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Abstract. Ion cyclotron resonance heating, which we refer to as ICRH-SS, with

the quasilinear separatrix (i.e., the separatrix in the space of quasilinear routes of

ion acceleration) located in the region of passing particles is studied. The aim

of ICRH-SS is to minimize the fraction of trapped particles (particles with small

longitudinal velocities) in the population of fast ions. The basic idea of ICRH-SS

– shifting the separatrix to the region of passing particles – was advanced in the paper

[Kolesnichenko et al ., Nuclear Fusion 57 (2017) 066004]. In this work, new features of

ICRH-SS are revealed. The 3-D quasilinear routes of the particle acceleration and

effects of Coulomb collisions are studied. A quasilinear equation for distribution

function of NBI ions, which is convenient for analysis, is derived. Conditions for

quasilinear flux prevailing over collisional flux caused by pitch scattering are obtained.

Numerical simulations using the SCENIC package are carried out for a JET plasma

with NBI (neutral beam injection) ions that are accelerated by RF field in the core

region. A JET pulse designed as a demonstration of the so called ”three ions”

scheme, which also complies with the criteria of ICRH-SS scheme, was selected. The

numerical results show that in the considered example most accelerated ions have larger

longitudinal velocities and fast particle orbits are passing during ICRH-SS, whereas,

“conventional” ICRH (defined as ICRH with the separatrix in the region of trapped

particles) produces accelerated ions with banana orbits. Numerical results also show

an increase in fast ion generation and core plasma heating performance for ICRH-SS

as compared to the conventional ICRH.

1. Introduction

The Ion Cyclotron Resonance Heating (ICRH) is widely used for plasma heating in

tokamaks and stellarators. During ICRH, the energy of generated waves with frequencies

close to the ion gyrofrequency or its harmonic are absorbed by resonant ions. This leads

to acceleration of these ions and concomitant heating of the plasma due to Coulomb

collisions between the accelerated ions and thermal particles. The accelerated ions may
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E. Joffrin et al 2019 Nucl. Fusion 59 112021



Ion Cyclotron Resonance Heating with Shifted Separatrix 2

increase fusion reactivity and can, in principle, be used to study physics of fast ions

in toroidal plasmas. On the other hand, the production of accelerated ions can be a

drawback of ICRH. The issue is that the absorbed RF power increases mainly transverse

energy of the ions, increasing transverse beta (β⊥ is the ratio of the transverse plasma

pressure to the magnetic field pressure) and decreasing the ratio of v‖/v, where v is

the particle velocity and v‖ is the velocity along the magnetic field. The increase of

β⊥ may be unfavourable for plasma equilibrium. The decrease of v‖/v increases the

particle orbit width and often leads to transformation of passing particles into trapped

ones. The production of trapped energetic ions is a big disadvantage of ICRH for

stellarators because the confinement of energetic ions with small v‖/v is a weak point in

these machines. The orbits of trapped particles are relatively narrow in large tokamaks

and, therefore, the particle confinement is good. Nevertheless, because the orbit width

of trapped particles well exceeds that of passing particles, the production of trapped

particles broadens the profile of plasma heating by ICRH. Depending on direction of

motion of passing particles along the magnetic field, orbits are widened inwards (for

co-passing particles, v‖ > 0) or outwards (for counter-passing particles, v‖ < 0) when

particles become trapped. In the latter case the orbit transformation is detrimental.

In the former case, the effect can be positive, unless radial diffusion via random walks

of banana orbits is caused by either the discrete nature of the tokamak magnetic field

coils [1] or via anomalous diffusion, which will deteriorate the confinement of produced

trapped particles. Positive effects take place only when the cyclotron resonance occurs

well away from the magnetic axis. In the contrary case, when co-passing particles

experience resonance at the magnetic axis, no orbit transformation occurs but the orbit

width increases during acceleration.

In connection with this, an idea to minimize the fraction of trapped energetic

particles was advanced in reference [2]. A key finding in [2] is that there exists a simple

relation between the frequency of a wave generated by the RF-antenna and the on-axis

gyrofrequency of fast ions, for which trapped particles are transformed into passing ones

during their acceleration, whereas passing particles do not undergo orbit transformation.

To understand the physics underlining this idea, one has to take into account that

(i) the particle acceleration during ICRH occurs along characteristics in the space of

Constants Of Motion (COM) of a quasilinear (QL) equation for the ion distribution

function, (ii) there is a separatrix in this space, (iii) the particles approach the separatrix

during acceleration. Usually the separatrix is located in the region of trapped particles,

therefore it is natural to refer to this ICRH as “conventional” ICRH. Passing particles

moving along quasilinear characteristics can then cross the passing-trapped boundary,

approaching the separatrix during their acceleration. In this case, passing particles

undergo orbit transformation, becoming trapped ones. In order to avoid this, it was

proposed in Ref. [2] to move the separatrix to the region of passing particles. We refer

to this RF heating as ICRH with Shifted Separatrix, or ICRH-SS. During ICRH-SS the

accelerated passing particles remain passing, whereas trapped particles may cross the

passing-trapped boundary and become passing.
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Note that conventional ICRH does not necessarily induce passing-trapped

conversion: when the acceleration is weak, strongly-passing particles do not reach the

separatrix, in which case they remain passing, although their orbit width increases.

Shifting the separatrix to the passing region can be done by increasing the RF-

wave frequency (ω) and / or, decreasing the magnetic field strength in comparison to

conventional ICRH (for details see section 3). Because of this, cyclotron resonance

ω = lωB(r) [ωB(r) is the ion gyrofrequency, r is a particle radius-vector, l is an integer]

on the particle orbit is no longer possible. As a result, particles can be in the resonance

with waves only if the frequency Doppler shift is sufficiently large. This means that

the ICRH-SS is a particular case of general Doppler-shifted ICRH schemes which were

studied for various scenarios in many works, see, e.g. [6, 7], and others.

A distinguished feature of ICRH-SS is that it minimizes the fraction of fast ions with

small longitudinal velocities (more exactly: it decreases the pitch parameter λ ≡ µB̄/E
of accelerated particles, where B̄ is the magnetic field at the magnetic axis, E and µ are

the particle energy and magnetic moment). Shifting the separatrix should be consistent

with specific experimental conditions, which may restrict changing the magnetic field or

the wave frequency. Usual ICRH requirements, such as the fulfillment of the resonance

condition for a certain group of ions, proper wave polarization, etc. should be satisfied,

of course, too. Resonance interaction of ions and RF-field with frequency close to any

harmonic of the ion gyrofrequency always occurs according to the condition

ωDop = lωB, (1)

where ωDop = ω − k‖v‖ is the Doppler shifted frequency with k‖v‖ � ω. Therefore,

we establish a “border” between conventional ICRH and ICRH-SS. In tokamaks this

border can be given by a certain radius rbor determined by equation rsep = rtp, where

rsep and rtp are the radii of separatrix and trapped-passing boundary, respectively (see

section 2).

In the case of ICRH-SS, equation (1) with given k‖ is satisfied provided that v‖ is

sufficiently large. This implies that normally ICRH-SS is applicable to superthermal

ions, such as NBI ions.

A subset of the large variety of ICRH schemes that comply with the ICRH-SS

definition are Doppler-shifted ICRH-NBI heating schemes. Aside from ensuring the

cyclotron resonance condition is satisfied for a target population - a basic ingredient

common to any RF heating scheme - ICRH-SS seeks to modify the quasilinear separatrix

configuration space to minimize the trapped and enhance the passing energetic particle

fraction, hereby indirectly potentially ensuring more modest particle losses while

enhancing the neutron rate. As an illustration for which both experimental data as

well as detailed modelling are available, the authors choose to illustrate the wave-

particle and particle-particle dynamics underlying ICRH-SS in a dedicated section 5,

discussing JET shot #91256. This shot relied on a Doppler-shifted resonance to heat

NBI ions on-axis by applying the 3-ion species scheme with the proper RF frequency

to a D − (DNBI) − H plasma [3], the D beam sub-populations with energies close
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to the launch energy playing the role of the preferentially heated minority. Key to

the 3-ion scheme is to adopt a proper mix of concentrations ensuring the polarisation

responsible for ion heating is maximised due to the presence of an ion-ion hybrid layer

at the location where the Doppler-shifted cyclotron resonance of the target species lies,

this ensuring strong wave absorption. In view of the simultaneous importance of finite

orbit width effects, trapping and plasma inhomogeneity aside from the actual wave-

particle interaction, a sufficiently sophisticated wave and particle model is required to

model the ultimate fate of wave energy. The adopted shot was numerically studied

earlier by Patten, in a paper illustrating the intricacies of RF heating both for tokamaks

and stellarators [4]. The simulations were made using the SCENIC suite of codes [5]

and were validated against experimental diagnostics via the neutron distribution and

total neutron count. The differences between the adopted scheme and standard on-

axis heating highlighted the importance of actively steering the passing and trapped

population fractions when optimising wave heating schemes. This article also aims to

extend the research of Patten into the JET simulations presented in [4] to provide a

more detailed understanding of the workings of the ICRH-SS scheme than previously

shown numerically in [4].

The article attempts to advance theoretical knowledge by extending analysis of

reference [2] and making a numerical modelling which demonstrates differences between

ICRH and ICRH-SS. Its specific aims are (i) to consider 2-D QL-picture and relevant

resonances in more detail, (ii) to take into account 3-D effects in the quasilinear diffusion,

(iii) to study the influence of Coulomb collisions, (iv) to consider a particular numerical

example of ICRH-SS and conventional ICRH by means of the SCENIC code [5].

The structure of this article is as follows: In section 2 a quasilinear operator in a

form convenient for analysis of passing particles is derived, local and global resonances

are considered. Quasilinear routes for both passing particles and trapped particles

during ICRH-SS in 2-D space (in the plane of the particle energy and pitch parameter)

and 3-D space (2-D space supplemented with the canonical angular momentum) are

studied in section 3. The influence of Coulomb collisions on NBI ions affected by ICRH-

SS are studied in section 4. Numerical simulations aimed to demonstrate differences

in the fast ion behaviour during conventional ICRH and ICRH-SS are carried out in

section 5. The results obtained are summarized and discussed in section 6.

2. Quasilinear operator and wave-particle resonances

Quasilinear evolution of the particle distribution function implies that COMs vary

under the influence of RF field. When the equilibrium magnetic field of a toroidal

system is axisymmetric, it is convenient to use the following COMs: the energy, E , the

pitch parameter, λ, and the canonical angular momentum, Pϕ. They are defined as

λ = µB̄/E , µ the particle magnetic moment, B̄ the magnetic field at the magnetic axis,

and Pϕ = Mv‖R − eψp/c, with ψp the poloidal magnetic flux and R is a distance from

the major axis of the torus. The main effect of the RF field during ICRH is the increase
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of the particle energy and the change of the particle pitch. The change of Pϕ is less

important and, therefore, it will be considered later.

When RF frequency is close to a harmonic of the ion gyrofrequency, lωB (l is an

integer, l ∼ 1), the wave-particle interaction is associated mainly with single harmonic.

Due to this, routes of quasilinear evolution of the ion distribution function, F , are

determined by characteristics of the equation Π̂F = 0, with Π̂ an operator which depends

on selected l [2]:

Π̂ = E ∂
∂E

+ (λl − λ)
∂

∂λ
=

∂

∂E
E +

∂

∂λ
(λl − λ), (2)

λl = lλ∗, λ∗ = ω̄Bi/ω, ω̄B = ωB(B̄).

Only resonant particles are affected by the RF field. The resonance equation is

Ω ≡ ω − lωB(r, ϑ)− k‖v‖ − k⊥ · vD = 0, (3)

where ωB(r, ϑ) is the local gyrofrequency, vD is the particle drift velocity, k‖ and

k⊥ are the longitudinal and transverse wavenumbers, respectively. We will take the

gyrofrequency in the form ωB(r, ϑ) = ω̄B(1−ε cosϑ), with ϑ the poloidal angle, ε = r/R,

r is a radial coordinate (flux coordinates are used). Then equation (3) determines the

poloidal angles ϑj, with j = 1, 2 (ϑ1 = −ϑ2) at a given flux surface where resonance

occurs. The drift term can be neglected when k⊥ ·vD � εlω̄B, which gives the following

condition:

k⊥ρ
ρ

lr
� 1, (4)

where ρ = v/ω̄B is Larmor radius. We assume that this is the case, excluding from

consideration resonances close to the magnetic axis where inequality (4) breaks. Taking

into account particles with the orbits crossing the axis or passing very near it complicates

analysis but does not reveal new physics: quasilinear routes in the COM space do not

depend on the orbit shape.

A generic form of the quasilinear operator is

Q(F ) =
∑
k,l

1
√
g

Π̂
√
gDk,lΠ̂F, (5)

where g is determinant of a metric tensor, Dk,l is the quasilinear diffusion coefficient.

Equation (5) is valid for both passing and trapped particles. However, the diffusion

coefficient of trapped particles differs from that of passing ones.

Below we obtain the diffusion coefficient for passing particles. The simplest way to

do it is to introduce inhomogeneity of the magnetic field to a QL operator obtained in

the homogeneous magnetic field approximation, as suggested by Stix [8].

To follow this way, we proceed from the equation [9]

Q(F ) = v‖
∑
k,l

[
∂

∂E
+
lωB
ω

∂

∂E⊥

]
v−1‖ Dkl

[
∂

∂E
+
lωB
ω

∂

∂E⊥

]
F, (6)

where

Dkl = πe2v2⊥|E+|2I2l δ(Ω), (7)
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I2l = J2
l−1ηl, ηl =

∣∣∣∣1 +
E−Jl+1

E+Jl−1
e2iψ
∣∣∣∣2 , (8)

E⊥ is the particle energy across the magnetic field, E± are the wave electric field

components that rotate in the ion / electron directions, Jl = Jl(k⊥v⊥/ωB) is Bessel

function of l-th order, ψ = tg−1kb/kr, kr and kb are the radial and binormal components

of the wavevector. In this equation we neglected the wave component E‖ which plays a

minor role in the ion-wave interaction through the cyclotron resonance. As in reference

[8], we average the diffusion coefficient over a flux surface, taking ωB = ω̄B(1− ε cosϑ)

and using equation

δ(Ω) =
∑
j=1,2

δ(ϑ− ϑj)
lω̄Bε| sinϑj|

. (9)

As a result, proceeding to variables E and λ, we obtain the quasilinear operator for

passing particles in tokamaks in the following form:

Q(F ) =
1
√
g

Π̂
√
g
KλI2l
E

Π̂F, (10)

where Π̂ is given by equation (2),

K =
∑
k,j=1,2

e2|E+|2

Mlω̄Bε| sinϑj|
, (11)

d3v =
∑

σ dEdλ
√
g,
√
g =

√
2πM−3/2

√
E/(1− λ), ϑj are solutions of equation (3),

Jl = Jl(z), z = k⊥v⊥/ω̄B, v2⊥ = 2Eλ/M .

Note that the same result can be obtained by means of a more rigorous procedure.

To demonstrate it, let us use variables (E‖, E⊥), where E‖ is the particle energy along

the magnetic field. Then, neglecting the QL evolution of the distribution function along

E‖ and taking ηl = 1 we reduce equation (10) to

Q(F ) = K ∂

∂E⊥
E⊥J2

l−1
∂

∂E⊥
F. (12)

This equation coincides with equation (37) of reference [10], which was obtained from

a bounce-averaged quasilinear equation in the limit of overlapped “global” resonances

given by

Ω̄− sωb = 0, (13)

with

Ω̄ = ω − lω̄B −m〈ϑ̇〉+ n〈ϕ̇〉, (14)

where s is an integer, 〈(...)〉 means bounce / transit averaging, ϕ is the toroidal angle,

”dot” over letters means time derivative, m and n are the poloidal and toroidal wave

numbers, respectively [it was assumed that perturbed quantities are proportional to

exp(−iωt+ imϑ− inϕ)].

Global resonances exist for time intervals exceeding the bounce / transit period.

Because the quasilinear diffusion coefficient is considerable only when the local resonance
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(3) occurs, equation (13) is actually a relationship between ϑj and s. For passing

particles it reads:

sωb + lω̄Bε cosϑj = 0. (15)

The overlap of bounce / transit resonances represents a factor providing stochasticity

and, thus, plasma heating by the RF field.

The factor K contains a singularity at ϑj = 0, π. Therefore, we transform it to

another form. Let us assume that the summation over k in equation (11) is determined

mainly by the antenna power spectrum over kϕ, with kϕ = −n/R. Then dk‖ = dkϕ,

and we can replace
∑

k(...) with
∑

n(...) = R
∫
dk‖(...). This procedure (replacement

of the sum by the integral) is justified provided that the local resonances associated

with various mode numbers overlap. We assume that this is the case. Now we take

into account that resonance (3) determines a dependence of ϑj on k‖ for a particle

characterized by radial coordinate (r) and longitudinal velocity (v‖), which leads to

relation

∂ϑj
∂k‖

= −
v‖

εlω̄B sinϑj
. (16)

Then we obtain:

K = e2R

[
2

ME(1− λ)

]1/2 ∑
j=1,2

∫
dθj|E(ϑj)|2, (17)

where E(ϑj) = E+[k(θj)], λ < 1. The integral in this equation vanishes for those

ϑj for which the resonances with given E , λ, and r are absent and / or the wave

amplitudes E(ϑj) are negligible. For instance, when waves with wave numbers in the

range k̂‖ ≤ k‖ ≤ k̂‖ + ∆k lead to resonance (3) at ϑ̂ ≤ ϑ ≤ ϑ̂ + ∆ϑ, equation (16)

provides the following relationship between ∆ϑ and ∆k‖:

cos(ϑ̂+ ∆ϑ)− cos ϑ̂ =
ρ‖
εl

∆k‖. (18)

In particular, for ϑ̂ = π, k‖ρ‖ = lε, and k‖ = −n/R we obtain

∆ϑ = cos−1
(

1− ∆n

n̂

)
, (19)

which yields ∆ϑ =
√

2∆n/n̂ for ∆n/n̂� 1.

Relation (17) for K, in contrast to (11), does not have singularity.

3. Quasilinear routes during ICRH-SS

3.1. Basic idea of ICRH-SS: 2-D analysis

Characteristics of operator (2) are determined by the following equation:

dE
E

=
dλ

λl − λ
. (20)
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Its solution is

E (λl − λ) = CE , (21)

where CE =const, CE > 0 for λ < λl and CE < 0 for λ > λl.

It follows from here that there exists a separatrix, λl, which separates the regions

with dλ/dE > 0 and dλ/dE < 0. The increase of the particle energy is accompanied

by approach of λ to λl. During conventional ICRH λl > λpasmax, where λpasmax is the upper

border of the region of passing particles (0 ≤ λ < λpasmax for passing particles). This

explains why passing particles tend to become trapped ones during ICRF.

In contrast to this, following [2] we assume that

λl < λpasmax. (22)

Due to this choice of λl, although the pitch parameter λ of passing particles with

0 < λ < λl increases during heating, but, nevertheless, these particles cannot reach

the trapped particle region (where λ > λpasmax). The pitch parameters of two groups

of particles – the passing particles with λl < λ < λpasmax and the trapped particles –

decrease during their motion to the separatrix λl. Therefore, the marginally passing

particles become more passing, but trapped particles undergo orbit transformation and

become passing.

For particles with standard (narrow) orbits in tokamaks λpasmax ≈ 1 − r/R, which

follows from v‖ = 0 and, therefore, it does not depend on the sign of v‖. This is the case

for particles with ∆b < r, where ∆b is the orbit width, and r is the average radius of

particle location. In the limit case of orbits passing through the magnetic axis, the orbit

transformation accompanied with sharp change of the maximum particle displacement

from the axis (rmax) occurs at the pitch |χ(0)| ≡ |v‖(r = 0)|/v ∼ ŝ1/3 (ŝ = 2qρ/(δER),

with ρ = v/ωB and δE the plasma cross section elongation), but only for v‖ < 0, see

e.g. [11]. Maximum displacement of co-passing particles is a monotonic function of χ(0)

and is relatively small, rmax ≈ ŝ2/3R at χ(0) = 0, and rmax is a decreasing function of

χ(0) in the region χ(0) > 0, so that rmax ∼ qρ when χ(0) ∼ 1. In comparison to ICRH,

ICRH-SS produces particles with smaller λ, which means that χ(0) is larger and rmax
is smaller.

Below we assume that orbits are standard. Figure 1 demonstrates the difference

between the ICRH and ICRH-SS for λpasmax = [1 + r/(aA)]−1, with A = 3 is the aspect

ratio of the torus, a the plasma radius.

Equation (22) is actually a restriction on the wave frequency: ω/(lω̄B) > (λpasmax)
−1.

On the other hand, the upper border of the passing region is λpasmax = B̄/max{B(r)},
which follows from |v‖| = v

√
1− λB(r)/B̄. Here max{B(r)} is maximum of the

magnetic field on the particle orbit. Taking this into account, we can write equation

(22) as follows:

ω

lω̄B
> (λpasmax)

−1 =
max{B(r)}

B̄
. (23)

Because ω̄B = ωB(r)B̄/B(r), equation (23) reads:

ω > max{lωB(r)}. (24)
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Figure 1. Quasilinear routes in the (λ, E) space for l = 1 in JET. Here the region

of trapped particles is shadowed, the separatrix is shown by dashed vertical line, the

arrows show directions of the evolution during RF heating, the ion energy is measured

in arbitrary units. The magnitude of λ∗ = 0.81 (dotted line) is chosen in a way that

λpasmax > λ∗ in the plasma core, r/a < 0.7 (the ICRH-SS case, left panel), whereas

λpasmax < λ∗ at the periphery, r/a > 0.7 (the ICRH case, right panel). In the left

panel, λpasmax = 0.91, which corresponds to r/a = 0.3; in the right panel λpasmax = 0.77,

which corresponds to r/a = 0.9. We observe in the left panel that characteristics

of passing particles do not intersect the trapped-passing border (λpasmax), in contrast

to characteristics of trapped particles; in the right panel, characteristics of passing

particles intersect the trapped-passing border.

This means that the particle orbits do not intersect the cyclotron resonance surface

defined by ω = ωB(r) during ICRH-SS, in contrast to the cyclotron interaction during

ICRH.

All the particles in a certain region satisfy equations (23), (24) when max{B(r} is

replaced by the maximum B in this region, Bmax, so that

ω̃ >
lBmax

B̄
, (25)

with ω̃ ≡ λ−1∗ = ω/ω̄B.

On the other hand, ω should be not very high to avoid the influence of the (l + 1)

harmonic and other cyclotron harmonics. This requirement is consistent with equations

(23)-(25) for small l only. The magnitude λ∗ = 0.81 used in figure 1 satisfies this

condition, giving ω̃ = 1.23. This magnitude provides fulfillment of equation (25) in the

plasma core, at least in the near-axis region, but may be not sufficiently high for plasma

periphery where Bmax/B̄ is not very small, as was the case in figure 1.

Equation (24) implies that in the case of ICRH-SS the particles interact with the

waves well away from the resonance surface determined by ω = lωB(r). In tokamaks

the magnetic field is maximum at the inner circumference of the torus. Therefore, in
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order to heat the plasma core region, the cyclotron resonance ω = lωB(r) should be well

off-axis, close to high-field side of a flux surface located at the periphery or even outside

the plasma.

The resonance condition (3) with the drift term neglected can be written as

ω̃ − lb(r) = k‖ρ‖, (26)

where b(r) = B(r)/B̄, ρ‖ = v‖/ω̄B. When B = B̄(1 − ε cosϑ) and bmax ≡
max{B(r)}/B̄ = 1 + ε, with ε = r/R, the resonance (26) takes the form:

∆ + lε(1 + cosϑ) = k‖ρ‖, (27)

where ∆ = ω̃ − lbmax is a frequency excess required by equation (23). It follows from

here that

∆ ≤ k‖ρ‖ ≤ ∆ + 2lε. (28)

This equation shows that the required values of k‖ρ‖ are positive and lie in a certain

range due to possible location of resonances at various poloidal angles. The minimum

value of k‖ρ is ∆. It takes place when the resonance occurs at the high-field side of the

torus (ϑ = π).

When bmax(r) is a growing function [the case for passing orbits in the field

B = B̄(1− ε cosϑ)], the separatrix λl may coincide with λpasmax at a certain radius rborder
representing a border between the ICRH and ICRH-SS. For instance, rborder = 0.7a in

figure 1. In the vicinity of rborder, ∆ = 0 and therefore the passing ions with small ρ

can be accelerated without orbit transformation, but only those ions whose orbits lie at

r < rborder.

Equations (27) - (28) give estimates for the required k‖ρ‖. To know exact

magnitudes one has to take into account the particle drift velocity, especially for ions

with high energy in the near-axis region.

Note that E‖ can considerably increase during ICRH-SS. To find the change of it we

consider a particle at the moments when it passes points with a certain poloidal angle

(e.g., ϑ = π/2), in which case E‖ is a COM. Then the characteristic equation (21) can

be written as (Eλl − E + E‖)ϑ=π/2 = CE , from which we obtain

∆E‖(π/2)

∆E
= 1− λl. (29)

For instance, for λl = 0.8 we have ∆E‖/∆E = 1/5.

Because only resonance ions are accelerated, the change of E‖ and, thus, the change

of E , depend on the spectrum of k‖ of excited waves. Due to this, the range of energies

of accelerated ions can be controlled by antenna power spectrum.

3.2. 3-D effects in ICRH-SS

Change of energy of a charged particle in an axisymmetric magnetic field leads to a

change of its canonical angular momentum. Therefore, routes of quasilinear evolution
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are three-dimensional. To describe them we supplement Π̂ given by equation (2) with

the terms associated with Pϕ:

Π̂(3D) = Π̂− nE
ω

∂

∂Pϕ
. (30)

This leads to additional characteristic equation:

ndE = −ωdPφ (31)

and

nE + ωPφ = const. (32)

The change of the canonical angular momentum implies that particles can move in

radial direction during QL evolution.

Let us consider first the radial displacement of trapped particles. The longitudinal

velocity of these particles vanishes at some points on the orbits. We will refer to these

points as banana tips, although these points exist for both “banana” particles and

“potato” particles (in the latter case, points where v‖ = 0 do not coincide with the

turning points where ϑ̇ = 0). It is clear that for these points

dPϕ = −e
c
dψ̂p, (33)

where ψ̂p = ψp(v‖ = 0) is a COM. Due to (33), it directly follows from equation (31)

that a change of particle energy (∆E) leads to a radial displacement of banana tips:

∆ψ̂p =
cn

eω
∆E . (34)

This is so-called “pinch effect” [12,13]. Bananas move inwards when n < 0 and outwards

for n > 0. In order to evaluate this effect we use Boozer coordinates and define the

radial coordinate r by dψT = B̄rdr, where ψT is the toroidal magnetic flux. Then

dψ̂p = 0.5B̄q−1a2dψ, where ψ = r2/a2, a is the plasma radius defined by ψ = 1,

q = q(ψ) is the tokamak safety factor. Displacement ∆ψ in this case can be written as

∆ψ = σnCψ
∆E
E0

, (35)

where σn ≡ n/|n|, Cψ = 〈q〉|n|λ∗ρ20/a2 > 0, 〈q〉 is the average safety factor defined

by
∫ ψ
ψ0
dψ′/q(ψ′) = ∆ψ/〈q〉, ∆ψ = ψ − ψ0, ρ = v/ω̄B, the subscript “0” labels the

initial particle energy / velocity. It follows from here that the particle displacement is

proportional to a small value, ρ20/a
2, but it can be considerable due to n � 1 when

∆E > E0.
Dependence of ψ on λ can be obtained from equation (35) by means of equation

(20), which leads to

∆E
E0

=
λ0 − λ
λ− λl

. (36)

We obtain:

∆ψ = σnCψ
λ0 − λ
λ− λl

(37)
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and

dψ

dλ
= −σnCψ

λ0 − λl
(λ− λl)2

. (38)

Note that λ0 − λl > 0 and λ 6= λl for all trapped particles during ICRH-SS. Therefore,

ψ(λ) is a growing / decreasing function for n < 0 / n > 0.

Now we proceed to passing particles. We consider the influence of RF field on the

radial motion of a point on the particle orbit at a certain poloidal angle, ϑ1, which

particle crosses after successive transits. Then

dPϕ = RMdv‖ +Mv‖dRr −
e

c
dψp, (39)

where all the magnitudes are taken at ϑ1, and dRr = (∂R/∂r)dr. We have to express

dv‖ through dE and dr. With this purpose we use the relation E‖ = E(1 − λb), with

b = B(r)/B̄, from which we can write

dE‖ = (1− bλ)dE − Ebdλ− Eλdbr, (40)

where dbr = (∂b/∂r)dr. Eliminating dλ here by means of characteristic equation (20)

we have

Mv‖dv‖ = (1− bλl)dE − Eλdbr. (41)

Combining this equation with equation (39) and using characteristic equation dPϕ =

−(n/ω)dE we obtain the following:

RdE
(

1− bλl +
nv‖
ωR

)
= dr

[
ev‖
c

dψp
dr
− (2E‖ + Eλ) cosϑ1

]
. (42)

One can see that the first term in the RHS of this equation dominates when

r � qρ‖. (43)

We assume that this is the case and take into account that only resonant particles

undergo QL evolution. Then, writing the resonance (26) as

1− bλl =
k‖v‖
ω

(44)

and using k‖ = (m− nq)/qR (m is the poloidal mode number, q is the tokamak safety

factor), we reduce equation (42) to

dψp =
cm

eωq
dE . (45)

This equation has the form similar to that of equation (34) for trapped particles. It

formally can be obtained from (34) by replacing n with m/q.

It is of importance, that dψp/dE of passing particles is determined by the poloidal,

rather than toroidal, wave number, in contrast to that of trapped particles.

The particle velocity v‖ changes during QL evolution. For this reason, the particle

radial displacement ∆ψp which can be obtained from equation (45) is correct only for

small change of v‖. In general, equation (42) [rather than (45)] should be integrated

with subsequent use of the resonance condition for finding ∆ψp.
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Figure 2. Max |A⊥| versus poloidal wavenumbers in JET discharge # 91256 for

n = ±27, which was calculated by SCENIC. Notation: Max |A⊥| is the maximum value

of A⊥ over the radial grid, A⊥ is transverse vector potential of the electromagnetic

field.

Let us consider a numerical example. We take l = 1, B̄ = 3 T, R = 3 m,

∆E/E0 = 10, E0 = 100 keV, a = 1 m, ω̃ = 1.23, 〈q〉 = 1.5. Using equation (35)

with n = 27 (which corresponds to a maximum of the power spectrum in the JET

antenna with dipole phasing) we obtain |∆ψ| = 0.1〈q〉 for trapped particles.

The displacement of passing particles depends on the poloidal wave numbers which

are typically small and both positive and negative m may be present. In particular, the

SCENIC modelling of the JET discharge #91256 shows that m = 0 mainly contributes,

see figure 2 where the wave numbers of the RF field are presented. This implies that

displacement of injected passing ions is negligible in this discharge. In contrast to wave

numbers, the wave amplitude, δE, does not affect the ways of the ion acceleration.

However, it plays an important role in power absorption. The SCENIC code predicts

δE that lies in the range (1 − 4) kV/m in the region of interest, 0.1 . r/a . 0.6, see

figure 3.

A 3-D picture of QL evolution for m = 0, which is based on the analysis above, is

shown in figure 4.
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Figure 3. The RF wave amplitude versus radius in JET discharge # 91256 calculated

by SCENIC.

4. Conditions mitigating effects of collisions

4.1. Quasilinear and collisional fluxes

In this section we consider behavior of passing ions during ICRH-SS with taking into

account Coulomb collisions. As shown above, these ions remain passing when they are

located in the region r < rborder and move along QL characteristics. However, collisional

pitch-angle scattering may lead to orbit transformation, making these particles trapped.

Therefore, it is of importance to find conditions which should be satisfied to minimize

this detrimental effect of collisions.

We consider passing particles and restrict ourselves to 2-D approximation, assuming

that their radial displacement is small. Particles with the energies E > Ec will be

considered. Here Ec ∼ (Mi/Me)
1/3Te (subscripts e and i label electrons and ions,

respectively, M is the particle mass, T is the temperature) is the energy above which

the collision slowing down dominates the scattering.

A quasilinear equation for distribution function of fast ions is

∂F

∂t
= Q(F ) + C(F ) + S, (46)

where Q(F ) and C(F ) are the quasilinear term and collisional term, respectively, and

S is a source function.

Passing particles avoid transformation into trapped ones during ICRH-SS when the

λ component of quasilinear flux in the plane (λ, E) exceeds the corresponding collisional

flux. Due to the fact that the separatrix λl is located in the region of passing particles
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Figure 4. 3-D routes of QL acceleration of particles with r0/a = 0.5, E0 = 100 keV,

and various λ0: 0.2, 0.5, 0.7 (passing particles) and 0.9, 1.0, 1.1 (trapped particles) in

JET with the same parameters as in figure 1 and n = −27, m = 0 during ICRH-SS.

We observe that routes of trapped particles (thick blue curves) intersect the cyan plane

representing trapped-passing border (except for deeply trapped particles, λ0 = 1.1) and

then follow passing routes. Passing particles do not move radially, whereas trapped

particles move inwards but their displacement is rather small; this is clearly seen due to

shown projections of the routes to the plane (r, λ) (red and blue thin lines for passing

and trapped particles, respectively).
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in the case of ICRH-SS, one does not need to consider the region of trapped particles.

Therefore, we can use the quasilinear operator (10) describing QL evolution of passing

particles.

The sum Q(F ) + C(F ) can be written as follows:

Q(F ) + C(F ) = − 1
√
g

(
∂

∂E
√
gJE +

∂

∂λ

√
gJλ

)
, (47)

where JE and Jλ are components of the particle flux, J, produced by both the wave-

particle interaction and Coulomb collisions, J = JQ + JC , where the superscripts Q and

C label the flux quasilinear part and collisional part, respectively.

Components of the quasilinear flux are

JQE ≡ EJ (48)

and

JQλ ≡ (λl − λ)J, (49)

with

J = −DEΠ̂F = −KλI2l
(
∂F

∂E
+
λl − λ
E

∂F

∂λ

)
, DE = KλI

2
l

E
. (50)

It follows from equations (48), (50) that JQE > 0 when the magnitude in brackets of

equation (50) is negative. For RF-energy absorption to take place independently on the

sign of (λl − λ), the first term in the brackets should dominate, with ∂F/∂E < 0. This

implies that particles are accelerated, absorbing the wave energy, in this case. On the

other hand, the sign of the first term in the relation for the λ flux depends on the sign

of (λl − λ), whereas the sign of the second one does not:

JQλ = −
∑
k

KλI2l
[
(λl − λ)

∂F

∂E
+

1

E
(λl − λ)2

∂F

∂λ

]
. (51)

Because the first term dominates during power absorption, the flux JQλ is positive when

λ is small, λ < λl, and negative when λ > λl. Therefore, it tends to approach particles

to the separatrix λ = λl, independently on their location with respect to the separatrix.

This conclusion agrees with the picture shown in figure 1.

The collision operator for particles with E > Ec can be written in the form [11]:

C(F ) =
1

τE
√
E
∂

∂E
(
E3/2 + E3/2c

)
F +

2α

τE

E3/2c

E3/2
√

1− λ ∂

∂λ
λ
√

1− λ ∂

∂λ
F, (52)

where

α =
neZef

2M
∑

i niZ
2
i /Mi

,

τE = (νE)
−1 is the collisional energy loss time, Z is the electric charge number, Zef is

the effective charge number, M is the fast ion mass. This equation determines the flux

with components

JCE = − 1

τE

E3/2 + E3/2c√
E

F, JCλ = −2α

τE

E3/2c

E3/2
λ(1− λ)

∂F

∂λ
. (53)
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4.2. Absorbed power and average K

Let us derive a relation for the absorbed RF power as a function of the wave electric

field. It will be used later to evaluate the quasilinear flux JQλ .

The simplest way to do it is to introduce new variables by replacing the pitch λ

with the characteristic ξ = E(λl − λ). Then equation (2) reduces to Π̂ = E∂/(∂E) and

QL operator takes the form:

Q =
1
√
gξ

∂

∂E
√
gξ KEλI2l

∂F (E , ξ)
∂E

, (54)

where
√
gξ = 2π/(M2|v‖|), with v‖ = v‖(E , ξ). In these variables the absorbed power

density, Prf =
∫
d3vEQ(F ), can be written as

Prf =

∫ ∞
0

dE
∫
dξE ∂

∂E
√
gξ KEλI2l

∂F (E , ξ)
∂E

. (55)

Integrating over E by parts twice we obtain:

Prf =

∫
d3vF

1
√
gξ

∂

∂E
(√

gξ KEλI2l
)
. (56)

Only resonant ions contribute to Prf . Therefore, we replace integral
∫
d3v(...) over the

whole velocity space of passing ions with the integral over resonance region,
∫
res
d3v(...).

Then we introduce an average magnitude K̄ for these particles, writing equation (56) as

follows:

Prf = K̄
∫
res

d3vF
1
√
gξ

∂

∂E
(√

gξ EλI2l
)

(57)

or

Prf = K̄nresλave, (58)

where

λave =

〈
1
√
gξ

∂

∂E
(√

gξ EλI2l
)〉

(59)

λ = λl − ξ/E , Il contains Bessel functions Jl±1 = Jl±1(z), z = k⊥v⊥/ω̄B, v⊥ =√
2(Eλl − ξ)/M , brackets denote averaging with the distribution function F/nres, nres

is the number of resonant particles defined by nres =
∫
res
d3vF .

One can see that ∂z/∂E = λlz/(2Eλ) and

1
√
gξ

∂

∂E
(
√
gξEλ) = 0.5λl

(
1 +

1− λ/λl
1− λ

)
. (60)

Taking this into account we obtain for the case when the E+ term in the diffusion

coefficient dominates (i.e., ηl = 1):

λave =

〈
0.5Jl−1

[
Jl−1

(
λl +

λl − λ
1− λ

)
+ 2λlzJ

′
l−1

]〉
. (61)

For l = 1 and z < 1 it is reduced to

λave =

〈
0.5λl

(
1 +

1− λ/λl
1− λ

)〉
. (62)
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Equations (58), (61), and (62) are obtained in the E , ξ variables [with λ = λ(E , ξ)].
However, they are valid also in the E , λ variables because they are written in the form

that does not contain the metric tensor determinant explicitly.

4.3. Ratio of fluxes

To proceed, we have to specify the source term in equation (46). We assume that fast

ions are produced by neutral beam injection (NBI), and they are peaked around λ = λα,

with λα < λl. In this case, the collisional pitch-angle scattering will spread the particle

distribution, leading to F 6= 0, with ∂F/∂λ < 0 at λ > λα. Therefore, in the region

λ > λl the collisional flux JCλ will compete with the quasilinear flux, see figure 5. We

request |JQλ | > JCλ in this region to avoid production of trapped particles by collisions.

We keep only the first term in equation (51) for JQλ , which should dominate to

provide heating in the region λ > λl. Then we obtain the following ratio of |JQλ /JCλ |
determined by equations (51), (53):

JQλ
JCλ

=
K(λl − λ)I2l τEE3/2∂F/∂E

2α(1− λ)E3/2c ∂F/∂λ
. (63)

This equation with K given by (17) reads:∣∣∣∣∣JQλJCλ
∣∣∣∣∣ =

2ω̄BτE
α

R

ρc

|λl − λ|λef
(1− λ)3/2

E
Tef

v2E
v2c
I2l ∆ϑ, (64)

where vE = cE+/B̄ is the drift velocity in the wave field and equilibrium magnetic

field, vc =
√

2Ec/M ; ρc = vc/ω̄B, Tef , λef , and ∆ϑ are defined by T−1ef = |d lnF/dE|,
|λ−1ef | = −d lnF/dλ, and Σj

∫
dϑj|Ej|2 = E2

+∆ϑ, respectively.

It is possible to present the ratio of fluxes in a form more suitable for estimates.

This can be done by using the average value K̄ instead of K, and taking into account

that Prf is associated with the density of resonant ions and their maximum energy, Em,

as follows:

PrfτE = nresEm. (65)

Due to this equation and (58), K̄ reduces to K̄ = Em/(τEλave). Then equation (63)

reads: ∣∣∣∣∣JQλJCλ
∣∣∣∣∣ =

Em
2αTef

|λl − λ|λef
(1− λ)λave

I2l
E3/2m

E3/2c

. (66)

Let us evaluate the obtained flux ratio for λl < λ̂ < λpasmax. We take l = 1 and

Jl−1 = 1, ηl = 1, λ = λpasmax = 0.9, λl = 0.8, λ̂ = 0.85, λα = 0.6. The accelerated ions lie

in the range λ > λα. Therefore, (λpasmax−λα) . λef <∞, depending on QL distortion of

F (λ). It is clear that when λef is very large (i.e., when λ-plateau is formed), the effect

of collisions is negligible. In contrast, we consider an unfavorable case, taking λef = 0.3.

To evaluate λave we take into account that the integrand in (59) is a monotonically

decreasing function of λ, it equals 0.65, 0.4, 0.23 at λ = λα, λl, λ̂, respectively, and less
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l

Figure 5. Sketch of quasilinear and collisional fluxes along λ during ICRH-SS applied

to NBI ions with the pitch parameters close to λα. Red rectangle show the region

where fast ions are born due to NBI, arrows show directions of λ components of the

QL flux (blue) and collisional flux (yellow). We observe these fluxes have different

directions in the region λ > λl.

than 0.2 for λ > λ̂. Therefore, it is reasonable to take λave = 0.4. Then λave/λef = 1.3.

In addition, we take Em/(2αTef ) = 1. For these parameters, JQλ � JCλ provided that

Em/Ec � 2.

5. SCENIC modelling

In order to demonstrate practical feasibility of ICRH-SS and its difference from

conventional ICRH, the JET discharge #91256 was selected, which was studied in

details in references [3, 4, 14]. This JET pulse used hydrogen as the main gas, and

also was an L-mode discharge. Although it was designed as a demonstration of the

3-ion species scheme [15], it also complies with the criteria of the ICRH-SS scheme. In

this section, simulations of this discharge will explore a comparison between the ICRH-

SS JET discharge #91256 and the same discharge but with an artificial decrease of the

RF-antenna frequency.

Numerical simulation was carried out using the SCENIC package [5]. In SCENIC,

the Monte-Carlo simulations solve the Fokker Planck equation by using an accurate

3D representation of the actual JET NBI injector and the ICRF antenna geometries.

The NBI ionization profile is calculated based upon the background plasma profiles

and plasma shape, which then generates the Monte-Carlo marker population. RF-wave
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Figure 6. Fast ion pressures formed during ICRH (left panel) and ICRH-SS (right

panel) in SCENIC simulations of a JET hydrogen-majority plasma. Fast ion pressure

is normalized by volume Wfast(R,Z)/(2π
∫ √

gdRdZ). Calculations were carried out

(right) for the antenna frequency 25 MHz which provided on-axis heating of 100 keV

NBI ions due to Doppler-shifted l = 1 resonance (satisfying the condition λ∗ < λpasmax)

shown by red dashed line, and (left) for the frequency artificially reduced by a factor of

1.19 to simulate fundamental conventional ICRH heating of minority ions (deuterons)

with the resonance shown by red solid line.

Figure 7. Contour plot of b = B(r)/B̄ of the JET simulations. The flux coordinates

applied allow a comparison with figure 6 of [2].
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propagation and absorption is calculated using LEMan [16] through the plasma dielectric

tensor and the hot plasma dispersion relation. For the simulations presented here, the

wave-propagation LEMan code retained only first order Finite Larmor Radius (FLR)

effects. Therefore, no mode-conversion or harmonic (n > 1) effects are included in the

wave-propagation and absorption simulations made by LEMan. TORIC [17] simulations

showed that electron RF-power absorption through mode conversion effects was a

minority ∼ 10% for the case of ICRH-SS in JET shot #91256 [18]. The RF-antenna and

NBI geometry are localized in three-dimensional space, which is important to accurately

calculate synergetic RF-wave heating of the NBI ions. ICRF-NBI synergetic heating is

modelled via the quasilinear operator described in [19], which evaluates the interactions

between the RF-wave and the Monte Carlo marker population when the resonance

condition (equation (1)) is fulfilled. A more detailed explanation of the SCENIC

modelling of ICRF-NBI synergetic heating schemes is given in section 5.2 in [20] with

the title ‘fast-splitting method’. Agreement between SCENIC simulations and JET

experimental measurements for the total neutron rate and the energy distribution of

the fast ions is shown in a recent work [4].

The results of our simulations for ICRH and ICRH-SS are presented in figures 6 - 9.

Plasma profiles taken from the JET simulations of [3,4] were taken for these simulations.

The profiles are described in section 5.2.3 of [20]. The core electron temperature and

density were 4.2 keV and 4.1× 1019m−3, respectively. Plasma current was 1.9 MA and

on-axis magnetic field was 2.88 T. The core ion temperature was assumed to be 3.5 keV.

The deuterium density was taken as ∼ 15% of the total ion populations; 0.4%

beryllium was included in the simulations as an assumed inherent impurity which is

often found in JET experiments. The auxiliary heating power for NBI and ICRF used

in the simulations is 3.2MW and 2.5MW respectively. The ICRF antenna frequency

25 MHz results in ICRH-SS in the plasma core; but simulations have also been made

with f = 21 MHz with all other plasma parameters held constant to model conventional

ICRF scheme that does not rely on the enlarged Doppler-shifted term for core heating.

The core k‖ values lie between 8-10 m−1 and 7-9 m−1 for the ICRH-SS and ICRH

schemes respectively. The NBI injector geometry results in freshly ionized particles

with χNBI ∼ 0.51, which gives λNBI ∼ 0.74.

The JET magnetic geometry results in

λpasmax = 0.9− 0.94 for 0.2 . r/a . 0.3, (67)

λpasmax = 0.86 for r/a = 0.5, and

λpasmax = 0.76− 0.86 for 0.5 . r/a . 1. (68)

The choice of the antenna frequency for the two simulations gives λ∗ ≈ 0.87 in the case

of ICRH-SS (25MHz) and λ∗ ≈ 1 for ICRH (21MHz). This implies that the ICRH-SS

condition λ∗ < λpasmax is satisfied in discharge #91256, but only in the region r/a < 0.5.

In this region the power density deposition is maximum and well exceeds that of the

discharge with reduced frequency, as shown in figure 9; this core region plays the main

role also because most accelerated ions are located here. That is why we can say that
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a)

b)

Figure 8. A comparison of the energetic particles produced in the JET simulations

using the ICRH and ICRH-SS scheme in blue and red respectively. a) the number

of particles [a.u.] against λ, with annotations for the peak values. b) the number

of particles [a.u.] against energy[MeV]. Both plots restrict the ions used to have

E >100keV and s ≡ ψtor/ψtor,edge < 0.6.

discharge # 91256 complies with the ICRH-SS criteria, although its periphery does not

(as in figure 1, right panel).

Figure 7 illustrates the magnetic field strength contours in flux coordinates, which

can be used in combination with equation (26) to interpret the RF-resonance condition:

for ICRH heating, freshly injected NBI ions (v‖ ∼ 2×106 m s−1) can only resonate with

the RF-wave on the LFS. However, by increasing the RF-antenna frequency to 25MHz

for ICRH-SS heating, NBI ions can resonate with the wave on-axis.

The particle orbits shown in figure 6 (right panel) pass rather close to the magnetic
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axis. Nevertheless, the orbits of NBI ions before acceleration (E ≤ 100 keV) and after

weak acceleration are standard. To see it we note that the near-axis 100 keV ions with

χ = 0 reach the flux surface radius rmax = ŝ2/3R = 14 cm. Deflection from the magnetic

axis of co-injected particles with χ ∼ 0.6 can be evaluated as rmax ∼ 10 cm. This is less

by a factor of 2 than maximum deviation of particles, ∼ 20 cm, in figure 6. Moreover,

one can directly see that the orbit width in figure 6 (right panel) is considerably less

than orbit average radius. However, orbits after strong acceleration, e.g. when E ∼ 1

MeV, become non-standard. For these ions trapped-passing boundary is absent (they

are co-passing), and λpasmax becomes meaningless. The number of these ions is small and

therefore their orbits cannot be identified in the figure.

The SCENIC simulations reflect differences in the energetic particle (E > 100keV)

population produced by both the ICRH and ICRH-SS schemes, shown in figure 8. The

energetic particle distribution function, shown in figure 8b indicates that the ICRH-SS

scheme generates larger highly energetic ion populations than ICRH, with almost two

orders of magnitude more particles at 1MeV. The λ values of the energetic particles

in the core region are shown in figure 8 (upper panel), indicating that the quasilinear

diffusion in parallel velocity space is evidently higher for the ICRH-SS scheme than

for ICRH. The peak value λ ∼ 0.83 for the ICRH-SS scheme satisfies the condition

for Doppler-shifted resonance shown in equation (28). From the fast ion pressure plots

in figure 6, the energetic particle trajectories visibly reflect the increase in quasilinear

parallel velocity diffusion: energetic fast ions tend to be pushed more into trapped orbits

for ICRH than for ICRH-SS. The ICRH scheme (left) shows banana orbits, whereas

ICRH-SS (right) illustrates passing orbits that encircle the magnetic axis. Thus, in the

considered examples, ICRH-SS reduces the trapped particle fraction and significantly

increases the number of energetic passing particles; the fast ion pressure in the core is

more than doubled due to ICRH-SS.

Note that the condition |JQλ /JCλ | � 1 is easily satisfied [we used equation (66) and

figure 8 (lower panel) from which the evaluated effective temperature Tef ∼ 130 − 150

keV in the ICRH-SS scheme and less in ICRH]. This means that collisions did not prevent

the ion approach the separatrix during acceleration, which agrees with the presence of

maxima close to separatrices in figure 8 (upper panel). These maxima lie not exactly

at λ∗ because the separatrices correspond to infinite energy.

The critical energy of deuterium ions is a parameter given by the background plasma

profiles, which indicates that if the deuterium ion has an energy above this value then the

collisional energy exchange is dominated by the electrons rather than the background

hydrogen:

Ecrit = 14.8ANBITe

[∑
j

njZ
2
j

neAj

](2/3)
, (69)

where j is each of the ion species present in the plasma, A is the atomic number and Z is

the atomic charge. For these JET simulations, Ecrit ∼ 110 keV in the plasma core. This

implies that the use of ICRH-SS may increase the amount of power transferred to the
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Figure 9. Collisional power density transferred from the NBI ions to the background

plasma, comparing the ICRH and ICRH-SS schemes in blue and red respectively.

Dashed lines correspond to the RF-power transferred on electrons. The total input

power is 5.7MW. Integrating the total collisional power transferred to the background

plasma by the Jacobian radial-volume factor
√
g gives the total collisional power as

5.3MW and 5.1MW for ICRH and ICRH-SS respectively. Note that the ICRH case

signficiantly over-estimates the collisional power transfer, as mode conversion effects

were not included and would dominate RF-power absorption for ICRH (but not ICRH-

SS), and almost all power would be transferred to the electrons. The ICRH case is

presented in this figure purely to illustrate the differences in collisional heating power

if the two cases received equal RF-power.

electron population through Coulomb collisions, as shown in figure 9. The collisional

power density shown in figure 9 reflects the improvement in core power efficiency by

using the ICRH-SS heating scheme over ICRH. The improvement comes almost entirely

from the increase in power transferred to the electrons. This improvement in power

transfer to the core background plasma can be explained by the improved RF-pinch

effect from equation (34), which is also visible from figure 6.

Looking at figure 9 we observe a big difference between the ICRH-SS and ICRH

curves in the plasma core (r/a < 0.5), but not at the periphery (r/a > 0.5) where

red curves almost coincide with the blue ones. This fact represents an additional

support our theory: according to equation (68), the ICRH-SS condition λ∗ < λpasmax

is not satisfied at the periphery of discharge # 91256 and, therefore, in this region

no big difference between discharge # 91256 and its modified version was expected.

On the other hand, behaviour of fast ions in the periphery determines fast-ion losses.

This explain why particle loss fractions are roughly the same in ICRH-SS and ICRH

(6.22% and 5.86% , respectively, at t= 0.5s), their ratio is 6.22/5.86 = 1.06. The ratio

of energy losses is higher because lost particles have higher energy in the ICRH-SS
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case, 10.08/6.72 = 1.5. This is approximately the same as the ratio of the deposition

power densities Picrh−ss/Picrh = 1.44 at r/a = 0.1− 0.2, although total deposion powers

were approximstely equal: Picrh/Picrh−ss = 5.3/5.1 = 1.04. This indicates that some

accelerated ions diffused outwards.

6. Summary and discussion

Effects of shifting the QL separatrix to the region of passing particles are considered.

The analysis is carried out for a tokamak magnetic configuration with B = B̄(1−ε cosϑ),

where ε = r/R, but it can be generalized to be valid for stellarators. The analysis is

based on the 2-D and 3-D quasilinear equations for the ion distribution function, where

the wave amplitude is a parameter. Therefore, our theory is not restricted to 3-ion

scheme or any other scheme; it can be relevant to schemes employing fundamental

cyclotron resonance and other harmonics as well.

The obtained results can be summarized as follows.

The QL separatrix (λ = λl ≡ lλ∗) in the space of (λ, E , r) is a kind of attractor,

the ions approach it during acceleration caused by their interaction with RF waves

through cyclotron resonance. This result is generic: it is valid for any particle orbits

(including orbits crossing the magnetic axis) in any magnetic configuration; quasilinear

routes do not depend on the magnitude of absorbed power. Approaching the separatrix,

passing particles remain passing, whereas trapped particles may become passing during

ICRH-SS (in contrast to particle behaviour during conventional ICRH). This difference

between ICRH-SS and ICRH is clearly seen in figure 1. Although JET parameters

were used, the picture on the left panel of this figure is similar to that shown for the

Wendelstein 7-X stellarator in reference [2].

In tokamaks the magnitude of λpasmax, which represents a border between the regions

of passing particles and trapped particles, depends on the radial coordinate, λpasmax ≈ 1−ε
for particles with standard orbits (i.e., for particles with ∆b � r, where ∆b the orbit

width). On the other hand, the ICRH-SS condition λl < λpasmax is actually a restriction

on the wave frequency, ω/ω̄B > l(λpasmax)
−1. This restriction may be not satisfied in

the plasma periphery because (λpasmax)
−1 for standard orbits is a growing function of

r, see right panel in figure 1. Then the radial motion of trapped particles along QL

characteristics facilitates their orbit transformation into passing particles in the case

when this motion is directed inwards (which takes place for negative toroidal mode

numbers, n < 0), but it may prevent the transformation of particles moving outwards

(when n > 0). The inward / outward motion is a positive / negative factor for passing

particles, too. However, as shown in section 3.2, the radial displacement of passing

particles is determined by the poloidal mode numbers (m). Due to this, it is much less

than that of trapped particles for m � n or when the m spectrum is symmetric, see

e.g., figure 2. If so, QL characteristics of passing particles weakly depend on radius.

When the condition ∆b � r is not satisfied, λpasmax depends not only on r but also

on E and the sign of v‖. In the limit case of particles with orbits crossing the magnetic
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axis λpasmax = 1 − ŝ2/3 when v‖(r = 0) < 0 (ŝ ∼ qρ/R0), but particles are passing or

semi-passing (trapped poloidally) for v‖ > 0, see, e.g. [11]. ICRH-SS ensures that they

remain passing, decreasing their λ value in comparison to ICRH, which makes the radial

distribution of these ions more peaked.

Pitch-angle scattering produced by Coulomb collisions tends to minimize positive

effects of ICRH-SS. Our estimates based on the comparison of the QL flux over λ

and corresponding collisional flux indicate that the QL flux can dominate for realistic

assumptions.

Numerical calculations have been made with the SCENIC code to compare

conventional ICRH and ICRH-SS schemes. This is important to illustrate experimental

feasibility of such heating scheme, and to provide detailed insight into the workings of

the ICRH-SS scheme. The simulation of the ICRH-SS scheme ensured that the condition

λl < λpasmax was met, whereas the ICRH simulation applied heating with λl > λpasmax. The

simulations were carried out for a JET plasma with combined ICRH and NBI heating.

Plasma parameters were chosen to correspond to JET parameters to compare with the

research of [3] and [4]. ICRH-SS simulations corresponded to these two articles, but an

additional simulation of the conventional ICRH scheme applied the exact same plasma

parameters but with a reduced RF-wave frequency of a factor of 1.19. The results

confirm the previous theoretical conclusions that trapped particle fractions are reduced

in the core region by applying ICRH-SS as opposed to ICRH. It was found that in the

ICRH-SS case most accelerated ions had larger longitudinal velocities (smaller λ) and

particle orbits were passing, whereas orbits had banana shape due to ICRH, as was

predicted by our theory. The SCENIC simulations also illustrated that the QL flux

beneficial for driving energetic passing particle populations dominated over the effects

of Coulomb collisions. The numerical results show an increase in fast ion generation

and core plasma heating performance using the ICRH-SS scheme. An increase in the

RF-pinch effect for ICRH-SS was also reflected by the fast ion pressure, in addition

to significantly larger concentrations of MeV range ions. The significant increase in

energetic ions above the critical energy ∼ 110 keV for the ICRH-SS scheme leads to

a larger fraction of the total collisional power transferred to electrons rather than the

background ions.

Note that particle orbits shown in figure 6 (right panel) pass rather close to magnetic

axis. Because of this, one could think that ion orbits before acceleration (E ≤ 100 keV)

were non-standard. However, our simple estimates indicate that orbits of these particles

were standard, although MeV particles had definitely non-standard orbits. The type of

orbits is, however, of minor importance because, as was already emphasized, the QL

routes do not depend on the orbit shape. Figure 8 (upper panel) clearly shows this:

most of particles are located to the left of the separatrix, which is ∼ 0.9 for ICRH-SS

and ∼ 1.07 for ICRH (the separatrix corresponds to infinite energy). On the other hand,

banana orbits were produced by ICRH. Thus, the simulation convincingly has shown

that the shifted separatrix and concomitant enlarged Doppler shift resulted in (i) the

approach of the pitch parameter λ of accelerated ions to the separatrix in both cases,
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independently on the orbit shape; (ii) the formation of trapped ions in the ICRH scheme

but passing ions in the case of ICRH-SS. These results strongly support the developed

theory.

Because of enlarged ratio of ω/ω̄B in ICRH-SS, the frequency Doppler shift of

resonant particles should exceed a certain value. For given ratio ω/ω̄B, this imposes

a requirement on the product k‖ρ‖ of the particles, which should be as large as

k‖ρ‖ = ω̃−l(1+ε), being minimum at the high-field side of flux surface. This means that,

generally speaking, antennas producing waves with larger longitudinal wavenumbers

than those in convention ICRH are required, which may be a disadvantage of ICRH-SS

because it somewhat increases the evanescence region. On the other hand, available

antennas designed for ICRH can be suitable for ICRH-SS in the plasma core (where

λpasmax is minimum), at least, when the l = 1 resonance is employed. Moreover, they can

be suitable at the periphery, too, provided that the ion energy is sufficiently large. In

the case of the QL separatrix located at the border between regions of passing particles

and trapped particles, λl = λpasmax, the restriction on minimum k‖ρ‖ is weak in the region

close to this border.

The ICRH-SS can be realized in different scenarios. Below we briefly discuss this

issue.

As known, the quasilinear diffusion coefficient contains terms proportional to

|E+|2J2
l−1(z) and |E−|2J2

l+1(z), with z = k⊥ρ⊥. It follows from here that, due to J2
l−1 ≈ 1

for l = 1 and 0 ≤ z . 1, the l = 1 resonance is most attractive provided that the

electric field rotating in the ion direction, E+, is considerable. This implies that the

l = 1 resonance will work when the gyrofrequency of fast ions exceeds that of thermal

ions and the fast ion population is so small that it has a negligible influence on the wave

polarization. For instance, it will work in a deuterium plasma containing a small number

of fast protons which are in resonance with the RF field (ω ≈ ω
(H)
B ): then ω ≈ 2ω

(D)
B

and, therefore, E+/E− ≈ 1/3 [21], being determined by the bulk plasma. It is clear

that the wave has this polarization also when the system plasma - beam contains only

one ion species (for instance, thermal deuterons and fast deuterons). Then the wave

with ω ≈ 2ω
(D)
B can be in the l = 2 resonance with fast ions, but z should be not very

small to provide acceptable J2
l−1. The l = 2 resonance works also in a D-T mixture.

These methods are widely used in current and planned experiments with ICRH. In

particular, concerning experiments on JET where these schemes of ICRH were used see,

e.g., [22, 23].

In a plasma with a moderate number of minority ions whose gyrofrequency differs

from that of the majority ions an important role may belong to the ion-ion hybrid

resonance and mode conversion (MC) layer where the ratio of E+/E− is very large, see

e.g., overview [24] and [25]. This opens a possibility of strong wave-particle interaction

provided that there are resonant particles in the MC layer [15]. Due to large E+, these

ions can be strongly accelerated but their number is very small because of small region

where MC layer is located. Nevertheless, the neutron yield due to D-D fusion reaction

in a plasma with the ion temperature about a few keV should strongly grow because in
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this case the beam-plasma reaction dominates and strongly increases due to acceleration

of beam particles (especially, when thermal D-ions are in minority but thermal H-ions

are in majority). The 3-ion ICRF experiments in H-D plasmas using fast NBI ions as

resonant absorbers at the IIH layer showed a strong enhancement of neutron rate in the

combined phase with ICRF and NBI heating [3].

On the other hand, the effect of strong acceleration on the neutron yield of D-T

reaction in a plasma with T ∼ 10 keV would be relatively small. Scenarios providing

a moderate acceleration of fast ions in a wide plasma region (rather than in a narrow

layer) should be employed in D-T plasmas when the aim of RF heating is to increase

the fusion reaction rate and energy gain.

In conclusion we note that the most attractive application of ICRH-SS in

stellarators, such as Wendelstein 7-X and a Helias reactor could be the use it for the

transformation of transitioning fast ions to passing ones: transitioning fast particles

undergo stochastic (collisionless) diffusion and can be lost in optimized quasi-isodynamic

stellarators [26, 27]. These particles are located mainly at r/a > 0.3 in Wendelstein-

type machines. Therefore, schemes with radially peaked heating can hardly affect

transitioning particles, but they can produce strongly accelerated passing fast ions,

as shown for W7-X in [4]. For transitioning-to-passing conversion in W7-X, RF energy

should be deposited at r/a > 0.3 and the magnetic field should be decreased somewhat

below its standard value (at least, in the high mirror configuration) [2]. The latter

requirement comes from the resonance condition because of relatively small longitudinal

velocities of transitioning particles.
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