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Abstract

Spiking information of individual neurons is essential for functional and behavioral analysis

in neuroscience research. Calcium imaging techniques are generally employed to obtain

activities of neuronal populations. However, these techniques result in slowly-varying fluo-

rescence signals with low temporal resolution. Estimating the temporal positions of the neu-

ronal action potentials from these signals is a challenging problem. In the literature, several

generative model-based and data-driven algorithms have been studied with varied levels of

success. This article proposes a neural network-based signal-to-signal conversion

approach, where it takes as input raw-fluorescence signal and learns to estimate the spike

information in an end-to-end fashion. Theoretically, the proposed approach formulates the

spike estimation as a single channel source separation problem with unknown mixing condi-

tions. The source corresponding to the action potentials at a lower resolution is estimated at

the output. Experimental studies on the spikefinder challenge dataset show that the pro-

posed signal-to-signal conversion approach significantly outperforms state-of-the-art-meth-

ods in terms of Pearson’s correlation coefficient, Spearman’s rank correlation coefficient

and yields comparable performance for the area under the receiver operating characteristics

measure. We also show that the resulting system: (a) has low complexity with respect to

existing supervised approaches and is reproducible; (b) is layer-wise interpretable, and (c)

has the capability to generalize across different calcium indicators.

Author summary

Information processing by a population of neurons is studied using two-photon calcium

imaging techniques. A neuronal spike results in an increased intracellular calcium con-

centration. Fluorescent calcium indicators change their brightness upon a change in the

calcium concentration, and this change is captured in the imaging technique. The task of

estimating the actual spike positions from the brightness variations is formally referred to

as spike estimation. Several signal processing and machine learning-based algorithms

have been proposed in the past to solve this problem. However, the task is still far from

being solved. Here we present a novel neural network-based data-driven algorithm for
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spike estimation. Our method takes the fluorescence recording as the input and synthe-

sizes the spike information signal, which is well-correlated with the actual spike positions.

Our method outperforms state-of-the-art methods on a standard evaluation framework.

We further analyze different components of the model and discuss its benefits.

1 Introduction

Analyzing the brain’s responses to several types of stimuli enables an understanding of brain

behavior and cognition. The responses of the neurons manifest as a spike train, which encodes

the information present in the stimulus. State-of-the-art scanning methods track the activity of

a population of neurons by using fluorescence emitting capability of calcium indicator pro-

teins/dye [1–4]. However, the calcium fluorescence recording of each neuron is only an indi-

rect indicator of the actual spiking process. The presence of fluorescence level fluctuations,

slow dynamics of the calcium fluorescence signal, and unknown noise-levels make it hard to

identify the exact underlying spike information [5–7]. Hence, approaches capable of obtaining

the spike positions from the calcium fluorescence signals are of utmost interest to computa-

tional neuroscience community.

We provide a brief overview of the existing spike estimation algorithms. They can be

broadly categorized into generative and data-driven approaches:

1. Generative methods model the fluorescence signal as the response of the calcium indicator

to the spike occurrences. They rely on several model-specific assumptions. Deconvolution-

based approaches consider convolutive assumptions about the spiking process [8–11],

whereas biophysical model-based approaches estimate the most probable spike train which

generated the fluorescence output [12]. Other model-based approaches include template

matching [3, 13], auto-regressive formulation [14] and, approximate Bayesian inference

based on deconvolution [5, 15]. These models are limited by the apriori assumptions about

the model, which has stringent approximations regarding the shape of the calcium response

and the noise statistics. Recently, a non-model based signal processing approach for spike

estimation is presented in [16] that uses the agnostic nature of group delay to estimate the

spike locations. It has a comparable performance with other popular algorithms in the

literature.

2. Supervised models predict the spike information from the fluorescence signal, either using

a set of features derived from the signal or using the raw signal itself. Data-driven methods

are recently gaining traction owing to the availability of simultaneous electrophysiological

and two-photon scanning-based neuronal recordings. For instance, a neural network-based

supervised Spike Triggered Mixture (STM) model [17] is used for learning the λ parameter

of a given Poisson model in [18] to obtain the spike estimates from the calcium signals.

Recent methods use fluorescence signals with or without a contextual window (supplemen-

tary material—[19]) for estimating the spike information. Neural network-based variants

such as “convi6”, “Deepspike”, “Purgatorio”, and “Embedding of CNNs” have had varying

levels of success and outperformed data-driven baseline method [17] on a standard evalua-

tion framework (supplementary material—[19]). A gated recurrent unit (GRU)-based

approach recently attempted to estimate down-sampled action potentials directly from the

2-D calcium imaging output, combining regions-of-interest (ROI) estimation and spike

estimation tasks [20]. An adversarial variational autoencoder (VAE) is employed in [21] for

improved spike inference compared to the factorized posteriors used in standard VAEs.
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Spikefinder challenge (http://spikefinder.codeneuro.org/) [19], a contest aimed to standard-

ize the spike estimation evaluation and improve the state-of-the-art, resulted in a new set of

algorithms that performed better than the benchmark STM Model [17]. Although these algo-

rithms use different techniques, no additional gain was obtained when the results of various

techniques were combined. The objective of the challenge was to standardize the spike estima-

tion evaluation and to provide a comparison of the state-of-the-art techniques. Most of the

top-performing algorithms used convolutional (CNN), recurrent (RNN) and, deep neural net-

works (DNN) and its variants [19]. All the top-performing data-driven algorithms have a

recurrent layer in the network and hence are computationally complex. The best-performing

supervised model used a CNN architecture with an intermediate Long Short-Term Memory

(LSTM) layer to predict the spiking probability from a contextual window of the fluorescence

signal (“convi6” in the supplementary material of [19]). Generative models such as MLspike

[12] and auto-regressive model presented in [14] were comparable to the supervised

approaches when the dataset-specific parameter tuning was carried out on the training data-

sets. MLspike uses a biophysical model and estimates the most probable spike information

given the fluorescence signal. The second-best generative approach in spikefinder [14] is based

on an autoregressive approximation to the calcium fluorescence signal. Spike information is

then estimated by solving a non-negative sparse optimization problem.

The spike estimation problem can also be formulated as a sequence-to-sequence modeling

problem in the supervised learning paradigm. We succinctly describe the motivation and

related works on sequence modeling to set the stage for the proposed spike estimation method.

Approaches that model sequences in an end-to-end fashion are being developed recently for

classification and regression tasks in audio processing and natural language understanding

with commendable success. One of the first efforts in that direction is made in the context of

machine translation [22]. This approach is later extended to speech recognition [23, 24].

Sequence-to-sequence models have been used for text summarization task using RNNs in [25]

and for creating more accurate language models [26] in natural language processing. End-to-

end methods have also been employed to predict the target speech from the overlapped speech

mixture for speech separation task [27, 28], and clean speech for enhancement tasks [29, 30] in

audio processing research. In this case, as the models are trained on raw-waveforms, they do

not require handcrafted features. Instead, they learn the relevant information in a task-depen-

dent manner from the signal directly. They also provide the flexibility to choose task-specific

objective functions for training, which implicitly considers the temporal context. It is also pos-

sible to analyze the convolutional filters in the neural network to understand the learning

trends in the temporal and frequency domains. Given that the spike train is also a temporal

signal, it should be possible to formulate the spike estimation problem in an autoencoder

framework.

Motivated by the success of the aforementioned sequence-to-sequence models, we present

a signal-to-signal neural network (hereafter referred to as S2S) for the spike estimation task.

The proposed method can be regarded as an analysis-synthesis method, where, as illustrated in

Fig 1, the input calcium fluorescence signal is analyzed by an input convolution layer; filtered

by time-distributed dense layer(s), also called as hidden layers (In this article, we use the terms

dense layer and hidden layer interchangeably); and finally the spike signal is synthesized by an

output convolution layer. The synthesis layer that generates signal samples makes our architec-

ture distinct from other supervised spike estimation methods where only a single value is pre-

dicted/classified to at the output. All the network parameters are learned in an end-to-end

manner in S2S with a cost function based on the Pearson’s correlation between the estimated

spike signal and the ground truth spike signal. We hypothesize that such a spike estimation

network can outperform existing approaches as it reconstructs the spike information for each
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input sample. This neural network differs from the sequence-to-sequence models in several

aspects. First, the output signal’s nature or characteristics (discrete spike estimates) is very dif-

ferent from the input signal (calcium fluorescence trace). Second, it performs automatic short-

time processing through shared weights across the temporal axis. Third, as we will see later

(Section 2.4.4), each layer’s output can be visualized to gain insight into the information cap-

tured by each layer. The frequency responses of both analysis and synthesis layers in the net-

work can also be analyzed.

The proposed S2S method is better than the competitive algorithms from the spikefinder

contest with the same dataset and evaluation procedure. We also compare S2S with the best

neural network-based model presented in the contest. We study the research questions in

terms of reliability, generalization ability, dependency on training targets and, design concerns

of S2S. In addition, we conduct a layer-wise analysis of the network to provide an intuitive

explanation for the learning.

2 Results

2.1 Evaluation procedure

We used the Spikefinder challenge dataset [19] for evaluations. It consisted of five benchmark-

ing datasets consisting of 92 recordings from 73 neurons. One part of this dataset was given

for training the supervised models, and the other part for testing as a part of the competition.

Five datasets [31] from GENIE project [32] were also available for training the models. Addi-

tional datasets were used to ensure that the supervised models do not over-fit the training data.

For further details about the spike finder dataset, the reader is referred to [19]. As per the spike

finder challenge protocol, we performed the training at 100 Hz and the evaluation at 25 Hz (40

ms bin width). The evaluation measures were Pearson’s correlation coefficient, Spearman’s

rank correlation coefficient, and the area under the receiver operating characteristics (denoted

as AUC).

We used Pearson’s correlation coefficient as the primary evaluation measure, as done in the

spikefinder challenge. Rank (non-linear correlation) and AUC serves as secondary and tertiary

evaluation measures, respectively. This standardization enabled us to benchmark the proposed

S2S method against the challenge submissions. It is worth mentioning that the performance

metrics were calculated solely based on the script provided by the spikefinder challenge orga-

nizers. The performance of the S2S method was compared to the top six algorithms in the spi-

kefinder contest. They were based on either generative [12, 14] or supervised [17, 19, 33, 34]

Fig 1. Signal-to-signal neural network (S2S). (left) Block diagram of the proposed approach. (right) An illustrative

example calcium signal, its corresponding spike estimate, and the ground truth spike train.

https://doi.org/10.1371/journal.pcbi.1007921.g001
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approaches, as discussed earlier (Lines 18-48). Seven out of the top-10 algorithms were deep

learning-based supervised algorithms. Table 1 provides an overview of the baseline methods

(taken from [19]).

2.2 Comparison to spikefinder algorithms

Table 2 compares the performance of the S2S method with the methods reported in the spike-

finder challenge [19]. The S2S network outperformed all the state-of-the-art methods, both

generative and supervised. It improved the test correlation by 46% compared to the best per-

forming algorithm in the spikefinder contest. Change in the correlation with respect to the

challenge baseline (denoted as Δ) was significantly high for the proposed approach (3.5 times

compared to the best reference algorithm). S2S provided a relative improvement of 56% for

the rank measure over the baseline with the best rank. It also had a similar AUC compared to

the best method in terms of AUC measure. The deviation between the train and test sets’ cor-

relation coefficient for the S2S method was small (0.0079). Interestingly, S2S is the only

method for which the test set’s correlation coefficient was more than the training set, indicat-

ing that the proposed method generalizes well.

Spike trains were recorded originally at a very high sampling rate (10,000 Hz). The Spike

train was down-sampled, and the calcium fluorescence signal was up-sampled to 100Hz for

the experiments. Spike trains at 25 Hz (40 ms time-duration) can be effectively inferred via

S2S, as seen from this evaluation. Since the resolution of the down-sampled spikes was much

less than the original frequency, it can be interpreted as firing rate. S2S output closely follows

the ground truth shape information and this resulted in a better correlation value.

Table 1. Overview of top-performing algorithms in spikefinder challenge.

Team Contributor(s) new type Model/Architecture

Team1 T. Deneux No [12] Generative Biophysical model

Team2 N. Chenkov, T. McColgan Yes Supervised conv / lstm

Team3 A. Speiser, J. Macke, S. Turaga Yes Supervised RNN/CNN

Team4 P. Mineault Yes Supervised residual / lstm

Team5 P. Rupprecht, S. Gerhard, R. W. Friedrich Yes Supervised conv / max

Team6 J. Friedrich, L. Paninski No [14] Generative Autoregressive model

Baseline: STM L. Theis No [17] Supervised DNN +Poisson model

https://doi.org/10.1371/journal.pcbi.1007921.t001

Table 2. Comparison of evaluation measures between S2S and state-of-the-art spikefinder baselines.

Team Name Train correlation Test correlation Δ correlation Rank AUC

Team 1 MLspike new 0.4823 0.4382 0.0810 0.2878 0.846

Team 2 convi6 0.4727 0.4378 0.0806 0.3319 0.846

Team 3 DeepSpike 0.4730 0.4347 0.0775 0.3338 0.851

Team 4 Purgatorio 0.5370 0.4325 0.0753 0.3258 0.815

Team 5 Embedding of CNNs 0.4900 0.4291 0.0719 0.2822 0.821

Team 6 Suite2p 0.4752 0.4188 0.0617 0.3071 0.821

Baseline STM 0.4024 0.3572 - 0.2664 0.821

Proposed S2S 0.6325 0.6404 0.2832 0.5208 0.847

https://doi.org/10.1371/journal.pcbi.1007921.t002
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2.3 Comparison to state-of-the-art supervised baseline

Fig 2 compares the performance of S2S with the best supervised baseline (Base) “convi6” (Sec-

ond row in Table 2). The baseline approach (convi6) had the second position in the challenge,

falling behind MLspike gracefully by 0.04%. The performance of S2S for each dataset of the

spikefinder contest is shown in Table 3. S2S achieved significantly better Pearson’s and Spear-

man’s correlation values across all the five different test sets and achieved comparable AUC.

We performed a paired t-test on the spikefinder test data to determine the statistical signifi-

cance of dataset-wise results of S2S as compared to that of the convi6 model. Each test dataset

was considered as a separate example file similar to that in the spikefinder challenge for the sig-

nificance test. The null hypothesis (H) was that there is no difference in the performance met-

rics (correlation, rank, and AUC) between S2S and convi6, at 95% confidence level (α = 0.05).

Table 4 shows the results of the statistical significance test for all of the evaluation measures.

The t-value from the table for a degree of freedom four is found to be 2.132. The t-value 1 cor-

responds to the paired t-test between convi6 and S2S with Gaussian target (refer to Section

2.4.1 for details on the training target), and t-value 2 corresponds to the t-test between convi6

and S2S with the actual training target.

There was a significant improvement in the correlation and rank measures. This was fur-

ther confirmed by the values of the mean and the standard deviation of the baseline methods,

where the primary evaluation measure was correlation. The value of primary evaluation mea-

sure (0.640) was greater than the mean and two times the standard deviation (Mean +2× STD)

of the baseline approaches (0.479), by 16.1%.

Fig 2. Dataset-wise performance to show the difference in evaluation measures between S2S and convi6. (a)

Correlation measure, (b) Rank (non-linear correlation) measure and (c) AUC measure.

https://doi.org/10.1371/journal.pcbi.1007921.g002

Table 3. Dataset-wise performance of S2S on the spikefinder test set.

Measure Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

Correlation 0.657 0.910 0.585 0.440 0.611 0.640

Rank 0.420 0.816 0.525 0.261 0.581 0.521

AUC 0.901 0.901 0.874 0.682 0.879 0.847

https://doi.org/10.1371/journal.pcbi.1007921.t003

Table 4. Results on paired t-test for statistical significance. “H” represents the hypothesis that there is no difference

in performance between S2S and convi6.

Measure t-value 1 t-value 2 Accept/Reject H

Correlation 2.32 2.33 Reject

Rank 2.14 2.16 Reject

AUC 1.11 1.00 Accept

https://doi.org/10.1371/journal.pcbi.1007921.t004
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Scalability of the proposed approach was evaluated by choosing a higher resolution (100

Hz). It was observed that correlation measures are affected, while there was a graceful degrada-

tion for AUC measure. Similar performance degradations were observed for baseline methods

as well (Table 5). We observed that the correlation measures were still better than all other

algorithms evaluated at 25 Hz.

We observed that the relative amplitude values of the spike estimate were closer to the

ground truth as compared to that of the baseline algorithms (refer to Section 3.1). This was

reflected in a large dynamic range for spike estimation values, which were also proportional to

the ground truth. This suggests that it might be possible to threshold the spike estimates to get

the spike train directly.

We investigated the retraining of the neural networks (new initialization and training on

the same dataset) in the S2S method and compared with the convi6 method. We found that

the S2S method was insensitive to re-initialization, while convi6 method performance varied

on average (standard deviation of 5%, 8%, and 1% absolute for correlation, rank, and AUC,

respectively). These results show that the proposed S2S method yields reliable estimates of the

spike signal. The best baseline performance (for primary evaluation measure) was observed

when using the weights provided by the spikefinder [19]. S2S was significantly faster than the

baseline. On Sun GPU clusters, S2S training was 50 times faster than that of the baseline

model. Other methods such as MLspike (winner of the spikefinder competition) and Vogel-

stein are based on signal processing and do not require training. The inference time of the neu-

ral network-based methods (convi6, S2S, and others) was O(n). Both the Vogelstein and STM

(test) ran in linear time. MLspike took O(nlogn) for dynamic programming and additional

time to auto-calibrate its parameters.

2.4 Analysis

In this part of the article, we provide an analysis of the proposed S2S method in terms of archi-

tecture, training target, generalization capabilities and layer-wise interpretation of the trained

network.

2.4.1 Training target. As discussed in the Methods section (Section 4.1.2), the S2S net-

work was trained with a modified ground truth or target by convolving the original discrete

spike information with a Gaussian function. Although the Gaussian window hyper-parameters

(11, 5), where (x, y) denotes Gaussian window width x and standard deviation y in the number

of samples, were obtained through cross-validation during the network training, a question

that arises is: what is the impact of less-sparse (more-dense) targets? So, we investigated the

S2S network’s training by convolving the target spike signal with the Gaussian windows of var-

iable sizes. For the sake of clarity, Fig 3 compares the performance obtained for (11, 5) with the

performance obtained for (33, 11) and the performance with a discrete spike signal as the tar-

get signal. It can be observed that convolving with Gaussian function helps. The performance

in terms of all three evaluation measures improves from a discrete spike signal to a Gaussian

target. Increasing the width of the Gaussian window beyond (33, 11) resulted in reduced

Table 5. Results on scalability experiments at 25 Hz and 100 Hz sampling rates.

Approach Evaluation Sampling Rate Correlation Rank AUC

S2S 25 Hz 0.640 0.522 0.848

S2S 100 Hz 0.527 0.448 0.846

Convi6 25 Hz 0.461 0.309 0.845

Convi6 100 Hz 0.367 0.181 0.844

https://doi.org/10.1371/journal.pcbi.1007921.t005
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performance, as the shape of the training target became very different from the discrete target

(actual ground truth). This hyperparameter might be related to the firing rate of the indicators

used in the training dataset. We observe that a window of (11, 5) suits best for the spikefinder

challenge dataset. There was a little improvement for all of the evaluation measures upon pro-

viding a smoothed Gaussian as the target. The difference in performance was 0.1% for the cor-

relation measure in the spikefinder test set and around 12% for the training set. Even with a

non-smoothed (“actual”) ground truth, the system’s overall performance is better than the

baseline methods (Figs 2 and 3 (left)).
In order to further validate the effect of windowing, we performed 10-fold cross-validation

of the spikefinder dataset and reported the performance in Table 6. Five training sets and five

test sets were used for the leave-one-dataset-out cross-validation. The Gaussian window-based

smoothing of the discrete spike target helped improve the correlation and rank measures by

5% and 7.5%.

2.4.2 Architecture. The number of hidden layers in the network architecture (explained

in the Section 2.4.2) was chosen based on cross-validation. We examined the role of the hidden

layers by varying the number of hidden layers from three (used in the experiments reported in

the Results part) to zero. The target for training was obtained by convolving the Gaussian win-

dow (11, 5) with the discrete spike signal. Fig 4 presents the results in terms of the three

Fig 3. Change in the evaluation measures with Gaussian windowing of the training targets. (left) Bar diagram depicting the difference in

Correlation, Rank and AUC when using the 100 Hz spike train as the target and when convolving this target with a Gaussian window to generate a

smoothed training target. Two different windowing sizes are shown; 11 samples with 5 standard deviation and 33 samples with 11 standard deviation.

(right) From top to bottom: An example calcium fluorescence signal and its corresponding training targets (spikes at 100 Hz, Gaussian targets with 5

and 11 samples each, and the ground truth at 10,000 Hz). Gaussian training targets are having an equivalent shape to the spikes target at 100 Hz. Note

that all of them are approximations of the original ground truth.

https://doi.org/10.1371/journal.pcbi.1007921.g003

Table 6. Results on 10-fold cross-validation with and without Gaussian windowing for the training target. GT: Ground Truth, AVG: Average and STD: Standard

Deviation.

Measure GT AVG ± STD Gaussian AVG ± STD δ AVG(%)

Correlation 0.781 ± 0.059 0.831 ± 0.055 5.0

Rank 0.647 ± 0.061 0.722 ± 0.064 7.5

AUC 0.879 ± 0.019 0.876 ± 0.018 -0.3

https://doi.org/10.1371/journal.pcbi.1007921.t006
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evaluation measures. It can be observed that, even without a hidden layer, the proposed S2S

method yielded a system that was competitive to state-of-the-art systems. The performance

improved with the addition of hidden layers. We found that the performance was saturated

beyond three hidden layers. As illustrated in the subplot with an example of the input signal,

S2S with the hidden layer(s) improves the denoising and spike-resolving capabilities compared

to the S2S without a hidden layer.

2.4.3 Generalization ability. The spikefinder challenge consisted of data obtained with

two different indicators, namely, GCaMP indicator and OGB indicator. In the challenge proto-

col, both the training and test conditions contained signals from these indicators. We exam-

ined the proposed approach’s generalization ability across different indicators by training the

S2S only on the GCaMP indicator data in the training set and testing on the test set of spikefin-

der contest containing data from both indicators. More specifically, the invariance of the spike-

finder test set performance to a change in the training set was considered. We trained S2S with

one hidden layer and three hidden layers. The training was carried out with targets obtained

by convolving the ground truth discrete spike signals with Gaussian window (11, 5). Table 7

presents the results for both one and three hidden layer S2S. It was observed that the S2S

trained only with the GCaMP indicator yielded competitive performance with that trained

using all the training data. Furthermore, it was observed in Fig 5 that the evaluation measures

Fig 4. Evaluation measures with changes in number of hidden layers. (left) Bar diagram depicting the difference in correlation, rank and AUC when

no hidden layer, 1 hidden layer and 3 hidden layers are used in the S2S network, respectively. (right) Illustrative example showing the improved spike

estimates when 3 hidden layers are used compared to one hidden layer.

https://doi.org/10.1371/journal.pcbi.1007921.g004

Table 7. Generalization across indicators. Experimental results with various number of hidden layers.

Configuration Training Indicator(s) Correlation Rank AUC

1 hidden layer GCaMP 0.608 0.510 0.832

1 hidden layer GCaMP + OGB 0.639 0.519 0.845

3 hidden layers GCaMP 0.622 0.518 0.843

3 hidden layers GCaMP +OGB 0.640 0.521 0.847

https://doi.org/10.1371/journal.pcbi.1007921.t007
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on OGB datasets only gracefully degraded for the GCaMP-only trained model in comparison

with the combined-model for all the datasets.

We extended the experiments further by considering only one indicator for the training

and the other for testing. For training a GCaMP-only model, we used two training datasets in

the spikefinder challenge and the five optional datasets provided for training. For training the

OGB-only model, the datasets from both train and test splits of spikefinder challenge were

taken. This resulted in six OGB datasets for training and two GCaMP datasets for testing. The

results of the experiments are given in Table 8.

The results corresponding to rows 1a and 1b in Table 8 considered the performance invari-

ance of S2S on the spikefinder challenge test set with a GCaMP-only based training. It was

observed that there had a drop of 0.5% in the primary evaluation measure. Rows 2a and 2b cor-

respond to the differences in OGB performance when only the GCaMP is used for the training.

The reduction in performance was 1.6%, 1% and, 1.6%, respectively, for correlation, rank, and

AUC. A somewhat different observation was made for generalization performance for OGB

indicators (Rows 3a and 3b in Table 8). The absolute difference in correlation, rank, and AUC

were 13%, 6%, and 8%, respectively.

From the results, it was observed that S2S is generalizable from GCaMP to OGB. However,

similar conclusion can not be drawn in the case OGB to GCaMP. The primary reason is the

absence of large amount of data for OGB.

2.4.4 Layer-wise output. The S2S method is interpretable, in the sense that the processing

carried out by each layer in the network can be visualized to gain insights. Fig 6 shows the

layer-wise outputs of the three hidden layer architecture. These outputs were generated by

feeding the calcium input signal and calculating the total response per layer with each layer’s

Fig 5. Dataset-wise performance showing the generalization ability of the three hidden layer S2S network.

“GCaMP” indicates that the training was done only with GCaMP indicator dataset. Datasets 1, 2 and 4 are based on

OGB indicator.

https://doi.org/10.1371/journal.pcbi.1007921.g005

Table 8. Results on generalization experiments. Experiments 2b and 3b represents generalization from GCaMP to OGB and vice-versa. For every experiments, the

number of datasets used for training and testing are given inside the brackets.

Sl No. Experiment Correlation Rank AUC

1a Train full (10) & Test full (5) 0.640 0.522 0.848

1b Train on GCaMP (7) & Test full (5) 0.635 0.516 0.838

2a Train full (10) & Test on OGB (3) 0.672 0.498 0.827

2b Train on GCaMP (7) & Test on OGB (3) 0.656 0.488 0.811

3a Train full (10) & Test on GCaMP (2) 0.594 0.558 0.881

3b Train on OGB (6) & Test on GCaMP (2) 0.465 0.493 0.803

https://doi.org/10.1371/journal.pcbi.1007921.t008
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trained weights. For more details regarding the estimation of layer-wise output, the reader is

advised to refer to the Methods section (Section 4). For the given calcium fluorescence input,

the analysis convolution layer seemed to make it less-noisy (or smooth out slight variation in

the signal), while preserving possibly the information “relevant” for spike estimation. Observe

that the shape of the input signal is preserved. The first hidden layer output after ReLU non-

linearity seemed to resolve potential spike positions. This output was then refined or filtered

by the subsequent hidden layers and the output synthesis layer by enhancing the signal at the

spike locations and suppressing the spurious spike locations. This yielded an output spike sig-

nal estimate that correlates well with the ground truth. Each layer contributed towards

Fig 6. Layer-wise output of a 3-dense layer S2S. Note that the calcium changes which are not clearly distinguishable in the original

fluorescence signal are amplified in the output of the deconvolution layer.

https://doi.org/10.1371/journal.pcbi.1007921.g006
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maximizing the similarity or correlation between the spike signal estimate and the ground

truth. It was worth noting that the output of hidden layers H2 and H3 did not differ too much

when compared to H1. The output synthesis convolution layer carried out the significant

refinements. This observation was in line with the earlier observation that one hidden layer

S2S yields performance comparable to the three hidden layer S2S.

2.4.5 Filter responses. The S2S method learned to synthesize the spike information from

the calcium fluorescence signals due to the filters in the analysis and synthesis convolutional

layers. Hence, we analyzed the frequency response of the filters. Fig 7 shows the cumulative

frequency response of the filters in the analysis convolutional layer and the synthesis convolu-

tional layer. It was observed that the analysis layer gives emphasis to low-frequency informa-

tion (between 0-5 Hz). In the case of the synthesis layer, we observed a harmonic structure,

which could be attributed to the fact that the layer predicts the spike signal. The harmonic

structure was present in the time-domain analysis as well. This is probably because the net-

work was learned to predict spike trains with different time-scales and frequency components.

The de-convolution layer that synthesized the signal at the output makes our approach dis-

tinct. It was more effective than the neural network-based methods that estimated spikes in a

sample-by-sample manner (refer to Section 2.3).

3 Discussion

We showed that the proposed S2S method could yield state-of-the-art results in the spike esti-

mation task. Our method resulted in significant improvement in both primary and secondary

evaluation measures. This architecture seems to be appropriate for the spike estimation prob-

lem. The synthesis layer (which reconstructs the spike signal) and the cost function based on

the correlation coefficient resulted in faster convergence and better performance.

3.1 Nature of improvement

S2S has significantly better linear and non-linear correlation measures and a comparable AUC

value to that of the baseline algorithms. We further observe that these differences are preserved

even at a higher resolution (10 ms bin width) as well (refer to the scalability experiments in

Section 2.3). Hence, S2S is able to infer spike trains (100 Hz) as well as the firing rates (25 Hz).

Fig 7. Cumulative frequency responses of filters. (left) Shows the frequency response of the analysis filters. (right) Shows the response of synthesis

filters having larger amplitudes at equal frequency intervals. The energy at the output of S2S is purely concentrated on spikes both at the temporal and

the spectral domain.

https://doi.org/10.1371/journal.pcbi.1007921.g007

PLOS COMPUTATIONAL BIOLOGY Signal-to-signal neural networks for improved spike estimation from calcium imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007921 March 1, 2021 12 / 19

https://doi.org/10.1371/journal.pcbi.1007921.g007
https://doi.org/10.1371/journal.pcbi.1007921


Fig 8 compares the spike estimates obtained from the S2S and the baseline convi6 method to

the discrete ground truth at 40 ms bin width.

It can be observed that the peak locations are better resolved in S2S than the convi6. The

dynamic range of S2S is much larger than the baseline, and this is reflected in the correlation

measure. For every action potential, the convi6 has a very small increase in the amplitude of

the estimated signal, typically around 0.001. The corresponding increase in the amplitude of

the S2S spike estimate is 0.2-0.3. The amplitude of the individual S2S spike estimates are espe-

cially high when the actual spike count is greater than one or when a burst of spike occurs, sim-

ilar to the ground truth.

The convi6 estimates have a shorter dynamic range than that of the S2S estimates. To con-

firm that, we compute the average deviation of the amplitude between the spike estimate and

the ground truth. The average deviation of the S2S spike estimate with respect to the ground

truth is much smaller than that of the convi6 method. The average deviation varies from 0.02

to 0.45 per test file for the S2S spike estimate, whereas it varies from 0.55 to 1.48 per test file for

the convi6 spike estimate. To further validate the statistical significance of the deviation per

test file, we conduct a pair-wise t-test considering all the 32 test files. The null hypothesis (H) is

that there is no statistical significance in the deviation per test file. The null hypothesis is

rejected with a very high confidence(α = 3.1E-30). We also observe that the improvement in

performance of S2S method is independent of Gaussian windowing that is applied optionally

to the discrete spike estimates during the training. The S2S output amplitude is proportional

to that of the ground truth across datasets, as evident in the correlation measures. The thresh-

old for getting the spike train can be different depending on the dataset. The dynamic range is

wide enough to put multiple thresholds to differentiate the occurrences of one or more spikes

at a time. This is an important advancement over the previous spike estimation methods.

In Fig 8, it can be observed that the relative spike positions at the output of S2S are similar

to that of convi6, as also pointed out by the AUC measure. Hence, the improvement in linear

and non-linear correlation measures can be mainly attributed to the amplitude of the spike

estimates, which are more accurate and quite useful for further thresholding.

Fig 8. Comparison of spike estimates. (a) An example calcium input signal, spike estimates of (b) S2S and (c) convi6

methods, and (d) discrete ground truth. Observe the similarity in shape between the S2S and the ground truth,

compared to the convi6 method.

https://doi.org/10.1371/journal.pcbi.1007921.g008
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3.2 Design aspects of the S2S method

We examined various design aspects of the S2S method. Our studies revealed that: (a) making

the targets less sparse by convolving the ground truth discrete spike signal with Gaussian win-

dow helps, (b) at least one hidden layer is needed to resolve the spike locations, (c) the method

is not sensitive to initialization; converges within 50 epochs, and yields similar performances

when retrained (the results are reproducible), and (d) the method is capable of generalizing

across unseen indicators.

One of the major concerns in using a supervised approach for spike inference is its

computational complexity. Generative approaches, on the other hand, require mainly novel

parametric settings for new datasets. S2S method, although being a supervised method, is com-

putationally efficient. All the top-performing supervised algorithms in the spikefinder contest

had recurrent units in the architecture, which resulted in increased training time. The pro-

posed S2S system is 50 times faster than the best performing supervised model when trained

with GPU using Sun Grid Engine, potentially because the network has very few trainable

parameters and the use of time-distributed hidden layers. As presented in the Methods section,

the three hidden layer S2S has only 8790 trainable parameters.

3.3 Multiple evaluation measures

Performance evaluation of a spike estimation algorithm should consider the spike estimate’s

overall shape, monotonic relationship with the ground truth, and the estimates’ accuracy with

multiple thresholds. There is no unique measure that encompasses all this information [35].

For instance, the spike train is considered as a density function, and its shape is evaluated with

the Pearson’s correlation coefficient. However, this measure is invariant under affine transfor-

mations. Thus, it is not easy to interpret the outputs as spike counts or rates. The Spearman’s

rank-order correlation coefficient evaluates both the strength and the direction of the associa-

tion between the two ranked variables. The dynamic ranges of the spike information and dis-

crete spike train are employed for ranking. Unlike the Pearson’s correlation coefficient, this

measure considers the non-linear relationship between the variables. Finally, the area under

the receiver operating characteristics (AUC) measures how well the spikes have been detected.

AUC is not sensitive to changes in the relative height of different parts of the spike informa-

tion. Thus, this measure alone is not adequate. The proposed S2S method outperforms all the

other systems in terms of Pearson’s correlation coefficient and Spearman’s rank correlation

coefficient and achieves similar performance in AUC (only the DeepSpike method has mar-

ginally high AUC). This indicates that the S2S is yielding a better estimate of spike signal than

existing generative and supervised methods. Specifically, the S2S method resulted in an

improvement of 46% in primary evaluation measure compared to the STM baseline, which is

two times that achieved by the Spikefinder contest (23%). This performance gain could help in

further directions in spike estimation based on signal reconstruction strategies.

4 Methods

4.1 Signal-to-signal neural network for spike signal estimation

As discussed earlier in the Introduction section (Section 1), approaches are emerging to con-

vert one sequence into another sequence in an end-to-end manner in various fields related to

sequence processing such as speech processing and natural language processing. For instance,

converting a sequence of acoustic features to a sequence of letters or words and translating the

sequence of words from one language to another language. We formulated the spike estima-

tion problem from the calcium fluorescence signal as a sequence-to-sequence conversion
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problem, as a signal is a time-ordered measurement. Towards that, we took inspiration from

recent work on end-to-end speech source separation [27] to develop a signal-to-signal network

which was then learned to predict/estimate spike signal given the calcium fluorescence signal

as input (as illustrated in Fig 1). Intuitively, the S2S method can be seen as a single-channel sig-

nal enhancement system where the desired spike signal present in the calcium fluorescence

signal was enhanced, while the undesirable signals or variabilities were suppressed.

4.1.1 S2S Architecture. The S2S method consisted of a convolution layer followed by a

fully connected dense layer(s) and an output convolution layer. The hidden layers were imple-

mented in a time-distributed manner, i.e., the output of the first convolution layer for every

segment of the calcium fluorescence signal was independently processed by the hidden layer

(s) and then synthesized by the output convolution layer. In the network, the output of each

hidden node or filter was fed to a rectified linear unit (ReLU) non-linearity, except for the out-

put convolution layer. ReLU units in the neural network did not saturate unlike sigmoid and

hyperbolic tangent activations. They also helped in learning a non-negative representation in

the successive layers.

The hyper-parameters of the S2S system were: the length of signal input wseq, kernel width

kWin and kernel shift dWin of the input convolution layer, number of filters in the input con-

volution layer nFiltin, number of hidden layers I and the number of nodes nhui in each hidden

layer i 2 {1, . . .I}, kernel width kWout and kernel shift dWout of the output convolution layer

and the number of filters in the output convolution layer nFiltout. Based on the systems

reported in the spikefinder challenge, we set wseq = 100 samples (i.e., 1 sec). We set kWin = wseq

and dWin = 1 sample. In the output convolution layer, kWout = nhuI (i.e. number of nodes in

the last hidden layer), dWout = 1 sample and nFiltout = wseq. In other words, for every frame of

100 sample input, the output convolution layer synthesized 100 samples of spike signal, which

were then overlapped and added to get a spike signal of the same length as that of the input cal-

cium fluorescence recording. The number of frames was determined by dWin, which was one

sample. The remainder of the hyper-parameters nFiltin = 30, I = 3 and nhu1 = nhu2 = nhu3 =

30 were determined by cross-validation on the training set through a coarse grid search. Thus,

the three hidden layer S2S compared against the state-of-the-art methods in the Results section

had (100 × 30 + 30)+ (30 × 30 + 30)+ (30 × 30 + 30) + (30 × 30 + 30) + (30 × 100) = 8790

parameters. In the case of the one hidden layer study presented in the Analysis section, the net-

work had (100 × 30 + 30) + (30 × 30 + 30) + (30 × 100) = 6960 parameters, and in the case of

no hidden layer (100 × 30 + 30)+ (30 × 30) = 6030 parameters.

4.1.2 Training the S2S system. We trained the S2S system by maximizing the Pearson’s

correlation coefficient between the spike signal estimated by the network and the ground truth

spike signal. We also investigated other cost functions such as mean square error and cross-

correlation with sigmoid non-linearity. Pearson’s correlation coefficient yielded the best sys-

tem on both the cross-validation experiments conducted on the training set and the test set.

For training the S2S, we split the training data in the spikefinder challenge into two parts: a

training set (80%) and a validation set (20%). At each training epoch, the training set was used

for training the network parameters, and the validation set was used for cross-validating the

network. We used Adam optimizer with a starting learning rate of 0.001 and a batch size of 20.

Early stopping with a patience factor of 6 was used to stop the training whenever the validation

loss increases compared to the previous epoch. As the ground truth was a sparse discrete sig-

nal, the target spike signal was optionally convolved with a Gaussian window to make the tar-

gets less sparse for the network’s efficient training. The Gaussian window (11, 5) was obtained

through cross-validation, i.e., the window that yielded the best validation cost. The implemen-

tation was carried out on Keras [36] with TensorFlow [37] backend. The software based on s2s

is available at https://github.com/Jiltseb/S2S_for_spike_inference.
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4.2 Data

We used the spikefinder challenge dataset to validate the proposed S2S method. We followed

spikefinder evaluation [19] owing to the following reasons: First, it is one of the largest publicly

available dataset containing different scanning rates and methods and calcium indicators. Sec-

ond, the spikefinder challenge provided a benchmarking framework to compare different

spike estimation methods using different evaluation measures. Finally, the challenge provided

state-of-the-art baseline systems to which the proposed method can be compared to. As men-

tioned earlier, the spikefinder dataset had five benchmarking datasets consisting of 92 record-

ings from 73 neurons. Five additional datasets from GENIE project [32] have been provided to

ensure that the supervised models do not over-fit to the training data and to test the generaliza-

tion ability. The zoom factor of all the recordings was at use-case resolutions for the calcium

imaging experiments. For further information, the reader is referred to [19]. The dataset is

available at https://github.com/codeneuro/spikefinder.

4.3 Comparison framework

The proposed method’s performance was compared to two sets of baselines: The results were

first compared to the top-five algorithms in the spike finder contest. They are either generative

[12, 14] or supervised [17, 19, 33, 34] approaches. The generative approach, which was initially

published in [12] use a biophysical model and estimates the maximum probable spike infor-

mation from the fluorescence signals. Efficient Bayesian inference was performed on this

MLSpike model, including a drifting baseline and non-linear modeling of calcium to fluores-

cence conversion. MLspike was the winner of the spikefinder contest. This algorithm’s perfor-

mance was boosted (with respect to the original work) owing to the parameter tuning with

respect to the challenge dataset. The second best generative approach [14] was based on an

auto-regressive approximation to the calcium fluorescence signal. Spike information was then

estimated by solving a non-negative sparse optimization problem. Based on the advances in

neural network-based models for various applications, it was not surprising that 7 out of top-

10 algorithms are deep learning-based supervised algorithms (refer to Table 1). All the top-per-

forming algorithms used recurrent layer in the network. For the best-performing algorithms,

we have taken the results from the spikefinder challenge [19], and by running the evaluation

scripts (https://github.com/berenslab/spikefinder_analysis).

We compared the proposed network’s performance and efficiency with the best-performing

supervised baseline that is available as an open-source Python software (https://github.com/

kleskjr/spikefinder-solution). We trained the network using open-source software. However,

the model weights provided by the “convi6” authors yielded better linear correlation values

than those obtained by training the neural network. Convolutional layers take a broad tempo-

ral context to predict a single output corresponding to the spike information. The dataset

index that was provided as an auxiliary input to the network observed to improve the system’s

performance. Convolutional layers are followed by an intermediate LSTM-recurrent layer and

further by convolutional layers of smaller width. The learned filters collectively capture the

spike-related information.

4.4 Evaluation

All the evaluations were done at 25 Hz (40 ms bin width), following the protocol used in spike-

finder evaluations (https://github.com/berenslab/spikefinder_analysis). As per the protocol,

we used Pearson’s correlation coefficient as the primary evaluation measure. Δ correlation is

computed as the average difference in correlation coefficient compared to the STM algorithm

(refer to Table 2). The secondary evaluation measure was Spearman’s rank correlation
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coefficient, which considers the direction and non-linear relationship between the estimates

and actual spikes. The area under the ROC curve (AUC) curve was the final measure, which

evaluates detection of spikes in a 40 ms bin. We used the function roc_curve from the scikit-
learn [38] Python package for computing the AUC and spearmanr function from the scipy [39]

Python package for computing the rank. These evaluation measures collectively denote the

similarity with the ground truth. We considered them in the order of their preference as in the

spikefinder challenge. The test set’s rank measure was not included in the challenge paper,

although it was the secondary measure on the training sets.

5 Conclusion

This paper presented a neural network-based signal-to-signal conversion approach (S2S) for

spike estimation from imaging data. The neural network analyses and filters the raw calcium

imaging data at the input and synthesizes or estimates the spike signal at the output, in an end-

to-end manner. During training, the parameters of the neural network are estimated by a cost

function based on Pearson’s correlation coefficient between the estimated spike signal and the

ground truth. Evaluations on the Spikefinder benchmarking data set showed that the proposed

approach achieves state-of-the-art performance in the spike estimation task. An exhaustive set

of experiments were performed to evaluate the statistical significance, scalability and generaliz-

ability of the results and learning capacity of hidden layers.
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