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Abstract—Low-power wearable technologies offer a promising
solution to pervasive epilepsy monitoring by removing the con-
straints concerning time and location, on one hand, and fulfilling
long-term tracking, on the other hand. In the case of epileptic
seizures, as the attacks infrequently occur, using an anomaly
detection approach reduces the need to record long hours of data
for each patient before detecting the successive coming seizures.
In this work, by combining the concepts of self-aware system
and anomaly detection, we propose an energy-efficient system
to detect epileptic seizures on single-lead electrocardiographic
signals, which is personalized after analyzing the first seizure of
the patient. This system, then, uses a simple anomaly-detection
model, whenever the model is deemed reliable, and uses a more
complex model otherwise. We show that after the personalization,
the number of patients, for which the method provides high
sensitivity, can reach 26 out of 43 patients with the false alarm
rate (FAR) of 4 alarms/day. Thus, the number of responders to
the system is increased by 24%, while the FAR is only increased
by one alarm/day, compared to the system that just uses the
simple model. This benefit occurs while the system complexity
decreases by 27.7% compared to the complex model. After
adding the two-level (simple and complex) anomaly-detection, the
complexity is tuned between 72.3% and 37.6% of the complex
model. Similarly, the sensitivity is tuned between 66.5% and
60.3%.

Index Terms—self-awareness, anomaly detection, low-power,
wearable devices, epileptic seizures.

I. INTRODUCTION AND RELATED WORK

Wearable devices are integrated into our everyday life,
monitoring our bio-signals continuously, mainly to gather
lifestyle statistics. However, these devices are also aiming to-
wards providing real-time notifications to patients, doctors and
caregivers. One of the most common neurological disorders
that can benefit from wearable devices for constant monitoring
is epilepsy [1]. However, a major limitation for such devices
is their battery life and the need to get recharged frequently.
At the same time, a significant obstacle in the development
of epileptic seizure detection algorithms is the lack of seizure
data specifically in developing patient-specific models.
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A solution to compensate for the lack of seizure data
is using anomaly detection methods, which develop their
detection models based only on the non-pathological data [2].
Different methods have been developed to perform anomaly
detection, including 1-class SVM [3], isolation forest (iForest)
[4], neural networks [5], etc. There are several studies, which
have used anomaly detection methods in epileptic seizure
detection systems. In [6], the 1-class SVM method is used
on EEG data, and the energy-based statistics are employed
as features. Although the sensitivity and detection latency
are highly satisfying for this work, they have a FAR of 1.6
alarms/hour, which is not acceptable in real scenarios. In [7],
the authors have performed patient-specific transfer learning
on ECG data. They have focused on FAR reduction, but
did not discuss the complexity of their detection algorithm.
More recently, in [8], anomaly detection is done on heart rate
variability, which again only focuses on accuracy and not on
energy consumption.

As we are embedding the detection method on a wearable
device, a low-complexity algorithm is necessary to be able to
perform constant monitoring of the patient. Thus, we have de-
cided to perform the anomaly detection using iForest algorithm
on ECG signal. We train a patient-specific anomaly-detection
model, but since not all anomalies correlate to seizures, we
exploit the data from the global population to get a first
estimator of the anomalies corresponding to seizures. Then,
the model is further tuned using the information from the first
confirmed seizure of each patient.

In addition to anomaly detection, our solution for reducing
energy consumption relies on the notion of self-awareness [9],
which equips the system with control units to facilitate moni-
toring the performance, adapting to changes, and improving
autonomously. Although the concept of self-awareness has
been used previously for real-time seizure detection [10], [11],
it has been applied to classification models, assuming that
we have enough seizure data to train a binary classifier. In
contrast, here, we are combining this concept with anomaly
detection methods to develop our system for datasets with
a significant imbalance between normal and seizure data.
By utilizing self-awareness, complex anomaly-detection is
performed only if necessary, reducing the overall complexity
of the calculations.



To validate our approach, we used the dataset and the
validation methodology proposed in [12], which is based on
the notion of responder subjects, defined as those for which
the method provides a sensitivity over 2

3 . To summarize, our
main contributions in this paper are as follows:
• In order to avoid large FAR for the patients with high

seizure thresholds, we use the information from the first
seizure of each patient to decide which detection model
should be used. In this way, after applying our method on
the ePatch dataset, compared to our complex model, we
have reduced the average FAR from 1 alarm per hour to
1 alarm per each 6 hours. Also, the complexity is reduced
by 27.7%. At the same time, in comparison with the
simple model, the number of responders is increased by
24%, while the FAR is only increased by one alarm/day.

• We utilize the notion of self-awareness in anomaly detec-
tion models, to further decrease the energy consumption
in the epilepsy detection systems designed for datasets
with insufficient seizure samples. By proposing our two-
level anomaly-detection model, we offer a trade-off be-
tween quality and energy consumption caused by tuning
the complexity of the overall system. According to ePatch
dataset results, the complexity of detection part is tuned
between 72.3% and 37.6% of the complex model, while
the sensitivity is tuned between 66.5% and 60.3%.

II. MULTI-LEVEL SELF-AWARE ANOMALY-DETECTION
SYSTEM

In this section, we describe our seizure detection approach.
First, it focuses on an anomaly detection model trained on
the non-pathological data of the patient, which is all the
data before the first confirmed seizure, or the first 24 hours
of recording without a seizure [12]. This model uses leave-
one-patient-out cross-validation estimation of the anomaly
threshold for seizures. Second, to gain more information and
improve the system for each specific patient, we observe the
performance of the detection model on the first seizure of the
patient. According to this observation, we subsequently use
two different self-aware approaches to improve the quality of
detection, as well as to decrease the energy consumption of
the system. The general overview of our detection system is
shown in Figure 1. In the following sections, we describe its
different parts.

A. Noise Filtering and Feature Extraction

As the first step, to reduce the noise, a low-pass filter
is applied to remove the frequencies above 60 Hz. Then,
as shown in Figure 1, a first set of features are extracted
from the filtered segment. As detailed in Subsection II-C,
feature extraction is tightly coupled with the self-awareness
mechanism. Thus, only the minimum set of features required
by the simplest model (f1) are calculated in this step.

B. Anomaly Detection

To overcome the lack of seizure data, we use the iForest
algorithm to perform anomaly detection based on the non-
pathological data of the patients. The iForest model consists

of several decision trees, which output a score for each input
indicating how easily this sample can be separated from other
samples. The overall score of each sample is then calculated
as the average of the scores given by all the trees of the iForest
model. Next, according to a threshold score that is chosen in
the training phase, the test input is marked as a normal sample
or as an anomaly. Thus, we decide the threshold based on
two factors: the target false alarm rate (r) and other patients’
threshold score. We set the threshold of patient i as the average
of other patients’ threshold scores for the target FAR:

Si
Th =

∑N
n=1,n6=i(S

n
Th|FAR = r)

N − 1
, (1)

where N is the total number of patients, and Sn
Th is the score

threshold of patient n.

C. Self-Awareness

In this work, self-awareness is defined as a method to decide
or switch between different levels of the detection models. This
module can be split into two parts:

1) Personalized threshold selection: In this step, we decide
whether to use the simplest model (Model1) or our multi-level
detection module, described in the next part. To gain informa-
tion about the complexity of seizure detection in each patient,
we use information from the output score of its first observed
seizure obtained from passing features f1 through Model1.
Here, we assume that if this seizure is not automatically
detected, the patient will have a mechanism to report it to the
system. We test the first seizure data with the iForest model,
which is trained on the non-pathological data that is gathered
before this seizure (Model1). If the scores are higher than the
previously defined threshold score (Sseiz > Sth), the detection
of the seizures for this patient is assumed to be complex. As
a result of this complexity, the threshold should be set to a
high value, which can result in many false alarms. To keep
the FAR within an acceptable range for these patients, we use
the result from the simplest detection model (Decision1). For
the other patients, we use our multi-level anomaly-detection
module to increase the system’s overall sensitivity.

2) Multi-level anomaly-detection: There usually exists a
trade-off between the complexity of a model and the ac-
curacy of its decisions. To reduce the runtime complexity,
we propose a new self-aware anomaly-detection technique,
which relies on a multi-level scheme that combines several
models. Then, to reduce the energy consumption of the system,
we train different detection models with different accuracies
and energy-consumptions (Model1−→M ). The simplest model
(Model1) consumes the least energy, but at the same time
supports fewer patients in terms of detection quality, compared
to other models. As we move towards more complex models,
the accuracy is improved, but the energy consumption is also
increased. Combining these models enables us to control the
trade-offs between accuracy and energy.

We first invoke the simplest anomaly-detection model
(Model1), and check the confidence in this first decision
(Conf > Th1). If the result’s confidence is satisfactory, we
adopt the decision (Decision1) as the final result; otherwise,
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Figure 1: Overview of our proposed self-aware anomaly-detection system

we move one level forward. Then, we calculate several ad-
ditional features (f2) and also estimate the confidence of the
second model (Model2). If this model’s decision (Decision2)
is deemed confident (Conf > Th2), it is chosen as the final
result. For each input, we continue this procedure until we find
a confident model to make the decision on the specific input
sample. In the case that no model give a sufficient confidence,
the system will rely on the most complex one (ModelM ).

The confidence of each model’s decision is evaluated based
on the score consistency of the model. We calculate the
confidence threshold based on the average standard deviation
of the scores provided by different trees of the iForest for the
normal data of the patient before the first seizure, as follows:

Thi = mean(std(score)) + αi × std(std(score)), (2)

where score is a matrix provided by the iForest model,
containing the scores given by all the trees for all training
samples. The parameter αi determines how often the Modeli
is invoked. To decide whether the model is confident about
the new sample, we suppose that the deviation of the scores
of different trees should be less than the threshold calculated
in the training phase for this model. So, if this deviation is
less than the above confidence threshold, the model’s decision
is considered confident, and the next models are not triggered.

In our self-aware anomaly-detection technique, for many
(test) samples, the simpler models yield confident decisions,
meaning that the more complex models are not required. This
situation leads to an improved battery life. We formulate the
expected complexity as follows:

E(CML) =

M∑
i=1

Pi · Ci, (3)

where CML and Ci are the overall complexity of the multi-
level detection system and the complexity of Modeli, respec-
tively. The parameter Pi captures the probability of invoking
Modeli, which determines the expected complexity of the
proposed technique.

III. EXPERIMENTAL SETUP AND RESULTS

A. Dataset
We have used an ECG dataset collected at the Aarhus

University Hospital in Denmark [12], including 43 patients

with an average recording length of 74 hours per patient. The
ECG signal is recorded in single-lead mode at a frequency
of 512 Hz using a wearable ePatch device. Seizure onset
was marked by trained experts as the first clinical or EEG
sign of the seizure (whichever came first), and the seizure
termination was considered as the last clinical or EEG sign of
the seizure (whichever came last). In [12], three basic HRV
analysis methods with two different time-lengths of sliding
window with maximum overlapping are evaluated (sliding
from heartbeat to heartbeat). These basic methods are the
followings: Heart Rate differential (HR-diff) method, Cardiac
Sympathetic Index (CSI), and Modified CSI (ModCSI). We
have used the features, which are calculated for a window of
100 RR intervals, as they achieve a higher detection quality.

B. Two-level Anomaly-Detection

In this study, we limited the multi-level detection system of
Figure 1 to two models and designed a two-level anomaly-
detection model based on the iForest algorithm. In particular,
we trained two iForest models. The first model only considers
a limited set of features, which we refer to as the simple model
(Model1). For this model, we have used the three features
achieving highest number of responders, namely, CSI×slope,
CSI filtered × slope, and MCSI filtered × slope. The
second-level model uses all the ten features calculated for
100 RRIs for training and detection and is referred to as the
complex model. Since the simple model considers a limited
subset of features, it requires less computation for detection
compared to the complex model. On the other hand, given
the number of features, the complex model is generally more
accurate than the simple one.

C. Performance Results

As the provided ECG signal contains continuous recording
of the patients, we have used sensitivity and false alarm rate
(FAR) performance metrics to evaluate our method. We also
use the same concept of responders as introduced in the
ePatch paper, thus calculating the performance metrics for
both responders (FAR resp and sens resp) and the whole
dataset (FAR all and sens all). The performance results are
shown in Table I, where we compare the modes of using only



Table I: Comparison among the performance metrics of different proposed systems, r = 2 alarms/day

Method Psimple % responders FAR resp (/day) sens resp % FAR all (/day) sens all % complexity (% of Ccomplex)
simple 21 2.85 97.7 3.04 59.5 30.0

self-aware

82 22 3.51 96.3 3.99 60.3 37.6
53 22 4.41 97.8 4.16 61.8 49.9
16 24 4.99 95.2 5.29 63.4 65.6
0 26 3.99 93.4 4.46 66.5 72.3

complex 32 24.17 92.1 27.39 77.9 100

the simple model, using only the complex model, and using
a self-aware model with different probabilities of employing
the simple model. The three different probabilities (Psimple)
shown in this table results from using the values -1, 0, and 1
for αi in Eq. (2). In fact, in our self-aware model, we always
have the first form of self-awareness, which results in using
the simple model for 17 patients. Thus, the numbers presented
in the second column are the probabilities of using the simple
model for the 26 remaining patients.

As shown in Table I, there is a trade-off between the number
of responders (or the overall sensitivity) and the average
FAR. If we use the first form of self-awareness, the number
of responders is increased by 24% with respect to always
using the simple classifier. At the same time, the FAR is
increased from 3 to 4 alarms per day. Then, by adding the two-
level anomaly-detection method, with different probabilities of
using the simple model, the range of responders is between
21 and 26. Then, the number of FAR varies between 3 and 5
alarms per day. Moreover, although the number of responders
is very high when we only use the complex model, the FAR
is about one alarm per hour, which is not acceptable.

D. Complexity Results

Considering the aforementioned features, whose definitions
are available in [12], we observe that the computational com-
plexity for all of these features is O(N), where N is the number
of RRIs in one window. Thus, the complexity of complex
features calculation is 10/3 times of the simple features
calculation complexity (Ccomplex

Csimple
= 10

3 ). As a result, for the
total complexity (Cself−aware) the following is obtained:

Cself−aware

Ccomplex
=
Ns × Csimple +Nc × Ccomplex × E(CML)

N × Ccomplex
,

where Ns and Nc are the number of patients only using the
simple model and the number of patients using the complex
one totally or partially, respectively. Then, the term E(CML)
is the expected complexity calculated as Eq. (3) with M = 2.
Thus, if we only use the first part of self-awareness, the
complexity is reduced to 72.3%. If we add the second part,
then the self-aware system complexity for different values of
Psimple, as shown in Table I, becomes 37.6 %, 49.9 %, and
65.6% of the complex system. To compare the simple and
the complex models on an actual embedded device, according
to the latest ECG-based smart wearables designs [13], we
have implemented both models on the NVIDIA Jetson Nano
Developer Kit [14]. For processing 1 hour of data, the simple
model takes 6.08 seconds and consumes 0.202 mAh, while the
complex model takes 16.28 seconds and consumes 0.575 mAh.

As a result, the energy consumption of the complex model is
2.85 times higher than the simple model on this device, which
is in line with the complexity results shown in Table I.

IV. CONCLUSIONS

In this paper, we have presented a self-aware anomaly-
detection system for seizure detection on ECG signals. This
system enables us to trade-off detection quality with energy
and complexity, by using a new multi-level anomaly-detection
approach. For our seizure detection case study trained on the
ePatch dataset, we have shown that after applying person-
alization, the number of responders can reach 26 out of 43
patients with the FAR of 4 alarms/day instead of 3 alarms/day,
compared to the system that only uses the simple model. For
this minimal increase of FAR, the computational complexity
of the system decreases by 27.7% compared to the complex
model. Then, after adding the two-level anomaly-detection
the complexity is tuned between 72.3% and 37.6% of the
complex model, while the sensitivity is tuned between 66.5%
and 60.3%. These experimental results show that the proposed
methodology can provide significant benefits independently of
the specific wearable platform where it is implemented, as it
relies mainly on the biosignal characteristics and number of
calculated features for each model.
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