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The nonlinear evolution of the ion-ion streaming instability (IISI) is studied using numerical techniques novel
to this problem that afford direct insight into the evolution of the particle distributions of each species.
During the linear phase of the instability, we demonstrate quantitative agreement with linear kinetic theory.
Subsequently, the electrostatic field generated by the IISI causes ring-like velocity distributions of ions to
form that are both heated and slowed to varying degrees relative to their initial flows. Due to variation in the
trapping conditions for ion species of differing charge-to-mass ratio, when flows of multiple species interact,
the nonlinear evolution of each species can be starkly different: we show a case where a lighter ion species
is completely stopped by a heavier ion species via the IISI alone (i.e., without collisions) and, for the first
time, demonstrate how the IISI can introduce a relative flow between ion species that initially have same flow
velocities, thereby separating them.

I. INTRODUCTION

The electrostatic instability driven in plasma by ions
that counterstream at approximately sonic speeds is of in-
terest in several active research areas due to its ability to
excite a large electrostatic potential and heat ions. Labo-
ratory experiments1–3 using opposed laser-irradiated foils
have demonstrated the efficacy of the ion-ion stream-
ing instability4,5 (IISI) to increase ion temperatures at
rates that can not be explained by collisional (fluid-like)
processes in the counterstreaming plasma. Collisonless
shocks, where ions are reflected and counterstream at the
shock interface, are thought to be present in many astro-
physical contexts with scales ranging from the Earth’s
bow shock to galactic clusters, and have long been in-
vestigated as an explanation for observed cosmic ray
spectra6–10. Similarly, collisonless shocks have recently
been utilized in proof-of-principle experiments11–13 to
generate high-quality ≥ 10 MeV proton beams. The IISI
can lead to the breakup of such shocks14,15 and has been
suggested as a mechanism of enhanced ion acceleration16.

The IISI can be saturated by both ion heating4,5,17–19

and ion trapping5,20. The two mechanisms are not inde-
pendent: ion trapping can convert the electrostatic en-
ergy of the ion waves into particle kinetic energy (which,
after phase space filamentation and subsequent diffusion
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in velocity, can be viewed as a change in temperature
that is generally anisotropic), while a change in ion tem-
perature will alter the magnitude of all wave-particle in-
teraction processes in addition to directly stabilizing the
IISI.

In the following, we demonstrate various nonlinear be-
haviors of the IISI, covering saturation, sensitivity to ini-
tial flow velocity, and the unique consequence of ion trap-
ping when ion species of different charge-to-mass ratios
are present. Our results are obtained using a fully kinetic
continuum method21–23 that is 6th-order accurate in all
phase space directions and time to describe the evolu-
tion of distribution functions. This approach is novel in
the study of this instability and enables accurate diag-
nosis of growth rates and instability thresholds. In our
simulations, we measure growth rates that agree with
linear theory and show phase space structures that can
be understood using simple analytic estimates of the ion
trapping regions in phase space. These structures persist
long after the ions are detrapped. We also show that ion
trapping in a multi-ion species plasma can preferentially
heat the heavier ion species and is able to dramatically
alter the streaming velocity of the lighter species, offering
a new species velocity separation mechanism.

We study interpenetrating streams of hydrogen (H)
and carbon (C). Pure hydrogen plasmas (H-H interpen-
etration) are commonly occurring in a variety of appli-
cations, so make a natural case of interest. To exhibit
the phenomena that arise when ions of differing mass
(and, importantly, charge-to-mass ratio) are present, we



2

case mats. u/cs k
max
|| λDe k

max
⊥ λDe γ

max
k /ωpi ω

max
k /ωpi

1 H/H 0.51 1.08 0 0.14 0
2 H/H 0.88 0.68 0.68 0.16 0
3 H/H 2.57 0.23 0.93 0.16 0
4 C/H 0.64 0.68 0.82 0.11 0.031
5 CH2/CH2 0.64 0.57 1.24 0.13 0

TABLE I. Plasma properties and calculated linear kinetic ion-
ion streaming instability quantities for the cases addressed in
this paper, where ions stream at velocities ±u. For each case,
Te/Ti = 20 at the beginning of the simulation. The reference

quantities cs =
√
Te/mp and ωpi =

√
4πnee2/mp are the

same for all cases.

study interpenetration where one stream is pure H and
the other pure C. To demonstrate velocity separation via
the IISI, we also present results from two interpenetrating
streams of CH2; this material is also common in exper-
iments featuring laser-driven plasma expansion, such as
in Refs. 1 and 2. While here we limit our study to neu-
tral fully ionized plasmas, the numerical methods and
analysis employed is of relevance to streaming instabil-
ities in negative-ion plasmas24 (electrons, positive ions,
and negative ions) and pair-ion plasmas25,26 (positive and
negative ions only).

The layout of this article is as follows: First, the
plasma parameters of focus here are introduced. Linear
quantities, such as growth rates and the wave vector at
which the maximum growth rate occurs, are calculated.
The simulation method is then discussed. Next, results
from hydrogen streams of differing initial flow velocity
are presented, followed by hydrogen-carbon mixtures. Fi-
nally, we summarize and discuss the implications of our
results.

II. PLASMA PARAMETERS AND SIMULATION
METHOD

We study the IISI using i) two counterstreaming flows
of hydrogen with a range of initial relative flow speeds
u that change the qualitative behavior of the IISI, and
ii) counterstreaming flows of hydrogen and carbon. To
remove ambiguity, electromagnetic (Weibel) instabilities
are precluded by choosing to solve a Vlasov-Poisson sys-
tem. The Weibel instability is typically slow compared to
the IISI27, meaning that the IISI will generally saturate
before the subsequent onset of the Weibel instability14.

Due to the timescales considered as well as for sim-
plicity, the plasma is treated as collisionless. The system
is discretized in two Cartesian space and velocity dimen-
sions (2D2V) and solved using the LOKI21–23 code. Con-
tinuum methods are not subject to numerical noise above
machine precision and our simulations are therefore free
of spurious heating, although we introduce thermal fluc-
tuations to provide a broad-spectrum initial density per-
turbation [these density perturbations are O(10−8) in

Fourier space]. The 6th-order scheme permits larger grid
point intervals in space and time for a given numerical
accuracy than lower-order methods. The latter property
is particularly desirable due to the computationally de-
manding fully kinetic description of both the electrons
and the ions (with a physical mass ratio) in our simula-
tions. Simpler quasilinear descriptions lack the necessary
physics of ion trapping5. In addition to the 2D2V Vlasov
simulations presented here, we were also able to repro-
duce the nonlinear states using the particle-in-cell code
OSIRIS28.

The plasma is initially homogeneous apart from the
initial low density fluctuation level. The spatial bound-
aries are chosen to be periodic, permitting an unambigu-
ous view of the instability, similar to Ref. 29. The ve-
locity grids are truncated at a maximum and minimum
velocities for each species (see Table II) that are of suffi-
cient magnitude such that the details of the boundaries
are unimportant to the solution; details are provided in
Ref. 23. In all cases, the distribution functions of the elec-
trons and ions must be evolved on separate grids since
they have different masses and charges. For H/H inter-
penetration (but not C/H or CH2/CH2), one may choose
to evolve the two ions streams as a single combined distri-
bution function or as two separate distribution functions;
we confirmed that this choice has no bearing on the solu-
tion, although for diagnostic purposes, evolving the two
ion streams separately is convenient and instructive.

The plasma properties are summarized in Table I. In
all cases, the plasma is fully ionized. The plasma is ini-
tialized in a frame where there are two (or four, as in
case 5) shifted isotropic Maxwellian ion distributions of
number density ni and temperature Ti, counterstream-
ing with velocities ui = (±u, 0). For all cases, ni is equal
in each flow. The electrons are initialized with a sin-
gle charge-neutralizing and current-canceling Maxwellian
distribution of temperature Te, and are hot relative to

case L̃|| L̃⊥ ṽb±
H,|| ṽb±

H,⊥ NvH,d ṽb±
C,|| ṽb±

C,⊥ NvC,d

1 29.2 62.8 ±2.1 ±1.7 64 N/A N/A N/A
2 46.2 46.2 ±2.5 ±2.1 72 N/A N/A N/A
3 137 33.1 ±4.3 ±3.9 128 N/A N/A N/A
4 31.4 31.4 (2.1,−1.7) ±1.7 64 (1.0,−1.2) ±1.0 96
5 55.1 25.3 ±2.1 ±1.7 64 ±1.2 ±1.0 96

TABLE II. Numerical grid parameters. The number of spa-
tial grid points along a given direction d = ||,⊥ is Nd. The
number of velocity grid points of species j along direction d
is Nvj,d . The spatial system length along direction d is Ld.
The maximum (b+) and minimum (b−) velocity grid bound-
aries of species j along direction d are situated at vb±j,d . In
all cases, N|| = N⊥ = 100 and Nvj,|| = Nvj,⊥ . For the elec-

trons, Nve,d = 64, and vb±e,|| = vb±e,⊥ = ±6.5vte. Ion parame-

ters are listed in the table, where a tilde denotes normaliza-
tion to λDe or cs as appropriate. The time step ∆t satisfies
a Courant-Friedrichs-Lewy condition and varies according to
the adaptive explicit Runge-Kutta scheme, with typical values
∆t ∼ 0.023/ωpe.
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the ions. Table I lists the wave numbers k = (k||, k⊥)
and growth rates γk of the fastest-growing (superscript
“max”) Fourier modes excited by the IISI in each case.
Components of vectors are defined as parallel (||) or per-
pendicular (⊥) to the flow direction. Throughout, veloci-
ties are explicitly normalized to the cold long-wave length
hydrogen plasma sound speed cs =

√
Te/mp, frequencies

to the hydrogen plasma frequency ωpi =
√

4πnee2/mp,
where ne is the average electron density in the system,
and distances to the electron Debye length λDe. Note
that for consistency these definitions of the reference
quantities cs and ωpi remain fixed throughout, even when
considering C/H interactions. “Hat” notation denotes a

unit-vector, i.e., k̂ = k/k.
The kinetic dispersion relation of the system,

ε = 1 +
∑
j

χj = 0; χj = −
ω2
pj

k2nj

∫
v

k · (∂fj/∂v)

k · v − Ωkj
dv,

(1)

may be solved to find the unstable modes. Here,
Ωkj = ωk − k · uj + ιγk; ωk,k, γk ∈ R; ι =

√
−1;

and the species index j includes both electrons (e)
and ions (i). fj = fj(t, r,v) and ωpj are respectively
the species distribution function and plasma frequency.
t, r, and v are the time, space, and velocity vari-
ables. In all cases shown here, the susceptibilities χj =

−[1/(2k2λ2Dj)]Z
′[Ωkj/(

√
2kvtj)] are evaluated using the

plasma dispersion function30 Z ′, where λDj = vtj/ωpj

is the species Debye length for which vtj =
√
Tj/mj ,

and Tj and mj are the species temperature and mass,
respectively. We take mH = mp, mC = 12mp, and
mp = 1836me. Standard fluid approximations to χi for
the parameters used in cases 1-5 are only in qualitative
agreement with exact numerical solutions, while for the
electrons, one has vte � |Re[Ωke/k]| and the suscepti-
bility is well-approximated by their adiabatic response,
χe ' 1/(k2λ2De). In the chosen (flow symmetric) frame,
one has for cases 1-3 and 5 the real frequency ωk = 0 for
unstable modes (growth rate γk > 0), as noted in Ref. 4,
where the subscript k denotes a given Fourier mode with
wave vector k.

The numerical resolutions and system sizes are summa-
rized in Table II. The spatial dimensions of the system
in each case are tailored to describe the unstable modes
in the system.

III. RESULTS

A. Single-ion species flows

The linear theory of IISI has been studied extensively
previously4,5,17–19. For identical ion streams with equal
and opposite flows, the IISI requires u & 1.3vti for insta-
bility. As u is increased from this threshold, the fastest
growing mode has kmax

⊥ = 0 and the IISI is approximately

1D in nature. However, when above threshold, there are
always unstable modes with k⊥ > 0 and therefore, after
the system has become nonlinear, there will also be some
amount of transverse ion heating (this is discussed later).

For |k̂max ·ui| & cs, one has kmax
⊥ > 0 and the instability

is necessarily 2D even in the linear stage of evolution.
For sufficiently large u, the IISI is aligned nearly perpen-
dicular to the flow and there are no unstable modes with
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FIG. 1. (a) Changes in per-species kinetic Kj , electrostatic
Ees, and total (Tot.) energy evolution for case 3, relative to
initial values. Also shown is Ees for cases 1 and 2. (b) Flow
velocity evolution for cases 1-3. (c) Ion heating parallel (||)
and perpendicular (⊥) to the flow direction due to the ion
streaming instability for cases 1-3.
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FIG. 2. For (a,b) case 1, (c,d) case 2, and (e,f) case 3, the (a,c,e) theoretical linear kinetic growth rate4,17 and the (b,d,f)
growth rate γ of the ion streaming instability as measured in our simulations.

k⊥ = 0. In this section, we explore the nonlinear states
of ion streams as u is varied between these limits. A sta-
bility criterion exists for the temperature ratio also: for
u & 2.1vti, instability requires Ti/(ZTe) . 0.28, and this
criterion becomes more stringent19 for lower u.

The evolution of the simulated system is qualitatively
similar in all cases shown here: From a quiescent plasma,
the IISI excites a spectrum of modes with an associated
electrostatic potential. The fastest-growing modes are
saturated by ions trapped in this potential (a form of
“wave breaking”31). Since the IISI excites a spectrum of
modes, a velocity phase-space diffusion then takes place
with a partitioning of heating in the directions parallel
and transverse to the flow that depends on kmax (and
therefore on the initial flow velocity) and the ion streams
undergo some amount of slowing. The electrostatic field
energy associated with the excited potential is transferred
back to the particles and the IISI is fully stabilized by
the increase in ion temperature. The time evolution of
the electrostatic field energy, kinetic energy, flow veloc-
ity, and ion temperature are shown in Fig. 1; a detailed
discussion of these quantities follows.

In Fig. 2, numerical solutions to the dispersion rela-
tion of Eq. (1) are compared with values of γk measured
in simulations of cases 1-3 for the linear stage of growth
using fits within the interval ωpit = [0,∼80]. Measuring
γk for the exponentially-growing unstable IISI modes in
our simulations is straightforward due to the numerical
method employed, where Fourier modes grow from ther-
mal fluctuations through ∼8 orders of magnitude before
reaching saturation. An electron-ion streaming instabil-
ity (EISI) is also present in the system4. However, the
EISI is here one or more orders of magnitude slower than
the IISI and does not play a role in our conclusions. Our
results show no change if instead two electron popula-
tions are initialized, where each cancels the current of its
associated ion stream.

The nonlinear evolution of the IISI is strongly af-
fected by u. In Fig. 3, the hydrogen ion distributions
〈fi〉 are shown for the three qualitatively different cases,
where the ion streams are marginally subsonic (top row);

marginally supersonic (middle row); and strongly super-
sonic (bottom row), corresponding to cases 1-3 in Table I,
respectively. 〈. . . 〉 denotes averaging over all space.

The differing phase space structures can be understood
by considering the electrostatic potential Φ excited by the
IISI, which in turn is dictated by the most unstable wave
vectors (see Table I), and the associated ion trapping. In
Fig. 4a, Φ at the maximum in time of the electrostatic
energy Ees (the time history of Ees is shown in Fig. 1a)
is shown for case 1. In Fig. 4b, fi sampled at r⊥ = 0
and integrated over v⊥ is shown, exhibiting characteristic
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FIG. 3. Snapshots of the evolving spatially-averaged ion dis-
tribution for case 1 (top row), case 2 (middle row), and case 3
(bottom row). Shown are the initial distributions (left col-
umn), the distributions when the field energy is at a maxi-
mum (middle column), and the final state of the distribution
(right column). Red lines indicate the calculated region of ion
trapping associated with the maximum (max) or root-mean-
squared (RMS) amplitude of the most unstable Fourier-mode
in each case, while arrows indicate the direction of bounce
motion.
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ion trapping structures. Later in time, Φ decays to a
turbulent spectrum (see Fig. 4c), the ions detrap (see
Fig. 4d), and Ees is converted via velocity space diffusion
to particle kinetic energy, shown in Fig. 1a. In Figs. 4e
and 4f, Φ at the maximum in time of Ees is shown for
cases 2 and 3. The structures in Φ shown here correspond
to large density modulations of ∼10% in case 1 and ∼30%
in cases 2 and 3. The eventual turbulent states of cases 2
and 3 are similar to that shown for case 1.

Electrons and ions with velocities near the phase veloc-
ity of the wave are resonant with the unstable (γk > 0)
modes. In symmetric systems such as cases 1-3 and 5,

the phase velocity vk = (ωk/k)k̂ is zero because the real
frequency of the unstable modes is zero in the simulation
frame (see Table I). Such particles can become trapped
by the electrostatic potential and follow trapped orbits,
generally with excursions in both r|| and r⊥. γk is sym-
metric under changes of sign of k|| and k⊥ and as a result
the resonant region of velocity for species j is enclosed by
a diamond (except for the special case k⊥ = 0) given by
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FIG. 4. For case 1, the (a,c) electrostatic potential and the
(b,d) total ion distribution, sampled at r⊥ = 0 and integrated
over v⊥. Snapshots (a) and (b) are taken at the maximum in
time of the total field energy, while (c) and (d) are the final
state of the simulation. (e,f) The electrostatic potential in
cases 2 and 3, respectively, taken at the maximum in time of
the total field energy.

k̂·(v−vk) = ±vtr,j where the trapping width vtr,j is given

by vtr,j/vtj = 2
√
e|Zj |φ/Tj . For a system dominated by

the fastest-growing linear mode, k = (±kmax
|| ,±kmax

⊥ ).

Zj is the charge state of species j and φ is a potential
that characterizes the half-depth of the potential well ex-
perienced by the particles.

In Fig. 3, regions in velocity space resonant with 〈fi〉
are shown for the modes k = kmax (see Table I). Re-
gions bound by both vmax

tr,i = vtr,i(0.5[max(Φ)−min(Φ)]),

and vRMS
tr,i = vtr,i[RMS(Φ)] are indicated by dotted and

dashed lines, respectively. RMS denotes a root-mean-
squared value, calculated by averaging over the entire
system. vmax

tr,i defines the furthest extent of resonant in-

teraction, while vRMS
tr,i is an approximate average over

the 2D structures in Φ. The arrows indicate the direc-
tion of the trapped ion oscillations. Not shown, the elec-
tron distribution function fe is also modified, exhibiting
a trapping-induced flattening of a few percent centered
about vk. While this modification of fe does not appear
to impact the evolution of the IISI, it may be of impor-
tance to other processes not investigated here.

By examining vtr,i, it is apparent that the amplitude
of a mode driven by the IISI is limited to the inter-
section of the resonant region with the bulk of the ion
distribution in cases 1-3 (known as wave breaking31).

i.e., Φ will grow until vRMS
tr,i ' k̂max · ui, which is ac-

curate to within 10% for cases 1-3. After saturation of
the k ∼ kmax modes, the spectrum becomes sufficiently
broad such that Φ causes a diffusion in velocity space,
fully stabilizing the IISI.

In cases 1, 2, and 3, the average flow velocity defined as
ui(t) = 〈

∫
v
v||fi dv〉/ni approaches a reduction in mag-

nitude by 30%, 38%, and just 4%, respectively, shown
in Fig. 1b. However, the maximum of 〈fi〉 in velocity
space moves little if at all, as is apparent in Fig. 3. In
fact, for case 2, the position of the maximum increases in
magnitude by 14% relative to its initial value due to par-
ticles being pulled away by trapping predominantly from
the side of f closest to the resonance. We define the
time-varying spatially-averaged directional temperature
as Tj = (mj/nj)〈

∫
v
(v − uj)

2fj dv〉. This is the temper-
ature that a Maxwellian distribution of species j would
need in order to have a kinetic energy equal to that of fj
in the frame moving at uj , calculated independently for
the parallel and perpendicular directions. Tj is shown
for cases 1-3 in Fig. 1c. Despite fe exhibiting flattening
near v = 0 due to trapping, Te deviates from its initial
value by only ∼1%.

For supersonic flows, the scalings of the final flow veloc-
ities and temperatures with the initial flow velocities fol-
low from the behavior of kmax : at higher flow velocities,
the most unstable mode moves to larger angles relative
to the flow (so that kmax · u approximately satisfies the
acoustic dispersion relation), and the action of trapping
on the distribution is likewise directed at larger angles
relative to the flow. In case 3, the ion bounce motion is
almost perpendicular to the flow, resulting in almost ex-
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clusively transverse ion heating and little slowing down.
However, the final value of Ti|| is not simply a monotonic
function of u/cs. As u decreases to subsonic values and
the IISI becomes effectively one-dimensional (as in case
1), one has at saturation vRMS

tr,i = ukmax
|| and the final

value of Ti|| falls accordingly until, for sufficiently low u,
the instability is simply below threshold and does not
occur.

A quasilinear description, such as that explored by
Forslund5, is in qualitative agreement with the results
shown for cases 1-3, correctly recovering that perpendic-
ular ion heating dominates parallel heating at high flow
velocities and that the slowing down due to the IISI for
symmetric single-ion species flows is modest. However,
any feature of a kinetic simulation that is a direct conse-
quence of trapping will be missed by a quasilinear treat-
ment. For example, a quasilinear model will not include
the excursion of trapped ions to a distance vtr,i beyond
the point in velocity space at which they are resonant,
leading to a significant underestimate of the final per-
pendicular ion temperature for supersonic flows: in case
3, one has Ti⊥/Te ≈ 0.5, whereas the prediction from a
quasilinear model5 is Ti⊥/Te ≈ 0.25.

B. Multi-ion species flows

We now consider case 4 (see Table I), where one stream
is entirely comprised of hydrogen (H) ions and the other
is fully-ionized carbon (C). The initial ion temperatures
and number densities are equal. Shown in Fig. 5a and

0 1 2
0

1

2

3

0

0.5

1

1.5

2

10 3

k||�De

k
�
�

D
e

�/�pi

(a) (b)

r||/�De

r �
/�

D
e

r||/�De r||/�De

�ne

ne0

�nH

nH0

�nC

nC0

k||�De

(d) (e) (f)

r||/�De

r �
/�

D
e

e�

Te

(c)

FIG. 5. For case 4, the (a) theoretical linear kinetic growth
rate, and (b) measured growth rate γ of the ion streaming
instability in a simulation. (c) Potential Φ and (d) electron,
(e) hydrogen ion, and (f) carbon ion density modulations δnj

relative to initial values nj0 excited by the ion streaming in-
stability.

5b, the theoretical linear kinetic growth rate and the
measured numeric growth rate are again in quantita-
tive agreement. In Fig. 5c, Φ taken at the maximum
in time of Ees is shown. The structure of Φ is qualita-
tively similar to case 2 due to the similar range of un-
stable modes. However, in cases 1-3, the electron and
ion density modulations are in phase. In contrast, the
electrons and C ions are in phase in case 4, while the
H ions [notably with O(1) density modulations] are ap-
proximately anti-phased. In fact, the phase relationship
between each component (shown at the peak of Ees in
Figs. 5d-f) evolves as Tj increases in time, similar to the
“slow mode” described in Refs. 32 and 33.

The trapping widths of H and C ions are given by
vtr,i/cs = 2

√
Zi/Ai

√
eφ/Te and therefore vtr,H/vtr,C =√

2, where Ai is the ion mass number. As a result, the
conventional wave-breaking limit31 of H ions (when the
trapping width intersects the bulk) will be reached be-
fore that of the C ions. The evolution of 〈fi〉 for case 4
is shown in Fig. 6, and the associated energy partition-
ing, flow velocity, and temperature evolution in time are
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Shown are the initial distributions (left column), the distribu-
tions when the field energy is at a maximum (middle column),
and the final state of the distribution taken at the end of the
simulation (right column). Red lines indicate the calculated
region of ion trapping associated with the maximum (max)
or root-mean-squared (RMS) amplitude of the most unstable
Fourier-mode in each case, while arrows indicate the direction
of bounce motion. Note that due to the differing ion masses,
one has vtr,H/vtr,C =

√
2. In panels (g) and (h), the color

scale of (e) and (f), respectively, has been saturated at 0.3%
of the maximum value in order to show detail in the tails of
the distribution.
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shown in Fig. 7.
As before, the most unstable linear IISI mode and ion

trapping together dictate the structure in velocity space.
However, in this case the H ions alone are not able to
saturate the growth of the IISI by trapping: vtr,j grows
until the resonant region fully encompasses the entire H
ion distribution (Fig. 6c), and is instead saturated by
trapping of the C ions (at the C ion wave breaking limit)

where vRMS
tr,C ' k̂max ·uC . Note that for the phase velocity

of the most unstable mode one has vk = ωmax
k /kmax �
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FIG. 7. For case 4, changes in the (a) per-species kinetic Kj ,
electrostatic Ees, and total (Tot.) energies, relative to initial
values; (b) flow velocities uj ; and (c) ion heating parallel (||)
and perpendicular (⊥) to the flow direction.

k̂max · uj (see Table I) and therefore the center of the
resonance is far from the bulk of either ion distribution.
This greater likelihood of H ions to become trapped due
to their larger trapping width relative to C ions is then
reinforced by the time required for ions to complete a
trapped orbit: for the bounce frequency of a trapped
particle one has ωb,j = k

√
e|Zj |φ/mj and the time taken

to complete a trapped orbit is τb,j = 2π/ωb,j . As φ falls
during the latter stages of the evolution of the system,
τb,j becomes large and ions may not fill out phase space
as fully as if they were to experience an adiabatically
decreasing amplitude. This effect is more pronounced
for the C ions since τb,C/τb,H =

√
2. The longer bounce

period of the C ions is readily apparent in the kinetic
energy oscillations shown in Fig. 7a (compare KH and
KC).

As a result of the total trapping of the H ions, the
average flow speed of the H ions becomes that of the

dominant IISI mode, which initially has vk � k̂max ·
uj . i.e., the H ions are effectively stopped by the C ions
due to the IISI. Conserving momentum, the C ions are
also slowed, but to a lesser degree (∼8%) due to their
larger mass (see Fig. 7b). The electrons cancel out the
current of the ions and so are slowed relative to their
initial speed by an amount similar to the slowing of the
ions, although this slowing is small (∼1%) compared to
vte. As in the previous section, the electron distribution
is flattened by a few percent but does not deviate from
its initial temperature by more than ∼1%. In Fig. 7c, the
evolution of Tj is shown. The heating of the C ions in the
direction parallel to the flow is striking (TC||/Te → ∼0.5)
and exceeds the perpendicular C ion heating or the H ion
heating in either direction by a factor of 2, while as before
Te is effectively unchanged. Analysis of 〈fC〉 reveals a
ring-like formation (Fig. 6f) that is qualitatively similar
to case 2 (Fig. 3f).

Finally, we discuss case 5, where we simulate coun-
terstreaming flows of CH2. Here, there are two sym-
metric counterstreaming flows of C ions and two sym-
metric counterstreaming flows of H ions, where there are
twice as many H ions as C ions and initially one has
uH,C = (±u, 0). As before, growth rates for the IISI
from theory and our simulations (not shown) agree in
the linear stage, and this case is qualitatively similar to
case 4. However, due to the symmetry of case 5, the flow
of H ions is now separated from the flow of C ions in
each stream: the H ions are trapped more readily than
the C ions, and are pulled towards the center of the frame
by the action of the IISI. This phenomenon of velocity
separation is readily apparent in Fig. 8a, showing the
C ions slowing by ∼26% and H ions slowing by ∼50%.
The C ion heating shown in Fig. 8b is even stronger
than in case 4, most notably in the transverse direc-
tion, resulting in TC⊥/Te → ∼1.5 and TC||/Te → ∼0.8
(TH||,⊥/Te → ∼0.25, unchanged from case 4).



8

0 100 200 300
0

0.5

1

1.5

0 100 200 300

-0.5

0

0.5

u
j
/c

s
uH

ue

uC

TC||TC�

TH�

TH||

T
i/

T
e
0

�pit

�pit

(a)

(b)

FIG. 8. For case 5, the per-species evolution of the (a) flow
velocities uj and (b) ion heating parallel (||) and perpendicu-
lar (⊥) to the flow direction. This case highlights the velocity
separation of the different ion species through the action of
the IISI.

IV. CONCLUSIONS

We have studied the action of the ion-ion streaming
instability (IISI) for single- and multi-ion species flows.
The linear stage of evolution, and the subsequent initial
saturation by trapping, is uncomplicated: in high-fidelity
2D2V Vlasov simulations, the most unstable modes are
those predicted by linear theory, and the amplitude of the
unstable modes is limited by ion trapping (the intersec-
tion of the trapping width with the bulk of the ion distri-
bution, or “wave breaking”). The degree of ion heating
parallel or perpendicular to the flow is dictated by the
wave vector of the most unstable mode, with perpendic-
ular heating dominating at higher flow velocities.

In plasma flows containing multiple ion species of dif-
fering charge-to-mass ratios, the trapping widths of each
species will differ. Trapping of the lighter ion species
alone may be insufficient to saturate the IISI; saturation
instead occurs when the trapping width of the heavier ion
species intersects the bulk of its distribution. The degree
of heating and slowing of each species in the flow may
be qualitatively different. This provides a mechanism for
species (including isotope) separation in velocity and, in

a non-periodic system, space.
In collisionless shocks, the anisotropic heating of ions

by the IISI has been observed in single-ion species
simulations14 to give rise to a complicated picture, with
simultaneous distinct Weibel instabilities arising from
ions reflected at the shock front and from the temper-
ature anisotropy driven by the IISI. Interpreting struc-
tures excited by Weibel instabilities may require care-
ful consideration of the role of the IISI in modifying the
plasma conditions from which other slower instabilities
may grow, particularly if multiple ion species are present.
In plasmas with some degree of collisionality, the IISI will
also modify the collisional drag and heating by reducing
relative flow speeds, as in cases 1-4, or indeed by intro-
ducing a relative flow as in case 5 (counterstreaming flows
of CH2), where the hydrogen ions are slowed more than
the carbon ions within each flow.
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