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Abstract 

 

 

The generation of catalyst design tools is important for developing both economically and 

environmentally friendly reactions. This thesis focuses on the use and development of such a 

tool, molecular volcano plots, which have the ability to estimate catalytic performance while also 

providing an ameliorated understanding of the intricate chemistry that influence reactions. The 

original work presented here is divided into three parts that cover: (1) exploration of volcano 

functions, (2) acceleration of catalyst-screening process and (3) extraction of the detailed 

chemistry for interesting chemical reactions from volcano results.  

The first examines additional functions of volcano plots in which, for the first time, substrate 

scopes can be screened using volcano plots as similar as catalysts. This type of volcanoes can 

estimate the reactivity of each substrate and also provide an enhanced understanding of substrate 

scope, an important facet of chemistry that is often overlooked by computation.  

The second section focuses on accelerating the catalyst-screening process through the use of 

machine-learning models. Specifically, we illustrate how machine-learning models can be used 

to predict the value of a descriptor variable that can be related to catalyst performance through 

volcano plots. This procedure allows us to expand the number of catalyst being screened to tens 

of thousands of species which, in turn, provides a much broader picture of catalyst behavior. The 

use of big-data techniques highlights the specific manner in which metals and ligands can be 

combined to identify tuned catalyst for a given chemical reaction. 

In the final section, we use molecular volcanoes to probe the catalytic hydrogenation of carbon 

dioxide to formate using transition metals paired with pincer ligands. This work ultimately 

identified a combination of group 9 metals with π-acidic pincer-ligands as the best catalysts for 

this reaction. Using this same reaction, we also developed a molecular volcano variant that 

directly predicts an experimental observable, the turnover frequency (TOF), from the value of a 

descriptor variable, thus establishing “TOF volcanoes”. 

Overall, this thesis demonstrates how molecular volcanoes can be used as a rational catalyst 

design tool in the field of homogeneous catalysis as well as route to uncovering chemical trends 

that provide greater fundamental understanding about why specific catalysts and/or substrates 

exhibit high functionality for a particular reaction.  
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Résumé 

 

 

La génération d'outils pour le design de catalyseurs est importante pour développer des réactions 

à la fois économiques et respectueuses de l'environnement. Cette thèse se concentre sur 

l'utilisation et le développement d'un tel outil, les volcano plot moléculaires, qui permettent 

d'estimer les performances catalytiques d’une molécule tout en fournissant une meilleure 

compréhension de la chimie qui influence les réactions. Le travail original présenté ici est divisé 

en trois parties qui couvrent : (1) l'exploration des fonctions du volcan, (2) l'accélération du 

processus de sélection des catalyseurs et (3) l’analyse des transformations chimiques pour des 

réactions intéressantes à partir des résultats du volcan. 

La première partie examine les fonctions additionnelles des volcano plots dans lesquelles un seul 

volcan peut être utilisé pour sélectionner et estimer les performances de catalyseurs étant 

caractérisées par différents ligands, états d'oxydation et états de spin. En outre, pour la première 

fois, nous montrons comment les volcano plots peuvent être utilisés pour avoir une meilleure 

compréhension du domaine d’application du substrat, un aspect important de la chimie souvent 

négligé dans les calculs. 

La deuxième section se concentre sur l'accélération du processus de sélection des catalyseurs 

grâce à l'utilisation de modèles d'apprentissage automatique. Plus précisément, nous montrons 

comment les modèles d'apprentissage automatique peuvent être utilisés pour prédire la valeur 

d'un descripteur directement lié aux performances du catalyseur via les volcano plots. Cette 

procédure nous permet d'augmenter le nombre de catalyseurs potentiels à des dizaines de milliers 

d'espèces qui, à leur tour, nous permettent d’établir une image beaucoup plus complète des 

caractéristiques du cycle catalytique. L'utilisation de techniques d’analyse sur des grandes bases 

de données nous a permis de découvrir comment les métaux et les ligands peuvent être combinés 

afin d’obtenir le catalyseur idéal pour chaque réaction chimique. 

Dans la dernière section, nous appliquons les volcano plot moléculaires au problème de 

l'hydrogénation catalytique pour transformer le dioxyde de carbone en formiate avec des métaux 

de transition en combinaison avec des ligands pinces. Ce travail a finalement identifié une 

combinaison de métaux du groupe 9 avec des ligands pinces π-acides comme les meilleurs 

catalyseurs pour cette réaction. En utilisant cette même réaction, nous avons également 

développé une variante de volcan moléculaire qui prédit directement une observable 

expérimentale, la fréquence de turnover (TOF), à partir de la valeur d'une variable descriptive, 

établissant ainsi les «volcanos TOF». 

 



Résumé 
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Dans l'ensemble, cette thèse démontre comment les volcans moléculaires peuvent être utilisés 

comme outil de conception rationnelle de catalyseurs dans le domaine de la catalyse homogène. 

En outre, cette thèse montre que ces outils peuvent être utilisés comme moyen de découvrir les 

tendances chimiques et obtenir une meilleure compréhension des raisons pour lesquelles certains 

catalyseurs et / ou substrats présentent une activité élevée pour une réaction particulière. 

 

 

Mots clefs: les volcano plot moléculaires, libre énergie linéaire, relation de mise à l'échelle, 

conception de catalyseur, homogène catalyseur, combinaisons des ligands métalliques, chimie 

intrinsèque, effets des catalyseurs et substrats
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1 Introduction 

 

 

Catalysts are essential components of chemical reactions, as over 90% of industrial chemical 

products include catalytic reactions as part of their production process.1 The development of new 

catalysts is, therefore, necessary for further improving reaction efficiency and selectivity, as well 

as for identifying cheaper and/or milder operating conditions that are highly beneficial on  

an industrial scale. To accomplish this, various tools have been developed for screening  

and predicting the performance of prospective new catalysts including: multidimensional 

modeling using a design of experiments (DoE),2 high throughput screening,3 linear scaling 

relationships (LSRs) and volcano plots,4-7 as well as others.8-11 High throughput screening and 

LSRs/volcano plots are regularly used in electrocatalysis,12-13 heterogeneous14-15 and 

homogeneous catalysis16-18 whereas multidimensional modeling using DoE has mainly been 

limited to the study involving asymmetric homogeneous catalysis.2, 19-25 While a strict 

requirement, the increased use of computational modeling has led to the creation of the 

significant amounts of data that has further aided in the development and application of these 

tools. On one hand, computational modeling is a practical path for uncovering the details of a 

specific catalytic process.11 Information such as the active form of a catalyst, the details of 

reaction mechanisms, and the relative energetic cost of completing reaction steps can all be 

elucidated, which can each be used to guide the development of future reactions. The principal 

drawback, however, is that individual computations on a single catalytic system are time-

consuming and not necessarily transferable to other (even related) systems. Thus, a clear need 

exists for further developing tools that combine large quantities of data about different catalysts 

and establish trends that predict catalytic properties (i.e., reaction energies, turnover frequencies).  

The notion and application of linear scaling relationships (LSRs) are peppered throughout  

the history of chemistry. Pertinent examples include the Hammett equation26-29 and 

Bell−Evans−Polanyi principle30-31 from physical organic chemistry, the Brønsted catalysis 

equation32 from homogeneous catalysis, and the general use of such relationships in 

electrocatalysis.33-34 By plotting LSRs, a relationship between two parameters, e.g., energies, rate 

constants, and bond distances, can be established. Linearity within the plot indicates that an 

association between two states is universal for a certain condition. Importantly, LSRs allow 

reaction behavior to be defined in terms of a single descriptor variable, which can be used to 

construct volcano plots (vide infra). Because the relative energies of different species in the 

catalytic cycle depend on one another, their relative stabilities can be determined through the use 

of the LSRs when the value of the descriptor variable is known. In other words, the energy 

1 
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profiles that dictate catalytic behavior are concealed within the LSRs and can be unraveled by 

knowing this single descriptor. Moreover, the mathematical equations obtained from LSRs can 

be processed further to construct volcano plots, which can relate intrinsic properties of the 

catalyst to a descriptor variable. 

Volcano plots are built upon Sabatier’s principle, which states that the interaction between the 

substrate and an ideal catalyst should be neither too strong nor too weak.35-36 This concept can be 

depicted in a volcano-shaped plot, where the two volcano slopes that define the overall shape 

correspond to catalyst/substrate interactions being either “too strong” (left slope) or “too weak” 

(right slope). The plateau region located on the top of the volcano represents a balanced 

interaction, which is a hallmark of ideal catalysts. Formerly, volcano plots were exclusively used 

for applications in electrocatalysis and heterogeneous catalysis. In 2015, however, the concept 

of volcano plots was successfully transferred to homogeneous catalysis by our group.5 The first 

“molecular volcano plot” depicted catalyst performance for a model Suzuki−Miyaura cross-

coupling reaction. Following this proof-of-principle study, the molecular volcano concept has 

been used to identify new and promising catalysts for various chemical reactions and, by 

incorporating other algorithms/tools such as machine learning represents a capable tool for the 

large-scale screening of catalysts and rationalizing the behavior of homogeneous catalysis.  

This overarching theme of this thesis involves developing and utilizing molecular volcano plots 

as tools for fine-tuning catalytic reactions. The material is organized following the three specific 

aspects we wanted to examine: (1) explore the capability and functionality of molecular volcano 

plots, (2) develop ways for reducing the computational cost associated with screening catalysts, 

and (3) apply volcano plots to study various chemically relevant reactions to understand the 

chemical information hidden underneath. 

Chapter 2 provides the reader a brief history as well as discussion on the state-of-the-art of 

molecular volcano plots, which has also been published in Accounts of Chemical Research.37 

Since the beginning, volcano plots are often used to investigate the behavior of catalysts; 

specifically, for homogeneous catalysis, the effects of each component of the catalysts i.e., 

transition metals and ligands have been examined using molecular volcano plots. However, 

volcanoes can also be used to better understand the impact of other reaction components. The 

reacting substrates are a key element that influence the catalytic process, where modifying 

functional groups or core structures can result in significant changes to overall activity. Chapter 

3 shows how molecular volcano plots are used to provide an enhanced picture of reaction 

substrate scope by examining a series of electrophile substrates (allyl bromide) for a 

Suzuki−Miyaura C−C cross-coupling reaction. This work clearly demonstrates that the ability of 

volcano plots is not limited to examining only catalysts and unlocks a door that links the 

energetics of the catalyst and substrate worlds. This communication has been published in 

Organic Letters.38 

Molecular volcanoes are computational based tools, yet the process of catalyst screening that 

requires computing the value of the descriptor variable remains costly when large numbers of 

catalysts must be analyzed. As such, finding alternative approaches that reduce the computational 

burden during screening is paramount to fully explore catalyst space. Machine-learning (ML) 

models, statistical based approaches that rapidly analyze huge amounts of data, have previously 



 

3 

been developed and exploited to solve many chemical problems. In Chapter 4, we demonstrate 

how a ML model can be combined with molecular volcano plots to rapidly predict the descriptor 

variables and ascertain the species having the best thermodynamics from a pool of over twenty-

thousand catalyst candidates for a Suzuki−Miyaura cross-coupling reaction. This article has been 

published in Chemical Science.39   

The results obtained from the aforementioned machine-learning/volcano plot tandem not only 

can be used to estimate the descriptor values for a large number of catalysts but also to extract 

chemical trends using methods borrowed from big-data analysis. In Chapter 5, we employ 

dimensionality reduction algorithms (i.e., Sketch-Maps)40-41 to illustrate and decipher hidden 

patterns in the chemistry of cross-coupling reaction that reflect the different behavior and the 

magnitude to which altering the metals and ligands changes the catalytic cycle energy profiles. 

This article has been published in ChemCatChem.42  

The third objective of this thesis aims at utilizing volcano plots to study interesting chemical 

reactions. In Chapter 6, we use molecular volcanoes to elucidate the effects of metal−pincer 

ligands for the hydrogenation of carbon dioxide to formate, an important feedstock product that 

can be used in numerous chemical applications. The volcano plots focus on how coupling certain 

metals with specific ligands can lead to ideally tuned catalysts possessing superior energetic 

profiles. This article has been published in Organometallics.43  

Typically, molecular volcanoes distinguish “good” from “bad” catalysts by plotting the most 

energetically costly reaction step in the catalytic cycle as a function of the descriptor variable. 

However, evaluating catalysts using this direct energy criterion provides no direct relation to 

measurements of catalytic activity obtained from experiment. In Chapter 7, we use the same 

hydrogenation of carbon dioxide to formate reaction to create a volcano variant that directly 

relates an experimental observable, the turnover frequency (TOF), with the value of the 

descriptor variable. This article has been published in ACS Catalysis.44 

Finally, Chapter 8 concludes the thesis by summarizing the main findings of molecular volcano 

plots with respect to the three overarching objectives. Future work is suggested regarding 

potential further developments that will further raise the applicability and utility of volcano plots 

for homogeneous catalysis. 
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2 The Genesis of Molecular Volcano Plots 

This chapter is partly based on following publication: 

Wodrich M. D., Sawatlon B., Busch M., and Corminboeuf C. The Genesis of Molecular Volcano 

Plots, Acc. Chem. Res. 2021, 54, 1107-1117. 

 History and The Origin of Volcano Plots 

Volcano plots are efficient tools for optimizing catalytic reactions and, correspondingly, have 

found widespread use within many areas of catalysis. Historically, these plots are derived from 

an over century old idea, Sabatier’s principle,35-36 which states that an ideal catalyst should neither 

bind the products too strongly nor the reactants too weakly. This concept was put into practice in 

the 1950s independently by Gerischer45 and Parsons46 as a means to visualize the activity of 

metals towards electrochemical H2 evolution. As in modern volcano plots, these early works 

utilize a descriptor variable (e.g., the binding energy of hydrogen) plotted along the x-axis and a 

measurement of catalytic activity (e.g., the experimental current density) plotted on the y-axis. 

In line with Sabatier’s principle, the resulting volcano shape (Figure 2.1) demonstrates a clear 

relationship between the descriptor variable value and catalytic activity. The volcano shape can 

be subdivided into three regions: the left slope where the catalyst binds intermediates too strongly 

(i.e., the “strong-binding” side of the volcano), the right slope where catalysts that bind 

intermediates too weakly are found, (i.e., the “weak-binding” side of the volcano) and finally an 

ideal binding region on the volcano plateau where catalysts bind intermediates neither too 

strongly nor too weakly. It is catalysts that fall into this region (i.e., those located at or near the 

volcano plateau or peak) that satisfy Sabatier’s principle, and are likely to be amongst the best 

catalysts for a given reaction.  

Despite the appealing simplicity of the volcano concept, only a handful applications appeared in 

the literature in the following decades.47-48 Beginning in the early 2000s, they began appearing 

with increasing frequency, largely due to the work of Nørskov. In part, this growth in applications 

can be ascribed to the rise of density functional theory (DFT) computations that provided direct 

access to the key energetic quantities needed to construct the plots, specifically the energy of the 

descriptor intermediate and a measure of activity such as the thermodynamic overpotential.49-51 

The subsequent realization that linear free energy scaling relationships (LFESRs) govern the 

relative stabilities of different catalytic cycle intermediates in the form of binding energies52-53 as 

well as transition state barriers51, 54 further provided a simply route for obtaining the overall 

volcano shape for any given reaction mechanism. Correspondingly, the global limitations for 

many reactions of interest were obtained, as exemplified by Rossmeisl for the water oxidation 

reaction over transition metal oxides.55-56 Other, more recent advancements, include employing 

2 
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volcano plots to examine the stability of materials57 or accounting for competing reaction 

mechanisms.58-59 

 

Figure 2.1 Schematic overview of a volcano plot. The descriptor value is plotted along the x-axis 

and the negative of the free energy of the most difficult reaction step of the catalytic cycle (or 

another measure of catalytic activity) along the y-axis. Catalysts with the best thermodynamic/ 

kinetic profiles (e.g., Cat2 and Cat3) appear at or near the volcano plateau (or peak) in the 

Sabatier ideal binding region (purple), catalysts having overly strong catalyst/substrate 

interactions (e.g., Cat1) appear along the left “strong binding” slope (gray), while catalysts with 

overly weak catalyst/substrate interactions (e.g., Cat4 and Cat5) appear along the “weak binding” 

right slope (blue).  

In spite of their simplicity and predictive power, volcano plots and LFESRs have remained nearly 

exclusively the province of electrocatalysis and heterogeneous catalysis. Although proposed in 

an abstract manner by Swiegers in 2008,60 in 2015 our group first constructed “molecular volcano 

plots”5 by examining a prototypical homogenous catalysis reaction, Suzuki−Miyaura cross-

coupling. This initial work opened a new research line aimed at, broadly speaking, identifying 

new and improved catalysts for relevant chemical problems by developing and expanding a 

computational framework based on creating and applying volcano plots to the study of 

homogeneous catalysis. This chapter explores the key developments and chemical findings that 

constitute the emerging field of molecular volcano plots. 

 Thermodynamic Volcano Plots – Proof-of-Concept 

Our initial work5 began by identifying a suitable homogenously catalyzed reaction with available 

experimental data that would serve as an important “check” on the validity of the results obtained 

from our yet unproven molecular volcanoes. As a proof-of-principle example, we examined a 

Suzuki−Miyaura cross-coupling reaction of a vinylbromide and a vinyl boronic acid to form 

butadiene (Equation 2.1). Invoking a protocol typically used in heterogeneous/electrocatalysis, 

we restricted ourselves to analyzing only thermodynamic aspects of the catalytic cycle (i.e., 

intermediates only) for a series of 36 catalysts comprised of six metal centers (Ni, Pd, Pt, Cu, Ag, 

Au) appended with a set of six electronically diverse ligands. From this catalyst set, we identified 
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robust linear free energy scaling relationships (LFESRs) between the relative free energies of the 

different catalytic cycle intermediates. This finding was a key requirement that allowed us to 

proceed with constructing molecular volcano plots. Ultimately, the relative energy of 

intermediate 2 (equivalent to oxidative addition, Rxn A, in Figure 2.2) was found to be the best 

descriptor variable. Post-processing the LFESRsi led to the Figure 2.3a volcano plot, where the 

descriptor variable is plotted along the x-axis and the negative of the most difficult reaction step 

in the catalytic cycle (by convention referred to as the potential determining step, pds) is given 

on the y-axis. Adding points for the 36 catalysts to the volcano showed that the results aligned 

well with experimental trends; palladium catalysts appear near the plateau while most other group 

10 metal catalysts (nickel and platinum) are located along the volcano’s strong-binding left slope 

(where the free energy of Rxn C is the most energetic-costly catalytic cycle step) of the volcano. 

On the other hand, all coinage metal catalysts were found along the volcano’s weak binding right 

slope (where the free energy of Rxn A is the most energetic-costly catalytic cycle step), indicative 

of generally worse thermodynamic profiles than the group 10 catalysts. Overall, the existence of 

unambiguous LFESRs, the reconstitution of a typical volcano shape, and the location of 

experimentally verified catalysts atop the volcano validates that the volcano concept is indeed 

applicable to homogeneous catalysis.  

  Equation 2.1 

 

Figure 2.2 Abbreviated catalytic cycle depicting the key steps for C−C cross-coupling reactions. 

While our initial work established the viability of molecular volcano plots, a number of questions 

concerning their overall robustness and transferability persisted. In cross-coupling reactions, for 

instance, some catalysts (e.g., those bulky ligands) likely transit the catalytic cycle in a 

monoligated rather than bisligated (as examined in our original work) state. Moreover, it is also 

conceivable that some catalysts exist in higher oxidation and/or alternative spin states, which 

would also influence reactivity. This raises the question: do these alterations lead to separate sets 

of LFESRs and unique volcano plots? To answer this question, we reexamined Suzuki cross-

coupling, placing emphasis on how changes in the ligation, spin, or oxidation state influence both 

the accuracy of the underlying LFESRs and the volcano shape.61 We found that while the overall 

i The example on how to construct volcano plots is shown in Appendix A and C. 
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thermodynamic profiles of the catalysts change when the ligation, spin, or oxidation states are 

altered, that the same sets of LFESRs remain. As a result, a single volcano capably describes 

catalysts with any (or all) of the aforementioned changes. This is nicely illustrated by the 

monoligated Ni catalysts shown in Figure 2.3b, which possess good thermodynamic profiles 

when traversing the catalytic cycle in Ni(I)/Ni(III) oxidation state, but are less active in their 

Ni(0)/Ni(II) state. Indeed, Figure 2.3b shows that the change in oxidation state from Ni(0)/Ni(II) 

to Ni(I)/Ni(III) causes a weakening of interaction between the catalyst and the reaction 

intermediates that results in a rightward shift in the volcano plot that corresponds to improved 

thermodynamic profiles. 

 

Figure 2.3 (a) Thermodynamic volcano plot for a C−C cross-coupling reaction. (b) Volcano plot 

highlighting the thermodynamic influence induced by changes in oxidation state. Note that the 

same linear free energy scaling relationships and volcano plot describe both sets of species. (c) 

Volcano plot depicting changes in the transmetalation energy from different named chemical 

reactions and (d) a three-dimensional volcano showing the energetic relationship of the different 

cross-coupling variants. 

The previously described works applied molecular volcanoes to a Suzuki−Miyaura cross-

coupling reaction. However, Suzuki−Miyaura is only one variant of a number of well-known 

“named” cross-coupling reactions (e.g., Kumada, Negishi, Stille, Hiyama) that differ only by the 

chemical agent employed during transmetalation (“Y” in Rxn B, Figure 2.2). Indeed, the free 

energy associated with transmetalation is often the largest thermodynamic barrier encountered in 

the catalytic cycle for “good” catalysts (i.e., this reaction defines the volcano plateau). Thus, 

altering the cross-coupling partner influences the energy of transmetalation that dictates the 

height of the volcano plateau (Figure 2.3c), where more reactive coupling partners (e.g., LiR) 
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raise and less reactive partners (e.g., SiF4
1−, Hiyama) lower the plateau height in the 

corresponding volcano plots.  

Establishing the relationship between each of these individual cross-coupling volcanoes allows 

a unified thermodynamic picture of cross-coupling reactions to be formed, which can be 

displayed as a three-dimensional volcano plot (Figure 2.3d).62 In essence, this three-dimensional 

volcano is most easily understood as a series of standard two-dimensional volcanoes (e.g., Figure 

2.3a) pasted together, where the descriptor variable is displayed on the x-axis and −ΔG(pds) on 

the z-axis. The three-dimensional volcano also uses the transmetalation energy as a second 

descriptor variable (y-axis). Knowing the value of the transmetalation step associated with a 

specific chemical reagent (e.g., SiF4
1− for Hiyama coupling) reveals the location of the specific 

“slice” that gives the corresponding two-dimensional volcano. In this case, as the transmetalation 

step becomes easier (i.e., moves toward more exergonic transmetalation energies), the value of 

the pds decreases (seen in Figure 2.3d as a shift from blue to green to red). This increase in the 

reaction’s thermodynamic drive is accompanied by a narrowing of the volcano plateau, meaning 

that fewer catalysts will have ideal thermodynamic profiles. Ultimately, the transmetalation 

becomes so energetically facile that the volcano plateau disappears entirely (represented by the 

Sabatier line, Figure 2.3d), leaving only a peak where the energies associated with either 

reductive elimination (left slope) or oxidative addition (right slope) dictate the catalytic cycle 

thermodynamics. Overall, this generalized picture of C−C cross-coupling provides routes to 

improving the thermodynamics of any catalyst by identifying the cross-coupling variant that 

leads to the most energetically balanced catalytic cycle. The three-dimensional volcano concept 

can also be used to examine other facets of homogeneous catalytic reactions, such as the energetic 

role played by the electrophilic coupling component in cross-coupling reactions.63 

 Kinetic Volcano Plots – Proof-of-Concept 

The molecular volcanoes described in the first section considered only catalytic cycle 

thermodynamics, however, we knew that kinetic aspects must also be considered to have a 

meaningful impact in homogeneous catalysis. With this in mind, we quickly went to work on 

“kinetic volcanoes”64 by examining a model hydroformylation reaction (Equation 2.2 by 

following the catalytic cycle in Figure 2.4) with a catalyst database created by combining eight 

metal centers taken from groups 8-10 with four monodentate phosphine ligands having different 

steric parameters (PH3, PMe3, PPh3, PCy3). This work showed that transition state barriers could 

be predicted with acceptable accuracy directly from the descriptor variable and reproduced 

experimental trends with Rh catalysts being found near the volcano peak (Figure 2.5a). A closer 

examination of the linear free energy scaling relationships (LFESRs) revealed that differences in 

ligand bulkiness led to slightly different sets of scaling relationships. By constructing separate 

volcanoes for each ligand, we demonstrated that increasing steric bulk reduces the key transition 

state barriers and leads to more active catalysts (Figure 2.5b). Further, establishing relationships 

between the peaks of the different volcanoes and a measure of steric bulk led to simple structure-

activity relationships that allowed the height of the volcano peak (corresponding to anticipated 

catalytic activity) for any phosphine ligand to be directly estimated from the Tolman cone angle. 
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    Equation 2.2 

 

Figure 2.4 Proposed catalytic cycle for the hydroformylation reaction with ethylene substrate.  

 

Figure 2.5 (a) Kinetic volcano plot for the hydroformylation reaction using ethylene as a 

substrate. Left slope corresponds to 3→TS3,4 and right slope to 6→TS6,7. (b) Ligands separated 

based on their sterics reveal increasing bulk yields a higher volcano corresponding to a catalytic 

cycle with lower free energy barriers. 

Eager to expand upon the kinetic volcano concept to increase their usefulness to address problems 

relevant to synthetic chemists, we revisited the hydroformylation reaction by examining the 

ability of volcanoes to predict product regioselectivity.65 Our initial application used ethylene as 

a substrate which leads to only one product (Equation 2.2). To introduce regioselectivity, we 

chose 2-methylpropene as a substrate (Equation 2.3), which leads to the formation of two 
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regioisomers, a branched (2,2-dimethylpropanal) and a linear species (3-methylbutanal). In 

addition to identifying active catalysts (i.e., those with low transition state barriers) directly from 

a descriptor variable, we also wanted to accurately predict the regiomeric excess (re) values. 

Obviously, this represents a challenging task given the sensitivity of the re to small changes in 

the free energy differences between product distinguishing transition states. Since identifying 

highly accurate LFESRs was going to be key, we restricted our analysis to rhodium catalysts 

bearing bidentate phosphine ligands. Ultimately, two volcano plots were constructed [one for the 

linear (blue) and one for the branched (green) product shown in Figure 2.7a while their 

mechanism are shown in Figure 2.6] that estimated both catalytic activity and selectivity through 

the use of two descriptor variables. Remarkably, of ten catalysts predicted to be highly selective 

(i.e., re > 95), nine had similar re values when the free energy differences of the transition states 

that dictate regioselectivity were directly computed. After construction, the volcano plots were 

used to screen a database of 68 additional ligands to search for active species that selectively 

form the more elusive branched regioisomer. This procedure ultimately identified several 

promising ligands (Figure 2.7b). 

  Equation 2.3 

 

Figure 2.6 Proposed catalytic cycle for the hydroformylation reaction with a substituted substrate 

leading to two regioisomers.  
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Figure 2.7 (a) Regioselective molecular volcano plots [linear product (blue), branched product 

(green)] for hydroformylation. Circle size indicates the range of re values for each catalyst 

according to the provided color codes. (b) Screening for catalysts that selectively form the 

branched product revealed several ligand structures with predicted re values greater than 90.  

Overall, the molecular volcanoes described above represented the state-of-the-art at the time this 

thesis was started, which primarily focused on using volcanoes to estimate the catalytic 

performance of organometallic species by probing the thermodynamic or kinetic free energy 

profiles of various metal/ligand combinations. However, these early works represent only a small 

part of a potentially much larger story, as numerous possibilities exist to extend and apply these 

tools to a wide array of problems in homogeneous catalysis. The proceeding chapters further 

explore the functionality of molecular volcanoes, while also developing and refining the 

framework to permit new aspects of homogeneous catalysis to be examined.
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3 Probing Substrate Scope with Molecular 

Volcanoes 

This chapter is based on following publication: 

Sawatlon B., Wodrich M. D., and Corminboeuf C. Probing Substrate Scope with Molecular 

Volcanoes, Org. Lett. 2020, 22, 7936–7941. 

 Introduction 

Improving the activity and selectivity of chemical reactions on both laboratory and industrial 

scales often focuses on catalyst design, where the constituent metal atom(s) and accompanying 

ligands represent key components. Correspondingly, the chemistry of metal/ligand combinations 

and their environments has been the subject of in-depth studies aimed at gaining insight into 

catalytic efficacy. Whereas the catalyst choice clearly affects the reactivity, so do different 

chemical reactants, additives, as well as changes in reaction conditions. As an example, for 

Suzuki−Miyaura cross-coupling,66-68 countless substrates and other conditions have been 

reported with large variations in overall efficiency. 

Regarding changes to the electrophilic substrate specifically, bromobenzene and aryl boronic 

acid effectively undergo cross-coupling in an 89% yield. This reactivity, however, can be 

enhanced by adding electron-withdrawing or electron-donating substituents to the para position. 

Conversely, substitutions to the ortho position produce lower isolated yields.69-71 Moreover, 

changing the location of the halide on the electrophile (e.g., 4-bromopyridine is more inert than 

2-bromopyridine and 3-bromopyridine)72 or heteroatom substitution (e.g., the reaction with 

dibenzofuran proceeds in 12 h at room temperature,73 whereas dibenzothiophene requires 24 h at 

80 °C)74 further influences reactivity. Clearly, different substrates are governed by unique free 

energy profiles that can differ profoundly from one another. 

Today, computational-based approaches represent important tools in mechanism discovery, 

catalyst design, and the extraction of chemical information.2, 6, 8-11 Yet computational studies (and 

tools built upon them) often place greater emphasis on understanding a specific reaction 

mechanism or characterizing the energetics of a series of catalysts while much less frequently 

compiling a picture of how different reactant substrates influence the overall energetics. Among 

the tools used for catalyst identification are volcano plots, which relate an energy-based 

descriptor variable to the thermodynamics/kinetics of a catalytic process. Using these plots, the 

activity of any prospective catalyst can be estimated by knowing the value of the corresponding 

descriptor variable. In 2015, our research group first built molecular volcano plots depicting the 

3 
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thermodynamics of a model Suzuki−Miyaura cross-coupling reaction.5, 61 This proof-of-principle 

study succeeded in transferring the concept from heterogeneous/electrocatalysis4, 75-76 to 

homogeneous catalysis and was followed by additional theoretical refinements39, 44, 62, 64 as well 

as applications to interesting chemical problems.43, 77 

Whereas molecular volcanoes have been applied numerous times to estimate catalytic 

performance, they have never been used to examine the substrate scope. The purpose of this 

Chapter is to present a tool that facilitates the investigation of catalytic cycle energetics brought 

about by changes in the reactant substrate. Specifically, we evaluate Suzuki−Miyaura cross-

coupling to study the impact caused by different electrophiles (blue species in Figure 3.1). The 

results obtained by using these plots, in turn, both illuminate the range of substrates that can be 

accommodated by a single catalyst and reveal strategic routes toward identifying better catalysts 

for any individual substrate. It is important to emphasize that whereas the chemical trends 

concerning the reaction studied here are generally well known, the underlying computational tool 

is broadly applicable and can be used to analyze any desired reaction. 

 

Figure 3.1 Catalytic cycle of Suzuki–Miyaura cross-coupling using Pd(PPh3)2 as a catalyst. 

 Computational Details 

All intermediates, transition states and chemical reactants were optimized using PBE078-80 density 

functional with Grimme’s dispersion correction (−D3)81 along with the def2-SVP basis set82 in 

implicit THF solvent using the SMD solvation model83 in Gaussian16 program.84 The “ultrafine” 

integration grid was used to prevent an error on the computed free energies resulting from the 

lack of rotational invariance.85 The analysis of the vibrational frequencies confirmed all 

geometries as stationary points on the potential energy surface (zero imaginary frequencies for 

intermediates and one imaginary frequency for transition states). As non-covalent interactions 

between aromatic rings can stabilize the catalytic cycle intermediates, final structures were 
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checked to ensure the presence of similar orientations of the aromatic rings that correspond to 

the global minima (Figure 3.2). 

 

Figure 3.2 Comparison of conformation of intermediate 2 with 2-bromo-3-(trifluoromethyl) 

naphthalene substrate.  

 Results and Discussion 

Suzuki−Miyaura cross-coupling has three main mechanistic steps: oxidative addition, 

transmetalation, and reductive elimination (Figure 3.1). Whereas the transition-state geometries 

associated with oxidative addition (TSOA) and reductive elimination (TSRE) are unambiguous, 

the transmetalation (TST) process has historically been the subject of controversy.86-92 Here we 

follow the experimentally verified mechanism proposed by Denmark et al.,93-94 which reveals 

that the Pd–O–B linkages (4 in Figure 3.1) are formed prior to transmetalation, which is followed 

by a four-membered ring transition state (Pd–O–B–Ar, TST) and finally, the transmetalation 

product (5 in Figure 3.1). Because our objective is to examine the substrate scope, the catalytic 

cycle always employs Pd(PPh3)2 as the catalyst and phenylboronic acid as the nucleophile. Figure 

3.3 shows the electrophile substrates being studied, which can be separated into two groups based 

on their skeletal structures as substrates containing: (1) six-membered rings (6MRs, 57 species) 

and (2) five-membered rings (5MRs, 24 species).  

 

Figure 3.3 Substrates studied.  
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 Equation 3.1 

 

Figure 3.4 Linear free energy scaling relationships of 6-membered rings (black) and 5-membered 

rings (red). X-axis is the chosen descriptor ΔGRRS(5); y-axis represents (a) ΔGRRS(2), (b) 

ΔGRRS(3), (c) ΔGRRS(4), (d) total reaction energy [ΔG(RXN)], (e) ΔGRRS(TSOA), (f) 

ΔGRRS(TST) and (g) ΔGRRS(TSRE). 

Linear free energy scaling relationships (LFESRs) form the bases of volcano plots by showing 

the relationship between various catalytic cycle intermediates/transition states and a descriptor 

variable. On the basis of the quality of the linear fits (Figure 3.4), ΔGRRS(5), as defined by 

Equation 3.1, was chosen to be the descriptor. The LFESRs show a clear distinction between the 

behavior of the 6MR and 5MR substrates, which requires a unique volcano plot to be constructed 

for each.i After post-processing the LFESRs (see Appendix A for details), the two volcano curves 

shown in Figure 3.5 are obtained. The axes of the volcano plot correspond to the value of  

the descriptor variable (x-axis) and the negative of the energy span of the catalytic cycle (y-axis). 

In essence, the energy span is a measurement of the difference between the lowest energy 

intermediate [i.e., the catalyst resting state, termed the turnover determining intermediate  

(TDI)] and the highest transition-state barrier [i.e., the turnover determining transition state 

(TDTS)].95-97 

i Note that the LFESRs of both the 5MR and 6MR substrate groups are clearly separate for some intermediates and 

transition state but not for others. A different parsing of the substrate database (i.e., using alternative criterion to 

separate the substrates into groups) might also represent a route to gain additional insight into substrate effects using 

volcano plots. 
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As shown in the Figure 3.5 plot, the turnover determining states for both the 6MR and 5MR 

substrates are identical. The volcano’s left slopes are governed by the energy necessary to 

separate the formed product from the catalyst (TDI: 5, TDTS: 1), the right slopes are governed 

by the energy associated with the oxidative addition (TDI: 1, TDTS: TSOA), and the central 

regions are governed by the energy associated with transmetalation (TDI: 3, TDTS: TST).ii 

Comparing the overall shapes, the plateau region for the 5MR substrates is flatter and slightly 

higher than that for the 6MR substrates, implying that a wide range of 5MR substrates traverse 

the catalytic cycle with roughly equivalent energetics, whereas moving away from the highest 

point of the volcano invokes a more significant energy penalty for the 6MR substrates. 

 

Figure 3.5 Molecular volcano plots of six-membered rings (6MRs, black) and five-membered 

rings (5MRs, red). 

To examine the influence of substituent groups, we placed each of the Figure 3.3 substrates into 

the appropriate volcano plot (Figure 3.6a for substituted bromobenzenes, Figure 3.6b for 

substituted bromonaphthalenes, and Figure 3.6c for substituted bromofurans) based on the value 

of its descriptor variable. The location of each substrate defines its most energetically costly 

reaction steps, which (for the range of descriptor variables for the substrates) is either 

transmetalation (left slope) or oxidative addition (right slope). Both plots representing the 6MR 

(Figure 3.6a and b) display similar trends, with most substrates clustering near the peak, including 

unsubstituted compounds (gray inverted triangle, Figure 3.6a; gray square, Figure 3.6b). 

However, substrates with multiple (star) and ortho substitutions (triangle) have more exergonic 

descriptor values and are, correspondingly, shifted far from the top along the left slope. This 

indicates that they have difficulty with transmetalation. Substrates with multiple functional 

groups at both ortho positions suffer from additional steric hindrance around the location of bond 

breaking/formation, which further suppresses the transmetalation rate as steric bulk impedes the 

coordination of phenylboronic acid to the palladium center (Figure 3.1). Notably, independent of 

the substitution position, the greater the electron-withdrawing ability of the substituent, the larger 

the leftward shift away from the volcano peak. 

Electronic effects on the metal center are known to influence the transmetalation rate; for 

instance, the presence of electrophilic palladium causes an acceleration.94 When bromobenzene 

ii Note that the location and the nature of these reaction steps are equivalent to our previously derived thermodynamic 

volcano plots for Suzuki–Miyaura cross-coupling. 
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binds to the metal center, the electron-withdrawing substituent groups on the substrates enhance 

the electrophilicity of palladium, yielding a faster process. However, substrates with electron-

withdrawing groups can also become sluggish during transmetalation when they are ortho-

substituted. Hence, the actual reason for slow transmetalation is steric hindrance and not 

electronic effects (for a more detailed discussion as well as correlation plots between  

electronic and steric parameters with transmetalation energies, see Appendix A), as noted by 

Harvey et al. 98 as well as by Denmark et al., who stated, “the steric parameters are twice as 

important as the electronic parameters in the transmetalation.”94 This statement is consistent with 

our substrate distributions that show that the substitution position plays a larger role in dictating 

catalytic cycle energetics than the electronic nature of the functional group. 

 

Figure 3.6 Volcano plots illustrating the influence of substituents on (a) six-membered rings with 

substituted bromobenzenes, (b) six-membered rings with substituted bromonaphthalenes, and (c) 

five-membered rings with substituted bromofurans. 

Methyl- and t-butyl-substituted reactants deviate from the previously described trends, as these 

substrates are found near the volcano peaks or shifted along the right slope. Thus, electron-

donating groups have a different impact than electron-withdrawing groups, regardless of the 

substitution position, as seen in the Figure 3.6c plot. Here, all methyl-substituted compounds are 

found to the right of the peak, where oxidative addition is rate-determining. Generally speaking, 

for oxidative addition to proceed, a substrate must be relatively electron-poor to accept two 

electrons from the metal center. Substituted bromobenzenes with electron-donating groups are 

electron-rich, making oxidative addition difficult. Furan is even more electron-rich than benzene 

and other aromatic six-membered rings, and thus is it unsurprising that nearly all substituted 

furan derivatives have difficulty undergoing oxidative addition. On the contrary, adding electron-
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withdrawing groups to furan balances the intrinsic stereoelectronics and induces a leftward shift 

toward regions of higher overall activity. Altogether, these plots clearly capture that both the 

steric and the electronic properties of the substrate must be balanced to ensure a facile cross-

coupling process. 

 

Figure 3.7 Volcano plots illustrating the influence of the substrate core on (a) six-membered rings 

and (b) five-membered rings. 

Turning to the substrate core, Figure 3.7 shows that overall, the core influence is less pronounced 

than the influence of the substituents. Most 6MR cores are clustered relatively close to the 

volcano peak (Figure 3.7a), whereas the 5MR cores are shifted along the right slope (Figure 

3.7b). For the 6MR, various bromopyridines and bromoquinolines can be used to unravel the 

influence of the heteroatom position. Within the same ring, having the heteroatom in the para 

position (e.g., 4-bromopyridine, blue inverted triangle) retards the transmetalation process, 

resulting in a diminished experimental yield.72 On the contrary, moving the heteroatom far from 

the reaction site into the outer ring (e.g., from 3-bromoquinoline to 8-bromoquinoline) decreases 

the heteroatom effect, causing 8-bromoquinoline (blue square) to appear similar to naphthalene 

(gray square). Likewise, the presence of a second heteroatom increases the effect, resulting in a 

leftward shift away from the area of maximum activity (green points on the Figure 3.7a volcano). 

Similar trends are observed for bromoindole (blue diamond) and bromopyrrolopyridine (green 

diamond) in the 5MR plot (Figure 3.7b). Here the influence of different heteroatoms can easily 

be examined. Considering tricyclic structures [bromocarbazole (blue circle), bromodibenzofuran 

(red circle), and bromodibenzothiophene (yellow circle)], the substrate containing a more 

electronegative oxygen atom is located closest to the volcano peak, whereas the less 

electronegative sulfur and nitrogen variants lie further down the right slope, indicating a 

diminished rate for oxidative addition. This results from the fact that an electronegative atom can 

reduce the electron density on the reaction site, making oxidative addition faster. 

Figure 3.7b shows that the 5MR substrates predominantly lie to the right of the volcano peak 

(indicative of an overly weak catalyst/substrate interaction), potentially making cross-coupling 

using Pd(PPh3)2 (the catalyst examined here) too energetically difficult. However, this does not 
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mean that these substrates are incapable of undergoing this reaction, as is well-known 

experimentally. Rather, the energetic profiles of these substrates can be improved by using 

stronger binding catalysts (e.g., platinum and nickel complexes)5, 42 that will result in a more 

balanced catalyst/substrate interaction and a corresponding improvement in the catalytic cycle 

free energy profile. Such a finding nicely illustrates how molecular volcanoes examining the 

substrate scope can be used in tandem with our other volcano plots that explore the influence of 

the catalyst on reaction energetics. This combination results in a series of pieces that can be mixed 

and matched to create more efficient catalytic processes. 

 Conclusions  

In conclusion, we demonstrated how the substrate scope can be examined using volcano plots, 

which provides an additional tool within the molecular volcano family (and the broader set of 

tools for computational catalysis) that can be used to optimize homogeneous catalytic processes. 

These “substrate volcanoes” reveal a wealth of information regarding how the nature and location 

of substituents as well as core structures dictate catalytic cycle energetics. Specific to the cross-

coupling reaction examined here, the presence of electronegative moieties (heteroatoms and/or 

electron-withdrawing groups) induces stronger catalyst/substrate binding interactions, causing a 

leftward shift on the volcano plot that either increases or decreases the reaction rate depending 

on the properties of the substrate core. Substrates with electropositive substituents, on the 

contrary, are often governed by the rate of oxidative addition. For substrates having 

transmetalation as the rate-determining step, steric effects play an important role, where bulky 

groups near the reaction site slow the reaction. Overall, our substrate volcanoes show that having 

balanced electronic parameters and not overly bulky substrates is essential for the cross-coupling 

reaction to proceed, thereby confirming what is known based on extensive experimental studies. 
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4 Machine Learning Meets Volcano Plots: 

Computational Discovery of Cross-

Coupling Catalysts 

This chapter is based on following publication: 

Meyer B., Sawatlon B., Heinen S., von Lilienfeld O. A., and Corminboeuf C., Machine Learning 

Meets Volcano Plots: Computational Discovery of Cross-Coupling Catalysts. Chem. Sci., 2018, 

9, 7069-7077. 

 

Sawatlon B. did the molecular volcano plot, provided a machine learning database and did a 

catalyst prediction with an assistant of Meyer B. The machine learning part was conducted by 

Meyer B. and Heinen S.   

 Introduction 

Chemists constantly pursue new molecular systems that provide increasingly higher yields and 

better control of selectivity. Rather than blindly searching for promising catalysts to meet their 

needs, numerous tools that aid in identifying the most appropriate species have been developed. 

These range from high-throughput screening99-100 (including combinatorial methods101-102), which 

quickly evaluates reaction conditions and the structures of catalysts, to multidimensional 

modeling based on a design of experiments (DoE),2 that relates steric and structural descriptors 

(e.g., Charton values and Sterimol parameters) to enantioselectivity. Such methods have found 

broad application in asymmetric homogeneous catalysis.19, 21-22, 24, 103-107 On the other hand, the 

tremendous increase in computer power accompanied by methodological advancements has also 

made computational studies of catalytic processes commonplace.108 While virtually any catalytic 

system can be subjected to computational analysis, often the conclusions reached are not 

transferable and provide little insight into the best way to develop more active and selective 

catalysts. Thus, a tool that assesses the properties of untested catalysts based on a simple 

energetic or structural criterion would rapidly accelerate the discovery pace of new species. 

Indeed, similar concepts involving the mapping of a difficult to determine quantity onto an easily 

obtained variable have been a central pillar of catalysis and physical organic chemistry for more 

than 80 years, and are at the core of familiar concepts such as the Bell–Evans–Polanyi 

principle,30-31 the Hammett equation,26-29 or the Brønsted catalysis equation.32 Today, volcano 

plots,45-46 which relate easily accessible descriptor variables directly to catalytic performance, 

accomplish this objective and find regular use in the fields of heterogeneous catalysis14, 55, 75 and 

electrocatalysis.13, 33-34, 47, 49, 109-110 

4 
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Based on knowledge of a chosen descriptor variable, volcano plots function by discriminating 

catalytic performance using Sabatier’s principle.36 Sabatier conceived the notion of an ideal 

catalyst that should not bind a substrate too strongly or too weakly. The unique volcano shape 

facilitates rapid discrimination of catalytic activity. Species positioned highest on the plot 

(generally on or near the volcano plateau or peak) have the best profiles and fulfill Sabatier's 

principle. Species located along the left- and right-slopes have less ideal profiles and can be 

characterized as having either overly strong (left) or overly weak (right) catalyst/substrate 

interactions. While being commonly used in heterogeneous and electrocatalysis, and frequently 

invoked for homogeneous systems,60, 95, 111 only recently have these appealing tools been 

concretely realized for molecular catalysts.5 Corminboeuf et al. have pioneered the use of 

molecular volcano plots to study various aspects of prototypical C–C cross-coupling reactions in 

order to gauge the feasibility of using these tools to identify attractive homogeneous  

catalysts.5, 61-63 Subsequent work has also focused on adapting volcano plots for applications in 

homogeneous catalysis via the inclusion of kinetics (as opposed to the typically used 

thermodynamic based criteria) of the catalytic cycle.64 

The use of molecular volcano plots involves establishing linear scaling relationships that relate 

the quantitative value of a descriptor to the thermodynamic or kinetic performance of the catalyst. 

As such, this tool has clear utility in high-throughput screening applications that search for 

prospective catalysts by computing the value of this descriptor for any species desired. However, 

currently both the geometries and energies associated with multiple forms of each catalyst must 

be determined through a relatively slow process involving density functional theory 

computations. Clearly, increasing the speed at which the descriptor variable can be determined 

would result in an overall increase in the discovery pace of new catalysts because prospective 

species could be screened more rapidly. One route with the potential to provide virtually 

instantaneous access to the descriptor involves the application of quantum machine learning 

(ML) models, i.e., ML models, which can be trained on, and used to predict quantum 

properties.112-114 The application of ML models to estimate volcano plot energy descriptors offers 

increased speed for two reasons: first, the energy based value can be immediately accessed for 

any desired species, and second, the need to establish a precise geometry of the catalyst can be 

circumvented by also including this task into the ML model, as already demonstrated within the 

Δ-ML approach.115 As such, the ML model can predict an accurate descriptor value from an 

approximated 3D structure of a catalyst. 

While, generally speaking, applications of machine learning methods in chemistry are still in their 

infancy, their use has begun to appear in the fields of materials science116-121 and catalysis.122-129 

For example, a gradient-boosting regression method130 has been used to predict the d-band  

center of mono- and bimetallic surfaces131 and to estimate CO adsorption energies on Pt 

nanoparticles,132 while a local similarity kernel could predict the catalytic activity of 

nanoparticles.133 Moreover, applications of support vector machines (SVMs)134 were able to 

anticipate CO2 uptake in metal organic frameworks (MOFs)135 by developing an atomic property-

weighted radial distribution function (AP-RDF) based descriptor136 that captures geometric and 

chemical features of periodic systems. Predictive structure–reactivity models have identified 

promising Pt-based electrocatalysts for the oxygen reduction reaction,137 while artificial neural 

networks (ANNs) have recognized multimetallic alloys possessing high selectivity for 
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electrochemical CO2 reduction to C2 species.138-139 Recently, Nørskov investigated various 

machine learning based approaches140 to systematically search for the active sites of bimetallic 

(nickel gallium) nanoparticles,141 to construct Pourbaix surface phase diagrams,142 and to identify 

probable mechanisms of hydrocarbon–syngas reactions on rhodium(111).143 Rappe et al. also 

exploited the regularized random forest machine learning algorithm,144 and discovered the key 

role played by structure and charge descriptors (namely the Ni–Ni bond length and the Ni residual 

charge) in the hydrogen evolution reaction activity of Ni2P(0001). 

Despite the considerable amount of progress in applying ML models to chemical problems, each 

of the aforementioned contributions tackled issues surrounding heterogeneous catalysis, while 

ML applications to homogeneous catalysis remain rare.77, 129, 145-150 Significant advances with ML 

models to obtain fundamental molecular electronic properties (e.g., atomization or total energies 

of molecules) have been made,151-158 however, the prediction of catalytic cycle intermediates 

energies has never been attempted to the best of our knowledge. The purpose of this work is to 

demonstrate how ML models can be used to accelerate the screening of prospective 

homogeneous catalyst candidates, thereby enabling the computational discovery of novel 

catalytic materials. To this end, we selected the problem of finding catalysts for the Suzuki–

Miyaura C–C cross-coupling reaction (Figure 4.1).66-67, 159 Specifically, we trained and applied 

ML models using the reaction energy associated with oxidative addition (Equation 4.1), which 

has previously been shown to be a descriptor variable for analyzing the catalytic cycle 

thermodynamics using volcano plots.5 Although kinetic profiles are obviously important for 

obtaining a full and accurate description of catalytic performance, here we rely on a simplified 

thermodynamic picture (Figure 4.1), which can be exploited to rapidly discriminate between 

catalysts with promising or inadequate energy profiles.5, 61-63  

 

L1ML2  +  (C=C)Br  →  L1M(Br)(C=C)L2 ΔE(Rxn A) Equation 4.1 

Using machine learning models of this quantity, along with previously constructed molecular 

volcano plots, it is possible to screen thousands of potential catalysts with controlled accuracy 

(by virtue of learning curves) and at a negligible computational overhead. 

 

Figure 4.1 General catalytic cycle for C–C cross-coupling reactions. Coupling partners (R) 

depend on specific cross-coupling reactions. Suzuki coupling undergoes a ligand exchange step 

replacing Br by an alkoxy group before transmetalation (Rxn B). The dissociated compound in 

Rxn B is alkoxy–R instead of Br–R and R is [B(OH)2(O
tBu)]− for the Suzuki reaction.5, 62 
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 Computational Details 

The initial set of Cartesian coordinates for each catalyst was obtained by converting Simplified 

Molecular Input Line Entry System (SMILES) formats (i.e., a line notation for entering and 

representing molecules and reactions)160-161 into three-dimensional structures with the 3D 

structure generator operation (i.e., gen3d operation) of the OpenBabel software.162 To generate 

target energy values for the training and test complexes, we proceeded as follows: computations 

involving geometry optimization and electronic energies were generated and executed via the 

AiiDA automated platform.163 Gas phase geometry optimizations were computed at the 

B3LYP164-166−D381, 167 with 3-21G (for Ni, Pd, Cu and Ag complexes)168-171 and a def2-SVP82 

basis set (for Pt and Au complexes) in Gaussian09.172 Single point energies were computed at the 

B3LYP−D3/def2-TZVP level.82 The oxidation states of the catalysts were adjusted to comply 

with the dominant 14e−/16e− nature of the complexes in the Suzuki cross-coupling reaction. The 

reaction electronic energies (Equation 4.1) were computed and used as a descriptor (see a volcano 

plot in Figure 4.2) for training the machine learning models. The ML models were trained and 

applied using the Quantum Machine Learning toolkit QMLcode.173 

 

Figure 4.2 Reference volcano plot for the Suzuki cross-coupling reaction. Region (I) corresponds 

to reductive elimination, (II) to transmetalation, and (III) to oxidative addition. Acceptable 

catalysts should fall into the mid region (in between −32.1 and −23.0 kcal/mol). 

The reference volcano plot associated with the catalytic cycle of Figure 4.1 was constructed 

according to the procedure outlined in our previous work5, 64 using the same theoretical level as 

for the descriptors of the machine learning training set. Note that despite the relatively modest 

level of theory used herein (engendered by the large computational effort associated with 

generating the training set for the ML model), the geometries and key energetic properties are in 

line with those previously computed (Table 4.1).5, 62 Similarly, we previously demonstrated that 

the same set of linear free energy scaling relationships capably describe variations in the number 

of coordinated ligands (i.e., bis- vs. monoligated), as well as different oxidation or spin states of 

the catalyst.5, 61, 64 Rather than predicting the entire volcano plot, the most essential property is 

the descriptor [ΔE(Rxn A)] (Equation 4.1), which can be machine learned, as well as knowledge 

about its target value, i.e., the energy range corresponding to the ideal plateau region (extending 

from −32.1 to −23.0 kcal/mol, Figure 4.2). 
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Table 4.1 Comparison between electronic binding energies obtained from different level of 

theory (def2-TZVP//3-21G, def2-SVP and def2-TZVP) and the energies predicted by the 

machine learning model (BoB representation).  

Metal Ligand 1* Ligand 2* def2-TZVP//3-21G,def2-SVP def2-TZVP ML predictions 

Pd 0 74 −26.52 −24.38 −26.56 

Pd 15 74 −27.28 −26.82 −31.33 

Pd 1 89 −22.64 −20.03 −25.46 

Pd 4 72 −27.35 −29.35 −26.64 

Pt 52 71 −29.01 −29.28 −28.50 

Pt 71 84 −25.41 −25.68 −28.08 

Pt 1 84 −27.14 −27.22 −29.02 

Pt 17 23 −31.52 −31.67 −28.80 

*See the structures of ligands in Appendix B 

 Methods 

4.3.1 Database 

The training procedure relies upon constructing a large database of catalysts that are obtained 

through combining various ligands and metals. These species are then used for training and 

testing the ML models which, in turn, are used to predict descriptor values so rapidly and with 

such accuracy that large libraries can be scanned in order to identify acceptable catalyst 

candidates. Ninety-one ligands including CO, phosphines, N-heterocyclic carbenes and pyridines 

were combined with six transition metals (Ni, Pd, Pt, Cu, Ag, and Au) to form the database. All 

possible metal/ligand combinations (i.e., L1 and L2, where L1ML2 is equivalent to L2ML1) of 

catalytic cycle intermediates 1 and 2 (Figure 4.1) lead to a total library consisting of 25,116 

species for each intermediate (see Appendix B for a complete list of ligands used). Rather than 

providing the optimized structures for each ligand to build the catalysts, the geometries of 

catalytic cycle intermediates 1 and 2 for each database entry were created by converting SMILES 

stringsi (Figure 4.3)160-161 to Cartesian coordinates using the OpenBabel implementation162 of  

the Merck Molecular Force Field method (MMFF94).174-178 This database was divided into  

two subsets: (1) the training/test set used within cross-validated learning curves (see details on 

the cross-validation procedure in section 4.3.2) for which the computed descriptor values  

[ΔE(Rxn A)] were used as a reference and (2) the prediction set on which the model was applied 

to screen candidates based on their ML predicted descriptor values. Since collecting reference 

data for the training and test sets involves costly DFT geometry relaxations, we proceeded in two 

steps:ii first, an initial training set made of complexes involving a diverse set of ligands (72 in 

total) with Pd (2,595 complexes).iii Secondly, a small subset of illustrative ligands (12) with each 

of five other metals (Pt, Au, Ag, Cu, Ni) (390 complexes) was created. The final set consisted of 

i The trans isomerism constraint was imposed using the general chiral specification syntax of the SMILES notation 

(i.e., the @SP square-planar class symbol) as depicted (on the top right-hand corner) in Figure 4.3. 

ii To refine the accuracy of the ML model in the targeted descriptor energy range, i.e., the top of the volcano, we 

exploited the trained model to predict the binding energies on a subset of complexes combining the 5 metals (Pt, Au, 

Ag, Cu, and Ni) and 72 ligands (from no. 0 to 71) and selected the molecules for which the ML predicted reaction 

energy was in the selected range (as opposed to randomly selecting additional candidates to extend the training set). 

iii Due to convergence problems, exactly 2,595 binding energies from Pd complexes were used in the training set. 
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a total of 7,054 reaction energy values corresponding to our descriptor. ML models were trained 

on this set (vide infra), and out-of-sample predictions were then made on the prediction set that 

consisted of all the other complexes (18,062 in total). Note that included in this set are 19 realistic 

ligands that have already been employed in experimental settings (i.e., ligand no. 72–90iv in 

Figure 4.3).179-181 

 

Figure 4.3 A database of 25,116 molecular transition metal catalyst candidates. Each complex 

consists of one out of six transition metals and a combination of two out of 91 ligands (left). Each 

ligand was written as the SMILES notation and all possible L1–M–L2 combinations were 

constructed (top right-hand corner). SMILES strings were then converted into Cartesian 

coordinates through the 3D structure generator of the OpenBabel software (bottom right-hand 

corner). DFT reference results for training and testing of ML models were obtained for a sub-set 

of 7,054 candidates. Those structures were exploited for computing binding energies and for 

training the ML models. 

4.3.2 Training 

To begin the machine learning process, information intrinsically contained within each three-

dimensional structure must be transformed into a suitable representation. The approach selected 

to represent a molecule has a crucial impact on the learning curve. It is of particular importance 

to construct a meaningful relationship between the representation and the catalyst candidate, that 

will be learned by the machine learning algorithm. For this reason, all the relevant variables for 

computing the target properties [in our case ΔE(Rxn A)] should be represented in the chosen 

machine learning representation of the molecule. Over the last few years, increasingly improved 

representations112, 151, 155, 182-183 that progressively encode increasing amounts of physical 

information have been proposed. Here, we focus on the sorted Coulomb Matrix (CM), the first 

representation introduced for ML models trained throughout chemical space and used to predict 

quantum properties,112 a two-body bagged variant of the CM with superior performance, the Bag 

iv Ligand number 78 was treated as anion. 

. 
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of Bonds (BoB),155 and the recently proposed Spectrum of London and Axilrod–Teller–Muto 

potential (SLATM).184 The CM representation consists of a square atom by atom matrix, where 

the diagonal elements model the potential energies of free atoms while the off-diagonal elements 

correspond to the Coulomb nuclear repulsion between atom pairs. In the BoB representation, CM 

elements are bagged (e.g., C–C, C–N, C–H, etc. are accounted for in separate bags.). SLATM is 

based on the dissociative limits of intermolecular dispersion contributions between unpolarized 

moieties. They account for interatomic two-body terms through London’s dispersion curve 

(rather than Coulomb), and for the three-body terms according to Axilrod–Teller–Muto.185-186 

We stress that our principal objective is to describe the oxidative addition step directly from 

rough-coordinate estimates obtained from the SMILES structure (i.e., without providing accurate 

geometry as an input). After conversion from SMILES to coordinates, we map our input 

representation onto the corresponding continuous label value [here ΔE(Rxn A)] using kernel 

ridge regression (KRR),187 which solves nonlinear problems by mapping data from the input 

space into a high-dimensional linear feature space (kernel trick). A Laplacian kernel function is 

used for the CM and BoB representations, and a Gaussian kernel for the SLATM representation. 

The quality of the models is evaluated by reporting test errors, which can be obtained by 

separating the dataset into training and test frames and calculating the average error [typically a 

mean absolute error (MAE)] for the predictions on the out-of-sample test set. This random sub-

sampling cross-validation procedure114 was used to shuffle the dataset randomly into different 

training sets. For every shuffling step the MAE for the model was calculated and the procedure 

repeated ten times for every training set size N. Afterwards, the errors for the different models 

were averaged into a single cross-validated error. Note that this error remains a random variable 

that is dependent on the initial splitting of the training/test datasets. When plotted on a log–log 

scale, successful learning is indicated by linearly decaying behavior for large training set sizes, 

as already suggested by Vapnik and others in the nineties.188-189 

 Results and Discussion 

4.4.1 Machine Learning 

In order to verify the performance and validity of our ansatz, we have trained and tested machine 

learning models for various training set sizes. The resulting learning curves, depicted in Figure 

4.4, demonstrate the efficiency and accuracy of the learning process in terms of a near-linear 

decay of test error with training set size. While learning is observed for all representations, the 

learning curves illustrate the impact of the molecular representation on the off-set and slope. 

Overall, the performances of the ML models based on the SLATM and BoB are very similar (for 

the largest training set, the MAE is 2.61 kcal/mol and 2.73 kcal/mol respectively) and superior 

to CM (largest training set MAE = 3.05 kcal/mol). Despite these small variations, it is obvious 

that efficient learning is achieved by all three representations. This result contrasts with findings 

in ref. 117 where the CM was claimed to be of little use when constructing ML models for 

transition metal complexes. The poor performance of CM is more likely due to inappropriate 

choice of properties (electronic spin-states) than to the molecular systems themselves. It seems 

intuitive that any purely structure and composition based representation will struggle to account 

for various electronic states. When it comes to simple electronic ground state properties, such as 

the oxidative addition step studied here, Figure 4.4 clearly demonstrates that the CM is very 
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applicable to the machine learning modeling of properties of transition metal complexes. We also 

note that the BoB representation performs surprisingly well for this problem. We ascribe this 

behavior to the bagging which allows the model to place appropriate weights to bonds involving 

the transition metal.  

 

Figure 4.4 Learning curves [test error of catalytic descriptor values as a function of training set 

size (N)] for oxidative addition of vinyl bromide. Error bars correspond to standard deviation in 

cross validation. Inset: corresponding learning curves for individual metals for BoB. 

The energy range for the descriptors of the training set (corresponding to the x-axis of the 

molecular volcano plot) is ⁓120 kcal/mol (Figure 4.2). We therefore considered the ML model 

to be sufficiently well converged for the task of picking catalysts, once the learning curve dropped 

to less than 3 kcal/mol (i.e., 2% of the descriptor range). The most efficient representations, 

SLATM and BoB, reached this threshold with a training set of 7,054 binding energies. The 

following discussion will thus be based on the less sophisticated representation, BoB. It is 

important to reiterate that while the machine learning models were trained on DFT reaction 

energies obtained for DFT optimized geometries, the molecular representations in the test set 

were constructed solely from the coordinates directly obtained from SMILES conversion. 

The heterogeneity of the training set (i.e., unequal representation of the six transition metals) has 

been looked into by evaluating the individual predictions of the BoB based machine learning 

model on each metal separately. The resulting learning curves depicted in the inset of Figure 4.4 

demonstrate that learning is attained for all metals. For the largest training set size, the target 

MAE of 3 kcal/mol is achieved for Pd, Pt, Ag and Au, while the Ni and Cu metal complexes are 

less accurately described (best MAE = 3.74 and 4.04 kcal/mol, respectively). These larger errors 

certainly originate from the smaller sample of Ni complexes and from copper−ligand 

combinations featuring ligands that are less frequent in the rest of the training set. This leads to 
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a larger energy range in the descriptor variables which can be seen as a broader distribution/width 

[see the histograms (Figure B.1 and B.2) in Appendix B]. Overall, however, the ML performance 

for Ni and Cu-based complexes is still useful as it is not more than 5% of the descriptor’s energy 

range (i.e., inferior to 5 kcal/mol). 

The application of the machine learning model studied here can accelerate the catalyst screening 

process using molecular volcano plots. However, it should be noted that the use of a crude 

geometric structure as an input might affect the accuracy of the ML model, where a large training 

set size is currently needed for the model to reach an acceptable MAE. In addition, as our ML 

model is used in tandem with molecular volcano plots, the limitations associated with the 

molecular volcano also indirectly influence the utility of the ML model. For example, complexes 

with coinage metals (group 11) were always treated as monocations because the oxidation states 

of each catalyst need to be adjusted to align with the well-known 14e−/16e− nature of the 

coupling reactions. Thus, the ML models were trained with both neutral and cationic complexes 

(while the ligands used were mostly neutral). It is possible that the mixture of neutral and cationic 

complexes that compose the training set, in addition to the rough geometric structures used as 

inputs, could limit the accuracy and generality of the model.  

4.4.2 Catalyst Prediction 

The trained ML models were subsequently exploited to predict the energy based descriptor of 

18,062 potential out-of-sample catalysts with negligible computational cost (vide supra). At this 

point, it is worth noting that out-of-sample predictions that involve ligands not previously seen 

by the models should be considered with more care. Additionally, the predictive power of the 

model would be limited for catalysts that would suffer from a convergence problem in an actual 

computation. Because we are interested only in the catalysts predicted to have the best 

thermodynamic profile for the Suzuki–Miyaura reaction, emphasis was placed on a narrow range 

of descriptor energy values (from −32.1 to −23.0 kcal/mol) corresponding roughly to the plateau 

of the volcano. However, the same ML models would be relevant to the analysis of other cross-

coupling reaction variants differing only by the width of the plateau region.62 Using the BoB 

model, 557 catalysts were identified that fell into this region. A brief examination of the metal 

distribution (Figure 4.5) yields expected results, namely that catalysts incorporating group 10 

metals (Ni, Pd, Pt) appear more frequently than their group 11 (Cu, Ag, Au) counterparts. This 

finding is in line with our earlier DFT-based molecular volcano plot analysis of the same 

reaction.5, 62-63 

 

Figure 4.5 Occurrence of the six metal complexes in the selected range of −32.1/−23.0 kcal/mol 

predicted by the machine learning model using the BoB representation. 
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A prevalent metal identified by the ML model is palladium, which has 265 species that appear 

on or near the volcano plateau (Figure 4.5). The large number of Pd catalysts attests to the 

accuracy of the ML models, as these species have a rich history in catalyzing cross-coupling 

reactions.190-192 On the other hand, Pt catalysts are virtually experimentally unknown193  

and those that have been tested tend to show only moderate catalytic ability.194 Nonetheless,  

their significant presence on the volcano plateau does align with our earlier DFT-based  

evaluations.5, 62-63 Indeed, we previously postulated that the presence of Pt based catalysts on top 

of the volcano may indicate that the problem with these species is less thermodynamic and more 

kinetic in nature.62 In addition, others have speculated that an enhanced M–R bond strength 

causes transmetalation in these species to be sluggish.195 Despite being well-known cross-

coupling catalysts,196 only a handful of Ni based species are predicted by the ML model to appear 

near the volcano plateau. However, in its current state, the ML models consider only a single 

oxidation state, that for Ni corresponds to a Ni(0)/Ni(II) based catalytic cycle. Thus, the more 

catalytically active Ni(I) oxidation state, which is accessed via a one-electron redox process197 

and generally shifts Ni catalysts from the strong-binding side of the volcano onto the plateau,61 

is currently not assessed by the ML models (vide supra) but incorporation of alternative catalytic 

oxidation states represents an appealing future improvement of the current model. The volcano 

plot also reveals the influence of ligand type on the thermodynamics of the catalytic cycle. For 

example, Figure 4.6 clearly indicates that phosphine ligands generally outperform N-heterocyclic 

carbene and pyridine ligands when combined with group 10 metal (Ni, Pd, and Pt) complexes. 

More interesting is the presence of oxazole ligands for Pd metals. While the use of the 

monodentate variant (e.g., ligands no. 78−80) appears elusive in the literature, the chemistry 

associated with the use of bidentate bis(oxazole) ligands for cross-coupling reactions is relatively 

well established.198  

 

Figure 4.6 Histogram ranking of the five most identified ligands that appear on the volcano 

plateau (i.e., with descriptor values between −32.1 and −23.0 kcal/mol) by metal type as predicted 

by the machine learning model using the BoB representation. The histogram is scaled relative to 

the Pd/oxazole ligand combination, which has the highest metal/ligand occurrence appearing 38 

times on the volcano plateau. 
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By far, the vast majority of the coinage metal (group 11) catalysts have very weak binding 

energies and, correspondingly, lie on the right (weak-binding) slope of the volcano. Indeed, no 

Au or Ag based catalyst has sufficiently strong binding energy to appear on the volcano plateau 

(Figure 4.5). This finding directly agrees with experimental and computational studies that have 

found Ag and Au catalysts to have unfavorable free energies associated with oxidative 

addition.199 On the other hand, a handful (20) of Cu based catalysts are found to have nearly ideal 

thermodynamic profiles. While instances of Cu-based Suzuki coupling have appeared in the 

literature,200-201 these catalysts tend to employ bidentate acetylacetone (acac) or acetate/triflate 

ligands.202-203 Thus, it is interesting to note that each of the thermodynamically most appealing 

Cu catalysts involves either a tris(dimethylamino)phosphine or bulky N-heterocyclic carbene 

(Figure 4.6). These findings represent a potentially interesting research direction that should be 

explored in more depth and that has been revealed solely through the application of ML models 

coupled with molecular volcano plots. 

Finally, a more refined selection of catalysts was obtained based on their estimated price per 

mmol (Figure 4.7). Among the 557 catalysts with promising thermodynamic profiles, 37 

complexes have an estimated price less than $10 USD per mmol. These species include earth 

abundant metals (copper with tris(dimethylamino)phosphine) and a multitude of more standard 

palladium phosphine combinations. 

 

Figure 4.7 Estimated price (for one mmol in US dollars) of the catalysts in the selected range of 

−32.1/−23.0 kcal/mol (for ligand no. 72–90). The price is calculated as a summation of the 

commercial price of transition metal precursors (one mmol) and one mmol of each ligand. The 

cheapest complex for each metal is shown on the right. 

 Conclusions 

We have trained and used machine learning models to dramatically accelerate the descriptor 

screening of 18,062 homogeneous catalysts for the Suzuki–Miyaura C–C cross-coupling 

reaction. The model was based on the capability of molecular volcano plots to identify 

thermodynamically attractive candidates with respect to a simple energy descriptor. Overall, we 

have identified 37 promising low-cost complexes featuring palladium and copper combined with 

both standard and less expected ligands. Our findings also indicate that machine learning can be 

used to screen thousands of catalysts, and that previously introduced machine learning 

representations can be used for property predictions of transition metal complexes. Exploitation 

of a Δ-machine learning approach represents an appealing future improvement of the proposed 

ML models.115, 182 
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5 Data Mining the C−C Cross‐Coupling 

Genome 

This chapter is based on following publication: 

Sawatlon B., Wodrich M. D., Meyer B., Fabrizio A., and Corminboeuf C., Data Mining the C−C 

Cross‐Coupling Genome. ChemCatChem 2019, 11, 4096-4107. 

 

Sawatlon B. and Wodrich M. D. contributed equally to this work. 

 Introduction 

Using machine learning (ML) to accelerate electronic structure methods has the potential to 

revolutionize the field of computational chemistry, having already demonstrated its promise by 

making significant headway in addressing several longstanding fundamental problems in 

chemistry and materials science over the past 15 years.112, 116, 119, 204-208 In the field of 

computational catalysis, for example, recent work has tackled a diverse set of topics ranging  

from CO2 uptake in metal organic frameworks135 to identifying structure‐activity relationships in 

Pt electrocatalysts for the oxygen reduction reaction137 to reaction mechanism discovery on 

rhodium surfaces.143 Such examples of ML only begin to scratch the surface.123, 209-211 

Applications to computational homogeneous catalysis do exist,77, 129, 145-150 but occur with much 

less frequency than their heterogeneous counterparts. While ML techniques certainly can be used 

in a brute‐force type manner to determine the properties (e. g., bond energies,212 spin‐state 

splitting in inorganic complexes116) or reaction energetics39 of a virtually unlimited number of 

prospective catalysts, the identification of new homogeneous species has historically placed 

significant emphasis on understanding reactivity through the establishment of heuristic devices 

such as structure‐activity relationships.213-216 This has led to, for example, multidimensional 

modeling based on design of experiments2 that are widely used in asymmetric homogeneous 

catalysis.19, 21-22, 24, 104-105, 217-219 Considerable effort has also been spent in determining appropriate 

descriptors (e. g., bandgap, d‐band center, adsorption energy) that can be coupled with machine‐

learning to estimate catalytic performance.131, 220-221 

Along this line, our research group has done extensive work in crafting a computational toolkit 

built on volcano plots,46 commonly used tools for identifying attractive species in heterogeneous/ 

electro‐catalysis,4, 13-14, 55, 109 to study homogeneous reactions.5, 39, 43, 61-65 Volcano plots are built 

upon Sabatier’s principle,35-36 which states that the interaction between a catalyst and a substrate 

should be neither too weak nor too strong. In addition to volcano plots, Sabatier’s principle has 

also been used in other ways to understand and ultimately design better catalysts,6 such as through 

5 
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the use of Kozuch and Shaik’s energy span model.95, 97, 222-223 The attractiveness of volcano plots 

and their utility for quickly screening catalysts arises from their distinctive shape, which reveals 

a considerable amount of information about each individual species. In essence, the most 

attractive species, those that obey Sabatier’s principle, sit on the volcano plateau or near the peak, 

while the sides represent either overly strong (left‐side) or overly weak (right‐side) 

catalyst/substrate interactions. A catalyst’s location on the plot is determined by the value of its 

descriptor variable (given on the x‐axis), which is then related to either the thermodynamic or 

kinetic properties of the catalytic cycle (shown on the y‐axis) through linear free energy scaling 

relationships (LFESRs).52, 55, 224 

 Equation 5.1 

Our initial work on molecular volcano plots5 began by examining a Suzuki C−C cross‐coupling 

reaction (depicted in Equation 5.1). However, we also uncovered a type of cross‐coupling 

genome that illustrates how the catalytic cycle thermodynamics are influenced by additional 

chemical factors such as the cross‐coupling partner62 [i. e., Suzuki, Kumada, Negishi, Stille, and 

Hiyama coupling, (represented by “Y” in Figure 5.1a)]. Indeed, these different cross‐coupling 

variants are each described by very similar volcano plots, where only the width of the plateau 

region changes (Figure 5.1b–f). Despite the considerable amount of information regarding the 

behavior of catalysts that can be extracted from these volcano plots, the screening for prospective 

new species requires determination of the descriptor value through a series of density functional 

theory computations. In an attempt to expedite the screening process, we recently turned to ML 

techniques in order to establish the value of the descriptor variable. This effort produced the 

desired effect and allowed us to considerably increase the number of species screened, up to 

18,000 catalysts, for the aforementioned Suzuki C−C cross‐coupling reaction.39  

Since our previously established ML model was successful in obtaining the value of the 

descriptor variable for the aforementioned ∼18,000 potential catalysts,i these same “descriptor” 

quantities can also be used to establish the thermodynamic viability for each species for the five 

different cross‐coupling reactions illustrated in Figure 5.1. The purpose of this contribution is to 

use thermodynamic data accessed through the machine learning of quantum chemical properties 

to uncover chemical trends present in the cross‐coupling genome by applying concepts from big-

data analysis. This objective is accomplished with the assistance of interactive dimensionality‐

reducing data‐clustering maps40-41, 225 that group different catalysts based on their intrinsic 

properties. In turn, this information can be used to retrieve correlations between various chemical 

properties and catalytic cycle energetics. In essence, the amalgamation of big-data, 

dimensionality reduction algorithms, and volcano plots serve as effective tools for mining the 

cross‐coupling genome and constitutes a promising protocol for guiding the development of 

novel homogeneous catalysts.  

i For more details on training of the machine-learning model, including discussion on cross validation, see Chapter 4 
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Figure 5.1 (a) The catalytic cycle for cross‐coupling reaction of a vinylbromide (blue) and a vinyl 

metal complex (red). Note that changes in the cross‐coupling partner, Y (purple), denote different 

cross‐coupling name reactions, each of which are governed by different thermodynamics. Suzuki 

coupling involves a ligand exchange step prior transmetalation where Br is replaced by an alkoxy, 

resulting in Y−alkoxy rather than Y−Br. Both Suzuki and Hiyama coupling use activated  

coupling partners. Volcano plots and cross‐coupling partners for (b) Suzuki, (c) Kumada,  

(d) Negishi, (e) Stille, and (f) Hiyama cross‐coupling reactions. The energy descriptor displayed 

on the x‐axis [ΔERRS(2)] is the energy of 2 relative to a reference state (1) while −ΔE(pds), 

displayed on the y‐axis, is the energy associated with the potential determining step, or the largest 

thermodynamic barrier associated with moving between two connected intermediates in the 

catalytic cycle. 

 Computational Details 

5.2.1 DFT Computations and Machine Learning 

All intermediates (complex 1, 2 and vinyl bromide substrate) were optimized in the gas phase  

at the B3LYP164-165−D381, 167 with the 3‐21G (for Ni, Pd, Cu, and Ag complexes)168-171 and the 

def2‐SVP82 basis sets for (Pt and Au complexes) in Gaussian 09.172 Single point energies were 
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then computed on optimized structures at the B3LYP−D3/def2‐TZVP82 level. The oxidation 

states of the catalysts were adjusted to comply with the dominant 14e−/16e− nature of the 

complexes for the Suzuki cross‐coupling reaction. This means that the overall charge for group 

10 metals (Ni, Pd, Pt) is neutral while for group 11 metals (Cu, Ag, Au) carry a +1 charge. The 

machine‐learning procedure was identical to that described in Chapter 4. 

5.2.2 Sketch‐Maps 

The chemical and structural information of the molecules in the full dataset (∼25,000 complexes 

from the ML database)39 was vectorized using common cheminformatics descriptors.226 In 

particular, each compound was characterized based on eight properties: molecular weight, 

shape index, molecular volume, total number of carbon atoms, number of phosphorus−metal 

bonds, number of carbon−metal bonds, number of nitrogen−metal bonds, and number of 

oxygen−metal bonds. The last four descriptors were weighted by the inverse of the bond lengths. 

The two‐dimensional representation of the vectorized dataset was then constructed using Sketch‐

Maps.40-41, 225,227 Sketch‐Map is a dimensionality reduction algorithm aimed at mirroring the 

relationship between high dimensionality data in lower dimensional space. Specifically, the 

technique involves the transformation of distances in both dimensions with a sigmoid function 

(Equation 5.2): 

𝐹(𝑟) = 1 − (1 + (2
𝑎

𝑏 − 1) (
𝑟

𝜎
)

𝑎
)

−
𝑏

𝑎
     Equation 5.2 

where σ, a, and b are three parameters that control the switching distance and the rate at which 

the function moves from zero to unity. Following the procedure detailed in ref. 40, parameters 

for the Sketch‐Map transformation functions were set to σ = 1.0, A = 4, B = 4, a = 1, b = 2 where 

σ is the threshold for the switching function, while A−B and a−b are, respectively, the high‐ and 

the low‐dimensional exponents. In contrast to other dimensionality reduction algorithms such as 

principal component analysis (PCA), which are based on orthogonal linear transformation of 

data, the use of the sigmoid transformation of the distances confers to the Sketch‐Maps enhanced 

flexibility: the algorithm can focus more on reproducing the pairwise connectivity of the data 

rather than trying to reproduce the exact distances between points. In practice, the projection of 

the data is performed through an iterative minimization of a non‐linear fitness function, which 

makes the simultaneous fitting of all data points in the training set impractical. For this reason, 

the Sketch‐Maps were constructed on a subset of 1,000 landmark points for each metal, chosen 

through farthest point sampling. The remainder of the dataset was projected into the Sketch‐Maps 

using the two‐dimensional embedding of the landmark points as a map. The interactive plots 

were then constructed with the interactive visualization library Bokeh228 and a SQLite229 

database. The open‐source HTML5 viewer JSmol230 was used for visualization of the 3D 

structures. 

 Results and Discussion 

The database for our cross‐coupling machine‐learning model consisted of approximately 25,000 

complexes (i. e., ∼7,000 for training and ∼18,000 for predicting)39 created from combinations of 

six metals (Ni, Pd, Pt, Cu, Ag, and Au) and 91 ligands [phosphines, N‐heterocyclic carbenes 
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(NHCs), pyridines, furan, acetone, and carbonyl (CO), see Appendix B for a complete list]. As 

shown in Figure 5.1a, each metal binds to two ligands (L), which can be either the same (i. e., 

L1=L2) or different (i. e., L1≠L2), which means that complexes are characterized based on their 

specific combination of a metal and its two adjoined ligands, L1−M−L2. Using the chemical and 

structural information of each complex (see section 5.2.2 for more information on the collective 

variables), we created separate maps (i. e., Sketch‐Maps) for each metal using a dimensionality 

reduction algorithm (Figure 5.2). The dimensionality reduction reproduces the relationship 

between the data into two‐dimensional space. Providing an interactive representation of the 

figures (available on the Materials Cloud at www.materialcloud.org/discover/ccg) facilitates the 

exploration of the entirety of information revealed by the Sketch‐Maps. Versatile graphics of this 

type offer a fast and intuitive way of visualizing the three‐dimensional structures of prospective 

catalysts by selecting a metal and the appropriate range of the descriptor variable (e. g., those 

corresponding the volcano plateaus presented in Figure 5.1). 

 

Figure 5.2 The Sketch‐Map of each metal colored by the value of the energy‐based descriptor 

variable [ΔERRS(2), in kcal/mol]. The color code corresponds to the volcano plateau of cross‐

coupling reactions, where black represent the volcano plateau for Suzuki coupling. Different 

shades of green and red (see color bar) indicate ideal thermodynamics (i. e., these species fall on 

the plateau) for other the cross‐coupling reactions represented by the other Figure 5.1 volcanoes. 

Catalysts colored gray are not ideal for any of the coupling reactions examined. Note that the 

structure (as and associated properties, vide infra) for each point can be visualized in an 

interactive manner on the Materials Cloud (www.materialscloud.org/discover/ccg). 

Clearly evident within the map for each metal are the nine clusters differentiated based on their 

chemical diversity, specifically the type of atoms bonded to the metal (i. e., P for phosphines, C 

for N‐heterocyclic carbenes (NHCs) and carbonyl (CO), N for pyridines, and O for furan and 

acetone). Each of these clusters is further separated based on ligand size, where bulky species are 

located further left and smaller species further right. For example, the CO ligand always appears 

on the far right of the clusters (L1−M−L2, wherever either L1 and/or L2 is C) owing to its very 
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small size. This feature permits, for instance, the facile separation of CO from much bulkier NHC 

ligands, which always lie further left in the relevant cluster. 

To assure that our ML model was providing accurate descriptions for catalysts lying within each 

of the Figure 5.2 clusters, we examined deviations between the descriptor variable (i. e ., ΔERRS(2) 

as defined by Equation 5.3) determined from DFT computations (lower circles, Figure 5.3) and 

those established by ML predictions (upper circles, Figure 5.3). Specifically, Figure 5.3 uses the 

average value of ΔERRS(2) for each of clusters in the Figure 5.2 Sketch-Map, along with one 

additional group, X−M−CO, which represents the combination of one CO ligand with all other 

ligand types. Overall, our ML predictions for an additional set of ∼18,000 catalysts showed only 

minor differences from DFT computed values (generally less than 3 kcal/mol), which aligns well 

with the mean absolute error of 2.73 kcal/mol inherent to the ML representation.39 This indicates 

that the ML derived data can be used to expand our set of catalysts (from ∼7,000 to ∼25,000 

species), which provides more statistical validity to any chemical trends extracted when 

unraveling the chemical behavior of catalysts, which to the best of our knowledge, has not been 

done before. Note that the chemical implications of the Figure 5.3 will be discussed later. 

  Equation 5.3 

 

Figure 5.3 Average energy descriptors, ΔERRS(2), for each catalyst subgroup obtained from DFT 

computed complexes (7,054 complexes in the training set, shown in filled circles) and from ML 

predictions (18,054 complexes, outlined circles). 

Knowing which species are represented within each cluster, each point was then assigned a 

distinct color based on the value of its descriptor variable, ΔERRS(2) (Equation 5.3), which is seen 

in Figure 5.2 and easily visualized interactively on the Materials Cloud. Using this quantity, the 

thermodynamic suitability for each of the five Figure 5.1 cross‐coupling variants can be assessed 

based on whether a specific catalyst lies on the volcano plateau (see Figure 5.1b–f for the range 
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of descriptor values representing the volcano plateau). Catalysts depicted in black represent the 

best candidates for the Suzuki reaction, as they fall on the plateau of the Figure 5.1b volcano. 

Species that do not lie on the plateau for the Suzuki volcano (Figure 5.1b) are colored either green 

or red to indicate overly strong (green) or weak (red) catalyst/substrate binding interactions. 

While these green and red species are not thermodynamically ideal for Suzuki coupling, they 

may still be efficient catalysts for one or more of the other aforementioned cross‐coupling 

variants. Indeed, as the volcano plateau is lowered and broadened when different cross‐coupling 

partners are employed (see the Figure 5.1 volcanoes), new catalysts that were previously located 

on either the right or left slopes (e. g., for Suzuki coupling) begin to appear on the volcano plateau 

for other cross‐coupling variants. Thus, catalysts depicted in the darkest shades of green or red 

are thermodynamically ideal for all four cross‐coupling variants examined here except Suzuki 

coupling, medium shaded catalysts are ideal for Negishi, Stille and Hiyama coupling, light shades 

are ideal for Stille and Hiyama coupling, and the palest shades are ideal for only Hiyama 

coupling. Those catalysts depicted in gray have exceptionally weak binding interactions and are 

ineffective for any of the variants of cross‐coupling reactions. 

As might be expected, the first trend that distinguishes itself in Figure 5.2 is that a majority  

of the P−M−P clusters have at least some black points, which corresponds to good 

thermodynamic profiles for Suzuki coupling. Taking a closer look, first at the Pd catalysts, it is 

seen that they are generally extremely robust for catalyzing all of the cross‐coupling reactions 

studied.159, 191-192, 231-232 Many catalysts found in the P−Pd−P cluster have descriptor values that 

place these species atop the Suzuki volcano plot. However, not just palladium phosphine catalysts 

are ideal, there are, at minima, a handful of species belonging to each ligand type combination 

that are also colored black (see Figure 5.4a). Thus, the Sketch‐Maps illustrate that the intrinsic 

properties of Pd clearly place this metal atop the podium for catalyzing nearly any cross‐coupling 

reactions, with nearly 24% (820 out of 4,185) of all the Pd catalysts assessed having ideal 

thermodynamics for Suzuki coupling. If we move to a cross‐coupling variant with a wider 

plateau, such as Kumada coupling (Figure 5.4b), than the density of points increases considerably 

(from 820 to 4,081). Thus, ∼98% of the Pd catalysts we tested have ideal thermodynamic profiles 

for Kumada coupling. 

Ni catalysts are shifted the furthest toward strong binding of the group 10 metals. 

Correspondingly, only a handful of species appear atop the Suzuki volcano (only 63 out of 4,075, 

Figure 5.4c), with those being located predominately in the P−Ni−P cluster. However, if the 

plateau region is widened by moving to Kumada coupling, then many more catalysts with ideal 

thermodynamics appear (1,021 of 4,075). Figure 5.4c also shows that the clusters associated with 

all different ligand types reform when moving from Suzuki to Kumada coupling. This is true of 

species that traverse the catalytic cycle as Ni(0)/Ni(II) species (as was examined here) and does 

not consider the more reactive Ni(I)/Ni(III) oxidation states196 where the thermodynamic profiles 

are greatly improved.61 Platinum catalysts are located between Ni and Pd in terms of binding 

strength. Despite having a number of catalysts with good thermodynamic profiles, platinum 

species are virtually absent from the experimental literature.193-194 It has been postulated that the 

principle drawbacks of using Pt catalysts are the presence of stronger M−R bonds (relative to 

Pd), which results in a slow transmetalation process195 and, general difficulties in completing 

reductive elimination,233-234 which slows the reaction rate. 
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Figure 5.4 Snap‐shots of the interactive Sketch‐Maps located on the Materials Cloud 

(www.materialscloud.org/discover/ccg) for selected metals depicting only catalysts with ideal 

thermodynamics for Suzuki coupling (a, c, e) and for both Suzuki and Kumada coupling (b, d, 

f). 

Group 11 metal‐based catalysts show remarkably different behavior than their group 10 

counterparts, where the thermodynamic profiles are characterized by very weak binding energies 

(indicated by red, pink, and gray colored points in Figure 5.2). Cu catalysts represent the most 

promising group 11 species, with a handful (39 out of 4,184) even having ideal thermodynamics 

for Suzuki coupling (Figure 5.4e). Unlike Ni, which are often best paired with a specific ligand 

type (e. g., two phosphine ligands) to induce better catalytic cycle thermodynamics, the 39 Suzuki 
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copper catalyst are distributed primarily in the C−Cu−C, P−Cu−C, and P−Cu−P ligand clusters. 

Indeed, numerous examples of Cu based cross‐coupling catalysis using various ligand types are 

present in the literature.201, 235 Moving from Suzuki to Kumada coupling results in the appearance 

of many new catalysts (739, Figure 5.4f), as well as several (but not all) different ligand 

combinations, including phosphine, carbene, and nitrogen coordinating ligands. On the other 

hand, the thermodynamics for Au, and particularly Ag, are worse than the Cu species and are 

characterized by binding energies that are far too weak. The origin of the contrasting situations 

between group 10 and group 11 metals lies in their ability to facilitate oxidative addition. Since 

group 11 catalysts traverse the catalytic cycle in their M(I)/M(III) oxidation states, there is an 

inherent problem with oxidative addition. Taking Cu, as an example, while these species can 

undergo oxidative addition in a similar manner to Pd,236 the thermodynamics of the process are 

far worse, with reductive elimination to reform the starting materials236-237 being a significant 

problem. The observation of this back reaction indicates that the thermodynamics of oxidative 

addition are more unfavorable in group 11 than in group 10 catalysts, which is reflected in the 

weak binding energies of Cu, Ag, and Au catalysts seen in Figure 5.2. 

While the metal‐center clearly plays a central role in dictating catalytic performance, the impact 

of the ancillary ligands is also critically important for fine‐tuning a catalyst’s affinity for 

facilitating oxidative addition and commencing the catalytic process. Indeed, the influence of the 

ligands in terms of stereoelectronics (i. e., σ‐donating and π‐accepting ability), as well as ligand 

bulk, has long been of keen interest to the experimental organometallic community. Notably, 

work of Tolman concerning the influence of ligand sterics238 and early observations that 

stereoelectronic effects were also important in influencing reactivity239-241 laid the groundwork 

for a renaissance in examining the influence of ligands in cross‐coupling reactions.8, 214, 242-247 

Figure 5.2 also highlights many of the anticipated trends that are firmly established by decades 

of experimental work. The energy of oxidative addition (the descriptor used in our volcano plots) 

is strongly influenced by the electronic properties of the ligands, where more electron donating 

species result in a more facile process.248-249 For instance, N‐heterocyclic carbenes are stronger  

σ‐donors than even the most electron rich phosphines (based on measurements of CO stretching 

frequencies250-251). Turning again to the Pd map in Figure 5.2, the predominance of green colored 

catalysts indicate that the C−Pd−C catalysts (which includes the NHC ligands) have stronger 

binding energies than the P−Pd−P catalysts, which are predominantly colored black. Catalysts 

bearing one phosphine and one carbene ligand (i. e., the P−Pd−C cluster) show the expected 

intermediary binding energies. Conversely, the presence of strong π‐acceptors/weak σ‐donors, 

such as CO, induce a strong shift toward weaker binding, and appear as red colored catalysts 

located at the right periphery in most of the X−Pd−C clusters. 

In order to highlight that variations in descriptor value do arise from the σ‐donating/π‐accepting 

properties of the ligands, we computed the HOMO energy of intermediate 1 (see Figure 5.1a) for 

each catalyst. Through ligand field theory,252-253 the HOMO energies should relate to the 

donor/acceptor properties of the ligand, which, in turn, should relate to the value of our descriptor 

variable. The Figure 5.5 maps for Pd catalysts shows the existence of this relationship. Strong  

π‐acceptor ligands, such as CO, are characterized by very negative HOMO energies (i. e., more 

red points in right map of Figure 5.5) while strong σ‐donor, such as carbenes, are characterized 

by much higher HOMO energy levels (i. e., more blue/green points in the right map of Figure 

5.5). These values are roughly inversely correlated with the values of the energy descriptor 
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(Figure 5.5, left map) where, for instance, carbene species tend to have much stronger binding 

energies that are indicated by a considerable number of dark blue point in the C−Pd−C cluster. 

 

Figure 5.5 Sketch‐Maps of palladium complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of intermediate 1 (right, in eV). The color bar of HOMO energy 

is set as the inverse of the energy descriptor for easier comparison. The Sketch‐Maps for other 

metals can be found in the Appendix B. 

 

Figure 5.6 Correlations between the computed descriptor variable (in kcal/mol) and the HOMO 

energy (in eV) for (a) all catalysts, (b) all Pd catalysts, (c) selected Pd catalyst colored by ligand 

type, and (d) P−Pd−P catalysts. PCC values within the plots represent the Pearson correlation 

coefficient. 

These correlations can be placed on more quantitative footing by examining statistical 

measurements of correlation. For example, determination of Pearson correlation coefficients 

(PCC) for all catalysts in the test set or just those containing a Pd metal center yield values of 
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−0.88 and −0.55 (−1 being a perfect negative correlation), respectively (Figure 5.6a and b). If the 

Pd catalysts are further broken down by different ligand combinations (such as those clustered 

together in the Figure 5.5 Sketch-Map) reveals that these different ligand classes are defined by 

a more compact grouping of descriptor variables and HOMO energies (Figure 5.6c). While the 

overall PCC can be relatively high, within each individual metal/ligand subgroup the same can 

be quite low. For instance, phosphine ligands show strong variations in sterics with minimal 

corresponding change in stereoelectronics (this appears as a horizontal line of catalysts with 

HOMO values between −4.0 and −4.5 eV, Figure 5.6d), which results in much lower correlations 

(e. g., −0.10 for the P−Pd−P subgroup of catalysts). Other ligand classes show better correlations 

between steric and stereoelectronic properties (e. g., N−M−N). Taken together, the separations 

in descriptor variable and HOMO energy allows us to extract meaningful chemical trends that 

exist between (but perhaps not within) different ligands classes. 

The relationships between HOMO energy and descriptor value (ΔE) for each of the different 

metals are summarized more succinctly in Figure 5.7. Taking the average value of the P−M−O 

subgroup as an arbitrary reference (i. e., setting the average ΔE and HOMO values of all the 

catalysts in the P−M−O cluster to zero), each of the other clusters can then be plotted as a shift 

of the binding energy (ΔΔE) along the x‐axis and ΔHOMO along the y‐axis relative to the 

P−M−O reference. The background colors of the plots correspond to the previously used color 

codes that represent the actual (as opposed to relative) value of the descriptor variable in the 

Figure 5.2 maps. Thus, a black background corresponds to being on the volcano plateau for 

Suzuki reaction, whereas green and red represent overly strong (green) or overly weak (red) 

binding interactions, and gray extremely weak interactions. 

 

Figure 5.7 Relationships between the average energy descriptor and the HOMO energy of 

complex 1 (L1−M−L2) for each metal. All energies are relative to the values of P−M−O ligand 

type (black bubble). The background corresponds to the color code of the Sketch‐Map in Figure 

5.2, where the black region indicates the volcano plateau for Suzuki coupling, while green and 

red indicate overly strong and overly weak binding interaction, respectively. The Pearson 

correlation coefficients for each plot are: −0.51 (Ni), −0.96 (Pd), −0.92 (Pt), −0.90 (Cu), −0.85 

(Ag), and −0.86 (Au). 



Chapter 5. Data Mining the C−C Cross‐Coupling Genome 

44 

Figure 5.7 illustrates that each class of ligands, with their varying degrees of σ‐donating/ 

π‐accepting ability, influence catalysts belonging to the same metal group (e. g., Ni, Pd, and Pt) 

in analogous ways. The aforementioned trends regarding shifts toward stronger binding brought 

about by strong σ‐donors are seen in the Ni, Pd, and Pt plots, where all X−M−C (or C−M−X) 

species are located further to the left (indicative of stronger binding) and higher (indicative of 

less negative HOMO energies) than the reference P−M−O species. Catalysts with π‐accepting 

ligands, such as those bearing two phosphine (P−M−P) or at least one CO (X−M−CO), show the 

opposite effect, and are shifted toward weaker binding while also illustrating the anticipated 

reduction in the HOMO energy (Figure 5.7a–c). Group 11 catalysts, curiously, show markedly 

different trends than the group 10 species, particularly in the influence brought about by 

phosphine ligands. While carbene (e. g., C−M−C) and CO (X−M−CO) ligands still induce the 

largest shifts toward strong and weak binding, respectively, catalyst with two phosphine ligands 

(P−M−P) in tandem with a group 11 metal are shifted toward stronger, rather than weaker, 

binding. This non‐intuitive behavior of phosphine ligands may explain experimental observations 

of Cu catalyzed Suzuki−Miyaura C−C cross‐couplings with phosphine ligands.254 Overall, the 

clearest route to improving the thermodynamic profiles of group 11 catalysts is including strong 

σ‐donating ligands that result in stronger binding between the catalyst and the substrate. These 

ligands are capable of concentrating negative charge on the metal center (see correlation between 

the energy descriptor and Mulliken charges in Appendix B), which makes oxidative addition 

more thermodynamically favorable. 

While the discussion above consisted of a more “traditional” chemical interpretation of 

metal/ligand effects on catalysis, we are also very interested in moving toward using big‐data 

type analysis in computational catalysis research, with the objective of revealing hidden 

relationships that can only be uncovered by examining large numbers of species. Following this 

line of thinking, Figure 5.8 reveals a new way of investigating catalytic behavior by examining 

the distribution of energy descriptor values for various metal/ligand cluster combinations. One 

of the clearest, and perhaps least surprising, conclusions that is quickly drawn is that catalysts 

incorporating a palladium atom have nearly perfect thermodynamic profiles, regardless of the 

surrounding ligands. The “occurrence curves” depicted in Figure 5.8 for Pd catalysts that feature 

at least one phosphine ligand (i. e., Figure 5.8a, b, c, f) are essentially centered within the yellow 

highlighted region, meaning they are thermodynamically ideal even for Suzuki coupling, whose 

volcano has the smallest plateau region. Pd catalysts with carbene ligands (Figure 5.8j) are 

centered toward stronger binding, but the distribution is bimodal (i. e., there is a smaller second 

distribution lying to the right of the largest distribution), showing that a smaller subset of species 

exists that show ideal binding strengths. This same type of bimodal distribution is also observed 

in the N−M−O (Figure 5.8g), N−M−N (Figure 5.8h), and C−M−N ligand clusters (Figure 5.8i) 

not only for Pd, but also for each of the other metal types, which likely results from the distinct 

types (i. e., amine and pyridines) of nitrogen bound ligands. Also very evident is that Ni and Ag 

consistently represent the extremes of strong and weak binding, respectively. Each of the four 

other metals are characterized by binding energies intermediary to these two metal extremes. 



5.3. Results and Discussion 

45 

 

Figure 5.8 Distribution of metal complexes at different energy descriptor values according to 

ligand cluster type (a–j). The volcano plateau for the Suzuki coupling is highlighted in yellow 

and for Hiyama coupling in green. 

Figure 5.8 also uncovers interesting facts regarding how, and to what extent, certain ligand 

groups are able to “polarize” the metal center. Ligands such as N−M−N (for the group 10 

catalysts, Figure 5.8h) and C−M−N (for the group 11 catalysts, Figure 5.8i) induce markedly 

different binding energies for the different metals. Putting this into practical application, the 

distinct separation seen in, for example, the group 11 catalysts belonging to the C−M−N cluster 

show that this combination of ligands is particularly adept at shifting Cu catalysts away from 

their Ag and Au counterparts, toward stronger binding and better catalytic cycle thermodynamics. 

A collective examination of all of the Figure 5.8 plots shows that for the group 10 catalyst, Pd 

and Pt tend to move in tandem with one another. Nonetheless, certain ligand combinations, such 

as C−M−C, cause Pd and Pt to appear far different from Ni catalysts, while others (e. g., P−M−O 

and P−M−P) cause each of the group 10 metals to look more similar to one another. 

Similar to the ability of certain ligand subgroups to “polarize” the metals belonging to the same 

group, some ligands possess a noticeable ability to make metals belonging to different groups 

(i. e., group 10 and 11) look more similar or dissimilar to one another. For example, Figure 5.8a 

shows that phosphine ligands cause group 10 and group 11 metals to appear similar to one another 

by shifting the group 10 catalysts toward weaker binding and shifting the group 11 catalysts 

toward stronger binding. The result is that the curves representing Pd (the weakest binding group 

10 metal) and Cu (the strongest binding group 11 metal) significantly overlap one another (Figure 

5.8a). The same effect is seen when at least one carbonyl ligand is present (Figure 5.8e). In 

contrast, ligands that interface with the metal center through a nitrogen atom (e. g., N−M−O, 

N−M−N) induce the opposing situation where the group 10 and 11 catalysts shift away from one 

another (i. e., the already strong binding group 10 catalysts move toward even stronger binding 

and the already weak binding group 11 catalysts toward even weaker binding). 
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Aside from the overarching inferences regarding how the different ligand clusters influence the 

behavior of various metal centers discussed above, Figure 5.8 also shows the exact metal/ligand 

recipe likely to produce good cross‐coupling catalysts. While it is well known that certain 

metal/ligand combinations, most famously palladium‐phosphine, nearly always constitute 

attractive catalysts, certain other combinations may be less intuitive and obvious. For example, 

the very broad (i. e., spanning a large range of descriptor values) occurrence distributions seen 

for Cu based species indicates that some ligands sufficiently alter the metal through strong 

stereoelectronic influences such that their binding energy falls onto the Suzuki coupling volcano 

plateau (yellow highlighted area). As the plateau area is widened for other cross‐coupling 

variants, a more diverse group of catalysts become thermodynamically viable. For example, 

Figure 5.8 shows that for Hiyama coupling (green highlighted area), all of the metals, with the 

notable exception of silver, have at least part of their occurrence curves overlapping the plateau 

region. This indicates that a host of “nontraditional” cross‐coupling catalysts featuring Cu and 

Au metals should have ideal thermodynamic for catalyzing Hiyama coupling. For further 

discussion on synergy between thermodynamic volcano plots and experiment, the interested 

reader is referred to ref. 61.  

Generally speaking, Figure 5.8 shows how the magnitude and direction of the shifts within and 

between disparate metal types induced by various ligand groups can be used as a tool to fine‐

tune a catalyst’s binding energy in order to obtain an ideal thermodynamic profile. Some 

particularly interesting classes of species that may be worthy of more detailed examination by 

computation or experiment include combinations of copper/gold with carbene or phosphine 

ligands. While we have focused on a class of reactions that is well understood through decades 

of both experimental and computational exploration, the true power of the type of approaches 

discussed here will be found in analyzing new reaction classes that are relevant to the pressing 

chemical problems of today. 

 Conclusions 

In conclusion, we analyzed a combination of DFT‐derived and machine‐learned data for a series 

of more than 25,000 catalysts with the objective of employing a big‐data type analysis to uncover 

hidden chemical trends in cross‐coupling catalysts. The interactive use of data‐driven 

representations aided in quickly revealing which metal/ligand combinations make effective 

catalysts, based on their position on a series of molecular volcano plots representing different 

“named” cross‐coupling reactions. A large‐scale data analysis revealed how certain ligand types 

are able to “polarize” different metals, which causes catalysts bearing different metal centers to 

appear more similar or dissimilar to one another. This information can, in turn, be used to 

systematically tune specific metal/ligand combinations to obtain a desired thermodynamic profile 

for the catalytic cycle. While we have studied a class of reactions with a long and storied history 

in chemistry, the real power of the type of approach described within will be in the exploration 

of new chemistries, where harnessing big‐data type analyses will reveal the strengths and 

weaknesses of different catalytic processes. 
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6 Unraveling Metal/Pincer Ligand Effects 

in the Catalytic Hydrogenation of 

Carbon Dioxide to Formate 

This chapter is based on following publication: 

Sawatlon B., Wodrich M. D., and Corminboeuf C., Unraveling Metal/Pincer Ligand Effects in 

the Catalytic Hydrogenation of Carbon Dioxide to Formate. Organometallics 2018, 37, 4568–

4575. 

 Introduction 

C1 compounds, e.g., methanol, methane, and formic acid/formate salt,255-261 are important 

platform chemicals that find use in applications ranging from fabric dyeing and printing 

processes to hydrogen storage.262-265 As an example, the hydrogenation of carbon dioxide (CO2) 

to formic acid/formate salt provides a promising route using a readily available carbon 

feedstock266 to develop liquid organic hydrogen-carriers (LOHCs) systems.267 The principal 

shortcoming of the hydrogenation reaction (Figure 6.1a), however, is that CO2 is an inherently 

inert and stable gas, meaning that transition metal catalysts are generally required to facilitate 

chemical transformations. Such catalytic processes typically operate under harsh conditions (high 

temperature and/or pressure of CO2 and H2), thus it is hardly surprising that new systems that 

operate under milder conditions are continuously being developed.268-271  

To date, the most promising homogeneous hydrogenation pincer-catalysts consist of transition 

metal complexes (e.g., Ir, Rh, Ru, and Fe) incorporating PNP pincer ligands based on a 2,6-

dimethylpyridine scaffold where the P and N atoms are directly bound to the metal center.272-275 

The connecting atoms of the pincer backbone can be swapped with either N and C, which leads 

to a host of different ligand families (e.g., PNN, NNN, PCP),276-278 as illustrated in Figure 6.1b. 

Perhaps the most well-known homogeneous catalytic system for the hydrogenation of CO2 to 

formate used a IrIII−PNP catalyst (PNP = 2,6-bis(di-iso-propylphosphinomethyl)pyridine) and 

yielded a maximum turnover number of 3,500,000.279-280 Subsequent experimental281-286 and 

theoretical103, 287-294 investigations have also revealed that this, as well as other metal−pincer 

complexes should be capable of catalyzing the hydrogenation reaction. Nevertheless, despite 

considerable experimental and computational work, a comprehensive picture on why certain 

metal/ligand combinations are superior to others remains lacking.  

6 
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Figure 6.1 (a) The hydrogenation reaction of carbon dioxide to formate, (b) different 

metal−ligand combinations studied in this work, and (c) the proposed catalytic cycle. 

The first step in uncovering such information is to firmly establish the details of the reaction 

mechanism, which can provide important evidence on how a catalyst might be modified to 

improve its activity. For example, the prototypical IrIII−PNP catalyzed hydrogenation of CO2 

(Figure 6.1c),290 proceeds through a catalytic cycle that first involves complexation of carbon 

dioxide with the hydrido (H−) ligand of 1, hydride extraction (TS1) then ultimately leads to a 

formate ion bound to the catalyst via its oxygen atom, 2. Dissociation of the formate ion then 

produces cationic species, 3, which is followed by the addition of molecular hydrogen (H2) to 

form 4. The heterolytic cleavage of H2 and abstraction of the proton by a hydroxide base (−OH) 

(TS2) closes the catalytic cycle by producing a molecule of water and regenerating 1. Previous 

computational results have identified the rate-determining step for the IrIII−PNP catalyst as 

involving heterolytic H2 cleavage and proton transfer to the hydroxide anion (i.e., 4→TS2).290 

Nonetheless, the kinetic profiles that govern catalytic efficiency, or even the specific rate-

determining step itself, may be different for other species. Obtaining this critically important 

information, however, requires computing the entire catalytic cycle for each individual catalyst, 

an arduous task that is both time consuming and computationally expensive.  

Fortunately, we have recently shown that the kinetic profiles of catalysts can be estimated at 

greatly reduced computational cost using molecular volcano plots.5, 39, 61-65 Volcano plots,45-46 

which are widely used in heterogeneous and electrocatalysis,4, 295-296 and, more recently, have 

been invoked to rationalize60, 95, 223, 297 and predict5, 39, 61-65 the performance of homogeneous 

catalysts. By computing a single descriptor variable for each catalyst, such as the reaction energy 

of one step of the catalytic cycle, it is possible to assess the thermodynamics or kinetics of the 

entire catalytic cycle through linear free energy scaling relationships (LFESRs).52, 55, 224 After 

constructing the volcano plot from the corresponding LFESRs, the properties of various catalysts 

can be quickly assessed from their position on the plot. Catalysts lying on the plateau or near the 

peak are considered good candidates that possess balanced catalyst/substrate interactions, in 

accordance with Sabatier’s principle.36 On the other hand, catalysts located far from the peak (or 

plateau) on the left or right slopes have interaction energies that are either too strong (making 

release of the final products problematic) or too weak (making entry into the catalytic cycle 

difficult), respectively. Despite being based on thermodynamic concepts, these same principles 
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are valid for kinetic quantities such as transition state barrier heights.54, 64-65, 298-301 The objective 

of this work is to unravel how various metals and ligands work in tandem to catalyze the 

hydrogenation of carbon dioxide to formate using molecular volcano plots. Using these tools, we 

reveal guiding principles that deliver strategies for improving the activity of prospective catalysts 

through manipulation of the catalytic cycle kinetics.  

 Computational Details 

The geometries of all species were first optimized at the M06302-303/def2-SVPD82 level using the 

“ultrafine” integration grid304 along with the SMD83 implicit solvation model (solvent = water)  

in Gaussian09.172 An analysis of the resulting vibrational frequencies ensured that each structure 

was either a minima (zero imaginary frequencies) or a transition state (one imaginary frequency) 

on the potential energy surface. To obtain a complementary picture of the catalyst free energies 

profiles, single point electronic energies were determined on the M06 optimized geometries  

using the B3LYP164-165 functional appended with a density-dependent dispersion correction  

–dDsC305-308 (i.e., B3LYP−dDsC) in tandem with the aug-TZ2P (TZ2P for the transition metal 

species) Slater-type basis sets as implemented in ADF.309-310 Free energy corrections (from the 

M06 computations) were determined using the rigid-rotor harmonic oscillator model (as 

proposed by Grimme311) along with a correction for translational entropy in solution (as proposed 

by Whitesides312) within the GoodVibes program313 developed by Paton and Funes−Ardoiz. Final 

solvation correction values (in water) were then determined at the B3LYP−dDsC/aug-TZ2P level 

using the COSMO−RS solvation model,314 also as implemented in ADF. For all intermediates 

and transition states, wave function stability was tested to confirm that the singlet state is the 

ground state. 

 Results and Discussion 

6.3.1 Linear Free Energy Scaling Relationships 

Based on the reaction mechanism depicted in Figure 6.1c, we computed free energies for each of 

the catalytic cycle intermediates and transition states for a total of 35 pincer catalysts 

(combinations of five metals and seven ligands shown in Figure 6.1b). Analysis of the Figure 

6.1c reaction mechanism, as well as an alternative ligand cooperative pathway (see Appendix C 

for details), confirmed the favorability of the non-cooperative mechanism.279, 290-291 Linear free 

energy scaling relationships (LFESRs) were then established by calculating the stabilities of each 

intermediate and transition state relative to a reference state (ΔGRRS), which we selected as the 

entry point into the catalytic cycle, 1. An assessment of different potential descriptor variables 

identified ΔGRRS(4) (as defined in Equation 6.1) as being the most suitable, as strong LFESRs 

exist between this variable and the stabilities of other catalytic cycle intermediates and transitions 

states, as illustrated in Figure 6.2. 

1 + CO2 + H2 → 4 + HCOO− ΔGRRS(4)   Equation 6.1 
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Figure 6.2 Linear free energy scaling relationships between the descriptor variable, ΔGRRS(4) and 

intermediates [(a) ΔGRRS(2) and (b) ΔGRRS(3)] as well as transition states [(c) ΔGRRS(TS1) and 

(d) ΔGRRS(TS2)] for the hydrogenation of carbon dioxide to formate. 

6.3.2 Molecular Volcano Plots 

Having established LFESRs along with a suitable descriptor variable, the Figure 1 reaction can 

be cast into a simulated reaction profile (Figure 6.3a). This profile provides an estimate of the 

free energy associated with moving between any two linked intermediates and transition states 

of the catalytic cycle directly by knowing the value of the descriptor [e.g., ΔGRRS(4)] for the 

reaction. The overall nature of the steps largely agrees with previous work. For instance, 

formation of the formate ion through hydride abstraction from the catalyst by CO2 is shown to 

be a very energetically facile process (i.e., the black line indicates most values are roughly 

thermoneutral), in agreement with the recent work of Heimann et al.315 Moreover, in many cases 

proton abstraction by the hydroxide basis in anticipated to be the rate determining step (i.e., the 

magenta line predicts very endergonic reaction values for species falling in the left section of the 

plot), as is the case for the aforementioned IrIII−PNP catalyst.290  

The final volcano plot (Figure 6.3b) can be obtained directly from the simulated reaction profile 

(Figure 6.3a) by taking only the most energetically costly reaction step [i.e., the kinetic 

determining step, −ΔG(kds), plotted along the y-axis] for each descriptor (x-axis) value. For the 

hydrogenation of CO2 to formate, the volcano plot is divided into two sections, each of which  

is governed by a different reaction step that is the most energetically costly. The two steps 

correspond to the dissociation of the oxygen bound formate ion from the catalyst (2→3) as well 

as heterolytic H2 cleavage and proton abstraction by the hydroxide base (4→TS2). Curiously,  

in contrast to the more typically seen molecular volcano picture in which the slopes can be 
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directly interpreted as paralleling substrate binding (i.e., oxidative addition) and product release 

(i.e., reductive elimination), the Figure 6.3 plot is a bit more complicated. While our previous 

work used the binding energy of a substrate directly with the metal center as a descriptor 

variable,5, 61-65 here the chosen descriptor represents the energy difference between the binding 

of a hydrido ligand (1) and molecular H2 (4). As such, the typical strong-binding/weak-binding 

nature of the left/right slopes becomes harder to distinguish, yet remains present. In essence, 

species with negative x-axis values have stronger interaction with molecular hydrogen than with 

a hydride ion. Thus, catalysts falling on the left slope bind H2 in an overly strong fashion, making 

the transition from H2 to H− (i.e., 4→TS2) difficult and energetically costly. Moving rightward 

along the x-axis, species will have an increasingly strong interaction for H− and an accompanying 

reduction in H2 binding ability, which manifests itself in a gradual reduction in the 4→TS2 

barrier height. Ultimately, the ability of the catalysts to bind anionic species (such as H− or 

formate ion) becomes quite strong, which causes the release of oxygen bound formate species 

(2→3) to become the most energetically costly reaction step.i Taken as a whole, the Figure 6.3b 

volcano plot indicates that an ideal hydrogenation catalyst must have a finely tuned ability to 

bind both neutral (e.g., molecular hydrogen) and anionic (e.g., hydride and formate), each of 

which are present in the catalytic cycle, neither too weakly nor too strongly. 

 

Figure 6.3 (a) Simulated reaction profile depicting the anticipated energy associated with each 

step [ΔG(RXN)] of the catalytic cycle for a specific value of the descriptor variable (x-axis).  

(b) A volcano plot that illustrates anticipated activity for the hydrogenation of CO2 to formate by 

predicting the value of the most energetically difficult reaction step to complete [e.g., the kinetic 

determining step (kds)]. Note that Ir(PNP) (orange circle) is an experimentally known catalyst 

that facilitates the hydrogenation reaction. 

Individual catalysts are placed onto the volcano according to their energy-based descriptor  

(x-axis) and the free energy associated with the appropriate kinetic determining step (kds, y-axis). 

For the 35 catalysts tested here, a vast majority fall on the left side of the volcano, meaning that 

the most energetically costly reaction step is the heterolytic H2 cleavage and proton transfer 

(4→TS2). As mentioned earlier, this matches the findings of a previous computational study of 

Ir(PNP) pincer.290 The sole exception is Ir(PONOP) (orange diamond, Figure 6.3b), which lies 

on the opposing side of the volcano as the other catalysts where the most costly step is 

dissociation of the formate ion (2→3).  

i Note that a scan of the potential energy surface revealed no TS for the dissociation of the formate ion from the 

catalyst. This is because this dissociation process is, overall, thermodynamically unfavorable. 
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A closer examination of Figure 6.3b shows that the catalysts are roughly grouped into two regions 

based on their metal center. Catalysts bearing group 9 metals (Co, Rh, Ir) lie closer to the volcano 

peak, indicating that they are anticipated to more pronounced ability to catalyze the reaction in 

question than group 8 metals (Ru, Os), which fall further from the volcano peak along the strong-

binding (left) slope. As expected, the experimentally characterized Ir(PNP) complex279 (orange 

circle, Figure 6.3b) is amongst a handful of catalysts that the volcano plot predicts will have 

nearly maximal activity. Other species having roughly comparable activities to Ir(PNP) include: 

Ir(PONOP), Rh(PONOP), and Co(PONOP). The later should be of particular interest given the 

cost associated with using earth-abundant metals to catalyze reactions. On the other hand, the Ru 

and Os catalysts studied here show significant stabilization of the catalytic cycle intermediates, 

particularly 4, relative to the desired reaction product. As such, these species are anticipated to 

exhibit little or no activity for the hydrogenation of CO2. 

Figure 6.4 provides a free energy diagram that depicts the catalytic energetics for these four 

species. As expected, the highest energy barriers of these species are identical to those predicted 

by the volcano plot, indicating that the free energy predictions made by the linear free energy 

scaling relationships closely match actual values obtained directly from DFT computations. For 

Ir(PNP), Rh(PONOP), and Co(PONOP), heterolytic H2 cleavage and proton transfer (4→TS2) 

is most costly and requires 13.8, 12.2, and 12.8 kcal/mol, respectively. In contrast, Ir(PONOP) 

needs only 6.0 kcal/mol to complete this reaction step. For Ir(PONOP), the most costly reaction 

step is dissociation of the formate ion (2→3), which requires 8.6 kcal/mol. Overall, Figure 6.4 

shows that all of these catalysts experimentally viable, with Ir(PONOP) anticipated to have 

particularly good activity. 

 

Figure 6.4 Computed free energy diagrams of the catalytic cycles of selected species. 

Despite the fact that all catalysts appear to be clustered according to their metal center, the nature 

of the ligand does have an influence on the efficiency of the catalytic process. These changes 

become most evident if the relative positions of ligands are considered. Clear trends emerge if 

we arbitrarily set the PNP-ligand complexes for each metal type as the “zero point” and plot the 
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corresponding shifts to weaker or stronger binding of the other ligands. This reveals, for instance, 

that the PONOP ligand produces a considerable shift of a catalyst toward weaker binding (i.e., 

right along the x-axis, Figure 6.5). Since the Rh(PNP) and Co(PNP) catalysts already lie on the 

strong binding (left) side of the volcano peak, the rightward shift brought about by replacing the 

PNP with the PONOP ligand leads to enhanced activity, as indicated by Rh(PONOP) and 

Ir(PONOP) being closer to the volcano peak than Rh(PNP) and Ir(PNP). A smaller, yet similar 

effect is seen for the PNNNP ligand (Figure 6.5). In contrast, the PCP ligand provides an 

opposing effect, producing a significant shift toward stronger binding (i.e., leftward along the  

x-axis, Figure 6.5). For the reaction studied here, replacing the PNP ligand with a PCP ligand 

reduces catalytic activity by shifting all catalyst leftward away from the volcano peak (Figure 

6.3b). The use of NNN, PNMeP and PNN ligands also produce similar, yet less dramatic, 

leftward shifts along the volcano plot.  

 

Figure 6.5 The average deviation of different pincer ligands on the volcano plots from the PNP 

ligand, which is used as a reference and arbitrarily set to zero. The influence of the ligand on the 

descriptor value [ΔGRRS(4)] is then measured by subtracting each ligand value with the PNP 

complex of the same metal. 

Further in depth examination also uncovers the influence of the pincer ligand’s connecting atoms 

(X, Y, and Z symbols in Figure 6.1). In essence, when the flanking X and Z atoms (i.e., as in the 

PNP, PNN, and NNN ligands), as well as the central pincer atom (Y = Npyridine, Namine, and Cphenyl 

in PNP, PNMeP, and PCP respectively), are strong π-acceptor/more π-acidic moieties, such as 

phosphorus, the position of the catalyst tends to fall further to the right on the volcano plot than 

other pincer ligands with the same metal type (Figure 6.5), indicative of a weaker catalyst/ 

substrate binding interaction.316-317 Collectively, these “ligand backbone effects” are known to 

significantly impact overall catalytic performance.318 Moreover, changing the number or type of 

connecting atoms located between the X and Y or the Y and Z atoms also influences activity, as 

is clearly evident by examining difference between the PONOP, PNNNP, and PNP complexes. 

The presence of more electronegative oxygen atoms in the PONOP ligand produces a larger shift 

of the catalysts toward weak binding (rightward along the x-axis) than the less electronegative N 

and C atoms found in PNNNP and PNP. As such, the clearest path toward improving catalytic 

performance is utilizing π-acidic ligands with group 9 metals (Ir, Rh, Co). Doing so will reduce 

the energy associated with heterolytic H2 cleavage and proton transfer that represents the most 

energetically costly step of the catalytic cycle.  

 Conclusions 

In conclusion, an examination of the hydrogenation of CO2 to formate using molecular volcano 

plots shows that myriad metal and pincer ligand combinations have the ability to catalyze this 
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reaction. Of a set of 35 catalysts tested, iridium, rhodium and cobalt complexes with π-acidic 

ligands stand out as having particularly attractive catalytic cycle energetic profiles. For nearly all 

of the tested catalysts, the heterolytic H2 cleavage and the proton transfer to hydroxide base 

represent the most energetically costly step of the catalytic cycle. This energetic cost, however, 

can be minimized and the overall kinetics of the reaction improved by selecting catalysts bearing 

a strong π-accepting pincer ligand. Overall, this work demonstrates how molecular volcano plots 

can be used not only for estimating the performance of and designing new catalytic species, but 

also for uncovering the underlying trends that make functional catalysts tick. 
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7 Activity-Based Screening of 

Homogeneous Catalysts through the 

Rapid Assessment of Theoretically 

Derived Turnover Frequencies 

This chapter is based on following publication: 

Wodrich M. D., Sawatlon B., Solel E., Kozuch S., and Corminboeuf C., Activity-Based 

Screening of Homogeneous Catalysts through the Rapid Assessment of Theoretically Derived 

Turnover Frequencies. ACS Catal. 2019, 9, 5716–5725. 

 Introduction 

In experiment, measurements of catalytic activity are often reported as a turnover frequency 

(TOF). This single numeric provides a clear and unambiguous means of directly comparing the 

activities of two or more catalysts. However, when chemists turn to computation, comparisons 

become more difficult since, frequently, the output consists only of a reaction free energy profile 

containing a series of peaks and valleys representing the energies of the transition states and 

intermediates found in the catalytic cycle. To a large degree, the shortcomings of free energy 

profiles can be overcome and the computed activity of catalysts directly compared with one 

another if a TOF can be directly computed. In homogeneous catalysis, this task is often 

accomplished using Kozuch and Shaik’s energy (energetic) span model (ESM)95-97, 222-223, 297 or 

through microkinetic modeling.i,319 Based on a term coined by Amatore and Jutand,320 the ESM 

uses steady-state equations321 and Eyring’s transition state theory322 to draw connections between 

the Gibbs free energies of the catalytic cycle and the TOF. According to the ESM the basic 

equation for the TOF is given by95, 223 

𝑇𝑂𝐹 =  
𝑘𝐵𝑇

ℎ

1 − 𝑒
∆𝐺𝑟
𝑅𝑇

∑ 𝑒
𝑇𝑖−𝐼𝑗+𝛿𝐺𝑖𝑗

𝑅𝑇𝑁
𝑖,𝑗=1

 

 𝛿𝐺𝑖𝑗 =  {
0      if 𝑇𝑖 after 𝐼𝑗

∆𝐺𝑟    if 𝑇𝑖 before 𝐼𝑗
     Equation 7.1 

7 

i Examination of TOFs using the energy span model and microkinetic modeling yielded very similar results for 

Nozaki’s Ir(PNP) complex. At 273 K, the TOF using the energy span model was 83 s–1 and that using microkinetic 

modeling was 82 s–1. 
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where Ti and Ij are the Gibbs free energies of the reaction’s transition states and intermediates, 

respectively, and ΔGr is the total change in the reaction’s Gibbs free energy. The Ti – Ij energy 

differences represent the obstacles that a catalyst must “climb over”. δGij is a correction arising 

from the cyclic nature of catalytic reactions that ensures that the difference between an 

intermediate and its subsequent transition state (even if found in a second cycle) is always 

considered. This equation may seem complicated; however, often the denominator contains only 

a single dominant term, which results in a simplification to 

𝑇𝑂𝐹 ≈    
𝑘𝐵𝑇

ℎ
𝑒−

𝛿𝐸
𝑅𝑇 

 𝛿𝐸    =   max𝑖,𝑗(𝑇𝑖 − 𝐼𝑗 + 𝛿𝐺𝑖𝑗)     Equation 7.2 

In this form, the TOF depends only on the highest obstacle encountered by the catalyst, i.e. the 

energy span (δE). The two states forming the energy span are known as the TOF-determining 

intermediate (TDI) and the TOF-determining transition state (TDTS), and they do not necessarily 

belong to the same step. The use of Equation 7.2 facilitates the easy determination of the 

theoretical TOF of any catalytic reaction directly from its computed potential energy surface. 

From the above it is clear that an essential concept underpinning the ESM is that no single rate-

determining step exists, but rather there are two or more TOF-determining states.95 This idea is 

not limited to homogeneous catalysis, as it also applies to enzyme kinetics,323-324 organic 

reactions,325 and heterogeneous catalysis.326-327 Taken as a whole, it is clear that the ESM 

represents an ideal tool for screening catalytic activity in a straightforward and unambiguous 

manner. The principle drawback, however, is that the model requires accurate free energies for 

all intermediates and transition states present in a catalytic cycle to obtain a TOF, which can 

quickly become very computationally expensive if one desires to screen hundreds or even 

thousands of catalysts. 

To overcome this type of computational bottleneck, numerous methods have been developed 

aimed at discovering new catalysts more quickly either by reducing (e.g., through the 

establishment of structure–activity type relationships),2, 4, 328 by completely automating the 

underlying computations,329-340 or through the use of machine-learning.122-129, 341 Volcano  

plots45-46 are another tool borrowed from heterogeneous and electrocatalysis6 that facilitate the 

rapid screening of prospective catalysts by relating an easily computable descriptor variable with 

the thermodynamics or kinetics of the catalytic cycle.4, 75, 109 Based on Sabatier’s principle that 

an ideal catalyst should not bind intermediates too weakly or too strongly,35-36 volcano plots 

facilitate the quick, visual discrimination of good and bad catalysts based on their location on the 

volcano, with the best species lying on the volcano plateau or near the peak. While originally 

applied to heterogeneous catalysts, Sabatier’s concept is also equally applicable for describing 

homogeneous systems.60, 111 For instance, if a catalyst binds a reactant or intermediate too 

strongly, then low TOFs will be observed because the accompanying TS will be very high. 

Conversely, an overly weak binding of intermediates causes binding of the reactant with the 

catalyst to be thermodynamically unfavorable.111 
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In 2015, we established the viability of molecular volcano plots by showing that Sabatier’s 

principle also applies to homogeneous catalytic reactions.5 This proof-of-principle example 

reproduced known experimental trends and distinguished thermodynamically “good” from “bad” 

catalysts based on the computation of a single binding free energy. Subsequent advancements 

have aimed at improving the robustness61 and the speed (via machine-learning)39 at which these 

plots can be constructed and utilized. Today, an increasingly large toolkit based on molecular 

volcanoes exists that is capable of describing the kinetics43, 64 and selectivity65 of homogeneous 

catalysts, as well as providing comprehensive pictures of families of reactions.62-63 

Despite being very useful for identifying new catalysts as well as better understanding catalytic 

behavior, one shortcoming of the previously reported molecular volcano plots is that the 

suitability of catalysts is evaluated solely from the most energetically costly step of the catalytic 

cycle [either the highest transition state (for kinetic volcanoes) or the largest free energy 

difference between linked intermediates (for thermodynamic volcanoes)]. Clearly, this type of 

picture is fundamentally at odds with the idea of a series of rate-determining states (as opposed 

to a single rate-determining state) that dictate the TOF, as is central to the ESM. The objective 

of this work is to recast molecular volcano plots within the more accurate ESM model with the 

aim of providing an unambiguous description of catalytic activity by directly determining the 

theoretical turnover frequencies for a set of 35 catalysts we previously studied.43 We then harness 

the speed-up provided by volcano plots to screen for prospective new catalysts based on their 

TOFs, which can be rapidly estimated using free energy profiles obtained from linear free energy 

scaling relationships (LFESRs). To demonstrate the power of utility of TOF volcanoes, we chose 

to examine the homogeneously catalyzed conversion of carbon dioxide to formate facilitated by 

a transition metal and pincer ligand. 

 Computational Details 

The molecular geometries of all species were obtained by optimization at the M06302-303/ 

def2-SVP(D)82 level in implicit water solvent (SMD solvation model83) using the “ultrafine” 

integration grid304 in Gaussian09.172 Analysis of the vibrational frequencies characterized the 

nature of each structure as either a minima (no imaginary frequencies) or a transition state (one 

imaginary frequency). Single point energies were then obtained on the M06 geometries using the 

B3LYP164-165 functional appended with a density dependent dispersion correction, −dDsC305-308  

in tandem with the aug-TZ2P (TZ2P for the transition metals) basis set (i.e., B3LYP−dDsC/ 

aug-TZ2P) as implemented in ADF.309-310 Free energy corrections were determined using the 

rigid-rotor harmonic oscillator model311 and a correction for translational entropy in solution312 

(water) using the Goodvibes program.313 Final solvation corrections were established using the 

COSMO−RS314 solvation model (in water). Reported free energies include electronic energies 

(computed at the B3LYP−dDsC/aug-TZ2P//M06/def2-SPVD level), free energy corrections 

(computed at the M06/def2-SVPD level), and COSMO−RS solvation energies (computed at the 

B3LYP−dDsC/aug-TZ2P level). Theoretical turnover frequencies were obtained by inputting the 

corresponding reaction profile into the AUTOF program of Uhe, Kozuch, and Shaik.222-223, 297 
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 Results and Discussion 

The hydrogenation of CO2 to formate (Equation 7.3) represents an appealing pathway for the 

creation of C1 compounds from a readily available carbon feedstock.266 The current state-of-the-

art homogeneous catalytic systems rely on a tandem of transition metals and tridentate pincer 

ligands.272-273, 275 Of these, notable examples include the following: Nozaki’s Ir(PNP) catalyst  

[PNP = 2,6-bis(diisopropylphosphinomethyl)pyridine] with a TOF of 73,000 h–1 and an 

impressive TON of 3,500,000,279 Sanford’s Ru(PNN) catalyst [PNN = 6-(di-tert-butylphosphino-

methylene)-2-(N,N-diethylaminomethyl)-1,6-dihydropyridine] with a TOF of 2,200 h–1 and a 

maximum of 23,000 turnovers under ideal conditions,286 and Milstein’s Fe(tBu−PNP) complex 

with a TOF of 156 h–1 and maximum TON of 788.285 A host of other metal/pincer-ligand 

combinations are also known to catalyze this reaction and, as a result, have been the subject of 

intensive experimental281-284, 288, 342-343 and theoretical103, 287, 289-294 examination. 

CO2  +  H2  +  OH−    →    HCOO−  +  H2O   Equation 7.3 

 

Figure 7.1 (a) Combinations of metals and pincer ligands used to establish linear free energy 

scaling relationships (LFESRs). (b) Catalytic cycle for the conversion of CO2 to formate.  

(c) Linear free energy scaling relationships for the (b) catalytic cycle. Black points represent 

combinations of the metals and ligand depicted in (a), while red and blue points were used to 

confirm that newly tested catalyst follow the same linear scaling relationships as earlier tested 

species (vide infra). 
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To uncover the inner workings of why certain metal/pincer-ligand combinations are such 

effective catalysts, we recently used molecular volcano plots to examine the energetics of a series 

of 35 catalysts (Figure 7.1a) for the conversion of carbon dioxide to formate (Figure 7.1b).43 

Creating the volcanoes involved establishing linear free energy scaling relationships (LFESRs, 

Figure 7.1c), which show that the relative free energy of each intermediate and transition state 

(depicted on the y-axis) of the catalytic cycle can be estimated with a high degree of accuracy by 

knowing the value of a single reaction energy for each catalyst (depicted on the x-axis), as defined 

in Equation 7.4. Through a series of simple mathematical operations (see Appendix C for full 

details), the LFESRs can be converted into a plot like Figure 7.2a, which estimates the free energy 

associated with moving between any two connected intermediates or transition states. A volcano 

plot is then typically created from a profile of this type by taking the most energetically costly 

reaction step associated with each value of the descriptor variable. For the Figure 7.2b volcano 

plot, the catalytic cycle kinetics are controlled by one of two steps (4→TS2 or 2→3), which 

represent the largest free energy barrier that must be overcome in the catalytic cycle. This plot 

can then be used to quickly estimate the suitability of prospective catalysts by computing the 

value of the descriptor variable, which gives an approximate free energy for the largest energy 

barrier encountered in the catalytic cycle. 

1  +  CO2  +  H2    →    4  +  HCOO− ΔGRRS(4)  Equation 7.4 

 

Figure 7.2 (a) Estimations of the free energy associated with each reaction step in the Figure 7.1b 

catalytic cycle derived from linear free energy scaling relationships. (b) Volcano plot obtained 

by taking the most energetically costly reaction step of the catalytic cycle for each descriptor (x-

axis) value. (c) TOF volcano plot for the Figure 7.1b reaction (y-axis given in log scale). (d) The 

same TOF volcano (y-axis given in linear scale). The TOF volcanoes are obtained by inputting 

the theoretical free energy profile obtained from the Figure 7.1c LFESRs for each x-axis value 

and determining the associated TOF using the AUTOF program.  
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While seemingly simple to interpret, the Figure 7.2b volcano plot does possess problems, the 

principal shortcoming being that the kinetics of the catalytic cycle are always defined by a single 

reaction energy, which ignores situations where multiple transition states control the kinetics of 

the catalytic cycle. Moreover, in kinetic volcanoes it may also be difficult to determine when a 

catalyst becomes close enough to the volcano peak to possess a “good” kinetic profile. 

Nonetheless, the ability of volcano plots to rapidly screen prospective species based on 

computing only one reaction energy is a highly desirable feature and has led to their widespread 

use. The Figure 7.2a profile, however, already reveals that the free energy of each step of the 

catalytic cycle can be estimated, provided we know the descriptor variable of a catalyst. Given 

this fact, a more comprehensive treatment of the catalytic cycle, one that yields an unambiguous 

TOF, is possible through use of the energy span model. 

To create the TOF volcano shown in Figure 7.2c, we computed hypothetical reaction profiles  

for a series of descriptor values ranging between −80 and 0 kcal/mol (x-axis). The resulting 

energetic profiles were then input into the AUTOF program and the TOFs obtained plotted on 

the y-axis. To treat all reactions on equal footing, we choose to use the “standard” TOF (i.e., 

TOF0),344 which is measured at a concentration of 1 M and at 273.15 K. When plotted with a 

logarithmic y-axis, the shape of the new TOF volcano (Figure 7.2c) closely resembles the shape 

seen in standard volcano plots (e.g., Figure 7.2b). Much like standard energetic volcano plots, 

the TOF volcano in Figure 7.2c can also be divided into three parts based on the identity of the 

determining states. For ΔGRRS(4) < −47 the TDI is 4, while the TDTS is TS1. For descriptor 

values ranging from −47 and −25, 4 is still the TDI but the TDTS changes to TS2, and for 

ΔGRRS(4) > −25 the TDI changes to 2 while the TDTS remains TS2. The changes in the TDI or 

TDTS are seen as distinct slope changes in the logarithmic TOF volcano, which arise from 

differences in the ETDTS – ETDI linear equation (as a function of the descriptor value). If the TOF 

volcano is viewed with a standard linear scale for the y-axis (Figure 7.2d), it becomes very clear 

that only catalysts lying within a rather narrow range of binding energies (i.e., between −30 and 

0 kcal/mol) will show any appreciable activity. This information is much more difficult to gather 

from the more frequently seen energy-based volcano plot, such as that depicted in Figure 7.2b. 

To more clearly illustrate the advantages of TOF volcanoes, we plotted the 35 catalysts shown in 

Figure 7.1a on both a standard energy-based volcano (Figure 7.3a) and a TOF volcano (Figure 

7.3b). An examination of these two different volcano plots quickly reveals that the same  

species appear atop each, which effectively serves as proof of concept that both the TOF (Figure 

7.3b volcano) and energy based criterion (Figure 7.3a volcano) yield similar chemical 

conclusions, as well as the fact that both can be accurately estimated from linear scaling 

relationships (shown by the solid lines in the two plots). However, using the TOF volcano is 

more intuitive and has the added benefit of being directly connecting to a well-characterized 

experimental observable. For the hydrogenation of carbon dioxide to formate, each of these 

“most active” catalysts possesses a group 9 metal center and a more π-acidic ligand, such as 

PONOP, PNNNP, PNP, and PNMeP (see Figure 7.1a for structures). Generally speaking, activity 

decreases as the periodic table is ascended (i.e., first row transition metals show diminished 

activity relative to second and third row species). The coupling of highly π-acidic ligands with 

an Ir metal center yields catalysts having the highest activities, with some species possessing 

theoretical TOF0s exceeding 10,000 s–1. On the other hand, Figure 7.3b also shows that Ru and 
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Os based catalysts show virtually no activity, with the “most active” species tested here 

[Os(PONOP)] having a TOF of 5.4 × 10–9 s–1, or roughly one turnover every six years. As seen 

in Figure 7.3b, most of the computed catalysts lie in the two leftmost regions, where 4 is the TDI. 

Both the LFESRs of TS1 and TS2 have slopes that are positive and smaller than one, so that 

destabilizing 4 decreases the energy span (in both regions where 4 is the TDI). Destabilization of 

4 can be brought on by making the catalyst more electron deficient, which explains why group 9 

metals with π-acidic ligands have the highest computed TOFs. 

 

Figure 7.3 (a) Standard energy-based volcano plot and (b) the TOF0 volcano plot. Note that the 

vertical line in (a) represents a change in the nature of the most energetically costly step of the 

catalytic cycle while those in (b) represent changes in the nature of the turnover determining 

transition state and turnover determining intermediate within the context of the energy span 

model. 

7.3.1 Screening with TOF Volcanoes 

Having shown the benefits of TOF volcano plots, we were eager to utilize the TOF volcano 

shown in Figure 7.3b to screen for prospective new catalysts by computing only the value of  

the descriptor variable, which can then be converted into an estimated free energy profile and 

finally a TOF via the previously established linear scaling relationships. The benefit of 

proceeding in this manner is the considerable reduction in computational time needed to estimate 

the TOF, which, for the conversion of CO2 to formate, is only ∼20–25% of the time necessary to 

compute the full catalytic cycle. In particular, we were interested in broadening the number of 

group 9 catalysts capable of catalyzing this reaction, as well as altering the stereoelectronics of 

the group 8 species with the aim of dramatically improving their activity. Rather than change the 

metals or the pincer-ligands themselves, we instead examined the influence of hydrido (H−) 

ligand (red “L” in the Figure 7.1b catalytic cycle) that lies in the equatorial plane of the pincer 

ligand. To accomplish this, we tested two new possibilities, replacing the hydrido either with a 

more electronegative chloro ligand or with a neutral carbonyl ligand, the latter of which would 

change the overall charge of the complex. To ensure that the catalytic cycles of species bearing 

these new ligands followed the previously established scaling relationships, we computed the 

entire catalytic cycle for two of these catalyst bearing the new ligands and then compared them 

to the existing LFESRs. The blue [CO ligands, i.e., Ru(PNMeP/−CO) and Ru(PONOP/−CO)] 

and red [Cl ligands, i.e., Rh(PONOP/−Cl) and Ir(PONOP/−Cl)] points in the Figure 7.1c LFESRs 

show that the new species we desire to screen are governed by the same sets of scaling 

relationships as the 35 previously tested catalysts, and thus the use of the Figure 7.3 TOF volcano 

is justified. 
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Recall that the screening of catalyst involves directly determining the descriptor energy of each 

prospective catalyst via DFT computations. This value is then used to establish a theoretical 

energetic profile (through the previously established LFESRs) and, ultimately, to arrive at a 

theoretical TOF. Because these energy profiles are directly determined from the LFESRs, each 

catalyst falls directly on the volcano. Figure 7.4 shows the results for the 35 metal/pincer-ligand 

combinations given in Figure 7.1a, but now with a chloro replacing the hydrido ligand. Generally 

speaking, many of the same metal/pincer-ligand combinations remain atop the volcano. 

However, there is a discernable shift toward weaker-binding interactions (rightward along the  

x-axis) when the chloro ligand is present. As a result, the activities of a number of Co and Rh 

species are improved, while a reduction in activity is seen for the previously most active Ir 

catalysts. With the exception of the Co(PCP/−Cl) and Rh(PCP/−Cl), all of the Co, Rh, and Ir 

based complexes now show a theoretical TOF0 of at least 1 s–1. Noteworthy among these are 

Co(PNNNP/−Cl), Co(PNP/−Cl), and Co(PNMeP/−Cl), which incorporate a desirable earth-

abundant metal and have predicted TOF0s of ∼100 s–1. Several Rh species [Rh(PNNNP/−Cl), 

Rh(PNN/−Cl), Rh(PNP/−Cl)], as well as Ir(PNMeP/−Cl) also have predicted values exceeding  

100 s–1. 

 

Figure 7.4 TOF0 volcano plot used to screen catalysts bearing a −Cl ligand. 

 

Figure 7.5 TOF0 volcano plot used to screen catalysts bearing a −CO ligand. 
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Also evident in Figure 7.4 is that replacing the hydrido by a chloro ligand does not appreciably 

improve the activities of Ru or Os based catalysts, which still fall on the strong-binding (left) 

side of the volcano. Because each of the Ru and Os complexes studied above carries an overall 

negative charge, we were interested in forming neutral complexes by replacing the negatively 

charged hydrido/chloro ligand with a neutral carbonyl ligand. Figure 7.5 illustrates the resulting 

dramatic shifts of these species toward weaker binding and the corresponding significant 

improvements in the TOF0 values. Indeed, there are now three Os [Os(PNMeP/−CO), 

Os(PNNNP/−CO), and Os(PNN/−CO)] and one Ru catalyst [Ru(PONOP/−CO)] with predicted 

TOF0s greater than 100 s–1. It should be noted that catalysts incorporating neutral carbonyl 

ligands closely resemble, for instance, Sanford’s Ru pincer catalyst286 that has shown the ability 

to catalyze the same reaction. 

7.3.2 Influence of Temperature on TOF Volcanoes 

Having demonstrated that TOF0 values can be quickly estimated by computing a single descriptor 

and using established LFESRs, we were interested in probing the influence of temperature on the 

TOF volcanoes. Elevating the temperature often increases the reaction rate, with the conversion 

of carbon dioxide to formate being no exception. For instance, Nozaki’s seminal work279 was 

conducted at a temperature of ∼393 K. Figure 7.6 presents three energy span (6a) and TOF (6b) 

volcano plots at 273 K (equivalent to TOF0, vide supra), 298 K, and 393 K. As expected, an 

increase in temperature significantly accelerates the TOFs, with a change from 273 to 393 K 

resulting in an increase of ∼3 orders of magnitude. Because the y-axes of these plots are given in 

a logarithmic scale, the energy span can be expressed as a linear function of the descriptor 

variable, leading to a TOF as follows: 

log 𝑇𝑂𝐹 =  
1

2.3
ln 𝑇𝑂𝐹 ≈  

1

2.3
[ln (

𝑘𝐵𝑇

ℎ
) −

𝛿𝐸

𝑅𝑇
]  

   =  
1

2.3
[ln (

𝑘𝐵𝑇

ℎ
) −

𝛼∙∆𝐺𝑅𝑅𝑆(4)+ 𝛽

𝑅𝑇
]    Equation 7.5 

Here, the first term explains the observed increase in the TOF with increasing temperatures while 

the second term is the reason the slopes observed in Figure 7.6b become closer to zero at higher 

temperatures. 

 

Figure 7.6 (a) Energy span and (b) TOF volcanoes depicting the influence of temperature. 



Chapter 7. Activity-Based Screening of Homogeneous Catalysts through the Rapid 

Assessment of Theoretically Derived Turnover Frequencies 

64 

One noteworthy feature of the TOF volcanoes at different temperatures is that the plateau region 

of the 393 K volcano (blue, Figure 7.6b) is shifted toward weaker-binding (rightward along the 

x-axis) relative to the lower temperature volcanoes, meaning that altering the temperature may 

lead to different catalysts being the most active. The temperature-induced shift in the maximum 

of the TOF essentially arises from two factors: first, the entropy difference between the states 

that define the energy span for each region (e.g., where large entropy differences in the leftmost 

regions I and II of Figure 7.6a lead to larger temperature effects) and, second, the presence of 

more than one dominant energy difference near the volcano peak (see denominator of Equation 

7.1) and especially the relative weighting of these dominant contributions at different 

temperatures that must be considered for accurately determining the point of maximum TOF.ii 

Note that such factors are not considered in standard, energy-based, volcano plots. 

Since a commonly used reaction temperature for the hydrogenation of CO2 to formate is  

393.15 K, we recomputed the binding energies and determined the resulting TOF values for the 

earlier screened −Cl and −CO catalysts. The resulting TOF volcano shown in Figure 7.7 indicates 

that a plethora of pincer ligand catalysts have quite high TOF values, with Os(PONOP/−CO) 

(shaded blue diamond), Co(PONOP/−Cl) (empty green diamond), Ir(NNN/−Cl) (empty orange 

inverted triangle), and Rh(PONOP/−Cl) (empty fuchsia diamond) predicted to have the highest 

activities. 

 

Figure 7.7 TOF volcano plots for the hydrogenation of CO2 to formate determined at 393.15 K. 

7.3.3 Strengths and Weaknesses of the Model 

Having established a method that rapidly determines the TOFs of prospective catalysts, we were 

interested in comparing the TOFs obtained from free energy profiles derived from linear scaling 

relationships (as is done in the “screening” procedure) versus those established directly from 

DFT computations. The simplest assessment involves directly comparing the TOFs of the 35 

catalysts depicted in Figure 7.1a. Generally speaking, there is strong agreement between 

“predicted” (from DFT computations) and “estimated” (from LFESRs) TOF values (Figure 7.8). 

Thus, the TOF volcano plots provide a quite accurate picture, where catalysts with “high” TOFs 

ii A more detailed explanation and mathematical derivation of this phenomenon is given in Appendix C. 
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can quickly and unambiguously be distinguished from those with low TOFs. However, defining 

a single most active catalyst among the “best species” is more difficult. Of course, the quality of 

the estimated TOF values depends entirely on the quality of the linear scaling relationships, 

where better LFESRs will yield more accurate predictions of the catalytic cycle free energy 

profile, which will give rise to a better agreement between computed and estimated values. 

Despite some quantitative uncertainty associated with our predictions, we reiterate that, broadly 

speaking, volcano plots (of all types) are best used to identify a handful of best performing 

species. The best candidates should then be subjected to a more detailed analysis to identify, for 

instance, competing mechanistic and deactivation pathways that may play a significant role in 

dictating the experimentally observed TOF. 

 

Figure 7.8 Comparison of 273 K TOF values determined directly through DFT computations and 

those predicted from the estimated free energy profiles obtained from linear free energy scaling 

relationships. 

The direct comparison of theoretically computed TOFs with experimental values is a difficult 

business. Perhaps the most logical choice for comparison for the conversion of CO2 to formate 

is with Nozaki’s Ir(PNP) catalyst, with a reported TOF of 730 × 102 h–1 at 393 K.279 This 

experimental value is far less than our theoretical prediction (obtained directly from DFT 

computations, not estimated from the TOF volcano) of 4.5 × 104 s–1. Note that our free energy 

profile aligns well with previous theoretical assessments.290, 292-293 Indeed, the free energy values 

from Yang’s seminal work290 also yield an overestimated TOF of 2.3 × 102 s–1; thus, the 

theory/experiment disagreement does not seem to arise from the quality of the DFT 

computations. It is important to note, however, that our computations do not consider any side or 

deactivation pathways or issues of catalyst solubility (which, as Nozaki noted,342 can greatly 

influence the measured TOF). Overall, we can conclude that theoretically estimated TOFs are 

(not surprisingly) extremely sensitive to the height of the TOF determining transition state(s) and 

that the origin of the disagreement between theory and computation likely arises from 

experimental factors not considered by our model. While the TOF obtained from experiment is 

overestimated here, the use of computed standard TOFs (i.e., TOF0, vide supra), nonetheless, 
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allows for an unbiased comparison of theoretical determined turnover frequencies that serves as 

a basis for the screening of prospective new catalysts. 

 Conclusions 

In conclusion, we developed a method that rapidly screens prospective catalysts based on their 

activity, as defined by a theoretical turnover frequency. Specifically, establishing linear free 

energy scaling relationships allows a connection to be drawn between an easily computed 

descriptor variable and the free energy associated with each step of a catalytic cycle. This 

information, in turn, can be used to establish a turnover frequency through the use of the energy 

span model and the AUTOF program. Plotting these TOF values over a range of descriptors 

yields a TOF volcano plot that can be used to rapidly screen catalysts based on their anticipated 

activity. To demonstrate this, we aimed to identify new metal/pincer-ligand catalysts for the 

hydrogenation of CO2 to formate. Our findings revealed that both altering the connecting atoms 

of the pincer ligand and replacing a hydrido ligand lying in the pincer equatorial plane with either 

a chloro or carbonyl ligand serves as an effective means of manipulating the energetics of the 

catalytic cycle. At experimental temperatures, our screening procedure identifies a handful of 

catalysts [Os(PONOP/−CO), Co(PONOP/−Cl), Ir(NNN−Cl), and Rh(PONOP/−Cl)] expected to 

exhibit high catalytic activity. 
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8 General Conclusions and Outlook 

 

 

Rational catalyst design is central to identifying new well-defined catalysts that can lower 

reaction times while also operating under milder conditions. The creation and development of 

tools aimed at uncovering various aspects of catalytic performance are key for finding an ideal 

catalyst for a reaction of interest. In this sense, volcano plots, a tool with an established  

history of estimating catalyst performance in heterogeneous catalysis and electrocatalysis,  

have also shown great promise in estimating the performance of homogeneous catalysis. This 

thesis emphasizes the exploration and the application of molecular volcano plots to further 

predict the performance of catalysts and to better understand their effects toward reactivity. 

Overall, molecular volcanoes have the capability to serve as rational design tools for both 

catalysts and other components (e.g., substrates) of catalytic reactions. A brief summary of the 

work presented in this thesis can be found below, following the three objectives stated in the 

introduction.  

First, the underlying volcano concept and functionality is explored to broaden screening scope 

of volcano plots. Specifically, the newly revealed feature of using volcanoes to examine substrate 

scope has been presented. Taking Suzuki cross-coupling reaction as an example, substrate 

volcanoes reveal a wealth of information regarding how the nature and location of substituents 

as well as core structures dictate catalytic cycle energetics. It also mirrors known experimental 

trends confirming that the computational-based volcano plots provide useful input for 

experimentalists. Altogether, the realization that single volcanoes can treat multiple catalytic 

states and the development of substrate volcanoes provide additional features within the 

molecular volcano family that can be used to optimize homogeneous catalytic processes. 

Second, the use of machine-learning models to reduce computational cost represents an ideal 

path to greatly expand the number of catalysts able to be screened. In this thesis, we have  

shown that machine-learning models can be trained and used to rapidly screen the descriptor 

variables of over eighteen thousand catalysts for Suzuki–Miyaura C–C cross-coupling reaction. 

Through the use of a pre-constructed volcano plot, a number of attractive candidates were 

identified having ideal reaction profiles and cost less than $10 USD per mmol. Furthermore, this 

study not only sped up the screening process, but also provided new insight into the underlying 

chemistry through the use of big-data type analysis. Specifically, we used Sketch-Map to classify 

the catalysts into different subgroups based on their intrinsic chemical properties that uncovered 

various chemical trends for C–C cross-coupling reactions. For example, some ligand classes are 

able to polarize the complexes bearing different metal centers, which causes the energetic profiles 

8 
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to appear more similar. This information, in turn, can be used to systematically tune specific 

metal/ligand combinations to obtain a desired thermodynamic profile for the catalytic cycle.  

Finally, the ability of molecular volcano plots to provide useful chemical information for a 

specific chemical reaction is exemplified by our study on the hydrogenation of carbon dioxide to 

formate. Various metal and pincer ligand combinations showed the ability to catalyze this 

reaction, with iridium, rhodium and cobalt complexes bearing π-acidic ligands standing out as 

having particularly attractive catalytic cycle energetics. By adjusting the π-acidic strength of the 

ligand, an ideal catalyst that balances the strength of the catalyst/substrate interaction can be 

developed. Using this reaction, we also developed a method that rapidly screens prospective 

catalysts based on an experimental measurement of overall activity, the turnover frequency. A 

theoretical turnover frequency (TOF) was established from the corresponding free energy profile 

of each catalyst. The same linear scaling relationships used in conventional volcanoes were then 

used to create theoretical profiles corresponding to different values of the descriptor variable, 

which yielded the corresponding TOF volcano shape. The shape of this volcano slope indicates 

a large drop in anticipated activity when moving away from the volcano peak. 

Although in this thesis we have focused on using volcanoes to study C–C cross-coupling 

reactions and the hydrogenation of carbon dioxide, it is important to remember that the 

underlying tools developed can be applied to any desired chemical reactions. As an example, our 

group have also worked on hydroformylation and reductive cleavage of aryl ethers, where we 

were also able to identify feasible catalysts and better understand the underlying chemistry of 

these processes.  

Molecular volcano plots are undoubtedly valuable tools for estimating the performance of and 

designing new catalytic species, while also being convenient for uncovering underlying trends 

that make functional catalysts tick. However, we believe that the capability of volcano plots has 

not yet been fully exhausted. There are still unexplored areas, some of which are listed below: 

 

 Combined Volcano Plots for Catalysts and Substrates  

We have shown that volcano plots can probe substrates as similar as catalyst cases. 

The chemical information obtained from both plots could be integrated for the creation 

of two (or three) dimensional maps depicting the influence of both factors and the 

appropriate catalyst/substrate combinations while the axes are substrate and catalyst 

energetic descriptor variables. In Chapter 3, we realized that, for Suzuki cross-coupling, 

electron-rich substrates have a difficulty to surpass the oxidative addition and tend to 

bind Pd(PPh3)2 catalysts “too weakly”. However, if coupling these substrates with “too 

strongly” binding catalysts such as nickel or platinum complexes, both excessive 

interaction sides can act as a push-pull character to balance the binding interaction, which 

will lower the activation barriers of the reaction. Supremely, combined substrate and 

catalyst volcanoes could be a catalog storing the reactivity and performance of a substrate 

pool and a catalyst collection in a particular reaction. 
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 Volcano Plots for Reactions with Different Mechanistic Pathways 

One limitation of volcano plots is that their construction assumes that all catalysts 

transform a substrate to a product via the same mechanistic pathway. Even though we 

choose catalyst set from the combination of metal in a particular group and similar type 

of ligand, there is no guarantee that those catalysts will act identical to one another in 

reality. Finding ways to create volcanoes that can describe more than one possible 

reaction pathway represents an important “next-step” in their further generalization. 

Such tools could also be used to investigate what causes the behavior of catalysts with 

diverging pathways.  

 

 Volcano Plots for Reversible Reactions 

In some instances, a reversible process can be considered as a competing reaction 

pathway when the activation barriers that separate forward and reverse reactions are 

similar. In this situation, the reverse reaction can become dominate and reform the 

substrate from the product until equilibrium is reached. The addition of a chemical 

stimulus, e.g., additive reagents or energies, is often needed to drive the reaction in the 

desired direction. Exploring catalytic systems where we can develop full control of the 

reaction direction (and formation of the products) would be profoundly important for 

contributing to solutions to important world issues, such as hydrogen storage and drug 

delivery. Finding proper descriptors and creating volcano plots for studying reactions of 

this type will unravel the key criteria that can be manipulated to influence which reaction 

direction is dominant. 

 

 Alternative Chemical Descriptors for Volcano Plots  

We have shown in this thesis that the volcano plot’s y-axis could be converted from 

the computed highest energy barrier to an experimentally-friendly quantity like the 

turnover frequency. In principle, the descriptor variables plotted along the x-axis could 

be also be modified to reflect other properties of the catalyst. The descriptor variable 

used for linear free energy scaling relationships and molecular volcano plots is generally 

taken as the relative energy of one catalytic cycle intermediate (sometimes called the 

binding energy), which is easily accessible via computation. However, this same quantity 

is not as easily discerned for an experimental chemist. The idea of altering the descriptor 

variable to reflect other chemical properties (e.g., acidity pKa, molar mass, density, and 

melting or boiling point) could give additional flexibility in constructing molecular 

volcanoes. Moreover, by using these familiar and measurable descriptor values, it allows 

us to quantitatively compare volcanoes created from experimental versus computational 

data.  

 

 An Alternative to the Energy-Based Volcano Plots 

Since the beginning of our studies on molecular volcanoes, we have created plots 

using the energetic characteristics of the catalysts. While the broad family of “energy-
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based volcanoes” clearly is quite capable of predicting the performance and 

understanding the effects of catalysts, discovering alternative approaches for 

constructing volcano plots could be an additional route to build complementary catalyst 

design tools. For example, plotting the experimentally percent yield of the product 

against pKa value or other chemical properties in the form of volcano plot could lead to 

new ways of assessing the performance of catalysts. 

 

In closing, we believe that molecular volcano plots are highly precise and provide qualitatively 

accurate predictions of catalytic performance that can lead to the development of design 

principles. The chemical trends gathered from volcanoes are rational and practical, and can be 

instantly adapted and applied in experimental settings. Overall, this work demonstrates the uses 

of volcano plots for treating chemical reactions catalyzed by homogeneous transition metal 

catalysts. 
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A Supplementary for Probing Substrate 

Scope with Molecular Volcanoes 

This appendix is based on the supporting information of following publication: 

 Sawatlon B., Wodrich M. D., and Corminboeuf C. Probing Substrate Scope with 

Molecular Volcanoes, Org. Lett. 2020, 22, 7936–7941. 

 Construction of Substrate Volcano Plots 

Similar to the methods of constructing other types of volcano plots (see SI of Chem. Sci. 2015, 

6, 6754 and Chem. Sci. 2016, 7, 5723 for detailed descriptions), we created substrate volcanoes 

based on the linear scaling relationship equations shown in Figure 3.4 where the relative energy 

of each intermediate/transition state found in the catalytic cycle is cast in terms of the energy 

descriptor variable [ΔGRRS(5)]. However, unlike in our earlier molecular volcanoes, changing the 

substrate also changes the total reaction energy [ΔG(RXN)]. To aid the reader below we describe 

the complete process of constructing substrate volcanoes. 

As the substrate volcanoes employ are aimed at finding the largest energetic barriers that must 

be overcome in the catalytic cycle, the two rate-determining states (i.e., the two intermediates or 

intermediate/transition state that lead to the largest energy difference, δG) must first be identified. 

Within the context of the Kozuch and Shaik’s energy span model,95 these states are called the 

turnover determining intermediate (TDI, representing the catalyst resting state) and the turnover 

determining transition state (TDTS, representing the highest energy transition state). The TDI 

and TDTS can be any species in the catalytic cycle and they need not be directly connected to 

one another (e.g., the TDI can be the first intermediate and the TDTS can be the last transition 

state in a hypothetical catalytic cycle). In order to find these rate-determining states (TDI and 

TDTS), we calculated the energy difference (δG) of each possible intermediate/transition state 

pair. Note that, if the intermediate (TDI) is after the transition state (TDTS), the total reaction 

energy [ΔG(RXN)] need to be added for the calculation of the energy difference (Equation A.1). 

   

    Equation A.1 

 

𝜹𝑮  =   𝑻𝒊 − 𝑰𝒋 +  𝜹𝑬𝒊𝒋 

𝛿𝐸𝑖𝑗 =  {
0                  𝑖𝑓 𝑇𝑖 𝑎𝑓𝑡𝑒𝑟 𝐼𝑗

 𝛥𝐺(𝑅𝑋𝑁)   𝑖𝑓 𝑇𝑖 𝑏𝑒𝑓𝑜𝑟𝑒 𝐼𝑗
 

A 
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To illustrate how the volcanoes are constructed, below are step-by-step instruction on how to 

build the volcano plot for 6-membered ring substrates. We first need the mathematical equations 

that describe the relative free energy of the intermediates and transition states [ΔGRRS(X)] in 

terms of the descriptor variable [i.e., ΔGRRS(5)], which are obtained from linear scaling 

relationships shown in Figure 3.4. The mathematical equations for 6-membered ring group are: 

ΔGRRS(TSOA) = 0.39 ΔGRRS(5) +  34.22  kcal/mol 

ΔGRRS(2) = 0.85 ΔGRRS(5) +  22.64  kcal/mol 

ΔGRRS(3)  = 0.90 ΔGRRS(5)  +  9.14    kcal/mol 

ΔGRRS(4)  = 0.73 ΔGRRS(5) +  4.77    kcal/mol 

ΔGRRS(TST) = 0.74 ΔGRRS(5) +  13.39  kcal/mol 

ΔGRRS(TSRE) = 0.88 ΔGRRS(5) +  3.23    kcal/mol 

ΔG(RXN) = 0.23 ΔGRRS(5) −  72.01  kcal/mol 

Note that, as we set the intermediate 1 as the reference state, ΔGRRS(1) is equal to zero. 

As stated above, the energy difference (δG) of every possible pair of states must be determined 

(i.e., 1→TSOA, 1→2, 1→3, 1→4, 1→TST, 1→5, 1→TSRE, 2→1, 2→TSOA, 2→3, 2→4, 

2→TST, 2→5, 2→TSRE, 3→1, 3→2, …) where the intermediate before the arrow indicates the 

TDI and the intermediate/transition state after the arrow corresponds to TDTS. An example of 

how to calculate the equations of the energy difference are shown below:  

For 1→TSOA:  

–[ΔG(1→TSOA)] = − [ΔGRRS(TSOA) − ΔGRRS(1)] 

     = − [ΔGRRS(TSOA) – 0]  

  –[ΔG(1→TSOA)] = − [0.39 ΔGRRS(5)  +  34.22  kcal/mol – 0] 

     = − 0.39 ΔGRRS(5)  −  34.22  kcal/mol 

Note that as in the next step we have to plot the negative of the energy difference; therefore, we 

directly calculated –[ΔG(1→TSOA)] instead of [ΔG(1→TSOA)]. 

For 2→1: 

–[ΔG(2→1)] = − [ΔGRRS(1) − ΔGRRS(2) + ΔG(RXN)i] 

    = − [ 0 − ΔGRRS(2) + ΔG(RXN)] 

    = −{0 − [0.85ΔGRRS(5) + 22.64 kcal/mol] +  

[0.23 ΔGRRS(5) − 72.01 kcal/mol] }  

    = − [ − 0.62 ΔGRRS(5)  −  94.65  kcal/mol] 

  –[ΔG(2→1)] = 0.62 ΔGRRS(5)  +  94.65  kcal/mol    

Repeating these same procedure multiple times then yields the energy difference equations for 

6-membered ring group seen below.  

 

 

i According to the energy span model, if the TDTS appears before the TDI (i.e., in this case, intermediate 1 is before 

intermediate 2), we need to add the total reaction energy into the equation as shown in Equation A.1 
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Intermediate 1 as the TDI: 

–[ΔG(1→TSOA)] = − 0.39 ΔGRRS(5)  −  34.22  kcal/mol   

–[ΔG(1→2)]  = − 0.85 ΔGRRS(5)  −  22.64  kcal/mol   

–[ΔG(1→3)]  = − 0.90 ΔGRRS(5)  −  9.14  kcal/mol   

–[ΔG(1→4)]  = − 0.73 ΔGRRS(5)  −  4.77  kcal/mol   

–[ΔG(1→TST)] = − 0.74 ΔGRRS(5)  −  13.39  kcal/mol   

–[ΔG(1→5)]  = − ΔGRRS(5)    

–[ΔG(1→TSRE)] = − 0.23 ΔGRRS(5)  +  72.01  kcal/mol   

Intermediate 2 as the TDI: 

–[ΔG(2→1)]  = 0.62 ΔGRRS(5)  +  94.65  kcal/mol   

–[ΔG(2→TSOA)] = 0.23 ΔGRRS(5)  +  60.43  kcal/mol   

–[ΔG(2→3)]  = − 0.05 ΔGRRS(5)  +  13.50  kcal/mol   

–[ΔG(2→4)]  = 0.12 ΔGRRS(5)  +  17.87  kcal/mol   

–[ΔG(2→TST)] = 0.11 ΔGRRS(5)  +  9.25  kcal/mol   

–[ΔG(2→5)]  = − 0.15 ΔGRRS(5)  +  22.64  kcal/mol    

–[ΔG(2→TSRE)] = − 0.03 ΔGRRS(5)  +  19.41  kcal/mol   

Intermediate 3 as the TDI: 

–[ΔG(3→1)]  = 0.67 ΔGRRS(5)  +  81.15  kcal/mol   

–[ΔG(3→TSOA)] = 0.28 ΔGRRS(5)  +  46.93  kcal/mol   

–[ΔG(3→2)]  = − 0.18 ΔGRRS(5)  +  58.51  kcal/mol   

–[ΔG(3→4)]  = 0.17 ΔGRRS(5)  +  4.37  kcal/mol   

–[ΔG(3→TST)] = 0.16 ΔGRRS(5)  −  4.25  kcal/mol   

–[ΔG(3→5)]  = − 0.10 ΔGRRS(5)  +  9.14  kcal/mol    

–[ΔG(3→TSRE)] = 0.02 ΔGRRS(5)  +  5.91  kcal/mol   

Intermediate 4 as the TDI: 

–[ΔG(4→1)]  = 0.50 ΔGRRS(5)  +  76.78  kcal/mol   

–[ΔG(4→TSOA)] = 0.11 ΔGRRS(5)  +  42.56  kcal/mol   

–[ΔG(4→2)]  = − 0.35 ΔGRRS(5)  +  54.14  kcal/mol   

–[ΔG(4→3)]  = − 0.40 ΔGRRS(5)  +  67.64  kcal/mol   

–[ΔG(4→TST)] = − 0.01 ΔGRRS(5)  −  8.62  kcal/mol   

–[ΔG(4→5)]  = − 0.27 ΔGRRS(5)  +  4.77  kcal/mol    

–[ΔG(4→TSRE)] = − 0.15 ΔGRRS(5)  +  1.54  kcal/mol   

Intermediate 5 as the TDI: 

–[ΔG(5→1)]  = 0.77 ΔGRRS(5)  +  72.01  kcal/mol   

–[ΔG(5→TSOA)] = 0.38 ΔGRRS(5)  +  37.79  kcal/mol   

–[ΔG(5→2)]  = − 0.08 ΔGRRS(5)  +  49.37  kcal/mol   

–[ΔG(5→3)]  = − 0.13 ΔGRRS(5)  +  62.87  kcal/mol   

–[ΔG(5→4)]  = 0.04 ΔGRRS(5)  +  67.24  kcal/mol   

–[ΔG(5→TST)] = 0.03 ΔGRRS(5)  +  58.62  kcal/mol    

–[ΔG(5→TSRE)] = 0.12 ΔGRRS(5)  −  3.23  kcal/mol   
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We then plot these mathematical equations as a function of ΔGRRS(5) (Figure A.1). When reading 

this graph recall that it depicts the negative of the energy difference, meaning that the most 

energetically costly steps fall on the bottom of the plot. As such, the lowest line for any value of 

the descriptor variable corresponds to the states that define the energy span for substrates lying 

in the region [i.e., TDI: 5/TDTS: 1 for ΔGRRS(5) values less than around −125 kcal/mol, TDI: 

3/TDTS: TST for ΔGRRS(5) values between −125 and −55 kcal/mol, and TDI: 1/TDTS: TSOA 

for ΔGRRS(5) values greater than −55 kcal/mol]. These three scaling relationships form the shape 

of the volcano plot seen in Figure 3.5.  

 

Figure A.1 Plot of lines corresponding to all possible TDI/TDTS combinations for the reaction 

of the 6-membered ring substrates. 
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 Correlation between the Charge on Pd, Substrate Sterics 

and the Energy of Transmetalation 

Figure A.2a and c indicates that the charge on palladium center of intermediate 3 stay relatively 

constant (particularly for the bromobenzenes) even as the energy barrier of transmetalation 

increases (moving from right to left). However, Figure A.2b and d illustrate that steric factors of 

the substrate (as demonstrated by the percent buried volume, %Vbur) largely influence the energy 

associated with transmetalation with more steric bulk (larger %Vbur) having higher energy 

barriers. Overall, this result confirms that the electronic properties of palladium have less effect 

on transmetalation rate than the steric factor. Note that charges on Pd were calculated using 

Hirshfeld population analysis345 in Gaussian16.84 The %Vbur of substituted aryl rings on 

substrates were computed using the SambVca web application.346 

 

Figure A.2 Plots of the descriptor variable [ΔGRRS(5)] and the energy difference in 

transmetalation step [−ΔG(3→TST)] of substituted bromobenzenes (top) and substituted 

bromonaphthalenes (bottom). Each substrate in the plot is colored by the charge on Pd of 

intermediate 3 (a and c) or a measure of steric bulk (percent buried volume, %Vbur, where larger 

values indicate more sterics) (b and d). The solid line corresponds to the estimated outline of the 

3→TST from volcano plot.  

 



 



77 

B Supplementary for Machine Learning 

Meets Volcano Plots and Data Mining 

of the C−C Cross-Coupling  

This appendix is based on the supporting information of following publications: 

 Meyer B., Sawatlon B., Heinen S., von Lilienfeld O. A., and Corminboeuf C., Machine 

Learning Meets Volcano Plots: Computational Discovery of Cross-Coupling Catalysts. 

Chem. Sci., 2018, 9, 7069-7077. 

 Sawatlon B., Wodrich M. D., Meyer B., Fabrizio A., and Corminboeuf C., Data Mining 

the C−C Cross‐Coupling Genome. ChemCatChem 2019, 11, 4096-4107. 
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 Distribution of Binding Energies in the Training Set  

 

Figure B.1 Histogram representing the occurrence of each metal complexes in the training set. 

The size of the beans is selected following the Freedman−Diaconis rule. 

 

Figure B.2 Histogram representing the probability of each metal complexes in the training set. 
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 Sketch-Maps (Energy Descriptors vs HOMO Energies) of 

Complex 1 

 

Figure B.3 The Sketch-Maps of nickel complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of complex 1 (right, in eV). Note that the HOMO value was 

not computed for species appearing in white in the HOMO energy plot since the energy descriptor 

value was taken directly from machine-learning. 

 

Figure B.4 The Sketch-Maps of platinum complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of complex 1 (right, in eV).  
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Figure B.5 The Sketch-Maps of copper complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of complex 1 (right, in eV).  

 

Figure B.6 The Sketch-Maps of silver complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of complex 1 (right, in eV).  

 

Figure B.7 The Sketch-Maps of gold complexes colored by the energy descriptor (left, in 

kcal/mol) and the HOMO energy of complex 1 (right, in eV). 
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 The Shifts of Ligands from P−M−O References 

Table B.1 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for nickel complexes. 

Ni complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

C−M−C −76.030 −3.543 −0.102 

O−M−C −70.732 −3.963 0.011 

C−M−N −71.228 −4.058 0.022 

N−M−N −63.992 −4.267 −0.046 

P−M−C −62.123 −3.913 −0.292 

P−M−O −58.932 −4.188 −0.159 

P−M−P −58.762 −4.037 −0.470 

N−M−O −58.061 −4.341 0.067 

P−M−N −55.953 −4.099 −0.288 

X−M−CO −47.166 −5.126 0.072 

 

Table B.2 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for palladium complexes. 

Pd complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

C−M−C −47.444 −3.773 −0.504 

O−M−C −45.982 −4.043 −0.320 

C−M−N −45.502 −3.901 −0.393 

N−M−O −39.367 −4.115 −0.207 

N−M−N −39.233 −3.974 −0.326 

P−M−C −38.119 −4.275 −0.444 

P−M−O −34.150 −4.645 −0.286 

P−M−N −32.840 −4.449 −0.361 

P−M−P −28.573 −4.873 −0.395 

X−M−CO −19.534 −5.406 −0.193 

 

Table B.3 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for platinum complexes. 

Pt complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

O−M−C −52.405 −4.312 −0.471 

C−M−C −52.288 −4.123 −0.574 

C−M−N −52.109 −4.252 −0.555 

N−M−N −49.248 −4.409 −0.501 

N−M−O −48.371 −4.547 −0.422 

P−M−N −42.909 −4.851 −0.464 

P−M−C −42.187 −4.602 −0.515 

P−M−O −42.090 −4.919 −0.374 

P−M−P −33.173 −5.019 −0.493 

X−M−CO −27.970 −5.753 −0.294 
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Table B.4 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for copper complexes. 

Cu complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

C−M−C −15.654 −9.062 −0.578 

P−M−C −12.676 −9.226 −0.487 

P−M−P −8.436 −9.383 −0.516 

C−M−N −7.619 −9.494 −0.316 

O−M−C −5.088 −9.776 −0.079 

P−M−N −3.420 −9.710 −0.279 

P−M−O −1.572 −9.936 −0.085 

N−M−N 3.288 −9.844 −0.071 

X−M−CO 5.941 −10.775 0.038 

N−M−O 9.226 −10.328 0.183 

 

Table B.5 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for silver complexes. 

Ag complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

C−M−C 11.796 −9.299 −0.054 

P−M−C 13.505 −9.291 −0.023 

C−M−N 16.437 −9.448 0.103 

O−M−C 19.197 −9.797 0.184 

P−M−N 19.779 −9.504 0.121 

P−M−O 22.733 −9.942 0.186 

P−M−P 23.090 −9.250 0.043 

N−M−N 27.072 −10.075 0.285 

C−M−O 28.934 −10.462 0.178 

N−M−O 29.420 −10.570 0.384 

 

Table B.6 The absolute values of the average energy descriptor, HOMO energy of complex 1 

and the Mulliken charge on metal of complex 1 for gold complexes. 

Au complexes ΔE (kcal/mol) HOMO (eV) Mulliken charge 

C−M−C −2.015 −9.348 0.053 

P−M−C 0.216 −9.351 0.037 

C−M−N 0.533 −9.670 0.118 

O−M−C 1.027 −9.853 0.236 

P−M−P 4.175 −9.421 −0.004 

P−M−O 4.992 −10.108 0.205 

P−M−N 5.820 −9.967 0.078 

N−M−N 5.912 −10.268 0.162 

N−M−O 10.657 −10.533 0.280 

C−M−O 12.505 −10.774 0.269 
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C Supplementary for Volcano Plots of the 

Hydrogenation of Carbon Dioxide to 

Formate  

This appendix is based on the supporting information of following publications: 

 Sawatlon B., Wodrich M. D., and Corminboeuf C., Unraveling Metal/Pincer Ligand 

Effects in the Catalytic Hydrogenation of Carbon Dioxide to Formate. Organometallics 

2018, 37, 4568–4575. 

 Wodrich M. D., Sawatlon B., Solel E., Kozuch S., and Corminboeuf C., Activity-Based 

Screening of Homogeneous Catalysts through the Rapid Assessment of Theoretically 

Derived Turnover Frequencies. ACS Catal. 2019, 9, 5716–5725. 

 Comparison of Reaction Mechanism 

According to previous studies on the mechanistic pathways of the hydrogenation of carbon 

dioxide,279, 290-291 two possible pathways are considered here. Both mechanisms start the reaction 

by the insertion of CO2 to the hydrido ligand of catalyst via TS1. Then, for the direct pathway, 

the addition of H2 to the catalyst 3 results in the molecular H2 complex 4, which can regenerate 

the starting complex 1 by proton abstraction of OH− base and dissociation of water (Figure C.1, 

black line). In contrast, for the ligand cooperative pathway, the formation of water starts by the 

proton abstraction of OH− base at the backbone of pincer ligand (TS3) while the formate adduct 

still binds with the catalyst (Figure C.1, red line). The formate then dissociates to open a vacant 

site at the metal center where a molecular hydrogen can bind to and forms the complex 7. The 

starting complex 1 can be regenerated by the heterolytic cleavage of H2 in which proton moves 

to carbon at the pincer backbone to regenerate the aromatic pyridine ring via TS4. This pathway 

is sometimes called as aromatic/dearomatic mechanism.  

We computed both catalytic cycles of IrPNP and RhPNP to evaluate the most feasible pathway 

and found that the direct one has the lowest energy barriers for both catalysts [13.8 and 16.0 

kcal/mol for Ir(PNP) and Rh(PNP), respectively] where the rate-determining step was found at 

the heterolytic H2 cleavage and proton transfer. The cooperative pathway, on the other hand, has 

the higher barriers than the direct pathway in two steps, which are the proton abstraction at pincer 

backbone (2→TS3) and the regeneration of the starting complexes 1 (8→TS4). Both Ir(PNP) 

and Rh(PNP) require 21.6 kcal/mol to overcome the highest barrier. Therefore, we computed the 

energies and constructed the linear scaling relationships and the molecular volcano plot based on 

C 
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the direct pathway. Note that, to moderate the complexity of the mechanism, we discounted some 

intermediates that do not affect the energy barriers, i.e., the species with H−bound formate (2_H), 

the complex with solvent (water) coordinated (3_H2O), and the weak interaction between proton 

of water and hydrido ligand species (5). 

 

Figure C.1 Energy diagrams of (a) IrPNP and (b) RhPNP comparing two possible pathways: the 

direct pathway without ligand involvement (black line) and the non-innocent ligand pathway (red 

line). 

 Construction of the Molecular Volcano Plot 

The method for constructing molecular volcano plots has previously been summarized in detail 

elsewhere.5, 62, 64 Both reactants and products are used as reference states. Here, the free energy 

associated with the formation of species 4 and formate was used as a descriptor variable 

(Equation 7.1).  

The free energies of the different reaction steps [i.e., (1→TS1), (TS1→2), (2→3), (3→4), 

(4→TS2), and (TS2→1)] are estimated from the linear free energy scaling relationships (Figure 

6.2):  

ΔGRRS(2)  =  0.4ΔGRRS(4)  –  13.6  kcal/mol,  

ΔGRRS(3)  =  0.7ΔGRRS(4)  +  1.0   kcal/mol,  

ΔGRRS(TS1)  =  0.1ΔGRRS(4)  +  5.2   kcal/mol,  

ΔGRRS(TS2)  =  0.5ΔGRRS(4)  +  1.1   kcal/mol 
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using the procedure outlined below.  

 

The reactants and products are used to define the reference states:  

G(1) = G(CO2) = G(HCOO−) = G(H2) = G(OH−) = 0 

G(H2O) = −21.28 kcal/mol 

1→TS: 

−ΔGtheo(1→TS1) = − [ΔG(TS1) – (G(1) + G(CO2))] 

Since G(1) and G(CO2) are zero by definition and substituting in the linear free energy scaling 

relationship for ΔG(TS1) gives: 

−ΔGtheo(1→TS1) = −0.1ΔGRRS(4) – 5.2 kcal/mol 

TS1→2: 

−ΔGtheo(TS1→2) = − [ΔG(2) – ΔG(TS1)] 

Substituting in the linear free energy scaling relationship for ΔG(TS1) and ΔG(2):  

−ΔGtheo(TS1→2) = − [(0.4ΔGRRS(4) – 13.6) – (0.1ΔGRRS(4) + 5.2)] 

−ΔGtheo(TS1→2) = −0.3ΔGRRS(4) + 18.8 kcal/mol 

2→3: 

−ΔGtheo(2→3) = − [G(3) –(G(2) + G(HCOO−))] 

G(HCOO−) are zero by definition and substituting the linear free energy scaling relationship for 

ΔG(2): 

−ΔGtheo(2→3) = − [(0.7ΔGRRS(4) + 1.0) – (0.4ΔGRRS(4) – 13.6)] 

−ΔGtheo(2→3) = −0.3ΔGRRS(4) – 14.6 kcal/mol 

3→4: 

−ΔGtheo(3→4) = − [G(4) – (G(3) + G(H2))] 

G(H2) is zero by definition and substituting the linear free energy scaling relationship for ΔG(4): 

−ΔGtheo(3→4) = − [ΔGRRS(4) – (0.7ΔGRRS(4) + 1.0)] 

−ΔGtheo(3→4) = −0.3ΔGRRS(4) – 1.0 kcal/mol 
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4→TS2: 

−ΔGtheo(4→TS2) = − [(G(TS2) + G(OH−) – G(4)]  

G(OH−) is zero by definition and substituting in the linear free energy scaling relationship for 

ΔG(TS2): 

−ΔGtheo(4→TS2) = − [(0.5ΔGRRS(4) – 1.1) − ΔGRRS(4) 

−ΔGtheo(4→TS2) = (0.5ΔGRRS(4) – 1.1 kcal/mol 

TS2→1: 

−ΔGtheo(TS2→1) = − [(G(1) + G(H2O) – G(TS2)]  

G(1) are zero by definition, substituting in the linear free energy scaling relationship for ΔG(TS2) 

and substituting G(H2O) with the overall reaction free energy:  

−ΔGtheo(TS2→1) = − [−21.28 – (0.5ΔGRRS(4) + 1.1)] 

−ΔGtheo(TS2→1) = 0.5ΔGRRS(4) + 22.4 kcal/mol 

Plotting the lines for each of these reaction energies gives a simulated reaction profile (Figure 

6.3a). 

The final volcano plot is then obtained by taking the most energetically costly reaction step (as 

defined by equation below) for each descriptor value (x-axis), which is then plotted on the y-axis.  

∆𝐺(𝑘𝑑𝑠) = max [
∆𝐺(1 → 𝑇𝑆1), ∆𝐺(𝑇𝑆1 → 2), ∆𝐺(2 → 3),
∆𝐺(3 → 4), ∆𝐺(4 → 𝑇𝑆2), ∆𝐺(𝑇𝑆2 → 1)

] 

 Linear Free Energy Scaling Relationships on Different 

Temperatures  

Linear free energy scaling relationships (LFESRs) were developed to estimate the relative free 

energies of catalytic cycle intermediates and transition states based on the free energy value of 

the descriptor variable. We previously found GRRS(4) to be the most suitable descriptor, which 

relates to the other intermediates and transition states as follows:  

LFESRs at 273.15K:  

GRRS(TS1)  =  0.125 GRRS(4) + 4.72 kcal/mol  R2 = 0.76  

GRRS(2)  =  0.424 GRRS(4) – 14.06 kcal/mol  R2 = 0.79  

GRRS(3)  =  0.704 GRRS(4) + 1.23 kcal/mol   R2 = 0.90  
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GRRS(TS2)  =  0.493 GRRS(4) + 0.77 kcal/mol   R2 = 0.96  

LFESRs at 298.15K:  

GRRS(TS1)  =  0.125 GRRS(4) + 5.20 kcal/mol   R2 = 0.76  

GRRS(2)  =  0.424 GRRS(4) – 13.61 kcal/mol  R2 = 0.79  

GRRS(3)  =  0.704 GRRS(4) + 0.99 kcal/mol   R2 = 0.90  

GRRS(TS2)  =  0.493 GRRS(4) + 1.14 kcal/mol   R2 = 0.96  

LFESRs at 393.15K:  

GRRS(TS1)  =  0.125 GRRS(4) + 7.04 kcal/mol   R2 = 0.76  

GRRS(2)  =  0.424 GRRS(4) – 11.95 kcal/mol  R2 = 0.79  

GRRS(3)  =  0.704 GRRS(4) + 0.06 kcal/mol   R2 = 0.90  

GRRS(TS2)  =  0.493 GRRS(4) + 2.61 kcal/mol   R2 = 0.96  

These LFESRs can then be used to estimate the free energy associated with moving between two 

connected points of the catalytic cycle and to create the Figure 7.2b and 8.6a volcano plot. 

G(RXN) at 273.15K:  

–G(1→TS1) =  –0.125 GRRS(4) – 4.72   kcal/mol  

–G(TS1→2) =  –0.299 GRRS(4) + 18.78 kcal/mol  

–G(2→3) =  –0.280 GRRS(4) – 15.29 kcal/mol  

–G(3→4)  =  –0.296 GRRS(4) + 1.23   kcal/mol  

–G(4→TS2)  =  0.507 GRRS(4) – 0.77   kcal/mol  

–G(TS2→1)  =  0.493 GRRS(4) + 22.08 kcal/mol  

CO2 + H2 + OH− → HCOO− + H2O   G(273.15K) = –21.31 kcal/mol  

G(298.15K) = –21.28 kcal/mol  

G(393.15K) = –21.09 kcal/mol  

 Temperature Influence on the TOF Volcano  

If we compute the TOF according to Equation 7.2 the position of the maximum TOF is expected 

to correspond with the minimum energy span. However, at the crossing points between the 

straight lines of the different energy span regions, there are small areas in which the two different 

energy differences are very close in magnitude. In these areas both energy differences should be 

considered in the denominator of Equation 7.1, and so the simplified Equation 7.2 is not a good 
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approximation for the TOF. Around these crossing points the TOF calculated from Equation 7.1 

will be smaller than the one calculated from Equation 7.2. This will lower the TOF volcano’s tip 

and move its maximum. Near the crossing points, we can assume that Equation 7.1 has only two 

dominant energy differences, Ti − Ij + Gij and Tm − In + Gnm. Each of the two differences can be 

expressed as a linear function of the descriptor value (x). In order to form a maximum in the 

volcano plot, one of these differences should have a positive slope and the other a negative slope: 

𝑇𝑂𝐹 =  
𝑘𝐵𝑇

ℎ

1 − 𝑒
∆𝐺𝑟
𝑅𝑇

𝑒
𝑇𝑖−𝐼𝑗+𝛿𝐺𝑖𝑗

𝑅𝑇 + 𝑒
𝑇𝑚−𝐼𝑛+𝛿𝐺𝑛𝑚

𝑅𝑇

≈
𝑘𝐵𝑇

ℎ

1 − 𝑒
∆𝐺𝑟
𝑅𝑇

𝑒
−𝛼𝑥+𝛽

𝑅𝑇 + 𝑒
𝛾𝑥+𝛿

𝑅𝑇

 

 and  here are both positive values. In exothermic reactions we can neglect the second term of 

the numerator, and so we get:  

𝑇𝑂𝐹 ≈  
𝑘𝐵𝑇

ℎ

1

𝑒
−𝛼𝑥+𝛽

𝑅𝑇 + 𝑒
𝛾𝑥+𝛿

𝑅𝑇

 

In order to find the maximum of the graph we should solve for x values in which the derivative 

of this equation is zero:  

𝑑𝑇𝑂𝐹

𝑑𝑥
≈

𝑑(
𝑘𝐵𝑇

ℎ

1

𝑒
−𝛼𝑥+𝛽

𝑅𝑇 +𝑒
𝛾𝑥+𝛿

𝑅𝑇

)

𝑑𝑥
= 0 .; 𝑥 =  

𝑅𝑇𝑙𝑜𝑔(
𝛼

𝛾
)+𝛽−𝛿

𝛼+𝛽
 

and we can see that the x value for the maximum is dependent on the temperature and on the 

relative slopes of the two energy differences. Increasing the temperature will cause a shift of the 

maximum, while the direction of the shift is towards the straight line with the lower absolute 

slope. 
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