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Nucleic acid sensing through pattern recognition receptors is critical for
immune recognition of microbial infections. Microbial DNA is frequently
methylated at the N6 position of adenines (m6A), a modification that is
rare in mammalian host DNA. We show here how that m6A methylation
of 50-GATC-30 motifs augments the immunogenicity of synthetic double-
stranded (ds)DNA in murine macrophages and dendritic cells. Transfection
with m6A-methylated DNA increased the expression of the activation
markers CD69 and CD86, and of Ifnβ, iNos and Cxcl10 mRNA. Similar to
unmethylated cytosolic dsDNA, recognition of m6A DNA occurs indepen-
dently of TLR and RIG-I signalling, but requires the two key mediators
of cytosolic DNA sensing, STING and cGAS. Intriguingly, the response
to m6A DNA is sequence-specific. m6A is immunostimulatory in some
motifs, but immunosuppressive in others, a feature that is conserved
between mouse and human macrophages. In conclusion, epigenetic altera-
tions of DNA depend on the context of the sequence and are differentially
perceived by innate cells, a feature that could potentially be used for the
design of immune-modulating therapeutics.
1. Introduction
Innate immune cells can recognize invading pathogens through pattern
recognition receptors (PRRs) [1]. This feature allows for rapid recognition of
invading pathogens and for a swift onset of immune responses. De-regulation
of PRR sensing signalling is associated with pathogenic and autoimmune
conditions [2,3].

A wide range of PRRs localize in the endosomes and in the cytosol,
where they detect bacterial and viral nucleic acids [3–5]. In the endosome,
Toll-like receptors (TLRs) sense single-stranded (ss) and double-stranded
(ds)RNA (TLR7 and TLR3, respectively), as well as conserved pathogen-
derived ssDNA structures (TLR9) [3,6]. Engaging these TLRs leads to the
induction of proinflammatory cytokines like Interleukin (IL)-6, Tumour necro-
sis factor (TNF)-α and type I Interferons (IFNs) in an NF-kB- and MYD88/
TRIF-dependent manner [6–9]. In the cytosol, viral dsRNA is recognized by
the RIG-I-like family of receptors (RLRs) and MDA5 [5]. Through the adaptor
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protein IPS1/MAVS, proinflammatory cytokines and type I
IFNs are produced [5,10]. dsDNA present in the cytosol is
primarily recognized by cGAS and AIM2, which promote
the production of type I IFNs and IL-1β through STING
and ASC, respectively [11,12]. Other DNA sensors include
RNA polymerase III, IFI16 and DAI [4,5].

Recognition of pathogenic cytosolic DNA is influenced
by sequence length, secondary structures and nucleotide
overhangs [3,5]. For instance, the right-handed (B) form
of DNA is well recognized by cytosolic DNA sensors
[11,13,14]. Furthermore, guanosine overhangs in conserved
Y-form DNA of retroviruses such as the human immunodefi-
ciency virus type 1 (HIV-1) potentiate type I IFN production
in human macrophages [15].

Eukaryotic and microbial DNA also differ in their epige-
netic landscape, in particular methylation of adenines and
cytosines. These modifications are catalyzed by DNAmethyl-
transferases (MTases). Adenine and cytosine methylations are
found in DNA of most prokaryotes [16] and are involved in
bacterial defence, virulence, chromosomal replication and
gene regulation [16,17]. The best-studied prokaryotic MTase
is DNA adenine methyltransferase (Dam). Dam was orig-
inally described in Escherichia coli and methylates adenine
in position N6 (m6A) in 50-GATC-30 DNA motifs, generating
a Gm6ATC DNA motif [18]. Other sequence motifs in a
variety of prokaryotes can also carry m6A [16].

Differences in the methylation status are used by the
innate immune system to discriminate pathogen-derived
DNA from host DNA. For example, CpG motifs are mostly
unmethylated in microbial genomes [16], but frequently
methylated in DNA across a variety of human and mouse tis-
sues [19,20]. This difference is recognized by the PRR TLR9
[16,17], leading to the production of inflammatory cytokines.
Thus, recognition of CpG motifs forms a prime example for
immune cells to discriminate host DNA from the microbial
genome. Much less is known about a putative immunogenic
role of ubiquitous m6A modification in DNA, which is
therefore the topic of this study.

M6A modification is present in human and mouse
DNA, but it appears to be extremely rare (in the range of
0.0005–0.05% of all adenines) [21,22] compared to the perva-
sive presence in prokaryotic DNA [16]. This could thus be
another basis for discrimination of host and pathogen
DNA. Indeed, a previous study showed that systemic injec-
tion of DNA containing one Gm6ATC motif resulted in
increased blood levels on the proinflammatory cytokines
TNF-α, IL-6 and IL-12 in mice [23]. However, which cells
respond to m6A-methylated DNA and through which
innate immune sensors is not well understood [24]. Further-
more, it is not known whether m6A recognition is restricted
to Gm6ATC motifs or whether it is also observed in another
sequence context.

Here, we interrogated whether the cytosolic delivery of
Gm6ATC DNA provokes immune cell response in innate
immune cells, and if so, through which mechanism. We
found that synthetic dsDNA containing Gm6ATC motifs
potentiates the response ofmurinemacrophages and dendritic
cells. Irrespective of the motif, recognition of dsDNA requires
stimulator of interferon gene (STING)- and cyclic GMP-AMP
synthase (cGAS). Importantly, m6A methylation does not
boost immune responses per se, but depends on the nucleotide
sequence context, a feature that is conserved in mouse and in
human macrophages.
2. Material and methods
2.1. Mice
C57BL/6 J mice (bred at the animal department of the
Netherlands Cancer Institute, Amsterdam, The Netherlands),
or mice deficient for MYD88xTRIF [8,25] (hereafter
Myd88−/−Trif−/−), for IPS-1 [25] (Ips−/−), for STING [26]
(Sting−/−) or for cGAS [27] (cGas−/−) were used.

2.2. Generation of murine bone-marrow-derived
macrophages and dendritic cells

Bone marrow (BM) cells were obtained from mouse tibias
and femurs. Briefly, after BM was flushed from the bones, red
blood cells were lysed with red blood cell lysis buffer contain-
ing 0.168 M NH4Cl, and washed once with PBS [28]. Bone-
marrow-derived macrophages (BMMs) were generated by
seeding 2 × 106 BM cells in a 100 mmnon-tissue culture treated
dish in RPMI 1640 (Lonza) supplementedwith 10%FCS, 2 mM
L-glutamine, 100 U ml−1 penicillin, 100 µg ml−1 streptomycin
and β-mercaptoethanol together with 15% L-929 conditioned
medium containing recombinant M-CSF for 8 days at 37°C
and 5% CO2. The medium was refreshed after 4 days.

Bone marrow-derived dendritic cells were generated with
recombinant Flt3 L (Flt3 L-DCs) as previously described [28].
Briefly, BM cells were cultured at 1.5 × 106 cells ml−1 for 9–10
days at 37°C and 5% CO2 in complete DC medium (RPMI 1640
supplemented with 5% FCS, 2 mM L-glutamine, 100 U ml−1

penicillin, 100 µg ml−1 streptomycin and β-mercaptoethanol)
supplemented with 30% conditioned medium from CHO cells
producingmurine recombinant Flt3 L [29]. BMMsandFlt3 L-DC
cultures were 95–99% F4/80+ or CD11c+, respectively.

2.3. Generation of human monocyte-derived
macrophages

Peripheral mononuclear blood cells were isolated from periph-
eral blood or buffy coats of healthy individuals collected by
Sanquin Blood Supply (Amsterdam, The Netherlands). The
study was performed according to the Declaration of Helsinki
(seventh revision, 2013). Written informed consent was
obtained (Sanquin, Amsterdam, The Netherlands). Monocyte
isolation was performed by gradient centrifugation on Percoll
(Pharmacia, Uppsala, Sweden) following by magnetic-acti-
vated cell separation sorting using human CD14 Microbeads
(Miltenyi Biotec). Freshly isolated CD14+ monocytes were
cultured for 7–8 days to differentiate into macrophages in
IMDM medium supplemented with 10% FCS, 100 U ml−1

penicillin, 100 µg ml−1 streptomycin, 2 mM L-glutamine and
20 ng ml−1 human macrophage colony-stimulating factor
(M-CSF) (eBioscience).

2.4. Generation of double-stranded GATC and Gm6ATC
sequences

HPLC-grade DNA oligos (Sigma-Aldrich) were dissolved in
sterile endotoxin-free water, aliquoted and stored at −20°C.
To generate dsDNA, equimolar amounts of m6A-methylated
or unmethylated complementary oligos were linearized at
95°C, annealed at 75°C for 5 min, and slowly cooled down



Table 1. Oligos and melting temperature (Tm) of corresponding dsDNA used in this study. Also depicted are the motifs recognized by prokaryotic
methyltransferases (MTses), and examples of bacterial strains expressing the MTses.

DNA sequence Tm (°C)

recognition

motif MTses bacterial strains references

AAGGATCTCAAGAAGATCCTTTGATCTTTTCTAC

AAGGm6ATCTCAAGAAGm6ATCCTTTGm6ATCTTTTCTAC

68.7

63.4

GATC numerous

DNA

adenine

MTses

Escherichia coli

Klebsiella sp.

Salmonella enterica

Mycoplasma mycoides

Legionella pneumophila

Yersinia

pseudotuberculosis

Vibrio cholerae

16,18,35

AAGCATGTCAAGAACATGCTTTCATGTTTTCTAC

AAGCm6ATGTCAAGAACm6ATGCTTTCm6ATGTTTTCTAC

69.0

65.4

CATG M. TvoI

M. ThaIV

Thermoplasmata 16

AAGGTACTCAAGAAGTACCTTTGTACTTTTCTAC

AAGGTm6ACTCAAGAAGTm6ACCTTTGTm6ACTTTTCTAC

63.4 GTAC M. HpyAXII Helicobacter pylori 36

royalsocietypublishing.org/journal/rsob
Open

Biol.11:210030

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 A

pr
il 

20
21

 

to room temperature. Double-stranded sequences were
aliquoted and stored at −20°C. dsDNA of GATC DNA was
generated from multiple batches. For Tm analysis of each
batch, 1 µg dsDNA was incubated with Sybr Green mix
(Applied Biosystems) for 5 min at room temperature. The
melting curve was determined on the Step-OnePlus Real-
Time PCR System (Applied Biosystems) with the standard
temperature gradient from 40 to 95°C.
2.5. Stimulation and nucleic acid transfection
After generation, murine BMMs and Flt3 L-DCs, and human
monocyte-derived macrophages were seeded for 1 h at 37°C
and 5% CO2 in 24- or 48-well non-tissue culture treated
plates (BD) at a density of 1–2 × 105 cells ml−1, before being
cultured for indicated time points in FCS-free medium con-
taining 1 µg ml−1 LPS (Invivogen), 1 µg ml−1 synthetic (B)
form DNA analog poly(deoxyadenylic-deoxythymidylic)
acid (poly(dA:dT)) (Invivogen) or 400 nM dsDNA containing
GATC or Gm6ATC sequences, or variants thereof. Cells were
transfected with poly(dA:dT), m6A methylated or unmethy-
lated dsDNA with 0.1% Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s protocol. Cells in medium
alone (untransfected, ctrl) or in medium containing Lipofec-
tamine 2000 (mock) served as controls for DNA stimulation
and DNA transfection, respectively. After indicated time
points, cells were harvested by scraping from culture plates
for analysis.
2.6. Antibodies and flow cytometry
BMMs and Flt3 L-DCs were stained with antibodies directed
against murine F4/80-APC (clone BM8), CD69-FITC (clone
H1.2F3), CD11c-APC (clone N418) and CD86-FITC (clone
GL1) (eBioscience). Stainings were performed in the presence
of anti-CD16/CD32 block (2.4G2; kind gift from Louis Boon,
Bioceros). Flow cytometry was performed with LSRII (BD
Biosciences), and data were analysed with FlowJo software
v.7.6.5 and v.10 (Tree Star, Inc).
2.7. Quantitative reverse transcriptase-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen).
cDNA was generated with SuperScript III reverse transcrip-
tase (Invitrogen), dNTPs (Fermentas) and Random Primer
(Promega) according to the manufacturer’s protocol. Quanti-
tative reverse transcriptase-PCR (RT-qPCR) was performed
using SYBR Green mix on the Step-OnePlus System (Applied
Biosystems). Primers used for gene expression analysis (elec-
tronic supplementary material, table S1) were validated by
serial dilutions. Gene expression was normalized to L32
(mouse genes) or 18s (human genes).

2.8. Statistical analysis
Data were analysed for statistical significance with two-tailed
unpaired or paired Student’s t-test, as indicated (Prism v.5,
GraphPad Software). Results are expressed asmean ± standard
deviation (s.d.) and were considered statistically significant
with p-values < 0.05.
3. Results
3.1. Cytosolic delivery of m6A-methylated dsDNA

enhances macrophage and DC activation
We first examined whether N6-methyl-adenine (m6A) modifi-
cations in GATC motifs alters the immunogenicity of dsDNA
for macrophages and dendritic cells. To specifically study the
role of m6A methylation and to prevent the engagement of
any other pathways of the intricate microbial sensing machin-
ery of mammalian cells, wemade use of synthetic dsDNA. The
sequence we selected for analysis is present in the genome of
several bacterial strains, such as E. coli, Salmonella enterica and
Klebsiella pneumoniae. The 34 bp long sequence contains a clus-
ter of three GATC motifs but lacks CpG motifs (table 1).
To exclude other immune stimulants in the preparations, we
used HPLC-purified oligos that were dissolved in endotoxin-
free H2O. m6A modifications are abundant in bacteria on
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both DNA strands, which prompted us to study the response
to double-stranded DNA (dsDNA). We determined the integ-
rity of the generated dsDNA by measuring the melting
temperature (Tm) of the m6A-methylated (GATC DNA) or
unmethylated (Gm6ATC DNA) dsDNA. As expected, m6A
modifications reduced the Tm of the dsDNA by approxima-
tely 5°C, as a consequence of altering the structure and by
destabilizing double-stranded bonds (table 1).

Recognition of dsDNA by PRRs occurs primarily in the
cytosol [3,4]. Therefore, to determine whether m6A modifi-
cations alter the immunogenicity of dsDNA, we delivered the
dsDNA to BMMs from C57Bl/6 J mice through transfection
with Lipofectamine 2000. As a control, we transfected
poly(dA:dT), a well-studied (B) form dsDNA that elicits
potent type I IFN response in both mouse and human cells
[4]. Within 6 h of stimulation BMMs transfected with
poly(dA:dT) showed increased expression of CD69 (figure 1a),
an early macrophage activation marker [8,30]. Transfection
with the 34 bp synthetic DNA sequences also resulted in
increased CD69 expression (figure 1a). CD69 protein
expression was even higher when cells were transfected
Gm6ATC DNA compared to unmethylated DNA (figure 1a).
CD69 expression was also increased at later time points, i.e.
24 h after transfection with Gm6ATC DNA (figure 1b). The
induction of CD69 expression depended on intracellular deliv-
ery of the dsDNA, because the delivery of GATC or Gm6ATC
DNA without Lipofectamine 2000 did not induce expression
of CD69 (figure 1b).

Macrophage activation with dsDNA leads to rapid
transcription of inflammatory molecules [31]. To determine
whether m6A methylation alters the inflammatory gene
expression profile of macrophages, we measured the mRNA
levels of Il6, Il10, Tnfα, Ifnβ and iNos. Il6, Il10 and Tnfα
mRNA levels were increased upon transfection with both
DNA variants, and it occurred irrespective of the methylation
status of the dsDNA (figure 1c). We also observed increased
mRNA levels of the early inflammatory genes Ifnβ and iNos,
and both transcripts were more potently induced upon
transfection with Gm6ATC DNA (figure 1c; p = 0.005 and
p < 0.0001, respectively). Similarly, bone-marrow-derived DCs
generated with Flt3 L showed increased levels of the costimu-
latory molecule CD86 upon transfection with Gm6ATC DNA
when compared to transfection with GATC DNA (figure 1d ).
Thus, m6A modification in GATC motifs promotes the gene
expression of several key inflammatory molecules.
3.2. STING and cGAS drive immune activation for both
m6A-modified and unmodified DNA

We next interrogated which PRR mediates the recognition of
the m6A-methylated dsDNA. TLR3, TLR7/8 and TLR9 which
detect nucleic acids [32] signal through MYD88 and TRIF, the
key adaptor molecules downstream of TLR signalling [8,9].
To determine whether TLRs can sense methylated dsDNA,
we generated BMMs fromMyd88−/−Trif−/− mice. As expected,
Myd88−/−Trif−/− BMMs failed to respond to the TLR4 ligand
LPS after 6 h of stimulation, but maintained their ability to
respond to poly(dA:dT), which is sensed in an TLR-indepen-
dent manner [13] (figure 2a,b). Transfection with GATC and
Gm6ATC DNA resulted in identical effects in Myd88−/−Trif−/−

and wt BMMs, with higher CD69 expression upon transfection
with Gm6ATC DNA (figure 2a,b). This finding indicated that
TLRs are dispensable for dsDNA recognition. The adaptor
protein IPS-1 that acts downstream of the dsRNA recognizing
RIG-I-like receptors [25,33] was also not required for either
GATC, or Gm6ATC DNA recognition (figure 2c).

STING was identified as a key adaptor molecule of cyto-
solic DNA sensing [26]. In line with this, we did not detect
any upregulation of CD69 protein expression in Sting−/−

BMMs upon transfection with poly(dA:dT), or with synthetic
dsDNA (figure 2d ). Intriguingly, the lack of recognition
occurred independently of the m6A modification (figure 2d ).
We then questioned how cGAS, the sensor for cytosolic DNA
upstream of STING [3,14,34] responded to cytosolic GATC, or
Gm6ATC DNA. BMMs generated from mice that constitu-
tively lack the cytosolic DNA sensor cGAS [27] failed
to induce CD69 upon transfection with GATC, or with
Gm6ATC (electronic supplementary material, figure S1).
Thus, the cGAS–STING axis is required to recognize cytosolic
synthetic dsDNA, and this recognition is permissive to
epigenetic modifications within the DNA.

3.3. Enhanced BMM-activation by m6A-methylated
DNA is sequence-specific

We then interrogatedwhether the increased immunogenicity of
Gm6ATC DNAwas a general feature of m6A-methylated DNA.
In fact, in addition to the GATC sequence-specific Dammethyl-
transferase (MTse), a number of other m6A DNA MTses have
been described [16,18,35]. For instance, Thermoplasmata express
a m6A MTse that recognizes CATG sequences [16]. Another
m6A MTse found in Helicobacter pylori recognizes adenine
within GTACmotifs [36]. To determinewhether m6Amethyla-
tions within these motifs also increased the immunogenicity of
DNA, we generated dsDNA with the identical 34 bp core
sequence, butwith theGATCmotifs exchanged tom6A-methyl-
ated or unmethylated CATG andGTACmotifs (table 1). Similar
to the GATC containingDNA, Cm6ATG andGTm6ACDNAdis-
played a reduced Tm compared to the respective unmethylated
dsDNA (table 1), indicating that m6A methylation also affects
the strength of dsDNA bonds in these sequences.

Comparable to Gm6ATC DNA, transfecting BMMs with
DNA containing GTm6AC also induced higher CD69
expression levels than its unmethylated counterpart (figure 3a).
However, this was not the case for Cm6ATGDNA. Transfecting
BMMs with DNA containing Cm6ATG resulted in lower CD69
expression than transfection with the unmethylated DNA
(figure 3a). Furthermore, whereas Gm6ATC and GTm6AC
were also superior in increasing Ifnβ, iNos and Cxcl10 tran-
script levels compared to the respective unmethylated DNA,
Cm6ATG-containing DNA rather hampered the induction
of these key inflammatory genes (figure 3b–d ). Thus, the
observed enhanced immunogenicity of m6A methylation in
DNA sequences is sequence-specific.

3.4. Sequence-specific recognition of m6A-methylated
DNA is conserved in human macrophages

To determine whether the observed differences in sequence-
specific immunogenicity were also found in humans, we
generated M-CSF derived macrophages from peripheral
blood-derived monocytes and compared the gene expres-
sion levels of effector molecules upon DNA transfection.
Comparable to murine macrophages, transfecting human
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Figure 1. Cytosolic recognition of m6A-methylated dsDNA potentiates macrophage and dendritic cell activation. (a) Representative histogram of CD69 expression of
bone-marrow-derived macrophages (BMMs) 6 h after transfection with 0.1% Lipofectemine 2000 and 1 µg ml−1 poly(dA:dT) (left panel), 400 nM unmethylated
(GATC) or 400 nM methylated (Gm6ATC) DNA (middle panel). Transfection with 0.1% Lipofectamine 2000 alone served as control (mock). Right panel: CD69
expression levels (Geometric mean fluorescence intensity, geoMFI) compiled from five independently performed experiments. (b) CD69 expression of BMMs stimu-
lated for 24 h with 1 µg ml−1 poly(dA:dT), or with GATC or Gm6ATC DNA in the presence (middle panel) or absence (right panel) of Lipofectemine. Lipofectamine
mock treated or untreated BMMs (ctrl) served as controls. (c) Il6, Il10, Tnfα, Ifnβ and iNos mRNA levels of BMMs activated for 6 h with indicated reagents. (b,c) are
representative of two independently performed experiments. (d ) Representative histograms (left) of CD86 expression and compiled data from 2 independently
performed experiments (right) of BM-derived dendritic cells (Flt3 L-DCs) that were mock transfected or transfected overnight with poly(dA:dT), GATC or Gm6ATC
DNA. Paired (a–e) or unpaired (c) Student’s t-test. (*p < 0.05, **p < 0.01, ***p < 0.001).

royalsocietypublishing.org/journal/rsob
Open

Biol.11:210030

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 A

pr
il 

20
21

 

macrophages with Gm6ATC-containing DNA resulted in
higher induction of CXCL10 mRNA compared to unmethy-
lated DNA (figure 4a). The increased immunogenicity of
DNAwas also conserved forGTm6ACDNA (figure 4a). By con-
trast, transfecting macrophages with Cm6ATG DNA again
lowered the induction of CXCL10 mRNA (figure 4a).



(a)

(b)

(c)

(d)

mock

0

CD69

102 103 104 105

mock

wt

Myd88–/– Trif–/–

Ips1–/–

Sting–/–

GATC Gm6ATCpoly(dA:dT)

%
 o

f 
m

ax

0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

ctrl LPS

0 102 103 104 105

%
 o

f 
m

ax

0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105

%
 o

f 
m

ax

0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105

%
 o

f 
m

ax

0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100

0 102 103 104 105
0

20

40

60

80

100
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Because the Cm6ATG sequence in transfectedDNA blocked
the induction of proinflammatory molecules in macrophages,
we investigated whether this sequence instead induced the
expression of a prototypic anti-inflammatory cytokine, IL-10.
However, we did not detect increased IL10 mRNA levels
with any of the m6A-methylated DNA sequences when com-
pared to mock-transfected cells (figure 4b). In conclusion, the
sequence-specific immunogenicity by m6A-methylated DNA
motifs is conserved between mouse and human.
4. Discussion
Recognition of intracellular dsDNA is an important process
that can occur during microbial infection and after cell
damage [3]. Whereas length and structure was shown to
modulate the immunogenicity of DNA [5], we show here
that m6A methylation also alters the immunogenicity of
cytosolic DNA. The response to m6A-methylated DNA is iden-
tical to unmethylated DNA: it is independent of MyD88/TRIF
and IPS-1 signalling but requires the cGAS–STING axis. How
m6A methylation influences the immunogenicity of cytosolic
DNA is yet to be determined. dsDNA binds to cGAS by inter-
acting with its two DNA-binding sites and zinc ribbon domain
[37–39], and this interaction is mediated via the sugar-phos-
phate backbone of the DNA [37,39]. DNA binding leads to
dimerization of cGAS and conformational changes, which
spark the enzymatic activity of cGAS for the synthesis of the
intermediate messenger cGAMP(20-50) [37–41]. m6A methyl-
ation affects the secondary structure of DNA, as observed by
different Tm of methylated and unmethylated DNA. This
may alter the local flexibility of DNA structures, and affect
the DNA geometry and stiffness, as was recently reported
for CpG motifs [42]. Whether and how these alterations in
dsDNA structure and stiffness influence the binding affinity
or avidity to cGAS, or its dimerization, is yet to be determined.
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Interestingly, m6A methylation in conserved GATCmotifs in E.
coli origin of replication enhances DNA-intrinsic and protein-
dependent bending, and—as a consequence—binding to the
DNA-binding protein IHF and other pre-replication complex
proteins [43,44]. It is, therefore, tempting to speculate that
such increased structural bending by m6A methylation could
also influence the binding affinity of dsDNA to cGAS, promote
cGAS dimerization or its enzymatic activity. Intriguingly,
during Listeria monocytogenes infection, also bystander cells
can be activated via the cGAS–STING pathway. In fact, bac-
terial DNA can be transferred to neighbouring cells through
extracellular vesicles [45]. As L. monocytogenes contains ubiqui-
tous m6A methylation [46], m6A methylation may not only be
involved in effective recognition of bacterial DNA within
infected cells, but also in engaging bystander cells.

However, m6A methylation of dsDNA does not increase
its recognition per se, but rather depends on the sequence
context. The nucleotides flanking the m6A methylation
could possibly alter the DNA bending, as was previously
suggested [43]. It is therefore conceivable that the poorly
recognized Cm6ATG motif provokes structural changes in
DNA that reduces its bending and therefore its immunogeni-
city. This sequence specificity of cGAS may also be a
safeguard for recognizing self-DNA, as low levels of m6A
methylation has been observed in mammalians, albeit in
different motifs [21,22].

Lastly, it would be interesting to assess whether m6A can
modulate innate immune responses to dsDNA. In fact, syn-
thetic oligonucleotides derived from telomeric DNA can
compete with endogenous DNA for cGAS activation, by
binding to cGAS without eliciting conformational changes
[47]. Similar effects could arise by pretreating BMMs with
Cm6ATG sequences. Such approaches could thus help the
design and development of novel therapeutic DNA-based
inhibitors of cGAS-mediated signalling.

In conclusion, our study identifies a new role for m6A-
DNA methylation in regulating innate immune responses to
cytosolic DNA. Whether the observed sequence-specific
recognition of m6A-methylated DNA is a specific feature of
synthetic DNA or stems from different immune responses
to various bacterial strains is yet to be determined. Our
findings may help to increase the immunogenicity of DNA
vaccines while preventing unwanted cytosolic DNA-
mediated responses, and could potentially pave the way to
unravel novel mechanisms of pathogen recognition and
evasion in innate immune cells.
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