However, these numbers have not

yet been confirmed by experimental results. The best performing devices so far operate at

a maximum frequency of 1 MHz [163] and a minimum power consumption of 8 µW @ 10

Hz [191]. Other phase change materials have been explored to build compact oscillators. For

example, in [192], electrical relaxation oscillators are built with amorphous GST (GeSbTe), but

the progressive decrease of amorphous volume in the chalcogenide layer causes a damping

behavior in the oscillations up to their complete disappearance. This opens the discussion to

another important figure of merit for phase-change material based relaxation oscillators: the

endurance. Implementation of relaxation oscillators based on other transition metal oxides

materials, such as niobium oxide [77, 193] tantalum oxide [194, 195, 79], have been more

successful in demonstrating MHz frequency operation and endurance respectively up to 1010
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and 106 cycles. Vanadium oxide oscillators have demonstrated endurance without fatigue up

to 109 cycles [196].

A large class of oscillators relies on the spin-procession in ferromagnetic materials, like spin

torque oscillators (STOs), which can perform high frequency with limited power consumption,

around 10−15 J/cycle [80, 81, 82]. In STOs the oscillations are given by the procession of the

magnetic moment in a magnetic thin film and are excited by a spin-polarized current or by

the spin Hall effect. The magnetic moment of the magnetic film precesses and alongside this

precession the resistance of the device changes. The precession frequency can be locked and

controlled by an ac driving of the input current. The main challenge faced in this technology

is found in the design of a simple and efficient interconnection scheme, as it either requires

the magnetic signal to be converted in the electrical domain and back, or it needs to rely on

other techniques as dipolar or spin wave coupling [197]. The design of an electrical coupling

was presented in [197], where the STOs signal is picked up by an RC filter, processed through

a summing node and then reconverted in magnetic signal by magnetic-field coupling to an

electrical wire. However, upon the magnetic-to-electrical conversion, the amplitude of the

voltage signal is quite small, usually on the mV range. Demonstrated coupling schemes also

comprehend interaction of closely-spaced devices [198], even though this does not allow for

the reconfigurability of the system.

Nano electromechanical systems (NEMS) and micro electromechanical systems (MEMS) have

also been proposed for coupled oscillators’ technology [199, 200, 201, 202], as well as phase

locked loops implementations [203]. In table 2.11 we summarize the types of oscillators

discussed and their figures of merit. The motivation behind the choice of this work to use

VO2 to build electrical oscillations is given by its competitive performances in terms of power

consumption, endurance and simple electronic coupling schemes.

Table 2.11 | Comparison with different oscillators technology. Many novel devices allow to realize
scaled, power efficiet oscillators. VO2 oscillators are between the best performing devices. Adapted
from [82] with the permission of AIP publishing.

Oscillator technology Area Frequency Energy (J) /cycle Coupling mechanism Reference

LC oscillator Up to 100 GHz Electrical [82]

Ring oscillator Up to 20 GHz 10−17 Electrical [188]

TaOx 5µm 250 MHz 10−12 Electrical [194]

NbOx 150µm 20 MHz 10−12 Electrical [193, 77]

VO2 100 nm 10 MHz 10−17 Electrical [78]

STO 375 nm 50 GHz 10−15 Electrical and magnetical [81, 82]

MEMS/NEMS 200/20 µm 20 GHz 10−14 Electrical and mechanical [82]

PLLs 275 µm 250 MHz 10−12 Electrical [203]
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2.4.2 Image Processing with Oscillators

Image processing can be computing intensive, specially when a large number of convolution

and filtering actions need to be performed on high volumes of data, as for example happens

with image classification tasks.

Many simulation works, as well as experimental approaches, have explored the capabilities of

ONNs to retrieve information from distorted patterns. As an example, as already shown in

figure 2.9, an ONN can be trained to recognize handwritten digits. When an input, distorted

handwritten image is fed into the network, the network will relax to the nearest pattern in its

memory, therefore recognizing the image. This recognition process doesn’t need training over

a high number of images of the digits to perform the recognition: the training is in fact a one

step process implemented with the weight tuning according to the Hebbian learning rule, as

explained in section 2.3.2. Many demonstrations of this concept have been provided with

different oscillators technologies. For example, Maffezzoni et al. in [187] simulate handwritten

digit recognition with a 60-neurons ONN based on LC-coupled oscillators. In this work, a FC

network is initialized to the right phase with setting the circuit weights for storing the search

pattern attractor, as more commonly done in the FM configuration. Jackson et al. in [79]

have simulated digit recognition in a 20-neurons FC ONN with tantalum oxide oscillators;

the initialization of the network to the search pattern is done by starting the oscillations

at the phase corresponding to the search pattern through different frequency multipliers

driven by a global clock. Holzel et al., in [186], present instead a experimental coupling of 8

Van der Pol oscillators in the FM configuration and initialization scheme. One of the most

notable works was instead presented by Jackson et al. in [203, 204, 205] with 28-nm CMOS

technology and phase locked loops. The authors here discuss an experimental design of a

whole ONN systems based on phase-locked-loops oscillators, counting 100 neurons connected

in a FC configuration with programmable synapses, representing the biggest experimental

demonstration of an ONN.

Although these implementations are very promising and illustrate the pattern retrieval ca-

pabilities of the ONNs, they come with certain challenges which makes it difficult for them

to compete with already established computer technologies in practical applications. As

mentioned before, the storing capability of Hopfield networks is greatly limited to the number

of neural nodes. Increasing the memory of the system would imply increasing the number

of neurons, that would make the connectivity of FC networks too cumbersome for practical

implementation. The networks also suffer from arising of spurious patterns that can spoil

recognition.

Alternative demonstrations of pattern retrieval systems are described for STO technology by

Nikonov et al. [206] using a quasi-synchronization concept called degree of match (DOM),

which was first introduced in [207]. In this case, instead of a normal phase-encoding of the

information, the authors use the frequency as a state variable of an FM system. They control

the frequency of the STOs from the input current, and they program each neuron at a frequency
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deviation from the central frequency depending on the difference in value between the pixel

of the stored pattern and the pixel of the search pattern. If the collective frequency deviation

between search and stored pattern is high, the ONN will fail to synchronize. Viceversa, when

the search pattern is close enough to one of the stored pattern, synchronization will be

achieved. The deviation of the synchronization frequency from the natural frequency of the

oscillator gives a probability of right recognition fo this pattern. This frequency-encoding

technique is also used in many other works [208, 209, 210, 211], and it solves the problem

of the low capacity of the Hopfield network associative memory, however introducing the

disadvantage of having to compare the search pattern with each of the stored patterns.

Other computing schemes have been investigated harvesting the dynamic connectivity of cou-

pled oscillators. The idea is to focus on different image processing tasks, and not specifically on

pattern retrieval. Shukla et al. in [196] demonstrated the possibility of using two-coupled oscil-

lators for high-saliency problems. Two neighbouring pixels are confronted via two capacitively

coupled VO2 oscillators. The pixel value is encoded in the gate voltage of a series transistor

used to drive the oscillators, as depicted in figure 2.12 (a). The output phase (in-phase/out-

of-phase), gives a measure of the similarity of the pixels. When each pixel is confronted with

the 8 neighbouring ones, the edges of the images can be highlighted. Other works present the

same results exploiting the DOM technique [212, 213, 214, 215]. Moreover, Cotter et al. in [216]

perform edge detection and high-saliency detection with a simulation effort of a 9-coupled

oscillators system where the relevant information is encoded in the time needed for the oscilla-

tors to achieve phase synchronization. The output is then converted to a black or white value

of the central pixel of the sliding window (figure 2.12 (b)). Similar operations are also shown

by Tsai et al. in [217] with VO2 coupled oscillator. In this case edge detection, erosion, dilation

and color detection are simulated for a 9-coupled oscillators system connected through a

coupling capacitance to an output node (figure 2.12 (c)). The input of the image is given as a

voltage on a transistor controlling each oscillator; a second voltage-controlled gate is used to

set the function to be recognized, respectively in terms of horizontal, vertical, diagonal edge

gradient, dilation, erosion, or for values corresponding to the detection of different colours.

The information calculated from the 9-pixel filter processing operation is contained in the

voltage at the output node of the system. The output voltage is a time-varying signal, whose

shape depends on the synchronization state of the 9-coupled oscillators. First, if the input

voltage values of the oscillators (corresponding to the different pixels of the image) are close in

value, synchronization will be achieved and the output voltage signal will be a periodic voltage

with a fixed peak-to-peak amplitude which will reflect the amount of deviation between the

oscillators; when the input signals are not close together, synchronization is broken and the

output voltage will have a drifting amplitude value; if the input voltages are out of certain

boundaries, the system will cease to oscillate. A read out scheme comprising the value of the

output voltage amplitude as well as its dynamics (regularly oscillating, time-varying or not

oscillating) can convert the information corresponding to the filtering action performed. The

filtering operations are not performed in parallel, but for each operation the system needs to

be reconfigured, similarly to what happens in a DOM system. For directional edge detection,
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it is mentioned that the degree of similarity needs to be calculate from the relative deviation of

3 neighboring pixels oriented in the same direction. A summary of the three techniques here

presented in table 2.13.

Schemes for image processing with coupled oscillators
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Figure 2.12 | Proposed schemes of edge detection and high saliency detection with coupled oscillators
circuits. a) The system described in [196] is able to recognize the edge of an image comparing each
pixel of the image to its 8 neighbouring pixels. The pixel color difference is encoded in the input gate
voltages of the oscillators. The output is read on the coupling capacitance and converted in a string of 0
and 1 with a XOR gate. The average represents the relative matching of the two pixels. Reproduced
with permission from [196], © 2014 IEEE. b) A DOM configuration is simulated for different oscillator
technologies in [216]. For the edge detection a window of 3x3 oscillators receive as an input a frequency
shift proportional to the difference between the input pixels and the edge to be recognized. The time
to synchronization is an evaluation of the degree of matching. A comparison needs to be done for
each edge to be recognized. DOM schematic adapted with permission from [206], © 2015 IEEE; image
processing reproduced with permission from [216], © 2014 IEEE. c) The complex system of VO2 coupled
oscillators described in [217] is able to perform a wide range of function calculating the amplitude of
the output voltage Vout. The function can be selected tuning the input gate voltage of the transistor
Vy and a variable series resistor. Between the various computations, the detection of edges is here
depicted. Reproduced with permission from [217], © 2016 IEEE.

As a conclusive remark, the aim of this work is to demonstrate image classification using

ONNs. A Hopfield network working with an associative memory is not able to perform a

classification task. In fact, in a Hopfield network an nxm pixel image can be stored in an nxm

network of fully-coupled oscillators. A distorted pattern of the same nxm dimension can be

recognized by the network, with the output of the network being an nxm image in which the

information is stored in the relative phase of the oscillators, that converge to one of the stored
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Table 2.13 | Summary of the techniques used to filter and process images with coupled oscillators
technology. Information from [196, 216, 217].

Technique Input Output Function Details

a) Shukla et al. Gate voltage
Amplitude of
the voltage sig-
nal

Edge and saliency
detection

2-pixel comparison, 8
comparison per pixel

b) Cotter et al.
Frequency
deviation

Synchronization
time

Edge and saliency
detection

9-pixel comparison
with reference edge;
one comparison per
each edge needed

c) Tsai et al.
Gate voltage
/ modulated
resistance

Amplitude of
the voltage sig-
nal

Edge and saliency
detection, color de-
tection, 9-pixel com-
parison with refer-
ence pattern

one comparison per
each function needed;
programmable func-
tion; edge detection
through the calcula-
tion of the deviation of
3 neighboring pixels
in each direction.

patterns (as shown in figure 2.9). The network itself is not able to give a classification, meaning

it cannot reduce the information of an image of nxm pixels representing a digit into a bit

string representing the classification of the digit. The filtering techniques discussed above are

useful to do image treatment but also present very defined image processing applications,

without the pretense of demonstrating image classification. They show the potentiality of

this technology in processing image inputs and retrieve different information, like edges,

shapes and colors. This information processing scheme will be the starting point for the

demonstration of convolutional neural networks based on ONN technology, which is the

scope of this thesis.

2.5 Convolutional Neural Networks

A convolutional neural network (CNN) is a well-known deep learning algorithm architecture

that is inspired by our visual perception mechanism. A first discussion of a neural network

model for visual perception can be found in [218], were the authors present "neocognitron",

a network consisting in multiple layers of cascaded cells, connected together by trainable

weights. In 1997, LeCun et al. laid the basis of the modern framework of CNNs, designing a

neural network that will become known as LeNet [219]. As other neural networks, LeNet was

composed by multiple layers, connected by weights that could be trained by a backpropagation

algorithm. It was able to perform recognition of handwritten digits with good precision. In

this section we briefly introduce the basics of convolutional neural networks, following the

formalism described by Gu et al. in [220].
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In literature many variants of convolutional neural network architectures can be found, how-

ever the building blocks are the same for every implementation. Convolutional neural net-

works are usually built with a combination of three different layers: convolutional, pooling

and fully connected layers. The convolutional layers represent the first layers of the network

and perform a series of convolutions on an input image to learn the characteristic features of

locally correlated data points. Each layer is composed by numerous kernels (or filters) that

select and compute different feature maps. We can see a kernel as a set of weights, which

connect neighbouring pixels (or input neurons) of an image and perform a computation

whose result, activated by a non linear function, will be the value of one neuron of the fol-

lowing layer. The entire feature map of an image is therefore calculated with a convolution

operation of the input image, in which the input values are multiplied element-wise with

the kernel weights. The kernel slides on subsequent subsets of pixels of the input image, like

a sliding filter, and computes the output. Each convolutional layer in CNNs comprehends

several kernels, which calculate multiple feature maps of the input image. Mathematically,

this operation is represented by the equation:

z l
i , j ,k = w l

k
T

x l−1
i , j +bl

k (2.28)

where z is the neuron at layer l in position i , j , w is the weigth vector and b is the bias vector

representing kernel k of the l − th layer, xi j is the input patch centered in i , j of the l −1 layer.

A single kernel is applied element-wise to the entire input image, with a sliding stride that

can be varied. The output z of a kernel is then activated by a function that introduces the

non-linearity in the network, necessary for having a successful network training:

al
i , j ,k = a(z l

i , j ,k ). (2.29)

Typical activation functions are sigmoid, tanh and ReLU [221, 222]. The size of a convolved

layer, or feature maps, is determined by:

(1) the size m of the kernel used;

(2) the depth of the layer, i.e. the number of kernels K used in the convolution operation;

(3) the stride s of the convolution operation, meaning the number of pixels by which the

kernel is shifted over the input vector. For example, when the stride is equal to 1, then

the kernel is moved on the input image one pixel at a time.

(4) the padding p of the input image. Many times a contour of zeros is added to the input

vector of the convolution filter, in order to convolve also the border of the filter with the

kernel.

The size of the output convolution is a layer of dimensions (W, H ,K ). where K is the number
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of feature maps and W and H can be calculated as follow:

W, Hl =
⌊︃

W, Hl−1 +2p −m

s

⌋︃
+1 (2.30)

Following a convolutional layer it is usually a pooling layer, or subsampling layer. The aim of

this layer is to reduce the dimensionality of the feature map while retaining the important

information. For example, we could define that a pooling layer would take a spatial neigh-

bourhood, for example of 2×2 pixels, and select the largest element in this neighbourhood

as the only information passed by to the next layer. This operation is called Max Pooling.

Other types of poolings are commonly used, as average pooling, in which the selected infor-

mation is the average of the pixels in the neighbourhood, sum pooling etc [223, 224]. After

more convolutional layer, the last layers of the network are fully-connected layers that result

in the classification of the input image. Fully-connected layers take all the neurons in the

previous layer and connect them each to all neurons of the following layer. Usually, to go from

a convolution layer of (W, H ,K ) dimensions to a fully-connected layer, a flattening operation

is performed to transform the output of the convolutional layer in a one dimensional vector of

(1,W xH xK ) dimension. The last layer of the network is the classification layer. Every neuron

of this layer represents a class, and the value of the neuron represents the probability for the

input image to belong to this class. Usually the last layer goes through a softmax function.

Convolutional neural networks are usually trained with a backpropagation algorithm and

a form of supervised learning. The aim of the learning is to find the optimum ensemble of

parameter γ, where γ includes all the weights and biases of each layer of the network, for

which a certain loss function is minimized. The loss function is usually defined as a distance

of the output of the last layer of the CNN to the label that was originally assigned to the input.

If xn is the input of the network, yn the label assigned to this input, and on the output of the

network, the loss function can be calculated as follows:

L = 1

N

N∑︂
1

l (γ, yn ,on) (2.31)

Stochastic gradient descent is the most common technique used to train the networks; the net-

work training is therefore tackled as a global optimization problem that aims to the reduction

of a loss function [225, 226].

Even though CNN algorithms were first introduced in 1990 by LeCun, they only became

widespread after 2010, when the increased computation power of modern hardware made

possible to build deep networks. Deep networks generally refer to neural networks with a large

number of layers, and therefore a large number of parameters to train. The higher the number

of parameters, the slower the training of the network becomes [227]. The key of the success of

CNNs is its ability to extract low, mid and high level features along its multilayered structure.
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The stacking of several processing layers gives the network the ability of extracting complex

features working with progressive levels of abstractions. Many works have investigated the

feature extraction of CNN across different layers of the network [228, 229, 230]. These studies

revealed that the first layers of the network focus on extracting low level features, such as

horizontal, vertical, and diagonal edges or differentiating colors. Moving up on the layers

hierarchy, more complex features are recognized, such as circular shapes, or similar textures.

In the last layers the different feature maps are able to select and group different categories,

such as animals, faces, flowers. The first breakthrough of CNN was given in 2012, when

Krizhevsky et al. demonstrated a 10% improvement in recognition probability of a CNN

called AlexNet compared to computer vision techniques [231]. The AlexNet architecture

comprehended 5 convolutional layers and 3 fully-connected-layers, for a total of 60 million

trainable parameters [227]. The filter size of the convolutional layers were between 11×11

and 3×3 dimensions. More recent architectures have proven that the CNNs perform better

when the kernel size is reduced to 3×3 dimensions, which is the chosen dimension for most

of the famous deep CNN architectures, like VGG and ResNet. The VGG architecture [8] is a

deep network, with more than 10 layers (16 in the VGG-16 architecture and 19 in the VGG-19

architecture) that utilizes exclusively 3×3 convolutional filter sizes and introduces the max

pool layers only every few convolutional layers. Deeper networks, despite being more resource

hungry, have in general demonstrated increasingly better recognition performances. However,

when going to very deep networks the recognition accuracy of the system can saturate. The

saturation occurs because of the vanishing gradient, a phenomenon for which the gradients

calculated from the loss function and used to update the weights of the network become close

to zero, practically impeding further weight update. This problem cannot be easily resolved

with increasing the training dataset, as it is correlated to loss of information between the layers

of the networks [232, 233, 234]. The ResNet alleviated this problem introducing the concept

of skip-connections [9], where the output of the current layer is summed to the output of

the previous layer without undergoing further filtering. The ResNet architecture counts 50

layers and over 23 million parameters to train and has been very successful in achieving record

recognition performances on the ImageNet dataset.

The performance of a network of recognizing and extracting the right features that would allow

for a successful recognition greatly depends not only on the network implementation, but

also on the availability of large training datasets. In many cases, the performances of a CNN

on a test set can be increased increasing the number of training images. However, the larger

the training dataset, the longer the time the network needs to be trained. Recent studies that

focus on the reduction of the training time of CNNs, demonstrate that the feature extracted in

a CNN to recognize an image can be transferred from a pretrained, specialized network to a

generic recognition network with a process called a transfer learning algorithm [235, 236]. This

technique offers the advantage of not having to train from sketch a network with a specialized

architecture, but rather to re-use the weights already trained on another network or dataset.

In general, CNNs can be very energy and time demanding. The time and energy consumption

of a CNN increases with the number of parameters and images that need to be trained. The
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training algorithm is nowadays run mainly of powerful hardware such as very fast GPUs and

FPGA platforms. It is known that the major cause of energy and time usage of these algo-

rithms is given by the overhead on memory access, needed to retrieve at each step the input

and training parameters of the network to perform the operations of vector matrix multipli-

cations [237, 2, 238, 239]. Therefore, massive parallelization and introduction of memory

buffers are commonly used in specialized hardware to achieve better performances in such

algorithms [2]. Novel architectures based on neuromorphic computing concepts, that remove

the classical separation between memory and CPU and perform the so-called "in-memory

computing" can become disruptive to accelerate the deep neural network implementation in

fast, energy efficient platform, enabling new functionalities in the cloud and at the edge [240,

241, 242]. In the next chapters we will discuss how oscillatory neural networks can be used

as hardware accelerators for the convolutional operations in convolutional neural network,

therefore bridging the gap between image retrieval capabilities of Hopfield nets and modern

algorithms used for image classifications.
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3 Experimental Methods

In this chapter, the experimental methods employed in this thesis are reviewed. Starting from

the VO2 thin film preparation, we discuss deposition techniques and annealing of the material.

We present Raman spectroscopy and resistivity measurements to characterize the properties

of the films. In addition, we present a scanning thermal probe microscopy technique that is

here used to explore the temperature distribution upon the phase transition in the fabricated

scaled devices. Finally, we briefly introduce a behavioral model of the VO2 resistors employed

for conducting circuit simulations of the coupled oscillatory networks.

3.1 Device Fabrication

3.1.1 Deposition Techniques

As already discussed in section 2.1.1, multiple approaches can be followed to grow VO2 films.

In the course of this thesis, two techniques were explored in the frame of the Horizon 2020

European Phase-Change Switch project, to obtain high-quality thin films of vanadium dioxide

on silicon: pulsed laser deposition and atomic layer deposition. The vanadium dioxide films

were deposited in both cases on a 4 inches Si wafer on top of 1 µm of thermal oxide, to provide

electrical insulation between the VO2 and the silicon. The investigation of different deposition

techniques was carried out with the aim of identifying the procedure which would retain

the better film quality in terms of thickness uniformity, crystallite size, roughness, alongside

better electrical quality, measured on the steepness and width of the phase transition and its

reproducibility in electrally-activated devices.

Pulsed laser deposition (PLD) is a deposition technique that is conducted in a vacuum cham-

ber, where a target of the material to be deposited is vaporized through a high power, pulsed

laser beam (figure 3.1). The evaporated material forms a plasma plume, which results in the

deposition of the material on a wafer surface. In case of deposition of oxides, the stoichiome-

try of the deposited material can be adjusted with the insertion of other reactants, typically

oxygen. Compared to other deposition techniques, in PLD the energy of deposited particles is
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Figure 3.1 | Illustration of a PLD system. The target is vaporized through a high power laser beam. The
material deposits on a sample, which is kept at a high temperature by an external heater, to favor the
reaction with the sample surface.

typically an order of magnitude lower, which makes this technique more suitable for epitaxial

deposition or for ultra-thin films where low roughness is essential. Typically, PLD systems use

small targets of 1-2 inches, therefore the layers with uniform thickness are limited to sizes of a

few cm2.

PLD-deposited VO2 films have been reported to have steep and narrow hysteresis when

deposited on sapphire [132, 243, 244]. Other works have extensively investigated the formation

of polycrystalline films on Si/SiO2 substrates [245, 246, 247]. In the scope of this project, the

PLD VO2 films were deposited with a Solmates PLD tool in EPFL nanolab by M. Cavalieri.

The system uses a V2O5 target, evaporated through a KrF laser with 248 nm of wavelength, a

frequency of 20 Hz and a laser energy density of 10 J/cm2. The chamber pressure was kept at

0.01 mbar with an oxygen flow of 5 sccm, corresponding roughly to an oxygen partial pressure

of 10-4 mbar. The deposition was conducted at a temperature of 400° C and was followed by

an anneal process of 450°C for 10 minutes. The deposition rate was calculated to be around

10 nm/min. The resulting films deposited on SiO2/Si substrates showed dense polycrystalline

structure with the grain sizes between 50 and 100 nm. The film uniformity is limited to a

2 cm × 2 cm area in the middle of the wafer, as revealed from the ellipsometry thickness

measurements presented in figure 3.2. The porosity of the film increases with the distance

from the center to edges, while the thickness decreases by 25-30% near the edges compared to

the middle of the wafer (figure 3.2 A and B).

Atomic layer deposition (ALD) is a vapor phase technique which deposits a material onto a

substrate utilizing alternating precursors, which are introduced sequentially. At each deposi-

tion pulse, one of the precursor gaseous molecules reacts with the surface in a self-limiting

way. The reaction of the precursor with the substrate surface stops once all of the reactive sites
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Figure 3.2 | Left: ellipsometry measurement of the thickness of the VO2 film deposited with PLD. The
thickness is measured in a 6 cm × 6 cm area in the middle of the wafer. At the center of the wafer, the
film presents a uniform thickness that results in a continuous material, as shown from the scanning
electron microscopy image taken in the area A of the wafer. The thickness of the film decreases greatly
from the center towards the edges, resulting in the breaking of the film in discontinuous, separated
grains, as underlined in the scanning electron microscopy picture of the area B of the wafer.

on the substrate have been occupied, leaving a monolayer. The precursor gas is then purged

and the second precursor is introduced in the chamber, creating one layer of the desired

material. The number of pulses and purges cycles allows to control reliably the thickness of

the deposited material (figure 3.3).

The process of ALD can be performed with moderate heating of the substrate, which makes

it a favorable technique for silicon back end of the line compatibility. In literature, different

precursors were explored for the deposition of vanadium dioxide on a silicon substrate through

ALD. The principal precursors utilized for vanadium were vanadyltriisopropoxide (VTOP) [248],

VCl4 [249], and tetrakis(ethylmethylamino)vanadium (TEMAV) [135, 250, 251, 252]. Between

the various precursors, TEMAV was particularly successful for the deposition of VO2 as in

TEMAV the vanadium atom has an oxidation state of V4+ [248]. This facilitates the synthesis of

VO2, which presents in its molecular structure V4+ ions, compared to V2O5 which features V5+

ions [250]. As a second precursor, in combination with TEMAV, water (H2O) [251, 250] and

ozone (O3) [135, 252] have been successfully employed. The ALD as-deposited films result to

be oxygen poor (VOx), amorphous films. The right stoichiometry of VO2 can be obtained by a

post-anneal process under controlled oxygen partial pressure, which also causes the material

to crystallize in a rough, granular film.

In the scope of this thesis, we investigated ALD deposition of VO2 with TEMAV and both ozone

and water as precursors. The ozone process, even though it demonstrated successful depo-

sition of VO2 at first, was not reliable in its reproducibility. Therefore, the devices presented
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Figure 3.3 | Image of an ALD cycle: the reactive molecules of two precursors are introduced separately
with consecutive pulses in the chamber. Per each cycle, a thin layer of material can be deposited,
allowing for precise control of the film thickness.

in the following chapters were fabricated with a water based process, in the Oxford ALD tool

of IBM Research Laboratory in Zurich and in a Savannah ALD-100 of Cambridge University

by our partners K. Niang and G. Bai. The two systems utilized different successful recipes

for depositing the VO2. In the Oxford ALD tool the deposition was conducted at a controlled

pressure of 0.01 mbar with a 3 s TEMAV pulse followed by a 10 s purge time with N2, and with

a 5 s H2O pulse time followed by a 10 s purge with N2. The chamber temperature was kept

at 150° C. In the Savannah tool, the TEMAV pulse was kept at 0.02 s, followed by a N2 pulse

of 3 s. This was repeated 8 times before introducing the water precursor, with a 0.02 s pulse

and 5 s N2 purge cycle. The chamber pressure was kept at 0.13 mbar and the temperature at

150°C [253, 254]. For both the processes, a post-anneal process was necessary to stabilize the

film in the right stoichiometry. We explored two different annealing processes, discussed in

Section 3.1.3, which resulted in different roughness and grain properties of the material.

3.1.2 Raman Spectroscopy

Before discussing about the annealing techniques employed to oxidise the VOx films after

the ALD deposition process, we need to briefly introduce the Raman spectroscopy technique

applied to vanadium oxides films. Raman is a spectroscopy technique which relies on inelastic

scattering of a light beam impinging upon a liquid or solid material. It is able to give clear

indication about the composition, molecular structure, phase and polymorphism, stress and

contamination of a material. This spectroscopy technique relies on a laser light source, which

interacts with the material, and in particular with the molecular vibrations or phonons. The

elastic scattered radiation (Rayleigh scattering) presents naturally the same wavelength of the

laser source, and is filtered out by a notch filter. The inelastically scattered light is collected

with a detector. A typical Raman spectra presents the the intensity of the collected scattered

radiation for each frequency. The photons that lost energy during the scattering process

represent the so-called Stokes radiation, while those which acquired energy represent the
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Figure 3.4 | Raman spectra of different vanadium oxide stoichiometries deposited on silicon by reactive
sputtering. VO2 is characterized by the distinctive double peak at the Raman shift numbers of 193 and
223 cm−1, while V2O5 can be identified by the 142 cm−1 peak. Reprinted from [255] with permission
from Elsevier.

Anti-Stokes radiation. Usually, the Stokes lines are the ones used to identify the chemical

composition of the material, through a measurement of the wavelength shift of the collected

light.

Vanadium oxide Raman spectra allow for recognition of the different stoichiometries of the

material. This type of characterization was fundamental to characterize the thin films after

deposition and annealing to check that the right material phase was achieved. Figure 3.4

shows the Raman peaks of different vanadium oxide phases. In particular, for this work it

was important to distinguish successful deposition of VO2 with unsuccessful deposition of

its more stable compound, V2O5. As it is highlighted in figure 3.4, VO2 is easily recognized by

the distinctive double-peak around 200 m−1 Raman shift, while V2O5 presents a prominent

peak around 142 cm−1 and other higher Raman shift peaks. In this work, the samples have

been investigated with a laser of 561 nm of wavelength. In general, for very uniform materials,

the height as well as the width of the Raman peaks can give an indication about the crystal

quality of the films. However, given the high polycrystallinity of the VO2 films on SiO2, this

quantification can be difficult to make and therefore was not pursued in the scope of this

thesis.
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3.1.3 Annealing Techniques

As mentioned in section 3.1.1, the vanadium oxides films deposited with ALD are originally

amorphous, and present an oxygen-poor stoichiometry. Post-annealing deposition under con-

trolled oxygen partial pressure is fundamental to crystallize the film in the right stoichiometry.

In literature, as well as in the scope of this thesis, a standard anneal furnace was used to

perform the annealing of the device under oxygen flow. In this respect, a small window of

parameters ensures the oxidation to VO2, with controlled oxygen partial pressure in the order
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Figure 3.5 | The annealing time has an effect on the morphology of the VO2 film. a) A scanning electron
microscopy image of a 50 nm thick film, deposited at 150° C and annealed for 20 minutes at 400 ° C
is shown. The film presents grains of average dimension of 50-80 nm and appears continuous. c) As
the film is annealed for longer time, the grain size increases and pronounced voids appear between
the grains. b) SEM image of a 35 nm film, which was deposited in the ALD tool at a higher deposition
temperature (200°C). The film already appears disconnected and with grains as big as 250 nm. d)
When annealed for two hours at the same temperature (400° C), the film completely disaggregates
in big, isolated grains, in the fashion of droplets. On the bottom, the Raman characterization of the
35 nm film annealed for 20 minutes and for 2 hours show that in both cases the material is VO2. In the
two measurements, in fact, the distinctive double peak around the Raman shift of 200 cm−1 can be
recognized.
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of 10−2 mbar up to 1 mbar and an annealing temperature between 400 and 500° C [135, 254]. At

higher pressures as well as at higher temperatures, the films oxidize to the V2O5 stoichiometry.

After the annealing, the film crystallizes in grains and reports VO2 peaks when investigated

with Raman spectroscopy. The annealing time also has a major influence on the crystallinity

properties of the film, and in particular on the size of the grains and the uniformity of the

film, as can be seen in figure 3.5. A 53 nm ALD film annealed at 450° C for 20 minutes was

investigated with scanning electron microscopy (SEM), revealing a continuous film of granular

nature, with average grain size between 50 nm and 80 nm (figure 3.5 (a)). The film prepared at

the same condition but annealed for 2 hours presents instead bigger grains of 100 nm average

size, which are not all connected but are intertwined with voids (figure 3.5 (c)). Moreover, when

going to thinner films, a longer annealing time results in big, disconnected VO2 nanoparticles,

as shown for a 35 nm film in the insets (b) and (d). The process of forming nanoparticles upon

heating of a thin film is known as solid state dewetting [256] and was already observed for

VO2 [139, 257]. Independently from the annealing time, the film resulted in VO2, as revealed

in the Raman spectra, which present the typical VO2 double peak around 200−1 cm.

A second annealing technique, the flash lamp anneal (FA), was investigated for its properties

of annealing thin films at reduced temperatures. FA has demonstrated to be useful to stabilize

other types of phase change materials [258]. The aim for the exploration of the FA is to

investigate the possibility of having a more compact film, with reduced roughness and without

the presence of voids between grains. The FA technique is a thermal treatment generally used

for semiconductor processing. It is characterized by a strong temperature gradient along

the thickness of the sample during the annealing process. Thus, material characteristics can

be altered with minimal thermal loading of the substrate below. To achieve this effect, the

surface of the sample is heated through a short but powerful flash, obtained by charging a

capacitor and inductor system and discharging it over a Xenon Flash lamp. The sample can

be pre-heated through a local heater in the sample holder. The capacitor/inductor system

pair determines the time of the anneal (20 ms for the experiments conducted in this work).

The anneal can be performed in vacuum, or reactive gases can be introduced in the chamber.

In the case of VO2, oxygen is introduced in the chamber. Different conditions for the anneal

were explored, varying three parameters: the substrate heating between 200° C and 400° C, the

power of the lamp and the oxygen pressure. Through Raman investigation of the samples after

anneal, we could discern the annealing condition which stabilized V2O5 and the ones which

resulted in the oxidation of the VO2 stoichiometry. A combination of too high temperature,

annealing power, or oxygen pressure results in the formation of the V2O5 stoichiometry. Vice

versa, a combination of low annealing power, temperature or oxygen pressure would fail to

anneal the sample, which resulted still amorphous. In table 3.6 the annealing conditions that

successfully brought to the stabilization of VO2 are summarized.

Interestingly, for certain combinations of lower power and substrate temperature, it was

possible to obtain smoother films with smaller grain size. This result could be of great aid in

obtaining connected film (without voids) also when reducing the film thickness.
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Table 3.6 | Different flash annealing conditions that led to the crystallization of the ALD films in the
VO2 stoichiometry are summarized. Higher pulse power, temperatures or oxygen pressure lead to the
oxydation of the film in the V2O5 stoichiometry, while lower parameters fail to anneal the film. In each
experiment the flash duration was 20 ms and the VO2 thickness 50 nm.

Sample Flash power (J/cm2) Temperature (°C) Oxygen pressure (mbar) Grain size (nm)
1 70 300 100 40
2 80 300 100 30
3 90 300 40 45
4 90 290 30 smooth film
5 90 300 20 20
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Figure 3.7 | Figure a) and b): AFM characterization of the VO2 films annealed respectively with flash
lamp anneal and with the slow anneal technique described in the main text. The flash annealed sample
is smoother, with smaller grains. c) The result of an analysis of the average grain diameter conducted
with the AFM analysis software Gwyddion is shown. The flash anneal technique allows to tune the
average grain size of the film down to 20 nm, while the slow anneal results in grains of 55 nm average
size. In the graph, the points represent the normalized number of grains which have a certain diameter.
For each film, the normalized grain count was fitted with a Gaussian to obtain the grain size distribution
(solid line). d) Typical hysteresis curve of a flash annealed device and slow annealed device. The flash
annealed device presents a higher resistivity in the metallic state and a less steep transition. The
hysteresis width remains similar between the two films: ∆T ≈ 12 K for the flash annealed sample and
∆T ≈ 11 K for the slow annealed sample.

For a quantitative analysis, the films were characterized with atomic force microscopy (AFM)

and the images were processed with the software Gwyddion, to calculate the average grain

size of the annealed films. Figure 3.7 shows the AFM characterization of a flash annealed film

compared to a film that is treated with the slow anneal process described above (400° C). The

smaller grain size of the flash annealed film and its increased smoothness result evident. The

choice of the set of parameters for the annealing conditions allows to trim the grain size down

to 20 nm, as it is shown in figure 3.7 c.

To probe the phase transition characteristics of the film, the resistivity of the film was measured
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with a four-probe technique while raising the temperature of the chip in a temperature-

controlled cryostat. The typical resistivity vs temperature curves of a flash annealed film

and slow annealed film are shown in figure 3.5 d. The slow annealed films usually present a

phase transition with an on/off ratio of more than two orders of magnitude. The hysteresis

curve of the flash annealed samples varies depending on the processing condition; however,

they generally present an on/off ratio lower then two order of magnitudes. The width of the

hysteresis, calculated at the middle resistance value in the phase transition, results to be very

similar for the two films: ∆T = 12° C for the flash annealed sample and ∆T = 11° C for the slow

annealed sample. The flash annealed sample completes the phase transition in around 20° C,

while the slowed annealed sample in around 15° C, therefore resulting in a steeper hysteresis

curve. The impact of the granular structure of the material and the grain dimension on the

device performance are analyzed in the next chapter.

3.1.4 Device Processing

From the VO2 films two types of devices were fabricated and investigated: planar devices and

crossbar devices. The processing steps for patterning and contacting the scaled devices are

shown in figure 3.8.

The processing is conducted on 4-inch Si (100) wafers. A thermal SiO2 of 1 µm is deposited

with plasma-enhanced chemical vapor deposition for providing insulation between VO2 and

the substrate. The processing steps then diverge for the planar and the crossbar devices. For

the planar devices:

• the VO2 film is deposited and annealed as explained in section 3.1.1 and 3.1.3. The

4-inch wafer can at this point be cut into smaller chips for further processing;

• a negative resist (AR-N from AllResist) is spun and patterned with e-beam lithography;

• the VO2 is etched with a dry inductively coupled plasma (ICP) etching process, subse-

quently the resist is stripped;

• through the means of a positive resist (PMMA) and e-beam lithography, contacts are

patterned;

• a layer of 50 nm gold is evaporated over a layer of 50 nm nickel, which promotes adhesion

over the SiO2 layer; lift-off is performed.

For processing the crossbar devices, the 4 inches wafer is usually cut already in smaller chips

after the deposition of thermal silicon oxide:

• the SiO2 is patterned with positive resist and e-beam lithography to define the bottom

contacts of the device; with a reactive ion etching process, trenches of 20 nm depth are

etched in the SiO2.
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Figure 3.8 | The processing steps for fabricating planar and crossbar VO2 switches is here schematized.
For the planar devices, the VO2 is patterned with electron beam lithography followed by an ICP etch;
with a further lithography step the contacts are deposited. For the crossbar switches, the process starts
with the patterning of a trench in the SiO2, which is consequently filled with evaporated nickel (for
adhesion) and platinum contacts. The VO2 is then deposited and annealed on top of the contacts and
patterned with ICP etch. Finally, the top contact is deposited. On the right, an SEM image of a planar
and a crossbar device is shown.

• the trenches are filled with a 10 nm nickel / 10 nm platinum evaporated contact, and

lift-off is performed;

• the VO2 film is deposited and annealed as explained in section 3.1.1 and 3.1.3;

• a negative resist (AR-N from AllResist) is spun and patterned with e-beam lithography;

ICP is used to pattern the VO2 in large areas over the bottom contacts. This patterning is

necessary to isolate the devices from one-another;

• through the means of lift-off of a positive resist (PMMA) and e-beam lithography, the

top contacts (Ni/Pt) are deposited.

The devices fabricated in this fashion have the shape of simple resistors, whose resistance

value is highly dependent on the voltage applied. We have investigated planar devices with

variable dimensions between 100 and 1000 nm in length, and 400 to 2000 nm in width, over

50 nm film thickness. It was found that planar devices are more reliable when the width of the

device is higher than the length. For the crossbar devices, the area of the device is defined by

the crossing of the top and bottom contacts. The devices were therefore fabricated with areas

variable from 500 nm × 500 nm down to 70 nm × 70 nm. In this configuration, the length of

the device is represented by the film thickness; 80 nm thick films were used in this case. The
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reduced thickness of the device is comparable with the grain size of the of VO2 films, so that

between the top and the bottom contacts only a net of grains in a parallel fashion is formed.

3.2 Scanning Thermal Microscopy

Since the VO2 phase transition can be triggered by Joule heating occurring inside the device, as

it is discussed in section 2.1.2, it is of great interest to understand and measure the temperature

distribution inside a VO2 device upon the occurrence of the transition. To this end, a Scanning

Thermal Microscope (SThM) was used to characterize the devices. The SThM measures

presented in this thesis have been performed in collaboration with F. Könemman, F. Balduini

and B. Gotsmann. Large part of the results were obtained during the master thesis work of F.

Balduini, under the supervision of B. Gotsmann and myself.

Scanning thermal microscopy is a scanning probe microscopy technique which closely relates

to atomic force microscopy, with the addition of a temperature sensor on the scanning tip

of the instrument. Located in the IBM noise-free laboratories, the SThM is a state of the

art, custom-built instrument that allows to measure the temperature at the nanoscale with a

spatial resolution down to 6 nm [259]. The measurements are conducted in ultra-high vacuum.

A schematic of the measurement set-up can be seen in figure 3.9. The device under test is

activated electrically via a modulated voltage signal, while a cantilever tip scans over the

sample and is used to measure the self-heated, spatial temperature distribution of the device.

The scanning cantilever has a nanometer-sharp tip realized in Si [260]; the tip is electrically

isolated from the sample by a SiO2 layer that naturally forms upon processing. The cantilever

is highly doped with phosphorous atoms (1020 cm−3), except for the region where the tip

is located, of about 2 × 2 µm, which is doped at 1017 cm−3. This region serves at the same

time as an integrated heater and as an integrated resistor, whose resistance is temperature

dependent, and can therefore serve as a heat sensor. The resistance of the temperature sensor

is measured via a Wheatstone bridge configuration, and its spectral components demodulated

via a lock-in amplifier. The relation between the tip resistance and the tip temperature can be

extracted through a calibration procedure, as described in [259]. This calibration procedure

requires strong assumptions and it’s the major source of uncertainty in the measurements,

resulting in 20% inaccuracy in the measured temperature. The sensitivity to the temperature

variations along the measurement is significantly higher, in the order of ∆T = 10 mK. For

performing a measurement, the cantilever is heated with a constant voltage to an out-of-

contact temperatureΘ, which is usually chosen around 300°C. When posed into contact with

an electrically activated sample, the tip exchanges heat with the device; the heat exchange

is translated to a shift in the integrated resistance of the tip, which can be measured with

the Wheatstone bridge set-up. In the in-contact configuration, the power P dissipated by the

heater can be calculated as:

P = Q̇cl −Q̇ t s =
Θ−TA

Rcl
+ Θ−T

Rt s
, (3.1)
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Figure 3.9 | Simplified schematic of the SThM setup. A cantilever with an integrated temperature
sensor scans over the device under test. The device is electrically activated with a DC voltage an a
superimposed AC component. The electrical activation results in a Joule or Peltier heating effect in
the device. The temperature at the nanoscale can be measured via the cantilever sensor as a voltage
signal over a Wheatstone bridge configuration, which is successively amplified. The temperature rise
of the device, as well as the voltage drop across the Wheatstone bridge is modulated with harmonic
components proportional to the harmonics of the AC voltage applied to the device. A lock-in amplifier
is used to demodulate the signal. Post-processing techniques allow to derive the device temperature
from the harmonic components of the Wheatstone bridge voltage. Image courtesy of S. Hönl and
F. Könemann.

where Q̇cl and Q̇ t s denote the heat flux through the cantilever and through the tip, T is the

sample temperature and TA is the ambient temperature. Rcl is the thermal resistance between

the tip and the cantilever and Rt s the one between the tip to the sensor. Rt s can be very

difficult to estimate, as it greatly depends on the point-contact between the tip and the sample.

Rt s , in fact, varies in dependence of the material the tip gets in contact with. In addition, the

value of Rt s depends on how the tip gets in contact with the sample, meaning that, when the

tip touches the material, multiple point-of-contacts can be present, given the topography of

the sample [261]. However, as explained in detail in [262, 259, 263], the spatial distribution of

the temperature of the device can be calculated independently from the value of Rt s , when a

technique that introduces a modulation in the temperature signal is used. This is generally

realized by applying a modulated voltage to the sample, that will translate in modulated self-

heating effects in the device, i.e. modulated temperature changes via Joule or Peltier effects.

This modulation ultimately allows to link the temperature of the sample with the DC and AC

spectral components of the voltage drop across the Wheatstone bridge ∆ VAC and ∆ VDC :

∆TDC =∆Θouto f cont act ×
∆VAC

∆VDC −∆ VAC
, (3.2)

where ∆T = T −TA . A complete derivation of this equation can be found in [259, 263]. It has

to be mentioned that the proposed derivation of the sample temperature can undergo some

variation when the device is non-linear, or the AC modulation of the device voltage signal is
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unipolar. For further details about the methods of analysis of the SThM temperature maps

of the VO2 samples, we invite the reader to refer to [262]. The SThM technique is here used

to explore the phase transition on planar VO2 switches, and to investigate whether the phase

change happens uniformly through the device or a filament is formed as reported in previous

work on crystalline films [158].

3.3 Device Model for Circuit Simulations

For understanding the impact of different networks schemes on the computational capabilities

of VO2 coupled-oscillators, and in particular for designing circuits exploring different coupling

and biasing schemes of the devices, it is necessary to realize an electrical model of the VO2

which can be used in a circuit simulation framework. Many different simulation schemes

have been explored in literature for VO2. For example in [264, 265], a physical model of a 1-D

device is implemented to take into account the Joule heating distribution over the electrically-

activated phase transition. The model is capable of circuit simulations when the other circuit

components are introduced through an analytical description. Other physical models have

been explored in TCAD tools [266], however, the integration of the physical model with a circuit

simulation environment is not introduced. To implement a device model in commercial circuit

simulators, for example in SPICE, multiple works rely on the coding of a compact model, in

which the abrupt transition of the device is not described through its physical properties,

but rather through the introduction of a non-linear function of the input electrical variables

(voltages and currents). An overview of the compact models used to describe the hysteretic

behaviour of non-linear devicse can be found in [267]. More specifically, compact models of

VO2 can be found in literature [268, 164]. In this work, we use a behavioral model proposed

by Maffezzoni et al. and described in [164]. This work presents a driving point equivalent

model for VO2 two-terminal device which is able to reproduce the hysteretic behavior. The

equivalent circuit is depicted in figure 3.10 (a). In its insulating state, the VO2 is modeled

as a high impedance resistor which behaves according to the formula V = Ri ns · I , where V

and I are the voltage and the current in the VO2 resistor, and Ri ns its insulating resistance

value. Equivalently, the device in its metallic state is described by the relation V = Rmet · I ,

where Rmet is the metallic resistance value. The transition between the metallic and insulating

state is modelled with an abrupt (but continuous) transition, and it is decided by a voltage

comparator with the following input-output relationship:

V0 = 0.5 · (1+ tanh(2αVi n)) (3.3)

where Vi n =V +−V − is the comparator input, V0 its output voltage, α is the parameter that

determines the slope of the transition curve. The voltage V0 varies between 0 and 1 V and

it is used to drive the input of the comparator V + by a voltage-controlled voltage source of

gain ∆V = VT H −VT L , where VT H ,VT L are the voltage thresholds for the IMT and the MIT

respectively. The VO2 device current is derived by the current that flows into the feedback
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Figure 3.10 | a) behavioral model of a VO2 device, as descried in [164]. b) Current versus voltage
simulated curve of the behavioral model. Reproduced from [287], ©IEEE 2018.

resistor RF , whose conductance is described as GF = 1
Ri ns

(1−Vc )+ 1
Rmet

Vc . This model is imple-

mented in Verilog A and used in SPICE simulations over the LTSPICE software, or equivalently

in cadence virtuoso. In figure 3.10 (b) the I-V characteristic of a simulated device model with

VT H = 3V and VT L = 2V is shown. The input voltage is applied between PIN+ and PIN-. At

low input voltages the device presents an equivalent resistance Req = Ri ns and a low current

IF is generated. Upon hitting the voltage threshold VT H the device equivalent resistance

becomes Req = Rmet , with an increase of the current IF . The sharpness of the transition can

be tuned through changing the values of R and C in the device circuit model. In the following

chapters, the VO2 devices are simulated in coupled oscillator networks utilizing this model

and adjusting the device parameters, such as the metallic and the insulating resistances and

the voltage threshold, to the experimental values. As shown in the following, a careful tuning

of the model parameters can reproduce with good precision the behavior observed in experi-

ments. However, more complex simulation environments are needed to reproduce with more

precision the phenomena observed in the devices, such as the occurrence of multiple phase

transitions in multi-domain devices. One possible approach in this direction is presented in

chapter 4, section 4.1.2. The behavioral model here described is instead employed in circuit

simulations with the aim to explore the design and the computation capabilities of a network

of VO2 coupled oscillators.
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tion in scaled VO2 Devices

The investigation of the oscillatory neural networks presented in this thesis starts from the

study of the relaxation oscillators building blocks: the VO2 devices. ONNs are based on the

synchronization phenomena of oscillators. Oscillators with different natural frequencies

can experience frequency and phase locking when coupled together [78, 83]. However, high

divergence between the natural frequencies caused by variability between the oscillating

devices can prevent the synchronization even when a strong coupling is used [269]. To realize

large systems of coupled oscillators, the devices should therefore yield high uniformity. Equally

important for the success of the coupled-oscillators technology is the CMOS compatibility of

the VO2 device fabrication process. Therefore, a core investigation conducted in this thesis

regards the fabrication of uniform VO2 devices on a silicon platform. To this aim, we processed

and characterized planar and crossbar devices from VO2 films deposited on a SiO2/Si platform

and studied the impact of the polycrystallinity of the films on the phase transition and on the

variability of scaled devices. Our main findings are discussed in this chapter.

Starting from the planar device, we present evidences of multiple switching events inside the

film. We speculate that the origin of the multiple switching behavior is connected to the gran-

ular nature of the film. A scanning thermal microscopy study of the planar device is discussed,

imaging the formation of current paths inside the device. An investigation conducted across

crossbar devices of different dimensions highlights the possibility of reducing the number

of phase transition steps with the scaling of the device dimensions. Lastly, we examine the

achievement of a single, sharp, switching in a single grain device.

4.1 Characterization of VO2 Planar Devices

Vanadium dioxide planar devices were fabricated from ALD and PLD films as explained in

chapter 3, section 3.1. The devices were patterned into stripes, with variable dimensions

(length and width) between 300 nm and 1500 nm. Their resistance was measured in vacuum,

in a temperature controlled chamber, with a two probe measurement. The two probe mea-

surement introduces a contact resistance, whose value was calculated to be around 500Ω. The
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Figure 4.1 | Hysteresis curves of VO2 planar devices. a) R-T curve of a VO2 planar device with 1400 nm
(width) × 300 nm (length) dimensions, fabricated from a PLD film of 50 nm thickness. An SEM image
of the device is shown in the figure inset. The phase transition cycle is measured in a temperature-
controlled chamber. The resistance measurement is conducted supplying a constant current of 100 nA
and measuring the voltage across the device. The device presents a phase transition of more than
two orders of magnitude, with insulating resistance Rins = 130 kΩ at 330 K and a metallic resistance
Rmet = 530Ω at 355 K. The phase transition is not continuous but proceeds in steps, which are repro-
ducible, with slight variations, over multiple measurement cycles. The step-like behavior is attributed
to the switching of single domains, possibly corresponding to the grains observed in the films (of
average dimension of 50-80 nm). b) R-T curve of a planar ALD device annealed with the flash lamp
anneal technique. The device presents similar dimension to the PLD device, with a thickness of 50 nm,
and 1000 nm × 500 nm length and width. However, since the FA device has an average grain dimension
of 20 nm, it comprises around 10× the grains respect to the PLD design. Its phase transition results
smoother, with only a couple of identifiable steps. This observation suggests a correlation between the
grains observable in the VO2 film and the number of steps in the transition.

hysteresis curves, also referred to as resistance vs. temperature (R-T) curves of the insulator-to-

metal (IMT) and the metal-to-insulator (MIT) transitions of the device were obtained applying

a constant current and measuring the voltage drop across the device, during a temperature

sweep. The applied current was kept to 100 nA, to avoid the self-heating of the device to play a

role compared to the chamber temperature in triggering the phase change. A representative

result of such measurement for PLD and ALD slow-annealed device is depicted in figure 4.1 a.

Compared to the hysteresis plot of the films shown in chapter 3, section 3.1.3, the hysteresis

measurements of the scaled devices is not continuous, but proceeds in clearly defined steps.

The steps are reproducible over multiple temperature cycles conducted on the same device,

with slight variations, suggesting the IMT and MIT do not occur as a single transition, but

rather as multiple, consecutive phase transitions in the VO2 film. The multi-step transitions

of VO2 were already observed in literature, in crystalline nanowires deposited on lattice-

matched substrates [270]. The discrete jumps are attributed to the switching of single domains

inside the crystal; it has been shown in fact that the number of steps in the phase change

can be reduced by scaling the device dimensions, therefore comprising a smaller number of

switching domains in the device [271, 270, 272]. The asymmetry of the transition steps between

the insulator-to-metal and the metal-to-insulator phase change has been explained by the
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different nucleation mechanism of the two transitions, facilitated respectively by point-defects

or thin walls [273, 274]. These findings suggest that, when scaling the device to comprise

a single domain, a single, sharp transition can occur; this hypothesis is corroborated by an

experimental study from Tsuji et al. on VO2 nanowires, which show a single phase transition

for a 20 nm long wire [275].

In the case of VO2 deposited on SiO2, experimental observations suggest that the switching

domains could correspond to the grains that can be identified in the films. As discussed in

section 3.1.3, the devices annealed with flash lamp anneal showed an average grain size of

around 20 nm, much smaller than what usually obtained with slow annealing techniques

(50-80 nm). Therefore, the R-T curve of a flash annealed device with dimensions comparable

to the slow annealed device presented in figure 4.1 (a) was investigated. The FA devices, for

comparable dimensions to the slow annealed device, given that they present a VO2 film with

lower grain size, comprise a higher number of grains. The typical R-T curve measured for one

of such devices is depicted in figure 4.1 (b). The curve appears smoother and only a couple of

resistance steps are present. Similarly, the resistivity measurements conducted on the VO2

blanket films were also continuous and did not present step-wise phase transitions (figure 3.7).

The continuous hysteresis observed on the resistivity measurements of the film as well as on

the scaled flash annealed devices can be explained by an averaging of step-wise single-grain

changes over a higher number of grains.

The impact of the granularity of the film on scaled devices in the electrically-driven phase

transition was also investigated. To this aim, the current vs. voltage (I-V) characteristic of the

planar devices was measured, sweeping the source current through the device and measuring

the voltage. Upon the occurrence of the first phase-transition, an irreversible phase change is

reported for all the devices. When investigated with SEM imaging, the devices which undergo

the irreversible phase change present a modified morphology, with the clustering of previously

separated grains (figure 4.2 (c) and (d)). This irreversible change can lead to failures, lowering

the yield of the sample. The mechanism of the failure and of the morphology change in planar

VO2 devices deposited on Al2O3 has been studied and documented by Shabalin et al. [276]

with current-activated devices. The authors suggest that the device irreversible change and

failure is due to current spikes caused by charging of parasitic capacitances upon the abrupt

phase transition of the device. The authors indicate the employment of design techniques

apt to reduce the parasitics as a possible solution to mitigate the problem. Alternatively,

employment of a current source with faster response time can also help to prevent current

spikes. Surely, this problem is more pronounced when a voltage source is used to conduct

the I-V measurements, as the current spikes are in this case not compensated by the current

source. For this reason, for the planar device operation, we found effective to initialize the

device with a current source-measurement triggering in a controlled way the irreversible

phase change and stabilizing the subsequent phase transitions, before employing the devices

in a relaxation oscillator circuit.

In figure 4.2, the initialization cycle of a VO2 planar device is shown. The phase transition is
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Figure 4.2 | Initialization cycle and current vs. voltage measurement of a planar VO2 ALD device with
dimension 1300 nm (width) × 200 nm (length) × 50 nm (thickness). a) Plot of the device resistance
upon the sweep of the current source. After an irreversible change, the curve stabilizes. The curve shows
multiple phase transition for the electrically-activated device. The insulating resistance is calculated to
be 105 kΩ, while the metallic resistance at 90 µA is 5 kΩ. b) current vs. voltage characteristic. c) and d)
SEM images of a device before and after the irreversible phase change, respectively. Images reproduced
from [277], available at: https://doi.org/10.1016/j.sse.2019.107729; licensed under CC-BY 4.0. Full
terms at https://creativecommons.org/licenses/by/4.0.

electrically triggered sourcing a current through the device. The first phase transition results in

an irreversible change that lowers the value of insulating resistance; after, the device stabilizes,

allowing for a reliable and reproducible current vs. voltage (I-V) characteristic. Noticeably,

as registered in the R-T measurements, the phase transition between insulating and metallic

state proceeds in steps, associated with switching events of consecutive grains. The number

of steps that we record in this measurement is lower compared to what results from the R-T

measurements. This can be explained by the formation of a filamentary portion of metallic

material connecting the two electrodes, which can expand as the input electric signal is raised,

as it is discussed in section 4.1.1.

The irreversible change, combined with the multi-grain switching, contributes to increase

the device-to-device variability in the VO2 planar switches. The devices fabricated starting

from the PLD films had relatively low yield (ca. 50%), meaning that only in a few devices

presented a phase transition after the irreversible change and could therefore be used for

experiments on coupled oscillators; they exhibited a resistance variability from the mean

value of ∆RINS,MET = 25-58%, and a threshold variability ∆VTH = 20%, measured across 12

devices with equal dimensions. The devices fabricated from the ALD films showed increased

reliability; they did not experience failure upon the initialization cycle and the relative variabil-
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Figure 4.3 | Temperature maps derived with the SThM. a) and c) AFM scans of two VO2 planar devices
realized with ALD and slow anneal of the VO2 film at 400° C for 20 minutes. The film presents grains
of 80 nm average dimension. b) and d) temperature maps of the devices in their metallic state. The
device in b) was measured with a voltage input Vi n = 6.5±1.5 V and a series resistor Rs = 100 kΩ, while
the device in d) was measured with Vi n = 1.6±0.2 V and Rs = 1 kΩ. The AC modulation was set at a
frequency f = 1.2 kHz. The scale bar next to the image refers to the increment of temperature over
room temperature produced by the self-heating of the device.

ity of their parameters was reduced to ∆RINS,MET = 5-20% and ∆VTH = 10%. We attribute the

better performance of the ALD devices to the more homogeneous characteristics of the films

(discussed in section 3.1.1 of chapter 3). The device-to-device variability has an impact on the

oscillator performances: the more non uniform the devices are the stronger the coupling re-

quired to insure frequency and phase locking between oscillators. Moreover, the multi-step I-V

characteristic can induce distortion in the oscillations, as described in the following chapter.

4.1.1 Characterization via Scanning Thermal Microscopy

The scanning thermal microscopy technique (SThM), described in section 3.2, was used

to characterize the electrically-activated phase transition in the VO2 planar devices. From

literature, it is known that the electrically-activated insulating-to-metallic phase transition

in VO2 planar devices happens with the formation of a metallic filament connecting the

two electrodes [158, 278, 279, 280]. With the SThM technique, it is possible to measure the

temperature distribution of self-heated devices with nanometer resolution. In the scope of

this thesis, this characterization has been conducted to explore the phase transition in the

polycrystalline VO2 devices realized on Si/SiO2 and to study the effects of the film granularity

on the phase transition.

As already explained in section 3.2, with the SThM characterization the AFM image and the

temperature map of a device can be derived at the same time. The devices are driven with a

voltage source and connected in series with an external resistance. When biased at a voltage
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Figure 4.4 | Example of expansion of the VO2 filament with increasing of the sourced voltage. The
device under test reports dimensions of 1400 nm (width) × 500 nm (length) × 35 nm (thickness) and
average grain size of 20 nm. The device was prepred with flash anneal as per the conditions reported
in line 5 of table 3.6. a) Thermal map of the device in its insulating state. b) Map of the device in the
metallic state. c) and d) evidence of filament expansion for increased electrical activation. The device
was measured with a series resistance Rs = 10 kΩ. The applied voltage is indicated on the figure for
each experiment, and was further superimposed to an AC voltage of 100 mV @ 1.2 kHz.

lower than the IMT voltage threshold, the temperature signal in the thermal map results to be

low and no temperature profile can be detected. When biased at a voltage higher than IMT

threshold, the device switches to its metallic state and the thermal map shows the formation

of a filament with higher temperature, indicating the portion of the material which undergoes

the IMT. Two measurements conducted on VO2 ALD planar devices are depicted in figure 4.3.

Due to the cantilever geometry, the VO2 area right next to the contacts cannot be accessed by

the tip and therefore cannot be imaged. The contact separation which results from the AFM

map appears shorter than what it is in reality. Nevertheless, the measurements reveal that the

phase transition regards only one portion of the material and concerns only a few grains in the

device, opening a low impedance current path connecting the two electrodes. Precise analysis

of the measurements allow to identify the boundaries between the metallic and the insulating

state of VO2 (see appendix, section A.1, figure A.3).

Thermal maps measured on devices activated with progressively higher applied input voltages

reveal that by increasing the electrical power, the portion of the material which undergoes

60



4.1. Characterization of VO2 Planar Devices

the IMT expands. An example is shown in figure 4.4, where a device fabricated from a flash

annealed sample, reporting average grain size of 20 nm is investigated. The I-V curve of the

device under investigation is reported in the appendix, section A.1, figure A.1 and shows

multiple phase transition steps. The device was tested applying a series of bias voltages below

and above the voltage thresholds of the consecutive phase transition steps. For a voltage bias

lower than the first step in the insulator to metal phase transition, no significant heating is

observed in the device. When biasing the device with an input voltage higher than the first IMT

step, a metallic filament is formed between the two electrodes; the current concentrates in the

portion of the material which presents a lower resistivity, producing higher heat dissipation in

the filament compared to the rest of the device. As the bias voltage is increased, the thermal

maps show an evolution of the metallic filament. In particular the analysis reveals that a new

portion of the material undergoes the IMT, opening a second current path.

The SThM measurements also possibly reveals how grain boundaries impact the heat distri-

bution in the VO2 device. This, together with more details over the widening of the metallic

filament, are discussed in the Appendix A.1.

4.1.2 Simulation of Phase Transitions in Planar Devices

In the previous sections, and in particular within the discussion of the thermal characterization

conducted on the phase transition in the VO2 devices, it emerged that the steps in the I-V and

R-T characteristics can be assigned to the transition of individual grains. To further investigate

this behavior, we developed a model of the switching in the devices, taking into account the

presence of multiple domains which undergo the IMT. The discussion here reported is part of

the master thesis of F. Balduini [281]. This work was conducted with the aim of obtaining a

simple model to find the essential parameters which govern the multi-step IMT behavior of

the planar switches. The VO2 film is described as a square network of grains, in which each

grain is treated as a unique body. The physical characteristics of each grains are defined as a

distribution of the properties (temperature of the IMT, temperature of the MIT, insulating and

metallic resistance) measured in the experiments or derived from literature (for more details,

refer to section A.2 of the appendix). Similar models, which simulate the VO2 as a network of

resistors, have previously been proposed in literature [282, 168, 283]. The simulation algorithm

can be schematized as following:

• The VO2 device is modeled as a networks of variable, temperature dependent resistors;

at room temperature and under no applied voltage, all the resistors are in the insulating

phase. The grain boundaries are taken into account as connecting resistances between

the grains; their heat dissipation was not introduced in the simulator.

• A voltage is applied to the device and the voltage and currents in each node of the

resistor network is calculated. The Joule power dissipated from each grain is derived.
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• The heat equation:

Cv
∂T

∂t
= k∇2T + P Joule

Vv
+ g

T −Tsub

t
(4.1)

is solved for each grain, to determine its temperature. Cv is the VO2 thermal capacitance,

k its thermal conductivity per unit thickness of the film, g the thermal volumetric

conductivity between VO2 and SiO2, Tsub the substrate temperature, Vv and t the volume

and thickness of the grain.

• Given the temperature developed in each grain, the new resistance value of the grains is

calculated and the algorithm is repeated until the steady state is reached.

In the model, the grain boundaries are considered as fixed resistors placed in between the

grains, as represented in figure 4.5 (a). The simulated R-T characteristic is depicted in fig-

ure 4.5 (b) and, similarly to the experimental curves, it presents numerous IMT steps, caused

by the phase transition of single grains inside the device. Having set the grain boundary

resistance to be slightly higher than the metallic resistance of the VO2, in the simulation the

low-impedance state of the device is dominated not by the resistivity of the single grains, but

rather by the resistances of the grain boundaries. In figure 4.5 (c) the comparison between

a measured and a simulated I-V curve for a planar device is shown. The simulation model

was investigated to reproduce the experimental I-V curve of a device characterized through

the SThM. The SThM characterization was used to identify the grains which undergo the

IMT. It revealed that the current path in the metallic state was formed by around 10 grains

comprehended between the electrodes. The simulation of a device comprising a 2 × 5 grain

matrix was fitted to the experimental curve, showing the capabilities of this simple model to

reproduce the experimental behavior, from the hysteresis width to the presence of distinctive

jumps in the phase transition of the device.
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Figure 4.5 | a) The VO2 device is modeled as a network of temperature dependent resistors. The contact
impedance, as well as the grain boundaries are taken into account as fixed resistances between each
grain unit. b) and c) simulated R-T and I-V curves of planar VO2 devices. The simulations reproduce
the multi-step behavior in the electrical characteristics of the device. Similarity to the experimental
curve is obtained by fitting the parameters reported in table A.4 of Appendix A.2.
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Figure 4.6 | Illustration between the difference in the current path between the contacts in planar and
in crossbar devices. In planar devices, a portion of the material undergoes the IMT, forming a filament
of metallic phase between the two contacts. The current path proceeds along a series connection
of grains, therefore suffering from grain boundaries defects. Vice versa, in the crossbar architecture
it is possible to reduce the device length so that only one grain is present between the electrodes,
eliminating the crossing of the current path through grain boundaries.

4.2 Crossbar Devices

In this section crossbar devices are presented. Crossbar devices are investigated with the aim

of reducing the device-to-device variability. In planar devices, the insulator-to-metal transition

appears as a filament between the two contacts, which expands over a series connection of

grains. The grain-boundaries are likely to represent high resistances in series with the metallic

domains, therefore forming hot spots in the switched device (as discussed in the simulation

presented above and in the appendix A.1). As highlighted in [276] and observed in this thesis,

the excessive Joule heating can be the cause of the irreversible transition in planar devices. In

contrast, the length of the device in the crossbar configuration is represented by the separation

between the two contacts at the cross intersection, which corresponds to the thickness of

the deposited film. This allows to create short devices, in which a matrix of parallel grains is

present between the two electrodes, and no grain boundary is in series to the current path

(figure 4.6). Therefore, by reducing the length of the device to comprise only parallel grains, we

expect to reduce the filament length to a single grain, possibly eliminating the highly resistive

grain boundaries and improving the variability between the devices.

The crossbar devices were fabricated from an 80 nm thick ALD film with the process described

in section 3.1.4. The length of the device is represented by the distance between the two

contacts, and therefore corresponds to the thickness of the VO2 film, 80 nm. The area of the

device was varied between 350 nm × 350 nm down to the scaled dimensions of 70 nm × 70 nm.

The resistance vs. temperature curve of the crossbar has been investigated. In figure 4.7, the

hysteresis cycles of a 250 nm × 250 nm and a 70 nm × 70 nm device are shown. Similarly to

the planar devices, the R-T curve of crossbar devices shows a multi-step phase transition. In

addition, the scaled device clearly shows less steps in the phase transition compared to the

wider device. We attribute this characteristic to the reduced number of grains present between

the contacts, therefore to the lower number of domains which undergo the IMT.
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Figure 4.7 | Hysteresis cycles of two crossbar devices, obtained from a 80 nm thick ALD film annealed
at 400°C for 20 minutes. a) Resistance vs. temperature curve of a 250 nm × 250 nm device. As for
the planar devices, it is possible to recognize multiple phase transitions in the curve. b) Resistance
vs. temperature curve of a 70 nm × 70 nm device. Holding the device smaller dimension, the phase
transition presents a lower number of steps, as between the two contacts there are less grains which
undergo the IMT.
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Figure 4.8 | The restistance vs. current and current vs. voltage characteristic of a crossbar device with
250 nm × 250 nm dimension, obtained souring a current and measuring the voltage across the device.
The first activation of the device no longer causes an irreversible change. A multi-step phase transition
associated with the IMT of different grains is observed also in this case.

Regarding the electrical activation, no irreversible change was observed for the crossbars. An

I-V curve of the crossbar devices is shown in figure 4.8. Similarly to the planar device, also the

crossbar shows a multi-step phase transition, associated with the consecutive switching of

different grains. The variability of the parameters of the crossbar devices was also studied,

showing an improvement compared to the planar devices.
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The resistance and threshold variability between devices of the same dimensions is reported

to be ∆RINS,MET = 7-10% and ∆VTH = 12% respectively. The higher uniformity of the crossbar

devices allowed to obtain the frequency locking of four oscillating devices, leading to the

results described in section 5.2.3

4.3 Single Grain Devices

The analysis conducted on the crossbar and planar devices highlight the role of multiple phase

transitions in the variability between devices of nominally the same dimension. Moreover,

resistance vs. temperature graphs reveal that by scaling the device dimensions and therefore

incorporating a lower number of grains between the electrodes, the number of steps in the

R-T characteristic of VO2 is reduced. This motivated the investigation of the phase transition

of a VO2 single-grain device.

To this aim, the nanoparticles presented in figure 3.5 in chapter 3 were contacted and charac-

terized in their electrical properties. In literature, the investigation of the phase transition of

such structures has been conducted by measuring the reflectance of an incident laser [139] or

the Raman intensity [284] over a temperature sweep of the chip. These measurements cannot

address a single particle, but rather reveal the phase transition characteristics of multiple par-

ticles at the same time. To the best of our knowledge, no direct measurement of the resistance

vs. temperature cycle of a single nanoparticle was conducted before.

We used electron-beam lithography to locate and contact the nanoparticles. A picture of the

contacted nanoparticles is shown in figure 4.9 (a). The R-T hysteresis curve of the nanoparticles

was studied with the same method used for the crossbar and the planar devices character-

ization. A temperature sweep was conducted in a temperature-controlled chamber and a

source current was used to measure the resistance of the devices. To avoid any influence from

the self heating of the device, a probe current of 10 nA was used. Moreover, the temperature

ramp had a step of 0.02 K/s, to obtain precise measurements. As shown in 4.9 (b) and (c), the

IMT of the nanoparticles is a single, point-sharp transition. The hysteresis width, however,

can differ from device to device. Two over seven tested devices present a large hysteresis, of

around 55° C (figure 4.9 (c)). The parameters influencing the width of the hysteresis are not

well understood in literature. Multiple works suggest that the density of grain boundaries,

together with the number of defects within a grain are the key parameters which determine

the hysteresis properties [257, 284, 243]. It has been argued that in a continuous film a higher

density of grain boundaries (smaller grain size) would increase the availability of nucleating

defects, therefore reducing the width of the hysteresis [245]. Similarly, the reduced presence

of defects is associated with a widening of the hysteresis. Suh et al. [139] have investigated

the hysteresis of VO2 nanoparticles through the reflectance of an incident laser, and, simi-

larly to our findings, they reported hysteresis width in the order of 60 K. They argued that in

free-standing nanoparticles the phase transition cannot nucleate at the grain boundaries of

the material. The nucleation therefore needs to take place at the location of defects inside
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Figure 4.9 | Electrical characterization of a single grain device. a) SEM image of a contacted nanoparti-
cle. b) and c) Resistance vs. temperature hysteresis curve of two single-grain devices, which present
different hysteresis width.

the particle; when the particle is highly crystalline, the number of defects which can nucleate

the phase transition is reduced. Therefore, the higher is the crystal quality, the lower is the

probability of nucleating the phase transition, resulting in the wide hysteresis of the film.

We conducted a characterization of the crystal quality of the nanoparticles with Scanning

Transmission Electron Microscopy (S-TEM). A lamella was cut with a focused ion beam to

examine the cross-section of pristine, non-contacted nanoparticles. The results of the TEM

investigation are shown in figure 4.10. From this study, the nanoparticles result to have long-

range crystal orientation; some of them appear to be almost defect-free (figure 4.10 (a)) with

higher defect concentration on the edges. Other particles, like the one investigated in fig-

ure 4.10 (b), are polycrystalline; their different crystal orientation can be easily recognized with

the Fast Fourier Transform (FFT) of the TEM image. This study could implicate that the devices

which present a wider characteristic have better crystal quality, while polycrystalline devices

are associated with a narrower hysteresis. To support this hypothesis, a TEM characterization

of the electrically-measured devices is planned as future experiment.

Finally, the electrical activation of the single-grain devices was investigated. The devices could
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Figure 4.10 | Transmission electron microscopy of a VO2 nanoparticle obtained via solid solid state
dewetting. Conducted in collaboration with M. Sousa. a) TEM image of a nanoparticle of around
100 nm dimension, which present long-range crystal order. In a1) and a2), two different areas of the
nanoparticle are explored. The Fast Fourtier Transform (FFT) shows that the two areas have the same
crystal order and orientation, suggesting a single-crystalline nanoparticle. The crystalline quality of the
nanoparticle can be appreciated in the zoomed-in picture in a3). On the edges, however, the material
appears to be more defective. b) A second nanoparticle is investigated with TEM. In the area b1) we
can notice the coexistence of two different crystal orientations, which underlines the polycrystallinity
of the nanoparticle. In the FFT of picture b), peaks corresponding at the two crystal orientations can be
recognized. With the FFT analysis conducted on the areas b1) and b2), the peaks corresponding to the
two crystal orientations can be distinguished.
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Figure 4.11 | I-V curve of a single-grain VO2 device fabricated on Si through a solid-state-dewetting
process. The device was connected in series with a 1 kΩ resistor. An increasing voltage was applied to
the circuit and the current flowing the in the VO2 was measured. Remarkably, also the current-activated
phase transition presents a single, sharp step, therefore eliminating the multi-step behavior previously
discussed for granular scaled devices.

be activated electrically utilizing a voltage source, and connecting them in series with a 1 kΩ

resistance. The voltage drop across the series resistor was measured and used to calculate,

with good approximation, the current passing though the VO2 device. The result of such a

measurement is shown in figure 4.11 and presents a single, sharp phase transition.

The single-grain devices represent a promising solution for reducing the device-to-device

variability of the VO2 phase transition, eliminating the randomness of the grains and grain

boundaries. However, the formation of the isolated grains through solid state dewetting

does not currently allow to control the position or the dimension of the grains. Further

processing is needed to achieve this control and allow a more systematic study of these

devices. Some approaches have already been proposed in literature [257]. Moreover, as

explained in section 2.2, the hysteresis width is an important parameter which can determine

the performances of a single oscillating device. For reducing the power consumption of the

oscillators, a narrow hysteresis is desirable. The large hysteresis width shown by the single-

grain device is therefore detrimental for a circuit exploitation of these devices. However, if it

is indeed possible to reduce the hysteresis with introducing defects in the material, doping

could represent a solution for both improving the device performances and pushing the phase

transition to higher temperatures.
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4.4 Main Achievements

In this chapter, we investigated the fabrication of VO2 devices on silicon, deepening the

understanding of the phase transition mechanism and devising a strategy to integrate VO2

coupled-oscillators technology with a CMOS compatible process. In summary:

• We fabricated planar VO2 devices on a silicon platform. We characterized them in

their electrical properties, investigating the impact of the film granularity in the device

performance. We identified the origins of a multi-step transition in the switching of

consecutive grains inside the device.

• We used a state-of-the-art scanning thermal microscopy characterization technique on

the planar devices, obtaining images with unprecedented resolutions of the metallic

filament formation and evolution in an electrically-activated device.

• We created a simulation environment able to reproduce the behavior of VO2 planar

devices. The tool was used to investigate the impact of grain boundaries in the device

thermal distribution.

• We proposed a crossbar configuration on a Si platform, scaling the device down to

70 nm × 70 nm. With this design, we achieved better control on the device phase

transition, which resulted in devices with higher uniformity and lower variability.

• Finally, we investigated the realization of a single-grain VO2 device on silicon. Through

a solid state dewetting process, we were able to achieve formation of large VO2 nanopar-

ticles, which were contacted and studied in their electrical characteristic. The nanopar-

ticles showed a single, sharp, phase transition, therefore eliminating the variability

introduced by the presence of multiple transition steps in polycrystalline devices. To the

best of our knowledge, this represents the first demonstration of a VO2 device integrated

on Si achieving a single, point-sharp phase transition.
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5 Coupled Oscillator Networks based on
VO2 Devices

In the previous chapter we have examined the characteristics of VO2 devices fabricated with

different design strategies. In this chapter, we focus our attention on the circuit implementa-

tion of coupled oscillators based on the phase transition of the previously described devices.

Starting from a proposed circuit implementation of an Oscillatory Neural Network, we present

an experimental investigation of the pattern storage and recognition methods. We first address,

in experiments and in simulations, the phase synchronization dynamics of two oscillators

coupled through a resistive element. We discuss the impact of the non-idealities of the devices

presented in chapter 4 on the oscillator trajectories. Via extending the proposed circuit design

to three coupled oscillators, we demonstrate the recognition capabilities of the network when

the test pattern is encoded in the relative time-delay of the voltage bias of the oscillators.

Finally, the exploitation of a 4-coupled oscillator network as an image edge extractor filter is

presented.

5.1 VO2 Oscillators: Characteristic and Performances

The volatile, insulator-to-metal phase transition of VO2 devices can be exploited in circuit ap-

plications to build compact, energy efficient oscillators. To achieve consecutive, self-sustained

IMT and MIT in the device, it is necessary to set the working point in the negative-differential

regime of the VO2 I-V curve. As explained in section 2.2, this can be achieved through con-

nection of the VO2 device in series with a resistor or a transistor. A schematic of the two

configurations is shown in figure 5.1. Compared to the design with a series resistor, the series

transistor allows for tuning of the bias condition, and consequently, the output oscillator fre-

quency, through calibration of the gate voltage [285]. In the following experimental discussion,

both circuit configurations will be employed.

The VO2 devices were measured with electrical probes and connected in the circuit configura-

tions via wiring to off-shelf components. The best performing oscillators can operate with

an input voltage of 1 V, and present an oscillation amplitude of less than 0.5 V. An example

is depicted in figure 5.2 (a). The power consumption was calculated to be P ≈ 20 µW. This
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Figure 5.1 | a) Circuit implementation of a single oscillator unit with bias resistor. b) Circuit implemen-
tation with a bias transistor. c) Load curve of a VO2 device for the circuit configurations depicted in a)
and b).

value was derived as P =VDD · Iaver ag e , where Iaver ag e is the average current that is sourced

from the supply voltage over one oscillating period. Similar figure of merits in the power

consumption of VO2 oscillators have been reported by other groups [78] and are competitive

compared to other oscillator technologies (see table 2.11, section 2.4.1). In particular an

estimation of the maximum frequency of oscillation was also conducted. As pointed out in

section 2.2, the oscillation frequency depends from several parameters: the hysteresis width

of the device (threshold voltages), the value of the circuit components and the voltage supply

of the oscillators. To conduct the maximum frequency measurements, the oscillators were

biased with a 10 kΩ resistor and the highest VDD voltage allowed to obtain oscillations (see

equation 2.11). As the experiments are conducted with externally coupled components, the

oscillator circuit suffers from parasitic capacitances introduced through the probes and the

wiring connections to the external circuit elements. In order to bring these parasitics to the

minimum, the series resistor was integrated directly between the signal and the ground pads

of the probe tip, as shown in the inset of figure 5.2 (b). The maximum oscillation frequency

was registered to be f = 2 MHz and was obtained with a crossbar device of 70 nm × 70 nm

dimensions, biased with VDD = 3 V. We determined the parasitic capacitance introduced by

the probe tip to be CP ≈ 80 pF. By reducing the parasitic capacitance, it is expected that the

maximum oscillation frequency will further improve.

5.2 Coupled Oscillators

In this section the coupling dynamics of the oscillators and their computational capabilities are

examined. The oscillatory neural network circuit configuration considered in this manuscript

is depicted in figure 5.3. The circuit comprises multiple oscillator units, realized through the

series connection of a VO2 device and a transistor. The oscillators are fully-connected to each
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Figure 5.2 | a) Waveform of a VO2 oscillator which works with scaled voltage supply. The oscillator is
driven with a 1 V voltage supply and presents oscillation between 0.1 and 0.28 V. Circuit parameters:
VDD = 1 V, RS = 10 kΩ, CP = 150 nF, RINS = 104 kΩ, RMET = 500 Ω, VTH = 0,9 V, VTL = 0,63 V. b) and c)
Waveform and Fourier spectra of the maximum frequency oscillator, based on a crossbar device of
70 nm×70 nm dimensions. To reduce electrical parasitics, the series resistor was integrated on the tip
of the electrical probe. Circuit parameters: VDD = 3 V, RS = 10 kΩ, CP ≈ 80 pF, RINS = 92 kΩ, RMET = 800
Ω, VTH = 2,5 V, VTL = 1,5 V.

other through electrical coupling elements, specifically resistors or capacitors. As explained in

chapter 2, the coupling elements of the ONN represent the memory of the circuit and therefore

set the stable phase-relation configurations between the frequency-locked oscillators. In our

ONN realization, differently from what is done in other VO2 implementations [196, 217],

the input information is not encoded in the gate voltage of the series transistor, but in the

time-delay of the input voltage of the oscillators. In the example of an image recognition

process, the gray-scale information of the image is translated in a delay of the activation of

the oscillator input voltage. The initial phase difference between the oscillators will therefore

correspond to the time-difference set by this input delay. When the relative phase difference

does not correspond to one of the memorized patterns, the oscillators relax to the nearest

encoded phase configuration, recognizing the pattern. This circuit implementation of ONNs

presents two main advantages:

• The circuit exploits the associative memory capabilities of ONNs to perform computa-

tion, therefore many patterns can be stored in the network by choosing the coupling

elements; to perform recognition between different patterns, the network does not

need to be reconfigured, but, provided a non-memorized input pattern, discrimination

between all the stored patterns is done in a single calculation. In perspective, the cou-

pling resistances can be implemented with memory elements, such as PCM and RRAMs,

which would add reconfigurability to the system.

• The circuit encodes the information in the timing of the signals rather than in thier

amplitudes. The technology processes all the information, from the input to the output,

through time-delay encoding. This makes the network implementation resilient to

scaled voltage power supplies.

In the following, the experimental demonstrations of pattern-matching computations realized
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Figure 5.3 | Schematic of the oscillatory neural network circuit. The input image gray-scale values are
encoded in the delay of the input voltage of the oscillators. The memory of the circuit is provided by the
coupling elements. The output is an oscillating waveform at the transistor drain. The information is
encoded in the phase difference between the oscillating waveforms. Adapted from [286], ©2020 IEEE.

with this network are presented. The discussion concentrates first on how to store different

patterns, i.e. different output phase relations in the network; afterwards, the first experimental

demonstration of the input-delay information encoding to output-phase recognition process

is presented.

5.2.1 Two Coupled Oscillators based on VO2 Devices

In this section coupling experiments and simulations between two VO2 oscillators are pre-

sented. The aim of this discussion is to show how different phase relations can be established

between the oscillators with the use of different coupling resistance values. For this study,

a system of two coupled oscillators is considered. Two coupling schemes are explored in

experiment and simulations, the first one using a resistance as a coupling element and the

second one introducing in addition a coupling capacitance.

For the experimental demonstration, two VO2 PLD devices with the same dimensions (1000 nm

(width)×700 nm (length)) were contacted and connected to series resistances RS1 and RS2

to realize single oscillator units. Subsequently, a coupling resistance was used to lock the

oscillators in frequency (figure 5.4). The resulting phase and frequency locked waveforms

of the oscillators are depicted in figure 5.5. When using as a coupling element a resistance

RC = 3 kΩ, the oscillators oscillate in-phase; when increasing the coupling resistance to

RC = 9 kΩ, the oscillators oscillate in out-of-phase. The two phase configurations are obtained

over multiple experiments changing the coupling resistance between these two values. The

phase difference between the signals of the two oscillators was measured registering the

crossing of the 1 V threshold for the falling edge of the oscillators. The difference in time

between the two signals was then divided by the period of oscillation (Ti n−phase = 2.3 ms,
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Tout−o f −phase = 3.2 ms) and expressed in degrees, resulting in∆Φ= 1.06±1.2° for the in-phase

coupling and ∆Φ= 179±9° for the out-of-phase coupling. Simulations conducted with the

circuit model presented in section 3.3 and taking into account non-idealities such as the probe

contact resistance were matched to the experiments.

Vin1
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RV1

Vosc1

C1
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RV2

Vosc2
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Vin2

Figure 5.4 | Circuit scheme of two coupled oscillators. Reproduced from [287], ©IEEE 2018.
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Figure 5.5 | Experiments and matched simulation of two-coupled oscillators. The phase configu-
ration (in-phase or out-of-phase) can be programmed by changing the value of the coupling resis-
tance. Circuit parameters: VIN1 = VIN2 = 3.2 V, CLOAD1 = CLOAD2 = 150 nF, RS1 = 26 kΩ, RS2 = 26 kΩ;
oscillator 1: VTH = 1.9 V, VTL = 0.7 V, RINS = 39. kΩ, RMET = 7.6 kΩ; oscillator 2: VTH = 2-2.2 V,
VTL = 0.67 V, RINS = 23 kΩ, RMET = 2.4 kΩ. Reproduced from [277], licensed under CC-BY4.0. Full
terms: https://creativecommons.org/licenses/by/4.0/.
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In the out-of-phase case, both in simulation and experiment, the oscillations present a double

peak shape. This is attributed to the low value of the coupling resistance, which ensures

a strong coupling between the oscillators: as the VO2 device of oscillator i undergoes the

metallic-to-insulating transition, the equivalent impedance seen from the oscillator j changes

accordingly. The voltage partition between the series resistance Rs j and the equivalent resis-

tance seen at the node VOSC j , which is affected by the MIT, causes the double peak behavior.

This high cross-talk between the two oscillators can be reduced by increasing the coupling

resistance. For high impedance values of RC , the equivalent resistance seen from the oscillator

VOSC j is less sensitive to the variation of the impedance of oscillator i and the double peak can

therefore be suppressed. The PLD devices, presenting a very large variability, could be coupled

only with low resistance elements (strong coupling). The ALD planar devices, presenting a

higher uniformity, allowed to increase the coupling resistance value of one order of magnitude.

Two ALD devices coupled in the out-of-phase configuration are shown in figure 5.6 (a). With

a coupling resistance of 27 kΩ, the double peak behavior is not canceled, however it results

smoother compared to the previous case.
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Figure 5.6 | a) The out-of-phase oscillations of two resistively-coupled ALD planar devices. Circuit
parameters: VIN1 = VIN2 = 4.7 V, CLOAD1 = CLOAD2 = 150 nF, Rc = 27 kΩ, RS1 = 33 kΩ, RS2 = 36 kΩ; oscillator
1: VTH = 2.1 V, VTL = 0.9 V, RINS = 37 kΩ, RMET = 4.7 kΩ; oscillator 2: VTH = 2 V, VTL = 0.68 V, RINS = 33.5
kΩ, RMET = 7 kΩ. b, c, d) In an experiment conducted with the same oscillators we can see an example
of the influence of the VO2 multi-step switching behavior on the oscillating waveform. b) Waveform
of two coupled oscillators. While oscillator 1 presents a conventional waveform, oscillator 2 shows
an unexpected plateau in the falling exponential. c) and d) Evolution of the resistance of the VO2

devices across an oscillating period. The graphs show that oscillator 1 switches from a insulating to a
metallic state, while oscillator 2 presents three difference resistance regimes, with the appearance of a
third resistance value between the low impedance and the high impedance states. Circuit parameters:
VIN1 = VIN2 = 4.7 V, CLOAD1 = CLOAD2 = 150 nF, Rc = 29 kΩ RS1 = 30 kΩ, RS2 = 33 kΩ. Figures reproduced
from [277], licensed under CC-BY4.0. Full terms: https://creativecommons.org/licenses/by/4.0/.
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In figure 5.6 (b) a case in which the multi-step phase transition of the planar devices affects the

oscillation waveform is shown. The waveform of the output voltage of two coupled oscillators

is depicted. Oscillator 1 presents a conventional waveform, alternating between the high and

low voltage thresholds of the VO2 phase transition. In contrast oscillator 2, while presenting

a conventional rising exponential, in the falling edge shows an abrupt transition between

a falling exponential curve and a slowly-varying, almost steady state voltage. This behavior

was investigated deriving the evolution of the VO2 resistance over time of the two devices,

represented in 5.6 (c) and (d). The resistance is calculated from the analysis of the circuit,

dividing the measured voltage falling over the VO2 from the current flowing through it. The

first oscillator clearly shows a phase transition between the metallic and the insulating state in

correspondence of the rising and falling edge of its output waveform. When investigating the

resistance of the second VO2 device, three regions can be instead identified: a high impedance

regime is followed by two distinctive regimes at lower impedance, which are connected to the

plateau shown in the voltage oscillating waveform. The two distinctive low impedance regions

are linked to the multi-step resistance change presented by the I-V curves of the devices

discussed in section 4.1.

Simulations

The experiments presented so far showed the coupling of two VO2 oscillators in-phase or

in out-of-phase configuration. However, when employing ONNs for image recognition, the

encoding of gray-scale values in the network is also of interest. The stabilization of the relative

phase of two-coupled oscillators to intermediate values was explored through simulations of

an hybrid R-C coupling. Figure 5.7 (a) shows the possible output phase configurations that can

be memorized when using a purely-resistive coupling. Systematic simulations confirm that, for

this circuit scheme, only two output phase configurations are possible: either in-phase or out-

of-phase state. The output phase difference of the two oscillators is plotted against the value

of the coupling resistance Rc, normalized by the nominal value of the metallic resistance of the

VO2 oscillators. For values of Rc ≤ 3R0 the oscillator presents an in-phase output configuration.

For values of Rc ≥ 4R0, the oscillators present an out-of-phase configuration. On the bottom,

the corresponding output waveforms are plotted. Figure 5.7 (b) shows the output phase states

achieved when a hybrid R-C coupling is introduced in the system. The simulations have been

performed for a fixed value of the coupling capacitance, varying only the coupling resistance

value. The output phase configuration spectrum obtained with this circuit design is much

richer: for smaller values of resistance, the resistive-coupling brings the oscillator to lock in

an in-phase configuration. The out-of-phase configuration is achieved with a sharp change

for Rc ≥ 4R0 as previously shown for the purely resistive-coupling configuration. However,

with the addition of the capacitive element, a further increase in the coupling resistance

value brings the phase-difference between the oscillators to stabilize to intermediate values.

This investigation reveals the output phase in a system of two coupled oscillators can be

varied continuously between 0° and 180° through the design of the R-C coupling, opening the

possibility of memorizing not only black-and-white images, as previously demonstrated, but
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Figure 5.7 | a) Simulation of a purely resistively-coupled double-oscillator system corresponding output
waveforms. The resistive coupling allows to memorize either the in-phase or the out-of-phase output
configuration, that can be reversely encoded in the system varying the value of the coupling resistor
Rc. b) Simulation results for the R-C coupling configuration and corresponding output waveforms;
only the value of Rc is varied, while Cc is kept constant. Simulations show that multiple output phase
configurations can be stored adding a capacitive element, enabling the memorization of gray scale
images. Simulation parameters for a) and b): VO2 RINS = 40 kΩ, RMET = 1 kΩ, VDD = 5 V, VO2 voltage
thresholds VTH = 3 V, VTL = 1 V, CC = 20 pF.

also gray-scale images in the network.

Lastly, an exploration of the effects of the time-delay of the input voltage on the two coupled

oscillators was conducted. Simulations and experiments were performed on a network two

resistively-coupled oscillators where the relative input delay-signal ∆t between the two oscilla-

tors was varied. The results of this investigation are depicted in figure 5.8. The input delay

∆t between the two oscillators is normalized by the period of oscillations T and expressed

in terms of input phase difference, following the expression φi j = ∆ti j /T · 360. From this

investigation it results that the time-delay of the input signals does not play any role on the

output phase relation of a two-coupled oscillators system. The oscillators show either an

in-phase or an out-phase-phase behavior, which can be influenced only by changing the value

of the coupling resistance. This result suggests that in such a network, were only one memory

element is present (the coupling resistance RC) only one state is memorized, either 0° or 180°.

5.2.2 Pattern Recognition with Three Coupled Oscillators

As briefly discussed in the previous section, the input signal delay between the two oscillators

has no influence on the phase difference established by two-coupled oscillators. The oscilla-
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experiments were conducted on the circuit of figure 5.5.

tory neural network theory predicts that multiple stable phase-relations can be encoded in an

ONN. To achieve more than one stable phase configuration, it is necessary to scale the system

to larger dimensions (more than two coupled oscillators).

In figure 5.9 the results of an experiment on a three coupled oscillator system is shown. In this

experiment, the three oscillators are coupled with a set of resistive and capactive elements

(figure 5.9 (a)). The capacitances are fixed and ensure the frequency coupling of the oscillators.

The coupling resistances are tuned to memorize two phase configurations, or patters, in the

network, which are depicted in figure 5.9 (b). From the Hebbian learning rule (equation 2.17)

the relative, normalized weights for storing the chosen patterns are calculated:

w12 = 1, w13 = w23 = 0. (5.1)

These weights were matched through empirical search with the coupling resistances value

of R12 = 300 kΩ and R13,23 = 680 kΩ. With the coupling scheme presented, only patterns

1 and 2 from figure 5.9 (b) are stable phase configurations in the oscillating network. To

initialize the network to an unstable configuration, the test patterns were encoded in the

time delay of the voltage inputs. To demonstrate the effectiveness of this implementation

for the phase initialization, the input of oscillators 1 and 3 were kept at a relative fixed time

delay: oscillator 1 served as a reference and was initialized at time ∆t = 0; oscillator 3 was

activated with a delay ∆t = T/2 = 225 µs respect to oscillator 1, where T is the oscillation period

of the network (T = 450 µs). The delay of the input voltage of oscillator 2 was varied between

∆t2 = 0 and ∆t2 = T/2. An input time-delay of 0 represents a white pixel; an input time delay

value of T/2 represents instead a black pixel; the values in between correspond to a gray-scale

variations. Depending on its input, the oscillator 2 is expected to stabilize either in-phase with

oscillator 1 (white pixel), therefore recognizing pattern 1, or in phase with oscillator 3 (black

pixel), therefore recognizing pattern 2. In figure 5.9 (c) the waveforms for two recognition

experiments are shown. Depending whether ∆t2 is closer to 0 or T/2, the output phase of the

oscillator 2 stabilizes at 0 (top graph) or T/2 (bottom graph). The network is therefore able to

recognize one of the memorized patterns when a distorted pattern is given as an input.
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Figure 5.9 | a) Schematic representation of the experimental setup for the coupled oscillators image
recognition experiment. The VO2 devices were fabricated from the ALD films with slow anneal and
in planar configuration. The VO2 devices were tested in vacuum with a probe-card and connected
in circuits with off-shelf components, Circuit parameters: CC = 1 pF, R12 = 300 kΩ, R13,23 = 680 kΩ. b)
Trained patterns and test pattern considered for the experimental demonstration of image recognition.
For the test pattern, oscillator 1 and 3 were kept fixed in the out-of-phase configuration, while the
input delay of oscillator 2 was varied between the in-phase configuration respect to oscillator 1 (white
pixel) and the out-of-phase configuration respect to oscillator 1 (black pixel). c) Experimental results of
successful pattern recognition. The input delay of Oscillator 1 and 3 is kept fixed. By varying the input
delay of oscillator 2, the two stored images are correctly recognized. d) Pattern recognition for all the
entire range of input delays of oscillator 2. Intermediate delays result in recognition of an erroneous
image. Reproduced from [286], ©IEEE 2020.
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Figure 5.10 | a) Example of experimental waveforms. The 4-coupled oscillators are locked in frequency
and their phase difference is calculated with the time distance between the crossing of the 1 V threshold
with respect of Oscillator 1. Circuit parameters: R12, R13, R24, R34 = 82 kΩ, R23, R14 = 130 kΩ, CC = 5.6 nF,
VGX = 1.4-1.6 V, VIN= 1.8-2.2 V. b) Vertical, horizontal, and diagonal edges are memorized in the ONN.
The phase diagrams corresponding to each oscillating configuration are here reported. Random
fluctuations between the oscillators hindered the recognition experiments. Reproduced from [288],
licensed under CC-BY 4.0. Full terms: https://creativecommons.org/licenses/by/4.0/.

The experiment was repeated multiple times for different delays of oscillator 2, as depicted in

figure 5.9 (d). The output phase of the oscillators is calculated after a stabilization period of

around 10 oscillations, and averaged over multiple experiments; the error bars correspond to

the standard deviation of the output phases. When the difference in gray-scale value between

the trained pattern and the test pattern is below 20%, successful recognition is achieved. For

intermediate time delays, the output phase stabilizes to a spurious pattern.

5.2.3 Feature Edge Extraction with Four Coupled Oscillators

With the coupling of a higher number of oscillators more complex functions can be demon-

strated. More specifically, when the aim is to use coupled oscillator networks to perform

image analysis, it is convenient to have a 2-D network to match the dimensionality of the

image. The smallest 2-D network can be built with 4 oscillator units. In this section, we discuss

experiments and simulations of a 4-coupled oscillator network adopted as an image filter.

To implement an experimental demonstration of 4-coupled oscillators, it was necessary to

optimize the device-to-device variability of the VO2 switches. This was obtained through the

design and fabrication of the crossbar devices. As with the three-coupled oscillators experi-

ment, the oscillators were locked in frequency through resistive and capacitive elements. Their

relative output phase was calculated taking the distance between the crossing of the 1 V line in
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the falling edge of the oscillator curves, designing oscillator 1 as the reference (figure 5.10 (a)).

The network was programmed to recognize vertical, horizontal and diagonal patterns through

the Hebbian Learning Rule. To the best of our knowledge, this is the first demonstration of

4-coupled VO2 oscillators with memory capabilities realized on a silicon platform. The circuit

parameters used to couple the oscillators were: R12, R13, R24, R34 = 82 kΩ, R23, R14 = 130 kΩ,

CC = 5.6 nF, VGX = 1.4-1.6 V, VIN= 1.8-2.2 V. The slight variation in the gate voltages of the

transistors was used to bring the natural oscillation frequency of the single, uncoupled units to

be close. This operation was needed to bridge the differences in the natural frequencies of the

oscillators given by a 10% of device-to-device variability. The horizontal, vertical and diagonal

patterns memorized in the network were identified through multiple experiments. The result

of the pattern recognition is depicted in figure 5.10 (b). In addition to the three memorized

patterns, a fourth pattern where all the oscillators result equally spaced was identified. This

spurious pattern is the same that was obtained in the three-coupled oscillators experiments

in the area of erroneous recognition.

Systematic experiments on the recognition of noisy input patterns were hindered by random

fluctuations of the oscillations and cross-talk noise. For example, referring to the diagonal

edge 1 phase diagram in figure 5.10, we can observe that the phase data points of osc. 3 and

osc. 4 occasionally spread between the in-phase and out-of-phase configuration respect to

osc. 1. In some cases, this noise in the output phase of the oscillators leads to the locking

of the system to another stable phase pattern. The input-delay to output-phase inference

process was therefore investigated in simulations calibrated on the experimental results, in

which the resistance and threshold voltage variability of the VO2 devices was lowered to 5%.

In simulations the three stored patterns (horizontal, vertical and diagonal) are identified from

noisy test patterns encoded in the time-delayed input of the oscillators (figure 5.11 (b-d)). In

addition, two spurious patterns are observed: the pattern which sees all the oscillators equally

spaced in the phase space plus a pattern in which all the oscillators are in phase with each

other (figure 5.11 (a) and (e)). The arising of spurious oscillating patters is predictable, since in

this realization the maximum memory capacity of the ONN - discussed in section 2.3.1 - is

violated [289, 290]. Moreover, the all-in-phase configuration is predicted to be always a stable

pattern for Hopfield networks [67]. The extra phase configurations presented by the network

can be harvested as additional information, as discussed in the following. The 2×2 ONN was

used as a filter for an edge-extraction operation performed on an image. To demonstrate this,

handwritten digits from the MNIST datatset [291] were considered. The gray-scale pixels of

the image were encoded as time-delays in the switching of the input voltage of the oscillators.

In particular, the 256 gray-scale levels were mapped in the time-delay interval between 0

and T/2, where T is the period of the coupled oscillator system. As shown in figure 5.11(f),

when swiping the 2×2 ONN filter on an image of the MNIST dataset, vertical, horizontal and

diagonal edges can be identified. In addition, the background as well as the center of the digits

can be identified through the all-in-phase oscillating condition. This example demonstrates

how a single network of coupled oscillators can serve as a filter for the feature edge extraction

of an image. As discussed in section 2.4.2, the feature edge extraction capabilities of VO2
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Figure 5.11 | a-e) Simulation of the input time-delay to output-phase inference on a 4-coupled oscilla-
tors network. The circuit parameters are calibrated on the experiments. Vertical, horizontal, diagonal
edges as well as the all-in-phase configuration are obtained. f ) The ONN is used as a filter on a hand-
written number image taken from the MNIST dataset. The filter is able to recognize vertical, horizontal,
diagonal edges and the background in parallel, without any need to be reconfigured. In the examples
above, the filtering operation was conducted with a stride of 2 for the image above (digit 3) and a stride
of 1 for the image below (digit 4).

coupled oscillators were already shown in literature. However, the previous examples did

not exploit the associative-memory capabilities of the system, but rather obtained similar

results calculating the distance between the input image and the considered edge pattern.

The system that is here proposed offers the advantage of being able to calculate the image

edge without the need of re-configuring the system for each of the edges (horizontal, vertical,

diagonal, background). The operation is conducted in parallel, therefore representing an

advantage in terms of computation speed and hardware resources.
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5.3 Main Achievements

In this chapter we discussed about the experimental demonstration of Oscillatory Neural

Networks based on VO2 devices. In particular, we presented a novel approach to ONN which

relied on the encoding of the input information in the relative time-delay of the activation

voltage of each oscillator unit and we validated the functionalities of our design in experiments.

In summary:

• With a two-coupled oscillators circuit, we demonstrated in experiments and simulations

the possibility of encoding different phase relations with tuning the coupling of the

system. In particular, we showed a first experimental proof of providing frequency and

phase locking with a resistance as the coupling element between two oscillators.

• By expanding the network to a three-coupled oscillators system, we demonstrated the

retrieval of saved patterns from a distorted input pattern fed to the oscillatory circuit.

The input of the system was encoded in the relative time-delay between the activation

voltages of the single oscillators, an important characteristic which was first introduced

with the specific circuit design we propose. We therefore realized a system which

consistently computes the information in time.

• With four-coupled oscillators, we performed in experiments and simulations an opera-

tion of feature edge extraction on black-and-white images.

• Compared to other hardware and software approaches, which need to use different

filters to recognize each of the edges, the system we propose is able to discriminate

between vertical, horizontal, diagonal edges and uniform parts of the figures in a single

computation.
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6 VO2 Coupled Oscillators as Filters in
Convolutional Neural Networks

In the previous chapter we discussed the experimental demonstrations of oscillatory neural

networks based on the phase transition of VO2 devices, their pattern recognition and edge

extraction capabilities. In this chapter, we take the oscillator technology a step forward, extend-

ing the exploitation of ONNs to support and accelerate the computation of traditional neural

networks, such as Convolutional Neural Networks (CNNs). First, we present a convolutional

neural network in which several digital convolutional filters are replaced with a 3×3 ONN unit.

Further, we discuss the implementation of a backpropagation algorithm which can act on the

ONN, to improve the recognition performance and to allow the trainability of the ONN filters

in the CNN architecture. Finally, we introduce a circuit unit capable of transferring the phase

information computed by a first ONN layer to a subsequent ONN layer.

6.1 VO2 Coupled Oscillators as Analog Filters in Convolutional Neu-

ral Networks

In literature, ONNs are used primarily to recognize distorted or incomplete patterns. As already

discussed in section 2.4.2, ONNs can retrieve from a n×m noisy image, an n×m output image,

but do not provide a classification. Image recognition algorithms, as convolutional neural

networks, process instead an input image of an unknown subject and provide as an output a

classification vector containing the probabilities that the image in question corresponds to a

given class. To understand how ONNs can be applied as hardware accelerators to convolu-

tional neural networks, it is important to have an insight on how a CNN operates to classify

an image. It has been proven that the first layers of CNNs usually extract low-level features

from the image, as for example horizontal, vertical and diagonal edges [228]. The consecutive

layers are able to distinguish more complex patterns, until the classification is achieved. In

the last Chapter, a 4-coupled oscillators ONN was employed to extract edge features from

an image, similarly to what is done by the first layer convolutional filters of a CNN. CNN

utilize mostly filters of 3×3 dimensions, as they yield a good balance between accuracy and

computational burden [8]. Therefore, when we aim to replace convolutional filters with ONNs,
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it is not necessary to scale the ONN to the dimension of the image, but it sufficient to use

very small networks, which can be more easily implemented in practical realizations. In the

following, we perform simulations on a 3×3 VO2 coupled oscillators network and employ it as

a filter in a CNN architecture. The procedure used for this demonstration is summarized as

follows:

• A convolutional neural network with a structure borrowed from the VGG-13 has been

programmed with TensorFlow and trained for the recognition of the MNIST dataset.

The CNN structure is schematized in Table 6.1. 10000 images from the dataset were

considered, divided in 6000 training images and 4000 test images. A recognition accuracy

of 97% on the test set was achieved.

• A 3×3 ONN was trained with the Hebbian Learning Rule to recognize horizontal, vertical,

diagonal edges and the background of an image. The 3×3 ONN is used as a filter with

stride 2 on the 10000 images of the MNIST dataset, obtaining as an output five 13×13

images corresponding to the feature maps of each edge.

• The filters that perform the same feature edge extraction operation in the CNN are

identified. To this aim, the 64 trained filters of the CNN first layer were convoluted with

the MNIST images. The resulting feature maps were activated with a ReLU function

and compared with the ONN feature maps via calculation of the mean square error of

the images differences. The filters which gave the minimum mean square error were

therefore swapped with the ONN.

• Five digital filters corresponding to the extraction of horizontal, vertical, diagonal edges

and background were replaced by a single ONN filter. In practice this was done replacing

the feature maps of the first layer corresponding to the digital filters with the feature

maps obtained with the ONN.

• The subsequent layers of the network were retrained on the new ONN-CNN dataset,

reaching recognition accuracy of 95% on the test set.

The simulation environment was built between Python and LTSpiceXVII. In particular, the

CNN was coded and trained with a backpropagation algorithm in Python with Tensorflow. The

ONN simulations were performed in LTSpiceXVII with the VO2 model described in section 3.3

and device parameters calibrated on the experimental results presented in section 5.2.3. For

the ONN-CNN performance evaluation, Python was used to compute the ONN weights and

the input delays of the oscillators from the input MNIST image, to call LTSpice and set the

circuit parameters to perform the circuit simulations. Finally, the output waveforms were

also transposed into a processed image in Python. Some consideration are necessary to fully

depict the computational method employed to train the ONN-CNN network. The ONN is

composed by 9 coupled oscillators; four patterns, plus the all-in-phase pattern, are stored

with the Hebbian Learning Rule in the network. Unquestionably, the amount of stored patters
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MNIST dataset 27x27x10000
ONN-CNN
5 ONN filters + 59 CNN filters

3x3x64
stride = 2, padding = same

CNN 1
3x3x64
stride = 1, padding = same

Max Pool 1
2x2
stride = 2, padding= same

CNN 2 (x2)
3x3x128
stride =1, padding = same

Max Pool 2
2x2
stride = 2, padding= same

CNN 3 (x2)
3x3x256
stride = 1, padding = same

Max Pool 3
2x2
stride = 2, padding= same

Fully connected 1 4096
Fully connected 2 1000
Fully connected 3 10

Table 6.1 | Structure of the CNN under consideration. The convolutional neural network extract
simple features such as horizontal, vertical and diagonal edges in the first layer of convolutional filters.
Subsequent layers extract more complex feature maps, until recognition is achieved.

c) Oscillator filtersb) MNIST Dataset

Equivalent digital 

filters:

Background: all 

oscillators in phase

D1 D2 B

d) Output 

of oscillators

e)  Post-processed 

image (for 

representation)

V H

1 2 3

4 5 6

7 8 9

Vertical: 2-5-8 in 
phase

Horizontal: 
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or 5-6-8 in phase

Diagonal 2: 
1-5-9, 2-5-6, 

or 4-5-8 in phase
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diagonal 1 diagonal 2

a) CNN first layer filters

Figure 6.2 | a) Filters of the CNN first layer which select horizontal, vertical and diagonal edges on the
feature maps. b) Original MNIST images, before undergoing the filtering operated by the ONN. c) A
single ONN filter replaces five CNN filters. Different configurations of the output phase of the oscillators
are linked to the recognition of a determined edge. In this way, the spurious patterns present in the
ONN are harvested as additional information. d) The output of the ONN filter highlights the edges of
the image. e) The image is expanded to the original size and post-processed to show the effectiveness
of the feature edge extraction operation performed by the ONN. Figure reproduced from [288], licensed
under CC-BY 4.0. Full terms: https://creativecommons.org/licenses/by/4.0/.
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defies the maximum memory capacity for the network to perform exact recognition. Therefore,

as expected, multiple spurious pattern arise. The edge information is however not corrupted

by the spurious patters, but can be retrieved by considering the phase relations between key

oscillators, as depicted in figure 6.2. Moreover, the output information from the 3×3 filter is a

3×3 image encoded in the relative phase of the oscillators. The relative phase is computed with

post-processing and the result of this operation is stored in the five filters corresponding to

vertical, horizontal and diagonal edges. Of course, a complete realization of the network would

need to include an hardware conversion of this information. This point will be addressed in

the following sections.

Finally, the CNN and the ONN-CNN have a gap in recognition performance of around 2%. The

reason for the worsening of the neural network performances is attributed to the differences

between the ONN and the digital filter outputs and in particular to the occasional failure of

the ONN to recognize the correct edge. To rectify this, we have developed a backpropagation

algorithm which can act on the coupling weigths of the ONN and which is discussed in details

in the next session. Despite the reduction in recognition performances, the proposed CNN-

ONN implementation could yield high technological advantages. In fact, as a single ONN

is used to replace 5 digital filters, it allows for a reduction of the number of parameters that

need to be trained by the network: 45 parameters undergo training for 5 CNN filters of 3×3

pixels size, however only 36 parameters need to be trained for a single ONN that performs all

filtering actions. Assuming that the ONN is used to implement all the convolutional filters in

the network, the number of parameters to be trained is reduced of 20%. This can represent

an important advantage in terms of speed and power consumption when training larger

networks. In addition, as in an ONN the processing of the five filters happens in parallel,

whilst in the standard CNN these five convolution actions are performed sequentially, the

number of accesses to the memory is proportionally reduced, therefore allowing in perspective

a reduction of the training time and operation of the network.

6.2 Backpropagation Algorithm applied to the ONN

The training of a neural network is usually achieved in software through backpropagation, an

algorithm for supervised learning which uses a gradient descend. Given the output classifi-

cation vector y of a neural network, and given vector ŷ associated to the right labels of the

dataset, the similarity of the two vectors is computed through the means of a cost function

C (y, ŷ). As the classification vector y of the network depends on the weights w of all the layers

of the network, the function C (y, ŷ) is also dependent on the values of the weights in each

layer. The aim of the backpropagation algorithm is to minimize C (y, ŷ) respect to the weights

w . This optimization is done calculating the derivative of C (y, ŷ) respect to the weights of each

layer. The result of the calculation is then used to optimize the weights in this fashion:

wi+1 = wi −η · ∂C (y, ŷ)

∂wi
(6.1)
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Figure 6.3 | a) Schematic of the ONN backpropagation algorithm. b) Example of the backpropagation
algorithm applied to an image, which was originally wrongly labeled. After 8 epochs, the image is
correctly recognized. c) Before training with the backpropagation algorithms, many edges with high
gray-scale deviation from the stored pattern are not correctly recognized. However, after training,
the edges up to 35% deviation from the original pattern are correctly recognized. Figure reproduced
from [288], licensed under CC-BY 4.0. Full terms: https://creativecommons.org/licenses/by/4.0/.

where i is the training epoch and η is the learning rate of the network. In a traditional convolu-

tional neural network, where in each layer the output feature map is calculated as a matrix

multiplication between the feature map of the previous layer and the weights of the filter of

the current layer, the calculation of the derivative of the cost function is rather straightforward.

However, for an ONN the input is characterized by a time-delay in the oscillator supply voltage

and the output is encoded in the phase-relations between the oscillators. Although the relax-

ation oscillations are described by an exponential voltage dependency V ∝ e−
t

RC , the output

phase to input time delay relation can be approximated to be linear:

φ∝ w · tD (6.2)

where φ is the ensemble of oscillator phases, tD is the vector of input-time delays and w

represent the weight matrix of the network. The backpropagation algorithm employed is

schematized in figure 6.3 (a). The weight-updates ∆w for the ONN layer are calculated from

the derivative of the cost function according to this expression:

∆ w = ησ(ŷ − y)t T
D (6.3)

where T denotes the vector transpose, σ(ŷ − y) is the derivative of the cost function and η is a

learning parameter (typically 0 < η< 1). The algorithm is tested on a edge recognition task

where the 3×3 ONN has previously failed. In figure 6.3 (b) the evolution of the phase error

through eight learning epochs of the backpropagation algorithm is represented. Initially, the

ONN converges to a wrong recognition of the image as a background feature. However, through
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Chapter 6. VO2 Coupled Oscillators as Filters in Convolutional Neural Networks

the backpropagation optimization of the weights, after training the correct feature retrieved.

The capacity of the backpropagation algorithm to train the ONN into correctly recognizing

the features has been tested on different patterns with progressively high gray-scale deviation

from the stored pattern. Only relying on the training through Hebbian Learning Rule, when

the search pattern differs of around 25% from the memorized pattern, the recognition gets

inaccurate. However, after the training, the ONN is able to correctly recognize patterns with a

35% deviation from the stored patterns.

The extension of the backpropagation algorithm to the entire ONN-CNN is yet to be im-

plemented, but is expected to boost the recognition performance, as well as to allow direct

training of the ONN in the CNN system. The results of this work resulted in a patent applica-

tion.

6.3 Phase-Detector Circuit for ONN Second Layer

Previously, the replacement of several filters in a convolutional neural network with an oscil-

latory neural network hardware platform has been discussed. In this section, we take a look

to the architecture of an ONN system and we examine how to interface such a circuit with

standard digital computational units. Moreover, neural networks are generally multi-layered

structures: it is therefore important to address how the information contained in the phase of

an ONN unit can be transferred to the next ONN layer. The discussion here presented regards

some design ideas which were still not brought to practical realization and which should serve

as an outlook for the complete design of an ONN accelerator platform.

Computing with oscillators presents the advantage that the information is encoded and

processed in the timing of the signals, rather than in their amplitude, therefore the technology

does not suffer from scaled supply voltages. However, the translation of a digital input in

a time-delay and vice versa, a phase-output in a digital information, is not trivial. Lately,

since time-mode signal processing is being researched for diverse applications, precise circuit

implementations of digital-to-time converters (DTCs) as well as time-to-digital converters

(TDCs) have been proposed [292].

The digital-to-time conversion of the information can be obtained by simple circuits, exploit-

ing the time-delay of logic gates. The most straightforward implementation of a delay unit

consists on a chain of inverters [293]. Similarly, the realization of a delayed signal controlled

by the clock of a processor can be easily obtained through the design of shift registers and

counters [294]. More complex implementations of DTCs have also been proposed in order to

obtain very precise results [295, 296, 297]. The resolution of the DTC can pose a constrain on

the maximum frequency of operation of CNNs. For processing an image with 256 gray-scale

values, the input information needs to be encoded in a time delay with a least significant bit

precision of ∆t = 1
256

1
2 f , where f is the frequency of the locked oscillators. If we assume that

the minimum time-delay generated by the system is comparable with the clock-frequency

of a processor, with the expample of a Pentium 4 processor, which has a clock frequency of
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6.3. Phase-Detector Circuit for ONN Second Layer

around 4 GHz, the maximum oscillation frequency of the ONN would be limited to around 8

MHz. In reality, if the delay is generated by the propagation delay of a logic circuit, such as

an inverter chain, the minimum delay can be significantly smaller. For example, in [297], a

DTC with a least significant bit resolution of 22 ps is demonstrated, allowing for a theoretical

realization of an ONN which operates at around 80 MHz.

Time-to-digital converter (TDC) circuits have been extensively studied and developed for

high-precision phase detection in high-frequency phase locked loops (PLLs) applications.

Many implementations, spanning from analog to all-digital TDCs have been proposed in

literature and are commonly employed in frequency synthesizers, high frequency transmitters

and receivers. Latest implementations of TDCs can reach a resolution of delay-detection in a

signal of 6 ps [298, 299]. However, it is expected that this fine resolution will not be needed in

application to ONN-CNN platforms, as the output information of a neural network, i.e. the

classification vector, might not need a very fine level of accuracy, but, given the reduction and

extrapolation of information, just the distinction of in-phase and out-of-phase signals.

As TDCs and DCTs circuits can be rather complex, area and power consuming circuits, it is

not practical to envision a digital-to-time, followed by a time-to-digital conversion for each

ONN layer in a multi-layer network. In the perspective of expanding the ONN filters to all the

CNN layers, it is important to design a circuit which can transfer the phase information from a

layer i to the layer i +1. In figure 6.4, a proposed circuit which is able to perform this task is

presented. Figure 6.4 (a) shows the circuit schematic of the layer i of a multi-layer ONN, while

figure 6.4 (b) the connection circuit between layer i and layer i +1. The connection circuit is a

phase detector based on a VO2 device. It comprises a summing amplifier which detects the

oscillation signals coming from the oscillatory units of the layer i . A second amplifier which

sees a diode connected in negative feed-back provides the non-linear activation of the layer.

At the output, an oscillator unit is connected. The circuit acts as a majority gate: the output

oscillator locks in phase with the majority of the input components that retain equal phase.

This can be well understood when looking at the behavior of the connection circuit when these

input combinations are applied: oscillator [1,5,9] (rising edge), oscillator [4,5,6] (horizontal

edge), oscillator [2,5,8] (vertical edge) and oscillator [3,5,7] (falling edge). In the example

related to the waveforms (c-f) in figure 6.4, the first ONN layer is synchronized on a falling

edge, therefore oscillators [1,5,9] present a 180° phase compared to a reference oscillator, while

the others present a 0° phase. The connection circuit for the falling edge detection sees all

three oscillators at 180°, and its output oscillator is also oscillating at the same phase. The

connection circuits for rising, horizontal and vertical edge see two oscillator phases at 0° and

one oscillator phase at 180°; the output oscillators for these circuits stabilize at a phase of

0°. The connection circuit is ultimately able to control the phase of the next stage oscillators

depending on the phase of the previous stage. The discussed circuit implementation resulted

in a patent application.
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6.4 Benchmark

A benchmark of the ONN accelerator compared to conventional CPUs and GPUs in performing

the convolution operation was proposed in the publication [288], licenced under CC-BY and it

is here reproduced. The analysis has been conducted not considering the peripheral circuitry

(TDCs, DTCs and connection layers) that the ONN system will require, therefore could not

be banchmarked against other accelerator for neural networks, where a complete system

comparison should be performed. This discussion should be taken as indication of the

potentiality of the ONN technology.

For the comparison, we assume the extension of the ONN filters to the entire first layer of the

CNN presented in 6.1. The first layer of the CNN consists of 64 filters of 3×3 dimension passing

through a 27×27 pixel image with a stride of 2, accounting to total of 13×13 operations per

filter. Assuming multiple ONN filters working in parallel, and assuming that each ONN can

perform 5 filtering actions inherently, a total amount of 13×13×64/5 = 2200 ONNs is required.

This corresponds roughly to 20‘000 oscillator units, coupled through 80‘000 memristors. For

a VO2 and memristor device dimension of 100 nm×100 nm, the total estimated area for the

ONN layer would be around 0.002 mm2. The power consumption of the convolutional layer

was calculated referring to the demonstration offered in [300] and in section 5.1, where the

oscillators were shown to operate at a power P = 20 µW with a scaled supply voltage VDD < 1 V

and f = 3 MHz frequency operation. The total energy for the ONN to process one image with

64 filters at 3 MHz, including a waiting time of 5 oscillating periods for the output stabilization,

is calculated as:

P · f ·5 = 0.6 µJ/ f r ame (6.4)

The total energy consumption of the coupling memristor in estimated to be P = 3.4 µJ/frame,

when the average memristor value is R = 100 kΩwith a voltage drop of V = 0.7 V. As a perspective,

it is expected that a VO2 oscillator can be driven with 1 µW @ 0.3 V and 20 MHz, upon scaling of

the device dimensions. Moreover, through improvement of the device uniformity the coupling

strength could be weakened, allowing 1 MΩ coupling resistance [196]. This would allow to

reduce the energy consumption of the ONN system to 3 nJ/frame.

The same convolution of the CNN first layer filters, when operated on a GPU, requires to

perform (13×13) convolutions × 64 filters × (3×3) pixels/filter = 97344 multiply-accumulation

operations, that correspond to around 200’000 flops. In Intel’s CPU Core I9, which runs

1 TFLOP/s at 95 W, the total energy accounts for 20 µJ/frame; in the NVIDIA Tesla V100 GPU,

that operates 120 TFLOP/s @ 300W, the total energy is 500 nJ/frame. The ONN system with

the current device specification can already operate at a lower power consumption compared

to a conventional CPU. Moreover, through scaling and device optimization, it is expected to

outperform the top GPU available on the market. Experimental demonstration of a complete

ONN system is however required to validate this prediction.
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6.5 Main Achievements

In this chapter, we developed a method to employ coupled-oscillators systems as hardware

accelerators for convolutional neural networks. In summary:

• With the example of classification of handwritten digits, we successfully demonstrated

that oscillatory neural network hardware can be employed to accelerate the convolution

operation in convolutional neural networks.

• We demonstrated that a single ONN filter can replace up to five digital convolutional

filters in a CNN.

• A backpropagation algorithm which can act on the ONN hardware was developed.

• A connection circuit which allows for multi-layer ONN structures was designed.

• This novel approach allows in perspective to reduce up to 20% the number of trainable

parameters in CNNs, without reducing the number of filters employed by the recogni-

tion algorithm, therefore improving speed and energy efficiency without lowering the

recognition performances.
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7 Conclusion and Outlook

The research towards the development of a neuromorphic computing hardware as accelerator

for neural network applications is motivated by the need of overcoming von Neumann’s

bottleneck. The strategy followed by this research, similarly to what is done with non-volatile

memories for vector-matrix multiplication acceleration, is to find suitable solutions to perform

in-memory computing. Oscillatory neural networks (ONNs) are known for their associative

memory capabilities, which can be employed to retrieve from distorted or incomplete data

the information stored in the memory of the system. Traditionally, these networks have

been used for pattern recognition applications. Hardware implementations of oscillatory

neural networks have recently gained momentum since the research of novel, non-linear

electrical devices allowed for the design of compact, energy efficient oscillators. However,

until now the practical realization of an ONN hardware was hindered by the need of scaling

the network to large dimensions, in order to achieve the landscape of functionalities required

for the technology to be competitive. Being ONNs fully-connected networks, the experimental

demonstration of a large ONN system faces the challenge of implementing a high number of

interconnections between the oscillatory units. Moreover, mismatch between the electrical

components have proved to be detrimental for the frequency locking of the oscillators and for

the computational precision of the system.

The main innovation presented in this work regards the development of a hardware platform

that exploits small networks of coupled oscillators, limited to a 3×3 matrix size, which are

designed to accelerate the filtering operations computed in convolutional neural networks

(CNNs) algorithms. With the approach we propose, we eliminate the problems connected to

the realization of large ONN circuits, promoting instead a modular approach to computation,

which envisions several smaller networks working in parallel to extract specific data features.

With the case example of image classification operated by a convolutional neural networks,

we propose ONNs as an hardware implementation of the convolutional filters present in the

algorithms. Through the exploitation of the associative memory capabilities of ONNs, it is

possible to use a single ONN unit to replace multiple digital filters of the CNN, therefore devel-

oping an hardware platform capable of reducing the training parameters and consequently
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boost the speed and power performance of the algorithm. In the work presented in this thesis,

the foundation for the development of this technology is laid. A comprehensive research was

conducted, to address the possibilities as well as the challenges faced by the technology from

the device realization, to the implementation of the circuits and the integration of the platform

with industry-standard algorithms. A summary of the principal achievements of this research

is given in figure 7.1.

For the industrial development of ONNs, it is necessary to identify a technique which al-

lows to fabricate compact, scalable oscillators. Therefore, an important part of the research

presented in this thesis focused on the development of fabrication methods to integrate

the metal-insulator transition material VO2 on silicon with a CMOS compatible process. In

Chapter 3 we discussed an exploration of deposition and annealing methods, including the

first demonstration of grain size tuning in VO2 on SiO2/Si through the employment of a flash

lamp anneal technique. The results of the material investigation have been presented in

Chapter 4, where we analysed the phase transition characteristics of nano-devices realized

in three different geometries: planar devices, crossbar devices and single grain devices. As

the material is conventionally deposited on lattice-matched substrates, the first step in our

research was to identify the impact of the granularity of the material, which arises when the

VO2 is deposited on SiO2/Si, on its transition characteristics. In particular, we observed a

multi-step phase transition characteristic in the planar and the crossbar devices, connected to

the consecutive switching of different domains inside the VO2 layer. We discussed experimen-

tal evidence suggesting that the multi-step switching behavior originates from the subsequent

phase transition of single grains in the device. To further characterize this behavior, we em-

ployed a state-of-the-art scanning thermal microscopy technique to derive thermal maps of

electrically-activated planar devices. This characterization method allowed to identify the

metallic path that is formed in a planar device after the IMT transition and to study the evolu-

tion of the filament upon increasing the electrical power supply. The formation of a current

path, as well as the subsequent switching of multiple grains inside the device, contribute

to the high device-to-device variability recorded for planar devices. With the introduction

of the crossbar design, which comprises a single layer of parallel grains between the two

metal contacts and eliminates grain boundaries in the current path, we achieved a reduction

of the device-to-device variability and higher yield. Finally, we explored the possibility of

obtaining a single, sharp phase transition of VO2 on silicon with the processing of single-grain

nanoparticles. The nanoparticles were fabricated through solid state dewetting of VO2 films

on the SiO2/Si substrate. With this design we offered a first demonstration of single-grain

VO2 devices on a silicon platform, which retain a single, point-sharp phase transition. The

single-grain switches represent an important advance in controlling the insulator-to-metal

phase change of VO2 on silicon.

In Chapter 5 we investigated the realization of compact, power efficient oscillators based

on the phase transition of VO2 devices. The best-performing oscillators operated at a scaled

voltage supply VDD < 1 V, with low power consumption of P = 20 µW. The maximum frequency

of operation of the device was measured to be f = 2 MHz, limited by electrical time constant
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associated with the parasitic capacitance introduced by the measurement setup.

The realization of oscillatory neural network circuits was investigated through the frequency-

locking of VO2 oscillators with resistive and capacitive elements. Compared to other ap-

proaches, which encode the input information in the amplitude of the driving voltages of the

circuit, the ONN design we propose relies on the encoding of the information in the relative

timing of the signals. This approach avoids the noise and uncertainty on the least significant

bits compared to the most significant bits which is present in amplitude-encoded technolo-

gies and it is therefore resilient to scaled voltage power supplies. Through experiments and

simulations, we investigated the storage of the information in the output phase difference

of the oscillators. In our design, the coupling elements between the oscillators represent the

memory of the system. Our study reveals that while a purely-resistive coupling allows the

encoding of either the out-of-phase or the in-phase configuration in the system, a hybrid

capacitive-resistive coupling enables the storage of intermediate phase-relations, therefore

increasing the information capacity of the system. We conducted three- and four-coupled

oscillators experiments, demonstrating the pattern-matching capabilities of the ONN design.

In particular, the reported experiments show a first demonstration of the effectiveness of the

information encoding in the timing of the input voltage signals; with this processing scheme,

a physical implementation of pattern recognition with ONNs was implemented. Moreover,

with four, fully-coupled VO2 oscillators we demonstrated in experiments and simulations the

storage of up to five patterns in the phase relations of the ONN outputs. The ONN unit is

able to discriminate in a single comparison the five patterns from distorted inputs, without

the need of being reconfigured. This was applied to MNIST dataset images for a feature edge

extraction operation, in which horizontal, vertical, diagonal features and the background can

be discriminated.

The exploitation of the ONN pattern recognition capabilities for accelerating the computa-

tion of industrial-standard convolutional neural networks have been presented in Chapter 6.

Through simulation, a 3×3 oscillatory neural network was integrated in the computational

flow of a CNN algorithm. We demonstrated that a single ONN unit can replace up to five

convolutional neural network filters, recognizing in with one filtering action horizontal, verti-

cal, diagonal edges and the background of an image. The resulting CNN-ONN was tested on

the MNIST dataset, were it achieved 95% of recognition accuracy. In table 7.2 all the image

processing architecture proposed so far with ONNs have been summarized, together with the

contribution that this work brings to the field. In particular, the ONN design for feature edge

extraction operation was here employed for the first time as a filter in convolutional neural

networks. From a system perspective, a backpropagation algorithm tailored on the ONN was

designed, with the aim of implementing the training of the ONN alongside the other layers in

the CNN, as well as to improve its recognition performances. Moreover, the design of a circuit

to cascade ONN filters to form multi-layered networks is presented.

Ultimately, the research presented in this thesis aimed to produce an evaluation of the poten-

tiality of VO2-based ONN technology starting from the realization of compact devices up to
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an initial exploration the integration of the ONN platform to support neural networks com-

putations. The device and circuit research helped to gain a clear vision of the computational

capabilities offered by this technology, as well as the challenges which remain open for future

research to address.

Table 7.2 | The summary of the techniques used to filter and process images with coupled oscillators
technology presented in table 2.13 is here re-proposed with the addition of the contribution of this
thesis to the field. The information from [196, 216, 217].

Technique Input Output Function Details

a) Shukla et al. Gate voltage
Amplitude of
the voltage sig-
nal

Edge and saliency
detection

2-pixel comparison, 8
comparison per pixel

b) Cotter et al.
Frequency
deviation

Synchronization
time

Edge and saliency
detection

9-pixel comparison
with reference edge;
one comparison per
each edge needed

c) Tsai et al.
Gate voltage
/ modulated
resistance

Amplitude of
the voltage sig-
nal

Edge and saliency
detection, color de-
tection, 9-pixel com-
parison with refer-
ence pattern

one comparison per
each function needed;
programmable func-
tion; edge detection
through the calcula-
tion of the deviation of
3 neighboring pixels
in each direction.

This work
Time delay
of input
voltage

Relative phase
of oscillation

4-pixel edge detec-
tion, CNN filter

all edges recognized
with one compari-
son, programmable
function via coupling
tuning

7.1 Future Directions

In this work, we presented the development of the ONN technology from the device to the

system architecture. Although we strongly believe that employing oscillatory technology for

neural networks computation can bring decisive advantages in terms of reducing hardware

resources, decrease the power consumption and increase the speed of neural networks training

and inference, future work is needed to further assess the potential of this neuro-inspired

technology respect to other approaches.

From the device point of view, further progress is required to reduce the VO2 device-to-device

variability that so far hinders the scaling of the oscillatory neural network to more than four-

coupled units. As we identified that the device-to-device uniformity suffers from multi-steps

switching in the devices, we believe that the realization of single-grain devices can bring the

technology to the performances needed to expand the networks. To this aim, further research
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is needed to localize and control the dimensions of the VO2 single-grain nanoparticles. Other

important figure of merits should be addressed with tailored experiments. In particular,

the maximum oscillation frequency could be investigated by integrating all the oscillator

components on a chip, therefore eliminating the parasitic elements that are yet responsible for

the limitation in the speed of the oscillators. The scaling of the VO2 devices to lower dimensions

should also be considered. As a single grain device was contacted in this thesis, resulting in

promising electrical characteristics, we believe that the device dimensions can be scaled down

to 10 nm size or less without apparent limitation to the switching functionalities. From an

energy perspective, narrow hysteresis curves in the VO2 R-T characteristic are desirable, to

bring the IMT and MIT voltage thresholds close together, resulting in a lower swing of the

oscillations. As discussed in this thesis, VO2 single grain devices presented a larger hysteresis

compared to the multi-grain switches. This phenomenon is explained in literature by the

difficulties in nucleating the transition when the crystal quality of the nanoparticle is high and

a lower number of defects is present. The widening of the hysteresis could potentially hinder

the scalability of the device to a single grain of nanometer dimensions; however, artificial

creation of defects, such as with the introduction of dopants, might represent a solution

to control the hysteresis width of the device. The introduction of dopants in the VO2 film

(for example Germanium) should anyway be considered to increase the phase transition

temperature of the device up to 100° C [145, 147], allowing the system to function in the

temperature range required for commercial applications.

As the device uniformity improves, experimental realizations of 3×3 ONN image filters such

as the ones discussed in simulations should be realized. Similarly, the demonstration of larger

ONN systems could be tackled. As the ONN presented in this thesis is a fully-connected

network, the scaling of the network to comprise a high number of oscillators poses a challenge

in the realization of a large coupling matrix, which would represent the bottleneck in the

area consumption of the ASIC. Moreover, given the high sensibility of the ONN performance

on device-to-device variations, the implementation of very large ONN systems might result

challenging to realize. We therefore believe that the approach here proposed to use multiple,

parallel ONN filters with a constrained number of nodes yields a most favorable exploitation of

the associative memory of this system. Ultimately, the physical realization of a complete ONN

system is needed to assess the overall performances of the architecture and to compare it with

state-of-the-art specialized neural network accelerators. The next steps for this research envi-

sion the expansion of the ONN as convolutional filters across the entire convolutional neural

network architecture. The training of the network should be supported by introducing recon-

figurable devices as coupling elements of the network, for example employing programmable

memory units, such as phase change memories or resistive RAMs.

The Phase-Change Switch project financed by the Horizon 2020 helped us in the past years

to research and ultimately achieve the realization of scaled VO2 devices integrated on silicon.

In the framework of the H2020 project NeurONN, we are working towards demonstrating a

re-configurable ONN architecture integrated with 2D memristor devices, which will allow the

learning and acceleration of neural network algorithms.
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A Appendix

A.1 SThM Characterization

In this Appendix the results of the SThM measurements on VO2 devices are discussed in more

details.

As reported in Section 4.1.1, thermal maps conducted on a ALD Flash Annealed device reveal

the nature of the multiple-step I-V characteristics of the VO2 planar devices. The device under

test presented multiple steps in the I-V characteristic, which is depicted in figure A.1 a. At the

first activation, the device presented multiple phase transitions which were invertigated with

the SThM technique. However, after stressing the device with very high applied voltage, the

I-V characteristic and the resistance change smoothed, as shown in figure A.1 b. The voltage

value of biased used for the thermal maps presented in figure 4.4 are referenced to the device

I-V after the measurements.

As already discussed in section 4.1.1, the multiple phase transitions of the device are connected

to the expansion of the metallic filament that is formed following the first phase transition.

This is highlighted by figure A.2 a, in which the difference in the thermal signal between

the device activated at 0.8 V and the device activated at 1.8 V is shown. The brighter parts

of the graph highlight a region in which the temperature increased by applying a higher

voltage; darker region represents equal or slightly decreased temperature in the measurement

conducted at 1.8 V. From this graph the expansion of the filament results evident. In particular,

the seven bright zones, highlighted by the numbers, are identified as grains which undergo

the phase transition upon rising the voltage, therefore bringing to an expansion of the metallic

domain and to the evolution of the current path.

The analysis of the temperature profile also reveals the boundaries of the metallic phase in the

switched device. Local temperature maxima are indicative of local heat sources. Assuming a

reasonably homogeneous film and spreading geometry the temperature profile of the region

around the maximum where Joule heating is present is concave. For the areas where no heat

sources are present, but only thermal conduction along the film and conduction into the
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Figure A.1 | IV characteristic of the VO2 for which the filament expansion was investigated. a) Originally
the device presented multiple, defined phase transitions, which can here be identified in the steps
present in the I-V curve. The device was biased at the voltages corresponding to the states before and
after the steps in the I-V curves and for each bias point a thermal scan was performed. b) After multiple
measurements, the device I-V degraded to a smoother curve, possibly because of high voltages used to
activate the device, which led to a new irreversible change. The thermal maps discussed in the main
text refer to this current-voltage characteristic.

- 3

5

15

22
mV

10

Figure A.2 | Plot of the difference in thermal signal between the map taken at 0.8 V and the one at 1.8 V.
An increase in temperature is highlighted by a brighter color; darker colors indicate areas where the
temperature remained constant or slightly decreased. The points (1,2) refer to a shift of the thermal
peak of the device. The areas (3,4) identify the grains which switched from the insulating state at 0.8 V
to the metallic state at 1.8 V of bias. With (5,6,7) we highlight the formation of a second current filament
in the device.
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substrate, the temperature profile has a convex shape; in particular, when non-negligible

dissipation from the substrate is present, the temperature profile from the higher temperature

value adjacent to the heated region reaching ambient temperature assumes the shape of a

decaying exponential [262]. This means that the regions in which the temperature profile can

be fitted by a decaying exponential show negligible joule-heating, and therefore must be in

the insulating state. This technique is applied to understand which portion of the material

undergoes the phase transition; an example is depicted in figure A.3.

In addition, SThM measurements can be used to understand the role of grain boundaries in the

phase transition of VO2. As shown in figure A.3 d and e, pronounced boundaries between the

VO2 grains appear as hot spots in the measurements. This would suggest that in the metallic

portion of the film, grain boundaries represent highly-resistive regions which dissipate more

heat compared to the rest of the film. However, as it is known that edge effects in atomic force

microscopy can greatly influence the interpretation of data in the maps, more studies should

be conducted to confirm this hypothesis.

A.2 Simulation of Multi-Grain Switching in VO2 Devices

In the following, further details on the simulation presented in section 4.1.2 are discussed. In

particular, table A.4 presents the values of the parameters used for the simulations presented

in 4.5. Referring to equation 4.1, the temperature T is calculated for each grain. The volume

and volumetric heat capacitance are constant and referred to each grain; the differential step

of the Laplace operator is equal to the grain diameter. The parameter k refers to the VO2

thermal conductivity, whose value can be found in literature (k = 8 J
mK ) [301]. However, as in

our model the VO2 is not treated as an homogeneous film, but the heat equation is treated

separately for each grain, the thermal conductivity per unit thickness k is substituted by the

thermal conductivity of the grain boundary interface kg b = 107 −108 W
m2K , multiplied by the

grain diameter. The value of the grain boundary interface, as well as the value of the grain

boundary resistance (≈ 10xRMET ) was calibrated in the simulations to reproduce the R-T and

I-V characteristics of the experimental devices. The thermal conductivity of the SiO2 substrate

was derived from the SThM measurements as g = 108 W
m2K , value which is in agreement with

what reported in literature [301]. The substrate temperature was fixed at 21° C. The value of

the volumetric heat capacitance was also taken from literature [301].
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Figure A.3 | Thermal map obtained from a device annealed with FA at 300°C, 90 J/cm2, 20 mbar oxygen
pressure. a) I-V curve of the device. c) Temperature map of the device obtained with a bias of VIN = 3 V
± 0.4 V @ 1.2 kHz. b) and f ) 1D temperature profile along the black lines shown in panel c. e) The inset
shows the temperature profile across the grain boundaries of the device, which result as heated spots in
the measurements. This effect could be indicating that the grain boundaries represent high resistances
across the current path; however, as AFM is an edge-sensitive technique, a further investigation is
needed to rule out the possibility of this effect being an artifact of the measurements.
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Property Value

Grain diameter 50 nm

Insulating resistivity 0.5Ωcm

Metallic resistivity 0.05Ωcm

Standard deviation for the resistivity 5%

Series resistance 15 kΩ

Volumetric heat capacity 1.5 x 106 J
m3K

Substrate thermal conductivity 108 W
m2K

Grain boundaries thermal conductivity 107 W
m2K

Integration time 7 ns

Temperature for the IMT 67° C

Temperature for the MIT 57° C

Standard deviation for the transition temperatures 5° C

From dRINS/dT 1 kΩ/K

Table A.4 | Values used for the simulation presented in section 4.1.2.

105





References

[1] IDC’s Global DataSphere Forecast Shows Continued Steady Growth in the Creation

and Consumption of Data. [Online]. Available: https://www.idc.com/getdoc.jsp?

containerId=prUS46286020 (visited on 12/23/2020).

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient Processing of Deep Neural Net-

works: A Tutorial and Survey”, Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,

2017.

[3] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as a method

for quantitative structure-activity relationships”, Journal of Chemical Information and

Modeling, vol. 55, no. 2, pp. 263–274, 2015.

[4] S. Khan and T. Yairi, “A review on the application of deep learning in system health

management”, Mechanical Systems and Signal Processing, vol. 107, pp. 241–265, 2018.

[5] S. Mahdavifar and A. A. Ghorbani, “Application of deep learning to cybersecurity: A

survey”, Neurocomputing, vol. 347, pp. 149–176, 2019.

[6] Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, 2015. [Online]. Available: http :

//colah.github.io/.

[7] R. Eldan and O. Shamir, “The Power of Depth for Feedforward Neural Networks”,

Journal of Machine Learning Research, vol. 49, no. June, pp. 907–940, 2015.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition”, in 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings, International Conference on Learning Represen-

tations, ICLR, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, in

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol. 2016-Decem, IEEE Computer Society, 2016, pp. 770–778.

[10] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural Network Models

for Practical Applications”, arXiv:1605.07678, 2016.

107

https://www.idc.com/getdoc.jsp?containerId=prUS46286020
https://www.idc.com/getdoc.jsp?containerId=prUS46286020
http://colah.github.io/
http://colah.github.io/


References

[11] J. D. Kendall and S. Kumar, “The building blocks of a brain-inspired computer”, Applied

Physics Reviews, vol. 7, no. 1, p. 11 305, 2020.

[12] ImageNet. [Online]. Available: http://www.image-net.org/ (visited on 12/29/2020).

[13] NVIDIA Data Center Deep Learning Product Performance | NVIDIA Developer. [Online].

Available: https : / / developer. nvidia . com / deep - learning - performance - training -

inference (visited on 12/29/2020).

[14] Electricity consumption per dwelling | Electricity dwelling | ODYSSEE-MURE. [Online].

Available: https : / / www. odyssee - mure . eu / publications / efficiency - by - sector /

households/electricity-consumption-dwelling.html (visited on 12/29/2020).

[15] I. Boybat Kara, “Multi-memristive synaptic architectures for training neural networks”,

Ph.D. dissertation, École polytechnique fédérale de Lausanne, 2020, pp. 1–8. [Online].

Available: http://infoscience.epfl.ch/record/273925.

[16] J. Edwards and S. O’Keefe, “Eager recirculating memory to alleviate the von Neumann

Bottleneck”, in 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016,

Institute of Electrical and Electronics Engineers Inc., 2017.

[17] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Processing Data Where It

Makes Sense: Enabling In-Memory Computation”, Microprocessors and Microsystems,

vol. 67, pp. 28–41, 2019.

[18] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it)”, in

Digest of Technical Papers - IEEE International Solid-State Circuits Conference, vol. 57,

2014, pp. 10–14.

[19] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon

and the end of multicore scaling”, IEEE Micro, vol. 32, no. 3, pp. 122–134, 2012.

[20] T. J. Yang, Y. H. Chen, J. Emer, and V. Sze, “A method to estimate the energy consump-

tion of deep neural networks”, in Conference Record of 51st Asilomar Conference on

Signals, Systems and Computers, ACSSC 2017, vol. 2017-Octob, Institute of Electrical

and Electronics Engineers Inc., 2018, pp. 1916–1920.

[21] C. Mead, “Neuromorphic Electronic Systems”, Proceedings of the IEEE, vol. 78, no. 10,

pp. 1629–1636, 1990.

[22] I. K. Schuller and R. Stevens, “Neuromorphic Computing : From Materials to Systems

Architecture Report of a Roundtable Convened to Consider Neuromorphic Comput-

ing”, Tech. Rep., 2015, p. 40. [Online]. Available: https://www.osti.gov/biblio/1283147.

[23] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and

J. S. Plank, “A Survey of Neuromorphic Computing and Neural Networks in Hardware”,

arXiv:1705.06963, pp. 1–88, 2017.

[24] Z. Du, D. D. Ben-Dayan Rubin, Y. Chen, L. He, T. Chen, L. Zhang, C. Wu, and O. Temam,

“Neuromorphic accelerators: A comparison between neuroscience and machine-

learning approaches”, in Proceedings of the Annual International Symposium on Mi-

croarchitecture, MICRO, New York, NY, USA, 2015, pp. 494–507.

108

http://www.image-net.org/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
http://infoscience.epfl.ch/record/273925
https://www.osti.gov/biblio/1283147


References

[25] M. Pfeiffer and T. Pfeil, “Deep Learning With Spiking Neurons: Opportunities and

Challenges”, Frontiers in Neuroscience, vol. 12, p. 774, 2018.

[26] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-

timing-dependent plasticity”, Frontiers in Computational Neuroscience, vol. 9, p. 99,

2015.

[27] J. Yang, R. Wang, Y. Ren, J. Mao, Z. Wang, Y. Zhou, and S. Han, “Neuromorphic Engineer-

ing: From Biological to Spike-Based Hardware Nervous Systems”, Advanced Materials,

vol. 32, no. 52, p. 2 003 610, 2020.

[28] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii,

P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H.

Hwang, and Y. Leblebici, “Neuromorphic computing using non-volatile memory”,

Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

[29] M. V. Debole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P. Risk, J. Kusnitz,

C. O. Otero, T. K. Nayak, R. Appuswamy, P. J. Carlson, A. S. Cassidy, P. Datta, S. K. Esser,

G. J. Garreau, K. L. Holland, S. Lekuch, M. Mastro, J. Mckinstry, C. Di Nolfo, J. Sawada,

B. Paulovicks, K. Schleupen, B. G. Shaw, J. L. Klamo, M. D. Flickner, J. V. Arthur, and

D. S. Modha, “TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years”,

Computer, vol. 52, no. 5, pp. 20–29, 2019.

[30] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker project”, Proceed-

ings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[31] F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana, S. B. Furber, and R. B.

Benosman, “A framework for plasticity implementation on the SpiNNaker neural

architecture”, Frontiers in Neuroscience, vol. 8, no. JAN, p. 429, 2015.

[32] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N.

Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,

G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A Neuromorphic

Manycore Processor with On-Chip Learning”, IEEE Micro, vol. 38, no. 1, pp. 82–99,

2018.

[33] Neuromorphic Computing - Next Generation of AI. [Online]. Available: https://www.

intel.com/content/www/us/en/research/neuromorphic-computing.html (visited on

12/31/2020).

[34] I. Sugiarto and F. Pasila, “Understanding a Deep Learning Technique through a Neu-

romorphic System a Case Study with SpiNNaker Neuromorphic Platform”, in MATEC

Web of Conferences, vol. 164, EDP Sciences, 2018, p. 01 015.

[35] T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi, L. Plana, and S. Furber,

“ConvNets experiments on SpiNNaker”, in Proceedings - IEEE International Symposium

on Circuits and Systems, vol. 2015-July, Institute of Electrical and Electronics Engineers

Inc., 2015, pp. 2405–2408.

109

https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html


References

[36] X. Jin, M. Luján, L. A. Plana, A. D. Rast, S. R. Welbourne, and S. B. Furber, “Efficient

parallel implementation of multilayer backpropagation networks on SpiNNaker”, in

CF 2010 - Proceedings of the 2010 Computing Frontiers Conference, New York, New York,

USA: ACM Press, 2010, pp. 89–90.

[37] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between neural networks and neu-

romorphic hardware with a neural network compiler”, in ASPLOS ’18: Proceedings of

the Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, New York, NY, USA, 2018, pp. 448–460.

[38] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings,

T. Delbruck, S. C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J.

Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,

and K. Boahen, “Neuromorphic silicon neuron circuits”, Frontiers in Neuroscience,

vol. 5, no. MAY, pp. 1–23, 2011.

[39] T. Yu and G. Cauwenberghs, “Analog VLSI biophysical neurons and synapses with

programmable membrane channel kinetics”, in IEEE Transactions on Biomedical

Circuits and Systems, vol. 4, 2010, pp. 139–148.

[40] B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez, and J. L. Huertas, “A

Cmos Implementation Of Fitzhugh-Nagumo Neuron Model”, IEEE Journal of Solid-

State Circuits, vol. 26, no. 7, pp. 956–965, 1991.

[41] S. C. Liu, J. Kramer, G. Indiveri, T. Delbrück, T. Burg, and R. Douglas, “Orientation-

selective aVLSI spiking neurons”, Neural Networks, vol. 14, no. 6-7, pp. 629–643, 2001.

[42] A. Van Schaik, “Building blocks for electronic spiking neural networks”, Neural Net-

works, vol. 14, no. 6-7, pp. 617–628, 2001.

[43] Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo,

H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M.

Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia, and J. J. Yang, “Fully memristive neural

networks for pattern classification with unsupervised learning”, Nature Electronics,

vol. 1, no. 2, pp. 137–145, 2018.

[44] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z.

Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, “Memristors

with diffusive dynamics as synaptic emulators for neuromorphic computing”, Nature

Materials, vol. 16, no. 1, pp. 101–108, 2017.

[45] A. Mehonic and A. J. Kenyon, “Emulating the Electrical Activity of the Neuron Using a

Silicon Oxide RRAM Cell”, Frontiers in Neuroscience, vol. 10, no. FEB, p. 57, 2016.

[46] J. J. Wang, S. G. Hu, X. T. Zhan, Q. Yu, Z. Liu, T. P. Chen, Y. Yin, S. Hosaka, and Y. Liu,

“Handwritten-Digit Recognition by Hybrid Convolutional Neural Network based on

HfO2 Memristive Spiking-Neuron”, Scientific Reports, vol. 8, no. 1, pp. 1–5, 2018.

110



References

[47] W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, and E. A. Flores, “Biological plau-

sibility and stochasticity in scalable VO 2 active memristor neurons”, Nature Com-

munications, vol. 9, no. 1, pp. 1–10, 2018. [Online]. Available: www. nature . com /

naturecommunications.

[48] Belyaev and Velichko, “A Spiking Neural Network Based on the Model of VO2—Neuron”,

Electronics, vol. 8, no. 10, p. 1065, 2019. [Online]. Available: https://www.mdpi.com/

2079-9292/8/10/1065.

[49] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal

oxides”, in Proceedings of the IEEE, vol. 98, Institute of Electrical and Electronics

Engineers Inc., 2010, pp. 2237–2251.

[50] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran,

Y. Leblebici, A. Sebastian, and E. Eleftheriou, “Neuromorphic computing with multi-

memristive synapses”, Nature Communications, vol. 9, no. 1, p. 2514, 2018.

[51] G. W. Burr, M. J. BrightSky, A. Sebastian, H. Y. Cheng, J. Y. Wu, S. Kim, N. E. Sosa, N.

Papandreou, H. L. Lung, H. Pozidis, E. Eleftheriou, and C. H. Lam, “Recent Progress in

Phase-Change Memory Technology”, IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 6, no. 2, pp. 146–162, 2016.

[52] A. F. Vincent, J. Larroque, W. S. Zhao, N. B. Romdhane, O. Bichler, C. Gamrat, J. O.

Klein, S. Galdin-Retailleau, and D. Querlioz, “Spin-transfer torque magnetic memory

as a stochastic memristive synapse”, in Proceedings - IEEE International Symposium

on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc., 2014,

pp. 1074–1077.

[53] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, “In-

tegration of nanoscale memristor synapses in neuromorphic computing architectures”,

Nanotechnology, vol. 24, no. 38, p. 13, 2013. [Online]. Available: https://iopscience.iop.

org/article/10.1088/0957-4484/24/38/384010https://iopscience.iop.org/article/10.

1088/0957-4484/24/38/384010/meta.

[54] S. Saïghi, C. G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf, J. Tomas, J. Grollier,

S. Boyn, A. F. Vincent, D. Querlioz, S. La Barbera, F. Alibart, D. Vuillaume, O. Bichler, C.

Gamrat, and B. Linares-Barranco, “Plasticity in memristive devices for spiking neural

networks”, Frontiers in Neuroscience, vol. 9, p. 51, 2015.

[55] N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky, “mMPU—A

Real Processing-in-Memory Architecture to Combat the von Neumann Bottleneck”, in

Springer Series in Advanced Microelectronics, vol. 63, Springer Verlag, 2020, pp. 191–

213.

[56] R. Balasubramonian and B. Grot, “Near-Data Processing [Guest editors’ introduction]”,

IEEE Micro, vol. 36, no. 1, pp. 4–5, 2016.

[57] B. Akin, F. Franchetti, and J. C. Hoe, “HAMLeT architecture for parallel data reorganiza-

tion in memory”, IEEE Micro, vol. 36, no. 1, pp. 14–23, 2016.

111

www.nature.com/naturecommunications
www.nature.com/naturecommunications
https://www.mdpi.com/2079-9292/8/10/1065
https://www.mdpi.com/2079-9292/8/10/1065
https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010 https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010/meta
https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010 https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010/meta
https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010 https://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010/meta


References

[58] H. Asghari-Moghaddam, A. Farmahini-Farahani, K. Morrow, J. H. Ahn, and N. S. Kim,

“Near-DRAM Acceleration with Single-ISA Heterogeneous Processing in Standard

Memory Modules”, IEEE Micro, vol. 36, no. 1, pp. 24–34, 2016.

[59] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P.

Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. Hwang, “Experimental

Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses)

Using Phase-Change Memory as the Synaptic Weight Element”, IEEE Transactions on

Electron Devices, vol. 62, no. 11, pp. 3498–3507, 2015.

[60] T. Gokmen and Y. Vlasov, “Acceleration of Deep Neural Network Training with Resistive

Cross-Point Devices: Design Considerations”, Frontiers in Neuroscience, vol. 10, no. JUL,

p. 333, 2016.

[61] S. Yu, P. Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up resistive synaptic

arrays for neuro-inspired architecture: Challenges and prospect”, in Technical Digest -

International Electron Devices Meeting, IEDM, vol. 2016-Febru, Institute of Electrical

and Electronics Engineers Inc., 2015, pp. 17.3.1–17.3.4.

[62] S. Sidler, I. Boybat, R. M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K. Moon, Y.

Leblebici, H. Hwang, and G. W. Burr, “Large-scale neural networks implemented

with Non-Volatile Memory as the synaptic weight element: Impact of conductance re-

sponse”, in European Solid-State Device Research Conference, vol. 2016-Octob, Editions

Frontieres, 2016, pp. 440–443.

[63] B. Rajendran and F. Alibart, Neuromorphic Computing Based on Emerging Memory

Technologies, 2016.

[64] D. Chabi, D. Querlioz, W. Zhao, and J. O. Klein, “Robust learning approach for neuro-

Inspired nanoscale crossbar architecture”, ACM Journal on Emerging Technologies in

Computing Systems, vol. 10, no. 1, pp. 1–20, 2014.

[65] E. Düzel, W. D. Penny, and N. Burgess, “Brain oscillations and memory”, Current

Opinion in Neurobiology, vol. 20, no. 2, pp. 143–149, 2010.

[66] F. Roux and P. J. Uhlhaas, “Working memory and neural oscillations: Alpha-gamma

versus theta-gamma codes for distinct WM information?”, Trends in Cognitive Sciences,

vol. 18, no. 1, pp. 16–25, 2014.

[67] J. J. Hopfield, “Neural networks and physical systems with emergent collective com-

putational abilities.”, in Proceedings of the National Academy of Sciences of the United

States of America, vol. 79, National Academy of Sciences, 1982, pp. 2554–2558.

[68] Z. Yu, A. M. Abdulghani, A. Zahid, H. Heidari, M. A. Imran, and Q. H. Abbasi, “An

overview of neuromorphic computing for artificial intelligence enabled hardware-

based hopfield neural network”, IEEE Access, vol. 8, pp. 67 085–67 099, 2020.

[69] L. F. Abbott, “A network of oscillators”, Journal of Physics A: General Physics, vol. 23,

no. 16, pp. 3835–3859, 1990.

112



References

[70] F. C. Hoppensteadt and E. M. Izhikevich, “Oscillatory Neurocomputers with Dynamic

Connectivity”, Physical Review Letters, vol. 82, no. 14, pp. 2983–2986, 1999.

[71] S. P. Levitan, Y. Fang, D. H. Dash, T. Shibata, D. E. Nikonov, and G. I. Bourianoff,

“Non-Boolean associative architectures based on nano-oscillators”, in International

Workshop on Cellular Nanoscale Networks and their Applications, 2012.

[72] S. Kumar, J. P. Strachan, and R. S. Williams, “Chaotic dynamics in nanoscale NbO 2

Mott memristors for analogue computing”, Nature, vol. 548, no. 7667, pp. 318–321,

2017.

[73] A. Parihar, N. Shukla, M. Jerry, S. Datta, and A. Raychowdhury, “Vertex coloring of

graphs via phase dynamics of coupled oscillatory networks”, Scientific Reports, vol. 7,

no. 1, pp. 1–11, 2017.

[74] S. Landge, V. Saraswat, S. F. Singh, and U. Ganguly, “N-Oscillator Neural Network

based Efficient Cost Function for n-city Traveling Salesman Problem”, in Proceedings

of the International Joint Conference on Neural Networks, Institute of Electrical and

Electronics Engineers Inc., 2020.

[75] S. Dutta, A. Khanna, J. Gomez, K. Ni, Z. Toroczkai, and S. Datta, “Experimental Demon-

stration of Phase Transition Nano-Oscillator Based Ising Machine”, in International

Electron Devices Meeting, IEDM, Institute of Electrical and Electronics Engineers Inc.,

2019.

[76] J. Grollier, D. Querlioz, and M. D. Stiles, “Spintronic Nanodevices for Bioinspired

Computing”, Proceedings of the IEEE, vol. 104, no. 10, pp. 2024–2039, 2016.

[77] X. Liu, S. Li, S. K. Nandi, D. K. Venkatachalam, and R. G. Elliman, “Threshold switch-

ing and electrical self-oscillation in niobium oxide films”, Journal of Applied Physics,

vol. 120, no. 12, p. 124 102, 2016.

[78] A. Parihar, N. Shukla, S. Datta, and A. Raychowdhury, “Exploiting synchronization

properties of correlated electron devices in a non-boolean computing fabric for tem-

plate matching”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 4, no. 4, pp. 450–459, 2014.

[79] T. C. Jackson, A. A. Sharma, J. A. Bain, J. A. Weldon, and L. Pileggi, “Oscillatory Neural

Networks Based on TMO Nano-Oscillators and Multi-Level RRAM Cells”, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 2, pp. 230–241, 2015.

[80] C. M. Liyanagedera, K. Yogendra, K. Roy, and D. Fan, “Spin torque nano-oscillator

based Oscillatory Neural Network”, in 2016 International Joint Conference on Neural

Networks (IJCNN), vol. 2016-Octob, IEEE, 2016, pp. 1387–1394.

[81] M. Romera, P. Talatchian, S. Tsunegi, F. Abreu Araujo, V. Cros, P. Bortolotti, J. Trastoy, K.

Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin,

N. Locatelli, D. Querlioz, and J. Grollier, “Vowel recognition with four coupled spin-

torque nano-oscillators”, Nature, vol. 563, no. 7730, pp. 230–234, 2018.

113



References

[82] G. Csaba and W. Porod, “Coupled oscillators for computing: A review and perspective”,

Applied Physics Reviews, vol. 7, no. 1, p. 11 302, 2020.

[83] A. Parihar, N. Shukla, S. Datta, and A. Raychowdhury, “Synchronization of pairwise-

coupled, identical, relaxation oscillators based on metal-insulator phase transition

devices: A model study”, Journal of Applied Physics, vol. 117, no. 5, pp. 1–12, 2015.

[84] A. Raychowdhury, A. Parihar, G. H. Smith, V. Narayanan, G. Csaba, M. Jerry, W. Porod,

and S. Datta, “Computing With Networks of Oscillatory Dynamical Systems”, Proceed-

ings of the IEEE, vol. 107, no. 1, pp. 73–89, 2019.

[85] L. A. Ladd and W. Paul, “Optical and transport properties of high quality crystals of

V2O4 near the metallic transition temperature”, Solid State Communications, vol. 7,

no. 4, pp. 425–428, 1969.

[86] H. T. Kim, B. J. Kim, S. Choi, B. G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and

D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2”,

Journal of Applied Physics, vol. 107, no. 2, 2010.

[87] A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Fem-

tosecond structural dynamics in vo2 during an ultrafast solid-solid phase transition”,

Physical Review Letters, vol. 87, no. 23, pp. 237 401–1–237401–4, 2001.

[88] N Bahlawane and D. Lenoble, “Vanadium oxide compounds: Structure, properties, and

growth from the gas phase”, Chemical Vapor Deposition, vol. 20, no. 7-9, pp. 299–311,

2014.

[89] C. Wessel, C. Reimann, A. Müller, D. Weber, M. Lerch, T. Ressler, T. Bredow, and R. Dron-

skowski, “Electronic structure and thermodynamics of V2O3 polymorphs”, Journal of

Computational Chemistry, vol. 33, no. 26, pp. 2102–2107, 2012.

[90] I. Mjejri, A. Rougier, and M. Gaudon, “Low-Cost and Facile Synthesis of the Vanadium

Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic

Properties”, Inorganic Chemistry, vol. 56, no. 3, pp. 1734–1741, 2017.

[91] M. Kang, I. Kim, S. W. Kim, J. W. Ryu, and H. Y. Park, “Metal-insulator transition without

structural phase transition in V 2 O5 film”, Applied Physics Letters, vol. 98, no. 13,

p. 131 907, 2011.

[92] A. Pergament, G. Stefanovich, and V. Andreeev, “Comment on "metal-insulator tran-

sition without structural phase transition in V2O5 film" [Appl. Phys. Lett. 98, 131907

(2011)]”, Applied Physics Letters, vol. 102, no. 17, p. 176 101, 2013.

[93] V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and

B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast

electron diffraction”, Science, vol. 346, no. 6208, pp. 445–448, 2014.

[94] F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature”,

Physical Review Letters, vol. 3, no. 1, pp. 34–36, 1959.

[95] J. B. Goodenough, “The two components of the crystallographic transition in VO2”,

Journal of Solid State Chemistry, vol. 3, no. 4, pp. 490–500, 1971.

114



References

[96] L. Whittaker, C. J. Patridge, and S. Banerjee, “Microscopic and Nanoscale Perspective

of the MetalÀInsulator Phase Transitions of VO 2 : Some New Twists to an Old Tale”, J.

Phys. Chem. Lett, vol. 2, p. 59, 2011.

[97] R Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in

the structural phase transition of VO 2 nanoparticles”, Physical Review B - Condensed

Matter and Materials Physics, vol. 65, no. 22, pp. 2 241 131–2 241 135, 2002.

[98] N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H.

Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P.

Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying

orbital occupancy”, Nature Physics, vol. 9, no. 10, pp. 661–666, 2013.

[99] G. R. Khan and B. Ahmad, “Effect of quantum confinement on thermoelectric proper-

ties of vanadium dioxide nanofilms”, Applied Physics A: Materials Science and Process-

ing, vol. 123, no. 12, p. 795, 2017.

[100] D. Ruzmetov, K. T. Zawilski, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan,

“Infrared reflectance and photoemission spectroscopy studies across the phase transi-

tion boundary in thin film vanadium dioxide”, Journal of Physics Condensed Matter,

vol. 20, no. 46, p. 5, 2008.

[101] C. Chen, Y. Zhu, Y. Zhao, J. H. Lee, H. Wang, A. Bernussi, M. Holtz, and Z. Fan, “VO2

multidomain heteroepitaxial growth and terahertz transmission modulation”, Applied

Physics Letters, vol. 97, no. 21, p. 211 905, 2010.

[102] H. Kizuka, T. Yagi, J. Jia, Y. Yamashita, S. Nakamura, N. Taketoshi, and Y. Shigesato,

“Temperature dependence of thermal conductivity of VO2 thin films across metal-

insulator transition”, Japanese Journal of Applied Physics, vol. 54, no. 5, p. 053 201,

2015.

[103] D. W. Oh, C. Ko, S. Ramanathan, and D. G. Cahill, “Thermal conductivity and dynamic

heat capacity across the metal-insulator transition in thin film VO2”, Applied Physics

Letters, vol. 96, no. 15, p. 151 906, 2010.

[104] C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-

Metal Transition”, Physical Review, vol. 185, no. 3, pp. 1022–1033, 1969. [Online]. Avail-

able: https://journals.aps.org/pr/abstract/10.1103/PhysRev.185.1022.

[105] W. A. Vitale, A. Paone, M. Fernandez-Bolanos, A. Bazigos, W. Grabinski, A. Schuler,

and A. M. Ionescu, “Steep slope VO2 switches for wide-band (DC-40 GHz) reconfig-

urable electronics”, in Device Research Conference - Conference Digest, DRC, Institute

of Electrical and Electronics Engineers Inc., 2014, pp. 29–30.

[106] M. Dragoman, A. Cismaru, H. Hartnagel, and R. Plana, “Reversible metal-semiconductor

transitions for microwave switching applications”, Applied Physics Letters, vol. 88, no. 7,

p. 073 503, 2006.

[107] D. Chauhan, G. T. Mola, and R. P. Dwivedi, “An ultra-compact plasmonic Modula-

tor/Switch using VO2 and elasto-optic effect”, Optik, vol. 201, p. 163 531, 2020.

115

https://journals.aps.org/pr/abstract/10.1103/PhysRev.185.1022


References

[108] A. Hendaoui, N. Émond, S. Dorval, M. Chaker, and E. Haddad, “VO2-based smart

coatings with improved emittance-switching properties for an energy-efficient near

room-temperature thermal control of spacecrafts”, Solar Energy Materials and Solar

Cells, vol. 117, pp. 494–498, 2013.

[109] M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun,

A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in

VO2 revealed by infrared spectroscopy and nano-imaging”, Science, vol. 318, no. 5857,

pp. 1750–1753, 2007.

[110] A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide”, Physi-

cal Review B, vol. 11, no. 11, pp. 4383–4395, 1975.

[111] M. M. Qazilbash, A. A. Schafgans, K. S. Burch, S. J. Yun, B. G. Chae, B. J. Kim, H. T. Kim,

and D. N. Basov, “Electrodynamics of the vanadium oxides V O2 and V2 O3”, Physical

Review B - Condensed Matter and Materials Physics, vol. 77, no. 11, p. 115 121, 2008.

[112] S. Biermann, “Electronic Structure of Transition Metal Compounds: DFT–DMFT Ap-

proach”, in Encyclopedia of Materials: Science and Technology, Elsevier, 2006, ch. Elec-

tronic, pp. 1–9.

[113] M. Cyrot, “Theory of mott transition : Applications to transition metal oxides”, Journal

de Physique, vol. 33, no. 1, pp. 125–134, 1972.

[114] N. B. Aetukuri, “The control of metal-insulator transition in vanadium dioxide”, Ph.D.

dissertation, Standford Unversity, 2013. [Online]. Available: http://purl.stanford.edu/

fm504ss4924.

[115] J. M. Booth and P. S. Casey, “Anisotropic structure deformation in the VO2 metal-

insulator transition”, Physical Review Letters, vol. 103, no. 8, p. 086 402, 2009.

[116] R. Peierls, Surprises in theoretical physics. Princenton Unviersity Press, 1979.

[117] R. E. Peierls, Quantum Theory of Solids. Oxford University Press, 2007.

[118] D. Paquet and P. Leroux-Hugon, “Electron correlations and electron-lattice interac-

tions in the metal-insulator, ferroelastic transition in VO2: A thermodynamical study”,

Physical Review B, vol. 22, no. 11, pp. 5284–5301, 1980.

[119] R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A

view from band theory”, Physical Review Letters, vol. 72, no. 21, pp. 3389–3392, 1994.

[120] H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S.

Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the mott transition:

Coherent phonon analysis”, Physical Review Letters, vol. 97, no. 26, p. 266 401, 2006.

[121] B. J. Kim, Y. W. Lee, S. Choi, J. W. Lim, S. J. Yun, H. T. Kim, T. J. Shin, and H. S. Yun,

“Micrometer x-ray diffraction study of VO2 films: Separation between metal-insulator

transition and structural phase transition”, Physical Review B - Condensed Matter and

Materials Physics, vol. 77, no. 23, p. 235 401, 2008.

116

http://purl.stanford.edu/fm504ss4924
http://purl.stanford.edu/fm504ss4924


References

[122] Y. Kalcheim, A. Camjayi, J. del Valle, P. Salev, M. Rozenberg, and I. K. Schuller, “Non-

thermal resistive switching in Mott insulator nanowires”, Nature Communications,

vol. 11, no. 1, pp. 1–9, 2020.

[123] H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim,

“Mechanism and observation of Mott transition in VO2-based two- and three-terminal

devices”, New Journal of Physics, vol. 6, no. 1, p. 52, 2004.

[124] M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and

Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge

accumulation”, Nature, vol. 487, no. 7408, pp. 459–462, 2012.

[125] K. Okimura, N. Ezreena, Y. Sasakawa, and J. Sakai, “Electric-field-induced multistep

resistance switching in planar VO 2/c-Al2O3 structure”, Japanese Journal of Applied

Physics, vol. 48, no. 6, p. 65 003, 2009.

[126] C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in

thin film vanadium oxide in a metal-oxide-semiconductor device geometry”, Applied

Physics Letters, vol. 93, no. 25, p. 252 101, 2008.

[127] D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani,

J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for

the light-induced insulator-to-metal phase transition in vanadium dioxide”, Physical

Review Letters, vol. 99, no. 22, p. 226 401, 2007.

[128] G. Seo, B. J. Kim, Y. Wook Lee, and H. T. Kim, “Photo-assisted bistable switching using

Mott transition in two-terminal VO 2 device”, Applied Physics Letters, vol. 100, no. 1,

p. 011 908, 2012.

[129] J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, and M. E.

Wellandt, “Surface-stress-induced Mott transition and nature of associated spatial

phase transition in single crystalline VO2 nanowires”, Nano Letters, vol. 9, no. 10,

pp. 3392–3397, 2009.

[130] H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S. A. Syed Asif, O. L. Warren, Z. W. Shan, J. Wu,

and A. M. Minor, “Mechanics and dynamics of the strain-induced M1-M2 structural

phase transition in individual VO2 nanowires”, Nano Letters, vol. 11, no. 8, pp. 3207–

3213, 2011.

[131] J. Jian, A. Chen, W. Zhang, and H. Wang, “Sharp semiconductor-to-metal transition

of VO2 thin films on glass substrates”, Journal of Applied Physics, vol. 114, no. 24,

p. 244 301, 2013.

[132] D. H. Kim and H. S. Kwok, “Pulsed laser deposition of VO 2 thin films”, film3, Tech. Rep.

25, 1994.

[133] D Brassard, S Fourmaux, M Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain

size effect on the semiconductor- metal phase transition characteristics of magnetron-

sputtered VO2 thin films”, Applied Physics Letters, vol. 87, p. 51 910, 2005.

117



References

[134] D. Graf, J. Schläfer, S. Garbe, A. Klein, and S. Mathur, “Interdependence of Structure,

Morphology, and Phase Transitions in CVD Grown VO2 and V2O3 Nanostructures”,

Chemistry of Materials, vol. 29, no. 14, pp. 5877–5885, 2017.

[135] P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut,

T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films

synthesized by ALD using TEMAV and O3 precursors”, ECS Journal of Solid State Science

and Technology, vol. 1, no. 4, 2012.

[136] E. Kusano, J. A. Theil, and J. A. Thornton, “Deposition of vanadium oxide films by direct-

current magnetron reactive sputtering”, Journal of Vacuum Science & Technology A:

Vacuum, Surfaces, and Films, vol. 6, no. 3, pp. 1663–1667, 1988.

[137] D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium

oxide films by a sol-gel process”, Journal of Applied Physics, vol. 70, no. 1, pp. 443–452,

1991.

[138] Y. Cui and S. Ramanathan, “Substrate effects on metal-insulator transition characteris-

tics of rf-sputtered epitaxial VO 2 thin films”, Journal of Vacuum Science & Technology

A: Vacuum, Surfaces, and Films, vol. 29, no. 4, p. 041 502, 2011.

[139] J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase

transition in the nucleation and growth of VO2 nanoparticles and thin films”, Journal

of Applied Physics, vol. 96, no. 2, pp. 1209–1213, 2004. [Online]. Available: http://aip.

scitation.org/doi/10.1063/1.1762995.

[140] T. H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan, and J. Narayan, “Semiconductor-

metal transition characteristics of VO2 thin films grown on c-and r-sapphire sub-

strates”, Journal of Applied Physics, vol. 107, no. 5, 2010.

[141] Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO 2

(001) and (110) substrates”, Applied Physics Letters, vol. 80, no. 4, pp. 583–585, 2002.

[142] A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R. J. Narayan, and J. Narayan, “Semiconductor

to metal transition characteristics of VO2 thin films grown epitaxially on Si (001)”,

Applied Physics Letters, vol. 95, no. 11, 2009.

[143] N. Yuan, J. Li, G. Li, and X. Chen, “The large modification of phase transition character-

istics of VO2 films on SiO2/Si substrates”, Thin Solid Films, vol. 515, no. 4, pp. 1275–

1279, 2006.

[144] H. Futaki and M. Aoki, “Effects of Various Doping Elements on the Transition Tempera-

ture of Vanadium Oxide Semiconductors”, Japanese Journal of Applied Physics, vol. 8,

no. 8, pp. 1008–1013, 1969.

[145] A. Krammer, A. Magrez, W. A. Vitale, P. Mocny, P. Jeanneret, E. Guibert, H. J. Whitlow,

A. M. Ionescu, and A. Schüler, “Elevated transition temperature in Ge doped VO2 thin

films”, Journal of Applied Physics, vol. 122, no. 4, p. 045 304, 2017.

118

http://aip.scitation.org/doi/10.1063/1.1762995
http://aip.scitation.org/doi/10.1063/1.1762995


References

[146] H. Lu, S. Clark, Y. Guo, and J. Robertson, “Modelling the enthalpy change and transition

temperature dependence of the metal-insulator transition in pure and doped vana-

dium dioxide”, Physical Chemistry Chemical Physics, vol. 22, no. 24, pp. 13 474–13 478,

2020.

[147] A. Muller, R. A. Khadar, T. Abel, N. Negm, T. Rosca, A. Krammer, M. Cavalieri, A.

Schueler, F. Qaderi, J. Bolten, M. Lemme, I. Stolichnov, and A. M. Ionescu, “Radio-

Frequency Characteristics of Ge-Doped Vanadium Dioxide Thin Films with Increased

Transition Temperature”, ACS Applied Electronic Materials, vol. 2, no. 5, pp. 1263–1272,

2020.

[148] J. Duchene, M. Terraillon, P. Pailly, and G. Adam, “Filamentary conduction in VO2

coplanar thin-film devices”, Applied Physics Letters, vol. 19, no. 4, pp. 115–117, 1971.

[149] B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semi-

conductors”, Proceedings of the Physical Society, vol. 78, no. 2, pp. 293–304, 1961.

[150] T. Oka, R. Arita, and H. Aoki, “Breakdown of a Mott Insulator: A Nonadiabatic Tunneling

Mechanism”, Physical Rreview Letters, vol. 91, no. 6, 2003.

[151] B. Simon Mun, J. Yoon, S. K. Mo, K. Chen, N. Tamura, C. Dejoie, M. Kunz, Z. Liu, C. Park,

K. Moon, and H. Ju, “Role of joule heating effect and bulk-surface phases in voltage-

driven metal-insulator transition in VO2 crystal”, Applied Physics Letters, vol. 103, no. 6,

p. 061 902, 2013.

[152] I. P. Radu, B. Govoreanu, S. Mertens, X. Shi, M. Cantoro, M. Schaekers, M. Jurczak, S. De

Gendt, A. Stesmans, J. A. Kittl, M. Heyns, and K. Martens, “Switching mechanism in

two-terminal vanadium dioxide devices”, Nanotechnology, vol. 26, no. 16, p. 165 202,

2015.

[153] S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching

voltages in threshold-switching phenomena of VO2 thin films”, Applied Physics Letters,

vol. 102, no. 6, p. 063 501, 2013.

[154] A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez,

and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal

transition in VO2”, Physical Review Letters, vol. 110, no. 5, p. 056 601, 2013.

[155] G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism

for the metal-insulator transition in thin film VO2 devices: Electric field versus thermal

effects”, Journal of Materials Science, vol. 44, no. 19, pp. 5345–5353, 2009.

[156] G. B. Stefanovich, A. Pergament, G Stefanovich, A Pergament, and D Stefanovich, “Elec-

trical switching and Mott transition in VO 2”, Article in Journal of Physics Condensed

Matter, vol. 12, pp. 8837–8845, 2000.

[157] K. Okimura and J. Sakai, “Time-dependent Characteristics of Electric Field-induced

Metal-Insulator Transition of Planer VO 2 /c-Al 2 O 3 Structure Related content”,

Japanese Journal of AppliedPhysics, vol. 46, 2007.

119



References

[158] S. Kumar, M. D. Pickett, J. P. Strachan, G. Gibson, Y. Nishi, and R. S. Williams, “Local

Temperature Redistribution and Structural Transition During Joule-Heating-Driven

Conductance Switching in VO 2”, Advanced Materials, vol. 25, no. 42, pp. 6128–6132,

2013.

[159] D. Li, A. A. Sharma, D. K. Gala, N. Shukla, H. Paik, S. Datta, D. G. Schlom, J. A. Bain,

and M. Skowronski, “Joule Heating-Induced Metal-Insulator Transition in Epitaxial

VO2/TiO2 Devices”, ACS Applied Materials and Interfaces, vol. 8, no. 20, pp. 12 908–

12 914, 2016.

[160] Y. Taketa, F. Kato, M. Nitta, and M. Haradome, “New oscillation phenomena in VO2

crystals”, Applied Physics Letters, vol. 27, p. 212, 1975.

[161] Y. W. Lee, B. J. Kim, J. W. Lim, S. J. Yun, S. Choi, B. G. Chae, G. Kim, and H. T. Kim,

“Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin

film”, Applied Physics Letters, vol. 92, no. 16, pp. 10–13, 2008.

[162] J. Sakai, “High-efficiency voltage oscillation in VO2 planer-type junctions with infinite

negative differential resistance”, Journal of Applied Physics, vol. 103, no. 10, p. 103 708,

2008.

[163] N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan, H. Wen, Z. Cai, V.

Gopalan, R. Engel-Herbert, D. G. Schlom, A. Raychowdhury, and S. Datta, “Synchro-

nized charge oscillations in correlated electron systems”, Scientific Reports, vol. 4, no. 1,

pp. 1–6, 2014.

[164] P. Maffezzoni, L. Daniel, N. Shukla, S. Datta, and A. Raychowdhury, “Modeling and

Simulation of Vanadium Dioxide Relaxation Oscillators”, IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 62, no. 9, pp. 2207–2215, 2015.

[165] J. Leroy, A. Crunteanu, J. Givernaud, J. C. Orlianges, C. Champeaux, and P. Blondy,

“Generation of electrical self-oscillations in two-terminal switching devices based on

the insulator-to-metal phase transition of VO 2 thin films”, in International Journal of

Microwave and Wireless Technologies, vol. 4, 2012, pp. 101–107.

[166] M. S. Mian, K. Okimura, and J. Sakai, “Self-oscillation up to 9 MHz based on voltage

triggered switching in VO 2 /TiN point contact junctions”, Journal of Applied Physics,

vol. 117, no. 21, p. 215 305, 2015.

[167] M. A. Belyaev, P. P. Boriskov, A. A. Velichko, A. L. Pergament, V. V. Putrolainen, D. V.

Ryabokon’, G. B. Stefanovich, V. I. Sysun, and S. D. Khanin, “Switching Channel Devel-

opment Dynamics in Planar Structures on the Basis of Vanadium Dioxide”, in Physics

of the Solid State, vol. 60, Pleiades Publishing, 2018, pp. 447–456.

[168] T. Driscoll, J. Quinn, M. Di Ventra, D. N. Basov, G. Seo, Y. W. Lee, H. T. Kim, and D. R.

Smith, “Current oscillations in vanadium dioxide: Evidence for electrically triggered

percolation avalanches”, Physical Review B - Condensed Matter and Materials Physics,

vol. 86, no. 9, pp. 1–10, 2012.

120



References

[169] K. Kurokawa, “Injection Locking of Microwave Solid-State Oscillators”, Proceedings of

the IEEE, vol. 61, no. 10, pp. 1386–1410, 1973.

[170] B. Razavi, “A study of injection locking and pulling in oscillators”, in IEEE Journal of

Solid-State Circuits, vol. 39, 2004, pp. 1415–1424.

[171] A. Velichko, M. Belyaev, V. Putrolaynen, V. Perminov, and A. Pergament, “Thermal

coupling and effect of subharmonic synchronization in a system of two VO2 based

oscillators”, Solid-State Electronics, vol. 141, pp. 40–49, 2018.

[172] T. J. Walker, “Acoustic synchrony: Two mechanisms in the snowy tree cricket”, Science,

vol. 166, no. 3907, pp. 891–894, 1969.

[173] S. H. Strogatz and I. Stewart, “Coupled Oscillators and Biological Synchronization”,

Scientific American, vol. 269, no. 6, pp. 102–109, 1993.

[174] P. Fries, “A mechanism for cognitive dynamics: Neuronal communication through

neuronal coherence”, Trends in Cognitive Sciences, vol. 9, no. 10, pp. 474–480, 2005.

[175] R. T. Canolty and R. T. Knight, “The functional role of cross-frequency coupling”, Trends

in Cognitive Sciences, vol. 14, no. 11, pp. 506–515, 2010.

[176] O. Jensen, J. Kaiser, and J. P. Lachaux, Human gamma-frequency oscillations associated

with attention and memory, 2007.

[177] V. M. Ladwani, Y. Vaishnavi, R. Shreyas, B. R. Kumar, N. Harisha, S. Yogesh, P. Shiva-

ganga, and V. Ramasubramanian, “Hopfield net framework for audio search”, in 2017

23rd National Conference on Communications, NCC 2017, Institute of Electrical and

Electronics Engineers Inc., 2017.

[178] D. J. Amit, H. Gutfreund, and H. Sompolinsky, “Spin-glass models of neural networks”,

Physical Review A, vol. 32, no. 2, pp. 1007–1018, 1985.

[179] Y. Abu-Mostafa and J. St. Jacques, “Information capacity of the Hopfield model”, IEEE

Transactions on Information Theory, vol. 31, no. 4, pp. 461–464, 1985.

[180] V. Folli, M. Leonetti, and G. Ruocco, “On the Maximum Storage Capacity of the Hopfield

Model”, Frontiers in Computational Neuroscience, vol. 10, p. 144, 2017.

[181] T. Aonishi, “Phase transitions of an oscillator neural network with a standard Hebb

learning rule”, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, vol. 58, no. 4, pp. 4865–4871, 1998.

[182] E. Izhikevich, Computing with Oscillators, 2000. [Online]. Available: http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1937 (visited on 12/16/2020).

[183] P. Baldi and R. Meir, “Computing with Arrays of Coupled Oscillators: An Application to

Preattentive Texture Discrimination”, Neural Computation, vol. 2, no. 4, pp. 458–471,

1990.

[184] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks, ser. Ap-

plied Mathematical Sciences. New York, NY: Springer New York, 1997, vol. 126.

121

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1937
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1937


References

[185] E. M. Izhikevich, “Weakly pulse-coupled oscillators, FM interactions, synchronization,

and oscillatory associative memory”, IEEE Transactions on Neural Networks, vol. 10,

no. 3, pp. 508–526, 1999.

[186] R. W. Hölzel and K. Krischer, “Pattern recognition with simple oscillating circuits”, New

Journal of Physics, vol. 13, no. 18, p. 73 031, 2011.

[187] P. Maffezzoni, B. Bahr, Z. Zhang, and L. Daniel, “Oscillator array models for associative

memory and pattern recognition”, IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 62, no. 6, pp. 1591–1598, 2015.

[188] G. Csaba, T. Ytterdal, and W. Porod, “Oscillatory neural network from ring oscillators”,

in 15th International Workshop on Cellular Nanoscale Networks and their Applications,

2016.

[189] G. Csaba, T. Ytterdal, and W. Porod, “Neural network based on parametrically-pumped

oscillators”, in 2016 IEEE International Conference on Electronics, Circuits and Systems

(ICECS), IEEE, 2016, pp. 45–48.

[190] S. Farzeen, G. Ren, and C. Chen, “An ultra-low power ring oscillator for passive UHF

RFID transponders”, in Midwest Symposium on Circuits and Systems, 2010, pp. 558–

561.

[191] S. Dutta, A. Parihar, A. Khanna, J. Gomez, W. Chakraborty, M. Jerry, B. Grisafe, A.

Raychowdhury, and S. Datta, “Programmable coupled oscillators for synchronized

locomotion”, Nature Communications, vol. 10, no. 1, p. 3299, 2019.

[192] D. Ielmini, D. Mantegazza, and A. L. Lacaita, “Voltage-controlled relaxation oscillations

in phase-change memory devices”, IEEE Electron Device Letters, vol. 29, no. 6, pp. 568–

570, 2008.

[193] S. Li, X. Liu, S. K. Nandi, D. K. Venkatachalam, and R. G. Elliman, “High-endurance

megahertz electrical self-oscillation in Ti/NbOx bilayer structures”, Applied Physics

Letters, vol. 106, no. 21, p. 212 902, 2015.

[194] A. A. Sharma, Y. Li, M. Skowronski, J. A. Bain, and J. A. Weldon, “High-Frequency TaOx-

Based Compact Oscillators”, IEEE Transactions on Electron Devices, vol. 62, no. 11,

pp. 3857–3862, 2015.

[195] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo,

S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-

volatile memory device made from asymmetric Ta2O5-xx/TaO2-xbilayer structures”,

Nature Materials, vol. 10, no. 8, pp. 625–630, 2011.

[196] N. Shukla, A. Parihar, M. Cotter, M. Barth, X. Li, N. Chandramoorthy, H. Paik, D. G.

Schlom, V. Narayanan, A. Raychowdhury, and S. Datta, “Pairwise coupled hybrid vana-

dium dioxide-MOSFET (HVFET) oscillators for non-boolean associative computing”,

International Electron Devices Meeting, IEDM, pp. 28.7.1–28.7.4, 2015.

122



References

[197] R. Lebrun, S. Tsunegi, P. Bortolotti, H. Kubota, A. S. Jenkins, M. Romera, K. Yakushiji,

A. Fukushima, J. Grollier, S. Yuasa, and V. Cros, “Mutual synchronization of spin torque

nano-oscillators through a long-range and tunable electrical coupling scheme”, Nature

Communications, vol. 8, no. 1, pp. 1–7, 2017.

[198] S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine, “Mutual

phase-locking of microwave spin torque nano-oscillators”, Nature, vol. 437, no. 7057,

pp. 389–392, 2005.

[199] Y. Fang, V. V. Yashin, S. P. Levitan, and A. C. Balazs, “Pattern recognition with “materials

that compute””, Science Advances, vol. 2, no. 9, e1601114, 2016.

[200] F. C. Hoppensteadt and E. M. Izhikevich, “Synchronization of MEMS resonators and

mechanical neurocomputing”, IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, vol. 48, no. 2, pp. 133–138, 2001.

[201] M. Baghelani, A. Ebrahimi, and H. B. Ghavifekr, “Design of RF MEMS based oscillatory

neural network for ultra high speed associative memories”, Neural Processing Letters,

vol. 40, no. 1, pp. 93–102, 2014.

[202] W. Fon, M. H. Matheny, J. Li, L. Krayzman, M. C. Cross, R. M. D’Souza, J. P. Crutchfield,

and M. L. Roukes, “Complex Dynamical Networks Constructed with Fully Controllable

Nonlinear Nanomechanical Oscillators”, Nano Letters, vol. 17, no. 10, pp. 5977–5983,

2017.

[203] T. Jackson, S. Pagliarini, and L. Pileggi, “An Oscillatory Neural Network with Pro-

grammable Resistive Synapses in 28 Nm CMOS”, in 2018 IEEE International Conference

on Rebooting Computing (ICRC), IEEE, 2018, pp. 1–7.

[204] T. C. Jackson, R. Shi, A. A. Sharma, J. A. Bain, J. A. Weldon, and L. Pileggi, “Implementing

delay insensitive oscillatory neural networks using CMOS and emerging technology”,

Analog Integrated Circuits and Signal Processing, vol. 89, no. 3, pp. 619–629, 2016.

[205] R. Shi, T. C. Jackson, B. Swenson, S. Kar, and L. Pileggi, “On the design of phase locked

loop oscillatory neural networks: Mitigation of transmission delay effects”, in Pro-

ceedings of the International Joint Conference on Neural Networks, 2016, pp. 2039–

2046.

[206] D. E. Nikonov, G. Csaba, W. Porod, T. Shibata, D. Voils, D. Hammerstrom, I. A. Young,

and G. I. Bourianoff, “Coupled-Oscillator Associative Memory Array Operation for

Pattern Recognition”, IEEE Journal on Exploratory Solid-State Computational Devices

and Circuits, vol. 1, no. November, pp. 85–93, 2015.

[207] E. Vassilieva, G. Pinto, J. A. De Barros, and P. Suppes, “Learning pattern recognition

through quasi-synchronization of phase oscillators”, IEEE Transactions on Neural

Networks, vol. 22, no. 1, pp. 84–95, 2011.

[208] T. Shibata, R. Zhang, S. P. Levitan, D. E. Nikonov, and G. I. Bourianoff, “CMOS support-

ing circuitries for nano-oscillator-based associative memories”, in 13th International

Workshop on Cellular Nanoscale Networks and their Applications, IEEE, 2012, pp. 1–5.

123



References

[209] Y. Fang, C. N. Gnegy, T. Shibata, D. Dash, D. M. Chiarulli, and S. P. Levitan, “Non-

boolean associative processing: Circuits, system architecture, and algorithms”, IEEE

Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 1, pp. 94–

102, 2015.

[210] K. Kudo and T. Morie, “Self-feedback electrically coupled spin-Hall oscillator array for

pattern-matching operation”, Applied Physics Express, vol. 10, no. 4, p. 043 001, 2017.

[211] D. Vodenicarevic, N. Locatelli, F. Abreu Araujo, J. Grollier, and D. Querlioz, “A Nanotech-

nology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network”,

Scientific Reports, vol. 7, no. 1, p. 44 772, 2017.

[212] J. A. Carpenter, Y. Fang, C. N. Gnegy, D. M. Chiarulli, and S. P. Levitan, “An image

processing pipeline using coupled oscillators”, in International Workshop on Cellular

Nanoscale Networks and their Applications, IEEE Computer Society, 2014.

[213] C. Thomas, A. Kovashka, D. Chiarulli, and S. Levitan, “A Visual Attention Algorithm

Designed for Coupled Oscillator Acceleration”, in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Workshops,, 2016, pp. 10–18.

[214] D. M. Chiarulli, B. Jennings, Y. Fang, A. Seel, and S. P. Levitan, “A computational

primitive for convolution based on coupled oscillator arrays”, in Proceedings of IEEE

Computer Society Annual Symposium on VLSI, ISVLSI, IEEE Computer Society, 2015,

pp. 125–130.

[215] B. B. Jennings, R. Barnett, C. Gnegy, J. A. Carpenter, Y. Fang, D. M. Chiarulli, and

S. P. Levitan, “HMAX image processing pipeline with coupled oscillator acceleration”,

in IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation,

Institute of Electrical and Electronics Engineers Inc., 2014.

[216] M. J. Cotter, Y. Fang, S. P. Levitan, D. M. Chiarulli, and V. Narayanan, “Computational

architectures based on coupled oscillators”, Proceedings of IEEE Computer Society

Annual Symposium on VLSI, ISVLSI, pp. 130–135, 2014.

[217] W.-Y. Tsai, X. Li, M. Jerry, B. Xie, N. Shukla, H. Liu, N. Chandramoorthy, M. Cotter, A.

Raychowdhury, D. M. Chiarulli, S. P. Levitan, S. Datta, J. Sampson, N. Ranganathan, and

V. Narayanan, “Enabling New Computation Paradigms with HyperFET - An Emerging

Device”, IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 1, pp. 30–48,

2016.

[218] K. Fukushima and S. Miyake, “Neocognitron: A Self-Organizing Neural Network Model

for a Mechanism of Visual Pattern Recognition”, in Competition and Cooperation in

Neural Nets, Springer, Berlin, Heidelberg, 1982, pp. 267–285.

[219] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[220] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai,

and T. Chen, “Recent advances in convolutional neural networks”, Pattern Recognition,

vol. 77, pp. 354–377, 2018.

124



References

[221] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Ma-

chines”, in International Conference on Machine Learning (ICML), 2010, pp. 807–814.

[222] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp”, in Neural

Networks: Tricks of the Trade - SecondEdition, Springer, Berlin, Heidelberg, 2012, pp. 9–

48.

[223] B. Y-Lan, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in visual

recognition”, in 27th international conference on machine learning (ICML-10), 2010,

pp. 111–118.

[224] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition with convo-

lutional neural networks - IEEE Conference Publication”, in Proceedings of the 21st

International Conference on Pattern Recognition (ICPR2012)., Tsukuba, 2012, pp. 3304–

3308.

[225] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized Stochastic Gradient

Descent”, Tech. Rep., 2010, pp. 2595–2603.

[226] R. G. Wijnhoven and P. H. De With, “Fast training of object detection using stochastic

gradient descent”, in Proceedings - International Conference on Pattern Recognition,

2010, pp. 424–427.

[227] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures

of deep convolutional neural networks”, Artificial Intelligence Review, vol. 53, no. 8,

pp. 5455–5516, 2020.

[228] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks”,

in arXiv:1311.2901, Springer Verlag, 2013.

[229] A. Mahendran and A. Vedaldi, “Visualizing Deep Convolutional Neural Networks Using

Natural Pre-images”, in International Journal of Computer Vision, vol. 120, Springer

New York LLC, 2016, pp. 233–255.

[230] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding Neural Net-

works Through Deep Visualization”, arXiv:1506.06579, 2015.

[231] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep con-

volutional neural networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–90,

2017.

[232] E. S. Marquez, J. S. Hare, and M. Niranjan, “Deep Cascade Learning”, IEEE Transactions

on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5475–5485, 2018.

[233] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets

and problem solutions”, International Journal of Uncertainty, Fuzziness and Knowlege-

Based Systems, vol. 6, no. 2, pp. 107–116, 1998.

[234] R. Lan, H. Zou, C. Pang, Y. Zhong, Z. Liu, and X. Luo, “Image denoising via deep residual

convolutional neural networks”, Signal, Image and Video Processing, vol. 15, pp. 1–8,

2019.

125



References

[235] A. S. Qureshi, A. Khan, A. Zameer, and A. Usman, “Wind power prediction using deep

neural network based meta regression and transfer learning”, Applied Soft Computing

Journal, vol. 58, pp. 742–755, 2017.

[236] S. J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Transactions on Knowledge

and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[237] G. Lacey, G. W. Taylor, and S. Areibi, “Deep Learning on FPGAs: Past, Present, and

Future”, arXiv:1602.04283, 2016.

[238] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the Computational

Cost of Deep Learning Models”, in Proceedings - 2018 IEEE International Conference

on Big Data, Big Data 2018, Institute of Electrical and Electronics Engineers Inc., 2019,

pp. 3873–3882.

[239] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric accelerator

design for convolutional neural networks”, in 2013 IEEE 31st International Conference

on Computer Design, ICCD 2013, IEEE Computer Society, 2013, pp. 13–19.

[240] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski,

“TOP-PIM: Throughput-oriented programmable processing in memory”, in HPDC

2014 - Proceedings of the 23rd International Symposium on High-Performance Parallel

and Distributed Computing, New York, New York, USA: Association for Computing

Machinery, 2014, pp. 85–97.

[241] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel

Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based

Main Memory”, in 43rd International Symposium on Computer Architecture, ISCA,

Institute of Electrical and Electronics Engineers Inc., 2016, pp. 27–39.

[242] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory

accelerator for parallel graph processing”, in International Symposium on Computer

Architecture, New York, New York, USA: Institute of Electrical and Electronics Engineers

Inc., 2015, pp. 105–117.

[243] S. A. Bukhari, S. Kumar, P. Kumar, S. P. Gumfekar, H.-J. Chung, T. Thundat, and A.

Goswami, “The effect of oxygen flow rate on metal–insulator transition (MIT) char-

acteristics of vanadium dioxide (VO2) thin films by pulsed laser deposition (PLD)”,

Applied Surface Science, vol. 529, p. 146 995, 2020.

[244] B. N. Masina, S. Lafane, L. Wu, A. A. Akande, B. Mwakikunga, S. Abdelli-Messaci, T.

Kerdja, and A. Forbes, “Phase-selective vanadium dioxide (VO$_2$) nanostructured

thin films by pulsed laser deposition”, Journal of Applied Physics, vol. 118, no. 16,

p. 165 308, 2015.

[245] M. J. Miller and J. Wang, “Influence of grain size on transition temperature of ther-

mochromic VO2”, Journal of Applied Physics, vol. 117, no. 3, p. 034 307, 2015.

126



References

[246] D. Bhardwaj, A. Goswami, and A. M. Umarji, “Synthesis of phase pure vanadium dioxide

(VO2) thin film by reactive pulsed laser deposition”, Journal of Applied Physics, vol. 124,

no. 13, p. 135 301, 2018.

[247] R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect

of process parameters on phase stability and metal-insulator transition of vanadium

dioxide (VO2) thin films by pulsed laser deposition”, Acta Materialia, vol. 137, pp. 12–

21, 2017.

[248] V. P. Prasadam, B. Dey, S. Bulou, T. Schenk, and N. Bahlawane, “Study of VO 2 thin film

synthesis by atomic layer deposition”, Materials Today Chemistry, vol. 12, pp. 332–342,

2019.

[249] W. J. Lee and Y. H. Chang, “Growth without postannealing of monoclinic VO 2 thin film

by atomic layer deposition using VCl 4 as precursor”, Coatings, vol. 8, no. 12, 2018.

[250] A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D.

Cuypers, A. Franquet, C. Detavernier, J. P. Rueff, M. Schaekers, S. Van Elshocht, M.

Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO 2 ultra-

thin films and nanoparticles: Morphological control”, Advanced Functional Materials,

vol. 25, no. 5, pp. 679–686, 2015.

[251] M. Tangirala, K. Zhang, D. Nminibapiel, V. Pallem, C. Dussarrat, W. Cao, T. N. Adam,

C. S. Johnson, H. E. Elsayed-ali, and H. Baumgart, “Physical Analysis of VO 2 Films

Grown by Atomic Layer Deposition and RF Magnetron Sputtering”, ECS Journal of

Solid State Science and Technology, vol. 3, no. 6, pp. 89–94, 2014.

[252] A. C. Kozen, H. Joress, M. Currie, V. R. Anderson, C. R. Eddy, and V. D. Wheeler, “Struc-

tural Characterization of Atomic Layer Deposited Vanadium Dioxide”, Journal of Phys-

ical Chemistry C, vol. 121, no. 35, pp. 19 341–19 347, 2017.

[253] K. M. Niang, G. Bai, and J. Robertson, “Influence of precursor dose and residence time

on the growth rate and uniformity of vanadium dioxide thin films by atomic layer

deposition”, Journal of Vacuum Science & Technology A, vol. 38, no. 4, p. 042 401, 2020.

[254] G. Bai, K. M. Niang, and J. Robertson, “Preparation of atomic layer deposited vanadium

dioxide thin films using tetrakis(ethylmethylamino) vanadium as precursor”, Journal

of Vacuum Science & Technology A, vol. 38, no. 5, p. 052 402, 2020.

[255] C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S. J. Wen, and S. Kasap, “Charac-

terization of vanadium oxide thin films with different stoichiometry using Raman

spectroscopy”, Thin Solid Films, vol. 620, pp. 64–69, 2016.

[256] C. V. Thompson, “Solid-State Dewetting of Thin Films”, Annual Review of Materials

Research, vol. 42, no. 1, pp. 399–434, 2012.

[257] W. Zeng, N. Chen, and W. Xie, “Research progress on the preparation methods for VO2

nanoparticles and their application in smart windows”, CrystEngComm, vol. 22, no. 5,

pp. 851–869, 2020.

127



References

[258] É. O’Connor, M. Halter, F. Eltes, M. Sousa, A. Kellock, S. Abel, and J. Fompeyrine,

“Stabilization of ferroelectric Hf x Zr 1-x O 2 films using a millisecond flash lamp

annealing technique”, APL Materials, vol. 6, no. 12, p. 121 103, 2018.

[259] F. Menges, H. Riel, A. Stemmer, and B. Gotsmann, “Nanoscale thermometry by scan-

ning thermal microscopy”, Review of Scientific Instruments, vol. 87, no. 7, p. 074 902,

2016.

[260] U. Drechsler, N. Bürer, M. Despont, U. Dürig, B. Gotsmann, F. Robin, and P. Vettiger,

“Cantilevers with nano-heaters for thermomechanical storage application”, in Micro-

electronic Engineering, vol. 67-68, Elsevier, 2003, pp. 397–404.

[261] S. Gomès, A. Assy, and P. O. Chapuis, Scanning thermal microscopy: A review, 2015.

[262] F. Könemann, “Scanning Probe Thermometry to study Thermoelectricity and Dissipa-

tion at Nanoscale Junctions; Scanning Probe Thermometry to study Thermoelectricity

and Dissipation at Nanoscale Junctions”, Ph.D. dissertation, ETH Zurich, 2019.

[263] F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and B. Gotsmann, “Temperature

mapping of operating nanoscale devices by scanning probe thermometry”, Nature

Communications, vol. 7, pp. 1–6, 2016.

[264] J. Lin, Annadi, S. Sonde, C. Chen, L. Stan, K. V. Achari, S. Ramanathan, and S. Guha,

“Low-voltage artificial neuron using feedback engineered insulator-to-metal-transition

devices”, Technical Digest - International Electron Devices Meeting, IEDM, pp. 34.5.1–

34.5.4, 2017.

[265] J. Lin, S. Ramanathan, and S. Guha, “Electrically driven insulator-metal transition-

based devices - Part I: The Electrothermal model and experimental analysis for the dc

characteristics”, IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3982–3988,

2018.

[266] K. Karda, C. Mouli, S. Ramanathan, and M. A. Alam, “A self-consistent, semiclassical

electrothermal modeling framework for mott devices”, IEEE Transactions on Electron

Devices, vol. 65, no. 5, pp. 1672–1678, 2018.

[267] T. Wang, “Modelling multistability and hysteresis in ESD clamps, memristors and other

devices”, in Proceedings of the Custom Integrated Circuits Conference, vol. 2017-April,

Institute of Electrical and Electronics Engineers Inc., 2017.

[268] S. Amer, M. S. Hasan, M. M. Adnan, and G. S. Rose, “SPICE Modeling of Insulator Metal

Transition: Model of the Critical Temperature”, IEEE Journal of the Electron Devices

Society, vol. 7, pp. 18–25, 2019.

[269] F. Dorfler and F. Bullo, “Exploring synchronization in complex oscillator networks”, in

Proceedings of the IEEE Conference on Decision and Control, 2012, pp. 7157–7170.

[270] H. Takami, T. Kanki, and H. Tanaka, “Multistep metal insulator transition in VO2 nano-

wires on Al 2O3 (0001) substrates”, Applied Physics Letters, vol. 104, no. 2, p. 023 104,

2014.

128



References

[271] A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple avalanches across the metal-

insulator transition of vanadium oxide nanoscaled junctions”, Physical Review Letters,

vol. 101, no. 2, p. 026 404, 2008.

[272] K. Kawatani, H. Takami, T. Kanki, and H. Tanaka, “Metal-insulator transition with

multiple micro-scaled avalanches in VO 2 thin film on TiO 2(001) substrates”, Applied

Physics Letters, vol. 100, no. 17, p. 173 112, 2012.

[273] J. Del Valle, N. Ghazikhanian, Y. Kalcheim, J. Trastoy, M. H. Lee, M. J. Rozenberg, and

I. K. Schuller, “Resistive asymmetry due to spatial confinement in first-order phase

transitions”, Physical Review B, vol. 98, no. 4, p. 045 123, 2018.

[274] W. Fan, J. Cao, J. Seidel, Y. Gu, J. W. Yim, C. Barrett, K. M. Yu, J. Ji, R. Ramesh, L. Q. Chen,

and J. Wu, “Large kinetic asymmetry in the metal-insulator transition nucleated at

localized and extended defects”, Physical Review B - Condensed Matter and Materials

Physics, vol. 83, no. 23, p. 235 102, 2011.

[275] Y. Tsuji, T. Kanki, Y. Murakami, and H. Tanaka, “Single-step metal-insulator transition

in thin film-based vanadium dioxide nanowires with a 20 nm electrode gap”, Applied

Physics Express, vol. 12, no. 2, p. 025 003, 2019.

[276] A. G. Shabalin, J. Del Valle, A. Charnukha, N. Hua, M. V. Holt, D. N. Basov, I. K. Schuller,

and O. G. Shpyrko, “Nanoimaging of Electrical Failure in VO2Resistive-Switching Nan-

odevices”, ACS Applied Electronic Materials, vol. 2, no. 8, pp. 2357–2362, 2020.

[277] E. Corti, B. Gotsmann, K. Moselund, A. M. Ionescu, J. Robertson, and S. Karg, “Scaled

resistively-coupled VO2 oscillators for neuromorphic computing”, Solid-State Elec-

tronics, vol. 168, p. 107 729, 2019. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0038110119307324.

[278] A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Aitchison, and J. Poon, “Characteristics of

the Current-Controlled Phase Transition of VO2 Microwires for Hybrid Optoelectronic

Devices”, Photonics, vol. 2, no. 3, pp. 916–932, 2015.

[279] H. Madan, M. Jerry, A. Pogrebnyakov, T. Mayer, and S. Datta, “Quantitative mapping

of phase coexistence in mott-peierls insulator during electronic and thermally driven

phase transition”, ACS Nano, vol. 9, no. 2, pp. 2009–2017, 2015.

[280] I Valmianski, P. Y. Wang, S Wang, J. G. Ramirez, S Guénon, and I. K. Schuller, “Origin

of the current-driven breakdown in vanadium oxides: Thermal versus electronic”,

Physical Review B, vol. 98, p. 195 144, 2018.

[281] F. Balduini, “Investigation of the Thermo-electrical Properties of VO2 Self-heated

Devices for Oscillatory Neural Network Applications”, Ph.D. dissertation, Sapienza

University of Rome, 2020.

[282] J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance

in micro- and nanopolycrystalline VO2 thin films with random resistor networks”,

Optical Engineering, vol. 47, no. 3, p. 033 801, 2008.

129

https://www.sciencedirect.com/science/article/pii/S0038110119307324
https://www.sciencedirect.com/science/article/pii/S0038110119307324


References

[283] P. Stoliar, L. Cario, E. Janod, B. Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V.

Guiot, J. Tranchant, and M. Rozenberg, “Universal Electric-Field-Driven Resistive Tran-

sition in Narrow-Gap Mott Insulators”, Advanced Materials, vol. 25, no. 23, pp. 3222–

3226, 2013.

[284] E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural

phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering”,

Journal of Optics A: Pure and Applied Optics, vol. 11, no. 12, p. 125 002, 2009.

[285] S. Datta, N. Shukla, M. Cotter, A. Parihar, and A. Raychowdhury, “Neuro Inspired

Computing with Coupled Relaxation Oscillators”, in 51st Annual Design Automation

Conference on Design Automation Conference - DAC ’14, 2014, pp. 1–6.

[286] E. Corti, A. Khanna, K. Niang, J. Robertson, K. E. Moselund, B. Gotsmann, S. Datta, and

S. Karg, “Time-Delay Encoded Image Recognition in a Network of Resistively Coupled

VO2 on Si Oscillators”, IEEE Electron Device Letters, vol. 41, no. 4, pp. 629–632, 2020.

[Online]. Available: https://ieeexplore.ieee.org/document/8986576/.

[287] E. Corti, B. Gotsmann, K. Moselund, I. Stolichnov, A. Ionescu, and S. Karg, “Resistive

Coupled VO2 Oscillators for Image Recognition”, in 2018 IEEE International Conference

on Rebooting Computing, ICRC 2018, Institute of Electrical and Electronics Engineers

Inc., 2019.

[288] E. Corti, J. A. Cornejo Jimenez, K. M. Niang, J. Robertson, K. E. Moselund, B. Gotsmann,

A. M. Ionescu, and S. Karg, “Coupled VO2 Oscillators Circuit as Analog First Layer

Filter in Convolutional Neural Networks”, Frontiers in Neuroscience, vol. 15, p. 19, 2021.

[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2021.628254/

full.

[289] T. Nishikawa, Y. C. Lai, and F. C. Hoppensteadt, “Capacity of Oscillatory Associative-

Memory Networks with Error-Free Retrieval”, Physical Review Letters, vol. 92, no. 10,

pp. 1–4, 2004.

[290] R. Follmann, E. E. Macau, E. Rosa, and J. R. Piqueira, “Phase oscillatory network

and visual pattern recognition”, IEEE Transactions on Neural Networks and Learning

Systems, vol. 26, no. 7, pp. 1539–1544, 2015.

[291] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.

[Online]. Available: http://yann.lecun.com/exdb/mnist/ (visited on 01/18/2021).

[292] G. W. Roberts and M. Ali-Bakhshian, “A brief introduction to time-to-digital and digital-

to-time converters”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57,

no. 3, pp. 153–157, 2010.

[293] J. G. Maneatis and M. A. Horowitz, “Precise Delay Generation Using Coupled Oscilla-

tors”, IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1273–1282, 1993.

[294] A. K. Maini, “Digital Electronics: Principles, Devices and Applications”, in John Wiley &

Sons, 2007, ch. 11. Counte.

130

https://ieeexplore.ieee.org/document/8986576/
https://www.frontiersin.org/articles/10.3389/fnins.2021.628254/full
https://www.frontiersin.org/articles/10.3389/fnins.2021.628254/full
http://yann.lecun.com/exdb/mnist/


References

[295] H. Wang, M. Zhang, and Y. Liu, “High-Resolution Digital-to-Time Converter Imple-

mented in an FPGA Chip”, Applied Sciences, vol. 7, no. 1, p. 52, 2017.

[296] S. Al-Ahdab, A. Mäntyniemi, and J. Kostamovaara, “A 12-bit digital-to-time converter

(DTC) for time-to-digital converter (TDC) and other time domain signal processing

applications”, in 28th Norchip Conference, NORCHIP 2010, 2010.

[297] B. Wang, Y.-H. Liu, P. Harpe, J. van den Heuvel, B. Liu, H. Gao, and R. B. Staszewski,

“A digital to time converter with fully digital calibration scheme for ultra-low power

ADPLL in 40 nm CMOS”, in 2015 IEEE International Symposium on Circuits and Systems

(ISCAS), vol. 2015-July, IEEE, 2015, pp. 2289–2292.

[298] A. El-Hadbi, O. Elissati, and L. Fesquet, “Time-to-Digital Converters: A Literature

Review and New Perspectives”, in Proceedings - 5th International Conference on Event-

Based Control, Communication and Signal Processing, EBCCSP 2019, Institute of Elec-

trical and Electronics Engineers Inc., 2019.

[299] Y. Cao, W. De Cock, M. Steyaert, and P. Leroux, “1-1-1 MASH ∆Σ time-to-digital con-

verters with 6 ps resolution and third-order noise-shaping”, IEEE Journal of Solid-State

Circuits, vol. 47, no. 9, pp. 2093–2106, 2012.

[300] N. Shukla, W. Y. Tsai, M. Jerry, M. Barth, V. Narayanan, and S. Datta, “Ultra low power

coupled oscillator arrays for computer vision applications”, in Digest of Technical Pa-

pers - Symposium on VLSI Technology, Institute of Electrical and Electronics Engineers

Inc., 2016.

[301] G. Hamaoui, N. Horny, C. L. Gomez-Heredia, J. A. Ramirez-Rincon, J. Ordonez-Miranda,

C. Champeaux, F. Dumas-Bouchiat, J. J. Alvarado-Gil, Y. Ezzahri, K. Joulain, and M. Chir-

toc, “Thermophysical characterisation of VO2 thin films hysteresis and its application

in thermal rectification”, Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019.

131





Curriculum Vitae

Personal Data

Name Elisabetta Corti

Date of Birth 21.09.1993

Place of Birth Como, Italia

Citizen of Italia

Education

2017 – 2021 École polytechnique fédérale de Lausanne, Switzerland

PhD candidate, Electrical Engineering

2015 – 2017 Politecnico di Milano, Italia

Master of Science, Electronics Engineering, 110 "cum Laude"

2012 – 2015 Politecnico di Milano, Italia

Bachelor of Science, Electronics Engineering, 110 "cum Laude"

Professional Experience

2017 – 2020 IBM Research – Zurich, Switzerland

Predoctoral Scientist, Science & Technology Department

03 – 09/2017 imec, Belgium

Research Intern, Master thesis project

Activities and Certificates

2018 – 2020 Peer-Review, upon invitation for various scientific journals

133



Curriculum Vitae

2015 – 2017 Idea League Challenge Programme

Exchange Program on business, economics and engineering, with modules in RWTH Aachen,

Politecninco di Milano, Chalmers University, TU Delft and ETH Zurich

07/2017 SENG, Summer Camp for Elite Students, Hong Kong University of technology

03/2015 ATHENS Exchange Program, Warsaw University of Technology, Poland

Electromagnetic Waves Engineering and Applications

Awards and Recognitions

09/2018 First Patent Achievement Award, IBM Research, Zurich, Switzerland

2015 and 2017 Premio di Studio Giovanni Zampese (2x), Scholarship, Cantu, Italia

2012 – 2017 Merit-Based Scholarships, Politecnico di Milano (3x), Italia

Conference Presentations
(Journal Publications are listed in List of Publications)

12/2020 Material Research Society Autumn Meeting, Boston (online), USA

Scaled VO2 Oscillators for Neural Network Applications, talk

05/2019 Material and Process Graduate Symposium, Zurich (online), Switzerland

Grain-size Tuning of VO2 Films on Si using Millisecond Flash Annealing, poster

11/2019 Semicon Europa 2019, Munich, Germany

Invented talk, Advances in Energy Efficient Neuromorphic Computing: Ready for Artificial

Intelligence at the Edge?

06/2018 Swiss Physical Society Meeting, Zürich, Switzerland

Neuromorphic Computing with Coupled VO2 Oscillators, poster

03/2019 IEEE EUROSOI-ULIS International Conference, Grenoble, France

VO2 Oscillators Coupling for Neuromorphic Computation, talk

11/2018 IEEE International Conference on Rebooting Computing, Washington, USA

Resistive Coupled VO2 Oscillators for Image Recognition, talk

134


	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Publications
	List of Figures and Tables
	List of Acronyms
	Introduction
	The Computational Challenge of Deep Learning
	Neuromorphic Computing: an Overview of the State of the Art
	Biologically-Inspired Platforms
	Neuromorphic Accelerators for Neural Networks
	Beyond Neural and Synaptic Behaviors
	Motivation for Oscillatory Neural Networks

	Aim of the Thesis

	VO2 Oscillators: from the Material to the Applications
	Vanadium Dioxide
	VO2 Fabrication
	VO2 Electrically-Triggered Transition

	VO2 Relaxation Oscillators
	Coupled Oscillators

	Oscillatory Neural Networks
	Hopfield Neural Network
	Models of Oscillatory Neural Networks

	Technologies that Compute with Oscillators: an Overview
	Materials and Devices for Oscillatory Neural Networks
	Image Processing with Oscillators

	Convolutional Neural Networks

	Experimental Methods
	Device Fabrication
	Deposition Techniques
	Raman Spectroscopy
	Annealing Techniques
	Device Processing

	Scanning Thermal Microscopy
	Device Model for Circuit Simulations

	Characterization of the Phase Transition in scaled VO2 Devices
	Characterization of VO2 Planar Devices
	Characterization via Scanning Thermal Microscopy
	Simulation of Phase Transitions in Planar Devices

	Crossbar Devices
	Single Grain Devices
	Main Achievements

	Coupled Oscillator Networks based on VO2 Devices
	VO2 Oscillators: Characteristic and Performances
	Coupled Oscillators
	Two Coupled Oscillators based on VO2 Devices
	Pattern Recognition with Three Coupled Oscillators
	Feature Edge Extraction with Four Coupled Oscillators

	Main Achievements

	VO2 Coupled Oscillators as Filters in Convolutional Neural Networks
	VO2 Coupled Oscillators as Analog Filters in Convolutional Neural Networks
	Backpropagation Algorithm applied to the ONN
	Phase-Detector Circuit for ONN Second Layer
	Benchmark
	Main Achievements

	Conclusion and Outlook
	Future Directions

	Appendix
	SThM Characterization
	Simulation of Multi-Grain Switching in VO2 Devices

	References
	Curriculum Vitae



