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Abstract
Modeling urban traffic on the level of network is a wide research area orien-

ted to the development of ITS (Intelligent Transportation Systems). In this
thesis properties of models based on MFD (Macroscopic Fundamental Dia-
gram) are studied. The idea behind MFD is to say that the state of the traffic
inside an urban zone is fully determined by its accumulation (the number of
traveling vehicles) and that the dynamics of accumulation is caused by the
inflow of vehicles (flow of vehicles that enter the zone or start their trips from
inside). Nowadays, two different philosophies of modeling dynamics of accumu-
lation exist in the literature. The first one (outflow-MFD) postulates that the
outflow of vehicles depends on accumulation. The second one (speed-MFD)
postulates that the space-mean speed of vehicles depends on accumulation.
The second philosophy already has strong empirical support based on obser-
vations of traffic inside many big (kilometer-scale) urban areas around the
world. Thus, different speed-MFD models are of great scientific interest.

The thesis is mainly devoted to the comparison of so-called PL model
(which assumes the existence of both speed-MFD and outflow-MFD) and TB
model (which assumes the equality of speeds of vehicles and explicitly assumes
the existence of trip length distribution). It was shown that PL model cannot
accurately describe the dynamics of accumulation after the jump of inflow. In
this case TB model is more preferable. Moreover, it was proven that PL model
is a specific case of TB model for the exponential trip length distribution. This
makes TB model more attractive than PL model for the practical usage.

TB model can be formulated mathematically either as integral equation
or nonlocal PDE (Partial Differential Equation). Thus, the main drawback of
TB model that can be an obstacle in practice is its computational complex-
ity. In this thesis it was proposed to approximate TB model with a simpler
model which does not require precise information about the trip length distri-
bution. This so-called M model operates with only the mean and the standard
deviation of distribution and has a form of ODE (Ordinary Differential Equa-
tion). The analytical comparison between PL, TB and M models proved that
M model is much closer to TB model than PL model in the case of constant
speed-MFD. The more realistic case of decreasing speed-MFD was studied
through the numerical tests and also showed the same effect. Thus, the main
conclusion of the study is that M model has practical potential as an elegant
and computationally cheap approximation of TB model. Also, given that in
the case of constant speed TB model is a type of LTI (Linear Time-Invariant)
system, it can be expected that M model might be useful for a wide range of
problems that are not related to transportation. However, in this thesis the
conclusion about the small difference between M and TB models was made for
the inflows that are typical for the transportation field. More precisely, only
peak hour shaped (smooth and with small jumps) functions were studied.

Despite the simple form of M model it was found that there exists even more
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simple ODE approximation of TB model. This so-called α model works quite
well for both smooth and jumping inflows except the case of a short period of
time following the jump of inflow. Thus, it might be another good alternative
to TB model. The main advantage of α model in the case of realistic speed-
MFD function is its convex formulation which allows α model to be efficiently
used inside optimization frameworks.

Keywords: Urban Traffic, Macroscopic Fundamental Diagram, Trip Length
Distribution, Nonlocal Partial Differential Equation, Linear Time-Invariant
System
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Résumé

La modélisation du trafic urbain au niveau d’un réseau est un large champ
de recherche dans le développement des ITS (Systèmes de Transport Intelli-
gents). Dans cette thèse, les propriétés des modèles basés sur le MFD (Dia-
gramme Fondamental Macroscopique) sont étudiées. L’idée du MFD est de
supposer que l’état du trafic à l’intérieur d’une zone urbaine est complètement
déterminé par son accumulation (le nombre de véhicules en mouvement) et
que la dynamique de l’accumulation est causée par le flux de véhicules en-
trant (le flux de véhicules qui entrent dans la zone ou commencent leurs
trajets à l’intérieur de celle-ci). Deux différentes philosophies concernant
la modélisation dynamique de l’accumulation existent actuellement dans la
littérature. La première (MFD-flux-sortant) suppose que le flux de véhicules
sortant dépend de l’accumulation. La seconde (MFD-vitesse) suppose que
la vitesse moyenne spatiale des véhicules dépend de l’accumulation. Cette
seconde philosophie dispose d’un fort soutien empirique basé sur des observa-
tions de trafic à l’intérieur de plusieurs grande (à l’échelle du kilomètre) zones
urbaines à travers le monde. Ainsi, les différents modèles MFD-vitesse sont
d’un grand intérêt scientifique.

Cette thèse porte principalement sur la comparaison des modèles soi-disant
PL (qui supposent l’existence des deux MFD-flux-sortant et MFD-vitesse) et
TB (qui supposent l’égalité des vitesses des véhicules et l’existence d’une dis-
tribution des longueurs de trajets de façon explicite). Il a été montré que le
modèle PL ne peut décrire précisément la dynamique de l’accumulation après
un saut du flux entrant. Dans ce cas, le modèle TB est préférable. En outre,
il a été prouvé que le modèle PL est un cas particulier du modèle TB pour
une distribution exponentielle des longueurs de trajets. Ceci rend le modèle
TB plus attractif que le modèle PL pour un usage pratique.

Le modèle TB peut être formule mathématiquement soit comme une équation
intégrale, soit comme une PDE (équation aux dérivées partielles) non locale.
Le principal inconvénient du modele TB qui peut être un obstacle dans la
pratique est donc sa complexité de calcul. Dans cette thèse, il a été pro-
posé d’approximer le modèle TB par un modèle simplifié qui n’a pas besoin
d’information précise concernant la distribution des longueurs de trajets. Ce
modèle, nommé M, opère seulement avec la moyenne et l’écart-type de la dis-
tribution et prend la forme d’une ODE (équation différentielle ordinaire). La
comparaison analytique entre les modèles PL, TB et M prouve que le modèle
M est plus proche du modèle TB que du modèle PL dans le cas d’un MFD-
vitesse constant. Le cas plus réaliste consistant en un MFD-vitesse décroissant
a été étudié avec des approches numériques et a montré le même effet. La con-
clusion principale de cette étude est donc que le modèle M a un potentiel
pratique comme approximation élégante et peu couteuse en temps de calcul
du modèle TB. De plus, puisque le modèle TB est un type de système LTI
(Linéaire Invariant en Temps) dans le cas de vitesse constante, il est pensable
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que le modèle M puisse être utile pour une large gamme de problèmes non liés
au transport. Cependant, dans cette thèse, la conclusion concernant la petite
erreur entre les modèles M et TB a été faite pour des flux entrants typiques
du domaine du transport. Plus précisément, seulement des fonctions typiques
de l’heure de pointe (lisse et avec de petits sauts) ont été étudiées.

Malgré la forme simple du modèle M, il a été trouvé qu’il existe une ODE
encore plus simple approximant le modèle TB. Ce modèle nommé alpha foncti-
onne bien pour les flux entrants lisse ou avec des sauts sauf pour un court temps
après le saut du flux entrant. Il s’agit donc d’une autre bonne alternative au
modèle TB. The principal avantage du modèle alpha dans le cas d’une fonction
MFD-vitesse réaliste est que sa formulation convexe lui permet d’être efficace
dans les processus d’optimisation.

Mots-clés: Trafic Urbain, Diagramme Fondamental Macroscopique, Dis-
tribution des Longueurs de Trajets, Équation aux Dérivées Partielles Non Lo-
cal, Système Linéaire Invariant en Temps
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Introduction 1
Many city centers around the world suffer from congestion on the roads. Pat-
terns of congestion can vary a lot from day to day as they can be caused by
random effects. The challenging research question is to build real-time control
strategy for the traffic lights that will reduce travel times for most of drivers.
Such strategies can be build on models that describe the dynamics of traffic
situation on aggregate level. In this work we focus on a single zone case and
investigate different dynamic models of “accumulation” (number of vehicles
currently traveling inside the zone). The dynamics of accumulation n(t) satis-
fies

ṅ(t) = i(t)− o(t)

where i(t) is a trip generation rate (flow of vehicles that are entering the zone
or starting trips from inside) and o(t) is a trip completion rate (flow of vehicles
that are exiting the zone or ending trips inside). In line with the literature, we
refer hereafter to i(t) as an “inflow” and to o(t) as an “outflow”. We consider
models of the following type:

Input. Initial value of accumulation n(0) = n0, time horizon T and inflow
function i(t), t ∈ (0, T ].
Output. Dynamics of accumulation n(t), t ∈ (0, T ].

These models are rather approximate. Regardless the initial spatial distribu-
tion of accumulation in the zone and how much inflow comes from particular
places on the perimeter or from inside, the resulting n(t) depends only on the
total initial accumulation n0 and on the total inflow i(t). We want to study
this type of models because we believe that in the real world the strategy

1



1.1. NEF AND PL MODELS

that controls inflow can be very efficient in relieving congestion. However, we
should be careful, because the model developed for a zone under every-day
conditions can lose much of its predictive power when perimeter control chan-
ges the inflow rapidly. This question is discussed in Section 2.6. Note also
that if inflow control happens at the intersection, it is difficult to not affect the
outflow at the same time. This can make the predictive power of the model
even less. Another type of inflow control based on these models could be vehi-
cle rerouting (directing vehicles to the roads that do not belong to the zone).
For this type of control it is not necessary to change traffic lights regime. To
conclude, considered models allow inflow control, but one should check that
when implemented in real scenarios the applied control will not destroy the
assumptions of the model. Inflow control seems to be a wide and complicated
area of research. In this work we do not investigate it directly, but we develop
models that can ease future control directions. Our main goal is to understand
the properties of developed models and compare them with each other.

1.1 NEF and PL models

A very simple modeling approach was proposed in [4]. That work suggested
to model n(t) as a solution of Cauchy problem:{

n(0) = n0

ṅ(t) = i(t)− o(n(t)), t ∈ [0, T ]
(1.1)

The function o(n), called NEF (Network Exit Function), was considered to be
a unimodal curve (with one or multiple maxima). This model produced mul-
tiple theoretical results having potential practical applications. One of them
is the optimal control strategy that minimizes the total travel time for a zone
with a virtual queue in the entrance ([4]). However, NEF model lacks some
physical interpretation. Intuitively, there is no reason why the outflow should
depend on the number of vehicles in the zone (only). To explain this [4] pos-
tulates two principles:

P1. Each steady state has o(t) = i(t) = const that is fully determined by
n(t) = const.
P2. In an arbitrary case o(t) is equal to the steady state value for the current
n(t).

Steady state is a useful abstraction. It should be understood as a situation
when each small segment of road receives and sends the same amount of vehi-
cles during some short period of time. P1 implies the existence of function
o(n) for steady states. It does not necessarily mean that only one steady state
is possible for given n(t) = const. There can be a set of different steady states
for the same accumulation, but P1 implies that all of them have the same value

2



CHAPTER 1. INTRODUCTION

of i(t) = o(t). P2 is viewed as a mathematical trick that produces satisfactory
results for the slowly-evolving inflow. It is based on the idea that the system
goes through a sequence of states that are almost steady.

In order to connect NEF model with the speed of vehicles (initially there
is no speed in NEF model) and to validate P1 some works (e.g. [5]) utilize
a concept of “production” (the growth rate of cumulative distance traveled
inside the zone). They consider P1 to be a consequence of the following pair
of assumptions:

A1. Production p(t) depends on the current accumulation n(t) only: p(t) =
p(n(t)).

A2. There exists parameter L such that o(t) = i(t) = p(t)
L

in each steady state.

Note that A1 also means that the space-mean speed p(t)
n(t)

depends on accu-

mulation only. We denote this dependency as v(n) = p(n)
n

. Nowadays A1 has
some empirical support (e.g. [5, 10, 3, 7, 11]). One can also notice here the ana-
logy with the first order traffic models at the point scale. They state that the
vehicle flow at some point of a road depends only on the vehicle density at this
point. This dependency is called “Fundamental diagram”. Similarly the de-
pendency p(n) is called “production-MFD”, where MFD means “Macroscopic
Fundamental Diagram” (it is also known as Network Fundamental Diagram).
The dependency v(n) is called “speed-MFD”. The concept of production-MFD
(speed-MFD) should not be confused with a concept of NEF which is often
called “outflow-MFD”. A2 is still not validated with real data directly, without
additional assumptions. However, there is one promising technique that ap-
peared recently (see [8] for the details). The experiment took place in Athens.
It was shown how the system of flying drones can observe the traffic situation
in the center of a big city during a long time period. If the streets can be seen
from the air and the system of drones is able to track vehicles constantly, then
all the trajectories of vehicles that were inside the zone can be reconstructed
with very high accuracy. We believe that in the future such an experiment will
take place in several cities and will allow to validate a lot of different assumpti-
ons related to network-level models. The only difficulty while validating A2 is
that in reality there is no pure steady state. However, notice that in a steady
state the value p(t)

o(t)
is equal to the average distance that vehicle travels inside

the zone. Thus, we get an alternative formulation of A2:

A2. Average trip length in each steady state is equal to L.

If one shows with a set of trajectories that average distance traveled inside
the zone does not change a lot during the day, it will be a strong argument in
favor of a similar value for any steady state.

In this work all considered models are based on A1 and A2. The simplest
way to build a model is to keep P2. From A1, A2 and P2 follows that there

3



1.2. TB MODEL

exists NEF of the form o(n) = p(n)
L

. We refer to this model as “PL model”. It
states that n(t) is a solution of the following Cauchy problem:{

n(0) = n0

ṅ(t) = i(t)− p(n(t))
L

, t ∈ [0, T ]
(1.2)

The main concern about PL model arises when i(t) has a jump discontinuity.
Consider the case when p(n) is differentiable and the inflow starts not from

the steady state value. In other words, let i+(0) = p(n0)
L

+ ∆i, where ∆i is some
non-zero value. We can easily calculate the right derivative of outflow at time
t = 0 in PL model:

ȯ+(0) = p′(n0))ṅ+(0)
L

= p′(n0)
L

∆i

If we assume that the system was in a non-congested state and p′(n0) > 0
then the derivative of outflow ȯ+(0) is positive for positive ∆i. However, if we
assume that the system was in a steady state before t = 0, this contradicts
common sense in the case when the minimum trip length is higher than zero.
In this case incoming vehicles will not produce additional outflow immediately
and, as inflow increases, vehicles, that are close to finish their trips, will not
do it faster. Thus, the derivative of outflow cannot be positive. The problem
appears because NEF and PL models describe the system without considering
trips explicitly.

1.2 TB model

In this work we utilize assumptions A1 and A2 to build a consistent model
that considers trips (the more general approach can be found in [9]). Instead
of postulating P2 we postulate the following principles:

P3. Incoming vehicles have time-independent distribution of trip length (dis-
tance that they will travel inside the zone).
P4. All vehicles have equal speeds at any moment of time.

Note that P3 does not imply that percentage of incoming vehicles that takes
particular route does not change. Such an assumption would be very strong
because congestion can influence the route choice. P3 can be seen as a relax-
ation of this assumption. It allows congestion to change the route choice the
way that percentage of routes of certain length does not change. This does not
contradict to the fact that in the presence of congestion vehicles tend to take
longer routes (this fact makes sense for the whole city, but no one can say what
will happen to a relatively small zone that generally contains some part of the
trip of vehicle). P4 means that all the speeds are equal to the space-mean

speed, v(n(t)) = p(n(t))
n(t)

. This assumption is rather strong, because in reality

4



CHAPTER 1. INTRODUCTION

every zone has some spatial heterogeneity of speed. However, we believe that
for some rather homogeneous zones models based on P4 can be useful. We
refer to the model built on A1, A2, P3 and P4 as “TB model” (Trip-Based).

The mathematical formulation of P3 looks as follows: the vehicle that ente-

red the zone at time s is still in the zone at time t if
t∫
s

v(n(u))du < l, where l is

a trip length of this vehicle, and, therefore, the portion of vehicles that entered

the zone at time s and are still in the network at time t is 1−F
(∫ t

s
v(n(u))du

)
,

where F (l) is a CDF (Cumulative Distribution Function) of trip length dis-
tribution. To simplify mathematical derivations, we assume that trip length
distribution is continuous and has PDF (Probability Density Function) f(l).
This means that we cannot consider distributions with non-zero weights for
some l. However, we can approximate such distributions by considering f(l)
with very sharp peaks. Notice also that the mean of trip length distribution
should be equal to L, otherwise P3 is not consistent with A2. To be rigorous,
we should define the prehistory of inflow and accumulation for t ∈ (−∞, 0].
As we know n0, the most natural way to do this is to say that the system was
in a steady state for all t ∈ (−∞, 0]. With this assumption TB model states
that n(t) is a solution of the following problem:


n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T ]

(1.3)

Note that, from the physical point of view, the trip length distribution has
finite maximum possible value. However, we assume that there is no such
restriction and allow distributions with infinite domain as well.

In Section 2.1 we prove that TB model with f(l) = 1
L
e−l/L is equivalent to

PL model. This means that TB model can be viewed, from mathematical point
of view, as a generalization of PL model. Thus, for practical applications, if
one chooses trip length distribution properly, TB model looks at least as useful
as PL.

1.3 M model

From the computational point of view, PL model (1.2) is more convenient to
work with: numerical solution can be found with Euler method or similar.
TB model (1.3) contains one integral equation which is not easy to solve. In
Section 2.2 we show how one can write the necessary conditions for the solu-
tion of (1.3) in the form of nonlocal PDE (Partial Differential Equation). We
use this representation to solve (1.3) numerically. However, this method is still
computationally expensive and requires precise knowledge of F (l). We consider

5



1.4. α MODEL

this to be an important problem. We approach it by constructing an approxi-
mation of (1.3) which has form of ODE (Ordinary Differential Equation) and
utilizes only two parameters describing F (l): L (mean) and σ (standard devi-
ation). This allows to use Euler method or similar while finding the solution
numerically. We refer to our approximation as “M model” (first introduced in
[1]). It states that n(t) solves the Cauchy problem


n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + 3

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

(1.4)

where α = 2L2

L2+σ2 ∈ (0, 2) is dimensionless parameter. We do not investigate
the case α = 2, because it does not correspond to any PDF. It is rather
convenient to use parametrization L, α instead of L, σ. The auxiliary function
M(t), t ∈ [0, T ] is an approximation of total distance to be traveled by all the
vehicles that are currently traveling inside the zone.

In this work we shed light on the difference between PL, TB and M models
(some analytical and numerical comparisons between PL and TB models are
done in [6], but we utilize a different framework). In Section 2.1 theoretical
properties of PL and TB models are given. In Section 2.2 we derive PDE
formulation of TB model. In Section 2.3 we build M model. In Sections 2.4
and 2.5 we compare models using different inflow profiles. In Section 2.6 we
discuss results and potential applications.

1.4 α model

While developing M model we assumed that the inflow can make a jump. For
the slowly changing inflows we can find simpler model. In Chapter ?? we show
that the model {

n(0) = n0

ṅ(t) = α
(
i(t)− v(n(t))

L
n(t)

)
, t ∈ (0, T ]

is a good approximation of TB model, if i(t) changes slowly. We refer to this
model as “α model”. It is less accurate than M model but more accurate than
PL model. Note that in the case α = 1 it becomes equivalent to PL model.

6



Properties of PL, TB and
M models 2
This chapter contains the main results related to PL, TB and M models. It
is shown that PL model can be viewed as a specific case of TB model for the
exponential trip length distribution. In other words, there exists at least one
distribution such that TB model can be solved as an ODE. The development
of this idea leads to the formulation of M model which takes parameter α of
trip length distribution into account. M model is shown to be equivalent to TB

model for some realistic distributions, but all of them have α 6 4
3

(
σ > L√

2

)
.

To cover other cases that are of practical interest, we show analytically and
numerically for realistic distributions with α > 1 (σ < L) that M model is a
better approximation of TB model than PL model. Thus, we suggest to use
M model as an ODE alternative to TB model.

2.1 Properties of PL and TB models

In this section we define PL and TB models in a rigorous way by introducing
constraints on parameters of models and the input (constraints are not strong
and cover most of the cases that are of practical interest). We introduce them
mainly to ensure the existence and uniqueness of solutions of problems (1.2)
and (1.3). We also show some other properties of solutions that hold for these
constraints.

2.1.1 Constraints

In Chapter 1 we introduced assumptions A1 and A2 that are common for PL
and TB models. They describe the modeled zone with parameters v(n) and L.
In line with empirical studies, we assume that v(n) is decreasing, with finite

7



2.1. PROPERTIES OF PL AND TB MODELS

value v(0). For the convenience, we consider speed to be dimensionless and put
v(0) = 1 (thus limiting v(n(t)) to the interval [0, 1]). This also means that we
measure length in time units. More precisely, we say that any length is equal
to the time needed to cover it with the speed v(0). This gives a better intuition
about duration of different processes that depend on parameter L, which we
interpret hereafter as the mean travel time in empty zone (we also interpret
f(l) as the distribution of travel time in empty zone). From the physical point
of view, the trick that we use is very easy to understand. Imagine a zone
and vehicles moving inside this zone. Then imagine the same zone increased
several times. All the distances and speeds were increased the same amount
of times, but the dynamics of i(t), n(t) and o(t) was preserved. Thus, if one
knows L

v(0)
and wants to model n(t), he can freely choose v(0). We suggest to

take v(0) = 1 to equalize L and L
v(0)

. Note that the model is usually used for

some practical purposes and the real value of v(0) in km/h might be useful for
the interpretation of speeds and distances (for example, if one wants to know
the traveled distance in kilometers). Nevertheless, we can always use v(0) = 1
while modeling, and then multiple resulted speeds and distances by the real
v(0).

To avoid mathematical difficulties, we consider two cases of v(n):

1. v(n) = 1 = const (we refer to this case as “constant” v(n)).
2. An arbitrary decreasing Lipschitz v(n) such that v(0) = 1, v(n) > 0, n <
njam and v(n) = 0, n > njam (we refer to this case as “conventional” v(n)).

Constant v(n) allows to consider cases of low accumulation in a much sim-
pler way. Conventional v(n) has parameter njam, we interpret it as maximum
possible number of vehicles inside the zone. We make an assumption that the
case n > njam is possible to be able to prove existence of solutions of PL and
TB models on the interval [0, T ]. Also, to be able to prove uniqueness, we
assume that conventional v(n) is Lipschitz (which is rather realistic). Here
we illustrate the mathematical importance of this assumption by considering
the case where multiple solutions of PL model are possible with non-Lipschitz
v(n). Consider function

v(n) =


1 , n ∈

[
0,

njam
4

]
njam

4n
, n ∈

[njam
4
,
njam

2

]
njam

4n

(
1−

√
2n
njam
− 1
)

, n ∈
[njam

2
, njam

]
0 , n ∈ [njam,+∞)

and corresponding

8



CHAPTER 2. PROPERTIES OF PL, TB AND M MODELS

p(n) =


n , n ∈

[
0,

njam
4

]
njam

4
, n ∈

[njam
4
,
njam

2

]
njam

4

(
1−

√
2n
njam
− 1
)

, n ∈
[njam

2
, njam

]
0 , n ∈ [njam,+∞)

shown in Figure 2.1.

n

v(n)

0 njam
4

1

njam
2

1
2

njam n

p(n)

0 njam
4

njam
4

njam
2

njam

Figure 2.1: Example of non-Lipshitz v(n) and corresponding p(n).

Now consider the following input: n0 =
njam

2
, i(t) =

njam
4L

= const. Obvi-
ously, n(t) =

njam
2

= const is a solution of PL model (1.2). However,

n(t) =

{
njam

2
, t ∈ [0, t0]

njam
2

+
njam

32

(
t−t0
L

)2
, t ∈ [t0, t0 + 4L]

where t0 is an arbitrary moment of time, also solves (1.2). For such a solution
the system reaches gridlock at time t = t0 + 4L. In Figure 2.2 we illustrate
these two types of solution.

t

n(t)

0

njam
2

t0 t0 + 4L

njam

Figure 2.2: Example of bifurcation in PL model for considered v(n) and the
input. Bifurcation can occur at any moment of time. One of solutions (solid)
reaches gridlock, while the steady state (dashed) is also a solution.
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2.1. PROPERTIES OF PL AND TB MODELS

Hereafter we assume that v(n) is Lipschitz with constant C, i.e. for any
n1 < n2 the inequality

|v(n2)− v(n1)| 6 C|n2 − n1|

is satisfied. The exact value of C does not influence any further result and we
can put it rather big.

As for the parameter f(l) in TB model, we already showed in Chapter 1

that condition
+∞∫
0

f(l)ldl = L is necessary to build a consistent model. We also

assume that f(l) is a piecewise continuous function bounded on the interval
[0, fmax]. The piecewise continuity property in this work means finite number
of jump discontinuities and no removable or essential discontinuities. We use
notations f−(l) = lim

∆l→−0
f(l+ ∆l), l ∈ (0,+∞) and f+(l) = lim

∆l→+0
f(l+ ∆l), l ∈

[0,+∞) for the left and right limits of f(l).
The constraints on input are similar. We assume that T > 0 and i(t), t ∈

(0, T ] is a piecewise continuous function bounded on the interval [0, imax]. We
use notations i−(t) = lim

∆t→−0
i(t+ ∆t), t ∈ (0, T ] and i+(t) = lim

∆t→+0
i(t+ ∆t), t ∈

[0, T ) for the left and right limits of i(t). Moreover, we assume that n0 > 0,
v(n0) > 0, p(n0) 6 Limax.

2.1.2 Existence and uniqueness of solutions

First, given the assumption of piecewise continuity of i(t), we formulate PL
model as 

n(0) = n0

ṅ−(t) = i−(t)− v(n(t))
L

n(t), t ∈ (0, T ]

ṅ+(t) = i+(t)− v(n(t))
L

n(t), t ∈ [0, T )

(2.1)

which is more rigorous. We do this, because n(t) is not differentiable at points
of discontinuity of i(t). However, to simplify the text, we will not write equa-
tions for both derivatives, assuming that the equation on the derivative

ṅ(t) = i(t)− v(n(t))
L

n(t), t ∈ [0, T ]

should be understood as two similar equations on left and right derivatives.
The first step in proving the existence and uniqueness of solution of (2.1) is

Proposition 1. The function v(n)
L
n is Lipschitz.

The proof of this and all other propositions can be found in Chapter 3.
After proving Proposition 1 we can prove

10



CHAPTER 2. PROPERTIES OF PL, TB AND M MODELS

Proposition 2. The solution n(t) of problem{
n(0) = n0

ṅ(t) = i(t)− v(n(t))
L

n(t), t ∈ [0, T ]

exists and is unique.

Note that existence here implies n(t) > 0 and the proof is more difficult
than just applying Cauchy-Lipschitz theorem.

The existence and uniqueness property of TB model follows from Proposi-
tions 3 and 4.

Proposition 3. If for some T1 6 T the solution n(t), t ∈ (−∞, T1] of problem
n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T1]

exists then it is continuous.

Proposition 4. There exists unique continuous solution n(t), t ∈ (−∞, T ] of
problem 

n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T ]

Proposition 3 is used while proving Proposition 4 and also guarantees that
the unique continuous solution n(t), t ∈ (0, T ] is unique in a wider set of all
functions defined on (0, T ].

2.1.3 Gridlock situation

We already proved the existence and uniqueness property of PL and TB
models. Therefore, if we guess the solution, we can be sure that it is uni-
que. In this subsection we show that in a gridlock situation the solution is
to accumulate all the rest of inflow without producing any outflow. In ot-
her words, if n(t1) = njam in PL or TB model then the rest of solution is

n(t) = njam +
t∫
t1

i(s)ds, t ∈ [t1, T ]. First, notice that for such n(t) the speed

v(n(t)) is equal to zero. This means that n(t) corresponds to PL model, be-
cause

ṅ(t) = i(t) = i(t)− v(n(t))
L

n(t)

11
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For TB model we also have a correspondence, because

n(t) = njam +
t∫
t1

i(s)ds =

=
t1∫
−∞

(
1− F

(∫ t1
s

v(n(u))du
))

i(s)ds+
t∫
t1

i(s)ds =

=
t1∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds+

+
t∫
t1

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds =

=
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds

Note that we do not say here that with the same input the time t1 when the
gridlock occurs is the same in PL and TB models. It is also possible that
gridlock occurs only in one of two models.

The gridlock situation is not easy to interpret, because it is not realistic.
First, in reality vehicles cannot stay with zero speed forever. Sooner or later, an
empty space in front of the queue of vehicles in the exit of the zone will appear
and they will start moving. Second, n(t) > njam is not possible by definition
of njam. Recall that we assume inflow to be an arbitrary function from some
set. However, in reality we always have an upper bound on the inflow that
depend on the situation inside the zone. Thus, gridlock can be interpreted
as a situation when the inflow that was given as an input cannot enter the
zone and accumulation remains njam. Anyway, the exact interpretation is not
important, in practice, if one uses such a model, gridlock should be understood
as a bad situation that should be avoided.

2.1.4 Properties of outflow and equivalence of models

Notice that the function v(n(t)) is continuous in both PL and TB models
because n(t) and v(n) are continuous. Therefore, the outflow in PL model

o(t) = v(n(t))
L

n(t) is always continuous. For TB model it also takes place. First
we prove

Proposition 5. The outflow in TB model is equal to

o(t) = v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds

Here we should comment that this is not a trivial result, because i(t)−o(t)
cannot be obtained just by differentiating

12
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n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds

with respect to t using Leibniz’s rule. The reason is that the function i(s) is
not necessarily continuous. Now we can prove

Proposition 6. The outflow in TB model is continuous function.

The main consequence of this proposition is that the jump of i(t) always
produces a corner of n(t) and there are no other corners of n(t). Proposition 6
highly depends on the time-independence and continuity of trip length distri-
bution. One can easily find counterexamples when either time-independence
or continuity is violated.

We do not know if the result about continuity of o(t) can be significantly
improved, but we can show for differentiable v(n) that o(t) has right derivative
at time t = 0 and even find its value. These two facts are summarized in

Proposition 7. If i+(0) = p(n0)
L

+ ∆i and v(n) is differentiable then the out-
flow in TB model has right derivative

ȯ+(0) =
(

p′(n0)
L

+ (Lf+(0)− 1)v(n0)
L

)
∆i

Recall that PL model gives ȯ+(0) = p′(n0)
L

∆i which is positive for p′(n0) >
0, ∆i > 0. As we discussed, this is not realistic in the case when the minimum
trip length is not zero. TB model resolves this problem. Notice first that

p′(n) = v′(n)n + v(n) 6 v(n). Therefore,
(

p′(n0)
L

+ (Lf+(0)− 1) v(n0)
L

)
6 0

in the case f+(0) = 0. However, if the minimum trip length is equal to zero
then TB model might give positive ȯ+(0) for ∆i > 0. This highly depends on
the value of f+(0). If, for example, f+(0) = 1

L
then TB model gives the same

value of ȯ+(0) as PL model.

We have already seen that PL and TB models have many common pro-
perties and the reasonable question is if they can be equivalent under some
conditions. In Proposition 8 we give an answer.

Proposition 8. TB model is equivalent to PL model for any input if and only
if f(l) = 1

L
e−l/L.

The proof relies on Proposition 5. The main consequence of Proposition 8
is that PL model can be considered as a special case of TB model.

13
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2.2 PDE formulation of TB model

In this section we show how one can formulate TB model as a nonlocal PDE
(Partial Differential Equation). We need this formulation to build a scheme
for numerical solution of problem (1.3). We start by introducing function
n(t, a) which is equal to the number of vehicles inside the zone at time t that
have remaining distance to be traveled greater than a. Hereafter we show that
n(t, a) can be found as a unique solution of nonlocal PDE with some boundary
condition on n(0, a). If one solves this equation, he knows n(t) = n(t, 0).

First, notice that

n(t, a) =
t∫
−∞

(
1− F

(
a+

∫ t
s

v(n(u))du
))

i(s)ds (2.2)

Second, find partial derivatives of n(t, a) (Propositions 9, 10) and boundary
condition on n(0, a) (Proposition 11):

Proposition 9.

∂n
∂t

(t, a) = (1− F (a))i(t)− v(n(t))
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

The physical explanation of this proposition is very simple. Consider vehi-
cles with remaining distance to be traveled greater than a. The number of
vehicles in this group is n(t, a), the inflow to this group is (1− F (a))i(t) and

the outflow from this group is v(n(t))
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds. For

a = 0 these values are equal to the inflow and outflow.

Proposition 10.

∂n
∂a

(t, a) = −
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

The physical meaning of −∂n
∂a

(t, a) is the number (or, more precisely, den-

sity) of vehicles with remaining distance to be traveled equal to a.

Proposition 11.

n(0, a) = n0

+∞∫
0

1−F (a+l)
L

dl

Finally, combine the results into one problem, assuming v(n(t)) = v(n(t, 0)):
n(0, a) = n0

+∞∫
0

1−F (a+l)
L

dl , a ∈ [0,+∞)

∂n
∂t

(t, a)− v(n(t, 0))∂n
∂a

(t, a) =

= (1− F (a))i(t) , t ∈ [0, T ], a ∈ [0,+∞)

(2.3)
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Formally speaking, we found some necessary conditions on the solution of (1.3)
and called them problem (2.3). Therefore, we can be sure only in the existence
of solution of (2.3), not uniqueness. However, for the most interesting case,
when the speed is always positive, uniqueness can be easily proven:

Proposition 12. If n(t, a) is a solution of problem
n(0, a) = n0

+∞∫
0

1−F (a+l)
L

dl , a ∈ [0,+∞)

∂n
∂t

(t, a)− v(n(t, 0))∂n
∂a

(t, a) = (1− F (a))i(t) , t ∈ [0, T ], a ∈ [0,+∞)

v(n(t, 0)) > 0 , t ∈ (0, T ]

then n(t, a) =
t∫
−∞

(
1− F

(
a+

∫ t
s

v(n(u, 0))du
))

i(s)ds, where

n(t, 0) = n0, t ∈ (−∞, 0] and i(t) = v(n0)
L
n0, t ∈ (−∞, 0].

Indeed, from Proposition 12 follows that n(t, 0) coincides with n(t) in TB
model and, therefore, unique. Moreover, n(t, a) for a > 0 is also unique,
because the formula for it is explicit. We do not know if bifurcation is possible
for n(t, 0) = njam (without condition of positive speed), but when we will
solve the problem (2.3) numerically, the solution will be, as in TB model, to
accumulate all the rest of inflow. Thus, we can say that (2.3) is an alternative
formulation of TB model.

2.3 M model

In Section 2.2 we derived an alternative formulation of TB model which can
be easily used for building a numerical solution. However, it requires a lot
of computations, because n(t, a) includes an additional variable a. Our idea
is to build an approximation of TB model that is based on n(t) and M(t) =
+∞∫
0

n(t, a)da. The physical meaning of M(t) is the total remaining distance to

be traveled by all the vehicles that are inside the zone. As we deal with trip
length distributions with domain (0,+∞), we first have to prove that M(t)
exists. To start with, we prove

Proposition 13. For any φ > −1 the following equalities hold:

+∞∫
0

(1− F (l))lφdl = 1
φ+1

+∞∫
0

f(l)lφ+1dl

+∞∫
0

+∞∫
0

(1− F (a+ l))lφdlda = 1
(φ+2)(φ+1)

+∞∫
0

f(l)lφ+2dl

We will mostly use Proposition 13 for the case φ = 0. In the proofs of
propositions of Section 2.4 we will also use cases φ = 1 and φ = 2.
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From Propositions 13 and 11 follows that

M(0) =
+∞∫
0

n(0, a)da =
+∞∫
0

n0

+∞∫
0

1−F (a+l)
L

dlda = n0

L
L2+σ2

2
= L

α
n0 (2.4)

Prove that M(t) is bounded by the value M(0) +Limaxt and, therefore, exists:

∂n
∂t

(t, a) = (1− F (a))i(t) + v(n(t, 0))∂n
∂a

6 (1− F (a))i(t)

n(t, a) = n(0, a) +
t∫

0

∂n
∂t

(s, a)ds 6 n(0, a) + (1− F (a))imaxt

M(t) =
+∞∫
0

n(t, a)da 6

6
+∞∫
0

n(0, a)da+

(
+∞∫
0

(1− F (a))da

)
imaxt = M(0) + Limaxt

Now, when we proved the existence of M(t), we can try to take its derivative.
In fact, the result is very simple:

Proposition 14.
Ṁ(t) = Li(t)− v(n(t))n(t)

Note that from the physical point of view Proposition 14 is obvious: each
unit of inflow adds L to the total distance to be traveled and at the same
time each of n(t) vehicles in the zone reduces its distance to be traveled with
the rate v(n(t)). We put rigorous mathematical proof to show that physical
intuition works and we can really consider two processes separately.

2.3.1 M model with parameters β1 and β2

Intuitively, in two different situations with the same n(t) the outflow tends to
be higher for the lower values of M(t). Also, the outflow should be propor-
tional to the speed, if it is given exogenously. Thus, we will investigate the
approximation of TB model that assumes o(t) = v(n(t))(β1n(t) − β2M(t)).
We consider β1 and β2 to be constants. If later we find that β1 and β2 are
positive, it will look natural. However, we do not put this constraint expli-
citly. Combining the approximation of outflow with precise values of n(0) and
M(0) and the expression 14 of dynamics of M(t), we get the following Cauchy
problem: 

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))(β1n(t)− β2M(t)) , t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

(2.5)

This model requires the same input n0, T and i(t), t ∈ (0, T ]. We will refer to

16



CHAPTER 2. PROPERTIES OF PL, TB AND M MODELS

it as “M model”. The question about existence of solution n(t), t ∈ (0, T ] is
not trivial. The function v(n) is defined for non-negative values, but there is
no guarantee that the solution n(t) of (2.5) will not reach zero with negative
ṅ(t) before the time T . Thus we formulate first the result about uniqueness:

Proposition 15. If the solution of problem
n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))(β1n(t)− β2M(t)) , t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

exists, then it is unique.

Note that the solution of M model might reach gridlock. If this happens
then, as for PL or TB models, the solution will be to accumulate all the rest
of inflow without producing any outflow. In other words, if n(t1) = njam then
the rest of solution is[

n(t)
M(t)

]
=

[
njam
M(t1)

]
+

[
1
L

]
t∫
t1

i(s)ds, t ∈ [t1, T ]

Indeed, the derivative of such a solution is[
ṅ(t)

Ṁ(t)

]
=

[
1
L

]
i(t) =

[
1
L

]
i(t)− v(n(t))

[
β1n(t)− β2M(t)

n(t)

]
and satisfies (2.5).

Our main goal is to find β1, β2 such that M model is equivalent to TB
model. First, because we want to build the model that can be equivalent to
TB model for non-exponential distributions. Second, the existence of solution
in this case follows automatically. Surprisingly, the question about equivalence
is connected with differential equation f ′′(l) + β1f

′(l) + β2f(l) = 0. First, we
prove one technical fact that comes from the theory of ODE:

Proposition 16. f(l), l ∈ (0,+∞) is a PDF satisfying equation of the form
f ′′(l) + β1f

′(l) + β2f(l) = 0 if and only if it belongs to one of four families:

F1) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 > 0, −C1

λ1
− C2

λ2
= 1

F2) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 < 0, C1 + C2 > 0, −C1

λ1
− C2

λ2
= 1

F3) C3e
λ3l

where λ3 < 0, C3 > 0, −C3

λ3
= 1

F4) (C1l + C2)eλ1l

where λ1 < 0, C1 > 0, C2 > 0, C1

λ21
− C2

λ1
= 1
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Proposition 16 is used while proving the main fact:

Proposition 17. M model with parameters β1 and β2 is equivalent to TB
model for any input if and only if f(l) is a solution of equation f ′′(l)+β1f

′(l)+

β2f(l) = 0. Moreover, for such a solution the equality 1−β1L+ β2L2

α
= 0 always

holds.

2.3.2 M model with parameter β

As our main goal is to find β1 and β2 such that M model is equivalent to
TB model, hereafter we consider M models with parameters β1, β2 satisfying
1− β1L+ β2L2

α
= 0. Denote β = β1L− 1 = β2L2

α
. With this notation β1 = 1+β

L

and β2 = αβ
L2 . The outflow is equal to o(t) = v(n(t))(β1n(t) − β2M(t)) =

v(n(t))
L

(
n(t) + β

(
n(t)− α

L
M(t)

))
and M model looks as follows:

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + β

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

Hereafter we consider only β 6= 0 to have a bijection between (β1, β2) and
(α, β). Indeed, if β 6= 0 then α and β can be expressed through β1 and β2 as

α = β2L2

β1L−1
and β = β1L − 1. Moreover, the case β = 0 is not interesting,

because M model takes the form of PL model. We should comment here that
M model can be still equivalent to PL model for β 6= 0:

Proposition 18. M model with parameter β 6= 0 is equivalent to PL model
for any input if and only if α = 1.

Note, that this property holds regardless the value of β. Recall that TB
model is equivalent to PL model for any input if f(l) = 1

L
e−l/L. This distri-

bution has α = 1 and, therefore, M model is equivalent to TB model with
f(l) = 1

L
e−l/L. This means that we found at least one case when M model

with parameter β 6= 0 is equivalent to TB model. In Proposition 19 we show
that there are a lot of pairs of α and β such that M model with parameter
β 6= 0 is equivalent to TB model for some f(l) with parameter α.

Proposition 19. If α ∈
(
0, 4

3

]
and

β ∈


(0,+∞) , α ∈ (0, 1)

(−∞,+∞) \ {0} , α = 1[
2α− 1 +

√
4α2 − 4α, 1

α−1

]
, α ∈

(
1, 4

3

]
18
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then there exists exactly one f(l) with parameters L and α such that M model
with parameter β 6= 0 is equivalent to TB model for any input. Otherwise,
there is no such f(l).

In Figure 2.3 we plot all the feasible pairs (α, β) and indicate the family
from Proposition 16 to which f(l) belongs.

α

β

0 2

F1
F2

F3

F4

1 4
3

3

1

Figure 2.3: Pairs (α, β) that correspond to the case when M model is equivalent
to TB model with some f(l). Each feasible point corresponds to unique f(l). All
the families F1, F2, F3, F4 are presented.

From Proposition 19 follows that M model can be equivalent to TB model
only if α 6 4

3
. The distribution that corresponds to (α, β) =

(
4
3
, 3
)

is f(l) =
4l
L2 e
−2l/L. We consider this distribution to be rather realistic. However, most

of the values α 6 4
3

are not realistic. We believe that all realistic α are greater
than 1 and some of them are close to 1.6

(
σ
L

= 0.5
)
. Therefore, Proposition

19 says that M model cannot be equivalent in principle to some realistic TB

models. Even if α 6 4
3

(
σ
L
> 1√

2
≈ 0.7

)
, we should check first that some of

f(l) that give equivalence are realistic.

2.3.3 Realistic trip length distributions

It is very difficult to define, which f(l) are realistic. We start by investigating
possible values of moments of distribution with bounded domain. We assume
that domain belongs to the interval (0,ΛL), where Λ > 1 is some not very big
parameter. For the convenience, we consider central moments

σ2 =
+∞∫
0

f(l)(l − L)2dl =
+∞∫
0

f(l)l2dl − L2

ρ3 =
+∞∫
0

f(l)(l − L)3dl =
+∞∫
0

f(l)l3dl − 3Lσ2 − L3

(2.6)
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2.3. M MODEL

In Propositions 20 and 21 we give an answer about all the possible values of
σ2 and ρ3:

Proposition 20. If f(l), l ∈ (0,ΛL) is a PDF with mean L and variance σ2

then all the possible values of σ2

L2 are (0,Λ− 1).

Proposition 21. If f(l), l ∈ (0,ΛL) is a PDF with mean L, variance σ2 and

third central moment ρ3 then all the possible values of ρ3

L3 are(
− σ2

L2 +
(
σ2

L2

)2

, (Λ− 1) σ
2

L2 − 1
Λ−1

(
σ2

L2

)2
)

We believe that in reality there should be very few trips longer than 3L.
This gives us an idea of necessary condition on the realistic distribution. We
will assume that for any realistic distribution there should exist distribution
defined on (0, 3L) that has the same first three moments. This means that ρ3

L3

for realistic distribution should satisfy

ρ3

L3 ∈
(
− σ2

L2 +
(
σ2

L2

)2

, 2 σ
2

L2 − 1
2

(
σ2

L2

)2
)

(2.7)

However, not all the values from this set seem to be realistic. Thus, if ρ3

L3

satisfies this condition, we will say that distribution is “reasonable”, but not
necessarily realistic. To be able to move forward we make an assumption that
all realistic distributions that share the same σ2

L2 also have similar values of
ρ3

L3 . We will find these values approximately using rather realistic distributions
from gamma family:

f(l) = 1
Γ(φ)

(
φ
L

)φ
e−φl/Llφ−1

where φ > 1 is an arbitrary parameter.
Such distributions are unimodal and heavy-tailed. They are responsible for
many real processes and appear very often in economic and physical models.
Gamma family can be also parametrized with α ∈ (1, 2). Indeed, the second

moment of gamma distribution is equal to
+∞∫
0

f(l)l2dl = φ+1
φ
L2. Therefore, α =

2φ
φ+1

and φ = α
2−α . In Figure 2.4 we give two examples of gamma distributions

for α = 1.2
(
φ = 1.5, σ

L
=
√

2
3
≈ 0.8

)
and α = 1.6

(
φ = 4, σ

L
= 0.5

)
:
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l

f(l)

0 L 2L 3L

1
L

Figure 2.4: Examples of gamma distribution for α = 1.2 (blue) and α = 1.6
(olive).

Now calculate σ2

L2 and ρ3

L3 for gamma distribution

σ2

L2 = 1
L2

+∞∫
0

f(l)l2dl − 1 = 1
φ

ρ3

L3 = 1
L3

+∞∫
0

f(l)l3dl − 3 σ
2

L2 − 1 = (φ+1)(φ+2)
φ2

− 3
φ
− 1 = 2

φ2
= 2

(
σ2

L2

)2

Hereafter we will say that any distribution that satisfies σ2

L2 < 1, ρ3

L3 = 2
(
σ2

L2

)2

is “gamma-like”. The equivalent definition is α ∈ (1, 2), ρ3

L3 = 2− 8
(

1
α
− 1

α2

)
.

In Figure 2.5 we visualize possible moments of reasonable and gamma-like
distributions:

σ2

L2

ρ3

L3

0 1 2

2

4
5

32
25

α

ρ3

L3

0 1 2

2

10
9

32
25

Figure 2.5: The set of feasible σ2

L2 and ρ3

L3 that correspond to reasonable (cyan
area) and gamma-like (blue, dashed) distributions.

21



2.3. M MODEL

Note, that if σ2

L2 >
4
5
,
(
α < 10

9

)
then gamma-like distribution cannot be re-

asonable.
To conclude, we do not define the set of realistic distributions rigorously. For
us realistic distribution is reasonable and approximately gamma-like:

α ∈
(

10
9
, 2
)
, ρ3

L3 ≈ 2− 8
(

1
α
− 1

α2

)
Now we will find out which pairs (α, β) from Proposition 19 correspond to
reasonable and gamma-like distributions. From the proof of Proposition 19
follows that the formula for f(l) (families F1 and F2) is

f(l) = 1
L

(
µ2

1
µ2−1
µ2−µ1 e

−µ1l/L + µ2
2

1−µ1
µ2−µ1 e

−µ2l/L
)

(2.8)

where µ1 = 1+β
2
−
√
ψ, µ2 = 1+β

2
+
√
ψ, ψ = (1+β)2

4
− αβ. Note, that this

formula is also valid for α = 1 (family F3, exponential distribution) and for

the case β ∈ (1, 3] and α = (1+β)2

4β
(family F4) it gives valid result

f(l) = 1+β
L

(
3−β

4
+ β2−1

8
l
L

)
e−

1+β
2
l/L

as a limit when β is constant and α→ (1+β)2

4β
.

Therefore, the ratio ρ3

L3 for each distribution that gives equivalence between
M and TB models is equal to

ρ3

L3 = 1
L3

+∞∫
0

f(l)l3dl − 3σ2

L2 − 1 =

= 6
(

1
µ41
µ2

1
µ2−1
µ2−µ1 + 1

µ42
µ2

2
1−µ1
µ2−µ1

)
− 3

(
2
α
− 1
)
− 1 =

= 6
µ21µ

2
2

(
µ32−µ22+µ21−µ31

µ2−µ1

)
− 3

(
2
α
− 1
)
− 1 =

= 6
µ21µ

2
2

((µ1 + µ2)2 − µ1µ2 − µ1 − µ2)− 3
(

2
α
− 1
)
− 1 =

= 6
α2β2 (1 + 2β + β2 − αβ − 1− β)− 3

(
2
α
− 1
)
− 1 =

= 2− 6
(

1 + 1
β

) (
1
α
− 1

α2

)
(2.9)

Distribution (2.8) is reasonable if2− 6
(

1 + 1
β

) (
1
α
− 1

α2

)
> −

(
2
α
− 1
)

+
(

2
α
− 1
)2

2− 6
(

1 + 1
β

) (
1
α
− 1

α2

)
< 2

(
2
α
− 1
)
− 1

2

(
2
α
− 1
)2

If α = 1 then the second inequality is not satisfied which means that expo-
nential distribution (family F3) is not reasonable. For all other families β > 0
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and the system is equivalent to{
β > 3(α− 1)(

4
3
− α

)2
β < 4

3
(α− 1)

Obviously, the second inequality is not satisfied for the family F1 which has
α < 1. The first inequality is satisfied for families F2 and F4. Therefore, all
reasonable distributions (2.8) are defined by

β > 2α− 1 +
√

4α2 − 4α

β ≤ 1
α−1(

4
3
− α

)2
β < 4

3
(α− 1)

Distribution (2.8) is gamma-like if

2− 6
(

1 + 1
β

) (
1
α
− 1

α2

)
= 2− 8

(
1
α
− 1

α2

)
This equation is equivalent to β = 3. In Figure 2.6 we visualize the sets of
pairs (α, β) that correspond to reasonable and gamma-like distributions.

α

β

1
0

24
3

10
9

3

2√
3

3 + 2
√

3

Figure 2.6: Pairs (α, β) from Proposition 19 that correspond to reasonable (cyan
area) and gamma-like (blue, dashed) distributions.

We suggest to use β = 3 as a rule of thumb for M model when α ∈
(

10
9
, 4

3

]
,

because M model in this case is equivalent to TB model with some realistic
distribution. Here we show the density f(l) for this distribution. It is a specific
case of formula (2.8) for β = 3.

f(l) = 1
L

(
9α−8

2
√

4−3α
+ 4−3α

2

)
e−(2−

√
4−3α)l/L+

+ 1
L

(
8−9α

2
√

4−3α
+ 4−3α

2

)
e−(2+

√
4−3α)l/L

(2.10)
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This distribution is very close to gamma not only in the sense of first three
moments, but also in the sense of value of f(l) for not very small l. In Figure
2.7 we compare f(l) obtained with the above formula for α = 1.2 with f(l) of
gamma distribution.

l

f(l)

0 L 2L 3L

1
L

Figure 2.7: Comparison of gamma-like distribution (solid) given by formula (2.10)
with gamma distribution (dashed) for α = 1.2.

We think that in practice it is rather difficult to gather precise information
about the distribution and, probably, only L and σ can be measured accura-
tely. Thus, if we have a rule of thumb that says which β should be used for
some α, it will be very useful. In Section 2.4 we show that β = 3 is also a good
rule of thumb for α ∈

(
4
3
, 2
)
. Thus, we suggest to formulate M model only as

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + 3

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

We utilize this formulation in Section 2.5 to show numerically that M model
approximates TB model better than PL model.

2.4 Analytical comparison of models

Our main goal is to show that M model is a good approximation of TB model.
Hereafter we take TB model as a reference and compare M and PL models
as approximations of TB model. We assume that α that describes f(l) is
known and only the correct value of α is used in the formulation of M model.
Therefore, we cannot claim that M model is a better approximation of TB
model than PL model just because PL model is M model for α = 1. As we
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want to investigate realistic f(l), we focus on the case α ∈ (1, 2). In this
Section we show that β = 3 is still a good rule of thumb for M model when
α ∈

(
4
3
, 2
)
. We also show in some sense that M model with β = 3 works better

than PL model as an approximation of TB model.
We investigate only the case of constant v(n). First, because we want to get

analytical expressions for solutions of models. The case of conventional v(n)
is more complicated, we consider it later in Section 2.5, where we compare
models numerically. Second, because in the case of constant v(n) it is easy
to investigate stability of models. We say that model is stable if solution
does not change a lot under small changes of input. This is not a rigorous
definition. However, this definition is enough to find cases when some model
is not completely wrong. We did not address the question of stability before,
because for conventional v(n) the answer is very unclear. There is a possibility,
for example, that for some input the solution reaches gridlock while this can
be avoided by very small change of input. For constant v(n) gridlock situation
is not possible and the analysis becomes very simple.

2.4.1 TB, PL and M models under constant v(n)

As we discussed in Section 2.1, for constant v(n) trip length is equal to trip
time. The solution of TB model is

n(t) =
t∫
−∞

(1− F (t− s))i(s)ds (2.11)

where i(t) = n0

L
, t ∈ (−∞, 0]. Note that TB model is always stable because

1 − F (t − s) is decreasing function of t and is bounded on the interval [0, 1].
The solution of PL model is

n(t) = e−t/Ln0 +
t∫

0

e−(t−s)/Li(s)ds

PL model is always stable because exponential rates in the expression are ne-
gative. To find the solution of M model we rewrite it as

[
n(0)
M(0)
L

]
=

[
1
1
α

]
n0[

ṅ(t)
Ṁ(t)
L

]
= − 1

L
A

[
n(t)
M(t)
L

]
+

[
1

1

]
i(t)

where matrix A =

[
1 + β −αβ

1 0

]
is time-independent. Thus, M model beco-

mes a Cauchy problem with unique solution[
n(t)
M(t)
L

]
= e−At/L

[
1
1
α

]
n0 +

(
t∫

0

e−A(t−s)/Li(s)ds

)[
1
1

]
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There exists an alternative way to calculate the solution, which gives the value
of the outflow o(t) instead of M(t). Notice that[

Lo(t)
n(t)

]
= A

[
n(t)
M(t)
L

]
Therefore,[

Lo(t)
n(t)

]
= e−At/LA

[
1
1
α

]
n0 +

(
t∫

0

e−A(t−s)/Li(s)ds

)
A

[
1
1

]
=

= e−At/L
[
1
1

]
n0 +

(
t∫

0

e−A(t−s)/Li(s)ds

)[
1 + β − αβ

1

]
The resulting expression for n(t) depends on the value of ψ = (1+β)2

4
−αβ and

takes the following form:
1. ψ > 0

n(t) = e−
1+β

2
t/L

(
cosh(

√
ψt/L) + β−1

2
√
ψ
sinh(

√
ψt/L)

)
n0+

+
t∫

0

e−
1+β

2
(t− s)/L (cosh(

√
ψ(t− s)/L) + (2α−1)β−1

2
√
ψ

sinh(
√
ψ(t− s)/L)

)
i(s)ds

2. ψ = 0

n(t) = e−
1+β

2
t/L (1 + β−1

2
t
L

)
n0 +

t∫
0

e−
1+β

2
(t− s)/L (1 + (2α−1)β−1

2
t−s
L

)
i(s)ds

3. ψ < 0

n(t) = e−
1+β

2
t/L

(
cos(

√
−ψt/L) + β−1

2
√
−ψsin(

√
−ψt/L)

)
n0+

+
t∫

0

e−
1+β

2
(t− s)/L (cos(√−ψ(t− s)/L) + (2α−1)β−1

2
√
−ψ sin(

√
−ψ(t− s)/L)

)
i(s)ds

To derive the formula for n(t) we should first calculate matrix exponential
e−At/L. We do not show here these technical details. One can find them in
the proof of Proposition 27. Now we will try to understand for which pairs

of α and β M model is stable. If α < 1 then ψ = (1+β)2

4
− αβ > (β−1)2

4
> 0

and
∣∣∣ β−1

2
√
ψ

∣∣∣ < 1. Therefore, M model is stable if and only if −1+β
2

+
√
ψ < 0

which is the highest exponential rate in the expression for ψ > 0. However,
this is equivalent to αβ > 0 or β > 0. If α = 1 then M model is stable as it
is equivalent to PL model. If α > 1 then either ψ > 0 or ψ 6 0, depending

on β. If ψ > 0 then
∣∣∣ β−1

2
√
ψ

∣∣∣ > 1 and M model is stable if and only if β > 0. If

ψ 6 0 then αβ > (1+β)2

4
> β and, therefore, β > 0. At the same time M model
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is stable, because with β > 0 the exponential rate is −1+β
2

< 0. Concluding,
M model is stable if and only if β > 0 or α = 1.

Hereafter we focus on the realistic case α ∈ (1, 2) and assume β > 0 to
consider only stable models. Next important question is when the solution of
M model exists (by existence we mean n(t) > 0) for any input in the case of
constant v(n). The answer is given in Proposition 22:

Proposition 22. If α ∈ (1, 2) then the solution of M model with β > 0 exists
for any input in the case of constant v(n) if and only if

β > 2α− 1 +
√

4α2 − 4α

Interestingly, this fact is also valid in the case of conventional v(n). This
follows from Proposition 23:

Proposition 23. The solution of M model exists for any input in the case of
constant v(n) if and only if the solution of the same M model exists for any
input in the case of conventional v(n).

In Figure 2.8 we show combined results of Propositions 19, 22 and 23. We
also show the set of pairs (α, β) such that M model is equivalent to TB model
with some reasonable f(l).

α

β

1
0

2

nRe
Ex Re

Ex

Ex

nEx

3 +
√

8

4
3

3

1

Figure 2.8: Properties of M model. Re - M model is equivalent to TB model
with reasonable f(l). nRe - M model is equivalent to TB model with f(l) that is
not reasonable. Ex - solution of M model exists for any input. nEx - solution of
M model does not exist for some inputs.

Note that β = 3 does not ensure the existence of solution for any input for
α ∈

(
4
3
, 2
)
. In this case ψ = 4 − 3α < 0 and the solution does not exist, for

example, for rather big T and i(t) = 0, t ∈ (0, T ]. However, if inflow does not
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drop fast or does not reach zero, solution usually exists. Later in this Section
we show that β = 3 is a good rule of thumb in such cases.

2.4.2 Comparison of models for big t

In this subsection we assume that f(l) has finite domain (0,ΛL) and T > ΛL.
This allows to simplify the solution of TB model for t > ΛL and make it in-
dependent from n0:

nTB(t) =
t∫

0

(1− F (t− s))i(s)ds, t ∈ [ΛL, T ]

We will compare models using quadratic i(t):

i(t) = i0 + i1t+ i2t
2, t ∈ (0, T ]

The constant term i0 is not necessarily equal to i(0) that we introduce for TB
model. Thus, we can consider jump discontinuities at t = 0. Also we assume
that coefficients i1 and i2 are chosen the way that i(t) > 0, t ∈ [0, T ]. The
reason to take quadratic inflow is that we can easily model non-linear and
non-monotonic cases this way. Moreover, for the quadratic inflow the solution
of TB model depends only on i0, i1, i2 and the first three moments of f(l). Note
that the solution of M model depends on i0, i1, i2 and the first two moments.
Thus, we can partially give an answer, how close is M model to TB model
under different third moments of f(l), in other words, is it enough to describe
f(l) with only L and α to build a precise approximation of TB model.

Proposition 24. The solution of TB model for i(t) = i0 + i1t + i2t
2 in the

case of constant v(n) is

nTB(t) = L(i0 + i1t+ i2t
2)− L2

α
i1 − 2L

2

α
i2t+ 2

(
1
α
− 1

3
+ ρ3

6L3

)
L3i2, t ∈ [ΛL, T ]

From Proposition 24 follows that

oTB(t) = i(t)− ṅTB(t) = i0 + i1t+ i2t
2 − Li1 − 2Li2t+ 2L

2

α
i2

Proposition 25. The solution of PL model for i(t) = i0 + i1t + i2t
2 in the

case of constant v(n) is

nPL(t) = L(i0 + i1t+ i2t
2)− L2i1 − 2L2i2t+ 2L3i2+

+ e−t/L
(
n0 − Li0 + L2i1 − 2L3i2

)
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Proposition 26. The solution of M model with β > 0 for i(t) = i0 + i1t+ i2t
2

in the case of constant v(n) is[
LoM(t)
nM(t)

]
=

[
1
1

]
L(i0 + i1t+ i2t

2)−

−
[

1
1
α

]
L2i1 − 2

[
1
1
α

]
L2i2t+ 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2+

+ e−At/L
([

1
1

]
(n0 − Li0) +

[
1
1
α

]
L2i1 − 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2

)

where A =

[
1 + β −αβ

1 0

]
.

From Propositions 25 and 24 follows that if α ∈ (1, 2) then nPL(t) does not
converge to nTB(t) for any quadratic inflow with i2 6= 0. Moreover, if inflow
is linear then nPL(t) − nTB(t) converges to the constant

(
1− 1

α

)
L2i1. This

constant becomes zero if and only if i1 = 0. Now investigate convergence of M
model. From Propositions 26 and 24 follows that nM(t)−nTB(t) converges to

2
(
−
(

1 + 1
β

) (
1
α
− 1

α2

)
+ 1

3
− ρ3

6L3

)
L3i2

which is constant. If inflow is linear, this constant is equal to zero. Therefore,
M model converges to TB model for any linear inflow. If inflow is quadratic,
it becomes very important to estimate the value

δ = −
(

1 + 1
β

) (
1
α
− 1

α2

)
+ 1

3
− ρ3

6L3 (2.12)

for realistic distributions. If δ = 0 then M model converges to TB model for
any quadratic inflow.

We start by calculating possible values of δ for reasonable distributions.
From (2.9) and equality σ2

L2 = 2
α
− 1 follows thatδ > −

(
1 + 1

β

) (
1
α
− 1

α2

)
+ 1

12

(
9− 12

α
+ 4

α2

)
δ < −

(
1 + 1

β

) (
1
α
− 1

α2

)
+ 1

3

(
3
α
− 2

α2

) (2.13)

The value of δ for gamma-like distributions is

δ = −
(

1 + 1
β

) (
1
α
− 1

α2

)
+ 1

3
− 1

6

(
2− 8

(
1
α
− 1

α2

))
=
(

1
3
− 1

β

) (
1
α
− 1

α2

)
(2.14)

This means that if β = 3 then δ ≈ 0 for realistic distributions regardless the
value of α. We show this property in Figure 2.9:
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α
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1
12 1

24
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Figure 2.9: Possible values of δ for reasonable (cyan area) and gamma-like (blue,
dashed) distributions.

One important question we should address is the speed of convergence of
nM(t) − nTB(t). If the speed is low, we might not see that the difference
between M and TB models is almost constant for t ∈ [ΛL, T ]. To estimate the
speed of convergence we make a very rough estimation of the absolute value
of matrix exponential e−At/L:

Proposition 27. If α > 1 and β > 1 then the absolute value of matrix expo-

nential e−At/L, where A =

[
1 + β −αβ

1 0

]
, is less than

e−(1−e−1)t/L

[
3+β

2
αβ

1 3+β
2

]

From Proposition 27 follows that the term that contains e−At/L in the ex-
pression of nM(t) becomes very small after not very long time. For example,
if β = 3 and t/L > 5 then

e−(1−e−1)t/L

[
3+β

2
αβ

1 3+β
2

]
< e−3

[
3 6
1 3

]
< 1

20

[
3 6
1 3

]
This value is already rather small and will decrease rather fast with growing
t/L. Thus, if β = 3 then we can be sure that M model approximates TB model
very well for quadratic inflow after t/L > 5. Here we assume, of course, that
the difference n0 − Li0 is not extremely large.

2.4.3 Hysteresis effect for big t

The difference between PL and TB models can be clearly seen on the plane
(n(t), o(t)). While PL model predicts that o(t) is proportional to n(t) with
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coefficient 1
L

, TB model does not show this behavior in general. This is another
drawback of PL model as an approximation of TB model. In this subsection we
show for big t that behavior of M model on the plane (n(t), o(t)) approximates
behavior of TB model much better.

We assume that i(t) = i0 + i1t+ i2t
2, where i0 > 0, i1 > 0 and i2 < 0 which

simulates the peak hour. We also assume that the maximum point t = − i1
2i2

is less than T .
From Proposition 24 follows that nTB(t) reaches maximum at t = − i1

2i2
+ L

α

and oTB(t) reaches maximum at t = − i1
2i2

+ L.
For t > 5L the exponential term in the expressions for the solutions of PL and
M models can be neglected. Therefore, nPL(t) and oPL(t) reach maximum
approximately at t = − i1

2i2
+ L. This value is correct for o(t) but not for n(t).

However, M model says that nM(t) and oM(t) reach maximum approximately
at t = − i1

2i2
+ L

α
and t = − i1

2i2
+ L which are the correct values.

The other way to see the difference between models is to look at the function
n(t) − Lo(t) which is equivalent to zero for PL model. For TB model this
function looks as

nTB(t)− LoTB(t) =

=
(
1− 1

α

)
L2 (i1 + 2i2t) + 2

(
−1

3
+ ρ3

6L3

)
L3i2, t ∈ [ΛL, T ]

It is equal to zero if

t = − i1
2i2

+
1
3
− ρ3

6L3

1− 1
α

L

Interestingly, if α > 1 and distribution is reasonable then this value is greater
than− i1

2i2
+L
α

, in other words, nTB(t) reaches maximum before nTB(t)−LoTB(t)
changes sign. This fact follows from Proposition 28

Proposition 28. If α > 1 and ρ3 correspond to some distribution defined on
(0, 3L) then

1
3
− ρ3

6L3

1− 1
α

> 1
α

As we assume α > 1 and i2 < 0, the sign of nTB(t) − LoTB(t) changes

from positive to negative. Before this change oTB(t) is less than nTB(t)
L

and

after is greater than nTB(t)
L

. Such behavior is usually called “counterclockwise
hysteresis”. In Figure 2.10 we illustrate it for i(t) = i0 + 4 t

T

(
1− t

T

)
∆i, where

T = 10L and n0 = Li0. As i(t) is symmetric, its maximum i0 + ∆i is reached
at t = T

2
= 5L.
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n(t)
L

o(t)

i0 i0 + ∆i

i0 + ∆i

n(t)
L

o(t)

i0 + 0.9∆i i0 + ∆i

i0 + ∆i

Figure 2.10: Hysteresis effect for TB model. The solutions are given for two
gamma-like f(l) defined on (0, 3L) with α = 1.2 (blue) and α = 1.6 (olive).
The solution of PL model (cyan, dashed) does not produce hysteresis. The input
satisfies T = 10L, n0 = Li0 and i(t) = i0 + 4 t

T

(
1− t

T

)
∆i. The considered time

intervals are t ∈ [3L, 10L] (left) and t ∈ [5L, 7L] (right).

For t/L > 5 the solution of M model satisfies

nM(t)− LoM(t) ≈
(
1− 1

α

)
L2 (i1 + 2i2t)− 2

(
1 + 1

β

) (
1
α
− 1

α2

)
L3i2

The function nM(t)− LoM(t) is equal to zero if t ≈ − i1
2i2

+
(

1 + 1
β

)
L
α

. The-

refore, M model with β > 0 also says that nM(t)− LoM(t) changes sign after
nM(t) reaches maximum. Moreover, if δ = 0 then

1
3
− ρ3

6L3

1− 1
α

=
(

1 + 1
β

)
1
α

This fact is expected, because if δ = 0 then M model converges to TB model for
any quadratic inflow. In the case of realistic f(l) both TB model and M model
with β = 3 say that n(t)−Lo(t) changes sign approximately at t = − i1

2i2
+ 4L

3α
.

It is also interesting to mention that if α < 1 then both TB and M models
say that the hysteresis is clockwise for i2 < 0. However, the case α < 1 is not
realistic and we do not consider it in this section.

2.4.4 Comparison of models for small t

From inequalities (2.13) follows that the range of δ for reasonable distributions
has width 1

4

(
−3 + 8

α
− 4

α2

)
which does not depend on β. Also from equation

(2.12) follows that if we take only β > 1 then we can change δ by not more
than 1

α
− 1

α2 , which is less than 1
4
. This means that the exact value of β > 1

does not play a big role for the quality of approximation for big t. Also, from
Propositions 22 and 23 follows that the solution of M model with β > 3 +

√
8

exists for any input. Taking these β can be an advantage in practice. However,
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in this subsection we show that such M model is not very accurate for small
t, where β = 3 still works very well.

The most important question we should answer and which is related to
practice is how M model approximates TB model for the inflow that makes a
jump. To avoid mathematical difficulties we assume i(t) = n0

L
+ ∆i, t ∈ (0, T ].

We make an assumption that i(t) is constant after the jump because we expect
that in reality i(t) does not change fast during the beginning of the time period
(0, T ]. In this subsection we assume that t ∈ (0, T ′], where T ′ < 5L. For bigger
t one can use asymptotic results that we already presented. We also assume
that Λ < 5.

From Proposition 26 follows that oM(t) converges to oTB(t) for any qua-
dratic inflow. Thus, to compare models for big t we look at n(t). However,
the difference between models appears in the very beginning of interval (0, T ].
Even if δ = 0, there is a possibility that models are not very similar for small
t. To visualize the difference between models we take o(t) instead of n(t) to
see the difference more clearly.

To calculate oTB(t) for t ∈ (0, T ′] it is not enough to take only first three
moments of f(l) into account. In fact, we should use the whole distribution:

oTB(t) =
t∫
−∞

f(t− s)i(s)ds =

=
t∫
−∞

f(t− s) 1
L
n0ds+

t∫
0

f(t− s)∆ids = 1
L
n0 + F (t)∆i

To compare TB, PL and M models we take two reasonable (but not gamma-
like) distributions:

D1 = 1
2
U [0, L] + 1

2
U [0, 3L]

D2 = U
[(

1−
√

3
2

)
L,
(

1 +
√

3
2

)
L
]

Their densities are shown in Figure 2.11.
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l

f(l)

L

1
6L

3L

2
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(
1−

√
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2

)
L

(
1 +

√
3

2

)
L

1√
3L

D1

D2

Figure 2.11: Distributions that are used for the analysis. D1 (blue) has α = 1.2,
D2 (olive) has α = 1.6.

The function oM(t) for the constant i(t) can be easily obtained by diffe-
rentiating nM(t). In this case one can make change of variables u = t− s and
write nM(t) as an integral from 0 to t of the function that does not depend on
t and depends only on u. This gives the following expressions:
1. ψ > 0

oM(t) = n0

L
+

(
1− e−

1+β
2
t/L

(
cosh(

√
ψt/L) + (2α−1)β−1

2
√
ψ

sinh(
√
ψt/L)

))
∆i

2. ψ = 0

oM(t) = n0

L
+

(
1− e−

1+β
2
t/L

(
1 + (2α−1)β−1

2
t
L

))
∆i

3. ψ < 0

oM(t) = n0

L
+

(
1− e−

1+β
2
t/L

(
cos(
√
−ψt/L) + (2α−1)β−1

2
√
ψ

sin(
√
−ψt/L)

))
∆i

In Table 2.1 we give values of ψ that correspond to α = 1.2 and α = 1.6. We
consider cases β = 1, β = 3 and β = 6 to show that the solution of M model
strongly depends on β for small t.

β = 1 β = 3 β = 6
α = 1.2 -0.2 0.4 5.05
α = 1.6 -0.6 -0.8 2.65

Table 2.1: Values of ψ that correspond to considered α and β.
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The solution of M model for all of these cases is given in Figure 2.12.

t

o(t)

0 L 2L 3L

n0

L

n0

L
+ ∆i

β = 1

t

o(t)

0 L 2L 3L

n0

L

n0

L
+ ∆i

β = 3

t

o(t)

0 L 2L 3L

n0

L

n0

L
+ ∆i

β = 6

Figure 2.12: Solutions of models for i(t) = n0

L
+ ∆i. TB model is given for

D1 (blue, solid) and D2 (olive, solid). M model for α = 1.2 (blue, dashed) and
α = 1.6 (olive, dashed) is given in three different variants. It approximates TB
model very well for β = 3 and not very well for β = 1 and β = 6. PL model
(cyan, dashed) is also a good approximation of TB model.

2.4.5 Comparison of models for very small t

In this section we proved in some sense that β = 3 still works well for realistic
distributions with α > 4

3
. Thus, we suggest to use β = 3 for any α. However,

the proof is constructed for constant speed and while comparing M and TB
models we do not look at the very beginning of time interval [0, T ]. If we are
interested only in the very short interval of time, the good choice of β should
be based on ȯ+(0) (to get second-order approximation of n(t)). This value can
be easily calculated in M model:

Proposition 29. If i+(0) = p(n0)
L

+ ∆i and v(n) is differentiable then the out-
flow in M model has right derivative

ȯ+(0) =
(

p′(n0)
L

+ β(1− α)v(n0)
L

)
∆i

Recall that ȯ+(0) =
(

p′(n0)
L

+ (Lf+(0)− 1)v(n0)
L

)
∆i in TB model. If we

assume f+(0) = 0 (this condition makes sense for α > 4
3
) then the correct

value of ȯ+(0) can be obtained by taking M model with β = 1
α−1

. This value
belongs to the interval (1, 3). The effect can be clearly seen in Figure 2.12
for distribution D2. If we take M model with β = 6 then the value of ȯ+(0)
is completely wrong, while M models with β = 1 and β = 3 show better
correspondence with TB model.
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2.5 Numerical comparison of models

In this section we try to understand, like in Section 2.4, how accurate are M
and PL models as approximations of TB model. We test different realistic
scenarios for the conventional v(n). In this case finding solutions of models
analytically is very problematic and it is easier to compare them numerically.

To compare models numerically we should build a numerical scheme for
finding the solution of TB model. We consider discrete moments of time
t = k∆t, where k = 0, 1, ..., K and K = T

∆t
.

Instead of taking continuous distribution f(l) we take its discrete approx-
imation. We assume that l takes only values m∆t, where m = 1, 2, ... and
denote as fm the probability of l = m∆t. The procedure of obtaining such
an approximation should keep the mean equal to L. While finding the solu-

tion of TB model we will utilize numbers Fm =
m∑
r=1

fr which is the CDF that

corresponds to fm.

Here we demonstrate one of possible procedures of finding discrete approx-
imation of the mixture of uniform distributions. This class of distributions is
very wide and we can say that it covers most of the cases that are of practical in-
terest. We start by considering simple uniform distribution U [A∆t−b, A∆t+b],
where b 6 A∆t. We assume that A is an integer to simplify the procedure. This
assumption puts some restrictions on the mixtures that can be considered. Ho-
wever, these restrictions are not strong if ∆t is small. Denote the largest integer
that is less than b

∆t
as B. Then we can take

fm = 1
2B+1

, m = A−B,A−B + 1, ..., A+B

This gives an approximation with mean A∆t. Now consider a mixture of uni-
forms

w1U1[A1∆t− b1, A1∆t+ b1] + w2U2[A2∆t− b2, A2∆t+ b2] + ...

The mean value of such distribution is equal to L = (w1A1 +w2A2 + ...)∆t and
does not change with our discretization.

To discretize variable a (remaining distance to be traveled) we assume that
a = m∆t, m = 0, 1, .... We estimate the value of accumulation n(t, a) on the
grid nk,m, k = 0, 1, ..., K, m = 0, 1, ..., where nk,m corresponds to n(k∆t,m∆t).
We assume that n0,0 = n0 and inflow is discretized as

ik = 1
∆t

k∆t∫
(k−1)∆t

i(t)dt, k = 1, ..., K

This gives the following numerical scheme for solving (2.3):
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n0,m = n0
∆t
L

∞∑
r=m

(1− Fr)

nk+1,m − nk,m = (1− Fm)ik+1∆t− v(nk,0)(nk,m − nk,m+1)

The dependences of this scheme are shown in Figure 2.13

k

m

0 K1 2 3

1

2

3

Figure 2.13: The dependences of numerical scheme for finding the solution of
TB model. Nonlocal dependences (blue) are caused by v(nk,0).

We should note that

∞∑
r=0

(1− Fr) =
∞∑
r=0

∞∑
m=r+1

fm =
∞∑
m=1

(fmm) = L
∆t

Therefore, n0,0 = n0 which means that the numerical scheme is consistent with
the input. Also, such numerical scheme gives correct answer nk,0 = n0 for the

steady state inflow i(t) = v(n0)
L
n0. Finally, note that this numerical scheme sa-

tisfies CFL (Courant-Friedrichs-Lewy) conditions, because its Courant number

is equal to
v(nk,0)∆t

∆t
= v(nk,0) 6 1.

To solve PL model we use the following numerical scheme:

nk+1 − nk = ik+1∆t− v(nk)
L
nk∆t

It gives correct answer nk = n0 for the steady state inflow i(t) = v(n0)
L
n0.

To solve M model we use the following numerical scheme:
M0 = L

α
n0

nk+1 − nk = ik+1∆t− v(nk)
L

(
nk + 3

(
nk − α

L
Mk

))
∆t

Mk+1 −Mk = Lik+1∆t− v(nk)nk∆t

It also gives correct answer nk = n0 for the steady state inflow i(t) = v(n0)
L
n0.

Note also that if α = 1 then one can easily prove by induction that Mk = Lnk
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and, therefore, the numerical solution of M model is equivalent to numerical
solution of PL model.

In this section we compare models using conventional v(n). We want to
choose rather realistic v(n). Empirical observations usually show that the
function p(n) = v(n)n is unimodal and the maximum is reached at some criti-
cal point ncr that is less than

njam
2

. Also, the typical value of v(ncr) is around
1
2
. Thus, we will assume njam = 3ncr and v(ncr) = 1

2
. One of possible diffe-

rentiable functions v(n) that satisfies these assumptions has the following form:

v(n) =


1− n

2ncr
, n ∈ [0, ncr]

2

1+
n
ncr

− 1
2

, n ∈ [ncr, 3ncr]

0 , n ∈ [3ncr,+∞)

In figure 2.14 we show this function and corresponding p(n).

n

v(n)

0 ncr

1
2

1

3ncr n

p(n)

0 ncr

ncr
2

3ncr

Figure 2.14: Realistic function v(n) and corresponding p(n).

We utilize this v(n) for our numerical simulations as it has very realistic
shape. As for the trip length distributions, we want to test f(l) that have α
from 1.2 to 1.6 as we consider this range to be the most realistic. Also, we
want to test f(l) that are reasonable but not gamma-like, because, as we sho-
wed in Section 2.4, in the case of gamma-like distributions M model is a very
good approximation of TB model. As it is extremely difficult to say which f(l)
should be tested for an arbitrary α, we focus only on extreme cases α = 1.2
and α = 1.6. We take distributions

D1 = 1
2
U [0, L] + 1

2
U [0, 3L]

D2 = U
[(

1−
√

3
2

)
L,
(

1 +
√

3
2

)
L
]

that we investigated in Section 2.4. They are reasonable, because their domains
belong to [0, 3L], and not gamma-like (one can easily calculate that D1 has
ρ3

L3 = 1
2

and δ = 7
108

, D2 has ρ3

L3 = 0 and δ = 1
48

). These δ are not big and we
can say that distributions are realistic. We show this fact in Figure 2.14:
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•
•

α

δ

1
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1
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Figure 2.15: Values of δ for distributions D1 and D2 and all reasonable distribu-
tions (cyan area).

Define the capacity of the zone as the maximum possible inflow in a steady
state. Obviously, it is equal to c = p(ncr)

L
= ncr

2L
. To do numerical comparison

of models we should choose the input. We take the same quadratic inflow
i(t) = i0 + 4 t

T

(
1− t

T

)
∆i as we used for investigating the hysteresis effect.

However, our v(n) is not constant. Thus, i0 and ∆i play a big role for the
result. As we try to simulate the peak hour, we should take reasonable values,
such that the difference between the maximum inflow i0 + ∆i and c is not very
big. We assume i0 = v(n0)

L
n0, in other words, i(t) does not jump at t = 0.

Thus, we can start by taking realistic value of n0. We take n0 = 0.3ncr. This
results in v(n0) = 0.85 and i0 = 0.51c. These values look rather realistic for
the beginning of the peak hour. We expect that with i0+∆i > 1.2c and realistic
T the system should definitely go to gridlock. However, if i0 + ∆i < 0.9c, the
gridlock should definitely not occur. Thus, to compare models under different
levels of congestion, we will check i0 + ∆i from 0.9c to 1.2c. Finally, we should
define realistic value of T . More precisely, as we do not specify L, we should
define T/L. Here we can imagine that T is from 1 to 3 hours and L is from
3 to 6 minutes for the zone of several kilometers in diameter. Thus, T/L
should be somewhere from 10 to 60. We take the value T/L = 30 and do not
check other ratios to not overload the analysis. For us it is more important to
investigate what will happen if i(t) makes some jumps. First, because real i(t)
cannot be very smooth and, probably, its fluctuations can be predicted based
on some real-time observations. Second, because we expect to see jumps if
one controls the inflow. Big jumps of i(t) are not likely to happen with some
optimal control, because they can produce large traffic jams that can block the
traffic outside the zone. However, some small interventions might be useful.
We will not try to model fluctuations in a non-control scenario. Also, we
will not try to model scenarios with the optimal control, because this requires
modeling of queues outside the zone and a rigorous formulation of objective
function. Instead, we can think what is the typical size of the jump and the
typical duration. We assume that the jump is about 0.1c and the duration is
about L. This gives us the idea that for any continuous i(t) we can consider
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corresponding jumping inflow i(t)+(−1)[t/L]0.1c to understand approximately
what happens under fluctuations or optimal control. We show inflow profiles
that we use for simulations in Figure 2.16

t

i(t)

0

i0

15L

i0 + ∆i

30L t

i(t)

0

i0

15L

i0 + ∆i

30L

Figure 2.16: Inflow profiles that are used for numerical comparison of models.
The peak-hour (left) is simulated as i(t) = i0 + 4 t

T

(
1− t

T

)
∆i, where i0 = 0.51c

and i0 + ∆i ∈ [0.9c, 1.2c]. The corresponding scenario with jumps of inflow (right)
is simulated by adding step function (−1)[t/L]0.1c.

For the discretization of i(t) and f(l) we choose time step ∆t = L
100

, which
is very small value. We do this to be as close to the continuous case as possible.

We start our analysis from the case of smooth inflow. In Figure 2.17 we
present solutions of models for i(t) with i0 + ∆i = 1.05c.
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Figure 2.17: Solutions of models for smooth inflow with i0 + ∆i = 1.05c. TB
model is given for D1 (blue) and D2 (olive). M model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) approximates TB model very well. PL model (cyan,
dashed) approximates TB model not very well.
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One can notice that solution of TB model with distributions D1 and D2
exceeds ncr. This effect is captured very well by M model. However, PL model
says that n(t) reaches only the value of approximately 0.97ncr. In Figure 2.18
we present solutions for i(t) with i0 + ∆i = 1.1c. The small increase of inflow
in the case when capacity is exceeded can lead to completely different results.
In fact, TB model with D2 reaches gridlock.
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Figure 2.18: Solutions of models for smooth inflow with i0 + ∆i = 1.1c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). M model for α = 1.2
(blue, dashed) and α = 1.6 (olive, dashed) approximates TB model very well. PL
model (cyan, dashed) is not a good approximation and cannot predict gridlock for
D2.

One can see that in this highly congested scenario PL model significantly
underestimates accumulation. This can be a drawback while using PL model
in practice.

To compare models for an arbitrary ∆i we should first choose important
values that will show how close are models to each other. We think that the
maximum accumulation nmax plays a big role in practice, because it indica-
tes the maximum level of congestion that will be reached and, consequently,
control measures that might be taken. Thus, we will first look at nmax. The
results are presented in Figure 2.19.
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i0 + ∆i

nmax(i0 + ∆i)

0.9c c 1.1c 1.2c

ncr

2ncr

3ncr

Figure 2.19: Maximum accumulation for smooth inflow depending on i0+∆i. TB
model is given for D1 (blue) and D2 (olive). M model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) shows similar values. PL model (cyan, dashed) shows
very different values for i0 + ∆i > c.

One can see that nmax in M model is very similar to nmax in TB model,
even for the cases close to gridlock. PL model tends to underestimate nmax
and shows values close to 1.15ncr when TB and M models reach gridlock for
D1 and close to 1.5ncr when TB and M models reach gridlock for D2.

To have more information about the quality of approximation we suggest
to look also at the average relative error. If, for example, we consider PL as
an approximation of TB model then it is defined as

εPL/TB = 1
K

K∑
k=1

∣∣∣nPLk −nTBk,0nTBk,0

∣∣∣

Such an error takes the whole time interval into account and will not say
that two models are necessarily close to each other if their nmax are similar.
Theoretically, moments of time corresponding to maximum accumulation can
be different. In Figure 2.20 we present εPL/TB and εM/TB as functions of i0+∆i.
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Figure 2.20: Relative error between approximations and TB model for smooth
inflow. TB model is given for D1 (left) and D2 (right). The error of M model for
α = 1.2 (blue, dashed) and M model for α = 1.6 (olive, dashed) is much lower
than the error of PL model (cyan, dashed).

One can see that the error of M model is approximately one order smaller
than the error of PL model. However, if i0 + ∆i is smaller than capacity, PL
model is also a good approximation of TB model.

Hereafter in this section we do the same analysis for jumping inflow. One
can easily see that jumps do not produce big change of results.
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Figure 2.21: Solutions of models for jumping inflow with i0 + ∆i = 1.05c. TB
model is given for D1 (blue) and D2 (olive). M model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) approximates TB model very well. PL model (cyan,
dashed) approximates TB model not very well.
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Figure 2.22: Solutions of models for jumping inflow with i0 + ∆i = 1.1c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). M model for α = 1.2
(blue, dashed) and α = 1.6 (olive, dashed) approximates TB model very well. PL
model (cyan, dashed) is not a good approximation and cannot predict gridlock for
D2.
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Figure 2.23: Maximum accumulation for jumping inflow depending on i0+∆i. TB
model is given for D1 (blue) and D2 (olive). M model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) shows similar values. PL model (cyan, dashed) shows
very different values for i0 + ∆i > c.
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Figure 2.24: Relative error between approximations and TB model for jumping
inflow. TB model is given for D1 (left) and D2 (right). The error of M model for
α = 1.2 (blue, dashed) and M model for α = 1.6 (olive, dashed) is much lower
than the error of PL model (cyan, dashed).

Interestingly, εPL/TB shows very similar values to the case of smooth inflow.
However, εM/TB tends to be higher for jumping inflow, especially for i0 + ∆i
from 0.9c to c.

2.6 Conclusion and discussion

In this chapter we analyzed properties of popular network-level models that are
based on the concept of speed-MFD. PL model is simple to solve numerically,
but lacks physical interpretation. TB model has clear physical interpretation,
but is difficult to solve numerically. To overcome this problem we suggest
an approximation of TB model which has the form of ODE. We refer to this
approximation as “M model”. To find the solution of M model one needs to
know the coefficient α = 2L2

L2+σ2 , where L is the mean of trip-length distribution
and σ is its standard deviation. We show that for some realistic distributions
M model can be equivalent to TB model, but this can happen only if α 6 4

3(
σ > L√

2

)
which does not cover all the cases that are of practical interest.

Thus, we try to prove analytically that the difference between M and TB
models is small. However, such an analysis is done for the case of constant
speed and cannot give an answer about the case of decreasing speed-MFD,
where the error can accumulate. Thus, we build numerical schemes for solving
PL, TB and M models and show for some realistic conditions that M model is
still a good approximation of TB model in the case of decreasing speed-MFD.
At least, it approximates TB model much better than PL model. We think that
TB model can arise not only in transportation field. The case of constant speed
corresponds to LTI (Linear Time-Invariant) system and can appear in many
different fields, from economics to pharmacokinetics. In this work we prove
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that M model is a good approximation of TB model for the parameters and the
inputs that are typical for transportation systems. However, we believe that
M model can be useful also in other fields. Investigating of this question lies
outside of this work. Hereafter in this section we discuss difficulties related to
applying PL, TB and M models for transportation systems and mathematical
difficulties related to TB and M models.

2.6.1 Difficulties related to perimeter control

In our general framework of modeling the inflow causes the outflow. We do
not assume that the parameters, i.e. speed-MFD and trip-length distribution
can be changed externally. Therefore, the only natural way to control such
a system is to control the inflow. We should be very careful while trying to
apply this framework for the real city. First, before the real inflow control is
implemented, parameters can be measured for everyday conditions only. We do
not think that variety of everyday inflow patterns can cover all the cases that
become feasible with inflow control. Thus, to be fully sure that the parameters
will not change, one needs to perform real experiments with inflow control
before building the final control strategy. We think that big rapid adjustments
of inflow might destroy the speed-MFD, but small adjustments should not
influence it a lot. This question is not trivial and should be investigated.
Second, the modeling approach assumes that dynamics of accumulation does
not depend on the exact place where the inflow comes to the zone. This
makes more sense in a non-control case, because inflow should change more or
less proportionally in different places. However, in a control case it is almost
impossible to keep these ratios, because some portion of inflow comes from
inside the zone and it is difficult to stop such vehicles separately from other
vehicles. Imagine a vehicle that was parked and started its trip in a dense flow.
Thus, keeping the ratios is difficult and there is no guarantee that parameters of
the model will not change with control. Fortunately, we can imagine some cases
(e.g. morning peak hour in a city center area) when the portion of vehicles that
start trips from inside is negligibly small. For such a case the ratios of most
important inflows can be kept, if there are no spillbacks that reach entrances
from inside the zone. Summarizing, the presented modeling approach can be
potentially used for the inflow control, but the exact implementation is still
unclear and requires additional investigations.

2.6.2 Difficulties related to adjustment of speed-MFD

Though in this work we assume that v(n) cannot be changed externally, phy-
sically it is possible. The shape of v(n) should depend on the regimes of all
traffic lights inside the zone. If one knows how to achieve desired speed by
regulating them, he can control the system. For this type of control we can
consider a modification of our modeling framework. Instead of assuming that
the space-mean speed v(t) is equal to v(n(t)), we can assume that it is given
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exogenously and corresponding n(t) allows to keep desired v(t). Thus, PL
model can be formulated as{

n(0) = n0

ṅ(t) = i(t)− v(t)
L
n(t), t ∈ [0, T ]

and TB model can be formulated as
n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s
v(u)du

))
i(s)ds , t ∈ (−∞, T ]

Note that existence and uniqueness of PL and TB models holds for any posi-
tive, continuous on the interval [0, T ] function v(t). The solution of PL model
can be found as a solution of linear differential equation and the solution of
TB model is given explicitly. Moreover, continuity of n(t) still holds. For PL
model it is obvious and for TB model it follows from the proof of Proposition
3 where we did not use the equality v(t) = v(n(t)). M model for exogenous
speed takes the form

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(t)
L

(
n(t) + 3

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(t)n(t) , t ∈ [0, T ]

The case of exogenous speed is very similar to the case of constant speed.

Consider the change of variable y =
t∫

0

v(u)du. Define functions n∗(y) = n(t),

M∗(y) = M(t) and g(y) = i(t)
v(t)

. Denote Y =
T∫
0

v(u)du. Notice that ẏ(t) = v(t).

Therefore, the equivalent formulation of PL model is{
n∗(0) = n0

dn∗

dy
(y) = g(y)− 1

L
n∗(y), y ∈ [0, Y ]

(2.15)

The equivalent formulation of TB model is
n∗(y) = n0 , y ∈ (−∞, 0]

g(y) = 1
L
n0 , y ∈ (−∞, 0]

n∗(y) =
y∫
−∞

(1− F (y − x))g(x)dx , y ∈ (−∞, Y ]

(2.16)

The equivalent formulation of M model is
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
n∗(0) = n0

M∗(0) = L
α
n0

dn∗

dy
(y) = g(y)− 1

L

(
n∗(y) + 3

(
n∗(y)− α

L
M∗(y)

))
dM∗

dy
(y) = Lg(y)− n∗(y)

(2.17)

We can see that equivalent formulations of PL, TB and M models correspond
to the case of constant speed. Thus, we can be sure that M model still approx-
imates TB model very well. Summarizing, M model with exogenous speed can
be potentially used in a control based on adjustment of speed-MFD.

2.6.3 Difficulties related to MPC

Real transportation systems have some degree of uncertainty. In our work
the approach is deterministic. Thus, the analysis that we made ignores the
fact that real i(t) cannot be predicted with a good precision for the whole
peak hour. The main goal of the analysis was not to show that M model
approximates TB model very well on the long time horizon, but to show that it
approximates TB model very well on the onset and on the offset of congestion.
We think, that in practice M model should be used inside some MPC (Model
Predictive Control) framework with a short time horizon that reflects the level
of noise or sudden big disturbances in the system. We do not know, what
is better in this situation, to use robust values of L and α measured for the
whole day during a long time period, to use values of L and α measured for
the current time of the day during a long time period, or to always measure
L and α during the current day and make a short-time prediction of their
values. In any case, applying M model seems to be easier than TB model that
requires full knowledge of the trip-length distribution. Also, M model is more
preferable than PL model, not because it approximates TB model better than
PL model, but because it can be viewed as a generalization of PL model. If we
consider M model as a self-standing model, there is no need to measure α based
on the trip-length distribution (which can be not well defined). Of course, if
there exists information about distribution, this can be useful, but probably,
the best value of α does not fully correspond to the trip-length distribution
and can be calibrated based on some other observations. Thus, PL model,
that is specific case of M model for α = 1, lacks one degree of freedom that
might be important. There is one question about the most efficient way of
using M model that remains unclear. Our formulation of M model assumes
that initial value M(0) = L

α
n0 corresponds to the steady state. We make this

assumption to be able to apply the model in the case when the prehistory of
n(t) is not known and only the value n0 is available. If we do MPC, we should
run M model many times. Each new run can use information from previous
runs. Thus, it is probably better to start M model not from the steady state
value of M(t), but from the value taken from the previous run, or some other
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run. We think, that the choice of initial value of M(t) in MPC framework is
an interesting research question.

2.6.4 Mathematical difficulties

First, we clarify why we took quadratic i(t) for analytical comparison of mo-
dels. The main goal was to show that M model is a good approximation of
TB model for any α > 1. We wanted to show this for a wide range of f(l)
and i(t). The most difficult problem here is to find classes of f(l) and i(t).
Recall that we started to investigate the quality of approximation from the
question of equivalence between models. The main results were that M model
is equivalent to TB model for any f(l) if i(t) = p(n0)

L
= const and is equivalent

to TB model for any i(t) if f(l) has some specific shape which has α 6 4
3
.

Both results are not very interesting from the practical point of view. The
first result is about constant i(t) which means that no control is possible, the
second result is about very limited range of α that do not cover most of the
different values that we expect to have in reality. To solve this problem we
took a class of quadratic i(t) in order to relax constraints on f(l). However,
this forced us to switch from equivalence to convergence in the case of con-
stant v(n), because equivalence is a very strong condition. Note, that putting
additional constraints on i(t) in order to make M model a good approximation
of TB model for a wider range of f(l) seems to be a principle. If one takes
class of linear i(t) instead of quadratic he obtains convergence of M model to
TB model for all f(l) instead of gamma-like.

Another important question is negative values of accumulation that can
appear in M model for α > 4

3
. If this happens during computational process,

it might cause big problems in practice. However, our numerical comparison of
models never faced this case. In fact, to reproduce such an effect, one needs to
perform some actions that are not likely to happen in reality, for example, drop
the inflow to zero. The less important drawback than negative accumulation is
negative outflow which can also happen for α > 4

3
. It might produce problems

if one decides to extend the model and say that the outflow is an input to the
neighboring zone. However, negative outflow usually happens if n(t) is close
to zero and i(t) makes a big jump. This is something we also do not expect to
have in reality. In any case, if the solution of M model does not exist or show
some strange behavior like negative outflow or gridlock, one can interpret this
situation as a non-realistic input and try to adjust it to get consistent solution.

There is one difficulty related to numerical solution of TB model. In this
work we suggest to consider f(l) that are mixtures of uniforms to make the
discretization procedure clear. However, if one wants to discretize other type
of distribution (e.g. exponential) he needs different procedure. The best ap-
proximation of exponential distribution f(l) = 1

L
e−l/L, for our opinion, is

fm = ∆t
L

(
1− ∆t

L

)m−1
, m = 1, 2, ...
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These probabilities correspond to geometric distribution with mean L
∆t

. The
reason to take this approximation is that exponential distribution gives equi-
valence between TB and PL models and we want numerical solutions to be
equivalent as well. We can formulate this result as

Proposition 30. Numerical solution of TB model is equivalent to numerical
solution of PL model for any input if and only if fm, m = 1, 2, ... correspond
to geometric distribution with mean L

∆t
.

This example shows, that the best rule of converting continuous distri-
bution into discrete is not obvious. Note, that we do not suggest to put
Fm = F (m∆t) which seems to be the simplest way. In this case the mean of
approximation will be slightly higher than L.

Finally, we should discuss how the size of ∆t influences solutions of models.
In this work we used value ∆t = L

100
. However, in practice this can be compu-

tationally expensive. Especially for TB model. The number of computational
steps for TB model grows quadratically with L

∆t
, while for PL and M models

it grows linearly. To get an intuition about the influence of time step on the
numerical solutions of models, in Figures 2.25-2.28 we compare our results for
∆t = L

100
with results for ∆t = L

10
.
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Figure 2.25: Solutions of models for smooth inflow with i0 + ∆i = 1.05c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). TB model shows slightly
different results for ∆t = L

100
(left) and ∆t = L

10
(right), while M model for α = 1.2

(blue, dashed) and α = 1.6 (olive, dashed) is not very sensitive to the time step.
PL model (cyan, dashed) is also not very sensitive to the time step.
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Figure 2.26: Solutions of models for smooth inflow with i0 + ∆i = 1.1c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). TB model shows different
results for ∆t = L

100
(left) and ∆t = L

10
(right), while M model for α = 1.2 (blue,

dashed) and α = 1.6 (olive, dashed) is not very sensitive to the time step. PL
model (cyan, dashed) is also not very sensitive to the time step.
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Figure 2.27: Solutions of models for jumping inflow with i0 + ∆i = 1.05c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). TB model shows slightly
different results for ∆t = L

100
(left) and ∆t = L

10
(right), while M model for α = 1.2

(blue, dashed) and α = 1.6 (olive, dashed) is not very sensitive to the time step.
PL model (cyan, dashed) is also not very sensitive to the time step.

51



2.6. CONCLUSION AND DISCUSSION

t

n(t)

0 15L 30L

ncr

2ncr

3ncr

t

n(t)

0 15L 30L

ncr

2ncr

3ncr

Figure 2.28: Solutions of models for jumping inflow with i0 + ∆i = 1.1c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). TB model shows different
results for ∆t = L

100
(left) and ∆t = L

10
(right), while M model for α = 1.2 (blue,

dashed) and α = 1.6 (olive, dashed) is not very sensitive to the time step. PL
model (cyan, dashed) is also not very sensitive to the time step.

We can see that the solution of M model is not very sensitive to the time
step, while the solution of TB model changes a lot. This result is paradoxical,
because in the case of small time step TB and M models are very close to each
other and M model should be a very good approximation of continuous TB
model. Thus, if we want to find the solution of continuous TB model using our
numerical scheme with a big time step, M model is more preferable than TB
model, even for the inflow with jumps. However, the paradox might disappear
if one finds better numerical scheme for solving TB model, but this lies outside
of our work.
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Mathematical proofs 3
This chapter contains proofs of all propositions from Chapter 2. Here we re-
peat main definitions:

1. The speed-MFD function v(n) is a non-negative decreasing continuous
function that satisfies v(0) = 1. We assume that either v(n) = 1 = const
(this case is called “constant” v(n)) or v(n) reaches zero at n = njam and has
Lipschitz constant C (this case is called “conventional” v(n)).

2. The PDF of trip length distribution in TB model f(l), l ∈ (0,+∞)
is a piecewise continuous function bounded on the interval [0, fmax] and sa-

tisfying
+∞∫
0

f(l)ldl = L. The piecewise continuity property in this thesis

means finite number of jump discontinuities and no removable or essential
discontinuities. We use notations f−(l) = lim

∆l→−0
f(l + ∆l), l ∈ (0,+∞) and

f+(l) = lim
∆l→+0

f(l + ∆l), l ∈ [0,+∞) for the left and right limits of f(l). The

notations for the second and the third central moments of f(l) are

σ2 =
+∞∫
0

f(l)(l − L)2dl =
+∞∫
0

f(l)l2dl − L2

ρ3 =
+∞∫
0

f(l)(l − L)3dl =
+∞∫
0

f(l)l3dl − 3Lσ2 − L3

We also use notation α = 2L2

L2+σ2 for the convenience. Note that α ∈ (0, 2).
3. The inflow function i(t), t ∈ (0, T ] is a piecewise continuous function

bounded on the interval [0, imax]. We use notations i−(t) = lim
∆t→−0

i(t+ ∆t), t ∈
(0, T ] and i+(t) = lim

∆t→+0
i(t+ ∆t), t ∈ [0, T ) for the left and right limits of i(t).
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Proposition 1. The function v(n)
L
n is Lipschitz.

Proof. If v(n) is constant then
∣∣∣v(n2)

L
n2 − v(n1)

L
n1

∣∣∣ =
∣∣n2−n1

L

∣∣ and, therefore,
v(n)
L
n is Lipschitz with constant 1

L
. If v(n) is conventional then in the case

n1, n2 > njam we have
∣∣∣v(n2)

L
n2 − v(n1)

L
n1

∣∣∣ = 0. Otherwise we can put n1 6 njam

without loss of generality. This gives∣∣∣v(n2)
L
n2 − v(n1)

L
n1

∣∣∣ = 1
L
|v(n2)n2 − v(n2)n1 + v(n2)n1 − v(n1)n1| 6

6 1
L
v(n2)|n2 − n1|+ 1

L
|v(n2)− v(n1)|n1 6

6 1
L
|n2 − n1|+ 1

L
C|n2 − n1|njam

Therefore, v(n)
L
n is Lipschitz with constant 1

L
(1 + Cnjam).

Proposition 2. The solution n(t) of problem{
n(0) = n0

ṅ(t) = i(t)− v(n(t))
L

n(t), t ∈ [0, T ]

exists and is unique.

Proof. If v(n) is constant then we get a linear differential equation with unique
solution

n(t) = e−t/Ln0 +
t∫

0

e−(t−s)/Li(s)ds

If v(n) is conventional then we define the function o(n), n ∈ (−∞,+∞) the
way that

o(n) =

{
0 , n < 0
v(n)
L
n , n > 0

Obviously, it is Lipschitz with the same constant 1
L

(1 +Cnjam) that Lipschitz

function v(n)
L
n has. The function i(t) is piecewise continuous and, therefore,

n(t) that satisfies {
n(0) = n0

ṅ(t) = i(t)− o(n(t))
(3.1)

exists and is unique in some small neighborhood [0, ε] of initial point (by
Cauchy-Lipschitz theorem). The uniqueness and existence of n(t) on the whole
interval [0, T ] follows from the fact that the function n(t), t ∈ [0, T ] is bounded:

n(t) 6 n0 + imaxt

n(t) > n0 − njam
L
t
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Now prove by contradiction that n(t) > 0 (and consequently o(n(t)) = v(n(t))
L

n).
Assume there exists t1 : n(t1) < 0. As the function n(t) is continuous, there
exists t2 < t1 : t2 = max (t | t ∈ [0, t1], n(t) = 0). Therefore,

0 > n(t1)− n(t2) =
t1∫
t2

ṅ(t)dt =
t1∫
t2

i(t)dt > 0

Contradiction.

Proposition 3. If for some T1 6 T the solution n(t), t ∈ (−∞, T1] of problem
n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T1]

exists then it is continuous.

Proof. To prove the proposition, we show that

lim
∆t→0

(n(t+ ∆t)− n(t)) = 0

Denote v(t) = v(n(t)) to simplify formulas. By definition,

n(t+ ∆t)− n(t) =

=
t+∆t∫
−∞

(
1− F

(∫ t+∆t

s
v(u)du

))
i(s)ds−

−
t∫
−∞

(
1− F

(∫ t
s
v(u)du

))
i(s)ds =

=
t+∆t∫
t

(
1− F

(∫ t+∆t

s
v(u)du

))
i(s)ds︸ ︷︷ ︸

N1(t,∆t)

−

−
t∫

0

(
F
(∫ t+∆t

s
v(u)du

)
− F

(∫ t
s
v(u)du

))
i(s)ds︸ ︷︷ ︸

N2(t,∆t)

−

−
0∫
−∞

(
F
(∫ t+∆t

s
v(u)du

)
− F

(∫ t
s
v(u)du

))
i(s)ds︸ ︷︷ ︸

N3(t,∆t)

It is obvious that |N1(t,∆t)| 6 |∆t|imax and |N2(t,∆t)| 6 fmax|∆t|imaxT1. As

for the N3(t,∆t), we first introduce notation y(t) =
t∫

0

v(u)du. Then we can
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rewrite N3(t,∆t) in the following form:

N3(t,∆t) =

=
0∫
−∞

i(0) (F (y(t+ ∆t)− v(0)s)− F (y(t)− v(0)s)) ds =

=
+∞∫
0

i(0)
v(0)

(F (y(t+ ∆t) + l)− F (y(t) + l)) dl =

= n0

L

+∞∫
0

y(t+∆t)∫
y(t)

f(l + x)dxdl = n0

L

y(t+∆t)∫
y(t)

+∞∫
0

f(l + x)dldx =

= n0

L

y(t+∆t)∫
y(t)

(1− F (x))dx.

Therefore, |N3(t,∆t)| 6 n0

L
|∆t| and

|n(t+ ∆t)− n(t)| 6
(
imax + fmaximaxT1 + n0

L

)
|∆t|

which means that

lim
∆t→0

(n(t+ ∆t)− n(t)) = 0

Proposition 4. There exists unique continuous solution n(t), t ∈ (−∞, T ] of
problem 

n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T ]

Proof. We prove the proposition by induction. We take small value h = T
K

and show for all k = 0, 1, 2, ..., K that there exists unique pair of continuous
on the interval (−∞, kh] functions nk(t) and vk(t) such that

nk(t) = n0 , t ∈ (−∞, 0]

nk(t) =
t∫
−∞

i(s)
(

1− F
(∫ t

s
vk(u)du

))
ds , t ∈ [0, kh]

vk(t) = v(nk(t)) , t ∈ (−∞, kh]

We construct the proof for K >
(
n0

L
+ fmaximaxT

)
CT . The reason to take

such K is explained later.
Basis. For k = 0 there exists unique pair of functions n0(t) = n0 and v0(t) =
v(n0).
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Induction step. For k > 1 we assume that nk−1(t) and vk−1(t) are already
reconstructed. Now consider the set of functions

vk(t) =

{
vk−1(t) , t ∈ (−∞, (k − 1)h)

ṽk(t) , t ∈ [(k − 1)h, kh]

The function ṽk(t) belongs to the class C([(k − 1)h, kh], [0, 1]) i.e., it is an
arbitrary continuous on the interval [(k − 1)h, kh] function bounded on the
interval [0, 1]. The set of such functions is complete metric space (in uniform
metric). This follows from the fact that C([(k − 1)h, kh]) is complete metric
space and the limit of convergent sequence of bounded on [0, 1] functions is
bounded on the same interval. For each vk(t) we consider nk(t) defined as

nk(t) =

=


nk−1(t) , t ∈ (−∞, (k − 1)h)

ñk(t) =
t∫
−∞

(
1− F

(∫ t
s
vk(u)du

))
i(s)ds , t ∈ [(k − 1)h, kh]

Our goal is to show that the transformation ṽk(t)→ v(ñk(t)) is a contraction.
If we prove this then, according to Banach fixed-point theorem, there exists
unique ṽk(t) = v(ñk(t)) and consequently unique vk(t) = v(nk(t)). The cor-
responding function nk(t) is continuous by Proposition 3 for T1 = kh. Recall
that v(n) is Lipschitz by definition. This means that vk(t) is also continuous.

To show that the transformation is a contraction we consider two arbi-
trary functions ṽak(t), ṽ

b
k(t) from C([(k − 1)h, kh], [0, 1]) and corresponding

ñak(t), ñ
b
k(t). Define

∆v = max
t∈[(k−1)h,kh]

∣∣ṽak(t)− ṽbk(t)∣∣
∆n = max

t∈[(k−1)h,kh]

∣∣ñak(t)− ñbk(t)∣∣
∆V = max

t∈[(k−1)h,kh]

∣∣v(ñak(t))− v(ñbk(t))
∣∣

The transformation is a contraction if ∆V 6 ε∆v for some ε < 1. For the proof
we denote the function vk(t) that corresponds to ṽak(t) or ṽbk(t) as vak(t) or vbk(t)

respectively. Denote also yak(t) =
t∫

0

vak(u)du, ybk(t) =
t∫

0

vbk(u)du. The upper

bound on ∆n can be found as
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∆n = max
t∈[(k−1)h,kh]

∣∣∣∣ t∫
−∞

(
F
(∫ t

s
vak(u)du

)
− F

(∫ t
s
vbk(u)du

))
i(s)ds

∣∣∣∣ 6
6 max

t∈[(k−1)h,kh]

∣∣∣∣ 0∫
−∞

(
F
(∫ t

s
vak(u)du

)
− F

(∫ t
s
vbk(u)du

))
i(s)ds

∣∣∣∣︸ ︷︷ ︸
nabk

+

+ max
t∈[(k−1)h,kh]

∣∣∣∣ t∫
0

(
F
(∫ t

s
vak(u)du

)
− F

(∫ t
s
vbk(u)du

))
i(s)ds

∣∣∣∣︸ ︷︷ ︸
Nab
k

nabk = max
t∈[(k−1)h,kh]

∣∣∣∣+∞∫
0

(
F (l + yak(t))− F

(
l + ybk(t)

)) i(0)
v(n0)

dl

∣∣∣∣ =

= max
t∈[(k−1)h,kh]

∣∣∣∣∣n0

L

+∞∫
0

yak(t)∫
ybk(t)

f(l + x)dxdl

∣∣∣∣∣ =

= max
t∈[(k−1)h,kh]

∣∣∣∣∣n0

L

yak(t)∫
ybk(t)

+∞∫
0

f(l + x)dldx

∣∣∣∣∣ =

= max
t∈[(k−1)h,kh]

∣∣∣∣∣n0

L

yak(t)∫
ybk(t)

(1− F (x))dx

∣∣∣∣∣ 6
6 max

t∈[(k−1)h,kh]

∣∣n0

L

(
yak(t)− ybk(t)

)∣∣ 6 n0

L
∆vh

Nab
k 6 fmax∆vhimaxT

∆n 6 nabk +Nab
k 6

(
n0

L
+ fmaximaxT

)
∆vh

Using Lipschitz property of v(n), we get

∆V 6 C∆n 6
(
n0

L
+ fmaximaxT

)
C∆vh =

(
n0

L
+ fmaximaxT

)
C∆v T

K

Therefore, the transformation is a contraction for any

K >
(
n0

L
+ fmaximaxT

)
CT

Proposition 5. The outflow in TB model is equal to

o(t) = v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds
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Proof. The function i(t) is not necessarily continuous and, therefore, we have
to prove that ṅ+(t) = i+(t)− o(t) and ṅ−(t) = i−(t)− o(t), where

o(t) = v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds

Here we show the proof for the right derivative, the proof for the left one can
be obtained the same way. By definition, the right derivative is equal to

lim
∆t→+0

n(t+∆t)−n(t)
∆t

The expression for the difference n(t+ ∆t)− n(t) is already given in the proof
of Proposition 3. We will use the same notation for the terms:

lim
∆t→+0

n(t+∆t)−n(t)
∆t

= lim
∆t→+0

N1(t,∆t)
∆t︸ ︷︷ ︸

R1(t)

− lim
∆t→+0

N2(t,∆t)
∆t︸ ︷︷ ︸

R2(t)

− lim
∆t→+0

N3(t,∆t)
∆t︸ ︷︷ ︸

R3(t)

Now calculate each of R1(t), R2(t), R3(t) separately:

R1(t) = lim
∆t→+0

(
1

∆t

t+∆t∫
t

(
1− F

(∫ t+∆t

s
v(u)du

))
i(s)ds

)
=

= lim
∆t→+0

(
1

∆t

t+∆t∫
t

(
1− F

(∫ t+∆t

s
v(u)du

))
i+(s)ds

)
According to Mean value theorem, R1(t) = 1·i+(t) = i+(t).

R2(t) =

= lim
∆t→+0

(
1

∆t

t∫
0

(
F
(∫ t+∆t

s
v(u)du

)
− F

(∫ t
s
v(u)du

))
i(s)ds

)
=

= lim
∆t→+0

t∫
0

F
(∫ t+∆t
s v(u)du

)
−F(

∫ t
s v(u)du)

∆t
i(s)ds

According to Mean value theorem,

lim
∆t→+0

F
(∫ t+∆t
s v(u)du

)
−F(

∫ t
s v(u)du)

∆t
= v(n(t))f+

(∫ t
s
v(u)du

)
6 fmax

The function fmaxi(s) is integrable on the interval [0, t]. Therefore, we can use
Lebesgue’s dominated convergence theorem to put the limit inside the integral:

R2(t) = lim
∆t→+0

t∫
0

F
(∫ t+∆t
s v(u)du

)
−F(

∫ t
s v(u)du)

∆t
i(s)ds =

=
t∫

0

v(n(t))f+

(∫ t
s
v(u)du

)
i(s)ds = v(n(t))

t∫
0

f
(∫ t

s
v(u)du

)
i(s)ds
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To calculate R3(t) we take the formula for N3(t,∆t) from Proposition 3, where

the notation y(t) =
t∫

0

v(n(u))du is used. This gives

R3(t) = lim
∆t→+0

N3(t,∆t)
∆t

=

= lim
∆t→+0

n0

L∆t

y(t+∆t)∫
y(t)

(1− F (x))dx =

= n0v(n(t))
L

(
1− F

(∫ t
0

v(n(u))du
))

=

= i(0)v(n(t))
v(n0)

+∞∫
0

f
(∫ t

0
v(n(u))du+ x

)
dx =

= i(0)v(n(t))
0∫
−∞

f
(∫ t

0
v(n(u))du− v(n0)s

)
ds =

= v(n(t))
0∫
−∞

f
(∫ t

s
v(n(u))du

)
i(0)ds

Finally, combining R1(t), R2(t), R3(t), we get

lim
∆t→+0

n(t+∆t)−n(t)
∆t

= i+(t)− v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds

Proposition 6. The outflow in TB model is continuous function.

Proof. As the function v(t) = v(n(t)) is continuous, we have to prove the

continuity of function
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds. We show that its right limit

at point t+ ∆t when ∆t tends to 0 is equal to the value at point t. The proof
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for the left limit can be obtained the same way.

lim
∆t→+0

(
t+∆t∫
−∞

f
(∫ t+∆t

s
v(n(u))du

)
i(s)ds−

t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds

)
=

= lim
∆t→+0

(
t+∆t∫
t

f
(∫ t+∆t

s
v(n(u))du

)
i(s)ds

)
+

+ lim
∆t→+0

(
t∫

0

(
f
(∫ t+∆t

s
v(n(u))du

)
− f

(∫ t
s

v(n(u))du
))

i(s)ds

)
+

+ lim
∆t→+0

(
0∫
−∞

(
f
(∫ t+∆t

s
v(n(u))du

)
− f

(∫ t
s

v(n(u))du
))

i(s)ds

)
=

= 0 +
t∫

0

lim
∆t→+0

(
f
(∫ t+∆t

s
v(n(u))du

)
− f

(∫ t
s

v(n(u))du
))

i(s)ds−

− i(0)
v(n0)

lim
∆t→+0

(
F
(∫ t+∆t

0
v(n(u))du

)
− F

(∫ t
0

v(n(u))du
))

=

= 0 +
t∫

0

0·i(s)ds− 0 = 0

As
∣∣∣f (∫ t+∆t

s
v(n(u))du

)
− f

(∫ t
s

v(n(u))du
)∣∣∣ 6 fmax and the function fmaxi(s)

is integrable on the interval [0, t], we applied here Lebesgue’s dominated con-
vergence theorem to put the limit inside the integral.

Proposition 7. If i+(0) = p(n0)
L

+ ∆i and v(n) is differentiable then the out-
flow in TB model has right derivative

ȯ+(0) =
(

p′(n0)
L

+ (Lf+(0)− 1)v(n0)
L

)
∆i
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Proof.

ȯ+(0) = lim
∆t→+0

o(∆t)−o(0)
∆t

=

= lim
∆t→+0

v(n(∆t))
∆t

∆t∫
0

f
(∫ ∆t

s
v(n(u))du

)
i(s)ds+

+ v(n0)
L
n0 lim

∆t→+0

1
∆t

(
v(n(∆t))

0∫
−∞

f
(∫ ∆t

s
v(n(u))du

)
ds− 1

)
=

= v(n0) lim
∆t→+0

1
∆t

∆t∫
0

f+

(∫ ∆t

s
v(n(u))du

)
i+(s)ds+

+ v(n0)
L
n0 lim

∆t→+0

1
∆t

(
v(n(∆t))
v(n0)

(
1− F

(∫ ∆t

0
v(n(u))du

))
− 1
)

=

= v(n0)f+(0)i+(0) + n0

L
lim

∆t→+0

v(n(∆t))−v(n0)
∆t

−

− n0

L
lim

∆t→+0
v(n(∆t)) lim

∆t→+0

1
∆t
F
(∫ ∆t

0
v(n(u))du

)
=

= v(n0)f+(0)i+(0) + n0

L
v′(n0)ṅ+(0)− n0

L
(v(n0))2f+(0) =

= v(n0)f+(0)
(
i+(0)− p(n0)

L

)
+ n0

L
v′(n0)ṅ+(0) =

= v(n0)f+(0)∆i+ n0

L
v′(n0)∆i =

(
p′(n0)
L

+ (Lf+(0)− 1)v(n0)
L

)
∆i

Proposition 8. TB model is equivalent to PL model for any input if and only
if f(l) = 1

L
e−l/L.

Proof. First, prove that if f(l) = 1
L
e−l/L then TB model is equivalent to PL

model for any input. To do this we show that the outflow in TB model is
always equal to v(n(t))

L
n(t):

1− F (l) = e−l/L = Lf(l)

o(t) = v(n(t))
t∫
−∞

f
(∫ t

s
v(u)du

)
i(s)ds =

= v(n(t))
t∫
−∞

1−F(
∫ t
s v(n(u))du)
L

i(s)ds = v(n(t))
L

n(t)

Now prove that if the distribution is not exponential then there is an input
such that the outflow in TB model differs from v(n(t))

L
n(t) for some t. First

notice that f(l)− 1−F (l)
L
6= 0 for some l. This function is piecewise continuous

and, therefore, exists an interval (l1, l2) such that f(l)− 1−F (l)
L

> 0, l ∈ (l1, l2)

or f(l)− 1−F (l)
L

< 0, l ∈ (l1, l2). Consider the input

n0 = 0

i(t) =

{
j, t ∈ (0, h]

0, t ∈ (h, T ]
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where h < l2 − l1. The system will not go to a gridlock if we choose j <
njam
h

.

Moreover, the minimum speed is not lower than v(jh). Now choose T > l2
v(jh)

.

This condition allows to find t < T such that
t∫

0

v(n(u))du = l2. Notice that

for all s ∈ (0, h] we have
t∫
s

v(n(u))du =
t∫

0

v(n(u))du −
s∫

0

v(n(u))du, where

s∫
0

v(n(u))du ∈ (0, l2 − l1). Therefore,
t∫
s

v(n(u))du ∈ (l1, l2) and

v(n(t))
t∫
−∞

(
f
(∫ t

s
v(n(u))du

)
− 1−F(

∫ t
s v(n(u))du)
L

)
i(s)ds

has the same sign as f(l)− 1−F (l)
L

on (l1, l2), i.e. o(t)− v(n(t))
L

n(t) 6= 0.

Proposition 9.

∂n
∂t

(t, a) = (1− F (a))i(t)− v(n(t))
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

Proof. The function i(t) is not necessarily continuous and the proposition
should be understood as

lim
∆t→−0

n(t+∆t,a)−n(t,a)
∆t

=

= i−(t)(1− F (a))− v(n(t))
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

lim
∆t→+0

n(t+∆t,a)−n(t,a)
∆t

=

= i+(t)(1− F (a))− v(n(t))
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

The proof is almost the same as the proof of Proposition 5. Thus, we will not

repeat it (one should always put a+
t∫
s

v(n(u))du instead of
t∫
s

v(n(u))du).

Proposition 10.

∂n
∂a

(t, a) = −
t∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

Proof.

∂n
∂a

(t, a) = lim
∆a→0

n(t,a+∆a)−n(t,a)
∆a

=

= lim
∆a→0

t∫
0

F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a
i(s)ds+

+ lim
∆a→0

0∫
−∞

F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a
i(s)ds
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Notice that

∣∣∣∣F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a

∣∣∣∣ 6 fmax and the function fmaxi(s)

is integrable on the interval [0, t]. Therefore, we can use Lebesgue’s dominated
convergence theorem to put the first limit inside the integral:

lim
∆a→0

t∫
0

F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a
i(s)ds =

=
t∫

0

lim
∆a→0

F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a
i(s)ds =

= −
t∫

0

f
(
a+

∫ t
s

v(n(u))du
)
i(s)ds

The second limit can be calculated as follows:

lim
∆a→0

0∫
−∞

F(a+
∫ t
s v(n(u))du)−F(a+∆a+

∫ t
s v(n(u))du)

∆a
i(s)ds =

= − lim
∆a→0

i(0)
v(n0)∆a

a+∆a+y(t)∫
a+y(t)

(1− F (x))dx =

= − i(0)
v(n0)

(
1− F

(
a+

∫ t
0

v(n(u))du
))

=

= − i(0)
v(n0)

+∞∫
0

f
(
a+

∫ t
0

v(n(u))du+ l
)
dl =

= − i(0)
0∫
−∞

f
(
a+

∫ t
0

v(n(u))du− v(n0)s
)
ds =

= − i(0)
0∫
−∞

f
(
a+

∫ t
s

v(n(u))du
)
ds

Combining results, we get ∂n
∂a

(t, a) = −
t∫
−∞

i(s)f
(
a+

∫ t
s

v(n(u))du
)
ds.

Proposition 11.

n(0, a) = n0

+∞∫
0

1−F (a+l)
L

dl

Proof. By definition,

n(0, a) =
0∫
−∞

(
1− F

(
a+

∫ 0

s
v(n(u))du

))
i(0)ds =

=
0∫
−∞

(1− F (a− v(n0)s)) i(0)ds = i(0)
v(n0)

+∞∫
0

(1− F (a+ l))dl =

= n0

+∞∫
0

1−F (a+l)
L

dl
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Proposition 12. If n(t, a) is a solution of problem
n(0, a) = n0

+∞∫
0

1−F (a+l)
L

dl , a ∈ [0,+∞)

∂n
∂t

(t, a)− v(n(t, 0))∂n
∂a

(t, a) = (1− F (a))i(t) , t ∈ [0, T ], a ∈ [0,+∞)

v(n(t, 0)) > 0 , t ∈ (0, T ]

then n(t, a) =
t∫
−∞

(
1− F

(
a+

∫ t
s

v(n(u, 0))du
))

i(s)ds, where

n(t, 0) = n0, t ∈ (−∞, 0] and i(t) = v(n0)
L
n0, t ∈ (−∞, 0].

Proof. Any solution n(t, a) of the above problem has left and right derivatives
with respect to t. Therefore, the function n(t, 0) is continuous, and v(n(t, 0))

is also continuous. Denote y(t) =
t∫

0

v(n(u, 0))du. This function is increa-

sing and, therefore, we can introduce inverse function t(y) and the function
n∗(y, a) = n(t(y), a). Notice that

∂n∗

∂y
(y, a)− ∂n∗

∂a
(y, a) = 1

v(n(t,0))
∂n
∂t

(t, a)− ∂n
∂a

(t, a) =

= i(t(y))
v(n(t(y),0))

(1− F (a))

Denote g(y) = i(t(y))
v(n(t(y),0))

. Now it can be easily seen that we have a non-
homogeneous transport equation:

∂n∗

∂y
(y, a)− ∂n∗

∂a
(y, a) = g(y)(1− F (a))

It is well-known, that the solution of such an equation can be written in an
integral form. We show here that with our boundary condition we get the
integral of interest. First, make a change of variables n∗(y, a) = n∗∗(φ1, φ2),
where

φ1 = a+ y

φ2 = y

Second, find the equation on n∗∗(φ1, φ2) and solve the initial problem:

∂n∗

∂y
= ∂n∗∗

∂φ1

∂φ1

∂y
+ ∂n∗∗

∂φ2

∂φ2

∂y
= ∂n∗∗

∂φ1
+ ∂n∗∗

∂φ2

∂n∗

∂a
= ∂n∗∗

∂φ1

∂φ1

∂a
+ ∂n∗∗

∂φ2

∂φ2

∂a
= ∂n∗∗

∂φ1

∂n∗∗

∂φ2
= ∂n∗

∂y
− ∂n∗

∂a
= g(φ2)(1− F (φ1 − φ2))
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n(t, a) = n∗∗(a+ y(t), y(t)) =

= n∗∗(a+ y(t), 0) +
y∫
0

g(φ2)(1− F (a+ y(t)− φ2))dφ2 =

= n(0, a+ y(t)) +
t∫

0

(
1− F

(
a+ y(t)−

∫ s
0

v(n(u, 0))du
))
i(s)ds =

=
0∫
−∞

(
1− F

(
a+

∫ t
0

v(n(u, 0))du− v(n0)s
))

i(0)ds+

+
t∫

0

(
1− F

(
a+

∫ t
s

v(n(u, 0))du
))

i(s)ds =

=
t∫
−∞

(
1− F

(
a+

∫ t
s

v(n(u, 0))du
))

i(s)ds

Proposition 13. For any φ > −1 the following equalities hold:

+∞∫
0

(1− F (l))lφdl = 1
φ+1

+∞∫
0

f(l)lφ+1dl

+∞∫
0

+∞∫
0

(1− F (a+ l))lφdlda = 1
(φ+2)(φ+1)

+∞∫
0

f(l)lφ+2dl

Proof.

+∞∫
0

(1− F (l))lφdl =
+∞∫
0

f(x)
x∫
0

lφdldx = 1
φ+1

+∞∫
0

f(x)xφ+1dx

+∞∫
0

+∞∫
0

(1− F (a+ l))lφdlda =
+∞∫
0

+∞∫
0

lφ
+∞∫
a+l

f(x)dxdlda =

=
+∞∫
0

f(x)
x∫
0

lφ
x−l∫
0

dadldx =
+∞∫
0

f(x)
x∫
0

(x− l)lφdldx =

=
(

1
φ+1
− 1

φ+2

) +∞∫
0

f(x)xφ+2dx = 1
(φ+2)(φ+1)

+∞∫
0

f(x)xφ+2dx

Proposition 14.
Ṁ(t) = Li(t)− v(n(t))n(t)

Proof. Using Proposition 9 we can express n(t, a) the following way:

n(t, a) = n(0, a) +
t∫

0

(1− F (a))i(t̃)dt̃−

−
t∫

0

v(n(t̃))
t̃∫
−∞

f
(
a+

∫ t̃
s

v(n(u))du
)
i(s)dsdt̃
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This results in

M(t) =
+∞∫
0

n(t, a)da =

=
+∞∫
0

n(0, a)da+
+∞∫
0

t∫
0

(1− F (a))i(t̃)dt̃da−

−
+∞∫
0

t∫
0

v(n(t̃))
t̃∫
−∞

f
(
a+

∫ t̃
s

v(n(u))du
)
i(s)dsdt̃da =

= M(0) +
t∫

0

i(t̃)
+∞∫
0

(1− F (a))dadt̃−

−
t∫

0

v(t̃)
t̃∫
−∞

i(s)
+∞∫
0

f
(
a+

∫ t̃
s
v(u)du

)
dadsdt̃ =

= M(0) + L
t∫

0

i(t̃)dt̃−
t∫

0

v(n(t̃))
t̃∫
−∞

(
1− F

(∫ t̃
s
v(u)du

))
i(s)dsdt̃ =

= M(0) + L
t∫

0

i(t̃)dt̃−
t∫

0

v(n(t̃))n(t̃)dt̃

Note that the function i(t̃) is piecewise continuous and the function v(n(t̃))n(t̃)
is continuous. By differentiating the last equation one gets

Ṁ(t) = Li(t)− v(n(t))n(t)

in the sense that {
Ṁ−(t) = Li−(t)− v(n(t))n(t)

Ṁ+(t) = Li+(t)− v(n(t))n(t)

Proposition 15. If the solution of problem
n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))(β1n(t)− β2M(t)) , t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

exists, then it is unique.

Proof. If v(n) is constant then we can rewrite the problem as

[
n(0)
M(0)
L

]
=

[
1
1
α

]
n0[

ṅ(t)
Ṁ(t)
L

]
= − 1

L
A

[
n(t)
M(t)
L

]
+

[
1

1

]
i(t)
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where A =

[
β1L −β2L

2

1 0

]
. Obviously, this is a system of linear differential

equations with unique solution[
n(0)
M(0)
L

]
= e−At/L

[
1
1
α

]
n0 +

t∫
0

e−A(t−s)/L
[
1
1

]
i(s)ds

If v(n) is conventional then the uniqueness of solution can be guaranteed by
showing that functions v(n)(β1n−β2M) and v(n)n are Lipschitz with respect
to n and M . Obviously, Lipschitz constants for M can be taken as |β2| and 0.
In the proof of Proposition 1 we already showed that v(n)n is Lipschitz with
constant 1 + Cnjam. To find Lipschitz constant of v(n)(β1n− β2M) for n we
first show that M(t), t ∈ (0, T ] is bounded:

M(t) 6 L
α
n0 + imaxLT

M(t) > L
α
n0 − njamT

If we denote Mmax = max
(
L
α
n0 + imaxLT,

∣∣L
α
n0 − njamT

∣∣) then we can take
|β1|(1 + Cnjam) + |β2|MmaxC as Lipschitz constant for n.

Proposition 16. f(l), l ∈ (0,+∞) is a PDF satisfying equation of the form
f ′′(l) + β1f

′(l) + β2f(l) = 0 if and only if it belongs to one of four families:

F1) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 > 0, −C1

λ1
− C2

λ2
= 1

F2) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 < 0, C1 + C2 > 0, −C1

λ1
− C2

λ2
= 1

F3) C3e
λ3l

where λ3 < 0, C3 > 0, −C3

λ3
= 1

F4) (C1l + C2)eλ1l

where λ1 < 0, C1 > 0, C2 > 0, C1

λ21
− C2

λ1
= 1

Proof. First, prove that if f(l), l ∈ (0,+∞) is a solution of equation f ′′(l) +
β1f

′(l) + β2f(l) = 0 and is a PDF, in other words, it satisfies conditions
f(l) > 0
+∞∫
0

f(l)dl = 1
(3.2)

then it belongs to one of four presented families. Consider characteristic equa-
tion λ2 + β1λ+ β2 = 0. Let D = β2

1 − 4β2 be its discriminant. There are three
possible cases:
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1. D > 0 - two real roots λ1 = −β1+
√
D

2
and λ2 = −β1−

√
D

2
. The general solu-

tion has form f(l) = C1e
λ1l+C2e

λ2l. In the case C1 6= 0, C2 6= 0 one can easily
prove that C1 > 0. Indeed, if C1 < 0 then C2 > 0 because of the first condition

in (3.2), but this condition cannot be fully satisfied since for l > 1√
D

log
(
−C2

C1

)
we have

e(λ1−λ2)l = e
√
Dl > −C2

C1

and, therefore, C1e
λ1l+C2e

λ2l < 0. Once we proved that C1 > 0, we can consi-
der cases C2 > 0 and C2 < 0. In the first case it is obvious that λ1 < 0, λ2 < 0
and −C1

λ1
− C2

λ2
= 1, otherwise the second condition in (3.2) cannot be satisfied.

In the second case we can prove that λ1 < 0, λ2 < 0 by contradiction. The

case λ2 > 0 is not possible because for l > 1√
D

log
(

1− C2

C1

)
we have

C1e
λ1l + C2e

λ2l > C1e
λ2l > C1 > 0

and the integral
+∞∫
0

f(l)dl does not exist. The case λ2 < 0, λ1 > 0 is not pos-

sible because the integral
+∞∫
0

C2e
λ2ldl exists and the integral

+∞∫
0

C1e
λ1ldl does

not exist. Notice also that for C1 > 0, C2 < 0 the necessary condition is
f+(0) = C1 + C2 > 0.
In the case when C1 = 0 or C2 = 0 we can say that f(l) = C3e

λ3l, where
C3 > 0 and λ3 < 0 is either λ1 or λ2. The second condition in (3.2) results in
−C3

λ3
= 1.

2. D = 0 - two equal real roots λ1 = λ2 = −β1
2

. The general solution has
form f(l) = (C1l+C2)eλ1l. If C1 = 0 then we get the previous case. If C1 < 0
then for l > −C2

C1
we have f(l) < 0 which is not possible. Therefore, C1 > 0.

Moreover, C2 = f+(0) > 0 and λ1 < 0. The second condition in (3.2) results
in C1

λ21
− C2

λ1
= 1.

3. D < 0 - two complex roots λ1 = −β1+
√
Di

2
and λ2 = −β1+

√
Di

2
. The general

solution has form (
C1 cos

(√
D
2
l
)

+ C2 sin
(√

D
2
l
))

e−β1l/2

Obviously, it cannot be a PDF.
Second, prove that if f(l) belongs to one of four presented families then it is

a PDF that satisfies equation of the form f ′′(l) +β1f
′(l) +β2f(l) = 0. Indeed,

the second condition in (3.2) is satisfied for all the families, the first condition
is, obviously, satisfied for the families F1, F3 and F4. For the family F2 it is
satisfied because if C1 + C2 > 0, λ1 > λ2 and C1 > 0 then C1e

λ1l > −C2e
λ2l.

Also f(l) satisfies equation of the form f ′′(l)+β1f
′(l)+β2f(l) = 0. This can be
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easily shown. For the families F1, F2 and F4 one should take β1 = −(λ1 +λ2)
and β2 = λ1λ2. For the family F3 one should take β1 = −(λ3 + λ4) and
β2 = λ3λ4, where λ4 is an arbitrary real number. This means that for the
families F1, F2 and F4 there exists only one corresponding differential equation
and for the family F3 the set of such equations is infinite.

Proposition 17. M model with parameters β1 and β2 is equivalent to TB
model for any input if and only if f(l) is a solution of equation f ′′(l)+β1f

′(l)+

β2f(l) = 0. Moreover, for such a solution the equality 1−β1L+ β2L2

α
= 0 always

holds.

Proof. We will prove the equivalence of three statements:

1. f(l), l ∈ (0,+∞) satisfies equation

f ′′(l) + β1f
′(l) + β2f(l) = 0

2. f(l), l ∈ (0,+∞) satisfies equation

f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da = 0

3. M model with parameters β1 and β2 is equivalent to TB model with f(l)
for any input.
1→2. If Statement 1 holds then f(l) belongs to one of four families presented
in Proposition 15. All of them satisfy conditions lim

l→+∞
f(l) = 0

lim
l→+∞

f ′(l) = 0

Using them, we can integrate equation f ′′(l) + β1f
′(l) + β2f(l) = 0 two times:

0 =
+∞∫
l

(f ′′(x) + β1f
′(x) + β2f(x)) dx =

= − f ′(l)− β1f(l) + β2(1− F (l))

0 =
+∞∫
l

(−f ′(x)− β1f(x) + β2(1− F (x))) dx =

= f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da
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2→1. Notice that the function

f(l) = β1(1− F (l))− β2

+∞∫
0

(1− F (a+ l))da =

= β1(1− F (l))− β2

+∞∫
l

(1− F (x))dx

is differentiable. Therefore,

f ′(l) = −β1f(l) + β2(1− F (l))

The function −β1f(l)+β2(1−F (l)) is also differentiable, because we just sho-
wed that f ′(l) exists. Therefore,

f ′′(l) = −β1f
′(l)− β2f(l)

2→3. Prove that if

f(l) = β1(1− F (l))− β2

+∞∫
0

(1− F (a+ l))da

then the outflow in TB model with f(l) is

o(t) = v(n(t))(β1n(t)− β2M(t))

for any input. First notice that

M(t) =
+∞∫
0

n(t, a)da =

=
+∞∫
0

t∫
−∞

(
1− F

(
a+

∫ t
s

v(n(u))du
))

i(s)dsda =

=
t∫
−∞

i(s)
+∞∫
0

(
1− F

(
a+

∫ t
s

v(n(u))du
))

dads

This leads to

o(t)− v(n(t))(β1n(t)− β2M(t)) =

= v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds−

− v(n(t))
t∫
−∞

β1

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds+

+ v(n(t))
t∫
−∞

β2

(
+∞∫
0

(
1− F

(
a+

∫ t
s

v(n(u))du
))

da

)
i(s)ds = 0
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Therefore, there exists a solution of M model that is equivalent to solution of
TB model. Proposition 15 guarantees the uniqueness of such a solution.
3→2. The proof is similar to the second part of the proof of Proposition 8.
Assume

f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da 6= 0

for some l. This function is piecewise continuous and, therefore, exists an in-
terval (l1, l2) such that

f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da > 0, l ∈ (l1, l2)

or

f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da < 0, l ∈ (l1, l2)

Consider the input

n0 = 0

i(t) =

{
j, t ∈ (0, h]

0, t ∈ (h, T ]

where h < l2 − l1, j <
njam
h

, T > l2
v(jh)

. These conditions allow to find

t < T such that
t∫

0

v(n(u))du = l2. Notice that for all s ∈ (0, h] we have

t∫
s

v(n(u))du =
t∫

0

v(n(u))du −
s∫

0

v(n(u))du, where
s∫

0

v(n(u))du ∈ (0, l2 − l1).

Therefore,

t∫
s

v(n(u))du ∈ (l1, l2)

and

v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds−

− v(n(t))
t∫
−∞

β1

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds+

+ v(n(t))
t∫
−∞

β2

(
+∞∫
0

(
1− F

(
a+

∫ t
s

v(n(u))du
))

da

)
i(s)ds
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has the same sign as function

f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da

on (l1, l2), i.e. o(t)− v(n(t))(β1n(t)− β2M(t)) 6= 0.
Now, after proving that presented statements hold simultaneously, we inte-

grate the equation in the second statement using Proposition 13 to show that
1− β1L+ β2L2

α
= 0:

0 =
+∞∫
0

(
f(l)− β1(1− F (l)) + β2

+∞∫
0

(1− F (a+ l))da

)
dl =

= 1− β1L+ β2
L2+σ2

2
= 1− β1L+ β2L2

α

Proposition 18. M model with parameter β 6= 0 is equivalent to PL model
for any input if and only if α = 1.

Proof. If α = 1 then models are equivalent for any input. Indeed, if n(t) is a
solution of problem{

n(0) = n0

ṅ(t) = i(t)− v(n(t))
L

n(t), t ∈ (0, T ],

then n(t), M(t) = Ln(t) is a solution of problem
n(0) = n0

M(0) = Ln0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + β

(
n(t)− 1

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

The uniqueness of solution follows from Proposition 15. Vice versa, if models
are equivalent for any input then their outflows are also equal. Since β is
not zero, n(t) = α

L
M(t). This results in ṅ(t) = α

L
Ṁ(t) and also in ṅ(t) =

i(t)− v(n(t))
L

n(t) = 1
L
Ṁ(t). Therefore, α = 1.

Proposition 19. If α ∈
(
0, 4

3

]
and

β ∈


(0,+∞) , α ∈ (0, 1)

(−∞,+∞) \ {0} , α = 1[
2α− 1 +

√
4α2 − 4α, 1

α−1

]
, α ∈

(
1, 4

3

]
then there exists exactly one f(l) with parameters L and α such that M model
with parameter β 6= 0 is equivalent to TB model for any input. Otherwise,
there is no such f(l).
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Proof. From Proposition 17 we conclude that M model is equivalent to TB
model for any input if and only if

f ′′(l) + β1f
′(l) + β2f(l) = f ′′(l) + 1+β

L
f ′(l) + αβ

L2 f(l) = 0

From Proposition 16 we conclude that such f(l) comes from one of four fami-
lies:

F1) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 > 0, −C1

λ1
− C2

λ2
= 1

F2) C1e
λ1l + C2e

λ2l

where λ2 < λ1 < 0, C1 > 0, C2 < 0, C1 + C2 > 0, −C1

λ1
− C2

λ2
= 1

F3) C3e
λ3l

where λ3 < 0, C3 > 0, −C3

λ3
= 1

F4) (C1l + C2)eλ1l

where λ1 < 0, C1 > 0, C2 > 0, C1

λ21
− C2

λ1
= 1

For each of them we will find all pairs (α, β) that correspond to some PDF
with mean L from this family. Notice also that the value of L does not in-
fluence this set because the stretching transformation f(l)−→cf(cl) does not
change the family of f(l) and validity of f ′′(l) + 1+β

L
f ′(l) + αβ

L2 f(l) = 0. The
characteristic equation of this ODE has roots

1
L

(
−1+β

2
+
√
ψ
)
, 1
L

(
−1+β

2
−
√
ψ
)

where ψ = (1+β)2

4
− αβ. For the families F1 and F2 they are equal to λ1 and

λ2. For the family F3 at least one of them is equal to λ3. For the family F4
roots are equal to λ1.
F1) The necessary and sufficient conditions for f(l) to be a PDF with mean
L from the family F1 are:

λ2 < λ1 < 0, C1 > 0, C2 > 0

−C1

λ1
− C2

λ2
= 1

C1

λ21
+ C2

λ22
= L

Introduce dimensionless parameters

µ1 = −λ1L, µ2 = −λ2L, c1 = C1L, c2 = C2L

Now conditions can be written as follows:
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
0 < µ1 = 1+β

2
−
√
ψ < µ2 = 1+β

2
+
√
ψ, c1 > 0, c2 > 0

c1
µ1

+ c2
µ2

= 1
c1
µ21

+ c2
µ22

= 1

First, express c1 and c2 through µ1 and µ2. The result is c1 = µ2
1

1−µ2
µ1−µ2

and c2 = µ2
2
µ1−1
µ1−µ2 . Note also that we do not need to include the constraint

+∞∫
0

f(l)l2dl = L2 +σ2 that takes the form c1
µ31

+ c2
µ32

= 1
α

into the system because

from Proposition 17 follows that this constraint holds for all pairs (α, β) that
produce a PDF. Second, write conditions 0 < µ1 < µ2, c1 > 0, c2 > 0 as the
system 

µ1 > 0

ψ > 0

µ2 > 1

µ1 < 1

The inequality µ1 > 0 is equivalent to the system{
1 + β > 0

(1 + β)2 > (1 + β)2 − 4αβ

which has solution β > 0. The system{
µ2 > 1

µ1 < 1

is equivalent to the inequality (1−β)2

4
< ψ = (1+β)2

4
− αβ which is equivalent to

α < 1 if β > 0. Note that ψ > 0 holds automatically. Thus, we showed that
any pair of α ∈ (0, 1) and β ∈ (0,+∞) corresponds to some PDF from the
family F1 and there are no other such pairs.
F2) For the family F2 we also have conditions c1 = µ2

1
1−µ2
µ1−µ2 , c2 = µ2

2
µ1−1
µ1−µ2 and

0 < µ1 < µ2. The difference is conditions c1 > 0, c2 < 0, c1 + c2 > 0 instead
of c1 > 0, c2 > 0. Notice that c1 + c2 = µ1 + µ2 − µ1µ2. Now we need to solve
the system 

µ1 > 0

ψ > 0

µ2 > 1

µ1 > 1

µ1 + µ2 − µ1µ2 > 0
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This system is equivalent to
ψ > 0

µ1 > 1

µ1 + µ2 − µ1µ2 > 0

Inequality µ1 > 1 is equivalent to 1−β
2
< −
√
ψ which is equivalent to the system{

β > 1

(1− β)2 > (1 + β)2 − 4αβ

The second inequality in this this system is equivalent, given β > 1, to

α > 1. Now consider inequality ψ = (1+β)2

4
− αβ > 0. It leads to β <

2α− 1−
√

4α2 − 4α or β > 2α− 1 +
√

4α2 − 4α. The first case is not possible
for α > 1, β > 1 because

2α− 1−
√

4α2 − 4α− 1 = 2(α− 1)−
√

4(α− 1)2 + 4(α− 1) < 0

for α > 1. In the second case

2α− 1 +
√

4α2 − 4α > 1

for α > 1. Now consider inequality µ1 + µ2 − µ1µ2 = 1 + β − αβ > 0. For
α, β > 1 it is equivalent to β 6 1

α−1
. As a last step show that, given α > 1,

condition 2α − 1 +
√

4α2 − 4α < β 6 1
α−1

holds if and only if α < 4
3
. Indeed,

the function 2α− 1 +
√

4α2 − 4α = 2α− 1 +
√

(2α− 1)2 − 1 is increasing and
the function 1

α−1
is decreasing. If α = 4

3
both of them are equal to 3. Thus,

we showed that any pair of α ∈
(
1, 4

3

)
and β ∈

(
2α− 1 +

√
4α2 − 4α, 1

α−1

]
corresponds to some PDF from the family F2 and there are no other such
pairs.
F3) From Proposition 16 we already know that the family F3 consists only
of f(l) = 1

L
e−l/L that has α = 1. We know also that this is the case when M

model is equivalent to TB model, regardless the value of β 6= 0. However, it is
easy to check that if β 6= 0 then the solution of the system

µ3 > 0, c3 > 0
c3
µ3

= 1
c3
µ23

= 1

µ3 ∈
{

1+β
2
−
√
ψ, 1+β

2
+
√
ψ
}

is α = 1, β ∈ (−∞,+∞) \ {0}, where β 6 1 corresponds to µ3 = 1+β
2

+
√
ψ
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and β > 1 corresponds to µ3 = 1+β
2
−
√
ψ.

F4) For the family F4 the system is
µ1 > 0, ψ = 0, c1 > 0, c2 > 0
c1
µ21

+ c2
µ1

= 1
2c1
µ31

+ c2
µ21

= 1

First, notice that c1
µ31

= 1 − 1
µ1

and, therefore, c1 = µ3
1 − µ2

1, c2 = 2µ1 − µ2
1.

As c1 > 0, c2 > 0, we have condition µ1 ∈ (1, 2]. If ψ = 0, it is equivalent to
β ∈ (1, 3]. From ψ = 0 also follows

β = 2α− 1−
√

4α2 − 4α

or

β = 2α− 1 +
√

4α2 − 4α

Therefore, α > 1 and

2α− 1−
√

4α2 − 4α 6 2α− 1− 2(α− 1) = 1

The function 2α−1+
√

4α2 − 4α is continuous, increasing and takes the value
1 if α = 1 and the value 3 if α = 4

3
. Thus, we showed that any pair of α ∈

(
1, 4

3

)
and β = 2α− 1−

√
4α2 − 4α corresponds to some PDF from the family F4.

Note that all the sets of (α, β) that correspond to different families do not
intersect. Also all the coefficients of any PDF are expressed through α, β and
L. Thus, for any feasible pair (α, β) there exists exactly one corresponding
PDF with mean L.

Proposition 20. If f(l), l ∈ (0,ΛL) is a PDF with mean L and variance σ2

then all the possible values of σ2

L2 are (0,Λ− 1).

Proof. We start the proof by relaxing the assumption that distribution is con-
tinuous. We will prove first that all the possible values of σ2 for an arbitrary
distribution with domain [0,ΛL] are [0, (Λ− 1)L2]. Consider the set

conv
(
(l, l2), l ∈ [0,ΛL]

)
shown in Figure 3.1.
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l

l2

0 ΛL

Λ2L2

L

L2

ΛL2

Figure 3.1: Convex hull of the curve (l, l2), l ∈ [0,ΛL].

Obviously, this set consists of all possible pairs of first and second moments
of probability distribution defined on [0,ΛL]. With the assumption that first
moment is equal to L we get the interval [L2,ΛL2] for the second moment. The
values L2 and ΛL2 correspond to discrete distributions and cannot be equal
to the second moment of some PDF. For all other values we can construct a
PDF. Any feasible and not boundary point (L,L2 + σ2) can be viewed as a
convex combination of two points (l1, l

2
1) and (l2, l

2
2), where 0 < l1 < l2 < ΛL.

Denote the weights of convex combination as w1 and w2. Consider distribution

(1− ε)w1U [l1 − δ, l1 + δ] + (1− ε)w2U [l2 − δ, l2 + δ] + εU [L− δ, L+ δ]

Obviously, the first moment of this distribution is equal to L. The second
moment is equal to

(1− ε)
(
L2 + σ2 + δ2

3

)
+ ε

(
L2 + δ2

3

)
= L2 + σ2 − εσ2 + δ2

3

If we take δ =
√

3εσ for given ε then the second moment is equal to L2 + σ2.
For sufficiently small ε we have l1− δ > 0 and l2 + δ < ΛL. These inequalities
ensure that the domain of PDF belongs to (0,ΛL).

Proposition 21. If f(l), l ∈ (0,ΛL) is a PDF with mean L, variance σ2 and

third central moment ρ3 then all the possible values of ρ3

L3 are(
− σ2

L2 +
(
σ2

L2

)2

, (Λ− 1) σ
2

L2 − 1
Λ−1

(
σ2

L2

)2
)

Proof. As in the proof of Proposition 20, we relax the assumption that distri-
bution is continuous. Consider the set
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conv
(
(l, l2, l3), l ∈ [0,ΛL]

)
Obviously, this is the set of all possible triplets of first, second and third
moments of probability distribution defined on [0,ΛL]. Each point of the
set can be represented as a convex combination of finite number of points
(l, l2, l3), l ∈ [0,ΛL]. We can prove that for the given L and σ2 the minimum
and maximum of ρ3 are achieved on combinations of one or two points. We
prove this by contradiction. Assume the convex combination includes l1 and
l2 such that 0 < l1 < l2 or l1 < l2 < ΛL. We will show that in the first
case ρ3 can be decreased without changing L and σ2 and in the second case it
can be increased. Therefore, any convex combination of three points cannot
give minimum or maximum of ρ3. Moreover, if combination of two points gives
minimum of ρ3 then it includes 0 and if it gives maximum of ρ3 then it includes
ΛL.

Consider some combination that includes l1 < l2 with weights w1 > 0 and
w2 > 0. We can express the value c3 = w1l

3
1 + w2l

3
2 through l1, c0 = w1 + w2,

c1 = w1l1 + w2l2 and c2 = w1l
2
1 + w2l

2
2. First, notice that

l2 = c2−c1l1
c1−c0l1

Therefore,

c3 = w1l
3
1 + w2l

3
2 =

(
w1l

2
1 + w2l

2
2

)
(l1 + l2)− (w1l1 + w2l2) l1l2 =

= c2

(
l1 + c2−c1l1

c1−c0l1

)
− c1l1

(
c2−c1l1
c1−c0l1

)
=

=
c22−c1c2l1−(c0c2−c21)l21

c1−c0l1 =

= 1
c1−c0l1

(
c2

2 − c1c2

(
c1−(c1−c0l1)

c0

)
− (c0c2 − c2

1)
(
c1−(c1−c0l1)

c0

)2
)

=

=
(c0c2−c21)

2

c20(c1−c0l1)
− 2c31

c20
+ 3c1c2

c0
− (c0c2−c21)(c1−c0l1)

c20

Notice that c0c2 − c2
1 = w1w2(l2 − l1)2 > 0 and c1 − c0l1 = w2(l2 − l1) > 0.

Therefore, if l1 increases with fixed c0, c1 and c2 then c3 also increases. As the
difference between ρ3 and c3 is constant, l1 > 0 cannot give minimum of ρ3.
Now notice that

l2 = c2−c1l1
c1−c0l1 = c1

c0
+

c0c2−c21
c0(c1−c0l1)

increases if l1 increases. Therefore, l2 < ΛL cannot give maximum of ρ3. Sum-
marizing, the minimum and maximum ρ3 are achieved on convex combinations
of two points. In this case c0 = 1, c1 = L and c2 = L2 + σ2. The minimum ρ3
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is achieved on l1 = 0, l2 = L+ σ2

L
and takes the value

ρ3 = σ4

L
− 2L3 + 3L (L2 + σ2)− σ2L− L3 − 3Lσ2 =

= σ4

L
− σ2L

The maximum ρ3 is achieved on l2 = ΛL, l1 = L− σ2

(Λ−1)L
and takes the value

ρ3 = (Λ− 1)σ2L− 2L3 + 3L
(
L2 + σ2

)
− σ4

(Λ−1)L
− L3 − 3Lσ2 =

= (Λ− 1)σ2L− σ4

(Λ−1)L

Note that for the case of convex combination of two points ρ3 can take all
the feasible values as it is continuous function of l1. This also means that any
not boundary value of ρ3 corresponds to some case 0 < l1 < l2 < ΛL. Now
we show how to construct a corresponding PDF for such ρ3. Notice that for
any not boundary value of ρ3 and sufficiently small ε the value of ρ3

1−ε also
belongs to the interior of the interval of feasible ρ3. This means that there
exists convex combination of two points 0 < l1(ε) < l2(ε) < ΛL such that its

third central moment is equal to ρ3

1−ε . Denote weights of this combination as
w1(ε) and w2(ε). Consider distribution

(1− ε)w1(ε)U [l1(ε)− δ, l1(ε) + δ]+

+ (1− ε)w2(ε)U [l2(ε)− δ, l2(ε) + δ]+

+ εU [L− δ, L+ δ]

Obviously, the first moment of this distribution is equal to L. The second
moment is equal to

(1− ε)
(
L2 + σ2 + δ2

3

)
+ ε

(
L2 + δ2

3

)
= L2 + σ2 − εσ2 + δ2

3

The third moment is equal to

(1− ε)
(
L3 + 3L

(
σ2 + δ2

3

)
+ ρ3

1−ε

)
+ ε

(
L3 + Lδ2

)
=

= L3 + 3Lσ2 + ρ3 − 3Lεσ2 + Lδ2

If we take δ =
√

3εσ for given ε then the second moment is equal to L2+σ2 and
the third moment is equal to L3 + 3Lσ2 + ρ3. If ε → 0 then l1(ε)→l1(0) > 0
and l2(ε)→l2(0) < ΛL. For sufficiently small ε we have l1(ε) − δ > 0 and
l2(ε) + δ < ΛL. These inequalities ensure that the domain of PDF belongs to
(0,ΛL).

Proposition 22. If α ∈ (1, 2) then the solution of M model with β > 0 exists
for any input in the case of constant v(n) if and only if

β > 2α− 1 +
√

4α2 − 4α
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Proof. Depending on the value of ψ = (1+β)2

4
− αβ we have three different

cases:
1. ψ > 0
The solution

n(t) = e−
1+β

2
t/L

(
cosh(

√
ψt/L) + β−1

2
√
ψ
sinh(

√
ψt/L)

)
n0+

+
t∫

0

e−
1+β

2
(t− s)/L (cosh(

√
ψ(t− s)/L) + (2α−1)β−1

2
√
ψ

sinh(
√
ψ(t− s)/L)

)
i(s)ds

does not take negative values for any input if and only if{
β−1
2
√
ψ
> − 1

(2α−1)β−1

2
√
ψ

> − 1

As we assume α ∈ (1, 2) and ψ > 0, the first inequality is stronger. Moreover,

ψ = (1+β)2

4
− αβ < (β−1)2

4

which means that β > 1. As ψ > 0 holds if and only if

β < 2α− 1−
√

4α2 − 4α < 1

or

β > 2α− 1 +
√

4α2 − 4α > 1

we conclude that all the feasible values of β are

β > 2α− 1 +
√

4α2 − 4α

2. ψ = 0
The solution

n(t) = e−
1+β

2
t/L (1 + β−1

2
t
L

)
n0 +

t∫
0

e−
1+β

2
(t− s)/L (1 + (2α−1)β−1

2
t−s
L

)
i(s)ds

does not take negative values for any input if and only if{
β − 1 > 0

(2α− 1)β − 1 > 0
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As α ∈ (1, 2), the first inequality is stronger and, therefore,

β = 2α− 1 +
√

4α2 − 4α

3. ψ < 0
The solution

n(t) = e−
1+β

2
t/L

(
cos(

√
−ψt/L) + β−1

2
√
−ψsin(

√
−ψt/L)

)
n0+

+
t∫

0

e−
1+β

2
(t− s)/L (cos(√−ψ(t− s)/L) + (2α−1)β−1

2
√
−ψ sin(

√
−ψ(t− s)/L)

)
i(s)ds

takes negative values for some inputs, because any function of the form

cos(x) + Csin(x) =
√

1 + C2cos
(
x− arccos

(
1√

1+C2

))
takes negative values.

Proposition 23. The solution of M model exists for any input in the case of
constant v(n) if and only if the solution of the same M model exists for any
input in the case of conventional v(n).

Proof. First, we prove that if the solution of M model with constant v(n) ex-
ists for any input then the solution of M model with conventional v(n) and the
same β exists for any input. We prove this by contradiction. Assume that solu-
tion of M model with conventional v(n) does not exist for some input. It means
that the solution reaches zero with negative ṅ(t) at some t0 < T . Gridlock was
not reached on the interval [0, t0] because otherwise n(t0) > njam. Therefore,

v(n(t)) > 0, t ∈ [0, t0]. Consider the change of variable y =
t∫

0

v(n(u))du.

Define functions n∗(y) = n(t), M∗(y) = M(t) and g(y) = i(t)
v(n(t))

. Notice that

ẏ(t) = v(n(t)). Therefore,
n∗(0) = n0

M∗(0) = L
α
n0

dn∗

dy
(y) = g(y)− 1

L

(
n∗(y) + β

(
n∗(y)− α

L
M∗(y)

))
, y ∈ (0, y0]

dM∗

dy
(y) = Lg(y)− n∗(y) , y ∈ (0, y0]

(3.3)

where y0 = y(t0). By our assumption, n∗(y0) = n(t0) = 0, dn
∗

dy
(y0) = ṅ(t0)

v(n(t0))
=

ṅ(t0) < 0. Thus, if we assume that n0, y0 and g(y), y ∈ (0, y0] is an input to
M model with constant v(n) then the solution reaches zero at y0 with negative
derivative. If we adjust the input by saying that g(y) = 0, y > y0 then the
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solution will not exist. Thus, we come to contradiction with an assumption
that solution of M model with constant v(n) exists for any input.
Second, we prove by contradiction that if the solution of M model with con-
ventional v(n) exists for any input then the solution of M model with con-
stant v(n) exists for any input. Assume there exists some input n0, g(y)

such that n∗(y) given by (3.3) satisfies n∗(y0) = 0, dn
∗

dy
(y0) < 0. We can

assume that n∗(y) < njam, y ∈ (0, y0] because the solution can be always
decreased several times by multiplying the input by some coefficient. Thus,

v(n∗(y)) > 0. Consider the change of variable t =
y∫
0

1
v(n∗(x))

dx. Define functi-

ons n(t) = n∗(y), M(t) = M∗(y) and i(t) = g(y)v(n∗(y)) = g(y)v(n(t)).
Notice that ẏ(t) = v(n∗(y)) = v(n(t)). Therefore

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + β

(
n(t)− α

L
M(t)

))
, t ∈ (0, t0]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ (0, t0]

where t0 = t(y0). By our assumption,

n(t0) = n∗(y0) = 0

ṅ(t0) = dn∗

dy
(y0)v(n(t0)) = dn∗

dy
(y0) < 0

Thus, if we assume that n0, t0 and i(t), t ∈ (0, t0] is an input to M model with
constant v(n) then the solution reaches zero at t0 with negative derivative. If
we adjust the input by saying that i(t) = 0, t > t0 then the solution will not
exist. Thus, we come to contradiction with an assumption that solution of M
model with conventional v(n) exists for any input.

Proposition 24. The solution of TB model for i(t) = i0 + i1t + i2t
2 in the

case of constant v(n) is

nTB(t) = L(i0 + i1t+ i2t
2)− L2

α
i1 − 2L

2

α
i2t+ 2

(
1
α
− 1

3
+ ρ3

6L3

)
L3i2, t ∈ [ΛL, T ]

Proof. The general formula for the solution of TB model in the case of con-
stant v(n) is

n(t) =
t∫
−∞

(1− F (t− s))i(s)ds =
t∫

t−ΛL

(1− F (t− s))i(s)ds, t ∈ [ΛL, T ]

If i(t) = i0 + i1t+ i2t
2, t ∈ (0, T ] then for t ∈ [ΛL, T ] we get
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n(t) =
t∫

t−ΛL

(1− F (t− s)) (i0 + i1s+ i2s
2) ds =

=
t∫

t−ΛL

(1− F (t− s)) (i0 + i1(t− (t− s)) + i2(t− (t− s))2) ds =

=

(
ΛL∫
0

(1− F (l))dl

)(
i0 + i1t+ i2t

2
)

+

+

(
ΛL∫
0

(1− F (l))ldl

)
(−i1 − 2i2t) +

+

(
ΛL∫
0

(1− F (l))l2dl

)
i2

From Proposition 13 we can find

ΛL∫
0

(1− F (l))dl = L

ΛL∫
0

(1− F (l))ldl = L2+σ2

2
= L2

α

ΛL∫
0

(1− F (l))l2dl = L3+3Lσ2+ρ3

3
= 2L3

α
− 2L3

3
+ ρ3

3
=

= 2
(

1
α
− 1

3
+ ρ3

6L3

)
L3

Proposition 25. The solution of PL model for i(t) = i0 + i1t + i2t
2 in the

case of constant v(n) is

nPL(t) = L(i0 + i1t+ i2t
2)− L2i1 − 2L2i2t+ 2L3i2+

+ e−t/L
(
n0 − Li0 + L2i1 − 2L3i2

)

Proof. The general formula for the solution of PL model in the case of constant
v(n) is

n(t) = e−t/Ln0 +
t∫

0

e−(t−s)/Li(s)ds

If i(t) = i0 + i1t+ i2t
2, t ∈ (0, T ] then
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n(t) = e−t/Ln0 +
t∫

0

e−(t−s)/L (i0 + i1s+ i2s
2) ds =

= e−t/Ln0 +
t∫
−∞

e−(t−s)/L (i0 + i1(t− (t− s)) + i2(t− (t− s))2) ds−

− e−t/L
0∫
−∞

es/L (i0 + i1s+ i2s
2) ds =

= e−t/Ln0 +

(
+∞∫
0

e−l/Ldl

)(
i0 + i1t+ i2t

2
)

+

+

(
+∞∫
0

e−l/Lldl

)
(−i1 − 2i2t) +

(
+∞∫
0

e−l/Ll2dl

)
i2−

− e−t/L
+∞∫
0

e−l/L (i0 − i1l + i2l
2) dl =

= e−t/Ln0 + L
(
i0 + i1t+ i2t

2
)

+ L2(−i1 − 2i2t) + 2L3i2−
− e−t/L

(
Li0 − L2i1 + 2L3i2

)
=

= L(i0 + i1t+ i2t
2)− L2i1 − 2L2i2t+ 2L3i2+

+ e−t/L
(
n0 − Li0 + L2i1 − 2L3i2

)

Proposition 26. The solution of M model with β > 0 for i(t) = i0 + i1t+ i2t
2

in the case of constant v(n) is[
LoM(t)
nM(t)

]
=

[
1
1

]
L(i0 + i1t+ i2t

2)−

−
[

1
1
α

]
L2i1 − 2

[
1
1
α

]
L2i2t+ 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2+

+ e−At/L
([

1
1

]
(n0 − Li0) +

[
1
1
α

]
L2i1 − 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2

)
where A =

[
1 + β −αβ

1 0

]
.

Proof. The general formula for the solution of M model in the case of constant
v(n) is [

Lo(t)
n(t)

]
= e−At/LA

[
1
1
α

]
n0 +

(
t∫

0

e−A(t−s)/Li(s)ds

)
A

[
1
1

]
=

= e−At/L
[
1
1

]
n0 +

(
t∫

0

e−A(t−s)/Li(s)ds

)[
1 + β − αβ

1

]
The product of eigenvalues of A is equal to αβ. If β > 0 and eigenvalues are
real then they are positive. If eigenvalues are complex then their real part
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1+β
2

is positive. Therefore, real parts of eigenvalues of A are positive. Conse-
quently, we can claim that

lim
l→+∞

e−Al/L =

[
0 0
0 0

]
and also

lim
l→+∞

e−Al/Llφ =

[
0 0
0 0

]
for any φ > 0. Now we prove by induction for φ = 0, 1, ... that

+∞∫
0

e−Al/Llφdl = φ!A−φ−1Lφ+1

Basis. For φ = 0 we get

+∞∫
0

e−Al/Ldl = L
+∞∫
0

e−Al/Ld l
L

= A−1L

Induction step.

+∞∫
0

e−Al/Llφ+1dl = A−1L
+∞∫
0

e−Al/L
(
lφ+1

)′
dl =

= (φ+ 1)A−1L
+∞∫
0

e−Al/Llφdl = (φ+ 1)!A−φ−2Lφ+2

Once we proved this formula, we can use it to calculate the solution. First,
calculate the integral

t∫
0

e−A(t−s)/Li(s)ds =
t∫
−∞

e−A(t−s)/Li(s)ds−
0∫
−∞

e−A(t−s)/Li(s)ds =

=
t∫
−∞

e−A(t−s)/L (i0 + i1(t− (t− s)) + i2(t− (t− s))2) ds−

− e−At/L
0∫
−∞

eAs/L (i0 + i1s+ i2s
2) ds =

=
+∞∫
0

e−Al/L (i0 + i1(t− l) + i2(t− l)2) dl−

− e−At/L
+∞∫
0

e−Al/L (i0 − i1l + i2l
2) dl =

= A−1L
(
i0 + i1t+ i2t

2
)

+ A−2L2 (−i1 − 2i2t) + 2A−3L3i2−
− e−At/L

(
A−1Li0 − A−2L2i1 + 2A−3L3i2

)
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Finally, we can find

A−1

[
1 + β − αβ

1

]
= 1

αβ

[
0 αβ
−1 1 + β

][
1 + β − αβ

1

]
=

[
1
1

]
A−2

[
1 + β − αβ

1

]
= 1

αβ

[
0 αβ
−1 1 + β

][
1
1

]
=

[
1
1
α

]
A−3

[
1 + β − αβ

1

]
= 1

αβ

[
0 αβ
−1 1 + β

][
1
1
α

]
=

[
1
α

1
α2 − 1

αβ
+ 1

α2β

]
Therefore,[

LoM(t)
nM(t)

]
=

[
1
1

]
L(i0 + i1t+ i2t

2)−

−
[

1
1
α

]
L2i1 − 2

[
1
1
α

]
L2i2t+ 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2+

+ e−At/L
([

1
1

]
(n0 − Li0) +

[
1
1
α

]
L2i1 − 2

[
1
α

1
α2 + 1

α2β
− 1

αβ

]
L3i2

)

Proposition 27. If α > 1 and β > 1 then the absolute value of matrix expo-

nential e−At/L, where A =

[
1 + β −αβ

1 0

]
, is less than

e−(1−e−1)t/L

[
3+β

2
αβ

1 3+β
2

]

Proof. To calculate matrix exponential e−At/L we introduce matrix

Q = A− 1
2
tr(A)I =

[
1 + β −αβ

1 0

]
− 1+β

2

[
1 0
0 1

]
=

[
1+β

2
−αβ

1 −1+β
2

]
This gives

e−At/L = e−
1
2
tr(A)t/Le−Qt/L = e−

1+β
2
t/Le−Qt/L

From tr(Q) = 0 follows (for a 2 × 2 matrix) that Q2 = −det(Q)I. This is a
trivial consequence of the fact that characteristic polynomial of n×n matrix P
is equal to λn− tr(P )λn−1 + ...+(−1)ndet(P ). One should just take n = 2 and
apply Cayley-Hamilton theorem. However, manual check looks easier. Denote

ψ = −det(Q) = (1+β)2

4
− αβ. Thus, depending on the sign of ψ, we get three

different cases:
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1. ψ > 0

e−At/L = e−
1+β

2
t/L

(
cosh(

√
ψt/L)I − 1√

ψ
sinh(

√
ψt/L)Q

)
(3.4)

2. ψ = 0

e−At/L = e−
1+β

2
t/L (I − t

L
Q
)

(3.5)

3. ψ < 0

e−At/L = e−
1+β

2
t/L

(
cos(

√
−ψt/L)I − 1√

−ψsin(
√
−ψt/L)Q

)
(3.6)

Obviously, t/L 6 ee
−1t/L (equality is reached at t/L = e). This gives the follo-

wing upper bounds on the absolute value of e−At/L:
1. ψ > 0

∣∣e−At/L∣∣ 6 e−
1+β

2
t/Lcosh(

√
ψt/L)

∣∣∣I − 1√
ψ
tanh(

√
ψt/L)Q

∣∣∣ 6
6 e−

1+β
2
t/Le

√
ψt/L

(
I + t

L
|Q|
)
<

< e
−
(

1+β
2
−
√
ψ
)
t/L
ee
−1t/L (I + |Q|) =

= e
−
(

1+β
2
−
√
ψ − e−1

)
t/L
[

3+β
2

αβ

1 3+β
2

]
(3.7)

2 and 3. ψ 6 0

∣∣e−At/L∣∣ 6 e−
1+β

2
t/L (I + t

L
|Q|
)
< e

−
(

1+β
2
− e−1

)
t/L

(I + |Q|) =

= e
−
(

1+β
2
− e−1

)
t/L
[

3+β
2

αβ

1 3+β
2

] (3.8)

Now notice that if α > 1 and β > 1 then 1+β
2

> 1 and in the case ψ > 0

1+β
2
−
√
ψ = αβ

1+β
2

+
√
ψ
> αβ

1+β
2

+ β−1
2

= α > 1

Thus, for any α > 1, β > 1 the inequality

∣∣e−At/L∣∣ < e−(1−e−1)t/L

[
3+β

2
αβ

1 3+β
2

]
is satisfied.
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Proposition 28. If α > 1 and ρ3 correspond to some distribution defined on
(0, 3L) then

1
3
− ρ3

6L3

1− 1
α

> 1
α

Proof. From Proposition 21 follows that

ρ3

L3 < 2
(

2
α
− 1
)
− 1

2

(
2
α
− 1
)2

= −5
2

+ 6
α
− 2

α2 =

= 2− 6
(

1
α
− 1

α2

)
− 2

(
2
α
− 3

2

)2
6 2− 6

(
1
α
− 1

α2

)
Therefore,

1
3
− ρ3

6L3

1− 1
α

>
1
3
− ρ3

6L3

1− 1
α

=
1
3
− 1

3
+
(

1
α
− 1

α2

)
1− 1

α

= 1
α

Proposition 29. If i+(0) = p(n0)
L

+ ∆i and v(n) is differentiable then the
outflow in M model has right derivative

ȯ+(0) =
(

p′(n0)
L

+ β(1− α)v(n0)
L

)
∆i

Proof.

ȯ+(t) = v′(n(t))
L

ṅ+(t)
(
n(t) + β

(
n(t)− α

L
M(t)

))
+

+ v(n(t))
L

(
ṅ+(t) + β

(
ṅ+(t)− α

L
(Li+(t)− v(n(t))n(t))

))
Obviously, ṅ+(0) = ∆i. This results in

ȯ+(0) = v′(n0)
L

n0∆i+ v(n0)
L

∆i+ β v(n0)
L

(∆i− α∆i) =

=
(

p′(n0)
L

+ β(1− α)v(n0)
L

)
∆i

Proposition 30. Numerical solution of TB model is equivalent to numerical
solution of PL model for any input if and only if fm, m = 1, 2, ... correspond
to geometric distribution with mean L

∆t
.

Proof. The numerical scheme for solving TB model looks asn0,m = n0
∆t
L

∞∑
r=m

(1− Fr)

nk+1,m − nk,m = (1− Fm)ik+1∆t− v(nk,0)(nk,m − nk,m+1)
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To solve PL model we use the scheme

nk+1 − nk = ik+1∆t− v(nk)
L
nk∆t

First, prove that if fm = ∆t
L

(
1− ∆t

L

)m−1
, m = 1, 2, ... then numerical solution

of TB model is equivalent to numerical solution of PL model for any input. It is
sufficient to prove that nTBk+1,0−nTBk,0 is equal to nPLk+1−nPLk for k = 1, 2, ..., K−1.
This condition is equivalent to

nTBk,0 − nTBk,1 = nTBk,0
∆t
L
, k = 0, 1, ..., K − 1

We can prove this by induction. However, it is easier to prove

nTBk,m − nTBk,m+1 = nTBk,m
∆t
L
, k = 0, 1, ..., K − 1, m = 0, 1, ...

which is more general fact. The CDF that corresponds to fm is

Fm = 1−
(
1− ∆t

L

)m
, m = 0, 1, ...

Basis. For k = 0 we have initial condition

n0,m = n0
∆t
L

∞∑
r=m

(1− Fr), m = 0, 1, ...

Therefore,

n0,m = n0
∆t
L

(
1− ∆t

L

)m
1−
(

1− ∆t
L

) = n0

(
1− ∆t

L

)m
n0,m − n0,m+1 = n0,m

∆t
L

Induction step.

nk+1,m − nk+1,m+1 = nk,m − nk,m+1 + (Fm+1 − Fm)ik+1∆t−
− v(nk,0) (nk,m − nk,m+1 − nk,m+1 + nk,m+2) =

= (nk,m + ik+1∆t− v(nk,0)(nk,m − nk,m+1)) ∆t
L

= nk+1,m
∆t
L

Second, prove that if numerical solution of TB model is equivalent to numerical

solution of PL model for any input then fm = ∆t
L

(
1− ∆t

L

)m−1
, m = 1, 2, ....

This equality will follow from another statement:
For any K > 1 and any m = 0, 1, ..., K − 1 the equality

nk,m − nk,m+1 = nk,0
∆t
L

(
1− ∆t

L

)m
, k = 0, 1, ..., K − 1−m

holds for any input that does not produce gridlock. We prove this equality by
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induction.
Basis. If m = 0 then

nk+1,0 − nk,1 = ik+1∆t− v(nk,0)(nk,0 − nk,1) =

= ik+1∆t− v(nk,0)

L
nk,0∆t, k = 0, 1, ..., K − 1

and, therefore,

nk,0 − nk,1 = nk,0
∆t
L
, k = 0, 1, ..., K − 1

Induction step. By definition, the solution of TB model satisfies

nk+1,m − nk+1,m+1 = nk,m − nk,m+1 + (Fm+1 − Fm)ik+1∆t−
− v(nk,0) (nk,m − nk,m+1 − nk,m+1 + nk,m+2) , k = 0, 1, ..., K − 1

for any input. By our assumption,

nk+1,0
∆t
L

(
1− ∆t

L

)m
= nk,0

∆t
L

(
1− ∆t

L

)m
+ (Fm+1 − Fm)ik+1∆t−

− v(nk,0)
(
nk,0

∆t
L

(
1− ∆t

L

)m − nk,m+1 + nk,m+2

)
, k = 0, 1, ..., K − 2−m

for any TB model which is equivalent to PL model for any input that does not
produce gridlock. Any solution of TB model satisfies

nk+1,0 = nk,0 + ik+1∆t− v(nk,0) (nk,0 − nk,1) , k = 0, 1, ..., K − 1

Therefore, as ik+1 is independent from nk,m+1 − nk,m+2, we have

Fm+1 − Fm = ∆t
L

(
1− ∆t

L

)m
and

nk,m+1 − nk,m+2 = nk,1
∆t
L

(
1− ∆t

L

)m
=

= nk,0
∆t
L

(
1− ∆t

L

)m+1
, k = 0, 1, ..., K − 1− (m+ 1)

The first equality is equivalent to

fm+1 = ∆t
L

(
1− ∆t

L

)m
We proved the statement for all m = 0, 1, ..., K − 2 and at the same time
found all fm+1. Therefore, any fm, m = 1, 2, ... can be found by taking K =
m+ 1.
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α model 4
To derive M model we assumed that the inflow i(t) is piecewise continuous, be-
cause we were searching for a simplified model that can be used for the inflow
control. However, if we assume that i(t) changes slowly, it is not necessary to
approximate the outflow o(t) based on the state variables, like accumulation
n(t) or total distance to be traveled M(t). We can try to derive an approxi-
mation where o(t) depends also on i(t). In this chapter we present a simple
approximation of TB model for slowly changing i(t). It uses only one parame-
ter α = 2L2

L2+σ2 to describe f(l). This model (we refer to it as α model) takes
the form of Cauchy problem

{
n(0) = n0

ṅ(t) = α
(
i(t)− v(n(t))

L
n(t)

)
, t ∈ (0, T ]

(4.1)

The outflow o(t) in α model is equal to

o(t) = i(t)− ṅ(t) = αv(n(t))
L

n(t)− (α− 1)i(t)

We derive α model by showing that accumulation nTB(t) in TB model approx-
imately satisfies

ṅ(t) ≈ α
(
i(t)− v(n(t))

L
n(t)

)
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4.1. DERIVATION OF α MODEL

4.1 Derivation of α model

All the steps should be understood as a physical intuition. There will not be
rigorous proofs or definitions in this section. The approximation will be derived
under the assumptions of slowly changing i(t) and not very small v(n(t)).

If we make a change of variable y =
t∫

0

v(n(u))du and introduce function

g(y) = i(t(y))
v(n(t(y)))

then we can also assume that g(y) changes slowly. We do

not say that g(y) is necessarily differentiable. For us it is more important to
assume that for any y there exists g1(y) such that

g(x) ≈ g(y)− g1(y)(y − x), x ∈ (y − ΛL, y)

where ΛL is the maximum trip length. Given this approximation and Propo-
sition 13, we conclude that

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds =

=
y∫

y−ΛL

(1− F (y − x))g(x)dx ≈

≈
y∫

y−ΛL

(1− F (y − x))(g(y)− g1(y)(y − x))dx =

= Lg(y)− L2+σ2

2
g1(y) = Lg(y)− L2

α
g1(y)

The approximate value of o(t) can be calculated as

o(t) = v(n(t))
t∫
−∞

f
(∫ t

s
v(n(u))du

)
i(s)ds =

= v(n(t))
y∫

y−ΛL

f(y − x)g(x)dx ≈

≈ v(n(t))
y∫

y−ΛL

f(y − x)(g(y)− g1(y)(y − x))dx =

= v(n(t))(g(y)− Lg1(y)) = i(t)− v(n(t))L α
L2 (Lg(y)− n(t)) =

= i(t)− α
(
i(t)− v(n(t))

L
n(t)

)
= αv(n(t))

L
n(t)− (α− 1)i(t)

This leads to

ṅ(t) ≈ α
(
i(t)− v(n(t))

L
n(t)

)
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4.2 Connection between α and PL models

From the mathematical point of view, PL model is a specific case of α model
for α = 1. This means that if α = 1 then the solutions of PL and TB models
are similar for the slowly changing inflow. However, in this work we consider
that f(l) with α = 1 is not realistic.

Second important property of α model (4.1) is that it can be reformula-
ted as PL model. Consider change of variable z = αt and functions I(z) =
i(z/α), z ∈ [0, αT ], N(z) = n(z/α), z ∈ [0, αT ]. This leads to

N ′(z) = ṅ(t(z))t′(z) = ṅ(t)
α

=

= i(t)− v(n(t))
L

n(t) = I(z)− v(N(z))
L

N(z)

From this equality follows that α model can be solved as PL model for variable
z. One needs to stretch the t axis α times to get the inflow I(z), then find for
this inflow the solution N(z) of PL model and then contract z axis back to t
axis to get the solution n(t) of α model for the inflow i(t). The first important
consequence of this reformulation is the existence and uniqueness of solution
of α model. The second important consequence is the stability of α model for
constant v(n).

4.3 Connection between α and M models

In this section we show for the case of constant v(n) that α model can be
viewed as a limiting case of M model with parameter β when β tends to +∞.

First, solve α model for the case v(n) = 1. Representation from Section
4.2 leads to

n(t) = N(z) = e−z/Ln0 +
z∫
0

e−(z−q)/LI(q)dq

where z = αt and I(z) = i(t). By putting q = αs we get

n(t) = e−αt/Ln0 + α
t∫

0

e−α(t−s)/Li(s)ds (4.2)

Second, notice that parameter ψ = (1+β)2

4
−αβ tends to +∞. Therefore, star-

ting from rather big β, the solution of M model is

nM(t) = e−
1+β

2
t/L

(
cosh(

√
ψt/L) + β−1

2
√
ψ
sinh(

√
ψt/L)

)
n0+

+
t∫

0

e−
1+β

2
(t− s)/L (cosh(

√
ψ(t− s)/L) + (2α−1)β−1

2
√
ψ

sinh(
√
ψ(t− s)/L)

)
i(s)ds

Now find the limit of this expression. Obviously,
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lim
β→+∞

cosh(
√
ψt/L)

e
√
ψt/L = lim

β→+∞
sinh(

√
ψt/L)

e
√
ψt/L = 1

2

for positive t. We can also take t− s (where s < t) instead of t. Moreover,

lim
β→+∞

β−1
2
√
ψ

= lim
β→+∞

1− 1
β√(

1+
1
β

)2
− 4α

β

= 1

and

lim
β→+∞

(2α−1)β−1

2
√
ψ

= lim
β→+∞

2α−1− 1
β√(

1+
1
β

)2
− 4α

β

= 2α− 1

and

lim
β→+∞

(
1+β

2
−
√
ψ
)

= lim
β→+∞

αβ
1+β

2
+
√
ψ

=

= lim
β→+∞

2α

1+
1
β

+

√(
1 + 1

β

)2

− 4α
β

= α

Therefore,

lim
β→+∞

nM(t) = e−αt/Ln0 + α
t∫

0

e−α(t−s)/Li(s)ds

which is the solution of α model.

4.4 Analytical comparison of α and M models

In this section we perform analytical comparison of α and M models as an
approximations of TB model. We assume v(n) = 1 to simplify the analysis.
Similarly to Section 2.4, we consider cases of big and small t. Big t should be
understood as t > ΛL, where Λ is not a very big number such that domain of
f(l) belongs to [0,ΛL]. Small t should be understood as t < ΛL.

In the case of big t we consider quadratic inflow profile i(t) = i0 + i1t+ i2t
2.

Proposition 24 says that the solution of TB model in this case is

nTB(t) = L(i0 + i1t+ i2t
2)− L2

α
i1 − 2L

2

α
i2t+ 2

(
1
α
− 1

3
+ ρ3

6L3

)
L3i2, t ∈ [ΛL, T ]

where ρ3 is the third central moment of f(l). From the reformulation of α
model presented in Section 4.2 and Proposition 25 follows that the solution of
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α model is

nα(t) = L
(
i0 + i1

α
(αt) + i2

α2 (αt)2
)
− L2 i1

α
− 2L2 i2

α2 (αt) + 2L3 i2
α2 +

+ e−αt/L
(
n0 − Li0 + L2 i1

α
− 2L3 i2

α2

)
which is equal to

nα(t) = L(i0 + i1t+ i2t
2)− L2

α
i1 − 2L

2

α
i2t+ 2L

3

α2 i2+

+ e−αt/L
(
n0 − Li0 + L2

α
i1 − 2L

3

α2 i2

)
The difference nα(t)− nTB(t) converges to the constant

2
(
−
(

1
α
− 1

α2

)
+ 1

3
− ρ3

6L3

)
L3i2

Thus, if i2 = 0 then α model converges to TB model. Recall that PL model
does not converge to TB model for the linear inflow if α > 1. In this sense α
model is more preferable as an approximation of TB model. To understand
the quality of approximation for the quadratic inflow, we look at the value of

δ = −
(

1
α
− 1

α2

)
+ 1

3
− ρ3

6L3

for realistic and gamma-like distributions. From Section 2.4 follows that the
similar value of δ for M model is equal to

δ = −
(

1 + 1
β

) (
1
α
− 1

α2

)
+ 1

3
− ρ3

6L3

Obviously, if β tends to +∞ then this value tends to δ that corresponds to
α model. Thus, we can use formulas (2.13) and (2.14) to find all the possible
values of δ for reasonable and gamma-like distributions in α model. The range
of δ for reasonable distributions is{

δ > −
(

1
α
− 1

α2

)
+ 1

12

(
9− 12

α
+ 4

α2

)
= 3

4

(
4

3α
− 1
)2

δ < −
(

1
α
− 1

α2

)
+ 1

3

(
3
α
− 2

α2

)
= 1

3α2

The value of δ for gamma-like distributions is

δ = −
(

1
α
− 1

α2

)
+ 1

3
− 1

6

(
2− 8

(
1
α
− 1

α2

))
= 1

3

(
1
α
− 1

α2

)
In Figure 4.1 we compare M and α models in the sense of possible values of δ
for reasonable and gamma-like distributions.
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α

δ

1
0
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1
3

1
12

M model

(β = 3)

α

δ

1
0

2

1
3

1
12

1
12

α model

(β→ +∞)

Figure 4.1: Possible values of δ for reasonable (cyan area) and gamma-like (blue,
dashed) distributions. Values are given for M model with β = 3 (left) and α model
(right).

We can say that M model works better for realistic distributions which we
consider to be almost gamma-like. However, α model is not very bad as it
gives rather small values of δ for gamma-like distributions and not very big
values for reasonable distributions.

Now consider the case of small t. As in Section 2.4, we assume i(t) =
n0

L
+ ∆i, t ∈ (0, T ] and take distributions

D1 = 1
2
U [0, L] + 1

2
U [0, 3L]

D2 = U
[(

1−
√

3
2

)
L,
(

1 +
√

3
2

)
L
]

which are reasonable and not gamma-like. D1 has α = 1.2 and D2 has α = 1.6.
We look at the outflow o(t) to see the difference between models more clearly.
To solve α model for i(t) = n0

L
+ ∆i we use formula (4.2). It gives

n(t) = n0 + L∆i
(
1− e−αt/L

)

The corresponding outflow can be calculated as o(t) = i(t)− ṅ(t). This gives

o(t) = n0

L
+ ∆i

(
1− αe−αt/L

)

In Figure 4.2 we compare o(t), t ∈ (0, 3L] in M and α models.
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t

o(t)

0 L 2L 3L

n0

L

n0

L
+ ∆i

M model

(β = 3)

t

o(t)

0 L 2L 3L

n0

L

n0

L
+ ∆i

α model

(β→ +∞)

Figure 4.2: Solutions of models for i(t) = n0

L
+ ∆i. TB model is given for D1

(blue, solid) and D2 (olive, solid). M model (left) is given for α = 1.2 (blue,
dashed) and α = 1.6 (olive, dashed). It approximates TB model very well. α
model (right) is also given for α = 1.2 (blue, dashed) and α = 1.6 (olive, dashed).
It approximates TB model not very well.

We can see that M model is more precise in describing the behavior of TB
model for the jumping inflow. The biggest problem of α model is in the very
beginning of the time period. It cannot approximate TB model well because
in the case α > 1 the function o(t) makes a jump of the opposite direction to
the jump of i(t). The size of the jump is (α − 1)∆i. This might create also
negative values of o(t) for some inputs. However, these inputs are not realistic
because in practice we expect the size of ∆i to be smaller than n0

L
.

4.5 Numerical comparison of α and M models

As we showed in this chapter, α model should be rather good approximation
of TB model for the slowly changing inflow. The case of jumping inflow is very
unclear. There is a big problem of not accurate approximation just after the
jump, but the sign of discrepancy changes very soon. Thus, one can expect
descent results if jumps occur not very often. We are mostly interested in
inflows that are typical for the transportation systems. To test α model and
compare it with M model we take the same setting as in the Section 2.5. The
speed-MFD is shown in Figure 4.3:
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n

v(n)

0 ncr

1
2

1

3ncr n

p(n)

0 ncr

ncr
2

3ncr

Figure 4.3: Realistic function v(n) and corresponding p(n).

The input is n0 = 0.3ncr, T = 30L, i(t) = i0 + 4 t
T

(
1− t

T

)
∆i, where

i0 = 0.51c and i0 + ∆i ∈ [0.9c, 1.2c]. The value of c is the capacity of the
zone. It is equal to ncr

2L
for the chosen v(n). We also test jumping inflow

i(t) + (−1)[t/L]0.1c to simulate control. The discretization of TB, PL and M
models is the same as in Section 2.5. To solve α model we use numerical scheme

nk+1 − nk = α
(
ik+1∆t− v(nk)

L
nk∆t

)
In general, α model appeared to be much closer to TB model than PL model.
It reproduces hysteresis effect and under some conditions reproduces the effect
when the gridlock property of solution depends on f(l). We illustrate these
effects in Figure 4.4 for i0 + ∆i = 1.1c.

t

n(t)

0 15L 30L

ncr

2ncr

3ncr

n(t)

o(t)

0 ncr 2ncr 3ncr

c

0.3ncr

0.51c

Figure 4.4: Solutions of models for smooth inflow with i0 +∆i = 1.1c. TB model
is given for D1 (blue, solid) and D2 (olive, solid). α model for α = 1.2 (blue,
dashed) and α = 1.6 (olive, dashed) approximates TB model very well. PL model
(cyan, dashed) is not a good approximation and cannot predict gridlock for D2.

Similarly to the analysis shown in Section 2.5, we can find the maximum
value of accumulation nmax depending on i0 + ∆i. The results for α, TB and
PL models are shown in Figure 4.5.
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i0 + ∆i

nmax(i0 + ∆i)

0.9c c 1.1c 1.2c

ncr

2ncr

3ncr

Figure 4.5: Maximum accumulation for smooth inflow depending on i0 + ∆i. TB
model is given for D1 (blue) and D2 (olive). α model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) shows similar values. PL model (cyan, dashed) shows
very different values for i0 + ∆i > c.

One can see from Figures 2.19 and 4.5 that α model is less accurate than
M model as an approximation of TB model, however, it is still much more
preferable than PL model. We can also plot the average relative error as
function of i0 + ∆i to visualize the accuracy that each of models gives. The
results are shown in Figure 4.6.

i0 + ∆i

ε(i0 + ∆i)

0.9c c 1.1c 1.2c

0.001
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1
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ε(i0 + ∆i)
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0.001

0.01

0.1

1

Figure 4.6: Relative error between approximations and TB model for smooth
inflow. TB model is given for D1 (left) and D2 (right). The error of M model for
α = 1.2 (blue, dashed) and M model for α = 1.6 (olive, dashed) is much lower
than the error of PL model (cyan, dashed). The error of α model for α = 1.2
(blue, dash-dotted) and α = 1.6 (olive, dash-dotted) lies between the errors of M
and PL models.

Interestingly, α model still works well for the jumping inflow. To show
this we make similar analysis as in Figures 4.4-4.6. In Figures 4.7-4.9 we
take jumping inflow i(t) + (−1)[t/L]0.1c instead of smooth inflow i(t) = i0 +
4 t
T

(
1− t

T

)
∆i.
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0 ncr 2ncr 3ncr
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0.51c

Figure 4.7: Solutions of models for jumping inflow with i0 + ∆i = 1.1c. TB
model is given for D1 (blue, solid) and D2 (olive, solid). α model for α = 1.2
(blue, dashed) and α = 1.6 (olive, dashed) approximates TB model very well. PL
model (cyan, dashed) is not a good approximation and cannot predict gridlock for
D2.

i0 + ∆i

nmax(i0 + ∆i)

0.9c c 1.1c 1.2c

ncr
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3ncr

Figure 4.8: Maximum accumulation for jumping inflow depending on i0 +∆i. TB
model is given for D1 (blue) and D2 (olive). α model for α = 1.2 (blue, dashed)
and α = 1.6 (olive, dashed) shows similar values. PL model (cyan, dashed) shows
very different values for i0 + ∆i > c.
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Figure 4.9: Relative error between approximations and TB model for jumping
inflow. TB model is given for D1 (left) and D2 (right). The error of M model for
α = 1.2 (blue, dashed) and M model for α = 1.6 (olive, dashed) is much lower
than the error of PL model (cyan, dashed). The error of α model for α = 1.2
(blue, dash-dotted) and α = 1.6 (olive, dash-dotted) lies between the errors of M
and PL models.

One can see that the accuracy of α model for the jumping inflow is less
than for the smooth inflow. But α model is still much more accurate than PL
model and is less accurate than M model.

4.6 Convex formulation of α model

Production-MFD p(n) = v(n)n is usually assumed to be concave on the inter-
val [0, njam]. This fact can be used to build a convex formulation of α model.
Indeed, if we relax the assumption that the speed is equal to v(n) and allow
all the values from 0 to v(n) (this can be interpreted as adjustment of speed-
MFD by manipulating all the traffic lights inside the zone) then the outflow
in α model will satisfy{

o(t) > − (α− 1)i(t)

o(t) 6 αv(n(t))
L

n(t)− (α− 1)i(t)

The derivative of accumulation ṅ(t) = i(t)− o(t) will satisfy{
ṅ(t) 6 αi(t)

ṅ(t) > α
(
i(t)− v(n(t))

L
n(t)

)
or, equivalently, {

ṅ(t)− αi(t) 6 0

α
(
i(t)− v(n(t))

L
n(t)

)
− ṅ(t) 6 0

(4.3)
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Now imagine that we want to minimize some convex objective function that
depends on n(t), t ∈ [0, T ]. Notice that inequality constraints (4.3) are convex.
Thus, if we assume that all other constraints are linear equalities or convex
inequalities, we get convex optimization problem. Given the optimal solution,
we can reconstruct the coefficient of speed adjustment as

U(t) = αi(t)−ṅ(t)

α
v(n(t))
L

n(t)

Note that U(t) can vary from 0 to 1. However, we expect that, if the optimi-
zation problem makes sense, and the outflow does not produce negative effect
(by entering neighboring congested zone), speed adjustment cannot be optimal
and U(t) should be equal to 1. In other words, we get the same solution as we

were using equality ṅ(t) = α
(
i(t)− v(n(t))

L
n(t)

)
.

The same relaxation trick can be used for PL model which is α model for
α = 1 and for any other NEF model (e.g. [2]). If we look at the formulation
of M model we can see, that this trick cannot be applied to it directly. Thus,
α model might be a better choice than M model in the situations where the
accurate formulation of dynamics is more preferable than other techniques like
linearization around some point.
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Conclusion 5
This thesis investigates properties of different speed-MFD models developed
for a single zone. The most popular approach (PL model) says that the dy-
namics of accumulation n(t), t ∈ [0, T ] can be found as a solution of Cauchy
problem

{
n(0) = n0

ṅ(t) = i(t)− v(n(t))
L

n(t), t ∈ [0, T ]

where v(n(t)) is a speed-MFD and L is a coefficient that can be interpreted
for the steady state as a mean trip length. It was shown that PL model cannot
accurately describe what happens if i(t) makes jumps. This drawback does
not exist in TB model that postulates that incoming vehicles have some trip
length distribution and the speed of all the vehicles is the same and equals
v(n). Mathematical formulation of TB model looks as


n(t) = n0 , t ∈ (−∞, 0]

i(t) = v(n0)
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(
1− F

(∫ t
s

v(n(u))du
))

i(s)ds , t ∈ (−∞, T ]

where F (l) is a CDF of trip length distribution. It was shown that the solution
of PL model is a solution of TB model for exponential distribution. Thus, TB
model seems to have one degree of freedom (trip length distribution) that can
lead to more accurate modeling of n(t). However, TB model is computationally
expensive.
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5.1 M model

The main contribution of the thesis is proposed ODE approximation of TB
model. This so-called M model has the form of Cauchy problem

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− v(n(t))
L

(
n(t) + 3

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− v(n(t))n(t) , t ∈ [0, T ]

where α = 2L2

L2+σ2 ∈ (0, 2) is dimensionless parameter that depends on the mean
L and the standard deviation σ of trip length distribution. M model becomes
equivalent to PL model if α = 1 (σ = L). However, the typical distribution
that appears in transportation field (for a zone of 1 − 2 kilometers in size)
has α > 1 (σ < L). Analytical and numerical analysis presented in Chapter
2 shows that M model is more accurate than PL model as an approximation
of TB model in the case of α > 1. Thus, M model becomes an attractive
alternative to TB model. Not only because it is computationally cheap, but
also because it does not require precise information about the trip length
distribution.

5.2 The case of constant speed

It can be expected that M model might be useful in other fields that are
not related to transport. Indeed, the formulation of TB model with constant
v(n) = 1 (in this case trip length distribution becomes trip time distribution)
looks as 

n(t) = n0 , t ∈ (−∞, 0]

i(t) = 1
L
n0 , t ∈ (−∞, 0]

n(t) =
t∫
−∞

(1− F (t− s))i(s)ds , t ∈ (−∞, T ]

Such a system is called LTI (Linear Time-Invariant) system and can appear
in many different applications, from economics to pharmacokinetics. The ap-
proximation of this system with M model takes the form

n(0) = n0

M(0) = L
α
n0

ṅ(t) = i(t)− 1
L

(
n(t) + 3

(
n(t)− α

L
M(t)

))
, t ∈ [0, T ]

Ṁ(t) = Li(t)− n(t) , t ∈ [0, T ]

which is constant coefficient non-homogeneous linear differential equation. It
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can be solved analytically for an arbitrary i(t). The solution is presented
in Section 2.4. It should be noted that in this thesis the conclusion that M
model is close to TB model is done based on trip length distributions and
inflow functions that are typical for transportation systems. However, it was
shown that the approximation works very well for distributions that are close
to distributions from gamma family (such distributions appear very often in
economic and physical models). Moreover, for any α 6 4

3
there can be found

exactly one distribution such that M model is equivalent to TB model. If
α = 4

3
then this will be gamma distribution with PDF f(l) = 4l

L2 e
−2l/L. In the

case α > 4
3

the equivalence is not possible. To show that approximation still
works well for distributions that are close to gamma family the quadratic class
of i(t) was used. Such i(t) can capture non-linear behavior of any smooth i(t)
with high accuracy.

5.3 α model

If the inflow i(t) changes slowly, another ODE approximation of TB model (α
model) can be used for the accurate modeling of n(t). Similarly to M model,
it requires coefficient α. However, the formulation of α model is much simpler
and has the form of Cauchy problem{

n(0) = n0

ṅ(t) = α
(
i(t)− v(n(t))

L
n(t)

)
, t ∈ (0, T ]

where v(n(t)) is the speed-MFD function that can be either constant or de-
creasing. In the case α = 1 this model becomes equivalent to PL model, but
this case is considered to be not realistic for transportation systems. Nume-
rical analysis performed in this thesis for α = 1.2 and α = 1.6 showed that,
in general, α model is less accurate than M model and more accurate than
PL model. The main advantage of α model that can be efficiently utilized in
optimization frameworks is its convex relaxation

α
(
i(t)− v(n(t))

L
n(t)

)
− ṅ(t) 6 0

which can be interpreted as a proportional reduction of speed of all the vehi-
cles inside the zone. The relaxation is convex because the production-MFD
function p(n) = v(n)n is usually assumed to be concave. M model cannot
be relaxed to a convex problem this way. To be used inside convex optimiza-
tion frameworks, it can be linearized around some point, but this reduces the
accuracy. The question if α model suits better than M model for the real-time
control of transportation systems is not trivial. It can be viewed as potential
research direction.
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