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Abstract

This thesis focuses on the development and validation of a reduced order technique for
cardiovascular simulations. The method is based on the combined use of the Reduced
Basis method and a Domain Decomposition approach and can be seen as a particular
implementation of the Reduced Basis Element method. Our contributions include the
application to the unsteady three-dimensional Navier—Stokes equations, the introduction
of a reduced coupling between subdomains, and the reconstruction of arteries with
deformed elementary building blocks. The technique is divided into two main stages: the
offline and the online phases. In the offline phase, we define a library of reference building
blocks (e.g., tubes and bifurcations) and associate with each of these a set of Reduced
Basis functions for velocity and pressure. The set of Reduced Basis functions is obtained
by Proper Orthogonal Decomposition of a large number of flow solutions called snapshots;
this step is expensive in terms of computational time. In the online phase, the artery
of interest is geometrically approximated as a composition of subdomains, which are
obtained from the parametrized deformation of the aforementioned building blocks. The
local solution in each subdomain is then found as a linear combination of the Reduced
Basis functions defined in the corresponding building block. The strategy to couple the
local solutions is of utmost importance. In this thesis, we devise a nonconforming method
for the coupling of Partial Differential Equations that takes advantage of the definition
of a small number of Lagrange multiplier basis functions on the interfaces. We show
that this strategy allows us to preserve the h-convergence properties of the discretization
method of choice for the primal variable even when a small number of Lagrange multiplier
basis functions is employed. Moreover, we test the flexibility of the approach in scenarios
in which different discretization algorithms are employed in the subdomains, and we
also use it in a fluid-structure interaction benchmark. The introduction of the Lagrange
multipliers, however, is associated with stability problems deriving from the saddle-point
structure of the global system. In our Reduced Order Model, the stability is recovered by
means of supremizers enrichment.

In our numerical simulations, we specifically focus on the effects of the Reduced Basis and
geometrical approximations on the quality of the results. We show that the Reduced Order
Model performs similarly to the corresponding high-fidelity one in terms of accuracy.
Compared to other popular models for cardiovascular simulations (namely 1D models),
it also allows us to compute a local reconstruction of the Wall-Shear Stress on the vessel
wall. The speedup with respect to the Finite Element method is substantial (at least one
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order of magnitude), although the current implementation presents bottlenecks that are
addressed in depth throughout the thesis.

Keywords: Cardiovascular applications, Navier—Stokes equations, Reduced Order Model-
ing, Reduced Basis method, Reduced Basis Element method, Domain Decomposition,
nonconforming methods.
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Résumé

Cette these se concentre sur le développement et la validation d’un modele réduit
appliqué aux simulations cardiovasculaires. La méthode est basée sur une combinaison
de la méthode des bases réduites et d’une approche de décomposition de domaine, et elle
peut étre interpretée comme une implémentation spécifique de la Reduced Basis Element
method. Nos contributions comprennent ’application aux équations de Navier—Stokes
non-stationnaires en trois dimensions, 'introduction d’une stratégie de couplage réduit
entre sous-domaines, et la reconstruction d’arteres avec des composantes géométriques
de base déformées. La technique se divise en deux étapes principales : une phase offiine
et une phase online. Dans la phase offline, nous définissons une librairie de composantes
géometriques de base (par example, des tubes et des bifurcations) et nous associons
a chacune une collection de fonctions réduites pour la vitesse et pour la pression. Ces
fonctions réduites sont générées avec l'algorithme de décomposition orthogonale aux
valeurs propres, appliqué & un grand nombre de solutions aux équations de Navier—Stokes,
appelées snapshots ; cette étape est onéreuse en termes de temps de calcul. Dans la phase
online, la géométrie de 'artére d’intérét est approximée par une composition de sous-
domaines obtenus a partir de la déformation paramétrée des composantes géométriques
de base mentionnées ci-dessus. La solution locale dans chaque sous-domaine est ensuite
trouvée sous forme de combinaison linéaire des fonctions de base réduites définies dans la
composante géométrique correspondante. La stratégie de couplage des solutions locales
est évidemment importante. Dans cette these, nous concevons une méthode non conforme
pour le couplage d’équations différentielles partielles qui tire parti, pour la discrétisation
des multiplicateurs de Lagrange, de la définition d’un petit nombre de fonctions de base
sur les interfaces. Nous montrons que cette stratégie permet de conserver les propriétés
de convergence de la méthode de discrétisation choisie pour la variable primale, méme
lorsqu’un petit nombre de fonctions de base est employé sur les interfaces. De plus, nous
testons la flexibilité de I’approche dans des scénarios dans lesquels différents algorithmes
de discrétisation sont employés dans les sous-domaines, et nous l'utilisons également
dans un benchmark d’interaction fluide-structure. L’introduction des multiplicateurs de
Lagrange, cependant, est associée a des problémes de stabilité découlant de la structure
en points-selles du systeme global. Dans notre modele réduit, la stabilité est récupérée
au moyen de ’enrichissement des supremizers.

Dans nos simulations numériques, nous nous concentrons spécifiquement sur les effets
de la base réduite et des approximations géométriques sur la qualité des résultats. Nous
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montrons que le modele d’ordre réduit fonctionne de maniere similaire au modele haute
fidélité correspondant, en termes de précision. Comparé & d’autres modeles populaires de
simulation cardiovasculaire (a savoir les modeles 1D), il permet également une recons-
truction locale des contraintes de cisaillement sur la paroi du vaisseau. L’accélération par
rapport a la méthode des éléments finis est substantielle (au moins un ordre de grandeur),
bien que I'implémentation actuelle présente des goulets détranglement qui sont abordées
en profondeur tout au long de la these.

Mots clés : Applications cardiovasculaires, équations de Navier—Stokes, modeles d’ordre
réduit, méthode des bases réduites, Reduced Basis Element method, décomposition de
domaine, méthodes non conformes.
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Introduction

Cardiovascular disease is currently the leading cause of death worldwide. According to
the data of the World Health Organization!, this class of diseases has been responsible
for around 31% of all the deaths in 2016. Under the broad definition of cardiovascular
disease are various pathological conditions—such as coronary heart disease, stroke, or
heart failure—which are fostered by lifestyles that are rapidly becoming prevalent in
many areas of the developed and developing world. Risk factors include, for example,
unhealthy diet, obesity, lack of physical exercise, air pollution, and many more. Therefore,
it is not surprising that the study of the cardiovascular system is nowadays an extremely
active area of research.

From a global perspective, the cardiovascular system resembles a (complex) mechanical
system of interconnected pipes, arteries, and veins, whose purpose is to distribute
oxygenated blood over all the districts of the body and to collect it once oxygen has been
released. Blood flow is propelled by the action of the heart, which can be interpreted
as a mechanical pump. The utmost importance of the mechanical properties of the
cardiovascular system is also supported by the fact that many of the aforementioned
pathological conditions are caused by abnormal patterns in the blood dynamics and their
effects on the vessel walls. For example, atherosclerosis, which is a disease caused by the
formation of lipidic plaques on the inner walls of blood vessels, has been shown to be
related to the Wall-Shear Stress (WSS) exerted by the fluid [CG05, SD00].

The numerical approximation of blood flow by Computational Fluid Dynamics (CFD) has
gained considerable attention during the last twenty years as a valuable quantitative aid
for the study and diagnosis of cardiovascular disease [BBCT 14, FTM17]. This tendency is
also promoted by the exponential rise in the computational capabilities of supercomputers
(as predicted by Moore’s law [Mo065]), which allows researchers and scientists to run
simulations with ever-increasing complexity.

Blood dynamics is typically modeled by means of the incompressible Navier—Stokes
equations. These are a set of nonlinear Partial Differential Equations (PDEs) derived
from the application to continuums of basic principles of continuity of mass, energy,

"https://www.who.int /news-room/fact-sheets/detail /cardiovascular-diseases-(cvds)
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Figure 1 — Geometry of the aortic arch, with detail of the computational mesh on the
right.

and momentum. To attempt the numerical simulation of these equations, it is necessary
to consider a suitable finite-dimensional approximation. Here, this is performed by
means of the Finite Element (FE) method, although other methods—e.g., Finite Volume
and Isogeometric Analysis (IGA)—are also popular in the context of fluid simulations.
The basic underlying idea of the FE method is to fill the domain of interest with
nonoverlapping polyhedra (e.g., tetrahedra or hexahedra) to form a mesh [SF73, Cia02].
The infinite-dimensional variables of interest, namely velocity and pressure in the case of
the Navier—Stokes equations, are approximated as combinations of a finite number of
basis functions with local support on the elements of the computational mesh. In Fig. 1
we show, as an example, a geometry of the aortic arch and a detail of its triangular
surface mesh.

However, accurate results typically require very fine mesh sizes and a large number of
degrees of freedom (dofs). The latter is proportional to the size of the linear systems
to be solved at each timestep. The computational time associated with large-scale
simulations is, consequently, often prohibitive in daily clinical practice. Additionally,
certain multi-query scenarios require solving these problems multiple times for a variety
of data (e.g., variable boundary conditions or physical parameters of blood and/or artery
wall). This is a recurring theme, for instance, whenever one is interested in parameter
identification or in quantifying the uncertainty associated with the quantities to be varied
[SKCT16, SM11, CQR13].

The FE method is one of the viable techniques to define what in this thesis we refer to as
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Full Order Models (FOMs) or high-fidelity models. Reduced Order Models (ROMs) aim at
drastically reducing the number of dofs compared to the high-fidelity ones. Reducing the
number of variables involved comes at the cost of larger approximation errors, but this
decreased accuracy is generally still well within the bounds of acceptability (depending,
of course, on the application at hand).

Among the ROMs employed in the context of cardiovascular modeling are the popular
0D/1D models [MB13, Mal12, MEM15]. These models consider a coarse approximation
of systems of arteries as electric circuits (0D) or as segments in which the quantities
of interest are found as averages across the section of the vessels (1D). Geometrical
multiscale models often prove to be remarkably accurate in approximating flow rates and
pressure drops [BBM 18], albeit the strong geometrical approximations inevitably entail a
significant loss of local details. For this reason, algorithms to couple geometrical multiscale
models with full three-dimensional simulations—to be employed in the regions in which
higher-quality solutions are required—have been devised [MBC*13, SMK ™12, MVCF*13].

The main goal of this thesis is the formalization and assessment of a ROM for cardiovas-
cular simulations allowing to preserve the three-dimensional features of the flow whilst
still considerably reducing the size of the system. In particular, we base our strategy on a
combination of a Domain Decomposition approach with the Reduced Basis (RB) method.
The RB method has been introduced in [ASB78]| for nonlinear structural analysis and
has been further developed, e.g., in [Bal96, FR83, NP83, Por85]. This reduction strategy
has received much attention in the last two decades; see [QMN15, HRS16] for general
overviews. Our method is a particular implementation of the Reduced Basis Element
(RBE) method [MR04, MR02]. The domain of interest is approximated as a composition
of subdomains obtained from the parametrized deformation of a small number of ele-
mentary building blocks. In the cardiovascular context, these are, for example, reference
cylinders and bifurcations. Instead of relying on the FE space associated with each of
these building blocks, the global solution to the Navier—Stokes equations is found by
combining the local solutions in each subdomain, which in turn are retrieved as a linear
combination of a small number of spectral basis functions defined in every building block.

A critical part of the algorithm is evidently the coupling strategy. In this thesis, we present
an approach based on spectral basis functions defined on the interfaces of the subdomains.
From the theoretical standpoint, the method is based on the same concepts that lead
to the well-known mortar method [Ber89, BMRO05]. The main advantage of considering
spectral basis functions is that the space associated with the coupling functions—the
Lagrange multipliers—is independent of either of the neighboring meshes, which results
in the possibility of freely tuning the degree of coupling.

In the following sections, we first present the main objectives of this work. Then, we
highlight the principal original contributions of the manuscript and discuss its outline.
We conclude with general remarks on the implementation of the code that has been
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employed in the numerical results presented throughout the thesis.

Objectives

As mentioned, the main goals of the thesis are the development of a ROM for cardiovas-
cular simulations based on the RBE method and the assessment of its performance on
physiological geometries. In particular, we address the following research questions:

e How to couple solutions defined on globally nonconforming spaces?

In the literature, the task of combining solutions defined in separate domains and
on a priori incompatible functional spaces is a well-known problem. The most
common approach introduces, for each interface, a set of basis functions for a
Lagrange multiplier used to impose the kinematic and dynamic conditions (i.e.,
continuity of the solutions and relative stresses across the interface). In this thesis,
we propose a method in which the space of the Lagrange multiplier is discretized by
a set of spectral basis functions. We study the stability and convergence properties
of this approach and put it in relationship with other popular methods for the
nonconforming coupling of PDEs.

o What are the main strengths and criticalities/bottlenecks of the ROM?
Our ROM is a data-driven approach in which the local basis functions are computed
by Proper Orthogonal Decomposition (POD) of large datasets of local solutions
computed during an expensive offline stage. The goal of this step is to lower the
computational burden of the solution of the flow problem given a new geometry
(online stage). In this work, we aim at formalizing the general framework of the
ROM by identifying the steps which characterize both the offline and online stages.
We also focus on the advantages of our method compared with other reduced
order modeling techniques and on the current bottlenecks that still need further

investigation.

e How does the ROM compare with respect to the FOM in terms of efficiency and
accuracy?
The main reason to consider reduced order modeling in the first place is to obtain
substantial speedup with respect to the high-fidelity simulations. For the ROM
to be beneficial in practical scenarios, however, the overall accuracy must not be
excessively compromised. In the particular case of our ROM, the loss of accuracy is
dictated by two factors: the geometrical approximation and the use of RB functions
instead of the richer FE ones. The goal of our numerical experiments is to evaluate
both the expected gain in performance and the accuracy loss associated with each

of these aspects.



Contributions and outline of the thesis

The main contributions of the thesis are:

o We discuss the main results achieved during the study of a time-integration method
applied to the Navier—Stokes equations, namely the Rosenbrock schemes [Ros63]. In
particular, we focus on two critical points that affect these methods: order reduction
and the issues related to the convergence of the linear solver. Although we do not
use Rosenbrock schemes in the following parts of the thesis, these findings motivate
the time discretization strategy that is considered in our numerical simulations.

e We perform an in-depth study of a coupling strategy based on spectral Lagrange
multiplier basis functions. As we show in our numerical experiments, we are able
to recover the convergence rates of the discretization method employed in the
subdomains by considering a minimal number of basis functions. The method is
tested on a variety of cases, ranging from FE-FE coupling (with global noncon-
forming meshes or different polynomials degrees in the subdomains) to FE-IGA
coupling. Furthermore, the coupling strategy is validated on a classic fluid-structure
interaction benchmark in the Arbitrary Lagrangian-Eulerian (ALE) framework, in
which we show that a small number of spectral basis functions is sufficient to obtain
results close to the ones achieved with a strong coupling of fluid and structure
displacements.

o We propose a particular implementation of the RBE method [MR02] which takes
advantage of the spectral basis functions discussed in the previous point. Contrarily
to previous investigations of the RBE method in the cardiovascular context, more-
over, we define analytical functions for the deformation of some of our building
blocks (the tubes), and we perform the mapping of others (the bifurcations) by
solving linear elasticity problems in which we prescribe the displacement of the
boundaries so as to match the target geometry. In the RBE context, the typical
approach is instead based on transfinite maps [LMR06b, LMR09, IQR12, JIR14].

e We develop an ad-hoc preconditioner that exploits the saddle-point nature of the
coupled problem. The main idea is to rely on the same decomposition of the matrix
system leading, e.g., to the SIMPLE preconditioner [SRV10]. The critical points are
the computation of the Schur complement and the inversion of the matrices relative
to each subdomain. Regarding this last aspect, our numerical tests show that the
largest gains in terms of computational time are achieved when the inverses of the
primal matrices—which in our application are the Jacobians of the Navier—Stokes
equations in every subdomain—are approximated with a single application of the
SIMPLE preconditioner. It is worth noting that it is important to focus on the
efficiency of the solution of the global system even in the FE context since the offline
phase of the ROM requires sampling snapshots on already decomposed geometries.

5
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The development of an effective preconditioner is, therefore, fundamental to lower
the cost associated with this computationally intensive phase of the method.

e We evaluate the performance of the ROM on artificial and physiological geometries.
We highlight that, even though the RBE method has been originally proposed for car-
diovascular applications, to our knowledge, this work represents its first assessment
in the context of the unsteady three-dimensional Navier—Stokes equations. Indeed,
previous works in this domain have focused primarily on the steady Stokes equations
in two dimensions; see, e.g., [LMR06a, LMR06¢c, LMRO7, IRQ10, IQR12, Tap12].
One of the main topics of interest is the effect of the geometric discretization on
the accuracy of the method. The automatic generation of decomposed geometries,
although of the utmost importance for the effective use of the methodology in
practical scenarios, is only tangentially presented in Section 5.1.

The structure of the thesis is the following.

Chapter 1 deals with the mathematical models which are commonly used in cardiovascu-
lar applications. In particular, we start from the strong formulation of the Navier—Stokes
equations and then present the discretization in space by the FE method. The discretiza-
tion in time is performed by Backward Differentiation Formulas (BDF') schemes, but we
also discuss the properties of the aforementioned Rosenbrock schemes. Furthermore, we
introduce the concept of saddle-point problems and some related stability and conver-
gence results, which play an important role in the approximation of the Navier—Stokes
equations and other areas of the thesis. We conclude by presenting a fluid-structure
multiphysics problem in ALE formulation in strong form and its space discretization.

Chapter 2 is about our nonconforming strategy for the coupling of PDEs. We recall
that, in this context, the term nonconforming refers to the concept that the global
functional space in the discretized problem (i.e., the composition of the local functional
spaces in every subdomain) is not a subspace of the functional space in which the
continuous solution resides. In practical terms, nonconforming coupling methods allow us
to combine solutions defined on globally nonconforming meshes (that is, meshes featuring
hanging nodes) or with different discretization methods (for example, FE-FE, FE-IGA,
and FE-RB). In this chapter, we discuss how our discretization strategy for the global
problem is based on the definition of spectral Lagrange multiplier basis functions on
the interfaces. We show that this allows us to retain desirable convergence properties
of the underlying discretization strategy for the primal variable of the problem. Finally,
we draw a parallel between the theory of the nonconforming coupling of PDEs and the
fluid-structure interaction problem discussed in the previous chapter, and we also employ
an ad-hoc set of spectral basis functions to solve the benchmark problem proposed in
[Nob01].

In Chapter 3, we present fundamental concepts of the RB method. We start by
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providing a general overview of the method and focusing on the offline and online phases
separately. Then, we specifically focus on problems featuring geometrical parameters.
This is motivated by the fact that the subdomains in our ROM are obtained from
parametrized geometrical deformations of reference building blocks. We address two
particular aspects that are problematic when dealing with parametric deformations in
fluid simulations: the lack of an affine decomposition and the need to perform the Piola
transformation of the velocity field (in particular, the latter point is required to preserve
the divergence-free property of the RB functions). Furthermore, we discuss the matter of
the stability of the reduced system whenever dealing with saddle-point problems (such
as the Stokes or the Navier—Stokes equations). In the last part of the chapter, we present
a somewhat elementary two-dimensional example in which we aim at solving the steady
Stokes equations in a parametrized tube. Despite its simplicity, this example requires
putting into practice all the topics introduced in this chapter.

In Chapter 4, we present our ROM. We start with an overview of other instances of
uses of the RBE method in the context of cardiovascular simulations. As mentioned,
the existing literature focuses primarily on steady simulations of the Stokes equations.
Then, we formalize the method by introducing a Domain Decomposition of the geometry
of interest and by providing the weak formulation of the Navier—Stokes equations on
modular geometries. We also address the efficient solution of the global problem when
the FE method is employed in every subdomain. In the last part of the chapter, we first
tackle the offline phase of our ROM and then move to the online part.

Chapter 5 focuses on numerical results computed on an artificial geometry—as a matter
of fact, the same geometry that has been considered in the previous chapter during the
basis generation phase of the algorithm—and then move on to simulations on physiological
geometries. The goal of the simulations on the artificial geometry is to evaluate the effects
of the sole reduction by the RB method on the accuracy and efficiency of the solution.
Indeed, considering an already decomposed model as a benchmark allows us to establish a
comparison with a FE simulation that shares the same geometry and mesh (consequently,
the same number of FE dofs). With the second simulation, which is performed on the
physiological geometry of an aorta with the iliac arteries, we aim to evaluate the effects of
the geometrical approximation on the solution quality. The last simulation is performed
on the geometry of an aortic arch: here, we show the feasibility of employing a mixture of
RB and FE solutions in the decomposed geometry. The rationale to do so is that, in some
of the subdomains, it could be desirable to consider exact geometries (e.g., whenever
a bifurcation is not well approximated by the ones in our library of building blocks,
or whenever we are dealing with pathological cases with abnormal geometries such as
stenoses) which are not equipped with RB basis functions.

Finally, in Chapter 6 we draw some conclusions and analyze the current limitations of
the work presented in this thesis. We also discuss possible future directions for our study.
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The content of this thesis is based on two published papers ([DDM*19, DIP19]) and an
additional one ([PPMD20]) that is currently under review for publication. Specifically:
the part of Chapter 1 relative to the study of Rosenbrock schemes for the Navier—Stokes
equations is an extract of [DDM119], Chapter 2 is largely taken from [DIP19] (except for
the last part, which deals with the application of the coupling strategy to fluid-structure
interaction), and Chapter 4 and Chapter 5 are based on the topics and results presented
in [PPMD20].

Implementation details

The numerical simulations in this thesis are carried out with many different codes and
pieces of software.

The two-dimensional simulations in Chapter 2 and Chapter 3 are computed with a
freely downloadable suite of MATLAB functions for FE simulations on structured and
unstructured meshes?. The code has been developed from scratch (i.e., it is not based on
any pre-existing library) during the doctoral program duration. The simulations involving
IGA in Chapter 2 are instead performed in GeoPDEs [V4z16], a free and open-source
package written in OCTAVE and MATLAB for IGA.

Most of the three-dimensional simulations are obtained with LifeV? [BDF*17], a C++
library for high performance numerical simulations with FEM. In some cases, we also
rely on SimVascular* [UWM™'17], an open-source program for patient-specific modeling
and blood flow simulations; we explicitly specify in the text whether a certain result is
found with this specific software.

The results presented in Chapter 1 and relative to the Rosenbrock schemes required to
implement and integrate that discretization strategy in LifeV.

The results presented in Chapter 5 are realized with a C++4 library developed for the
purposes of this thesis and based on LifeV. A comprehensive description of the code is
out of the scope of this manuscript; here, we only report its main characteristics and
capabilities.

e File format of the modular geometries. The geometrical characteristics of the
modular geometries employed in Section 5 are encoded in .xm1 files. The elementary
entity of this kind of format is a node, which is characterized by a variable number
of properties. Furthermore, nodes are arranged in a tree-like structure (namely,
a particular node can have one or multiple children or parents). The reasons for
which this format is appropriate to our application are twofold: (i) every block of

https://github.com/lucapegolotti/feamat
Shttps:/ /bitbucket.org/lifev-dev/lifev-release /wiki/Home
“http://simvascular.github.io/



the modular geometry can be represented with a node in which the attributes are
its corresponding geometrical parameters, and (ii) the modular geometry can be
conceptually interpreted as a tree in which every block is followed by either one
or multiple children; we restrict ourselves, however, to a single parent (namely a
single inflow per subdomain). Generating a new modular geometry, therefore, is
equivalent to generating the corresponding .xml file: in this thesis, this is done
by following the greedy algorithm presented in Section 5.1, which has also been
implemented in the library.

e Polymorphic treatment of assemblers in building blocks. The library has been
developed by following a classic C++ paradigm, namely polymorphism. This has
two main advantages. Firstly, the code is easily extendible to include new assemblers
(in addition to those already implemented, which correspond to the Stokes and
Navier—Stokes equations), as the assembler of the global system is agnostic about
the specific type of local assembler in every subdomain (in particular, all the
assemblers are children of a common abstract class). The second advantage is that,
owing to the flexibility of the global assembler, it is possible to allocate instances of
different assemblers in different subdomains (e.g., FE assemblers in certain parts of
the domain and RB assemblers in others) by directly specifying the assembler type
in the nodes of the .xml file. The results presented in Section 5.4 take advantage
of this property.

e Polymorphic treatment of Lagrange multiplier basis functions. Similarly to the
previous point, the basis functions on the interfaces share a common abstract
interface, and this allows users to integrate new classes of functions in the code
easily.

e Dynamic processing of simulation data. The simulation data regarding boundary
conditions (e.g., inflow profile), physical properties of the fluid, and POD tolerances
for the reduced bases, are passed to the simulation executables using formatted
datafiles. This allows users to efficiently vary these parameters without the need to
recompile the code.

The most computationally demanding numerical results presented in this thesis are found
on the Deneb, Fidis, and Helvetios clusters and, for this, we gratefully acknowledge the
Scientific IT and Application Support of EPFLS.

Shttps://www.epfl.ch /research/facilities /scitas,/






Mathematical models for hemody-

namics

This chapter is meant to set the theoretical basis for the topics that are treated in the rest
of the thesis. In particular, we focus on the mathematical aspects that characterize the
modeling and simulation of blood dynamics. Hemodynamics is typically approximated
using the incompressible Navier—Stokes equations, a set of nonlinear PDEs featuring the
velocity and pressure of the fluid as variables. A more comprehensive description of blood
flow behavior in compliant arteries is obtained by combining the Navier—Stokes equations
with elastic equations modeling the response of the vessel walls to the fluid stresses.

The structure of the chapter is the following. The continuous formulation of the Navier—
Stokes equations is presented in Section 1.1, whereas their space and time discretizations
are treated in Sections 1.2 and 1.3, respectively. The Navier—Stokes equations belong to
a broad class of mathematical problems commonly referred to as saddle-point problems.
These are discussed in a general fashion in Section 1.4, where we also touch on some of
the main theorems regarding well-posedness, stability, and convergence properties. The
importance of these concepts within the context of the thesis is also motivated by the fact
that, in Chapter 2, we introduce a coupling strategy for PDEs based on a saddle-point
formulation. In Section 1.5 we describe the Variational Multiscale (VMS) approach for
the discretization of the Navier—Stokes equations. Finally, in Section 1.6 we introduce the
idea of fluid-structure interaction, and we focus in particular on an Arbitrary Lagrangian-
Eulerian (ALE) formulation in which the deformation of the structure determines the
motion of the fluid domain.

The content of Section 1.3.2 is based on the published study [DDM*19], which focuses
on the properties of the multi-stage Rosenbrock schemes for the time discretization of
the Navier—Stokes equations.
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Chapter 1. Mathematical models for hemodynamics

1.1 The strong formulation of the incompressible Navier—
Stokes equations

Let us consider a domain Q € R* d=2ord =3, and let 90 =Tp Uy (Tp Ny =0)
be a partition of its boundary. In strong formulation, the incompressible Navier—Stokes
equations read

0
P + o0 VIu=V oi(up)=f  inQx(0,7),
V.u=0  inQx(0,7),
_ (1.1)
u=g on I'p x (0,7),
of(u,p)n =h on I'y x (0,7),

u=u for t =0,

where u: Q x (0,7) — R? and p: Q x (0,7) — R are velocity and pressure of the fluid,
pr is the density, uf is the viscosity, e¢(u) = (Vu + VuT) /2 is the strain rate tensor,
of(u,p) = 2uger(u) — pI is the Cauchy stress tensor, f : Q x (0,7) + R? is a forcing
term, g : I'p x (0,7) — R% and h: Ty x (0,T) ~ R? are Dirichlet and Neumann data,
n is the normal unit vector to the boundary 99, and ug : Q — R? is the prescribed
initial condition. The first equation in Eq. (1.1) (momentum equation) represents the
generalization of Newton’s second law of motion to continuums, and the second equation
(continuity equation) is the incompressibility constraint.

The dynamics of the solution of the Navier—Stokes equations is described by the adimen-
sional Reynolds number Re = py DU/ s, where D € R is a characteristic dimension of
(e.g., the radius of a pipe), and U € R is a characteristic velocity magnitude. In particular,
low values of Re correspond to laminar flows, whereas large values are typical of turbulent
flows. In these limit cases the Navier—Stokes equations can be safely approximated by
the (linear) Stokes equations, in which the inertial nonlinear term (u - V)u is neglected,
and by the nonlinear Euler equations, in which the viscous part 2u¢V - g¢(u) is taken to
be zero.

1.2 Weak formulation and discretization in space of the
Navier—Stokes equations

The numerical solution of the Navier—Stokes equations by classical Galerkin methods
such as the FE method entails transforming Eq. (1.1) into weak form. For details about
the functional spaces we adopt in this section and in the rest of the thesis, we refer to
[GR12|. Here, we limit ourselves to recall that

200) — fo . 2 ¢ o
() = {p: 2 R | ol <o}
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1.2. Weak formulation and discretization in space of the Navier—Stokes
equations

with the norm

otz = | o,
Q

is the space of square-integrable functions defined in 2, and that
HY(Q) :={p € L*(Q) : Vo € [L*(Q)]},

is a Sobolev space with norm
el () = lelliz@) + IVelZa(q)-

We define HllD () as the linear manifold of functions in H'(Q) such that, if ¢ € HllD (Q),
rpe = 0. Moreover, we consider the notation H}(Q) := H}, (). Operator yr,, :
HY(Q) — H'Y?(T'p) is called trace operator; see, e.g., [BBF13] for more information.

Let us denote V = [H'(Q)]%, Vo = [H%D (Q)]¢ and Q = L%(Q2). We proceed formally by
performing the scalar product of both sides of the momentum equation with a generic
test function v € Vy and by integrating over 2. This yields

ou
[ oGt [ ol v = [ (@t v = [ o (1.2)

which must hold true for every v € Vy and for every t € (0,7). Using Green formulae
and exploiting the fact that v vanishes on I'p, Eq. (1.2) is rewritten as

3}
pfu-v—i—/pf[(u-V)u]-v—i-/Jf(u,p):Vv:/f-v—i—/ h-v.
QO ot QO Q Q 'y

The continuity equation is treated in a similar fashion by multiplying both sides by a
generic test function ¢ € Q and integrating over (.

Let us now introduce the following bilinear forms

a(u,v) := 2ueeg(u), Vv),
b(u,p) := —(V-u,p),

and the trilinear form
c(u, v, W) = <pf[(u ’ V)VLW>’

forevery u € V, v e V, w € V, and p € Q. Thus, the weak formulation of the
Navier—Stokes equations reads as follows.

(W1.1) given f, g, h, and ug regular enough, find u € L2(V; (0,T))NC°([L%(Q)]%; (0,T))
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and p € L*(Q; (0,T)), such that,

0
(pr V) + a(u,v) + c(w,u,v) +b(v,p) = (£,v) + (hv)r, W e,
b(u,q) =0 Vg € Q,

and such that uli—o = ug and yr,u=g.

In order to transform the infinite dimensional problem W1.1 into a finite dimensional one
(which can be then numerically solved by a computer) we now consider the two finite
dimensional subspaces V" ¢ V and Q" ¢ Q. For each of these, we introduce a set of bas1s
functions ¢! for i = 1 . N} and ¢! for i = 1,..., N} such that V" = span{¢! }z 5

and Q" := span{%h}i :po. The finite dimensional approximations of velocity and pressure
u(x,t) € V" and p"(x,t) € Q" then read

N}
= Z Wl (1)l (x),
sz JRGAES

Coefficients u?(t) and pl(t) are typically called degrees of freedom (dofs). Here, we
explicitly highlighted for the sake of clarity the dependance of each term on space and
time, but this will be omitted in the following. The choice of discrete spaces V* and Q"
clearly plays a crucial role in the accuracy of the approximation and it is a characteristic
of the discretization method of choice. Moreover, in the case of saddle-point problems
such as the Navier—Stokes equations, the quality of the discretization is critical to ensure
that the well-posedness of the continuous problem—which for the three-dimensional
Navier—Stokes equations is still not possible to prove in general cases—is preserved at
the discrete level, as we shall see in Section 1.4. In most applications throughout the
thesis we consider standard FE Lagrangian basis functions.

Let us now consider the projection of W1.1 onto the finite dimensional spaces V" and
Q" Specifically, we replace u and p by their discrete counterparts defined in Eq. (1.3)
and we restrict the test spaces to V{f = V"NV, and Q". This leads to

h
<Pf%vvh) +a(u, v") + e(uh, u v+ (v p") = (V") + (B, v)ry,

b(uh, qh) =0.

(1.4)

which must hold true for all v € VP and ¢" € Q". The discrete initial condition for
u”, which we denote ug, can be found, e.g., as L%-projection of the continuous one ug
onto the space V. Regarding the imposition of the Dirichlet data, i.e., Yrpu = g, this is
typically enforced by setting the values of the dofs associated with the basis functions
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1.3. Discretization in time of the Navier—Stokes equations

! not vanishing on I'p, which is trivial to do in the common case of Lagrangian basis
functions.

The fact that Eq. (1.4) must hold true for all v € VP and ¢" € Q" implies that the
equations can be tested at the basis functions of V* and Q" namely ! fori =1,..., N}
and @/}lh fori=1,..., Ng. We introduce matrices

h h h NhxNh h h , h NhxNh
Mz‘j:/QPf<Pj'<Pi € R, Kij :a(LPj;%)GR e

Cij(u")

c(u®, @l ) € RNNE Dl — b yl) € RN,

where M" and K" are usually called mass and stiffness matrices, whereas C"* and D"
discretize the convective and the divergence terms, respectively. Furthermore, we define
T h
!h: |:’LL0,...7UN7}}] ERN“,

ph = |:p07 s 7pN£:|T € RNI})L?

fff:/f-v:?Jr/ h- ol € RN,
Q Ty

Eq. (1.4) can now conveniently be expressed in the form of linear system as

RS R e

Dh h 0
To simplify the notation, blocks of zeros here and in the rest of the thesis are left empty.

P

In the following, we exploit Eq. (1.3) to indicate the convective term matrix as C"(u"),

i.e., as a function of the dofs u” instead of the approximated function u”.

For a more comprehensive overview of space discretization methods of the Navier—Stokes
equations, we refer to [GR12].

1.3 Discretization in time of the Navier—Stokes equations

The semi-discrete Eq. (1.5) is a Differential-Algebraic system of Equations (DAEs) of the
form HY = F(t,Y). In the particular case of Eq. (1.5), we identify ¥ = [(u”")T, (Bh)T]T €

RNLUFNz?and
h h h hi{,h T
H:!M ], F(t,Y) = L +Ch(!) (D") Y.
0 D

A DAE can be, in general, turned into an ODE by differentiating both sides of the
equation by the independent variable t. The index of the DAE is the number of times
it is necessary to differentiate it in order to get an ODE [AHS11]. The semi-discretized
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Navier—Stokes equations are a DAE of index 2.

Let us introduce a series of timesteps tg, t1,...,tN, such that tgc = 0, ty, = T, and
tp+1 = tp + At for every k = 0,..., Ny; At is called timestep size. We denote the value of
Y at timestep t; by X(tk) =Y,.. Numerical algorithms for the discretization of systems
of ODEs or DAESs are classified into multi-step methods, where the solution at ¢4 is
rewritten as function of the solutions at the previous m > 1 timesteps Y;,..., ¥, . .,
and multi-stage methods (the most notable representative being Runge-Kutta methods),

where Y, ; is found as combination of ¥, and s intermediate stages.

In this work, we focus mostly on multi-step methods, and in particular Backward
Differentiation Formula (BDF) schemes [QSS10]. Nevertheless, in Section 1.3.2 we also
give an example of a multi-stage method, the Rosenbrock schemes, and we discuss the
main properties and limitations which lead to the choice of limiting ourselves to BDF
schemes.

1.3.1 Backward Differentiation Formula schemes

Given HY = E(t,!) and given Y, ..., ¥, . ., the solution at timestep ;1 by a
generic BDF scheme with m steps takes the form

m
HY 1= ZajHXk—jH + At/BE(tk-i-l?Xk‘-f—l)? (1.6)
j=1

where o for j = 1,...,m and 8 depend on the number of steps m, which also coincides
with the order of the method. Specifically, for m < 3 we have: if m=1, a; = =1, if
m=2,a; =4/3, aa =—1/3 and f =2/3, and if m =3, a; = 11/18, ap = —9/11, a3 =
2/11 and 8 = 6/11. We refer to a particular BDF scheme with m steps as BDFm;
we remark that BDF1 is equivalent to the well-known Backward Euler scheme. It is
important to notice that BDF schemes require a number of start-up solutions equal to
m — 1.

Eq. (1.6) is in general nonlinear, and therefore its resolution is based on ad-hoc numerical
methods; in this thesis, we employ the Newton—Raphson method. Let us rewrite Eq. (1.6)
as

R(Y) 1) == HY) - Zo‘ijk—j-i-l — AtBF (tg1, Yiy1) = 0. (1.7)
=1

Vector B(Xk +1) is typically referred to as residual of the nonlinear equation. Solution
Y1 of Eq. (1.7) by the Netwon-Raphson algorithm is then iteratively found, given an
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1.3. Discretization in time of the Navier—Stokes equations

(0)

initial guess ¥, 7, (where the superscript refers to the iteration index), as

I+1 ! ! l ! OR;
YD =y - a(v0,) R(Y,), (moghﬁwYwa
—J Y=Y

here, Jg is the Jacobian matrix of the residual. The Newton—Raphson method is run
until a certain stopping criterion—typically based on a user-provided tolerance ryr—is
satisfied. In our numerical simulations, the algorithm stops at the first iteration such that

The Newton—Raphson procedure is summarized in Algorithm 1.1.
In the case of the Navier—Stokes equations, the residual explicitly takes the form

Mh gh m up
Rus (ul 1.8, ) ;:[ [zﬁl] Z%[ 41

Pr1 pk —j+1

0

Al Ch(ufyy) (00| ey,
Dh '

Pri1

and the Jacobian of the residual becomes
h A 4 Jc<uh ) (Dh)T
+ Atg SR

Dh

= [ ol V)] b+ [ el )] o

)

M
h h
JRys (9k+1’Ek+1) = [

(Je™)

v

Here, J. is the Jacobian matrix of the convective term [(uh . V) uh] . cp;‘.

Remark 1.1. The computational cost associated with the resolution of nonlinear system
(1.7) is considerably mitigated by evaluating the function F(-), in place of the solution at
time {541, at a suitable extrapolation of the form ik+1 = Z‘;Zl kX k_jy1, Where o is
the order of the extrapolation. Indeed, under such modification the problem becomes
linear. Extrapolations based on Newton—Gregory backward polynomials of order ¢ = 1,
o = 2 and o = 3 are obtained by choosing: k1 =1 for 0 = 1, k1 = 2 and ke = —1 for
oc=2,and k1 = 3, kg = —3, and k3 = 1 for 0 = 3. We remark that, by choosing ¢ =1
in combination with BDF1, we retrieve the Forward Euler method. For more details, we
refer to [CKO06].
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Algorithm 1.1 Newton—Raphson algorithm

Input: Initial guess X(O), tolerance TR
Output: Y such that R(Y) ~ 0

1: set e =14+ 7nR

2: set { =0

3: compute R = R(Y(©)

4: while e > vy do

5: assemble the Jacobian J g) = Jr(YW)
6 find 6Y" such that JJ'sY® = RO
7 compute X(Hl) = X(l) — 51(1)

8: compute RUFY = R(Y(+1D)

o set e = ||RCD o/ RO

10: set [ =1+1

11: set Y =Y®

1.3.2 Rosenbrock schemes

As already mentioned, the most notable example of multi-stage methods are arguably
Runge-Kutta schemes [HW10]. Compared to multi-step methods, Runge-Kutta schemes
generally ensure better stability properties and do not require start-up solutions [SK12].
However, a major drawback of implicit Runge-Kutta schemes is that they yield nonlinear
equations to be solved at each timestep. Rosenbrock methods [Ros63] offer a valid
alternative to Runge-Kutta methods when dealing with nonlinear problems, as at each
timestep they require the solution of a few linear systems—whose number depends on the
scheme of choice—that can be interpreted as Runge—Kutta systems in which the nonlinear
function is linearized with respect to the stages [BBBT16]. Moreover, as the matrix of
each linear system is the same for all the stages, this can be assembled only once per
timestep. Examples of applications of the Rosenbrock schemes to the 2D Navier—Stokes
equations discretized in space with the FE method can be found in [JMRO06, JR10], while
in [LXLX16] and [BBC*15, BBC*16] they have been used to solve 3D problems with
the Discontinuous Galerkin Method in regimes of moderate/high Reynolds numbers and

turbulent flows, respectively.

Given a DAE in the form H X = E(t,!) and given Y, a generic Rosenbrock scheme
approximates the solution at time ;1 as

S
Yo =Y+ AtY Ky, (1.8)
i=1
where s is the number of stages and K, ;, for i = 1,...,s are the stages satisfying the
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equations

HK o = F (1 + @i, ¥ ) + AtTp (b, Y0) D 7K + At (14, Yy
j=1

i1
Yir =Y+ At Z aijK; i
j=1

Matrix Jg (tk, Xk) is the Jacobian of functional E(t,X) computed with respect to Y and
evaluated at timestep (tk,xk). The set of values a;;, b;,v;; with 7,7 = 1,..., s has to be
given and defines the specific Rosenbrock scheme, along with the order of convergence
and the stability properties of the method. The conditions that must be satisfied by the
coefficients to achieve a desired order of convergence can be derived by means of Butcher
series, see, e.g., [NW79]. It is worth noting that a;; can be arranged in a low triangular
matrix, 7;; can be arranged in a low triangular matrix with positive diagonal values,
which we denote v := +;;, and a; and ~; are computed, for : =1,...,s, as

i—1 i
a; = E g, Vi = E Yig -
Jj=1 Jj=1

An interesting property of Rosenbrock methods is that they allow to build a lower-order
approximation in time of the solution Y, ; by replacing b; in Eq. (1.8) by a set of different
coefficients Ei, fori =1,...,s. The lower-order approximation is therefore computed with
negligible computational effort and it can be exploited in time adaptive schemes, i.e.,
schemes in which the timestep size is not kept constant along the computation. Time
adaptive schemes are commonly based on an estimator r; of the difference between the
high-order and the low-order solution at time t; (e.g., a suitable norm of the difference
between high- and low-order velocity fields in the case of the Navier—-Stokes equations),
which can be regarded as a surrogate of the local truncation error. The comparison
between r; and a user-defined target tolerance 7ra indicates if the timestep size should
be increased or decreased. Possible choices for the evolution law of the timestep size for
a method of order ¢ are the elementary local control algorithm [S6d02]

and the proportional integral (PI) controller [GLS8S]

(1.9)

At2 TTA Tk—1 l/q
Atjyy = ot ( .

Atp_1 \ r, 7%
In the formulas above, pr € (0, 1] is a safety factor.

The two primary reasons that lead us to focus—in the numerical simulations of the
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Figure 1.1 — Convergence in time for various Rosenbrock schemes. The solid lines in the
convergence plots for the pressure refer to the pressure computed with the correction at
the end of the timestep by solving Eq. (1.10), while the dot-dashed lines are obtained
without correction.

following chapters—on multi-step methods rather than Rosenbrock schemes are: (i) order-
reduction and (ii) the difficulties related to the convergence of the linear system solver in
cases of moderate Reynolds numbers. Both these issues are addressed in [DDM*19).

Order-reduction. Order-reduction is a well-documented characteristic of these schemes
(see, e.g., [LT08, MNL*18, HW10]) and it particularly affects the pressure component
in the Navier—Stokes equations. For this reason, in [DDM*19] we propose to compute
an inexpensive correction to the pressure at the end of each timestep by following an
approach similar to that of the Pressure Poisson Equation (PPE) [SR11]. In order to
derive such correction, we denote p. = p + dp the corrected pressure and we apply the
divergence operator to the momentum equation in Eq. (1.1)

0
V. (Pfaltl — 216V - g¢(u) +pf(U~V)u+Vpc) =V-f.

This yields, by exploiting the incompressibility constraint,
—Afp=V-[(u-V)u+Vp—f] inQ, (1.10)
which is solved at each timestep t; given the solution (uZ, pZ) by a Rosenbrock method.
Remark 1.2. The boundary conditions complementing Eq. (1.10) depend on the ones
to be imposed on the Navier—Stokes equations. In the numerical results that follow, we
consider Dirichlet boundary conditions on 0f2, which reflect in Vdp - n = 0 on 9€). Since
these boundary conditions do not allow to determine the pressure correction uniquely, in

the implementation we arbitrarily fix one dof of dp to zero. The convergence rates we
present are then obtained by setting the mean value of p. equal to the exact one.
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1.3. Discretization in time of the Navier—Stokes equations

Table 1.1 — Number of stages, theoretical and measured orders of the selected Rosenbrock
schemes. The numerical rate of convergence are approximated as slopes of the linear
regression lines computed from the errors in Fig. 1.1.

measured orders

method stages order velocity pressure corrected pressure
ROS2 2 2 1.94 1.64 2.10
ROS3Pw 3 3 2.98 2.79 2.97
ROS34PW3 4 3 2.85 2.18 2.79
RODASP 6 4 2.55 3.22 2.95
RODASPR2 6 4 2.94 3.40 3.06

In Fig. 1.1, we show the rate of convergence of the errors
Ny
2 h 2
letaliaom = At [u" () — u™ ()l o),
i=1

N
leb o120y 7= At > [Ip"(t) = p™ (1) 1720,
=1

obtained by applying the ROS2 scheme [VSBH99|, the ROS3Pw scheme [RA05], the
ROS34PW3 scheme [JMRO06], the RODASP scheme [Ste95] and the RODASPR2 scheme
[Ranl5] to a test case with known analytical solution (uex, peX); the coefficients of each
scheme are reported in the cited references. We refer the reader to [DDM™19] for the
details on the specific problem. Moreover, in Table 1.1 we show the theoretical order of
convergence of each method and the measured orders of convergence both for the errors
in u and p. The rates are obtained as slopes of the regression lines passing through the
points in Fig. 1.1. For ROS2, ROS3Pw, and ROS34PW3 the velocity converges with the
expected orders. For RODASP and RODASPR2 the convergence rate is lower than the
theoretical one; however, as discussed in [Ranl5], these methods are not Bpg-consistent
of order 4, and the theoretical convergence rate is not guaranteed for stiff problems; we
refer the reader to [Ranl6] for the definition of Bpg-consistency. Order reduction occurs
for the pressure with ROS2, RODASP, RODASPR2 and ROS34PW3. We remark that
for all the schemes the corrected pressure achieves smaller errors than the uncorrected
ones. Moreover, the theoretical orders of convergence are almost completely recovered
also for ROS2 and ROS34PW3, whereas for RODASP and RODASPR2 the rates remain
lower than optimal because, as already noted, for these schemes order reduction affects
also the velocity.

Convergence of linear solver. In [DDM'19], we apply the Rosenbrock method to the
solution of the 3D benchmark originally proposed by Schéfer and Turek [ST96] of flow
past a cylinder; the domain is characterized in Fig. 1.2. The inflow is time dependent
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Figure 1.2 — On the top, iso-contour of the Q-criterion with Qiso = 6 of the solution of
the flow past a cylinder obtained using the ROS2 scheme with At = 5-1073s at ¢t = 4s.
On the bottom, magnitude of the velocity field of the same solution at ¢ = 4s on a plane
perpendicular to the cylinder and passing at half the height of the domain, with detail of
the computational mesh.
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and follows the rule
Win (0,9, 2, t) = 16U, y2(H — y)(H — 2)sin(rt/8)/H*[1,0,0]7, (1.11)

where t € (0,8)s, Uy, = 2.25m/s and H = 0.41m is the height and width of the domain.
We refer the reader to the original paper [ST96] for details about the geometry of
the problem and the fluid parameters. The inflow prescribed by Eq. (1.11) leads to
a Reynolds number which varies between 0 and 100. As shown in Fig. 1.2 (top), the
solution of the problem presents flow detachment due to the presence of the obstacle and
develops complex vorticity patterns behind the cylinder. The same test case has been
considered in, e.g., [Joh06] and [BMT12] with similar results. We employ a fine mesh
refined around the cylinder (see Fig. 1.2, bottom) and composed of 6718220 dofs for the
velocity and 287039 for the pressure, for a total of 77005259 dofs. We set homogeneous
essential boundary conditions on the lateral walls of the domain and on the cylinder,
nonhomogeneous essential boundary conditions on the inlet and homogeneous natural
boundary conditions on the outlet.

Fig. 1.3 shows, in red solid lines, the drag and lift coefficients computed with ROS2 and
At = 5-1073s, and, in black dashed lines, the reference solution reported in [Joh06];
this is obtained with a mesh with 6/052’800 and 983’040 dofs for velocity and pressure,
respectively, with the Crank-Nicolson scheme, and with At = 1072s. We recall that the
drag and lift coefficients are computed as

1
571 . [l v
0 c

= orflua n-n
CL 4o DH L flu, p 009

where T is the boundary of the cylinder, n is the normal unit vector to I'¢, goo = 0.5 U2,

cp = —

Uso = 1m/s, and v, and ny are unit vectors parallel and perpendicular to the direction
of the flow at the inlet, respectively.

The curves for the drag and lift coefficients computed using the two-stages ROS2 scheme
are in agreement with the benchmark. The maximum and minimum values for ¢p and cy,
are: B = 3.2942, 5" = —1.7933 - 107!, X = 2.7697 - 1073, MM = —1.0967 - 107
these quantities are close to the ones reported in [Joh06], in which ¢5* = 3.2968 and
cpin = —1.10 - 1072, and within the confidence intervals for the exact solution proposed
in the original paper [ST96].

Even though the results in Fig. 1.3 are promising, considering schemes with more than
two steps for this test case is a challenging task. As discussed in [DDM*19)], the linear
solver based on the GMRES algorithm performs poorly in the temporal regions of the
simulation where the Reynolds number reaches its largest values, i.e., at around t =4 s
by choosing the magnitude of the imposed inflow profile as characteristic velocity. As
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Figure 1.3 — Drag and lift coefficients. The red solid line refers to cp (left) and ¢y, (right)
obtained with the ROS2 scheme with fixed At = 5-1073s. The black dashed line refers
to the reference solution reported in [JohO06].

an example, in Fig. 1.4 we show the total GMRES iterations in the region (0,2) s when
solving the problem using ROS3Pw, which features three stages, and when applying time
adaptivity according to the PI-controller law for the timestep size (see Eq. (1.9)) with
the estimator

) h
Tk = Huk,high — Ug low ‘Hl(ﬂ)’

where u’,g,high and uZ’low are the high-order and the low-order solutions respectively. When
the Reynolds number of the flow increases—which leads to the development of complex
vorticity patterns downstream of the cylinder—the performance of the linear solver
degrades significantly; for larger At it stops converging altogether. For this reason, the
employment of high-order Rosenbrock schemes for this challenging test case is inefficient.
The difficulties related to the convergence of the linear solver prevent us from evaluating
the quality of the approximation even for larger tolerances and, consequently, larger
timestep sizes. This is particularly unfortunate especially if put in relation with the
results in Table 1.2, which show great accuracy in the approximation of the maximum
value attained by c¢;, when employing ROS2 and ROS3Pw, and which therefore illustrate
the potential for time adaptivity to lower the computational burden of these simulations
greatly.

1.4 Elements of the theory of saddle-point problems

Problem W1.1 features a saddle-point structure that requires particular care from the
mathematical perspective. Although the solvability of the Navier—Stokes equations is still
an open issue in the general three-dimensional case, the theory of saddle-point problems
is fundamental in providing necessary conditions for the well-posedness of the discrete
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Figure 1.4 — Total GMRES iterations (i.e., sum of the iterations of each stage) when
solving the Navier—Stokes equations by using ROS3Pw with adaptive timesteps. The
tolerance of the linear solver is set to 1071 with stopping criterion based on the residual
norm relative to the initial one.

T timesteps = A{)'%* At, cpex
4-1073 62 4.46-1072 3.26-1072 2.75330-1073
ROS2 2.1073 87 3.17-1072 2.30-1072 2.76385-1073
1-1073% 123 225-1072 1.63-1072 2.76734-1073
5-107% 174 1.60-10"2 1.15-10"2 2.76841-1073
81076 108 3.46-1072 1.86-1072 2.76856 10
4-107% 150 2.69-1072 1.34-1072 2.76950-1073
ROS3Pw 2.-107% 210 2.09-1072 9.54-1073 2.76944-103
1-107% 295 1.63-1072 6.79-1073 2.77005- 1073

Table 1.2 — Number of timesteps, maximum timestep size At})?*, average timestep size
At,, and c}'** as a function of the tolerance 7 of the time adaptivity scheme.
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formulation. For this reason, and because other saddle-point problems are treated in
the subsequent chapters of this thesis, we address here the main results concerning
well-posedness and convergence estimates.

1.4.1 Existence, uniqueness, stability and convergence results

In this section, we provide classical results on some fundamental properties of saddle-point
problems. A comprehensive overview from the functional and algebraic point of view is
found, e.g., in [Bre74, BB90, BBF13].

We start by considering two generic Hilbert spaces V and © and the two bilinear forms
a(u,v) and b(u,p), which are defined for all w € V, v € ¥V and p € Q. We remark that
even though the notation is the same as the one adopted in W1.1, for the time being, we
are not yet referring to any specific saddle-point problems, and these spaces and bilinear
forms are as general as possible. Let us introduce the concept of kernel of b(-, -), formally

K={veV:bv,q) =0 VYqeQ},

and let us consider the following set of hypotheses. Firstly, we assume that a(-,-) and
b(-,-) are continuous, i.e., there exist two positive constants k, and kj such that

a(u,v) < Kellully|lvlly Yue V,Yv eV,

(1.12)
b(u,p) < rpllullvllple VueV,vpe Q.

Secondly, we assume that a(-,-) is coercive on I, i.e., there exist a positive constant «
such that

a(u,u) > allul}, Vue K. (1.13)

Lastly, we introduce the Ladyschenskaja—Babuska—Brezzi condition, which is commonly
referred to as the inf-sup condition. We assume that there exist a positive constant 3
such that

inf sup M > B. (1.14)
a€Q\{0} vev\foy IvlIvllalle

We are now ready to formulate the following theorem.

Theorem 1.1. [BB90] Assume conditions (1.12), (1.13) and (1.14). Given two Hilbert
spaces V and Q and f € V' and g € Q', the problem

a(u,v) + b(v,p) = (f,v) Yv eV,

(1.15)
b(u,q) = (g9,9) Vg€ Q,

admits a unique solution (y,p) € V x Q.
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Remark 1.3. Variables u and p are often called primal and dual variables, the reason being
that the second equation in Eq. (1.15) usually derives from the imposition of a constraint
on u through the Lagrange multiplier p. In the case of the incompressible Navier—Stokes
equations, the continuity equation constrains the velocity to be divergence-free.

As we shall see in the following lemma, the continuity, coercivity and inf-sup constants
play an important role not only in the well-posedness of the saddle-point problem but
also in its stability.

Lemma 1.1 ([BBF13]). Under the assumptions of Theorem 1.1, the following stability
estimates hold

1 1 Kaq
< — / — (1 —_— ’
fully < 21+ 5 1+ a) lollg-

1 a
o< (1+ ) 151+ 52 (122 gl

Proof. Let us consider v € V and its decomposition u = ug + ug4, such that ug € K and
ugy € K+. Moreover, let us note that, for all ¢ € Q, b(u, q) = b(ug + ug, q) = b(ug,q) =
(g, q); therefore, owing to the inf-sup condition,

lgllerllalle = (g, q) = blug, q) > Bllugllvllalle

and equivalently [Ju,|ly < 1/8||g|lo- By evaluating the first equation in (1.15) at ug € K,
we obtain

aup + ug, up) + b(uo, p) = a(uo, uo) + alug, uo) = (f, uo)-
Hence, by coercivity,

alluolly < Il lluolly + Kallugllvlluolly

and the first condition in the lemma follows
1 1 Kaq
lully = lluo + uglly < {luolly + uglly < ~ I fllv + 3 1+ lglle- (1.16)

The second condition is a direct consequence of the inf-sup condition. We have

bop)  (f,0) — aluv)
< — R R S
Bllplle < sup 0" =590 =

< £l + Kallully,

Thus, by using Eq. (1.16),

1 1 a
Il < 5l + Sl < 5 (1452 ) Wb + 55 (142 )l
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Let V" ¢ V and Q" C Q be finite dimensional subspaces of V and Q, respectively (to
fix our ideas, V* and Q" are FE spaces). The well-posedness of the saddle-point problem

a(uh,vh) + b(vh,ph) = <fh,vh> ol e VI,

1.17
b(u", ¢") = (¢",¢") V¢ e Q" (117

is subject to the same conditions of Theorem 1.1. In other words, the existence and
uniqueness of the solution in the continuous setting is in general not sufficient to guarantee
that these properties are passed on to the discrete counterparts. As we shall see in
Section 1.4.3, in the FE context this reflects in the need to appropriately choose the basis
functions or to consider ad-hoc stabilization strategies.

The hypotheses of Theorem 1.1 being satisfied in the discrete setting, it is of crucial
importance to take into consideration estimates for the rate of convergence of the discrete
solutions to the continuous one. We define the spaces

h — {vh c V. b(vh,qh) =0 th € Qh},
V;L = {vh cVh. b(vh,qh) = (g,qh> v e Qh}.

We remark that K" ¢ K, because if v € K" there could be ¢ € Q \ Q" such that
b(v", q) # 0. The following theorem provides a sharp bound for the approximation error.
The proof can be found, e.g., in [Qual4, Theorem 16.6] and in [GR12].

Theorem 1.2. Let the assumptz'ons of Theorem 1.1 be satisfied in the continuous setting.
Moreover, there ezist o/ > 0 such that a(u”,u") > ol||u"||2, for all u" € K" and p" such
that

hGQh\{O}thVh\{O} ||”h||VthhHQh B

Then the solution (u,p) of Eq. (1.15) and the solution (u”,p") of Eq. (1.17) satisfy the
following error estimates

ot Fa P Ry
o UHvS<1+ah> nf, o=l + 5l I = ol

. RaKp . h
< 1—i—a> inf |ju— o +<1++ a ) inf — h.
o= #llo < 5 (1+ 2 it = (14 5+ S it o'l

Moreover, the following error estimate holds

inf |ju— o < |1+ inf |lu—o"|y.
it =y (1+50) jut a1y
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1.4. Elements of the theory of saddle-point problems

Theorem 1.2 shows that the rate of convergence of both the primal and dual variables
are dependent on the continuity, coercivity and inf-sup constants. In particular, there
exists an inverse relationship between the approximation errors and o and 8". While
the coercivity constant is typically easy to control, the inf-sup constant is more delicate
and, therefore, in the next section we present a numerical method to compute it.

1.4.2 Numerical estimation of the inf-sup constant

Let us suppose that XJ} and Xg are norm matrices such that [[o"||3, = (yh)TX{}!h and
||ph||2Q = (gh)Tngh, and B" is a matrix such that b(v", ¢") = (gh)TBh!h, for every
vP € V* and every p" € QF. In the previous expressions, we denoted v and gh the
vectors of dofs of v" and ¢. Then, we have

b(v", q") . (") B"v"
nf sup — =2 — inf sup —

T
1
€@\ (0} vreym oy 10" v lld®llor ah#0 o V) Xt/ (a) X gt

. \/<thh)T Zhqh
= ihnf e sup (yh)Tthh: ihnf 7T ——, (1.18)
0 h h - 0 h
1Y (@) Xpa" w0 70 /(@) Xpa"

where Z" = (X{j)fl/2 (Bh)T. We remark that the last equivalence in Eq. (1.18) comes

h

from the fact that the unitary vector w' maximizing its scalar product with Zh = Zhgh

is wh = y"/|ly"|| by the Cauchy-Schwarz inequality. Introducing now the following
generalized eigenvalue problem

vh h v
(-] W]

and recognizing that we have

xp (8"
Bh

T
(Zhgh) Zhgh

N e K s
A o

Y

we conclude that Bh can be computed as the square root of the minimum eigenvalue of
Eq. (1.19), ie., 8" = \/oh

min*
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Chapter 1. Mathematical models for hemodynamics

A
N

Figure 1.5 — Some generalized Taylor-Hood elements in two and three dimensions. The
velocity and pressure elements are on the top and on the bottom, respectively. For each
element, the position of the mesh node is marked with red dots.

1.4.3 The case of the Stokes equations

Because of the difficulties related to the treatment of the unsteady nonlinear Navier—Stokes
equations, we consider for simplicity the steady Stokes equations, namely

-V -o¢(u,p) =f in Q,
V-u=0 in Q,

u=g on I'p,

of(u,p)n =h on I'y.

We also consider g = 0 and h = 0. By employing the same forms appearing in W1.1, it
is trivial to derive the weak formulation of the Stokes equations.

(W1.2) given £ regular enough, find (u,p) € Vo x Q, such that,

a(u,v) +b(v,p) = (f,v) Vv € Vo,
b(u,q) =0 Vg € Q.

This weak formulation is clearly a particular instance of the general saddle-point problem
(1.15). One of the most popular approaches to ensure the well-posedness of the Stokes
equations in the discrete setting is by resorting to the generalized Taylor-Hood P (k)-P(k—
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1.5. Stabilization of the Navier—Stokes equations by Variational Multiscale
modeling

1) elements [TH73] with continuous pressure. We remark that, with the notation Pk,
we denote piecewise polynomial basis functions (typically, Lagrangian basis functions)
of degree k. In Fig. 1.5 we show some popular generalized Taylor—Hoods elements on
triangles and tetrahedra; these are also the choices that are employed in the numerical
simulations presented in this thesis. Proofs of convergence for these type of elements can
be found, e.g., in [BP79, Ver84, Bof94, Bof97].

As we shall see in the next section, another viable possibility in the context of the
(Navier)-Stokes equation is to consider stabilized formulations.

1.5 Stabilization of the Navier—Stokes equations by Varia-
tional Multiscale modeling

We present here an example of a stabilized formulation of the Navier—Stokes equations.
In particular, we consider the Variational Multiscale (VMS) approach [HSF18, BCC*07],
which is employed in the numerical results presented in Section 2.7 and in the reference
solution in Section 5.3; a simplified version of the stabilization (Streamline-~Upwind
Petrov—Galerkin, SUPG) is employed in Section 5.4.

The VMS stabilization for the Navier—Stokes equations is based on decomposing the
solution into a coarse and a fine component. The former is discretized by means of the FE
method, while the latter needs to be modeled. Specifically, let us consider the following

decompositions
v=VaV,
Q=0"a

where V and Q are the spaces for velocity and pressure appearing in W1.1. As already
anticipated, the continuous spaces are imagined as the direct sum of the FE spaces V"
and Q" and additional spaces V' and Q' representing the fine scales of velocity and
pressure. For these functions, we follow the choice adopted in [BCC*07]. We introduce
the residuals in strong form of the momentum and continuity equations evaluated at the
FE functions, i.e.,
h o h ou" h h ko, h h
I'M(u P ):Pfﬁ‘i‘Pf(u V)u _V’O-f(u N )_f )
ro(u) = V- u.

Then, the fine components of velocity and pressure are modeled as

u'(u") & —n(u")ra(u®, "), p'(0") & —re(u)re(u”), (1.20)
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Chapter 1. Mathematical models for hemodynamics

where 7\ and 7¢ are element dependent quantities defined as [Forl16]

2 2 2 2 —1/2
h o pr Pi pt
TM(u ): ( A2 + h%(’u |2+ h%(CT> )

Wi

Here, hx is the element size of element K € 7" (this being a valid triangulation of €2),
o is the order of the time discretization, and C, = 60 - 29«=2 (g, being the polynomial
order of the velociy).

Let us now introduce the following forms

xs({0 ") V0D = o 2 ) 4 (- ) )
+ (op(u”,p"), Vv +(V - u, ¢"),
asurg({u",p"}, {v",¢"}) = —('(u"), pru” - VV" + V") — (' ("), V - V"),
avas(fut o), V9, ¢) = — (' (), pru - (Tu)T) — (o () @ ul (u?), ).

The weak formulation of the Navier—Stokes equations in VMS formulation reads:

(W1.3) given f, g, h regular enough, find U" = (u" p") € V* x Q" such that, for
every t € (0,T) and for all Vi = {vh, ¢"} € VI x Q"

aNS(Uh, Vh) + CLSUpg(Uh, Vh) + CLVMS(Uh, Vh) = <f, V> + (h, V>FN7

and such that uh\tzo = ug and Y, u' = g.

Remark 1.4. Form agyupg is the typical stabilization term of the Streamline-Upwind
Petrov—Galerkin (SUPG) method, whereas ayyg includes additional quantities which are
particular to the VMS method. In this thesis, we adopt either the SUPG stabilization—
hence, without accounting for the bilinear form ayus, or a VMS-SUPG type stabilization,
which instead does not include the last term in ayps (which models the Reynolds
cross-stresses).

Remark 1.5. From the practical perspective, SUPG and VMS-SUPG methods offer the
great advantage that they allow for stable discretizations of the Navier—Stokes equations
even when employing equal order polynomials, which would normally lead to the inf-
sup condition not being satisfied. This can offer great efficiency improvements because
employing, for example, P1-P1 instead of P2-P1 elements considerably reduces the total
number of dofs, especially when considering fine meshes.

We highlight that the VMS stabilization is consistent because every term that is not
found in the usual formulation of the Navier—Stokes equations depends on the fine-scale
velocity and pressure, which are functions of the residuals of the momentum and continuity

32



1.6. Fluid-structure interaction with deformable domains

equations, as shown in Eq.(1.20). Hence, the exact solution of the Navier—Stokes equations
trivially satisfies the additional terms required in the VMS stabilization.

For the full discretization of W1.3, we refer to [FD15, Forl16].

1.6 Fluid-structure interaction with deformable domains

In cardiovascular simulations, it is often essential to take into account the physical action
of the arterial wall. As a matter of fact, the vessels are compliant to the blood flow
through them, and their mechanical response influences, in turn, the blood dynamics.
From the mathematical perspective, the coupling of the blood dynamics with the arterial
wall response is a multiphysics problem, and it is beneficial to introduce the fluid domain
Q¢, the structure domain (), and the interface between the two I'ts. However, since the
arterial wall forces also cause its deformation, these domains are moving in time and
should be treated as such for the most accurate results. In this section, we introduce a
model of fluid-structure interaction in which the two types of physics at play are modeled
and in which the deformation of the domains is carried out through an ALE map. This
formulation is also adopted in [Croll, CDFQ11, For16]. The relaxation of some of the
hypotheses which this model is built upon leads to a reduced model in which the structure
domain is collapsed to a membrane and in which the domains are kept fixed in time. We
refer the reader to [FVCJT06, FBTH09, Col14, CDQ14] for more information regarding
these simplified fluid-structure interaction models.

1.6.1 Strong formulation

In order to take into account the deformation of the fluid and structure domains, we
first introduce the corresponding reference configurations ﬁf and (AZS and the reference
interface ffs. We remark that any symbol written with a hat notation in this section
refers to the reference configuration. The deformed fluid and structure domains and the
relative interface are then a function of time, i.e., Q¢(t), Qs(¢) and I'g(¢), respectively
(although the explicit dependence on time is omitted hereon for simplicity). Moreover,
we use the subscripts f and s to the denote quantities related to the fluid or structure
problems, respectively. Let us introduce the structure displacement as and its harmonic
extension to the fluid domain Hf, which satisfies
~Ad;=0 in Q,

o~

di=ds on ffs.

Then, for any point X € Q¢, we define the ALE map ﬂft(i\() =X+ af(ﬁ, t), which
determines the geometric deformation of the fluid domain as shown in Fig. 1.6.
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(X)

S

'\_/

Figure 1.6 — Scheme of the ALE mapping.

The Navier—Stokes equations in ALE formulation read

ou .
prat| + prl(ur—w) - Viug = V- or(unp) = in O
V- ur = 0 in Qf’
ur=gr onlyp, (1.21)
omg=hy  on Ty,

odg ~
ugo @ = 87; on I'g,

where ny is the normal unit vector to the fluid domain, and

g 0 _ 0g(x)
aﬁ—a‘i‘wf'vy wi(x) = ot

The initial condition of the velocity has to be prescribed, i.e., uy = uro at t = 0. The
last condition (kinematic condition) in Eq. (1.21) ensures the adherence of the fluid to
the structure; owing to the definition of wy, it is possible to rewrite it as uf o <% = wr.

In this thesis we consider a linear elasticity model for the structure. The equations, in
the Lagrangian frame of reference, read

p2% _ven@)=E wa,
d; =8 onTyp, (1.22)
II as)ﬁs = fls on f&N,
H(as)ﬁs +5M;=0 on [,

where £, is a forcing term, gs and hg are the Dirichlet and Neumann data, fif and fis are
normal unit vectors to the fluid and structure domains in the reference configurations
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1.6. Fluid-structure interaction with deformable domains

respectively, oy = ‘I + Vgaf’ (I + Vgaf) _TO'f, ps is the density of the structure, and
H@g:%ﬂ<23>l+%w&+vﬁj (1.23)

is the first Piola—Kirchhoff stress tensor. In this constitutive law, the coeflicients Ag and
s may be written in terms of the Lamé coefficients (i.e., the Young modulus Fg and the
Poisson ratio v5) as

Eqvq E

As = s o Ms = g
-2+ "7 201w

Due to the presence of the second derivative in time in the first equation in (1.22), in
the case of the linear elasticity problem the initial data for the displacement and its
derivative must be prescribed. Hence, &s = 3570 and 835 Jot = &;{%r at ¢ = 0. The last
condition in Eq. (1.22) (dynamic condition) imposes Newton’s third law of motion, i.e.,
the equivalence of the stresses on the fluid and structure sides of the interface T.

1.6.2 Space discretization

The weak formulation for this fluid-structure interaction problem is derived in [Nob01,
LTMO1], whereas for the space discretization we refer, e.g., to [CDF17, For16]. Since in
Section 2.7 we employ the coupling method introduced in Chapter 2 in a fluid-structure
interaction benchmark, we briefly touch on the main ingredients of the discretized
problem.

Specifically, the semi-discrete form of the fluid-structure interaction problem reads
MM W+ 2 (W)W = E

~h ~h
Vector W = vec(g?,g?,gs ,de ,X’) is the column vector collecting the dofs of all the
variables involved (the vec function performs the vectorization of its arguments). In
particular, we have: the vectors of dofs of fluid velocity gf} and pressure E?’ the vectors of

~h ~h

dofs in the reference domain for fluid d; and structure displacement d, and a vector of
dofs for a Lagrange multiplier, A", which is introduced to perform the coupling. Chapter 2
is devoted to the study of a nonconforming method for the discretization of the space

~h
corresponding to such Lagrange multiplier. Furthermore, F = vec(ﬂl, o,f.,0, Q) (where [?

LR

~h
and f, encode the projection of forcing terms and Neumann terms of fluid and structure
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onto the FE space),

Mt
%s = Mbh ) %f = )
and
K"+ Ch(uf) (D) (B9
Dh
Z(W") = En (BM7] . (1.24)
@h
B B! |

Matrix in Eq. (1.24) features the same matrices which appear in the semi-discrete
formulation of the Navier—Stokes equations (1.5), along with the matrices discretizing the
linear elasticity problem E" and the geometry problem for the motion of the fluid domain
Gh (that is, the stiffness matrix computed on the FE space used for the discretization of
Hf), and the coupling matrices EF and Esh These are computed as

(EF)U :/f‘f i (‘P?,j o ), (Eg)z] = /f‘f i QZ,J;

cpf ; and go . are FE basis functions dlscretlzmg the spaces for the velocity and structure
d1splacement respectively, whereas 7 77Z are, for the time being, generic basis functions
based on the triangulations of either Qf or Q spanning the space of the discrete Lagrange
multiplier. We consider a specific choice for these basis functions, which is also independent
of the FE grids, in Section 2.7.

The discretization in time requires the treatment of the second-order time derivative. This
can be performed by the Newmark method [New59, Hugl2]. The first-order derivative
can be discretized by employing, for example, a BDF scheme as done in Section 1.3 for
the Navier—Stokes equations. The complete discrete formulation of the fluid-structure

problem with this approach is derived in [For16].

1.7 Concluding remarks

This chapter presented mathematical models that are extensively used in the cardiovascu-
lar context and specifically throughout this thesis. We introduced the strong formulation
of the Navier—Stokes equations and addressed its discretization in space by the FE method
and its discretization in time by BDF and Rosenbrock schemes. We motivated the choice
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1.7. Concluding remarks

to focus on BDF in the remainder of the thesis by presenting results obtained during
a study of Rosenbrock schemes that highlighted problematic aspects of these methods.
These are the order reduction affecting (in particular) the pressure and the poor perfor-
mance of the linear solver, which failed to converge even for moderate Reynolds numbers.
Then, we presented basic concepts of the theory of saddle-point problems—of which the
Navier—Stokes equations are a representative member—and discussed alternatives to
satisfy the inf-sup condition in fluid problems: the use of suitable stable elements (i.e.,
the generalized Taylor-Hood elements) and ad-hoc stabilization techniques such as the
Variational Multiscale one. Lastly, we focused on the task of coupling fluid and structure
in an ALE framework. We first presented the strong formulation of the multiphysics
problem and then briefly discussed the structure of the discretized problem.
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] Non-conforming coupling of
PDEs

The goal of this thesis is the development of a ROM for the approximation of the blood
dynamics in vessels subdivided into several geometrical building blocks. As explained in
further details in Chapter 4, in each building block, the PDEs are discretized by the FE or
RB methods. Although the approximation spaces in a given subdomain are independent
of the neighboring ones, the local solutions need to satisfy particular coupling conditions
in order for the global approximation to be an accurate approximation of blood flow in
the whole vessel.

This chapter focuses on the definition of such coupling conditions and on a specific
and original discretization algorithm for the numerical discretization of the resulting
global problem. In Section 2.1 we introduce some fundamental concepts characterizing
Domain Decomposition methods. These approaches are beneficial to the design of parallel
preconditioners, and for this reason, the term is nowadays often associated with this
particular branch of computational science; however, we here present this family of
methods in their original form, namely as an ensemble of strategies for the solution of
problems defined on separate regions of the domain. As we shall see throughout this
introduction, the global problem is—from the theoretical point of view—a mixed problem
featuring the primal variable (e.g., the velocity in the Navier—Stokes equations) and a
dual variable; the latter is a Lagrange multiplier ensuring that the (weak) continuity
of the primal variable and that the (strong) continuity of the normal stresses over the
separating interface are satisfied. Numerical methods focusing on problems with this
structure are sometimes referred to as primal hybrid methods. In Section 2.2, we present
the principles of this class of methods on an elliptic problem defined over a domain
partitioned into two regions. Section 2.3 focuses on the development of a novel approach
for the discretization of the weak formulation derived in Section 2.2. In Section 2.4,
we briefly present other nonconforming methods, namely the mortar method [Ber89],
INTERNODES [DFGQ16, GQ16], and the three-field method [BM94], and explicitly
highlight the similarities and peculiarities with respect to our approach. In Section 2.5
we contextualize the stability of the discrete problem—which features a saddle point
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structure—in light of the concepts presented in Section 1.4 and in particular in relationship
with the inf-sup condition. In Section 2.6, the method is applied to two-dimensional and
three-dimensional benchmark problems: we consider the Poisson problem approximated
with the FE method on two subdomains (Section 2.6.2) and the Navier—Stokes equations
on three subdomains (Section 2.6.3), numerically solved by employing the FE method
(Section 2.6.3) and the FE method coupled with IGA (Section 2.6.3). Moreover, in
Section 2.7 we draw a parallel between these mixed methods and the fluid-structure
interaction problem introduced in Section 1.6. We also apply the same discretization
approach of the previous sections to a classic fluid-structure interaction benchmark.

The theory and the discussion carried out in this chapter, with the exception of the
original results presented in Section 2.7, have been published in [DIP19].

2.1 An introduction to Domain Decomposition methods

In numerical analysis, Domain Decomposition methods are techniques for splitting PDEs
into smaller and coupled problems defined over subsets of the original domain. The
splitting may be motivated by physical reasons, for instance when the subdomains are
characterized by different governing equations (e.g., in fluid-structure-interaction problems
[DDQO6]) or by discretization needs, should it be required to employ specific methods—
e.g., the FE method or isogeometric analysis (IGA)—or specific polynomial degrees
in certain regions of the domain [TWO05]. Moreover, Domain Decomposition methods
allow the mapping of the subproblems to separate cores [IVA93] and the computation of
scalable and efficient parallel preconditioners. These techniques have become so important
to the solution of large-scale problems on multiprocessors or clusters that, nowadays, the
term Domain Decomposition is most commonly used in the context of high-performance

computing.

Domain decomposition methods are typically based either on iterative or direct procedures
[BHS03]. In the first class of techniques, the continuity on the interfaces of the solution, of
its normal derivatives, or combinations of the two are strongly imposed. Typically, these
methods require solving the problems defined on the subdomains separately multiple
times while imposing artificial boundary conditions based on the solutions at the previous
iteration. The type of boundary conditions employed in every subdomain is a peculiarity
of each algorithm, so that the literature on the topic commonly refers to the Dirichlet-
Dirichlet algorithm, the Dirichlet-Neumann algorithm, and so forth; see e.g., [TWO05] for
details. These strategies allow reducing the size of the linear systems to be solved and,
most importantly, to compute the solution in each subdomain in parallel.

In this chapter, we present an approach belonging to the class of direct procedures in
which the continuity conditions (often called transmission conditions) are weakly imposed
through the use of suitable Lagrange multipliers. Our method is applied to PDEs written
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2.2. Theory of primal hybrid methods

in primal hybrid formulation, and for this reason, it shares some of the features of the
well-known mortar method [Ber89, BMRO05]. This was originally proposed to solve PDEs
by combining spectral elements and finite elements or by combining FE spaces with
different polynomial degrees in nonoverlapping portions of the domain [QV99]. Since
then, the mortar method has become the nonconforming method of choice in many areas
of computational science and engineering, for example in contact mechanics [PL04], solid
mechanics [Pus04], fluid mechanics [EPGW14] and fluid-structure interaction problems
[KPKW11]; see also [PW14, HGC*14, BCS03]. The implementation of the mortar
method is not straightforward, as the algorithm is based on L?-projections of the traces of
functional spaces defined on a group subdomains—the masters—onto the interfaces of the
adjacent ones—the slaves. INTERNODES [DFGQ16], a recently developed method for
the treatment of nonconforming meshes, overcomes this issue by treating the transmission
conditions with the interpolation of basis functions of the master domains onto the
interfaces of the slaves.

As in the mortar method, our approach is based on the idea that the global problem can
be subdivided into a set of smaller problems coupled with weak conditions relying on
basis functions defined on the interfaces. In the mortar method, such basis functions are
obtained from the trace space of the adjacent slave domains. This choice is convenient
from the analysis standpoint but makes the implementation of the method cumbersome.
Another drawback is that the final solution is dependent on the choice of master and slave
domains. The originality of our method is to consider basis functions on the interfaces
that are completely independent of the discretization of the neighboring domains: in this
chapter, we employ spectral basis functions (specifically, Fourier basis functions, but
other possibilities are considered in the rest of this thesis). The advantage of the approach
we present is that the resulting global solution is not dependent on the classification of
master and slave domains, which, in fact, is not required. Moreover, the accuracy of the
coupling of solutions at the interfaces is easily tuned by varying the number of basis
functions on the common boundary. Our approach can be interpreted as a specialization
of the three-field method [BM94], where the space of the three Lagrange multipliers
used to impose the continuity of the solution weakly is (a priori) independent of the
spaces defined on the adjacent domains. As the functional spaces in the subdomains are
mutually independent, our choice of basis functions is well-suited for the coupling of
solutions obtained on nonconforming meshes (at the interfaces), with FE spaces with
different polynomial degrees, or with different numerical methods, e.g., FE method,
spectral element method, or IGA. In this chapter, we specifically consider the coupling
of FE and IGA; the coupling of RB solutions is treated in the subsequent parts of the
thesis.
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Chapter 2. Non-conforming coupling of PDEs

Figure 2.1 — Example of partitioned domain Q = €y U (.

2.2 Theory of primal hybrid methods

In this section, we recall the theory of primal hybrid methods for the solution of PDEs.
These approaches are based on the primal hybrid principle [RT77], according to which
the continuity across subdomains is weakened by means of Lagrange multipliers. We refer
the reader to [BBF13, AP16, Bel99] for the theory of primal hybrid methods. Here, we
recall the main ideas by following the presentation in [BDW99]. We also restrict ourselves
to only two partitions of the domain; however—as we shall see in Section 2.3.1 and in
Chapter 4—the discussion can be easily extended to the case of multiple subdomains.

We are interested in solving a generic PDE described by a second order elliptic operator on
an open and bounded domain 2 with homogeneous Dirichlet boundary conditions on 9.
Specifically, we assume that a(y,v) for ¢, € H'(2) is the bilinear form corresponding
to the elliptic operator and f is a given forcing term; we consider problems whose weak
formulation can be written as:

(W2.1) given f € H-Y(Q), find u € H}(Q), such that

a(u,v) = (f,v) Yo e HQ). (2.1)
In the sequel, we will use the Poisson problem

—Au=f in{ (2.2)

with homogeneous Dirichlet boundary conditions (i.e., v = 0 on 02) as representative of
this class of problems. In this specific case, a(p,¥) = (Vo, Vi)).

Let us assume that the domain € can be partitioned into two nonoverlapping open and
bounded domains, such that Q = Q1 U Qs and Q; N Qy = (); as shown in Fig. 2.1, we
denote T the interface between the two domains, i.e., I' = Q; N Q. Rather than the
global problem W2.1, our goal is to solve two local and coupled problems defined on
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2.2. Theory of primal hybrid methods

the partitions €2;, such that the global solution can be constructed by combining the
solutions of the local problems. To this end, let us introduce for ¢ = 1, 2 the functional
spaces X; = H}o a0, (€2:) and

X :={pcL*Q):¢lg, € &; fori=1,2},

which is a Hilbert space when endowed with the (broken) norm

2
lelz =D el -
i=1
Let us also recall the following definition
H(div; Q) := {¢ € [L*(Q)]?: V- § € L*(Q)},
where d is the dimensionality of the problem.

Space H{(Q) is characterized as a subspace of X’ under suitable conditions [BDW99),
which we state in the following Proposition. We remark that an analogous result is
presented and proved in [BBF13].

Proposition 2.1. Let
_ 2
Vi={peX: > (¢ niplog, =0 Ve H(div;Q)},

i=1

V.

where n; is the outward unit vector normal to 8. Then, HE(Q)

Remark 2.1. Preposition 2.1 must be modified if 92 = I'p UT'y and if the PDE is
equipped with homogeneous Dirichlet conditions on I'p and Neumann conditions on Iy,
as discussed in [BBF13]. In this case, we introduce

Hr, (div;Q) := {¢p € H(div; Q) : (¢ -n,v)po =0 Vv € Hp (Q)}.

Then

o 2

Vi={peX:) (¢ nipn =0 V¢ e Hr,(div;Q)}
=1

is a characterization of H%D (Q).
Condition Z?=1<¢ ‘14, ¢)pq, = 0 for each ¢ € H(div;Q) is global, in the sense that
it involves the trace of ¢|g, on the whole 0€;, even though it essentially constrains

the restrictions of ¢ to €21 and s to have the same trace at the common interface I.
Unfortunately, splitting the dualities into two parts corresponding to I' and 9Q \ T is
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not allowed, as the restrictions of the traces to portions of 9€2; can lead to unbounded
dualities. To overcome this issue, we introduce

Hy (L) = {n € HYA(Ty) : EPn € HY?(09)},
with norm
|’77”Héé2(pi) = HE?WHHl/Q(()Qi)v

where E?n is the trivial extension by zero of 1 to the whole boundary of 9f); and
I = 09Q; \ 09. In the following, we will consider Hl/Q(F) = HI/Q(Fl) N H1/2(F2). Let
us define the spaces

Xoo = {p € X : [¢)r € Hy (D)},

where [¢]r denotes by our convention the difference of the traces of ¢|q, and ¢|q, on T,

and

A= Ho' (1), (2.3)
with norm

Il == 1l =z + 0l =2
Furthermore, we introduce the bilinear form

b(p,€) = (&, [¢lr)a

for ¢ € Xyp and £ € A. Tt can be easily verified [BDW99] that another characterization
of H}(£2) analogous to that in Proposition 2.1 is given by

HY Q) =V :={p € Xyo:b(p, &) =0 VEec A} (2.4)
In the sequel, we will use the letter V to refer to H}(€).

We are now ready to state the primal hybrid formulation of the original weak formulation
W2.1. We remark that, whenever applied to functions of X', the bilinear form a(-,-) is to
be intended as the sum of the bilinear forms restricted to the two subdomains.

(W2.2) given f € H (), find u € Xoo and X\ € A such that
CL(U,’U) + b(’U, )‘) = <f>U> Vv € X007

b(u,n) =0 Vn € A.
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2.3. Discretization of the primal hybrid formulation

Proposition 2.2. If u € V is a solution of W2.1 and there exists A € A such that
b(v,\) = (f,v) —a(u,v) Yv € Xy, (2.6)

then (u, \) € Xoo x A is a solution of W2.2. On the other hand, if (u,\) € Xoo X A is a
solution of W2.2, then uw € V and u is a solution of W2.1.

Proof. Let u € V be a solution of W2.1, then u € X9 and the second condition in
Eq. (2.5) is satisfied because of definition (2.4). The first condition in Eq. (2.5) is satisfied
when choosing A € A such that Eq. (2.6) is verified. Conversely, if (u, \) € Xpp x A is a
solution for W2.2, then u € V because of the second condition in Eq. (2.5). Moreover, for
each v € V, b(v,&) =0 for all £ € A and, in particular, for £ = A, and the first condition
in Eq. (2.5) becomes Eq. (2.1). O

Remark 2.2. If we consider the Poisson equation (2.2), then Eq. (2.6) is verified by taking
¢ = —Vu and by choosing A € A such that ¢ - n; = A, n; being the outward unit vector
normal to 9€2;. Indeed, by using integration by parts we find, for all v € Xy,

b(v.X) = (¢~ n, [ole)a = = /F Vu - niv

:g(/mfv_/mvu-w> = (f,0) — alu,v),

where we used the fact that n; = —ns. Note that, if we defined the jump across the
interface of a function ¢ € Xy as the difference of the traces on I' of ¢|o, and ¢|q,,
then ¢ - ny = A. Hence, the Lagrange multiplier in Eq. (2.5) plays the role of the normal
derivative of u at the interface I' [Woh00], with the direction of the normal at the interface
being determined by the definition of the jump.

2.3 Discretization of the primal hybrid formulation

We now consider the discretization of the weak formulation W2.2. We take two arbitrary
finite dimensional functional spaces X{* C X7 and X} C X, spanned by two sets of
basis functions ‘P}f,z‘ € X (withi=1,... ,Nﬁl) and gp’ii € X) (withi=1,... ’N3,2)
respectively. We assume that functions in XJ* and XJ' can be trivially extended by zero
in the other domain and that such extension belong to X{y. The discrete version of
the global space Xy is consequently obtained by considering the space X" C Xy of

dimension dim(X") = N} = qu’l + Nf’z and spanned by the basis functions

NP N N
{90?}1':1 = {80?,1}1':11 U {80?,2}2':12'
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Chapter 2. Non-conforming coupling of PDEs

h

h
The solution can be then approximated as u ~ u'* = Zf\i‘l ufgph

. In the numerical
applications in Section 2.6, we will consider standard FE Lagrangian basis functions and
B-Splines basis functions for the discretization of the spaces defined above; in this section,
we consider—to fix our ideas— the case in which the FE method is employed. The FE basis
functions are built over suitable triangulations .7;" and .Z* of Q; and Qs respectively;
we will always assume that such triangulations meet standard regularity requirements
[QV08], but we do not require the conformity of the global mesh I" = Z" U Z. We
define conforming meshes those meshes for which the intersection of two elements is
either null, a vertex or a whole edge; in nonconforming meshes, on the contrary, two
elements can also share portions of their edges. The discretization parameter h is generic
and defines a family of discretized spaces; when using finite elements, for example,
h refers to the maximum edge length of an element (often called mesh size) in the
triangulations of 2; and 5. More generally, h could be also considered a characteristic
of the single subdomain, since—as we already mentioned—the discretizations in €21 and
Q9 are independent one of the other and could be obtained by different discretization
methods.

As proposed in [DIP19], we discretize A as A® by using a set of spectral basis functions

51‘5 € A, such that A € A is approximated as A ~ X0 = Zi\g A?{? . We remark that
we characterize the refinement levels for X', X9 and A% with different discretization
parameters h and §: this is to indicate that the discretization of A is indeed independent
of the discretization on €2; and 5. For instance, in the two-dimensional case, a suitable
choice would consist of choosing as 52‘5 the basis functions associated with the low-
frequencies of the Fourier basis defined on the common interface I', and the accuracy
of the discretization of A% can be increased independently of h by adding Fourier basis
functions to the set f? . In the numerical simulations of Section 2.6 we will follow this
approach. Alternatives for the discretization of the Lagrange multiplier space include
other spectral basis functions, such as, e.g., Legendre or Chebyshev polynomials. The
three-dimensional case is treated in Section 2.6.2, Section 2.7, and more extensively in
Chapter 4.

The discrete space for the approximation of V is then defined as
V= ol e XM b(p", &) =0 VE € A%},

Remark 2.3. V1 is not a subspace of V. As a matter of fact, if A° is not equal to A, then
there may exist £ € A, & ¢ A% such that b(¢", &) # 0 for some " € V" and therefore
o & V. If we replaced V by V" in W2.1, we would obtain a nonconforming method,
i.e., a numerical method in which the discretized search space is not contained into the
continuous search space. The generalized version of Céa’s lemma [Céa64] for this family
of methods is Strang’s second lemma [Cia02], which states that the solution u" of the
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2.3. Discretization of the primal hybrid formulation

discretized version of W2.1 satisfies

h h
a(u,w") — (f,w
Ju—u||prs < C [ inf Jlu—v"|lpws + sup o )h s w)| , (2.7)
vhephd wheVhs |w"||yns
where C' > 0 and || - ||yns is a norm for V. Note that the consistency error—i.e., the

second term of the right-hand side in Eq. (2.7)—is identically zero for each w” € VM if
Yho Y because u is a solution of W2.1.

The discretization of W2.2 is simply obtained by replacing the continuous functional
spaces by their discrete counterparts, namely:

(W2.3) given f € H71(Q), find u" € X" and X° € A% such that

a(u, o) + b(v", N) = (f, ") Vol e X,

2.8
b(u",n°) =0 v € A, (2:8)

By expanding u” and \° on their respective bases, Eq. (2.8) can be rewritten in system

form as
AP (Bh5)T u” £
sl = , (2.9)
Bho Al 0
where A?’] = a((/??, 90?)7 BZ(; = b(@?a gf)? Qh - [U?, RS ui]l\[g]a Aé = [)‘?ﬂ RS A?\]i] and

' = (f,oP). By arranging the basis functions ¢ and the dofs such that all the basis
functions corresponding to 21 come before those of g, system (2.9) can be written as

T
Al ~(B) | [w] [
A}Qz (B§L5)T Qg = E}QL )
X 0
—Bp Bho

where (B#9);; = ¢ gog-ﬁl{? and (BY);; = |; @?7252‘5 are coupling matrices. Clearly, B}
and BF are likely to be sparse if the basis functions internal to the subdomains have
compact support, as the integrals are equal to zero if go?}l and @?72 vanish on I'.

In this thesis, the computation of the coupling matrices is performed by numerically
estimating the integrals by Gauss quadrature rules. Let us consider, for z =1 or z = 2,
the case of B9 in the two-dimensional case. The triangulation 7" induces on T' a

L. . . Nj .
partition into Nr . elements, i.e., I' = Uizrl’z K; .. Given a Gauss quadrature rule of order
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Chapter 2. Non-conforming coupling of PDEs

Figure 2.2 — Example of a three-way partition of {2 with three interfaces; each interface
corresponds to a Lagrange multiplier space.

2¢ — 1, the approximation of each term of B is computed as

Nr .
(B29) = [ehsn=> [ e
e 4 =t (2.10)
~ Z ‘det(Jz,z(X;:q))’@Z;(@',z(X?'q))fgz(@,Z(X?q))wj?
i=1 j=1

where det(Ji,Z(xgq)) is the determinant of the Jacobian of the map ¢; . : K; . — (—1,1)
from K; . to the reference interval (—1,1), x5% is the 5™ Gauss quadrature node in (=1, 1)
and w; is the associated weight. As it is evident from Eq. (2.10), being able to evaluate
the product cpﬁ?zgfn at each quadrature node is sufficient to compute the approximation of
B! In particular, it is not necessary to interpolate functions between domains. The case
of geometric nonconformity, which occurs whenever the interfaces are not geometrically
the same, still needs to be addressed.

2.3.1 Generalization to multiple subdomains

In previous sections we decided to limit ourselves to the case where the domain of the
PDE is partitioned into two subdomains. This choice is motivated mainly by the fact
that considering the generic case of multiple subdomains leads necessarily to complexity
in the notation. We refer the reader to the already mentioned references [BDW99, Bel99]
for examples of how the functional spaces we considered in Section 2.2 could be adapted
to the case of multiple subdomains. One aspect that differentiates our approach from
other methods (such as the mortar method) is that, in the discretization process, our
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2.4. Relationship with other nonconforming methods

method requires defining a set of basis functions for the Lagrange multiplier space of each
interface. These bases can be chosen independently, one from the other. In particular, in
our numerical results, we were able to recover optimal convergence without imposing any
requirements on the values of the basis functions at the cross points.

As an example, Fig. 2.2 shows a three-way partition of €2 into three domains with three
interfaces. Each of the interfaces requires the definition of a corresponding space for the
Lagrange multipliers. After the discretization, the algebraic system can be written as in
Eq. (2.9), with

A By -BiY
A = Ah , B'= —Bl Bh|. (2.11)
Al -B Bl

Matrices (Blhj‘s)mn = fl“i goffh jffn’l- discretize the coupling between the j'' domain and the
ith interface. We remark that the signs of the coupling matrices are determined by the
definition of the normals at each interface. It is worth noting that, besides the choice
of the orientation of the normals at the interfaces, there is no hierarchy among the
subdomains.

In Section 2.6.3, we consider numerical results obtained on a domain whose partition is
topologically equivalent to that presented in Fig. 2.2.

2.4 Relationship with other nonconforming methods

2.4.1 Relationship with the mortar method

The mortar method can be derived from the same problem written in primal hybrid
formulation W2.2 we considered in Section 2.2 [Woh00]. Its discretized weak formulation
could be rewritten in the form of a saddle-point problem similar to Eq.(2.5) in which
the space of Lagrange multiplier Af]@ depends on the discretization of either €1 or Q;
see [SS98, Ses03]. In particular, the classic mortar method requires assigning to € or to
)9 the role of master and slave domains. The basis functions of A’M are chosen as the
traces of the basis functions defined over the triangulation of the slave domain that do
not vanish on I'; the polynomial order of the basis functions is usually decreased by one
over the first and last elements of the partition of T

With respect to the mortar method, the main advantages of an approach based on the
use of spectral basis functions are the following:

1. the accuracy of the coupling can be increased or decreased by varying the number of
basis functions for space A% independently of the discretization in the subdomains;

49



Chapter 2. Non-conforming coupling of PDEs

2. the solution is independent of any classification of the subdomains into master and
slaves, which is not required by the method;

3. the computation of the coupling matrices does not require projections between
meshes, which makes the implementation of the method easier.

One drawback of our method is that the Lagrange multiplier space has to be rich enough
to provide the necessary accuracy but coarse enough to satisfy the inf-sup condition, as
described in Section 2.5.

2.4.2 Relationship with INTERNODES

The INTERNODES (INTERpolation for NOnconforming DEcompositionS) method
[DFGQ16] is based on an interpolation approach, rather than the L?-projection approach
which characterizes the mortar method. Given each interface, the two adjacent subdomains
are given the role of master and slave domains. Similarly to the mortar method, the
traces of the (FE or spectral element) basis functions defined over the meshes of the
master and slave domains are used to enforce the continuity of the solution and the
normal stresses. More precisely, two interpolation operators—or intergrid operators—are
defined: the interpolation operator from the master to the slave domain is used to ensure
the continuity of the solution, while the interpolation operator from the slave to the
master domain enforces the continuity of the normal fluxes. INTERNODES has been
proven to retain the optimal convergence properties of the mortar method. For more
information about the method and its analysis, we refer the reader to [GQ16].

Being INTERNODES closely related to the mortar method, compared to the former, our
approach offers the same advantages we presented in Section 2.4.1 except for 3. Indeed,
INTERNODES has the big advantage of being simple to implement and allowing for
nonmatching interfaces, namely interfaces which could either feature (small) overlaps or
holes between them; we refer to this situation as geometric nonconformity. We believe that
our method is as simple to implement as INTERNODES and that it can be extended to
nonconforming geometries with the help of localized Rescaled Radial Basis Interpolation
[For16, DFQ14].

2.4.3 Relationship with the three-field method

The three-field method was originally proposed in [BM94] and analyzed in [BMO1].
Compared to the mortar method, it has had significantly less impact on the Domain
Decomposition community.

The multidomain extension of the weak formulation W2.1 by the three-field method
reads [QV99]:
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2.4. Relationship with other nonconforming methods

(W2.4) fori=1,2, findu; € X;, 0; € H /(') and ¢ € H/*(T') such that

a(ul,vl) — <017U1>H—1/2(I‘) = <f,U1> VUl € Xl,

(7717”¢ - u1>H*1/2(F) =0 an c Hfl/Q(]:‘)’
(o1 + 02, ) =120y = 0 Vp e H'(T), (2.12)
(2, ¥ = w2) yay2(ry = 0 Wiy € H™Y2(T),

CL(UQ,UQ) - <027v2>H*1/2(F) = <f77)2> V'UQ S XQ-

It can be proven (see [QV99, Proposition 1.7.1]) that if u is the solution of W2.1 and w;,
0;, 1 are solutions of W2.4, then w; = ulqi, 0; = (Vou-n;)r (where Vpu - n; indicates
the conormal derivative of u with respect to the normal vector n;), and 1 = u|r.

The weak formulation W2.2 we derived in Section 2.2 can be interpreted as a particular
case of W2.4. Indeed, let us firstly restrict the space H/2(I") to its embedded subset
H(%Z(F) and let us consider the particular case in which A =01 = —09 € A = H&)l/Q(F):
then, the third equation in Eq. (2.12) is automatically satisfied for all choices of p €
HééZ(F). Moreover, subtracting the second and fourth equations evaluated at the same
m =mn2 =n € A yields

(MY —u)a — (0, ¥ —u2)a = (n,u2 — u1)a. (2.13)

Obviously, this duality is well defined only if the trace of us — u; belongs to H&éQ (.
Therefore, we set u € Xy such that u; = u|g, and w2 = ulq,; Eq. (2.13) can be then
rewritten as b(u,n) = 0 for all n € A, i.e., the second equation in Eq. (2.5). The first
equation in Eq. (2.5) is found by adding the first and last equations in (2.12) tested
for all v € Ay such that v; = v|g,, va = v|q,; observe that also in this case it is
necessary to restrict the search space for v to Xpg, in order to ensure the well-posedness
of b(v,\) = (A, va — v1)r.

Although W2.2 and W2.4 are equivalent, their discretizations are not. Indeed, in the
three-field method, it is necessary to define the discretizations of the variational spaces
of o1, o2 and 1. In contrast, when discretizing W2.2, the third equation of W2.4 is
not approximated but solved exactly and the second and fourth are merged into a
single equation. As we have shown, setting o1 = —o9 is efficient because it allows us
to automatically satisfy the third equation in Eq. (2.12), thus reducing the number of
variables. Our approach limits to one the number of spaces to be discretized for each
interface, thus allowing better control over the stability of the method.
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Chapter 2. Non-conforming coupling of PDEs

2.5 Reinterpreting the inf-sup condition of the coupled
problem

Problems W2.2 and W2.3 are saddle-point problems and, as such, their well-posedness
is subject to specific conditions which we introduced in Section 1.4. It is worth contex-
tualizing some of these concepts to the specific case of the Lagrange multipliers-based
strategy for the coupling of PDEs, which we discussed in this chapter.

Let us assume that the continuous weak formulation is well-posed. As a matter of fact,
we recall that if the space A is characterized as in (2.3), the continuous problem W2.2
has a unique solution [BDW99]. In the particular case of W2.3, the inf-sup condition
requires the existence of a positive constant 5" such that

b(v", 1) (7, [W"]r)a

inf sup ———— = inf sup 725}“5.
end pnexn [0l ln’lla - niend e 0" ]2 ln°lla

Loosely speaking, this is verified whenever the space of the Lagrange multiplier A% is small
enough compared to X”. In light of the discretization strategy outlined in Section 2.3, the
inf-sup condition is then associated with the number of basis functions of the subdomains
sharing the interface—specifically, the basis functions with support on the interface
itself—and the dimensionality of the Lagrange multiplier space N/‘\S. Given a fixed mesh
size, the stability of the problem is bound to deteriorate as Nf\s increases. Viceversa, it
is possible to recover the well-posedness of the discrete problem whenever the inf-sup
condition is violated by decreasing the mesh size in the subdomains. We validate these
observations in the numerical experiments in Section 2.6.

It is also useful to rewrite the error estimates in Theorem 1.2 in terms of the variables
u" and \?. These become

fu= e <€ intfu— oty +Ca it A=y (2.14)
A= N <Oy inf u— vl +Ca inf 1A=, (2.15)
and
inf Jlu— o*||x < (1 + ’”’) inf Jju — o', (2.16)
ohephs B ) yhexn

The constants in Eq. (2.14) and Eq. (2.15) take the values

Kp Ka Kb Ra kb
CI:<1+>, Cr=n G3=Cigps C4:<1+5ha+ah5h5>’

where r, and kp are the continuity constants of a(-,-) and b(-,-), and a” is the coercivity
constant of a(-,-).
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These estimates show that whenever the space of Lagrange multipliers is rich enough
(namely, the second term in Eq. (2.14) becomes negligible compared to the first one),
the approximation of u is essentially bounded by the best approximation error in X.
However, as we have already discussed, this richness may lower the inf-sup constant
" and therefore loose the approximation (2.16). It is, therefore, important to find the
correct balance.

We remark that from Eq. (2.7) we have that increasing the size of the Lagrange multipliers
space is equivalent to lowering the size of V" and, consequently, the supremum in its
right-hand side. The two error estimates in (2.7) and (2.14) are therefore equivalent ways
of expressing the fact that, if the continuity over the interface I' is enforced strongly
enough, the error converges to zero as the error due to the spatial discretization in X"
As we show in the next section, we are able to recover the usual convergence orders for u
with respect to the mesh size h when using finite elements and IGA.

Finally, we observe that the inf-sup condition is also linked to the stability with respect
to the problem data. The estimates derived in Lemma 1.1 for W2.3 read

1
h
Il < 1Sl

1 K
é
9l < 55 (1 55 ) 1l
We highlight that, in the specific case of the primal hybrid method for coupling that
we consider here, the inf-sup constant 3" affects only the stability of the Lagrange
multiplier A’ because the constraint is b(v", 1°) = 0 for all 7° € A% (hence, by using the
notation of Eq. 1.15, g = 0).

2.6 Numerical results

In this section, we focus on the performance of the method presented in Section 2.2
on two-dimensional and three-dimensional problems. The numerical simulations in two
dimensions are performed in MATLAB. The three-dimensional results in Section 2.6.2
and Section 2.7 have been obtained using LifeV [BDF*17].

For all the simulations, we employ standard piecewise polynomial Lagrangian basis
functions defined over suitable triangulations in the subdomains or B-Splines basis
functions, as presented in Section 2.6.3. Regarding the choice of basis functions for A,
we already anticipated in Section 2.2 that, in this chapter, we investigate the possibility
of using low-frequency Fourier basis functions built on the interface I'.

Remark 2.4. All the linear systems arising in the numerical simulations, except those in
Section 2.6.2, are solved by means of the backslash operator in MATLAB without any
preconditioning.
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2.6.1 Choice of basis functions for the Lagrange multipliers

In this section, we focus on the discretization of one dimensional interfaces. Given an
interface with length L, we consider ¢ =1 and, fori=1,..., Ng

&i(s) = sin(w;ms),  &2i41(8) = cos(w;ms), (2.17)

where s is the arc length of the interface T', w; = i/L, and N? is the number of considered

frequencies; it holds that N{ = 2N¢ + 1. With this definition, the set {{i}f\ﬁl forms an
orthogonal basis with respect to the L2(0,2L) scalar product. We choose to employ such
basis—instead of the standard Fourier basis orthogonal (or orthonormal) with respect
to the L2(0, L) scalar product—because, by considering basis functions with periodicity
L, we would impose an unnecessary periodicity constraint, in particular, the equality of
the functions in A% and their derivatives at the extrema of I'. As a result, we empirically
observed that by employing the standard L?(0, L) orthonormal Fourier basis functions
the optimal convergence of the FE method is retrieved for larger values of N f compared
to the choice in Eq. (2.17). However, employing nonorthonormal basis functions (2.17)
has a dramatic influence on the condition number of the resulting linear system, which
has exponential growth when the number of basis functions on the interface increases;
see Fig. 2.3 (left).

In order to retain the convergence order attained by using the Fourier modes in Eq. (2.17)
and, at the same time, control the condition number of the system, we propose an
orthonormalization strategy based on the Gram—Schmidt algorithm or, equivalently, on
the QR decomposition [Ruh83|. Even though the coefficients of the orthonormal basis
generated by (2.17) with these algorithms could be analytically derived, their exact
expression quickly becomes complex with N )\5 becoming large. With our approach, we aim
at obtaining an approximation of such coefficients relying on a fine sampling of the basis
functions on the interval (0, L). We remark that, in addition to allowing us to effortlessly
compute a large number of orthonormal basis functions, our approach has the advantage
to be general enough to be applied to any set of nonorthonormal basis functions.

Let {&}jg be the set of nonorthonormal basis functions defined on I'. Moreover, let
{xl}fvzsl be distinct sample points distributed over the interval (0, L), where L still
denotes the length of the interface. We now introduce the functions {fii}f\ﬁl, which we
identify with the set of standard Lagrangian piecewise linear basis functions centered at
each sample point x;, and the associated mass matrix M;; = fr kikj. Furthermore, let
V=1[v1]... |VN§] € RM*NX be the matrix of evaluations of the basis functions at the
sample points, namely V;; = §;(x;). We remark that, for each i =1,2,..., Nﬁ, we have
H&H%Q(Q L)~ vl Mv;. Since M is a positive-definite matrix, it admits a unique Cholesky
decomposition and there exists C' € R*Ns such that M = CTC.

RNsx N}

Let us now consider the unit matrix Q € and the upper triangular matrix
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100 —e—h=1/20
—m—h=1/28
—®— h=1/40
—A—h=1/56

104 —O—h=1/80

10°

condition number

1088

Figure 2.3 — Condition number of the discretized system for the Poisson problem on two
subdomains (see Section 2.6.2) vs number of basis functions for the Lagrange multiplier
space N 5\5. On the left, we consider the nonorthonormal basis functions in Eq. (2.17),
while on the right we consider their orthonormalization.

R € RV} such that the truncated QR decomposition of C'V reads
CV =QR.

By construction, we have
Ccto)yfmMctQ=QcTctccQ =1,

thus, the columns of C~'Q represent evaluations at the sample points of functions
orthonormal on (0, L) with respect to the L? product. The matrix R performs the change
of variable from the frame of reference of the new orthonormal basis functions to the frame
of reference of the nonorthonormal basis functions. If the sampling is sufficiently fine, we
speculate that the elements of matrix R~! well approximate the coefficients which are
computed by applying the Gram—Schmidt algorithm to the continuous nonorthonormal

. . NS . .
basis functions {;},% and, in particular, that

NS
=0 §p—1
fi = E ijji :
Jj=1

From a practical perspective, matrix R~ is suitable to compute coupling matrix B
with respect to the orthonormal Fourier basis functions, knowing the coupling matrix
computed without orthonormalization B™. Indeed, we have

NJ N
—hé 20 h 5 h\ p— hé p—
B :/fi%‘ = </ 5k90j> Rt =) BiR,
r k=1 T k=1
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Algorithm 2.1 Transformation of coupling matrices.

é
Input: Coupling matrix B", computed with {&}ﬁiﬁ
Lagrange multiplier basis functions), Ny € N

(a set of nonorthonormal

— —~ 4
Output: Coupling matrix Bh(s, computed with {&}ZNQI

multiplier basis functions)

(a set of orthonormal Lagrange

Sample {ml}f\[;1 points equally distributed on the interface T’

Construct {#;}*, (linear Lagrangian FE functions centered in z;)

Assemble M;; = fF kikj and compute the Cholesky decomposition M = crc
Assemble V = [vq]... |VN§] € RY*M} guch that Vij = &(x5).

Compute the QR decomposition of CV = QR

Compute B = R-TBM

~TBh3 Observe that, being that R is an upper triangular matrix,

or equivalently B = R
the application of R~7 is performed at negligible cost; furthermore, matrix R~7 depends
only on the choice of the nonorthonormal basis functions and can be then computed a
priori. The orthonormalization algorithm is summarized in Algorithm 2.1. We remark
that, with this approach, the orthonormal basis functions are never explicitly computed.
Moreover, since the discrete space is exactly the same, the approximation properties
and the convergence orders are not changed. Fig. 2.3 (right) shows that, after the
orthonormalization of the Fourier basis functions (2.17) by the algorithm we presented,
the system is more stable and the condition number increases with the number of Fourier

basis functions Nj\s dependently on the refinement level of the mesh h.

2.6.2 The Poisson problem on two-way partitioned domains
Results in two dimensions on the unit square

Let us consider the global Poisson problem (2.2) on the domain € = (0,1)2, where we
take f such that u = 100zy(1 — x)(1 — y)sin(1/3 — xy?) is the exact solution. We divide
Q into Q1 = (0,0.5) x (0,1) and Qy = (0.5, 1) x (0, 1).

We numerically solve the problem on ; and Q9 by employing structured triangular
conforming and nonconforming meshes with varying mesh size h. The conforming meshes
are obtained by subdividing the domain in the x- and y-direction in the same number
of elements. On the other hand, the nonconforming meshes are built by taking N + 1
elements in the y-direction of (29, N being the number of elements in the y-direction in
1 as well as the total number of elements in the z-direction.

Fig. 2.4 shows how the solutions on ; and 9 obtained with a conforming mesh with
N = 20 elements in each direction change with respect to the number of basis functions
on the interface. The results are obtained with quadratic Lagrangian polynomials in both
subdomains. From the contour lines plots in the top row, it appears that the two solutions
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Figure 2.4 — Contour lines of the solution (top row) and derivatives of the solution at
both sides of the interface, approximated Lagrange multiplier and exact derivative at
the interface (bottom row) when N{ =1 (left column), N{ = 3 Fourier modes (middle
column) and N/‘\S = 5 Fourier modes (right column) are used to characterize the space A°.
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Figure 2.5 — Convergence of error in broken norm with respect to the mesh size h and
number of basis functions on the interface N¢ with conforming (left) and nonconforming
meshes (right). The black dashed line shows the convergence of the error with a conforming
mesh with comparable mesh size.

match quite accurately at the interface with 5 Fourier basis functions (NJ = 2). In the
second row of Fig. 2.4, we plot the approximation by finite differences of the derivative of
the solution with respect to x in the two domains, which is equal to the normal derivative
of u? and to the opposite of the normal derivative on ug on I' respectively. Observe that,
as we already highlighted in Remark 2.2, the Lagrange multiplier A? takes the role of the

normal derivative of u" on T.

Let us now address the convergence of the global solution to the exact one with respect
both to the mesh size h and the number of basis functions on the interface N f. To
this end, we consider meshes with a total number of elements in the z-direction N =
20, 28,40, 56, 80,114, 160, and we solve the problems by employing quadratic Lagrangian
basis functions in both subdomains. Fig. 2.5 depicts the error decay in X-norm (the
broken norm) with respect to h, as well as the convergence of the error obtained by
solving the problem on a single conforming mesh of € (in black dashed line). When
employing both conforming and nonconforming meshes, the error is optimal—in the
sense that we recover the theoretical order of convergence h? of quadratic finite elements
for the H!'-error—when Nf is large enough, e.g., Ng > 13. In this case, the error is equal
to the one given by the single domain approach. If N /‘\5 is too small, on the contrary, the
solution is unable to converge to the exact solution with A and reaches a stagnation
point. We remark that this result is perfectly consistent with Strang’s second lemma
(2.7) and with the estimate (2.14): whenever the space of Lagrange multiplier is rich
enough (which is equivalent to requiring that V® be a good approximation of V), the
best approximation error of the interpolation is recovered.

Remark 2.5. In our numerical simulations with nonconforming meshes, we observed
that instabilities arise when using coarse meshes and low-order quadrature rules for
the computations of the approximate integrals of B{L‘; and Bg“s in Eq. (2.10). When
considering, for example, h = 1/20,1/28,1/40 and 2 Gauss quadrature nodes, the error
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Figure 2.6 — Decaying of the inf-sup constant 5 with respect to Nf.

starts increasing when Nf becomes large (e.g., N 5\5 > 15). By increasing the order of
the quadrature rule and choosing 4 Gauss quadrature nodes, this issue is completely
fixed. We did not encounter stability problems when using conforming meshes, even with
low-order quadrature rules.

Fig. 2.6 shows the variation of the estimate of the inf-sup constant E—computed as the
square root of the minimum eigenvalue of the generalized eigenvalue problem (1.19), as
described in Section 2.5—when the number of basis functions on the interface changes;
the estimate refers to the simulation of the Poisson equations with conforming meshes
and quadratic polynomial basis functions. In Fig. 2.6, each curve presents a plateau
phase in which the inf-sup constant stays approximately constant at around B ~ 1.41
with the increment of N /‘\s . The width of such a plateau phase increases when h becomes
smaller. Indeed, we observe that B starts decreasing for smaller values of N /‘\s when the
meshes are coarser and that, conversely, for finer meshes the inf-sup constant varies
relatively little in the range N{ € (1,31). We remark that, combined with the condition
number shown in Fig. 2.3 (right), this result ensures that, for each refinement level, we
are able to obtain the optimal convergence of the FE method when the basis functions
are orthonormal. Indeed, refining the mesh has the effect of both increasing the range of
stability of the linear system—see Fig. 2.3 (right)—and increasing the number of basis
functions on the interface that can be employed without reaching the fast decaying region
of 5 in Fig. 2.6. With regard to this last point, we recall that it is important to prevent
the inf-sup constant to become too small because it appears at the denominator of the
constant multiplying the best approximation errors in u and on A in the error estimates
(2.14) and (2.15).
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Chapter 2. Non-conforming coupling of PDEs

Figure 2.7 — On the left, subdomains of the cylinder with corresponding meshes (sizes:
hi =1.61-107! and hy = 1.76-10_1). On the right, the solution u obtained with N9 = 928,

Results in three dimensions on a cylinder

We consider the Poisson problem (2.2) on a three-dimensional domain. In particular, we
take the cylinder

Q={x=[r,y,2]7 €R®:2€(0,2), y* + 2% < R?},

where R = 1/2, and we set the forcing term f such that

u=25 <§ - %) (R? — y? — 2%)sin(z — y) sin(x — 2)

is the exact solution.

We consider subdomains €27 and {29 obtained by cutting the domain with the plane
corresponding to z = 1. On each subdomain, we define a family of triangulations ﬂlh
and 73" composed of tetrahedra such that 7" = 7" U .Z* is not conforming at the
interface. Figure 2.7 (left) displays one of such global triangulations of the computational
domain. We consider FE spaces composed of standard Lagrangian linear and quadratic
basis functions on €27 and Q9 respectively.

Concerning the discretization of the Lagrange multipliers space, in this test case we
exploit the fact that the interface I is a circle (before the geometric discretization of €2).
We define a polar system of coordinates centered in xg = (1,0, 0) on the plane x = 1 and
we denote by r(y, z) = \/y? + 22 and 0(y, z) the two parametric variables representing
the radial distance from point x( and the angular variable, respectively. Function (-, -)
is defined as 0(y,z) = arctan(z/y) if y > 0 and 6(y,2) = arctan(z/y) + 7 if y < 0.
We define in each of the parametric directions a set of basis functions. In the radial

direction, we take §f+1,r(r) = cos(mir/4R), for i = 0, ... ,Nj’T; we employ only cosines
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Figure 2.8 — Convergence of the H!-error in the solution u in ©; and Qg (left) and
convergence of the L?-error in the Lagrange multiplier A (right). In Q1 and 2 we use
linear and quadratic finite elements, respectively.

with varying frequencies in order to avoid discontinuities in the derivatives at » = 0. In
the angular direction, we take &1 9(0) = 1, £2;9(0) = sin(inf) and &a;41,6(0) = cos(inh),
with i = 1,.. .,wa. The two-dimensional basis functions on the interface are then
defined by means of the tensor product of these two sets of univariate basis functions,
namely we set f?j(r, 0) = §f’r(7“)£§’9(9) and the total number of such basis functions is
N = (Nir + 1)(2]\7379 +1). In our tests, we consider Ngm = Ng,e to simplify the analysis
of the results, but the numbers of basis functions in the two parametric directions are a
priori independent.

Figure 2.8 shows, on the left, the convergence of the H!'-error of u in ; and Qs and,
on the right, the convergence of the L?-error in the Lagrange multiplier \. If N 5\; is
large enough, consistently with what observed in Section 2.6.2, the error in the solution
converges in each subdomain with the theoretical rate of the employed FE space: order
one in 21, where linear FE basis functions are used, and order two in o, which has been
discretized by using quadratic FE basis functions. If, on the other hand, the Lagrange
multiplier space is not sufficiently rich, the error does not converge when h goes to zero.
We remark that, being that the error in )y is larger than that in (23 by one order of
magnitude, the theoretical convergence of order one is achieved for smaller N;f in that
subdomain. The L?-error in the Lagrange multiplier, however, is not monotonic with
respect to the number of basis functions N g ; see Figure 2.8 (right). In particular, for
larger mesh sizes the error rapidly increases with N j\s , whereas for smaller mesh sizes
the error reaches a minimum for N f\ strictly smaller than N f\ = 28. This effect is clearly
related to the inf-sup stability of the problem and to the fact that, as we already noticed
in Section 2.6.2, the inf-sup constant g rapidly goes to zero with N f if the mesh size is
too large. The effect of the inf-sup condition being violated is also visible in the plot on
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Chapter 2. Non-conforming coupling of PDEs

GMRES iterations

Figure 2.9 — GMRES iterations for solving the (preconditioned) linear system on the
problem presented in Section 2.6.2 vs number of basis functions for the Lagrange multiplier
space.

the left, where, for coarse meshes, the error in {2y increases with the addition of basis
functions for A%; however, the increase in the error in the solution is not as evident as
that on the Lagrange multiplier. One plausible explanation for the inf-sup stability of the
problem having a larger impact on the accuracy of A than the accuracy of u is that, by
combining Eq. (2.15) and Eq. (2.16), we see that 32 appears at the denominator in the
error estimate of the Lagrange multiplier, whereas the constants in the error estimate for
u in Eq. (2.14) depend on 1/5.

For this test case we solve the linear system by the GMRES method with tolerance 1078,
We also employ the block diagonal preconditioner

where A" and A} are the stiffness matrices in the two subdomains and Mi‘sj = - 5?, €9 is
the mass matrix of A%, which is computed by selecting the finest mesh on the interface T
for the numerical integration. During the application of the preconditioner, each diagonal
block is solved by an LU decomposition. Fig. 2.9 shows the varying of the number of
GMRES iterations with respect to Ng and the mesh size. Clearly, the number of iterations
increases by enriching the basis functions on the interface. Nevertheless, it also appears
that the number of iterations decreases when the mesh size becomes smaller. This is a
consequence of the fact that, for a fixed Nf, the conditioning and the inf-sup stability of
the coupling improve when h becomes smaller (as shown in Fig. 2.3 and Fig. 2.6).

We consider a more involved preconditioning strategy, which also takes advantage of the
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Figure 2.10 — Three-way partition of the model bifurcation. The displayed mesh corre-
sponds to the size h = 1.32- 1071,

saddle-point structure of the global problem, in Chapter 4.

2.6.3 The steady Navier—Stokes equations on three-way partitioned
domains

In this section, we test the flexibility of our method by solving the steady Navier—
Stokes equations in domain 2 € R? depicted in Fig. 2.10, which represents an idealized
bifurcation in an arterial tree. The equations read

pr(u-V)u—-V. .o =f in Q,
V-u=0 in Q,
(2.18)
u=g on I'p,
of(u,p)n =h on Iy,

where the symbols have the same meaning as in Eq. (1.1). In all the test cases we
consider, we take I'p = T, U Ty, where I'yy = {0} X (—7in, 7in) with 7, = 0.5 is the
inflow boundary on the left and I'y, is the wall of the vessel. The Neumann boundary
I'n = Louty UTout, is composed of the two outflows on the right. The Dirichlet boundary
datais g = (y?/r2, —1)Un on Ty, (where n is the outward normal to the inflow boundary),
namely we impose a longitudinal parabolic inflow with maximum velocity magnitude U,
and g = 0 on I'y, (no-slip condition). On the outflows Iy we set homogeneous Neumann
conditions, i.e., h = 0. In the numerical simulations, we set =1, U =1 and f = 0.

By following steps analogous to the ones presented in Section 1.2, it is straightforward to
derive the weak formulation of the steady Navier—Stokes equations.
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(W2.5) given £, g, and h regular enough, find (u,p) € V x Q, such that

a(u,v) + c(u,u,v) + b(v,p) = (f,v) + (h,v)r, Vv € Vo,
b(u,q) =0 Vg € Q,

and such that y|r,u = g. The bilinear forms, trilinear forms and functional spaces are
defined as in W1.1.

h
Let us consider the finite dimensional approximations of velocity u” = Zf\i‘l cpi‘uf” and

Nh
pressure p" = Yo <Z>?plh. Upon discretization of Eq. (2.18) by a Galerkin method—in
this section, we consider the FE method and IGA— the system can be rewritten in
algebraic form as

Kh 4 Ch(uh) (Dh)T Wh _ [h (2 19)
Dh - 0|’ ‘
~—~—
Al (wh) Fh
where w” = [u?, . ,u?vh,p’f, . ,pf]LV,L] c RN+ s a vector containing N/ dofs for the
u D

velocity and NZ},‘ dofs for the pressure, K" is the stiffness matrix, C"(u”) is the convective
term matrix, D" is the divergence term matrix, and r? = (f, ) + (h, ).

Le us now introduce a partition of the domain € into three subdomains {Qi}?zl separated
by three interfaces {Pi}?:p as shown in Fig. 2.10. Since the subdomains are topologically
arranged as the ones presented in Section 2.3.1, the matrix of the global system maintains
the structure of that in Eq. (2.11). The global system reads

Al (wy) (BT —(BE)T| | wy F}
AL (wsy) —(Bi)T —(BR)T wh F}
A (ws) (Bg)" (BT | |wh| _ |F% (2.20)
BY  -BY Ao
—Bl B Al 0
| By BY ][] [9]

where A and F? are the matrix and right-hand side of system (2.19) referred to the
it" subdomain, whereas B[‘j‘; is—as explained in Section 2.3.1—the matrix discretizing
the coupling of €); and interface I';. For i = 1,2, 3, the vector A? contains the Lagrange
multipliers corresponding to the i*" interface I';.

Remark 2.6. When applied to the Navier-Stokes equations in two dimensions, the
method requires assigning to each interface two sets of basis functions discretizing the
two components of the normal stress. To see why this is the case, consider the situation
in which Q is subdivided into £2; and §29; let us denote as always the interface of the two

partitions by I'. Multiplying the momentum equation by a test function v [H%D (Q))?
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and integrating by parts on {2; leads to

% Vu:Vv—/ pV-V—/Uf(u,p)n-v—/ f-V+/ h-v.
1971 Q1 r (951 oQ1NI N

The integral on I' is the coupling term. Each of the two components of the normal stress
or(u, p)n must be discretized by a set of basis functions. In this thesis, we choose for
simplicity to use the same set for each component of the normal stress.

We consider again Fourier basis functions for the approximation of the normal stresses.
Since, as explained in Remark 2.6, we need two Lagrange multipliers to represent
each normal stress, the number of basis functions on the " interface I'; is found as
Nii = 2(2N£7i + 1), where Ni,i is the number of frequencies. We consider the same
number of frequencies on each of the interfaces, i.e., NJ = Nf,’l = Ng,z = N£’3. Therefore,
the total number of basis functions for the Lagrange multiplier space is simply given
by N{ = 25’:1 Ny; = 6(2NS + 1). This choice is uniquely made to reduce the number
of free parameters and to ease the analysis of the numerical results. Similarly to what
noted in Section 2.6.2, where we employed the same number of frequencies in the two
parametric directions of the two-dimensional interface, one could equally decide to vary
the number of basis functions on each interface, if such decision was motivated by the
application at hand.

Remark 2.7. The discretized (nonlinear) Navier—Stokes equations (2.20) are solved by
means of the Newton-Raphson method with stopping tolerance 10~8. We observe that
employing orthogonal basis functions on the interfaces in this context is beneficial because
this allows us to control the condition number of the Jacobian system. In the numerical
simulations, however, we were able to obtain the optimal convergences (i.e., increase
Nf as much as required) without orthonormalizing the basis functions of the Lagrange
multipliers. The nonlinear solver always converged in three iterations or less.

FE-FE coupling

We focus on the convergence of the problem when the discrete spaces in the three subdo-
mains are built by means of FE functions. We define a family of globally nonconforming
triangulations 7" characterized by the mesh size h, namely the maximum edge length
over 2. We remark that, since the exact geometry features curved boundaries, these
triangulations are associated with a geometric error; this is not the case when some
of the subdomains are discretized by IGA, as in Section 2.6.3. Differently from what
is done in Section 2.6.2, we only focus on nonconforming meshes, and we exclusively
employ the inf-sup stable Taylor-Hood [HT74] elements with quadratic basis functions
for the velocity and linear basis functions for the pressure (i.e., P2-P1 elements). To
compute the error of the solution obtained with the nonconforming method, we consider
a reference solution u obtained with P3-P2 basis functions on a fine conforming mesh
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Figure 2.11 — On the left, solution of the Navier—Stokes computed on a mesh with size
h = 7.13 - 1072 and employing N = 4 frequencies (corresponding to N 5\5 = 54 basis
functions for A%). On the right, convergence of the error (as defined in Eq. (2.21)) with
respect to the mesh size h, for different values of N' jf .

(hfine = 1.12-1072, corresponding to 1’509’020 and 335'887 dofs for velocity and pressure
respectively).

Fig. 2.11 (left) displays the contour lines of the solution corresponding to mesh size
h=7.13-10"2 and Ng = 4. For this discretization of the Lagrange multiplier space, the
contour lines at both sides of each interface match quite accurately, which indicates that
the continuity of the global solution is well recovered. Fig. 2.11 (right) shows that, if N g
is large enough, the following error estimate for P2-P1 elements

1/2 1/2

3 3
Slu-w By |+ (Sl —p B, |  <on? (2.21)
=1 =1

holds. In particular, we observe that when only low frequencies are considered, the error
in the Lagrange multiplier A is larger than the FE error and the global error remains
approximately constant when h tends to zero. For N9 = 4 and N2 = 5, on the other hand,
the error in A is negligible and the rate of convergence of finite elements is fully recovered.
We remark that, compared to the total number of dofs for velocity and pressure in the
three subdomains—which ranges in the intervals 3/232 — 48’978 for Q, 1’463 — 39'080
for Qs and 2760 — 93/202 for Q3—the number of basis functions of A% considered in
Fig.2.11 (right) is negligible (we take at most N = 66).

Fig. 2.12 shows the distribution of error ||u — u”||3 in domain Q2 for two nonconforming
meshes, when different numbers of frequencies are considered. Note that, being that the
color scale is logarithmic, we set the error in the Dirichlet boundaries (which is zero) to
the arbitrary value 10716, In the first two rows, corresponding to the choice Ng =0 (top
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Figure 2.12 — Error distribution on the bifurcation when employing N = 0 (top row),
N® = 2 (middle row) and N’ = 4 (bottom row) and a coarse mesh (left column,
h =9.29-1072) and a fine mesh (right column, h = 3.11 - 1072),
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row) and N9 = 2 (middle row), the error is mostly concentrated around the interfaces
(in particular I'9), and the maximum values reached for the two different mesh sizes
are similar; this effect is caused by the poor approximation of the Lagrange multiplier
spaces. In the bottom row, instead, the maximum values of the error reached in the finer
mesh are significantly smaller than those obtained in the coarser one. Moreover, in the
coarse mesh, the error is not localized in the region of any interface (that is, the FE
error dominates the error in the Lagrange multiplier reconstruction), whereas, in the
finer mesh, the larger errors are still found around I's.

FE-IGA coupling

We now investigate the possibility of coupling different numerical schemes by spectral
Lagrange multipliers. Specifically, we consider IGA for the discretization of €21 and 3,
and the FE method for the discretization of €.

For the sake of conciseness, we do not focus on the details of IGA, and we limit ourselves
to recall the general ideas of the method. The interested reader is referred to, e.g.,
[CHBO09, HCBO5] for a complete overview, and to [BBWW15] for an application of the
mortar method to IGA.

IGA is built upon the isoparametric concept, which prescribes the use of the same basis
functions for the geometry generation and the discretization of the functional spaces
where the solution of the differential problem is sought in. The most common choices for
such basis functions are B-Splines and NURBS (Non-Uniform Rational B-Splines), which
are commonly employed in all modern CAD (Computer-Aided Design) software. In this
work, we solely focus on B-Splines, which are sufficient to represent the bifurcation in
Fig. 2.10. The principal advantages of the approach are: (i) the high global continuity of
the basis functions, which often entails higher accuracy than standard FE basis functions
with an equal polynomial degree (which are only C°- continuous across the edges of the
mesh), and (ii) the exact correspondence of geometry and computational domain, that is,
the method does not require any mesh generation and—consequently—no geometrical
approximation of curved boundaries.

Univariate B-Splines basis functions of order p are generated by means of the Cox-De
Boor recursion formula [DB72] from a knot vector Z = [£1, ..., &nqpr1]; we remark that
we decided to adopt the usual notation & commonly found in the literature to denote
the individual knots, even though we previously associated such letter to the basis
functions of A%, In this paper we consider open knot vectors, i.e., knot vectors such that
&1 = ... =& and {1 = ... = Euapr1. The continuity of the basis functions across
each internal knot &; is determined by its multiplicity, i.e., the continuity of the basis
functions across such point is CP~™i. Multivariate B-Splines are obtained by the tensor
product of two sets of univariate B-Splines. In the following, we will denote {@}fvzblf a set
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Figure 2.13 — Global solution obtained by considering 6 x 12 elements and P3-P2 B-Spines
basis functions in Q1, a FE mesh with size h = 7.16 - 1072 and P2-P1 basis functions in
Q, 5 x 10 elements and P3-P2 B-Splines basis functions in Q3, and N = 5 frequencies
for the discretization of A%. The control points are marked with red dots.

of bivariate basis functions; note that, as the polynomial degrees in the two parametric
dimensions is a priori different, we omit to specify the degree of the bivariate polynomials.
Moreover, we introduce the parametric domain Qe R?, which is the support of the
bivariate functions.

B-Splines surfaces are obtained from bivariate B-Splines by means of their linear combi-
nation with control points {bi}ﬁv:b{, where each b; belongs either to R? or to R? if the
surface is embedded in two or three dimensions respectively (here, we consider the former
case). Therefore, the function

Ny
x(%) =) @i(®)b; : 21— Q (2.22)
=1

defines a mapping—which we assume invertible for all X € Q- from the parametric
space O to the physical space §2. By the isoparametric concept, we define a set of basis
functions on Q as ¢; = @; ox !, for all i = 1,..., Npr. We remark that the resulting
functional space, even if intrinsically linked to the geometry definition, can be enriched
by knot insertion (h-refinement), order elevation (p-refinement) and a combination of
the two techniques (k-refinement) [CHRO7]; such modifications of the knot vectors in the
parametric dimensions do not affect the geometry of the physical domain.

Fig. 2.13 shows as an example the partitioned domain ) with a FE triangulation in Q9
and a subdivision into elements of the physical domains €2 and §23. These are obtained
from mappings of the form (2.22), acting from the parametric domains Q; = Q3 =
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Figure 2.14 — Convergence of the error in 23 with respect to the mesh size h and number
of basis functions on the interface Nf\s. The basis functions in Q3 are P2-P1 B-Splines
(left) and P3-P2 (right).
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Figure 2.15 — Error in §; (left) and Qg (right) with respect to the mesh size h in 3. In
the latter subdomain, we employ P3-P2 B-Splines basis functions.

[0,0,0,0,1,1,1,1] x [0,0,0.5,1,1]. The resulting bivariate space is then composed of
P3/C2 (piecewise cubic with continuity up to the second derivatives) basis functions in
the first direction, and P1/CO (piecewise linear with C%-continuity) basis functions. The
corresponding control points are marked with red dots.

In order to approximate the two components of the velocity and the pressure appearing in
the Navier—Stokes equations, we define functional spaces as presented above. In particular,
in Q7 and Qy we employ Taylor-Hood elements—which, in the context of IGA, have
been analyzed, e.g., in [BDFS11]—of degree p and continuity p — 1 for the pressure and
degree p + 1 and continuity p for the velocity, whereas in 2o we only consider P2-P1
basis functions. A global solution obtained by using P3-P2 basis functions in Q, P2-P1
basis functions in Q9 and P2-P1 basis functions in 23 is shown in Fig. 2.13.
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In this simulation, we test the convergence of the error with respect to the mesh size
of a single subdomain, namely €23. To this end, we fix the number of dofs in €2; and 9
and progressively refine the mesh in 3. In 1, we employ P3-P2 basis functions and
3/200 elements, for a total of 27/390 and 3/655 dofs for the velocity and the pressure
respectively; in Qo we consider P2-P1 FE basis functions on a mesh with 12’448 elements,
which correspond to 50’590 and 12’848 dofs for the velocity and the pressure respectively.
Fig. 2.14 shows the convergence of the error with respect to the mesh size in €3, for
various levels of discretization of the space A%, when P2-P1 (on the left) and P3-P2 (on
the right) Taylor-Hood basis functions are employed. The error is computed with respect
to the fine FE solution obtained with P3-P2 basis functions we already considered in
Section 2.6.3. The results are consistent with what was found in the previous sections,
and in both cases, we are able to recover the optimal convergence of IGA (quadratic on
the left, cubic on the right). Fig. 2.15 shows the behavior of the error in the first two
subdomains when P3-P2 basis functions are employed in {23 on a mesh with varying size.
These results show that the accuracy of the stress reconstruction at the interfaces has a
strong impact on the accuracy of the solution in € and 2. Smaller meshes sizes in (23
along with a good approximation of the Lagrange multipliers, indeed, lead to smaller
errors in the two subdomains even if the number of dofs of the respective local solutions
remains constant.

2.7 A time-dependent fluid-structure interaction benchmark

When deriving the fluid-structure interaction problem presented in Section 1.6, we
assumed the fluid velocity-structure displacement continuity and the equilibrium of
the stresses at the fluid-structure interface. These two conditions are equivalent to the
ones that are imposed in the primal hybrid formulations of the problems presented in
this chapter, with the sole difference being that in all the cases presented so far, the
underlying physical model (i.e., the PDE) was the same in all subdomains. Therefore, it
is natural to investigate the possibility of employing an approach based on spectral basis
functions defined on the fluid-structure interface for the numerical approximation of the

fluid-structure interaction problem.

Let us look at a slight modification of a classic fluid-structure interaction benchmark
which has originally been proposed in [Nob01]. The same problem has been considered
in [CDFQ11, DDFQ06, WC14, For16]. The geometry consists of a cylinder of length
L = 5cm and radius R;, = 0.5 cm; the curved portion of the surface is extruded in the
perpendicular direction to reach the outer radius Royt = 0.6 cm. The internal cylinder
constitutes the fluid domain ﬁf, whereas the external layer represents the structure domain
Qs (the described configuration is the reference one for both subdomains). A sketch of
the problem geometry is depicted in Fig. 2.16. The fluid and structure properties are:

pr = 1.0g/em®, pur = 0.03g/(cm s), ps = 1.2g/cm®, v = 0.3 and Es = 3 - 106 dyne/cm?.
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Figure 2.16 — Sketch of the fluid (inner cylinder) and structure (outer layer) domains.

As for the boundary conditions, we proceed as follows. We impose a normal stress

nT(afn) = —% (1 — cos(wt)) Prax, w= 2;, Py = 1.33-10% dyne/ch,
for t <t =3-10"3s and n”(ofn) = 0 for t > t at the fluid inlet, whereas on the opposite
face we set homogeneous Neumann boundary conditions. We remark that the boundary
conditions are the only change we adopt with respect to the original benchmark (in which
the stress at the inlet is constant and equal to Py for ¢ < ~) The structure is clamped
(i.e., the displacement is set to zero) at the inlet and outlet; homogeneous Neumann
boundary conditions are imposed on the curved outer boundary of the structure. We

consider the time interval (0s,7 = 1.6 - 1072s) and the timestep At =2-10"*s.

On the fluid-structure interface, we set the kinematic and dynamic conditions introduced
in Section 1.6. These are enforced by means of spectral basis functions defined on the
fluid-structure interface T in the reference configuration. In order to provide the analytical
representation of such functions, we introduce the system of cylindric coordinates shown in
Fig. 2.16 and we denote by z and 6 the variables in the longitudinal and angular directions,
respectively. The basis functions for the Lagrange multiplier spaces are obtained as tensor
product of two sets of basis functions taking values over the two cylindrical coordinates,

i.e.,
&:(2,0) =€ (2)€,4(0), i=1,...,N).,j=1,...,N3,.

Although the two sets of basis functions é\f . and Ef g may be chosen independently, we
consider definition (2.17) for both. We recall that, due to (2.17), we have ijz =2NJ +1
and N /‘\5,9 = 2N£79 + 1, where Ng’z and Ngﬂ are the considered frequencies in the two
directions. Owing to the axial symmetry of the problem, moreover, we fix Nf)ﬁ =1,
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Figure 2.17 — Velocity solution of the fluid velocity on the deformed domain (displacement
is magnified by 10 times) at t = 4 - 1073 s and detail of the computational mesh. The
global mesh is conforming.

namely we consider only the constant function and a single frequency for sin and cos in
the angular direction. This is sufficient, because the problem is axisymmetric: therefore,
the stress of the solution is constant over each circular section of the geometry and
directed as the normal to the surface. We are interested in assessing the effects of the
number of frequencies ij’z employed in the longitudinal direction on the convergence of
the solution. As noted in Remark 2.6, when dealing with the Navier—Stokes equations it
is necessary to discretize each component of the normal part of the stress. Being this
three-dimensional, the total set of basis functions for the Lagrange multiplier space has
therefore dimensionality

3NY = 3N N{, =3 (sz,yz + 1) (2Ngjﬂ + 1) —9 <2N£7Z + 1) .

We consider a conforming mesh and we discretize the Navier—Stokes equations by means
of P1-P1 elements with VMS-SUPG stabilization, whereas the structure displacement is
found as combination of piecewise linear polynomials. This approach leads to 326’850
dofs for the velocity, 108’950 dofs for the pressure, 244’146 dofs for the displacement and
326’850 dofs for the fluid displacement (which, we recall, is found as harmonic extension
of the structure displacement inside the fluid domain). Choosing a conforming mesh
allows us to consider a reference solution obtained by identifying the dofs of fluid velocity
with those of the first derivative of the structure displacement at the interface T. From
the theoretical standpoint, this is equivalent to discretize the Lagrange multiplier space
with the P1 FE basis functions defined over the nodes of the fluid-structure interface
L. Hence, the discrete Lagrange multiplier in the reference solution features 74’256 dofs,
namely the number of mesh nodes on L.

Fig. 2.18 depicts the pressure distribution in the fluid domain at ¢t = 4 x 10735, t =
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I -3.0e+03

Figure 2.18 — Pressure wave in the fluid domain at three timesteps and for different
discretization choices of the Lagrange multiplier space on the fluid-structure interface.
The deformation of the domain is amplified by 10 times for demonstration purposes.

A S

t=1-10"2s

6 x 1073s and t = 1 x 10725 for different numbers of frequencies in the longitudinal
direction Niz and for the reference solution. The pressure wave along with the expansion
of the fluid domain move from the inlet to the outlet regardless of the discretization of
the Lagrange multiplier space. A similar analysis is offered in Fig.2.19, in which velocity
magnitude and pressure are plotted as functions of the longitudinal coordinate. Results
close to the reference ones are obtained for ij’z = 9 but in the face of a much smaller
number of total dofs (171) for the Lagrange multiplier.

Owing to the technical difficulties related to computing errors on ¢ and €2 (which are
deformable and therefore change in time), we simplify the analysis of the convergence of
the solutions obtained with our method to the reference one by looking at the global
L? norms of the quantities of interest. These are shown in function of time in Fig. 2.20.
We observe that—as already pointed out in the discussion over the results presented
=9,
whereas considering a more limited number of frequencies in the longitudinal direction

in Fig. 2.19—a good agreement with the reference solution is obtained for N2 =
leads to considerably less accurate approximations. Moreover, we observe for particularly
small sizes of the Lagrange multiplier space (NfJ’Z = 1) the discrete solution is unstable
and the norms of velocity, pressure and structure displacement keep growing in time
until the solver is unable to converge.
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Figure 2.19 — Velocity magnitude and pressure along the centerline of the fluid domain.
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Figure 2.20 — L? norms of velocity, pressure and displacement for different degrees of
sizes of the Lagrange multiplier space on the interface.
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2.8 Concluding remarks

We presented a nonconforming method for the coupling of PDEs defined on domains
partitioned into nonoverlapping subdomains. At the continuous level, our method and
the mortar method are based on the same weak formulations in which the continuity
constraints over the primal (the solution) and the dual (the stress) variables are enforced
via Lagrange multipliers. As we described in this chapter, our choice of discretizing
the space of Lagrange multipliers independently of the spatial discretization in the
subdomains offers the advantage of a straightforward implementation of the method and
the possibility of tuning the accuracy of the coupling as required by the application;
we limited ourselves to considering Fourier basis functions defined over the interface.
However, the saddle-point nature of the problem poses constraints over the richness of the
discretized space for the Lagrange multipliers compared to the dofs of the primal variable:
we empirically verified that the inf-sup constant can be controlled dependently on the
mesh size, in the sense that finer meshes allow us to consider a larger number of Fourier
basis functions, without violating the inf-sup stability. In the numerical experiments, we
showed that the optimal convergence of the FE method was recovered for the Poisson
problem; this was confirmed both when using conforming and nonconforming meshes,
and when using different polynomial degrees in the subdomains. We also verified that the
error obtained when employing a sufficiently rich basis for the Lagrange multiplier spaces
is equal to that obtained considering a global conforming mesh with comparable size (see
Figure 2.5). Since this represents a lower bound for the error of the mortar method as
well, it can be said that—with an appropriate choice of basis functions for the Lagrange
multiplier space—our method performs at least as well as the mortar method in terms of
accuracy. We showed that the method can be easily extended to the case of nonelliptic
equations, such as the Navier—Stokes equations, and to cases in which multiple partitions
of the domain are discretized with different numerical methods, namely the FE method
and IGA. In these numerical simulations were also able to retain optimal convergence
rates by choosing an appropriate number of basis functions for the approximation of
the Lagrange multiplier space. Lastly, we drew a parallel between the primal hybrid
formulation for coupled problems and the fluid-structure interaction problem introduced
in Chapter 1. By performing the coupling of fluid velocity and structure displacement by
means of spectral basis functions, we showed that it is possible to obtain accurate results
on a classical benchmark by considering a small space of Lagrange multipliers.

We believe that some aspects of our coupling strategy need further work. For example,
the choice of basis functions at the interface N /‘\s is, for the moment, based on a trial
and error approach, and the optimal one could be guided by a priori estimates on the
approximation error that still need to be developed. Furthermore, an efficient way to
estimate the inf-sup stability constant without the need to solve any expensive eigenvalue
problems would significantly increase the applicability of the method to realistic scenarios.
A current limitation of the method is that, despite it being easy to implement when the
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interface has an analytical description, it becomes more involved in case of arbitrary
interfaces, as in fluid-structure problems defined in vascular vessels.
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8] FElements of the Reduced Basis

method

This chapter provides an introduction to the Reduced Basis (RB) method with a particular
focus on the topics that are of importance to the subsequent chapters. In particular, in
Section 3.1 we start by motivating the need for Model Order Reduction (MOR) and
discussing the ideas at the root of the RB method. This is formalized in Section 3.2, where
we introduce the concepts of offline and online phases; this section expands upon the
concepts presented in the introduction to the RB method in [PPMD20]. In Section 3.3,
we briefly touch on the challenges characterizing the application of the RB method to
parametrized domains and, specifically, the need to retain the divergence-free property
whenever required (e.g., when treating the velocity field in the Stokes or Navier—Stokes
equations). Section 3.4 deals with the issues related to the solvability of the reduced
system in the particular case of saddle-point problems. Finally, in Section 3.5 we consider
a numerical example that makes use of all the concepts presented throughout the chapter
and that is also strictly related to the MOR framework presented in Chapter 4.

3.1 DMotivation

In previous chapters, we described how the numerical solution of PDEs by classical
discretization methods entails transforming the weak formulation of the problem into a
finite-dimensional one. In the FE method, for example, this is achieved by performing
the Galerkin projection of the continuous formulation onto the space spanned by the FE
basis functions defined over a triangulation of the domain. In this case, the convergence
of the numerical solution to the exact one is mainly determined by the polynomial degree
of the basis functions and the maximum mesh size across the mesh elements. Varying
either of these two characteristics to improve accuracy is associated with an increase in
the number of dofs and the condition number of the corresponding linear system. For this
reason, accurate approximations are often computationally expensive. In some contexts,
however, one might be interested in solving a particular PDE multiple times for a variety
of values of some underlying geometrical or physical parameters, and the costs linked to
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the solution of a single high-fidelity simulation might be too high. In these multi-query
scenarios, therefore, surrogate models—less accurate but considerably more efficient than
the high-fidelity ones—are an attractive choice. Such simplified models are often obtained
through MOR techniques that aim at decreasing the number of dofs.

The RB method is a MOR strategy which deals with the particular case of parametrized
PDEs. The main idea is the following. Given a specific parametrized PDE, it is reasonable
to assume that two solutions obtained with a similar choice of parameters will be “close”
to each other (in some suitable norm). As an example, let us consider the case in which
we are interested in finding the temperature distribution in a room where the physical
properties of the air (e.g., its diffusivity) are parameterized. Two slightly different air
compositions are unlikely to give rise to drastically different evolutions of the temperature
in the room, provided that the prescribed boundary conditions are the same in both
scenarios. Given a specific choice of air parameters, the solutions for values of the
parameters in its vicinity could be then obtained as a modification of the corresponding
temperature distribution. Taking this idea further, one might also imagine that, even
when two very different types of air are considered, the temperature distributions share
many characteristics in common (for one, the boundary conditions need to be satisfied in
both cases). These observations suggest that any admissible temperature distribution in
the room might be effectively described, instead of as the set of temperature values in
every point of the room, as the composition of a small number of characteristic modes
encoding the essential features of the problem. As we shall see in the next section, these
ideas are indeed the basis of the RB method.

3.2 The Reduced Basis method in a nutshell

In this section, we provide a non-comprehensive introduction to the RB method, which is
only intended to set the theoretical basis for the remainder of the thesis. For a complete
overview, we refer the reader to [QMN15, HRS16].

Let us consider an open and bounded domain €2 and a steady differential problem of the
form

L(u;p) =9 (p), (3.1)

where v € V (V being a suitable functional space) is the solution, p € D C RN is a
vector of geometrical and/or physical parameters, .Z is a generic differential operator, and
¢ is a functional encoding the data of the problem, such as forcing term and boundary
conditions. In this section we assume that .# is an elliptic operator.

As already mentioned, the standard approach to solve Eq. (3.1) by a Galerkin method
corresponds to transforming the continuous problem into a finite dimensional one,
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Figure 3.1 — Illustration of the RB method in the case N, = 1. Image inspired by
[QMN15].

often referred to as Full Order Model (FOM). With respect to the model problem
h
in Eq. (3.1), this translates to u" = Zfil ull where o € YV C V are FE basis

h = [u?, e ,u}]i/h]T is typically called vector of degrees of freedom. Assuming

functions; u
that the differential operator .Z can be mathematically described in the weak sense
by a bilinear form as £(¢,), for ¢ € V and ¢ € V, we identify the matrix L"(u);; =
U}, ol p) € RV

the linear differential operator £ (u;n) = —nAu, describing a Poisson equation with

, and similarly Qh(ﬁ)i = [ (n)h € RM". For example, for

parameter 7, we have K(gog?,(pzh;n) = Jq nch? : chzh. The resulting linear system of
dimension N* x N

LM (pu" = G"(p) (3:2)

is possibly very large and expensive to solve. The main idea of the RB method is to
construct a low dimensional basis for the solution u out of a number of solutions Ny
(snapshots) of the FOM, which are computed during the so-called offline phase. In the
online phase, the reduced solution is obtained as a linear combination of the RB functions;
system (3.2) is casted in the form of a small linear system where the unknowns represent
the coefficients of such a linear combination. In the remainder of this section, we address
the offline and online phases more in depth.

3.2.1 The offline phase: basis construction

The goal of the offline phase is to construct a set of RB functions {gl }N | suitable to
approximate the (potentially nonlinear) manifold M" = {u"(pn) : p € D} over which
the solution u” (p) resides. The RB functions depend on a set of snapshots g’f, e g’}vs,
which are obtained by solving the FOM for values of the parameters By By sampled
in D. The manifold MY in which the reduced solution is sought for in the online phase
is included in the set of linear combinations of such basis functions, i.e., MY c VN =
span{gh, .. ,g}]lv} For demonstration purposes, in Fig. 3.1 we show a case in which
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N, = 1. In this scenario, the nonlinear manifold .# h is described as a curve within V*
which is not contained into a plane. The RB functions gf generate the hyperplane VN
which contains the reduced manifold M* (blue line in the figure).

There exist two main strategies for the construction of the RB functions: greedy algorithms
and the Proper Orthogonal Decomposition (POD) method.

Greedy algorithms

We briefly summarize the main concepts which set the basis for greedy algorithms
in the context of the RB method. For a more complete overview, we refer to, e.g.,
[BCD*11, HSZ14].

The term greedy algorithm has been originally introduced in [Edm71]. Traditionally,
by this name we denote iterative procedures in which we aim at minimizing a certain
optimality criterion by enriching the solution set of an optimization problem with new
elements (one in each iteration of the procedure). When dealing with the task of generating
the set of RB functions, each step of a greedy algorithm adds a new basis function to
the set such that a certain a posteriori error estimate is minimized. In particular, let us

suppose that at iteration & we have constructed a basis {¢ hoo., QZ } for V&) € Y from
the orthonormalization of a set of snapshots gh(ﬁl) =uf, ... ,gh(ﬁk) = ul'. We can also

identify this basis with the matrix

v =[¢h g

Then, basis V#+1 is computed by orthonormalization of {¢ ;L, .. ,72 ,u” (Hk +1)}' Param-

eter p, is found through the solution of the optimization problem

;= argmax lu” (1) = VEUN ()| xn, (3.3)
pe

h h . . 3
where X" € RV"*N" i5 a suitable norm matrix and u™¥(

Section 3.2.2.

p) is computed as explained in

From the discussion so far, it is evident that greedy algorithms lead to an efficient
offline phase, in the sense that they allow to minimize the number N, of FE solutions
(snapshots) to be computed (compared, as we shall see in the following section, to a
POD approach, which is based on the assumption that Ny > N). A major drawback of
greedy algorithms is that they are based on the a posteriori estimate of the projection
error (3.3). This is problematic for two main reasons: (i) the maximization is performed
over the whole set of parameters D, and (ii) the evaluation of the error requires the
computation of the high-fidelity solution u”(u). While the former shortcoming can be

circumvented by sampling a large enough number of parameters in D, this still requires
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Algorithm 3.1 POD. Given the snapshots matrix S, the algorithm returns matrix V'
which is composed of orthonormal POD modes.
Input: Snapshot matrix S = [uf|...|u} ] € RN"*N: POD tolerance &
Output: Orthonormal basis V € RY XN
1: if Ny < N" then
2: Compute C = STS

3: Solve the eigenvalue problem C, = Ufgi fore=1,...,N;
1
4 Set ¢h=—8¢ fori=1,...,N,
=1 0—1 —1
5: else
6: Compute K = SST
7 Solve the eigenvalue problem Kgl = ogg? fori=1,...,Ng
8: Find N as the smallest integer such that Eq. (3.4) is satisfied
9: Set N = N and form the basis V' := [g” e |£};V]

multiple evaluations of the FOM unless an inexpensive surrogate of the a posteriori error
estimate is available. Therefore, greedy algorithms are sometimes too expensive and
impractical, especially for realistic applications.

The Proper Orthogonal Decomposition method

In light of the limitations of greedy algorithms, in this thesis we opt for the POD method,
which requires a larger number of snapshots N but is in turn more general. We refer, e.g.,
to [KVO01, RP03] and [KV02] for applications of POD to parabolic and fluid problems,
respectively, and to [RP03] for [KVO01] for a comprehensive study of the properties of
POD when applied to the solution of Ordinary Differential Equations (ODEs). In the
context of cardiac simulations, this technique has been successfully employed both in fluid
(e.g., in [BFTT16] to simulate blood flow in patient-specific coronary artery bypass grafts)
and structural simulations (e.g., in [PCVL*20], where POD is used to reduce the space
of admissible displacements of the heart muscle). In the POD approach, the reduced
basis is usually constructed by singular value decomposition (SVD) [GVL12, TBI97] out
of the set of snapshots, which are obtained by sampling N, parameters @ ,..., p N, in D
and by solving the corresponding FOM. Formally, we arrange the snapshots in matrix

form as S = [u}|...[u} ] € RN"*Ns and we seek matrices U = [g’ll\ . |§§LV ] € RN"*Ns
Y e RVs*Ns and Z € RNs*Ns guch that S = UXZT; the columns of U and Z are
orthonormal and ¥ is diagonal. In the context of POD, gl‘, e ,gLV are often called

modes or POD modes. We remark that in classic SVD the matrices U and 3 are of size
N x N" and N* x N,, respectively; here we consider the “economic” version of the
algorithm. Matrix ¥ takes the form ¥ = diag(o1,...,on,) and its diagonal is composed of
the singular values of matrix S ordered from largest to smallest, i.e., o1 > ... > on, > 0.
Let us define V := [g’f\ . \gfv} € RN"*N a5 the matrix composed of the first N modes
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and let us recall that, given a matrix W = |[wy|...|wy] € RV "N whose columns are
orthonormal, the projection of a generic vector x € RN" onto span{w;|...|wy} is given
by IIyyx = WW Tx. Then, the following proposition holds.

Proposition 3.1. Let ¥x = {W € RN"N Ty = I}, which can be interpreted as
the set of all matrices composed of N -dimensional collections of orthonormal vectors in
R". Then,

NS Ns NS
h T, b2 . h T, hy2 2

ZHHZ —VV iy ||2:M1;nl}1 ZH!z - WW i3 = Z 0;-

‘ €N “ .

=1 =1 i=N+1
We refer to [QMN15] for a proof of Proposition 3.1. In other words, V' is the N-dimensional
basis minimizing the projection error of the snapshots over its column space; moreover,
such error is strictly related to the magnitude of the singular values on41,...0n,. Thus,
a common heuristic to choose N is to set it equal to the smallest integer NV such that

where ¢ is a user-provided tolerance. The left-hand side of Eq. (3.4) is the relative
information content of the POD basis, namely the percentage of energy of the snapshots
retained by the first N modes. The size of the reduced basis N selected by following
criterion (3.4) is typically much smaller than the size of the FOM N", ie., N < N". A
strategy for POD based on the correlation matrices C' = STS € RN*N and K = SST ¢

RN"XN" g reported in Algorithm 3.1.

Remark 3.1. Given a symmetric positive definite matrix X* which is a norm matrix
for || - ||y in the FE space, i.e., |[ully = (u®)TX"u", it is possible to perform the POD
such that the basis U is orthonormal with respect to X" (i.e., UT XU = I). In order
to achieve this, we observe that, since X" is symmetric positive definite, it admits a
Cholesky decomposition X* = HTH, H being upper triangular. Matrix U is then found
as U = H_lﬁ, where U is computed by SVD of HS = USZ"T. When constructing the
reduced basis for fluid simulations, following this approach allows us to achieve the
optimality expressed in Proposition 3.1 with respect to norms more suited to the specific
variables of interest (namely, H' norm for the velocity and L? norm for the pressure).

Remark 3.2. The POD approach presented in Algorithm 3.1, which is based on the
correlation matrices C' and K, suffers from the defect that it requires multiplying the
snapshot matrix by itself. From the numerical point of view, this can lead to round-off
errors affecting the accuracy of the smallest singular values. As an example, in Fig. 3.2
we study the singular values of matrix A = UTdiag(exp(—[1,...,M]/2))V € RV*M
where U € RM*N and V € RM*M are random unitary matrices, when N = 1000 and
M = 41. The comparison between the singular values o; computed with the svd function
in MATLAB, the ones deriving from the correlation matrix approach and the exact ones
highlights that loss of accuracy does indeed occur for small ;. From the perspective of
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Figure 3.2 — Comparison of singular values computed with the svd method in MATLAB
and with the correlation matrix approach presented in Algorithm 3.1.

Algorithm 3.1, this might be problematic because the resulting basis is not orthonormal.
A better approximation of the smallest singular values can be obtained, for example, by
resorting to the thin singular value decomposition [GVLI12].

3.2.2 The online phase: solution of the reduced problem

Let us observe that it is legitimate to associate with each POD mode a corresponding
h

functional representation jh = Z@]\L (€ ?)Zapf The RB approximation consequently reads

ulV = Zf\il ulN ¢ uV = (W, .. ul]T being the vector of reduced dofs. Then, evaluating

the weak formulation of problem (3.1) at test and trial functions in span{¢?}}¥,, we find

the reduced linear system
LN (pu" =GN (), (3.5)

where LY (p);; = £ J’-L,Cih) € RVN and GY(p); = Jo 9 ()¢ € RY. The assembly
and solution of system (3.5) correspond to the online phase. The transformation of the
reduced vector of dofs into its FE counterpart is simply performed by u®* ~ Vu®¥ € RN "

By exploiting the expansion C]h = Zf\:l (gl)lcpf it is easy to find that LY (u) = VT LM (p)V
and GV (p) = VTG"(p). Therefore, the assembly of the reduced system can be done by
constructing the full order matrix and right-hand side and by computing their projection
onto the RB space. If the problem features an affine decomposition, namely there exist
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Chapter 3. Elements of the Reduced Basis method

parameter-dependent coefficents HqL forg=1,...,Q and qu forg=1,...,Q¢q such that
QL Qc

M =D 07wy, G"(w) =) 0 (mGy, (36)
q=1 q=1

a considerable speedup is achieved by precomputing the matrices Lév = VTLZV and
the vectors Qév = VTQZ in the offline phase, and by assembling the reduced elements of
system (3.5) as

QL Qa
L¥(p) =S 0kLY,  GN(u) =) 08 (wGY.
q=1 q=1

3.2.3 On the efficiency of the online phase: the Discrete Empirical
Interpolation Method

Unfortunately, in most practical scenarios an affine decomposition of the form (3.6)
is not readily available. In such cases, a common strategy to efficiently perform the
assembly of system (3.5) employs the (Discrete) Empirical Interpolation Method (DEIM)
[BMNPO04, CS10] and its matrix variant MDEIM [NMA15]. The former is a procedure to
approximate a general parametric multidimensional function f(u) which we assume for
the time being to be defined in D and to take values in R". Specifically, given several
realizations of the function f,, ..., f,, for different values of the parameter B by, 8
suitable basis for its approximation, represented in matrix form as ¥ = [gll o Nf]’ is
generated by POD. Given a new parameter value g, the corresponding function evaluation
is then found as

Ny
f(R)~ ) 0] (R, = V6! (n).
j=1

The coefficients of the expansion onto the basis 67 (m) = [9{ (),..., H{Vf (p)]" € RYf are
found by solving an interpolation problem in a selected number of components of f(z). In
particular, the interpolation problem reads f7 () = U767 (i), where subscript Z denotes
the restriction of the rows to a predefined set of indices, and the evaluation of f at u is
approximated as f(u) ~ VW 1£I(E)' The choice of interpolation indices Z clearly plays
a crucial role in the accuracy of the approximation. In DEIM, these indices are chosen
iteratively. Given the indices at iteration k, which we denote Z (k). the new index added
to the set is the one corresponding to the largest component in the residual vector

b=, — o (\yg‘é?@))_l (%)N) ,
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3.2. The Reduced Basis method in a nutshell

Algorithm 3.2 DEIM. The argmax operator applied to a vector returns the index of
its largest component.
Input: Function evaluations F' = [f;|...|f;,] € RN"*M POD tolerance &
Output: Orthonormal basis ¥ € RN Ny
1: Compute ¥ = [¢ |... |£Nf] from POD of F with tolerance €

2: Set ¢ = argmax ‘Ql‘
3: Zfzr{i}
4:f0rk7::2...AG’dO

-1
5: Compute the residual r;, =1, — g (k) (W%%) (¥, )z
6: Set i = argmax |r|
7 I=71Uq

where W) is the basis matrix restricted to the first & columns. The DEIM procedure is
summarized in Algorithm 3.2.

The adaptation of DEIM to matrices (MDEIM) deals with the approximation of functions
F(p), which we again assume for simplicity to be defined in D and to take values in
RN"XN" From the practical point of view, the only difference between DEIM and MDEIM
is the fact that, in the latter, matrices need to be vectorized before processing. This
obviously makes the process resource consuming, as the basis for F'(p) is of dimension

(Nhy2.

It is worthwhile to discuss what DEIM and MDEIM entail from the practical point of view
in the context of the approximation of structures requiring the assembly of elements onto
FE meshes. Let us assume that matrix L"(p) and vector G" () appearing in Eq. (3.2)
do not admit an affine decomposition of the form (3.6). By resorting to (M)DEIM, we
are able to recover the approximated affine decompositions

ML MG
w~Y ekt 6w~y 65wk, (3.7)
q=1 qg=1

In this case, Lg are defined as L;‘ = mat(gj ) (i.e., the matrix version of the ¢'® MDEIM
basis function for L") and Gh = wG Given a new value of parameter u, coefficients

@L( ) and @G( ) are the components with index ¢ of vectors

O (w) = Wyvee (L'(w) . ©%(w) = 95 (G'(w))__ .

TL
Here, U1 = [ | hp ] € RVZPxME 5nq gl — [¥] g .. \1/) o) € RV"MC 1 order
to find @ (p) and @G( ), it is required to evaluate Lh( p) and G"(p) at dim(Z1) and
dim(Z%) components, respectively. Every entry of a FE vector or matrix, however,
corresponds to the evaluation of an integral defined over the support of the FE basis
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Chapter 3. Elements of the Reduced Basis method

functions. The definition of a reduced mesh—i.e., a mesh comprising the set of elements
which are required for the application of the algorithms—is a necessary step to ensure
efficiency.

We remark that the need to assembly the FE structures at certain locations is a charac-
teristic that makes the use of affine composition (3.7) considerably more cumbersome
than that in Eq. (3.6). As a matter of fact, the evaluation of 6% (p) and GqG(E) does not
require, in general, the knowledge of the mesh elements and connectivity, which implies
that these do not need to be loaded in memory at the beginning of the RB simulation.

3.3 The Reduced Basis method in parametrized domains

In some applications, it is useful to consider domains in which some geometrical features
are parametrized. The typical approach obtains the physical domain as a parametrized
geometrical deformation of a predetermined reference domain. For example, in [LR10] the
authors propose an algorithm based on free-form deformation for the shape optimization
of airfoils, and in [MQR12] the same technique is applied to a two-dimensional bypass.
In [HU18], the authors consider geometrical parametrizations based on reference con-
figurations to study the properties of a recently developed strategy to MOR combining
the RB method with Neural Networks. An approach that does not involve the definition
of a reference domain and that is rooted in the RB method combined with the shifted
boundary method [MS18] has been proposed in [KSN*19]. We refer to [DSDMQ19] for
another example of the use of the RB method in parametrized domains.

From a practical point of view, deformable domains are challenging for many reasons.
Here, we focus on two in particular, which are relevant for the applications presented
in this thesis: (i) the lack of an affine-decomposition in most practical cases, and (ii)
the need to treat with particular care divergence-free fields (which are a feature of the
solutions to Stokes and Navier—Stokes equations, for instance).

Regarding the first point, we note that an affine-decomposition is available only in
particular and simple cases (as an example, we refer the reader to, e.g., the backward-
facing step channel presented in [QMN15, Negl15]). In general applications, (M)DEIM
represents a viable strategy to approximate such affine-decompositions. Depending on the
range of admissible geometrical parameters and on the specifics of the problem at hand,
however, the computational burden associated with this approach may be considerably
high. Moreover, the number of affine terms tends to increase with the complexity of the
geometrical parametrization rapidly.

The treatment of divergence-free fields can be performed with the Piola transformation,
which is the topic of the next section.
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Deformed domain Q(p

Reference domain ! . .
_ = = —
E\‘ VP] -

Figure 3.3 — Effect of the Piola transformation. The vector field defined on the reference
domain €2 is mapped without scaling on top and with scaling by the Piola transformation
on the bottom.
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3.3.1 The Piola transformation

Let us consider a reference domain €2 and a vector field v € H(div; Q) such that Vg-v = 0.
We introduce a transformation ® which, for the purposes of this chapter, is parametrized
with respect to p € D, and which maps Q into the physical configuration €2 = @(ﬁ;g).
In general, the mapped vector field v = ¥ o ®~! does not preserve the divergence-free
property in the reference domain, i.e., Vx - v # 0. Moreover, when applied to fluids in
pipes—which is clearly a common scenario in cardiovascular simulation—such trivial
mapping leads to loss of physically relevant features. For instance, in Fig. 3.3, the
streamlines of the vector field on the top right stay parallel to the ones in the reference
domain and therefore do not account for the narrowing of the pipe.

To overcome these issues, let us consider the following definition, cf. [QMN15].

Definition 3.1. Let ® : O — Q and (Jo (X))ij = 0P;/0x; be its Jacobian matriz. Then,
given a field v € L*(Q)), the Piola transformation is defined as

1

TG e RV (3.8)

vp(x) =

The following theorem, which can be found, e.g., in [BBF13], motivates the use of the
Piola transformation in the context of the preservation of the divergence-free property.
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Chapter 3. Elements of the Reduced Basis method

Theorem 3.1. Let vp be defined as in Eq. (3.8). Then, there holds

- BRBE)(sR)
Jop(x) = ’JQ(Q)‘Jé( )J5(X) (Jo (X)), (3.9)

where Jy, and J are the Jacobians of vp and V respectively, and

1 ~n
Vx - vp(x) = mV§ V(). (3.10)

Proof. Eq.(3.9) can be proven by the chain rule, see [BBF13]. Eq. (3.10) immediately
follows by considering the trace of both sides of Eq. (3.9) and by remembering that the
trace of matrices is invariant with respect to a change of variables. O

The reader is referred, e.g., to [BBF13, TR77, Cia88|] for other properties of the Piola
transformation.

Eq. (3.10) demonstrates that, upon treatment by the Piola transformation, it is possible
to preserve the divergence-free property in the deformed domain. Additionally, the
transformed vector field vp(x) preserves the flow features which are otherwise lost. In
Fig. 3.3 (bottom right), we show how the flow direction is affected when applying Eq. (3.8).
The qualitative behavior of the flow is, in this case, what is reasonable to expect when
the fluid encounters a narrowing of the pipe.

3.4 Supremizers enrichment for saddle-point problems

The numerical approximation of saddle-point problems is a delicate matter. As discussed in
Section 1.4, the inf-sup condition is peculiar to these family of problems and, intuitively, it
requires that the space linked to the Lagrange multiplier—e.g., the pressure in the Navier—
Stokes equations—is sufficiently small compared to the one in which the primal variable
resides. In the case of the FE method, this amounts to choose the discretization spaces
appropriately: for instance, Taylor-Hood elements [HT74] satisfy the inf-sup condition
in the (Navier)-Stokes equations. Unfortunately, even if the high-fidelity problem is
well-posed, the reduced one is not guaranteed to satisfy the necessary stability conditions.
Among the ways to deal with the loss of stability in the reduced system are the use of
least squares Petrov—Galerkin approaches for the solution of the minimization problem
associated with the nonlinear residual of the reduced equations [CBA17, DSDMQ19] and
the supremizers enrichment [Roz05, BMQR15, DSM18]. In this section, we present the
latter approach.

Let us consider the generic form of a discretized saddle-point problem (1.17). We recall
that, in the discrete setting, one requirement for its well-posedness is the existence of
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" > 0 such that

ho h
inf sup M > ph. (3.11)
g eQM\{0} yreym (o} [[V"[lynlla" | gn

We now introduce the reduced version of Eq. (1.17). By following a Galerkin approach,
we obtain: find v € V¥V and pN e OV such that

a(u™, o)+ 0N, pV) = (M 0N) N e VN,
b(u™,q") = (g",¢") V¢ e QF,
and the corresponding inf-sup condition is based on the existence of S > 0 such that

b(UquN) > N

inf sup
gV eOM\{0} yN ey fo3 [V [[ow [lgN [[gn

As already mentioned, the existence of 8" is not sufficient to that of 3V, because the
supremum is taken over a smaller set.

One key observation to the supremizers enrichment approach applied to the RB method
is that the latter is rooted in the premise that the RB spaces V¥ and QY are small.
Therefore, given that there exists only a limited number of basis functions for Q% it is
reasonably inexpensive to add for each of these functions the corresponding function in
VN (the supremizer) which realizes the supremum in Eq. (3.11).

Formally, let n{l, ce ,n]}([p be the basis functions for Q¥ i.e., QN = span{n? lN:Pl. Our goal

is to find s? eVhfori=1,... , N}, such that

b(w™, nl")

h )

s; = argsup ~ =
vNeVN\{0} [|v HVN||77¢ HQN

By introducing the vectors of dofs Q? € RV and §Z}-L e RM: , this becomes

h\T Bhyh h\T Bhyh
(2;) 5y = argsup L (3.12)

w0 TR [ X e VXY

where the last equality holds true because the suprememum does not depend on the
norm of n'. In Eq. (3.12), B" € RN *Nid is the matrix discretizing the bilinear form
b(-,-) (e.g., the divergence matrix D" in the case of the Navier-Stokes equations) and X/
and XZ} are norm matrices such that ||vh|]%;h = (v\)TXIv" and ||qh||2Qh = (gh)TXé’gh for
every v" € VP and ¢ € QF, respectively. It is easy to see (Proposition 1 in [BMQR15])
that the vector achieving the supremum in Eq. (3.12) is

sl = argsup

Xlsh = (B")Tqn. (3.13)

w24 i
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Chapter 3. Elements of the Reduced Basis method

Algorithm 3.3 Supremizers enrichment. The ortho operator performs the orthonormal-
ization either via POD or Gram-Schmidt procedure.

~ ~h ~h
Input: Basis matrices V,, = [gl\ .. \QN | € RNe*Nu and
Vo= [ﬁﬁ . @?\,p] € RN2 Mo matrices B" and X

Output: Enriched basis V| € RNux(NutNp)
1: fori=1,...,N, do
2: Solve X'l = (BMTq"

LY
~ ~h ~h B
3: Set Vif = ortho[¢|]...|C, [81]. .- [S,]

Indeed, by the Cauchy—Schwarz inequality, we find

) B @MTXGSE  ((DVRSTEDYA usn
= = < S ||lo = -
VX (I 2w 2 [[OAREE v '
It can be shown that by considering the augmented basis Vi = [Valsh]. .. \g?vp] €

RN x (Nut-Np) (where V,, = [Q}” e |£§L\/ | is the basis matrix for v computed by POD) the
reduced problem is well-posed.

In the context of parametrized PDEs, this procedure presents difficulties that undermine
the computational advantage deriving from a reduced dimensionality of the search space
for the solution. Indeed, in general, Eq. (3.13) reads X! (p)sl(p) = (Bh(ﬁ))Tﬂ?. In
other words, the constraint matrix D" and the norm matrix X{} might be p-dependent,
and consequently, the supremizer itself would depend on p. Therefore, applying the
supremizers procedure exactly is problematic because it requires solving N;} times
problem (3.13) in the online phase of the algorithm. Another possibility is to consider
an approximate approach. For example, in [BMQR15] the authors propose to solve
problem (3.13) by replacing ﬂ;‘ with the vector of dofs of every snapshot for p and by
evaluating the matrices at the corresponding parameters. The set of supremizers is then
orthonormalized by POD in order to keep the size of basis Vil small.

Here, we consider a different approach. Owing to the fact that we are mostly interested
in geometrical parameters mapping reference domains €2 into their physical configuration
Q(p) (see Section 3.3), we define matrices X" and B" which are defined on (2. Then, the

ith supremizer is found as

Xis! = (BMql, (3.14)

—1

where ﬁ? is the i*" basis function for the dual variable on the reference domain; we
remark that, in this case, the problem is independent of any parameter u. Basis function
~h -
n

;s the " basis function for p in the reference domain.

Remark 3.3. Although Eq. (3.14) is based on the assumption that we are dealing with
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3.5. The steady Stokes equations in a deformable pipe

Figure 3.4 — Magnitude of the velocity field of the steady Stokes equations on the reference
domain Q and on the deformed one Q([u1, u2]). The geometrical parameters are the
outlet diameter p; and the bending angle ps.

geometrical parameters, it is actually applicable to a variety of cases in which other
types of parameters are considered. For example, when considering the Navier—Stokes
equations, the only scenarios which are not suitable to be treated with this approach are
those in which the divergence term depends on some physical parameter. Such cases are
rare: more commonly, one is interested in varying the density and viscosity of the fluid
or other parameters governing the boundary conditions.

Our supremizers enrichment strategy is summarized in Algorithm 3.3.

3.5 The steady Stokes equations in a deformable pipe

With the purpose of illustrating the concepts presented in this chapter, we consider a
simple two-dimensional steady case. This also serves as an introductory example to the
MOR strategy for cardiovascular simulations discussed in Chapter 4. As a matter of fact,
many of the conclusions drawn for this elementary problem can be translated to the
more involved framework that we use in the remainder of the thesis.

Let us introduce a reference domain € = (0,3) x (—0.5,0.5), which represents a two
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Chapter 3. Elements of the Reduced Basis method

dimensional pipe characterized by length L = 3 and diameter D = 1. Moreover, we
consider the deformed configuration Q(u) = @(ﬁ; 1), where the vector of geometrical
parameters g = [p11, 2] is composed of the outlet diameter 1 and the bending angle yo
and, as shown in Fig. 3.4. The transformation ®(-, u) = o1, (-; 12) © @s(+; p1) is written as
composition of two distinct maps which perform the scaling of the outlet (¢s) and the

bending of the pipe (¢y,). In particular, we have

(s(X; 1)1 = 71,
. 11~ ~ (3.15)
(ps(X5p1))2 == |L—(1- Ml/D)Sﬂl] 3,
L
and
(n(X; p2))1 = (r + x2) sin(a), (3.16)

(¢b(X; p2))2 = (1 + 32) cos(a) — 7,

where r = E/,ug and a = ,ugfvl/f. In Fig. 3.4 we show, on the top, the reference domain
2 and on the bottom the deformed one Q([u1, p2]) corresponding to the choice p; = 0.9
and puo = —0.3.

For a given p, we are interested in solving the steady Stokes equations, i.e., finding u
and p which depend on p such that

—pAu+Vp =0 in Q(p
V-u=0 inQ(p

u=g onI'pu),

(1eVu —plin =0 on Tn(p),

where iy = 1 and I'p(p) = Tin(p) UTw () (we refer the reader to Fig. 3.4 for the symbols
regarding the portions of the boundary). The Dirichlet data g is such that we impose a
parabolic profile on I'y, with maximum velocity U = 1 and g = 0 on I',. We restrict the
range of admissible parameters to the intervals p; € [—0.8,1.2] and us € [—0.5,0].

The discretized Stokes equations are obtained by the FE method via a discretization
strategy similar to the one presented in Section 1.2. This leads to the high-fidelity problem

-

where AM(p) € RNu*Ni and Dh(p) € RNy XN are the p-dependent stiffness and
divergence matrices and gh(ﬁ) is a vector encoding the Dirichlet boundary conditions;

'
=
=

) (D))" g"(w)

ol (3.17)

N and NZ} are the number of dofs for velocity and pressure, respectively.

Our strategy to attempt the numerical reduction of Problem (3.17) is based on the
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Figure 3.5 — Decay of the first 40 velocity (left) and pressure (right) singular values.

Table 3.1 — Bases sizes as functions of POD tolerances.

=102 £=10"* £=10° £=10% =107 =108

€
velocity 7 10 14 20 26 32
pressure 4 5 7 10 13 16
stiffness 5 6 9 11 13 14
divergence 4 5 6 6 8 8

RB method. In particular, we solve the high-fidelity model for Ny, = 100 parameters in
D = [-0.8,1.2] x [-0.5,0]; each snapshot parameter Boysoo oy is found at the grid
points obtained by subdividing the intervals for 111 and po in 9 sub-intervals. The snapshots
for velocity and pressure are organized in matrix form as S, = wh|.. . |uk ] e RNuxNs
and §p = [EIH . ’Eﬁt\fs] € RM>*N:_ We remark that both S, and §p are denoted with a
hat notation because the velocity and pressure snapshots are interpreted as functions in
the reference domain (the former are scaled by means of the Piola transformation, as
discussed in Section 3.3.1). The two basis matrices V, € RNixNs anq ‘A/p e RNy *Ns are
computed by POD with tolerances ¢, and €,. During the snapshots generation phase, we
also construct a database composed of Ah(gl)7 e Ah(HNS) and Dh(ﬁl), e ’Dh(HNs)’
which are used in the MDEIM procedure to increase the efficiency of the assembly part
of the algorithm. In Fig. 3.5 we show the decay of the singular values of §u, §p. Owing
to criterion (3.4), the fast decay of the singular values indicates a smaller size of the
associated basis (see Table 3.1) and, consequently, this is a sign that the problem is
reducible. We remark that ij = 39042 and NI’} = 9600 an(Ai, therefore, the reduced
bases feature a considerably smaller size. The velocity basis V,, is augmented with the
supremizers (one for each pressure mode) as described in Section 3.4. The total basis
matrix is denoted XA/J .
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-----------------------------

: Piola transformation (Q(p,) — SAZ)

! Liad

X For each snapshot parameter w ., scale

\ - < | the velocity snapshot by the Piola

X Snapshot sampling . R ; 1

: Find snapshots ul,..., g?\, and ransiormation, hamely

! ~h ~h . °

I ey by solving Eq. (3.17) for B~ 1

W Biooeoslty 1oy esiing Ba, (:17) 8 (®) = ——Ja1 (X)ul(x)

B =R | o1 (x)]

1

: for ¢ = 1,...,N,. Note that & =

E BasisAgenerahtion N . Supremizers enrichment )
' Find V, € R¥:*Nu and V, € RNp X Nu Enrich the velocity basis V,, through

! by POD of the snapshot matrices S, = the supremizers enrichment procedure

v | [af]...[ak ] and S, = [BY]... PR ]. as described in Algorithm 3.3.

| =

fm o m e e e e mmmmemmemos { Online phase (given H) % ------------------------

Piola transformation (ﬁ — Q(p))
Scale the velocity basis functions by

the Piola transformation, namely ’\

1 N Assembly of the reduced system
¢hix) = qu) (X)) Assembly the reduced system, possibly
¢ by employing (M)DEIM.

fori=1,...,N,, and the same for the

i | supremizers {sf}f\’:”l Note that & =
2w

Projection onto FE space

Solution of the reduced system Retrieve the approximation of velocity
[ Solve Eq (3.18). ] and pressure in the FE space as u' ~
Viu" and p* ~ V,p".

Figure 3.6 — Diagram of the RB algorithm. The green boxes are specific to the application
of the steady Stokes equations in parametrized domains.
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Figure 3.7 — RB velocity field magnitude (left column), RB pressure distribution (middle
column) and velocity error magnitude with respect to FE solution (right column), for
three different choices of the geometrical parameters. First row: gy = —0.21 and po = 1.08.
Second row: 1 = —0.10 and po = 0.83. Third row: p; = —0.41 and py = 0.92.

The online phase consists of the assembly and solution of reduced system

K
PV
where AN () = (VHTAMp)Vil, DN () = (V)" D" ()Vi] and gV (p) = (Vi) g (w),
while u?V and EN are the vectors of reduced dofs. We remark that basis VJ is first
scaled by the Piola transformation at the start of the simulation and, therefore, it is
not written with the hat notation. To ensure an efficient online phase, vectors and
matrices in Eq. (3.18) are assembled by DEIM and MDEIM, respectively. The entire
RB pipeline—offline and online phases—is summarized in Fig. 3.6. The red boxes in
the figure refer to steps that are typical to the standard RB approximation and the
green ones are peculiar to this particular problem. Specifically, these stages are necessary
because we are dealing with a saddle-point problem (hence the supremizers enrichment)
in a parametrized domain (which requires the use of the Piola transformation).

AN(p) (DN ()"
DN (p)

gV (p)

o | (3.18)
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Fig. 3.7 shows the velocity magnitude, pressure, and velocity error magnitude with respect
to the FE solution obtained for three different choices of g (which are not included
in the original sets of parameters considered during the snapshots generation phase).
These plots refer to the choices €, = ¢, = 1076, The velocity and pressure manifest a
qualitatively physical behavior: the former attains higher magnitude values when the
outlet is narrower—which is a consequence of the incompressibility of the fluid—whereas
the latter decreases in the downstream direction and is characterized by a gradient
oriented as the centerline of the pipe itself. The velocity error magnitude is, in all cases,
close to the POD tolerance, which shows that the set of snapshots is adequate to represent
the variability of the solutions with respect to the geometrical parameters.

An analysis of the effect of the Piola transformation and supremizers enrichment is
carried out in Fig. 3.8. All the errors are computed over 20 solutions of the FE and
RB problems for values of the parameters g randomly sampled in the acceptable range
D = [-0.8,1.2] x [-0.5,0]. In terms of runtime, the FE simulation takes on average
T = 0.6402 s, and the speedups obtained by considering POD tolerances (the same for
velocity and pressure) ranging from 1073 to 1078 are, respectively, 80, 69, 62, 51, 41,
and 32. On the top left, we show that the L? error in pressure (L2u) and the H' error in
velocity (H1u) decay with the same rate with respect to the POD tolerance, regardless
of the use of the Piola transformation. This is beneficial to decrease the velocity basis
size necessary to achieve a fixed Hlu error (top right); however, due to the additional
online step which is required to transform the basis from Q to Qp) (see Fig. 3.6), the
runtime is higher in the case of the Piola transformation (bottom left). Finally, we
observe that adding the supremizers for the velocity is required to preserve the stability
of the discretized problem. On the bottom right, we indeed show that L2p and H1p are
extremely large without stabilization, which is a consequence of the unboundedness of
the condition number of the system matrix.

Remark 3.4. The use of the Piola transformation would allow, in principle, to discard the
continuity equation in Eq. (3.18), as the velocity is guaranteed to be divergence-free in
the physical configuration Q(u). This would also imply that the saddle-point structure of
the problem would be lost, thus making the pressure supremizers unnecessary. However,
in these numerical results and the ones presented in the following chapters, the continuity
equation is maintained for two main reasons. Firstly, the computational mesh in the
reference configuration does not map into the one in the physical configuration. This is
because nonaffine transformations—such as the ones that we consider in this thesis—do
not map lines into lines and planes into planes (in other words, a triangular mesh is
mapped to an invalid one featuring curved elements). The computational mesh in the
deformed configuration is built upon the image of the reference set of vertices through
the geometrical map. Consequently, the Piola transformation computed by using the
analytical Jacobian is inexact, and the velocity modes are only approximately divergence-
free. Secondly, retaining the continuity equations allows for the computation of the
pressure, which would otherwise need to be found a posteriori.
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Figure 3.8 — Top left: L? error in pressure (L2p) and H' error in velocity (Hlu), with
and without scaling of the velocity by the Piola transformation vs POD tolerance (the
same for pressure and velocity). Top right: H' errors in velocity vs basis size, with and
without Piola scaling. Bottom left: L2p and Hlu errors vs online runtime in seconds.
Bottom right: L2p and Hlu errors with and without supremizers vs POD tolerance.
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Chapter 3. Elements of the Reduced Basis method

3.6 Concluding remarks

The RB method is a MOR technique that aims at decreasing the number of variables
involved in the solution of parametrized PDEs. During the computationally expensive
offline phase, a large number of snapshots is generated by solving the FOM—e.g., the
FE discretization of the differential problem of interest—multiple times. The snapshots
are then employed to generate a reduced basis, either by greedy algorithms or (as we do
in this thesis) by the POD method. The projection of the FOM onto the reduced space
gives rise to a system that is characterized by a considerably smaller number of variables
and which is assembled and solved during the online phase of the algorithm.

In this chapter, we described the method, and we also highlighted some aspects which
require particular care when dealing with geometrical parameters and saddle-point
problems. Specifically, we discussed how considering deformable domains is usually
problematic due to the lack of an affine decomposition of the terms appearing in the
PDEs. Furthermore, when dealing with divergence-free vector fields, we motivated using
the Piola transformation from the physical configuration to the reference one (in the
offline phase) and vice versa (in the online phase). Lastly, we considered a case of steady
flow in a two-dimensional pipe modeled by the Stokes equations. This problem is relevant
because, despite being simple, it features all the concepts presented in the chapter, and
it is also strictly related to the topics treated in the subsequent parts of this thesis. We
showed that by employing the RB approach, we were able to obtain considerable speedup
with respect to the FE method while retaining good accuracy. We also analyzed the
effects of the Piola transformation and supremizers enrichment in terms of efficiency and
accuracy.
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Y Modular Model Order Reduction
of blood flow

In this chapter, we present a strategy for the MOR of blood flow in arteries based
on a geometrical approximation of the vessel. Specifically, the geometry of interest is
approximated as the composition of simple subdomains which are obtained from the
parametrized deformation of a handful of geometrical building blocks (e.g., reference
tubes and bifurcations). Each building block is equipped with a set of RB basis functions
for velocity and pressure, which, after being mapped to the physical configuration, are
used to find the local solutions in each subdomain. The advantage of this technique is
that the number of variables involved is often much smaller than the number of dofs that
are necessary to obtain accurate results using, for example, the FE method.

The chapter is structured as follows. In Section 4.1 we present the main idea of the
approach; we also discuss other methods that take an analogous perspective on the task
of the MOR of cardiovascular flow (or of systems with recurrent elements in general). In
Section 4.2, we define the concept of modular approximation of arteries; we also address
the numerical solution of the Navier—Stokes equations on the decomposed geometries
by the FE method and the nonconforming Domain Decomposition method presented in
Chapter 2. Furthermore, in Section 4.3 we devise an ad-hoc preconditioner that takes
advantage of the peculiar block structure of the global system matrix. It is worth noticing
that, although the chapter focuses on a ROM, addressing the solution of the partitioned
problem with the FE method is necessary, as the RB functions in the subdomains are
generated by POD of local solutions obtained from global problems in decomposed
domains. This strategy of data collection (offline phase) is discussed in Section 4.4. In
the same section, we also delineate the algorithm for the approximation of the global
solution on a decomposed target geometry using the ROM (online phase). Finally, in
Section 5.5 we summarize the main points of the method.

With the exception of Section 4.1 and some extensions, the contents of this chapter have
been presented in [PPMD20].
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Chapter 4. Modular Model Order Reduction of blood flow

4.1 An overview of Reduced Order Methods for networks
of blocks with recurring features

The method presented in this chapter is rooted in the idea that potentially complex
arterial trees are suitable to be decomposed into simpler elements, the blood flow through
which shares recurring features. For example, it is reasonable to assume that the blood
dynamics far from bifurcations and in similarly shaped portions of vessels with comparable
sizes is characterized by approximately the same profile. However, in the usual high-
fidelity discretization approach by the FE or Finite Volume methods, these properties
of blood flow are not exploited, and a large number of dofs is often required to obtain

meaningful results.

Maday and Renquist [MRO02] proposed a technique based on these observations to
attempt the MOR of flow systems such as arteries. In the expensive offline phase of
the method, some elementary geometrical entities are defined and equipped with one or
more sets of RB functions. Given a complex geometry, this is divided into simple blocks,
which are obtained from parametrized deformations of the reference ones. The local flow
solutions are then obtained through the combination of the local RB functions, and the
global one is found by coupling the local solutions through Lagrange multipliers. This
technique is named Reduced Basis Element (RBE) method and has also been considered
in [LMRO0O6a, LMR0O6¢, LMR07, IRQ10]. The method presented in this chapter can be
seen as a particular implementation of the RBE method in which the coupling conditions
are enforced using the discretization strategy discussed in Chapter 2.

Strictly related to the RBE method is the Reduced Basis Hybrid (RBH) method [IQR12,
Iap12]. While the setting in every subdomain is the same as in the RBE method, in this
case, the coupling strategy is based on a solution of the global flow problem on a coarse
mesh, which is used to ensure the continuity of the stresses at the interfaces. Specifically,
the global solution in the online phase is found as a linear combination of the usual RB
functions (defined on the fine mesh) and the coarse solutions in each subdomain. The
online phase amounts to finding the coefficients of such a linear combination. Although
this approach allows circumventing defining the space of coupling Lagrange multipliers, it
suffers from the drawback that it requires to deal with multiple levels of mesh refinements
and that the coarse global problem must be solved in the online phase of the method.
For this reason, we opt to employ a perspective more similar to that of the RBE
method. It is worth noticing that, despite the RBE method being originally proposed
with the cardiovascular context in mind, its application has been mostly restricted to
two-dimensional cases of the steady Stokes equations. To the best of our knowledge,
the results presented in [PPMD20] and in Chapter 5 are the first ones dealing with the
approximation of the three-dimensional unsteady Navier—Stokes equations.

We end this section by mentioning two additional types of ROMs that are relevant to
this thesis. Another method to tackle geometries with repetitive or recurring features is
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4.2. Modular Domain Decomposition of arteries

Building blocks Target geometry

Figure 4.1 — Sketch of the Domain Decomposition of a target geometry. Each block in
the target geometry is found from the parametrized geometrical deformation of a small
number of reference building blocks.

based on the RBE method at the subdomain level, and the static condensation approach
[HKP13] for the coupling. This technique has mostly been investigated in the context of
structural simulations, see, e.g., [VHK ™15, SP16]. Strictly related to the cardiovascular
context is instead the Transversally Enriched Pipe Element Method (TEPEM), initially
proposed in [MABB*17, MABBF19] and further employed for uncertainty quantification
in [GMAB™20]. The main idea of the approach is to consider a domain decomposition
of the geometry of interest into pipe-type elements. The longitudinal and transversal
directions of the flow are approximated separately; the splitting into principal and
transversal components is also exploited in, e.g., [PEV10, GPV18]. A common strategy
for the discretization of these components employs a standard FE approximation in the
longitudinal direction—which is assumed to be the dominant direction of the flow—and
high-order polynomial functions in the transversal one.

4.2 Modular Domain Decomposition of arteries

We introduce a library of building blocks SA)Z-, i=1,..., Npp. In the context of cardiovas-
cular simulations, these reference building blocks are model cylinders and bifurcations,
as shown in Fig. 4.1. The choice of building blocks is arbitrary. Here, we focus on simple
blocks such as the ones depicted in Fig. 4.1 and Fig. 4.2, as we are mostly interested
in presenting a proof of concept. In some scenarios, an attractive choice would be to
enrich the set of building blocks with elements characterizing pathological conditions with
geometrical abnormalities (e.g., stenoses). However, it is worth noticing that considering
a large number of building blocks comes at the cost of a more expensive offline phase of
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Chapter 4. Modular Model Order Reduction of blood flow

the ROM that we present in Section 4.4, as for each of the blocks we need to generated
an ad-hoc reduced basis.

The target geometry is then approximated as a modular composition of subdomains
N, A .

Q =~ Q") = ;5 Qj(ﬁj)' Here, €; := (bz(j)(QZ(j);Hj) is an open and bounded
subdomain obtained by applying a prescribed parametrized geometrical deformation
®.(j) to the 2(j)™ building block, z : [1,...,Ng] + [1,..., Npp] is a map from the
indices of the subdomains in the target geometry to the indices of the building blocks,
and A = {Hj ;-V:Ql is the set of geometrical parameters. In the following, we indicate
2(j) = z; for brevity. Each vector of parameters p_ belongs to a space D,; C RV
whose dimensionality depends on the corresponding reference building block. For each
i=1,..., Npp and given a parameter vector u, we focus on geometrical deformations of
the form

(% 1) = QUU)pi(Rs ) + t(p), VR € O, (4.1)

where Q(p) is a rotation and scaling matrix, t(u) is a translation vector, and ¢;(-; pt) is
a nonaffine geometrical deformation. We remark that the expression of ®; is such that
it is composed of an affine part, which consists of the rotation, scaling and translation
and which is independent of the reference building block Qi, and a nonaffine part that is
instead specific to QZ The types of building blocks we consider and the corresponding
admissible nonaffine deformations are depicted in Fig. 4.2. The geometrical parameters
in the tubes are the angle of the outlet normal a—due to the axial symmetry and to the
rotation matrix @ in Eq. (4.1), a single angle is sufficient to represent a bending in any
direction—in the deformed configuration o and the deformed lengths L and outlet radius
Rout. In the bifurcation, the geometrical parameters are the angles describing the rotation
of the reference outlet normals n; and ns onto the outlet normals n; and ny (i.e., three
Euler angles per outlet, that is six geometrical parameters in total). The subdomains in
the target geometry satisfy Qi(p,) N Qm(p, ) =0 if I # m, and we define the interface
rlml (Hj’ )= Q; (Hj) NQy, (p,.)- The building blocks in the reference configuration
are designed with circular inlet and outlet faces; the geometrical deformations are chosen
such that the interfaces are circles for every possible choice of the geometrical parameters.

Remark 4.1. Although T'll™ and Tl represent the same physical surface, it is still
beneficial to differentiate between the two as we associate with each interface the vectors
Ny, and n,,, i.e., the outward normal unit vectors with respect to §; and 2, (clearly,
Ny, = —N,,;). This distinction allows to simplify the notation in the weak formulation
derived in Section 4.2.2.

For every subdomain €2 (Hj)? we introduce the set of indices of the neighboring subdomains
N(j), and the sets [y (j) and Loyt (j) such that 8Qj(gj) N Tl[ﬂ # () for all i € I (j), and

09 (1) NTghy # 0 for all i € Lou(j); here T} and T

out 0 ot represent the ith inlet and outlet
boundary of the geometry, as shown in Fig. 4.1. The dependance of the subdomains §2;
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4.2. Modular Domain Decomposition of arteries

A _
out Q
Q§ :Nf np
) Rout
L
D

Figure 4.2 — Types of reference building blocks and affine transformations. On the left,
tubes. On the right, bifurcation.

and interfaces TU™/, FE} and F([i]lt on the geometrical parameters .# is omitted unless

ambiguity arises in the remainder of the chapter.

4.2.1 Parametrized geometrical maps for the reference building blocks

We restrict ourselves to cases where the nonaffine deformations associated with the
tubes are given in analytical form. In particular, we consider the three-dimensional
versions of the maps defined in Section 3.5 with the slight modification that we allow
for variations in the arclength (whereas formulas (3.15) and (3.16) are designed to
preserve this quantity). In particular, we have that, for every i corresponding to a
tube, @;(-, 1) = @pi(*; 12, 13) © @si(5 1, p2) with g = [u1, po, p3]. Transformations
@s,i(+s 1, p2) and @y (-5 p2, p3) model the scaling of the outlet and arclength of the tube
and its bending. The nonaffine scaling function is defined as

o~ 1 - 3 ~ —~

(ps,i(Xs p1, p2) )1 = = [Li —(1— Ml/Ri)l'Ii} T,
7

1

L;

(‘ps,i(§§ M1, MQ))3 = EU\3N27

(el i, pm2))2 = = | Li = (1 = /R)25) o, (42)

where ]/%Z and Zl are the diameter and the length of the tube in the reference configuration,
(1 is the radius of the outlet in the physical domain, and uo is the ratio between the
arclength in the physical and reference configurations. We remark that the axis of the
reference tube is parallel to the T3-axis and that the inlet is laid on the Z1-Z5 plane. The
bending function reads

(n,i(X; 2, pu3))1 = (r +21) cos(a) —,
(n,i(X; p2, p13) )2 = T2,
(b,i(X; p2, 13))s = (r + 1) sin(a),

2 (4.3)
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Chapter 4. Modular Model Order Reduction of blood flow

=3

in,s

Figure 4.3 — Deformation of the model bifurcation. On the right, we show examples in
which the geometrical parameter—i.e., the rotation angles of the outlets—is (top) and is
not (bottom) included in the admissible set.

where r = Ziug /s, o = pgxs/ Ei, and ug is the bending angle. This bending function is
designed so that the axis of the deformed tube lays on a circular arc and such that its
arclength—which is now Ei,ug, since the scaling function has already been applied—is
unmodified. Note that, if p3 = 0, we simply take @y, ;(X; p2, 113) = X.

Defining an analytical transformation for a model bifurcation, as shown in Fig. 4.2,
requires to perform the rotation of the outlets to match some prescribed orientation
(which clearly depends on the target geometry). However, extending the deformation
to the rest of the boundary and to the interior of the domain is a complex objective to
achieve with a geometrical transformation in closed form. For any index ¢ corresponding
to a model bifurcation, we propose to define a map of the form

Pi(x;p) =X +d(X; p), (4.4)
where d is a displacement field operating the desired rotation of the outlets but also

defined inside the domain. In Eq. (4.4), p is the parameter vector containing the rotation
angles of the two outlets.
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4.2. Modular Domain Decomposition of arteries

The method through which dis computed is evidently of importance. Here, we decide to
determine the displacement field by defining a linear elasticity problem similar to the
one in Eq. (1.22). Specifically, the problem reads

~Vg-T(d) =0 in €,

d= /g\ on fDJ‘, (45)
H(as)ﬁs =0 on fNﬂ;,

where II is the Piola—Kirchoff stress tensor defined as in Eq. (1.23), nyi = lA“im U fout,i
is the portion of the boundary of the inlet and the two outlets and fNﬂ' is the wall of the
bifurcation. Function g is identically zero on fin,i, ie, g=0o0n fin,i, and it is such that
on the outlets d performs the mapping onto the desired target configurations. As we show
in Fig. 4.3, this technique allows us to obtain smooth deformed domains. One drawback
is that the range of the rotational angles p is limited by the fact that, as the geometry
becomes more distorted, the quality of the mesh deteriorates (particularly close to the
outlets). Moreover, while for small deformations the wall of the bifurcation is almost
perpendicular to the outlet in its vicinity—the angle is exactly 90 degrees in the reference
configuration—this property is not preserved for larger rotational angles. Ensuring that the
angle at the outlets is “close” to perpendicular in the physical configuration is important
to avoid large discontinuities in the boundary derivatives when other subdomains are
attached to them. The set D; of admissible values for p is chosen such that the mesh
quality is always preserved and such that the angles between the bifurcation wall and
outlets are always (nearly) 90 degrees. The bounds for the geometrical parameters are
chosen with a trial and error approach in which we select the largest possible ranges
ensuring that the aforementioned properties are satisfied. During this process, we also
make sure that the resulting mesh is topologically valid. This is typically easily verified,
since we deal with small deformations.

Another possibility for the deformation of the reference building block is to consider
parametrized transfinite maps. These are a general version of the Gordon—Hall transfinite
interpolation approach, which is specific to quadrilaterals [GH73]. Parametrized transfinite
maps have been proposed in [LMR06b, LMRO09] and employed, e.g., in [IQR12, JIR14].
The main idea of these algorithms is to define weight and projection functions on
every portion of the boundary. Similarly to our approach, each of these functions are
computed through the solution of a PDE—typically, a Laplacian problem—in which
ad-hoc conditions are set on every boundary portion. The deformed configuration is
found by considering some portions of the boundary (e.g., vertices in two-dimensions) as
parametrized, and then by evaluating the displacement over the whole boundary (owing
to the weight functions) and subsequently projecting such displacement in the interior of
the domain (owing to the projection functions). Although it is possible to extend these
concepts to three-dimensions (see, e.g., [lap12]), in this context, the method becomes
considerably more cumbersome, and an approach based on the solution of Eq. (4.5) may
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Chapter 4. Modular Model Order Reduction of blood flow

therefore be preferable.

4.2.2 The continuous Navier-Stokes equations on modular geometries

Let us consider the problem of approximating the blood flow in a vessel, mathematically
represented by an open and bounded domain € R?. In the following, we take d = 3, but
the discussion is also valid for the case d = 2. We model the blood as an incompressible
Newtonian fluid and, therefore, its dynamics is described by the Navier—Stokes equations

0
pfa—ltl+pf(u-V)u—V~af:f in Q x (0,7),
V.ou=0  inQx(0,7),
u=g on I'p x (0,7,
of(u,p)n =h on 'y x (0,7,

u=1ug for t =0,

where the symbols are the same as in Eqg. 1.1. Since we deal with cardiovascular ap-
plications, we take I'p = Iy U (UfV;; F[I}) and Ty = JNewrld . plll - plNal p

out? m?’*°
and FR,], ... ,I‘ggg“d are the inlets, wall and outlets of the vessel, respectively. The inlet
velocity profiles and outlet Neumann data are denoted gi,...,gn,, and hy,... hy, ,;
on the wall I'y, we consider u = 0. The physical parameters of the fluid pr and us are
fixed for simplicity, although it is possible to include them in the set of the (geometrical)

parameters describing the problem.

The weak formulation of problem (4.6) has been derived in Section 1.2. In this chapter,
we aim at rewriting W1.1 to account for the modular decomposition of the original

domain Q™. For each subdomain €2;, we introduce the spaces V, ; := [Hgl,FD(Qj)]d (i.e.,
the space of function satisfying the Dirichlet boundary conditions), Q; := Lz(Qj) and
Vo,j = [H%D(Qj)]d. Moreover, for every interface I we define the spaces LU =

[H&)l/ 2 (Cb™h]. The coupling Lagrange multipliers belong to these spaces, as discussed
in Chapter 2. For the sake of conciseness, let us adopt the following notation

M€, p,P;w) :—/ pff-:-w+/ﬂ_pf[(<p-v)<9]-Wr/Q o(p, ) : Vw

Q; ; 5

for every e € [L2(Q))]?, ¢,w € [H}(Q;)]¢ and for every ¥,n € L%(Q;). Assuming for
simplicity that €2 = Q™, it can be shown that W1.1 is equivalent—in a sense that will
specified in Remark 4.3—to the following weak formulation:
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4.2. Modular Domain Decomposition of arteries

(W4.1) given f, g, h, ug regular enough and for every j =1,...,Nq, find uj € Vg ;,
pj € Q; and {Abm] Ymen() € HmEN(j) LU such that, for everyt € (0,T),

ou. ,
M <8utjvujapj;v> + / Ay = Zi(v) W e Vg,
meN () rliml (4.7)
@ (uj5q) =0 vq € Qj,
and such that u; = wglq; for t =0. Moreover, for every m € N(j), AlmT = —Xmiland
/ n (W — ) =0 vn € £Uml, (4.8)
Tlim]

Remark 4.2. The notation in W4.1 is simplified for the sake of clarity. Indeed, the space
in which u; is sought for would need to satisfy requirements similar to the ones imposed
in W1.1 for the duality of its time derivative to be well defined.

Remark 4.3. The two weak formulations W1.1 and W4.1 are equivalent in the following
sense. If (u,p) satisfies W1.1, then (ulq;,plo;, {o(0,p)njm}men(;)) is also solution of
the local problem W4.1, for every j = 1,..., Nq. The Lagrange multipliers therefore play
the role of the stress at the interfaces; for details, see, e.g., [Woh00, DIP19]. Conversely,
if (uj,pj, {)\Um]}meN(j)) are the local solutions of W4.1, then (u,p) = (H;.\[:Qluj,ﬂj.v:“lpj)
is solution of W1.1.

4.2.3 Discretization of the primal hybrid formulation of the flow prob-
lem

The discretization of differential problems by the FE method requires the definition of
a computational mesh. In the case of the approximated modular geometry (™, each

building block (Alz is equipped with its own triangulation é?t Therefore, the global mesh
NQ NQ

) =) 7 (w) = J 25, (7 ) (4.9)
j=1 j=1

is a composition of distinct meshes which do not necessarily satisfy conformity constraints
at the interfaces. We recall that a mesh is conforming if, for every two elements, their
intersection is either empty, a vertex, an edge or a whole face. In other words, a conforming
mesh does not feature any hanging nodes.

Remark 4.4. Formula (4.9) is in fact imprecise. In the general case in which @, is
nonaffine, indeed, it holds that @zj(IA( ) # K € ﬂjh for every K € @, as nonaffine
transformations do not map planes into planes. From the practical perspective, the

meshes in the deformed configurations ﬂjh are obtained by applying transformation @,

to every vertex of L@jl; these become the vertices of every element K € ,Zh . In our case,
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Chapter 4. Modular Model Order Reduction of blood flow

Figure 4.4 — Basis functions P}’ on the unit disk &, for n < 3, mapped onto the target

interface I'%). Minimum and maximum values are plotted in blue and yellow, respectively.
The basis function P is constant.

every K is a tetrahedron. We finally observe that if P1 Lagrangian finite elements are
generated on the mesh, the nodes are located on the vertices of each element K and not
in points belonging to either faces or the interior of K. Hence, in this particular case,
it is equivalent to first generate the nodes on the reference configuration and then map
each of them onto the physical ones, and, conversely, map every vertex first and then
generate the nodes on the mapped set of vertices.

Being the global mesh in general nonconforming, we are compelled to consider noncon-
forming Domain Decomposition methods for the solution of the Navier—Stokes equations.
These are formally defined as Domain Decomposition methods in which the search space
for the discrete solution is not a subset of the continuous search space (in our case V x Q).
In this thesis, we adopt the algorithm presented in Chapter 2, which is based on the
discretization of the Lagrange multipliers space via a small number of spectral basis
functions defined on the interfaces. For our application, this choice is convenient because
(i) the method allows recovering the h-convergence order of the primal discretization
method—i.e., the FE method—even when a small number of spectral basis functions is
considered, (ii) defining a spectral basis on each interface does not require to project nor
to interpolate the traces of FE basis functions from one side to the other, and (iii) as
already mentioned, the interfaces are circular in the target configuration, which allows
us to employ a set of standard orthonormal basis functions on the two-dimensional disk.

We follow the same procedure presented in Section 1.2 for the discretization of local
variables u; and p;, which become

N,

u,Zj

h N},
)
h h _h h b 1h
Wi =) wen K= il
i=1 i=1
We highlight that—Dbeing that the meshes yjh are generated as transformations of the
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4.2. Modular Domain Decomposition of arteries

reference ones 9}; (at least approximately, see Remark 4.4)—the number of nodes N];Zj
and N]?, »; are indexed with respect to the reference building blocks.

As for the Lagrange multiplier A™l we consider the approximation

N3
Al = § ylimlgliml s
=1

where Ez[jm]’ls = cjmgf o (@)= ¢ (2Tl ¢;p, € R, é? € [L%(2)]? are a set of
orthogonal functions on the unit disk 2 € R4! and OU™ : 2 — U™ is a bijective map
from the unit disk Z to the target interface. Similarly, we define the maps @i[nm] e Fi[nm]
from the unit disk 2 to the inlet interfaces "), the basis functions Eg{ﬂ’é = .’SA? o (Gi[nm])_l €

(22T, and

N}
A = S oglmle.
=1 7 ’

These functions are used to set the inlet velocity profiles, allowing to effortlessly transition
from the FE model to the reduced one through the process described in Section 4.4.
The use of Lagrange multipliers is a classical way to weakly impose Dirichlet boundary
conditions (see, e.g., [Bab73a]) and, compared to other popular approaches such as penalty
methods [ZA98, Bab73b], it has the advantage of being variationally consistent. We
remark that (i) we introduce the discretization parameter § for the Lagrange multipliers
to indicate that the degree of refinement is in fact independent of the mesh size in gjh or
Z and (ii) we consider for simplicity the same number NY of basis functions at each
interface.

~ S
In this work, we construct {E? }lN:A1 as follows. Let us consider Chebyshev polynomials
of the second kind U,, which are defined through the recurrence relation Up(z) = 1,
Ui(z) =2z, Upyi1(x) = 22U, (x) — Up—1(x). Then, for 0 < k < n,

k
T
n—+1

)

1
—=Up (zcos(wz) + ysin(wy)), w=

T

are orthonormal polynomials on the unit disk & with respect to the weight function
W(z,y) = 1/y/m [DX14]. Given n > 0, we set

Pl (z,y) =

N? d n n
= =0 7
Sn = {fzh:ﬁ = U U U Ple;,

i=17=0 k=0
where e; is the i*! canonic vector. It is trivial to find that N{ = d(n + 1)(n + 2)/2.

Let us now address the discretization of the individual elements of W4.1, which is local
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Chapter 4. Modular Model Order Reduction of blood flow

to subdomain €2;, the assembly of the global block system, and the discretization in time.

Discretization of the coupled momentum and continuity equations. For every
j=1,...,Ng and m € N(j), let us define Almlo — [/\[fm]’é, . )\K;?]’(s] and the coupling
A

matrix Bz%m}’h(s = Jrum ,[,jm]’(s - cpﬁT Then, Eq. (4.7) can be rewritten in algebraic form
as
M a hy oh (yh e h
’ ph| o |55 T (w) o™ wT e (4.10)
¥ D" ) 0
A ’ A

In Eq. (4.10), we denoted by M9 the vector containing all Ao and by B;-“S the matrix
obtained by stacking the various BU™:" for every m € N(j).

Equality of the Lagrange multipliers at the same interface. A natural way
to enforce constraint AV™ = —Amil in W4.1 is to choose ¢jm = 1 = —cyj such that
glmlo — _glmild and AU = AL gor all moe N(j) and for i = 1,...,N?. As a
consequence, it is legitimate to introduce a numbering of the interfaces ri .. rivrl
and to denote the corresponding (unique) vectors of dofs of the Lagrange multipliers
by Al AN Purthermore, it holds that Bjg/"" = — [r,., €5™ - ol In the
following, the coupling mat[lf]iiébetween the i*" interface and the velocity in the ;™
2,

subdomain is also written B; (to be intended as null matrix, if T N Q; =0).

Discretization of the weak continuity equation. The numerical discretization
of Eq. (4.8) entails the definition of a preferential side for TV which determines the
computational mesh and the FE basis functions to be used in the evaluation of the
integral. However, the direct approximation of Eq. (4.8) is problematic because it requires
the projection or interpolation of the velocity from one side of the interface to the other
(such operation is required in methods such as the mortar method or INTERNODES, as
discussed in Section 2.4). At the continuous level, it is evidently possible to write

/ n-(uj—um):/ n-uj—/ n-u,; =0. (4.11)
rlim] rlim] IlmJ]

The advantage of separating the integral into the two contributions on rbml and rimil ig
apparent at the discrete level. Indeed, by substituing n with Sl[j ™ and _51[] ™9 50 the
two integrals on the right-hand side of Eq. (4.11), Eq. (4.8) is discretized as

BUmlhsyh 4 plmilhiyh — g
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4.2. Modular Domain Decomposition of arteries

Weak imposition of Dirichlet boundary conditions. We recall that we assume

every inlet interface Fi[nm] to be associated with a single subdomain €2;. Condition u;? =gmn

on Fi[gﬂ is weakly imposed as
¥} )
/F[m] gl -(ug?—gm) =0, i=1,...,NJ. (4.12)

By introducing the interpolation of the boundary data g, onto the FE space spanned
h

by {¢Zj}i;£z'7, the corresponding vector of dofs gi‘n, and (Bi[ﬂ’m)pq = fp[m] E[T,?I]f(g . 802,]',

Eq. (4.12) is approximated as

B[m]',héuh . B[m}‘,h(S h —0,

in:] =J in:] —-m

and the first equation in Eq. (4.10) is accordingly modified as

. m],hd m|,
Mpa -+ (K7 + CHa)) of + (D)0} + (BI)TA] + (BN =)

in?j

to account for the Lagrange multiplier )\i[zl]’(s.

Assembly of global system. It is possible to arrange the local systems corresponding
to the subdomains in the form of a global block system as

Fh
= ah6 ;

[Mh ] wh +[Ah(wh) (Bha)T] [Wh

I'\5 Bh§ A5
where
g
M" = diag J ,
: h hj:;""’NQ h\T (4.13)
. K? +C%(u}) (D7)
AW o= diag | |10+ o) (D) ] ,
L J .

Jj=1,...,Nq

B" is a block matrix such that (B");; = [Bj[i]’hé, O] (O being the null matrix) if i« < Np
and (B");; = [B-[i_NF]’hé,O] otherwise,

in,j
W = vec(wh, ... ,y?vﬂ),
N = vec(A . AINTLo A0 N[Nl 0y

where the vec function outputs the global vector obtained by stacking each input along
the first direction, and F" and G" are block vectors accounting for the forcing terms

113



Chapter 4. Modular Model Order Reduction of blood flow

and Dirichlet boundary conditions, respectively.

Discretization in time and global nonlinear residual. The discretization in time
is performed with BDF schemes along the same lines of the discussion in Section 1.3. We
define Y = [ﬂh, A‘s] and

h ) h hwh ho\T h
o [M ] B () = [ B0 [ @) [
Gh (1) B A
Then, given X’k“i 41 for j =1,...,0, the solution at timestep tx11 is found by solving
R(YIS) = HYE =S Yy — ABE™ (B0, Y00, ) =00 (414)
j=1

4.3 Efficient solution of the global nonlinear system

Eq. (4.14) is nonlinear and hence solved using the Newton—Raphson algorithm. In
particular, given an initial guess Y@ the (I + 1)*™ iteration of the algorithm for the
solution of R(Y) =0 is

YO = YO (750v0)) " RYO), (115)

where Jg is the tangent matrix of R. The stopping criterion is based on a user-provided
tolerance vg and reads [[R(Y®)[l2/IR(YO) |2 < 7wr.

In order to efficiently solve the linear system in Eq. (4.15) via iterative methods such
as GMRES [SS86], we need to develop a preconditioner for the tangent matrix Jg.
Differentiating Eq. (4.14) with respect to its only argument yields

Jr(Y) = (4.16)

M" - ALBAR(W) Atﬁ(Bhé)T] _ [ﬂ<w> ET]

AtpBh B

Thus, the tangent matrix features a saddle-point structure stemming directly from the
original differential problem W4.1—which is in fact a saddle-point problem. In the
remainder of this section, we omit the explicit dependence of Jr and A on Y and
W, respectively, for the sake of clarity of notation. A possible strategy to design a
preconditioner is based on the (exact) decomposition

A BT T A I A'BT
~ = | = , 4.17
[B ] BA™' T S z ( )
where & = —BA-1BT is the Schur complement of Jr. This decomposition is the
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4.3. Efficient solution of the global nonlinear system

Algorithm 4.1 Application of the saddle-point block preconditioner.
Input: Matrix Jgr defined as in Eq. (4.16), right-hand side B = [B,,, B, ]
Output: Solution X = [X,,, X,] such that JpX =B

assemble the Schur complement & = —BA-1BT

compute Z,, = .Zlflﬁw

find X, = S~1(B, — BZ,)

find X, = Z,, — A1BTX,

foundation of several preconditioners for saddle-point systems, such as SIMPLE [SRV10]
and the nested block preconditioner for blood flow simulations proposed in [LYDM20];
see also [CLB20] for the derivation of a preconditioner based on Eq. (4.17) for the
nonconforming coupling of Kirchoff plates with IGA. The solution of a linear system of
the form JrX = B, with X = [X,,, X,] and B = [B,,, B,], amounts to solving

A T A1BT

T

A BT
S

Xy
X\

X,
X\

B

_ [B)\ B gﬂle] : (4.18)

S

hence X, = S~'(B, — BZ,) and X, = Z, — A'BTX,, where Z,, = A~'B,, can be
computed only once for efficiency. The procedure for the application of the preconditioner

is summarized in Algorithm 4.1.

4.3.1 Bottlenecks of the global preconditioner

The bottlenecks of Algorithm 4.1 are evidently the computation of the Schur complement
S and the inversion of matrices A and S.

Block (i,7) of the Schur complement explicitly takes the form

Nqo Ngq Nq
(S)ig==>_ > BalA m(B )mj = =D (B)ae(A )ik (B )iy, (4.19)
=1 m=1 k=1
where
-1
Gy - | M+ A (KL ) 0T

D}
(B)a = B 0]

The second equality in Eq. (4.19) comes from the fact that A is block diagonal. Each
block of the Schur complement is therefore a sum of the contributions stemming from each

,hé

subdomain €2;. However, we recall that Bj[-i is not null only if 'Yl is an interface of €,

which typically implies that only a small number of subdomains contribute to each (S);;.
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Figure 4.5 — Parallel computation of a single block of the Schur complement S.

Additionally, as discussed in Chapter 2 and Section 4.2.3, the Lagrange multiplier basis
functions required to achieve h-convergence are often very few; hence, the Navier—Stokes
matrix inverse (A~1)gx (or an approximation thereof) can be efficiently applied to every
column of (BT)g;, whose number is typically small.

Remark 4.5. The special structure of the Schur complement (4.19) makes its computation
particularly attractive in the context of high-performance computing, assuming that each
subdomain is assigned to one or few processors. An effective partition strategy should take
into account the number of dofs associated with each geometrical building block in order
to preserve the load balancing among the set of computational nodes. At the same time,
the fact that the coupling conditions do not require to explicitly transfer information from
one side of the interface to the other can be exploited to limit the amount of processor
communications. For example, Fig. 4.5 depicts a case in which two subdomains sharing
a common interface are mapped onto separate cores. Each contribution to the Schur
complement S is computed in parallel and communication is only required when the two
local matrices need to be added. In this thesis, we only consider a serial implementation,
but future directions of the current work include investigations on the parallel performance
of the preconditioner.

Remark 4.6. The computation of the Schur complement &, whose cost scales linearly with
the number of columns of B (i.e., the total number of Lagrange multiplier basis functions),
is, in fact, the most expensive step of the application of the preconditioner discussed
in this section. In our numerical experiments, however, we observed that significant
performance improvements are achieved by reusing the same Schur complement for
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Figure 4.6 — Solution time of a single linear system preconditioned as discussed in
Section 4.3 (right-top) and corresponding number of FGMRES iterations (right-bottom),
as functions of number of subdomains Nq in the geometry of the aorta and iliac arteries
(left). Blue solid lines: A~! approximated with a single application of SIMPLE for each
subdomain; red dashed lines and green dash-dotted lines: A1 solved with GMRES and
tolerance 5 - 10~ and 1072, respectively; circles: Nf = 3; diamonds = N/‘\S = 84.

a number of n consecutive applications of the preconditioner. This strategy does not
significantly affect the number of GMRES iterations when n is small enough (in our case,
n is roughly 20).

Let us now address the application of the inverses of Aand S. Since S € ]RNFNX;XNFN(AS,
the Schur complement is typically small and is inexpensively inverted by solving the
linear system either directly or via iterative methods (complemented with standard
preconditioners such as multigrid [KN03, BPX90] or ILU [Saa03]). Matrix A features
a block diagonal structure in which each diagonal block is itself a saddle-point system
and inverting A is therefore equivalent to solving linear systems which are local to each
subdomain (2;. Employing, instead of .Z*l, a suitable approximation thereof, gives rise
to different suitable preconditioners.

In this work, we choose to approximate every block diagonal matrix of A1 by considering
a single application of the SIMPLE preconditioner, both in the computation of the Schur
complement shown in Eq. (4.19) and in the application of the preconditioner. We recall
that SIMPLE is also based on Eq. (4.17) applied to the Navier—Stokes equations: here,
matrix A—in this case the Navier—Stokes matrix—is approximated with its diagonal
and this results in a fast computation of its inverse [SRV10]. In Fig. 4.6, we show the
robustness of our preconditioner with respect to the number of blocks and to the number
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Figure 4.7 — Offline phase on an artificial geometry featuring Nq = 9 subdomains and
Npp, = 4 building blocks (left) and singular values decay for the velocity and pressure
reduced bases built on the bifurcation (right). The colored dots on the plot on the right
refer to different values of POD tolerances ¢, and ¢,,.

of basis functions for the Lagrange multipliers per interface N/‘\s. The considered geometry
is that of the aorta and the iliac arteries in Fig. 4.6 (left). The blocks are sequentially
added starting from the inlet (for this reason, we remark that the size of the system
increases proportionally with the number of blocks). We compare the preconditioner
performance with that achieved by inverting every block in A with GMRES and relatively
large tolerances (5- 107! and 1072). We highlight that, as the preconditioner in the
latter approach varies at each iteration, we are compelled to employ flexible GMRES
(FGMRES) [Saa93]. If the local systems are solved exactly, the preconditioner is, in fact,
the original global matrix, as Eq.(4.17) is an exact decomposition. For this reason, solving
the local linear systems with GMRES leads to a better performance in terms of the
number of iterations. However, approximating each local inverse with SIMPLE is more
efficient in terms of solution time, as each FGMRES iteration is less computationally
expensive. We conclude by observing that the increase in solution time occurring at
Nq = 13 is due to the introduction of the bifurcation—which is composed of a larger
number of elements and which also requires more dofs for the coupling (due to the higher
number of interfaces) than the other blocks—in the set of considered subdomains.

4.4 The Reduced Basis Element method for flow in arter-
ies

As discussed in Section 4.2, the subdomains in the target geometry Q™ are obtained
from the parametrized geometrical deformation of a number of building blocks ﬁi,
i = 1,..., Npp. In this chapter, these are a model symmetric bifurcation (B), and
straight tubes with aspect ratios length/diameter 1:1 (T1), 1:2 (T2) and 1:3 (T3). The
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4.4. The Reduced Basis Element method for flow in arteries

Table 4.1 — Velocity RB sizes N, ; with respect to different POD tolerances ¢, for
4 different building blocks (B: bifurcation, T1, T2 and T3: tubes with aspect ratios
diameter/length 1:1, 1:2, 1:3, respectively).

Eu
1.6-1072 8-1073 4-1073 2-107% 1073 5-1074
B 99 172 270 394 549 732
T1 69 134 233 379 582 848
T2 60 103 162 243 354 503
T3 23 45 78 131 211 324

offline phase of our ROM defines RB functions in each of these building blocks Q;. The
snapshots are collected from a single decomposed “artificial” geometry Q™ = UjV:Ql €
by sampling the geometrical parameters Hopsees By describing each subdomain from
uniform distributions centered on the values characterizing the original configuration,
as depicted in Fig. 4.7. The snapshots are found by solving a flow problem with pf =

1s~1 the imposed inflow flow rate @ shown in Fig. 4.7

1.06 grem ™3, pug = 0.04 grem™
(in the box on the left; y-axis: @ [cc/s|, xz-axis: ¢ [s]) with a parabolic profile and
homogeneous Neumann conditions h = 0 on the outlets, on 165 random configurations
of the artificial geometry. There exist other equally valid possibilities to generate the
database of snapshots. For example, these could be taken by solving flow problems on
a collection of target geometries. This approach allows us to avoid issues related to
the random sampling of the geometrical parameters—e.g., physiological feasibility of
the resulting global geometry—Dbut requires the aid of an automatic algorithm for the
decomposition to be efficient. The development of such an algorithm is one of the possible
future extensions of the present work. The simulations are run from tg =0sto 7 =0.3 s
with a BDF scheme of order ¢ = 2 and At = 2.5- 1073 s. The initial condition at ¢,
is computed by gradually increasing the inflow flow rate profile at the inlet by the law
Q(t) = Qo[1 — cos((t —t5™™)m/(to — t5"))]/2, Qo being the desired flow rate at time ¢,
from t = 5" = -2 1072 s to t = to. For the discretization of the Lagrange multipliers
on each interface, we employ the set of basis functions én with n = 5, which corresponds
to Nf = 63 basis functions. We remark that the Artificial geometry in Fig. 4.7 is not
included in the configurations used for the snapshots generation and is considered in

Section 5.2 to assess the performance of the method.

The N ; snapshots for velocity and pressure for the ith building block are collected in
matrices S’\M € RNui*Nsi and §p,’i e RNpi*Nei | We remark that, since we are dealing
with unsteady problems, these matrices include snapshots sampled at different timesteps
for different values of the geometrical parameters. It is worth noting that each velocity
snapshot, which is divergence free in the deformed configuration, does not retain such
property on the reference building block. In order to consider snapshots which are
divergence-free in the reference configuration, the columns of §u, are scaled by means
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--‘
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!

Figure 4.8 — First four modes of velocity (left) and pressure (right) for the four building
blocks. From top to bottom: bifurcation (B), tubes with aspect ratio length/diameter 1:1
(T1), 1:2 (T2) and 1:3 (T3).

Table 4.2 — Pressure RB sizes N,; with respect to different POD tolerances ¢, for
4 different building blocks (B: bifurcation, T1, T2 and T3: tubes with aspect ratios
diameter /length 1:1, 1:2, 1:3, respectively).

€p
8-107° 4.-107° 2-107° 10°°
B 82 131 189 265
T1 54 86 133 198
T2 59 92 131 181
T3 29 45 66 95

of the divergence-preserving Piola transformation, which is defined as explained in
Section 3.3.1.

Remark 4.7. In Section 4.2.1 we describe how the nonaffine deformation ¢, (+; Ej) is
defined in analytic form for the tubes. Consequently, for those building blocks, the
Jacobian is computed exactly (although, due to the reasons discussed in Remark 3.4 and
Remark 4.4, the output of the Piola transformation is only approximately divergence-free
in practice). The nonaffine deformation of the bifurcation is performed by prescribing
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4.4. The Reduced Basis Element method for flow in arteries

the position of the outlets in the physical configuration and by solving a linear elasticity

problem such that the displacement field operates the desired rotation of such interfaces.

Due to the complications of the evaluation of the Jacobian at the mesh nodes, in the

bifurcation we consider J(%j)_1(x; Bj) ~ I. This simplification is also justified by the

fact that, for the bifurcation, we restrict ourselves to small deformations.

The basis matrices V,; = [Eh ... \Eh ] e RNui*Nusi and V,; = m" .. ] J €
’ 21, 2Ny,ist bt 11,5

p7,7
RV:i*Nei are constructed by POD as described in Section 3.2.1 by considering two

tolerances ¢, and ¢, for every building block. The columns of YA/M and ‘A/p,i are made
orthonormal with respect to )?31 (matrix discretization of the H' norm on the i*? reference
building block) and )?g ; (matrix discretization of the L? norm on the i'P reference building
block) respectively, by following the procedure presented in Remark 3.1. The first four
modes of velocity and pressure for each building block are depicted in Fig. 4.8. We also
introduce the local basis matrices V, ;, which are obtained by applylng to each column
of Vu »; the Piola transformation from the reference configuration Q to the physical
one ); (being dependent on the geometrical parameters M, these rnust be computed
during the online phase). Table 4.1 and Table 4.2 report the size of the reduced bases for
velocity and pressure in the Ny, = 4 building blocks composing the artificial geometry
used for the data generation. We denote by B the bifurcation, and by T1, T2 and T3
tubes with aspect ratios diameter/length 1:1, 1:2, 1:3, respectively. The reduced bases
were generated from Ny = 2/640, Ny 11 = 7920, Ny1o = 7920 and N, 13 = 5280
snapshots. Moreover, the FE spaces for each of these building blocks have the following
sizes: N'y = 76'974, N}y = 3/552, N}y = 42'708, N]', = 2/162, N}y, = 76416,
N;L’TQ = 3 830, NhT3 = 103728, NhT3 = 5211. Although the RB sizes are considerably
smaller than the FE ones, the number of basis functions needed to achieve low POD
tolerances is substantial. This indicates that the amount of information carried by the
snapshots impedes the reduction of the problem. The basis size could be decreased by
considering narrower sampling intervals for the geometrical parameters describing each
building block. However, as in Section 5.3 and Section 5.4 we test the ability of the
same reduced basis to generalize to the case of geometries which are not considered in
the offline phase, here we decide to allow for significant deviations of the configurations
from the original geometry during the snapshots generation. It is worth noting that,
in order to decrease the already high computational burden of the offline phase, we
settle for a number of configurations (165) that is possibly too limited to capture the
geometrical variability we consider in the dataset (see Fig. 4.7 for examples of some the
configurations). As we verify in Section 5.2, the errors that we obtain in the online phase
are—although sufficiently low for most cardiovascular applications—considerably larger
than the POD tolerance.
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4.4.1 Supremizers for pressure and coupling Lagrange multipliers

We recall that the Navier—Stokes equations represent an example of saddle-point equa-
tions and that this class of problems is associated with stability issues related to the
discretization spaces employed for the primal and dual fields (velocity and pressure,
respectively). Furthermore, the global system obtained from the nonconforming method
introduced in Section 4.2.3 is also a saddle-point problem where the velocity and the
Lagrange multipliers play the role of the primal and dual fields, respectively. In this
work, we recover the well-posedness of the reduced global problem by enriching the
velocity reduced basis by supremizers that allow us to satisfy the inf-sup condition. This
procedure is formalized in Section 3.4; here, we contextualize it for the specific problem
of the coupling of the reduced Navier—Stokes equations on modular geometries.

Let us consider W4.1, which we assume to be well-posed in the continuous setting. We first
address the stability with respect to the constraint imposed by the pressure (divergence
free velocity). At the FE level, the inf-sup condition requires the existence of Bh eR
such that, for all j =1,..., Nq,

TDhy
= inf sup a2

— >0,
a7#0 y=£0 ||Vth||CIHQh

Bpi
: T yh h T yh h
where we used the notation [lv[|» = v* X,; ;v = [[v"|}, and HpHQh =p X, ,;p=1p"lo;
Taylor-Hood elements [HT74] are an example of stable choice of elements ensuring that
B > 0, as mentioned in Section 1.4.3. In the RB context, we introduce

such that ||!N||VJN = v X[v and ||pNHQN =p'X)\p, and DY = (XA/p,Zj)TD?Vu,j. The
inf-sup condition becomes
TDN

= inf sup ——— > 0.
q#0 v;éO HVHVN”qHQN

N.

D,
The main idea of supremizers enrichment is to augment the reduced basis for the velocity
with vectors (the supremizers) specifically computed from the pressure modes to ensure
the positivity of the inf-sup constant [Roz05]. In order to ensure the efficiency of the
offline phase, we adopt the approximate approach in Section 3.4; the equation to be
solved for each supremizer s ;€ RV is the counterpart of Eq (3.14) for the case of
pressure stabilization in the multl—domaln context, namely, for j =1,..., N, ;,

Xh ’\h (Dh )T,ﬁh

uw ZJ*W 2j/ Li,j

where X/ ; and DQJ_ are the norm and divergence matrices assembled on the reference
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4.4. The Reduced Basis Element method for flow in arteries

domain, and 7 77 i are the pressure modes. The coupling stabilization is performed by
following the same procedure. In particular, in this case the problems to be solved for
each reference building block QZ read

= ) ) ’h(s
Xu2ly " = (B e,

forl =1,.. N‘S Vector zy;l] h

matrix assembled on Qi discretizing the coupling with the m™ interface (specifically,
if Q; is a tube m = 1,2, whereas if it is a bifurcation m > 2) and e; € RM is the

ith canonic vector. As discussed in Section 3.4, we assume that adopting the enriched

basis VT

u,j?

Nk, . . . 5 .
€ R is the i coupling supremizer, Bz[m]’h(s is the

which includes the RB velocity functions E the pressure supremizers /s\?j

and the coupling supremizers z[ mhh for every m, ensures that p’j > 0 and B/[C;]’Né >0
(here, B[m] N is the inf-sup Constant for the coupling problem on the m™ interface).
These speculations are supported by the empirical evidence that the linear systems we
consider in Chapter 5, which are obtained by following this stabilization strategy, are
well-conditioned. In the following, we simply denote by ‘A/M the enriched basis matrix for
the velocity in Qi; the enriched basis XA/M is made orthonormal with respect to )A(Zfl with
the Gram—Schmidt algorithm.

4.4.2 Assembly and solution of the global reduced system

Let us recall that the velocity basis Vu,zj needs to be scaled by the Piola transformation
to be employed in every subdomain in their physical setting €);, for j = 1,..., Ng. Hence,
the basis matrix for the j*" subdomain is denoted Vu,j (i-e., without hat notation, as it
is referred to the deformed configuration). Let us define the global basis matrix

W .= diag [Vu’j

%7?}‘
j=1,...,.Nq

the matrices
MY = WITMMW, AV WY) = WT AP WwwWN YW, BN .= BMy,

the vector of reduced dofs for all the subdomains WY = vec(w}, .. w%ﬂ), and the
vectors encoding the data FY := WTF" and G := G". Matrices MN and AN (WY)
have been defined in Eq. (4.13). Then, the reduced residual at timestep ¢ is obtained
from Eq. (4.14) and reads

ag
. N6
RY(YY) = HNYRR = " ay MY — ABE (t1, Y1) = O,
j=1
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where

N
HY = [M ] V0, YNy =

/\5

9

QN§(t) BN6

FN(t)] B [AN(WN) (BN6)T] [WN

and YNO .= vec(wN,A‘s).

As discussed in Section 4.3, finding the root of nonlinear equations using the Newton—
Raphson algorithm entails the solution of a nonlinear system in the tangent matrix of
the corresponding residual. Formally, solving RV (Y) = 0 given an initial guess Y@ Jeads
to the iterative algorithm

YO+ — v _ <3RN (Y(l))>_1 RY (YO,

which is equivalent to Eq.(4.15) in the reduced context.

The efficiency of the reduction relies on the fast assembly of the tangent matrix Jgr and
residual R". Regarding the former, we consider the following approximation

Tr = : (4.20)

MY+ AtBAY, AtB(BN)T
AtpBNS

where

: K" (DMT
'AIJX’I = WTAHHW, Alin = dlag [Djh ( ]) ] ’
] .
j:l,..‘,NQ

is the matrix obtained by neglecting the convective terms in the Navier—Stokes equations.
We remark that the reduced tangent matrix features a saddle-point structure as its full
order counterpart in Eq. (4.16). Therefore, system J, v XY = BY can be solved directly
by applying the reduced version of Eq. (4.18). The advantages of this approach are: (i)
the tangent matrix jRN is never entirely allocated, because every stage for applying
Eq. (4.18) involves operations that are local to either subdomains or interfaces (we
recall that inverting Ay, amounts to inverting each of its diagonal blocks), (ii) as a
result of approximation (4.20), the tangent matrix is the same for every solution of the
linear system; hence the reduced Schur complement is assembled only once and it can
be factorized—along with the other local matrices to be inverted—at the start of the
simulation. The linearized version of the tangent matrix (4.20) is nonconsistent, which
implies that the Newton—Raphson algorithm is not expected to convergence quadratically.
However, the reduced complexity of the assembly results in a considerable performance
gain overall.

The problematic part of the computation of RY (Y) is evidently the nonlinear term, as
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Figure 4.9 — Average over time of the RB velocity solutions—mnormalized with respect to
the first coefficient—in the four building blocks with &, = 4- 1073 and Ep=28- 10~°. The
left and right dashed lines in every plot correspond to the indices 40 and 120.

the matrices encoding the linear ones are computed only once and the corresponding
contributions are found at each timestep by inexpensive matrix-vector multiplications.
After trivial but repetitious steps, we find that the blocks of the nonlinear part of the
reduced residual read, for all j =1,..., Ng,

e = Ve (Vugu)) viul. (4.21)

One way to compute the nonlinear term for every block is then to assemble the full
order nonlinear term C(V,, ju’ )Vu,jgév and to project it onto the reduced space. Another
strategy is based on the decomposition

Nu,zj Nu,zj

=3 S k() = /Q | [(g;w.v) ({j]} ch. (4.22)

=1 m=1 J

The vectors k%m are independent of the reduced solution and can be computed as a
setup step in the first stages of the simulation. However, the amount of computation
increases quadratically with the size of the reduced basis and could therefore nullify the
performance gain. Using the fact that the velocity modes in V,, ; are sorted in order of
significance as a consequence of Proposition 3.1, it is legitimate to consider the following

approximation
Nc 24 Nc,Zj
N . N, N N
¢ ~ U Um,Kim, - (4.23)
=1 m=1
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Chapter 4. Modular Model Order Reduction of blood flow

where 0 < N¢,, < Ny ;. In other words, the observation that the magnitude of the
reduced coefficients us] quickly decreases as i increases—as we show in Fig. 4.9 for the
case of one of the simulations presented in Section 5.2—allows to truncate the two sums
in Eq. (4.22) to the first N, ; terms. In the numerical results in Chapter 5 we investigate
the effects of considering both Eq. (4.21) and Eq. (4.23) for the computation of the
convective part of the residual.

4.5 Concluding remarks

We presented an implementation of the RBE method for the solution of the unsteady 3D
Navier—Stokes equations in the context of cardiovascular simulations. We first considered
the problem of coupling FE solutions defined on subdomains obtained from parametrized
geometrical deformations of reference building blocks. This was necessary, as the offline
phase of our ROM requires the generation of snapshots from coupled FE flow solutions
obtained on a variety of geometries. In order to improve the efficiency of the coupled FE
solver, we devised an ad-hoc preconditioner which takes advantage of the saddle-point
structure of the discretized linear system. In the following parts of the chapter, we
formulated the ROM by projecting the matrices and variables (velocity and pressure)
onto the RB spaces. This procedure is beneficial because it allows us to considerably
reduce the number of dofs (hence, the size of the linear system to be solved at each
iteration of the Newton—Raphson algorithm).

Fig. 4.10 and Fig. 4.11 summarize the geometrical approximation, setup, and solve
phases of the method in two flow charts. In Fig. 4.10 we show how, given a new target
geometry, the first step of the technique computes a geometrical approximation based on
the predefined building blocks. A greedy algorithm to accomplish this is presented in
Section 5.1. After that step, the reduced bases (precomputed during the offline stage) are
loaded, and the velocity basis is scaled by the Piola transformation. In case one decided
to optimize the computation of the nonlinear term through the procedure described
in Section 4.4.2, it is necessary to compute terms kfxm- in all the subdomains €2; and
for all | < Nc.; and m < Nc... In the remaining part of the setup phase, the RB
matrices are computed either by MDEIM (which, in this thesis, we do not consider)
or by computing the FE element counterparts and projecting them onto the RB space.
It is worth noting that both the computation of terms K{Xm and the RB matrices are
computationally demanding. The solve phase shown in Fig. 4.10 is essentially composed
of an outer loop over the timesteps and an inner one in which the residual of the reduced
Navier—Stokes equations is evaluated, and the current solution is updated according to
the Newton—Raphson algorithm. Being that this latter step requires the solution of a
linear system in the Jacobian matrix, the gain of performance coming from the reduced
dimensionality of the system is achieved in this particular phase of the method. We
also highlight that, depending on the availability of terms kljyn’j, the computation of the
convective term can be made considerably less expensive as discussed in Section 4.4.2.
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Figure 4.10 — Flowchart of the geometrical approximation and setup phases of the method.
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51 Results on artificial and physio-
logical geometries

In the previous chapter, we presented a reduced order technique for cardiovascular
simulations based on the geometrical decomposition of blood vessels into a number of
subdomains. Each of these is equipped with its own set of RB functions, which are used
during the online phase of the method to reconstruct the local solutions. Thus, there
coexist two separate levels of approximations: the first is due to the RB projection, while
the second is related to the geometrical simplification of the domain.

The present chapter focuses on the analysis of the performance of the ROM in terms of
both discretization and geometrical errors, as well as on the efficiency gain with respect
to the FE method. We are also interested in extending the method to the general case of
FE-RB coupling. Specifically, we wish to test the applicability of the reduction strategy
in scenarios where a small number of subdomains is discretized by means of the FE
method. The motivation to consider such a possibility is that, in certain cases, a specific
area of the geometry needs to be modeled with particular care (either from the point of
view of the richness of the functional space or that of the geometry itself). For example,
this could occur in geometries with abnormalities (e.g., stenoses), which can hardly be
represented by a predefined set of geometrical building blocks.

The chapter is structured as follows. In Section 5.1, we present the greedy algorithm
for the generation of modular geometries that has been used to approximate some of
the geometries considered in the numerical simulations. Then, we devise three different
numerical simulations to address each of the questions mentioned above. In Section 5.2,
we consider the same modular artificial geometry employed in the offline phase presented
in Section 4.4, and we compare the results obtained by solving the flow problem using the
RB and the FE methods. The advantage here is that we are able to rigorously compute
the H! and L? error of velocity and pressure, respectively, being that the computational
mesh is the same in the reference and reduced solutions. In Section 5.3, we consider a
simple but more physiological geometry of an aorta and the two iliac arteries. In this case,
we compare the results obtained with the RB method against the ones obtained on a
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Chapter 5. Results on artificial and physiological geometries

reference geometry (i.e., not partitioned into approximated subdomains) with SimVascular
[UWMT17]. Finally, in Section 5.4 we consider a geometry (an aortic arch with carotid
and subclavian arteries) in which the bifurcations are not well approximated by the
reference one. Therefore, the bifurcations here are treated by the FE method.

Ls~1 and we consider

For all the simultations, we fix p; = 1.06 grem =3, py = 0.04 grem™
the same choice for the discrete Lagrange multipliers space as in the snapshot generation
phase presented in Section 4.4 (i.e. N /‘\5 = 63 for each interface). Importantly, we choose
to employ the same set of RB basis functions computed in the offline phase described in
Section 4.4 in all the test cases in this chapter. This is motivated by the perspective of
employing the method in realistic scenarios which may be considerably different from

the ones explored during the offline phase.

The results presented in Section 5.2 and Section 5.3 are taken from [PPMD20].

5.1 Automatic generation of modular geometries

We present in this section, the algorithm that has been developed for the generation of the
physiological geometries considered in Section 5.3 and Section 5.4. Although not optimal
from the accuracy standpoint, this algorithm is based on an efficient greedy strategy,
which allows us to generate approximated geometries with a negligible computational
effort.

Before delving into the details of our approach, in Section 5.1.1 we recall the basics of
the typical pipeline that is commonly followed in practice to generate computational
meshes out of medical images. Then, in Section 5.1.2 we describe the main features of our
greedy algorithm. Finally, in Section 5.1.3 we expose the limitations of the approach and
possible alternative ways to tackle the problem of the automatic generation of modular

geometries.

5.1.1 Generation of meshes for cardiovascular simulations

The typical pipeline for the generation of meshes for cardiovascular simulations starts with
medical images of the region to be modeled. These are usually large files obtained from
standard imaging techniques—such as computed tomography (CT) or magnetic resonance
imaging (MRI)—which are commonly stored in Digital Imaging and Communications in
Medicine (DICOM) format.

Given the medical image of interest, the computational mesh is generated in four steps.

1. The first step is the identification of the centerlines of the vessel(s) that compose
the cardiovascular district of interest. This process is usually performed manually
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5.1. Automatic generation of modular geometries

and requires determining a set of points that will be marked as members of the
centerline. The centerline is then found as interpolation of these manually defined
points, for example, by using B-Splines.

2. Once the centerlines are defined, the next step is the so-called segmentation stage.
During this process, a number of sections of the computational domain are identified
along the centerlines. Even in this case, each section is usually found by interpolating
some contour points specified by the users. Automatic algorithms for segmentation
based on Neural Networks have been recently proposed and have shown great
promise in achieving results close to human precision in a fraction of the required
time [MWM19, Mah20, MFSM20].

3. The contours defined during the segmentation stages are lofted to generate a single
Computer-Aided Design (CAD) model, usually by a B-Splines- or NURBS-based
approach.

4. Finally, the computational mesh is generated out of the CAD model by automatic
algorithms. We refer to TetGen [Sil5] for an example of software implementing one
of such algorithms based on Delaunay triangulations.

The entire pipeline is summarized in Fig. 5.1, where we show the output generated by
SimVascular [UWM™17] when generating the mesh for a geometry of an aorta, carotids
and subclavian artery.

5.1.2 A greedy algorithm for geometric assembly

We take advantage of the centerline and contours generated during the first two steps
of the procedure presented in the previous section to devise an efficient algorithm to
assemble the building blocks representing the vascular district in an optimal manner.
The algorithm is described as greedy because the choices made at each step are only
locally optimal.

Initially, the centerlines are used to identify the locations of the bifurcations. We do not
focus on the details of the algorithm for what concerns the optimal placement of these
building blocks. From a high-level perspective, in the case of parametrized bifurcations
(such as the one considered in Section 5.3), the orientation and geometrical parameters
p are determined by finding the position of the desired inlet and the desired outlets and
by identifying the optimal choice of parameters through an optimization process similar
to the one discussed in the following for the tubes. In case the bifurcations are directly
taken from the geometry of interest (such is the case for the simulation presented in
Section 5.4), the subdomain is already placed in the optimal location, and no further
optimization is needed.
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Figure 5.1 — Pipeline for the generation of meshes in cardiovascular simulations. From
left to right and from top to bottom: centerline generation, segmentation, model lofting,

and mesh generation.
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5.1. Automatic generation of modular geometries

Once the bifurcations are in the correct position, these need to be connected through
deformed tubes that mimic the model geometry. We follow a greedy algorithm in which
the tubes are placed sequentially starting from the first target interface; the advantages
and drawbacks of this choice are discussed in Section 5.1.3. After the first tube is placed
in a way that certain conditions—which will be discussed in the following—are satisfied,
the second tube is positioned such that its inlet interface matches the outlet interface of
the first one, and so on. Finally, the last tube is placed so that its outlet corresponds to
either a physical outlet or the interface of a bifurcation that has been previously placed.
The core of this strategy are the conditions that the tubes need to satisfy in the physical
configuration, which is the topic of the rest of this section.

To formalize the algorithm, we consider the following setting. Let z(t) : R — R3 a
curve modeling the centerline of the vessel. We associate with every point t € R a
circular interface I'(t) € R3 with radius R(t); I'(t) is centered in z(¢) and is oriented
perpendicularly with respect to the tangent z(t) to the curve in t. These circular interfaces
model the contours extracted during the segmentation phase.

Remark 5.1. The contours extracted during the segmentation phase are not perfect
circles. Given the contour at coordinate ¢, we approximate R(t) as the average distance
between each point of the contour and the corresponding centerline point. Moreover, the
contours are only available at a discrete set of points along the centerline of the vessel.
The continuous function R(-) can be obtained, for example, through interpolation of the
values R(t1),...,R(ts) (where t; are the coordinates of the contours in the arclength).
We consider linear interpolation, but more sophisticated approaches are also possible.

We introduce the tube Qr(u) = @((AZT; ), which is obtained from the parametrized
deformation of a reference tube QT. As explained in Section 4.2, we focus on geometrical
maps of the form

B p) = Q)R 1) + t(p), VX € O,

where Q(p) € R**3 is a rotation matrix, t(p) € R? is a translation vector, and ¢(-; p) is a
nonaffine transformation. The tube in the deformed configuration Q1 () is characterized
by an inlet face I'j, and an outlet face I'oy; we recall that (- H) takes the form
@(5 1) = pu(; p2, u3) 0 ps(-; p1, p2), as described in Section 4.2.1, and that it is designed
to preserve circular faces for every value of the parameter p. Parameters ju1, 2 and pg3

model the deformation in the outlet radius, arclength and bending angle, respectively.

Let us consider the following problem. Given an interface I'(¢i,), we wish to find the
values of the parameter p such that

Fin(ﬁ) = I‘(tin)
and such that Iou(p) is sufficiently close to I'(t), for some value ¢ € R. The condition
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Figure 5.2 — After the tube is rotated, scaled and translated so that Ty, = T'(¢;,) is
satisfied, the two remaining parameters (the rotation angle along its axis a and the
bending angle pu3) are determined such that the center and the normal of the outlet T'oyt

approximately match the centerline point z(t) and the tangent z(t).

on the inlet interface is readily satisfied, as it is easy to determine p such that Q(u) and
t(p) perform the desired rotation, scaling and translation.

Remark 5.2. Due to the axial symmetry of the interface I'i, (), there exists an additional
free degree of freedom o which represents the rotation of the tube about its axis. This
parameter is fixed in the remainder of the algorithm.

The condition on the outlet face I'gyt (H) needs to be addressed with greater care. We
recall that maps (4.2) and (4.3) are such that, upon application of the nonaffine function
®(+; p), the archlength of the tube is unchanged (let us denote this quantity L). We
assume that parameter po, which controls the scaling in the longitudinal direction, does
not play any role at the moment. Its importance will be highlighted in the following.
Therefore, after the affine transformation mapping I'iy(pt) into I'(¢i,), it is possible to
find ¢ by looking for the point at distance L from z(ty, ). Parameter y; (i.e. the parameter
which controls the radius in the deformed configuration) is then determined by R(%).
Then, the value of the geometrical parameters g which have not been determined yet
(namely, the bending angle ps and the rotational angle av about the normal of interface

[in, as shown in Fig. 5.2) are found by solving the optimization problem

O (Cout; [11; f1]) — z(t d(n ;~;°T2t
7 G I L R

T heb 1Z()]l2 1Z()]l2
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where Couy and Ny are center and normal of the outlet face r out 1N the reference
configuration, ft = [u3, ] and @ = p \ @1 (the latter is the set of all parameters which,
at this stage, have already been fixed), and K; € R and K3 € R are two positive hyper-
parameters to be tuned. Therefore, the bending and rotational angles are determined
by ensuring that the center of the outlet face is close to the target point z(%v) and that
its normal is nearly parallel to the tangent of the centerline. The optimization problem
can be numerically solved, for example, by employing the gradient descent method
[BB88, GBC16]. We remark that the Jacobian of the functional to be minimized can be
efficiently approximated by finite differences, as the optimization problem is defined on

only two parameters and every evaluation of the functional itself is inexpensive.

The last parameter which has not been discussed yet, i.e., pu2, controls the shortening
or stretching of the tube in the longitudinal direction. This parameter plays a role only
when the last tube in a particular segment with no bifurcations is placed. Specifically,
whenever the target point z(t) is close to the final outlet of the region to be reconstructed,
the length of the tube is scaled so that the outlet 'yt is approximately coincident with

such final outlet.

5.1.3 Limitations and alternatives

The method discussed in Section 5.1.2 allows us to efficiently “fill the gap” between two
interfaces in the target vessel with tubes that approximately follow the centerline and the
radius of the actual geometry. However, this approach suffers from several disadvantages.

Firstly, by sequentially placing the tubes in a greedy fashion, there is no guarantee that,
at each stage, the choices made in the previous ones are optimal. In particular, even if
we did not discuss this possibility in this section, the library of building blocks might
be composed of tubes with different aspect ratios (such is the case, for example, in the
numerical simulations in Chapter 5), and, whenever a new tube needs to be placed,
we are faced with the choice of the best building block for that particular section of
the vessel. Even if one choice could be optimal locally, this does not imply the global
optimality of the final result.

Secondly, the objective of the algorithm is to maximize the similarity between the center
and normals of the tubes and the points in the centerline and its tangent. However,
these optimization problems are only based on quantities defined in a very sparse set of
locations along the centerlines, and, as a result, the tubes do not account for variations
from the target geometry within the inlet and outlet.

We believe that the first limitation could be overcome by adopting a decision tree-based
strategy [RMO05], which would allow us to explore the landscape of possibilities in a much
more exhaustive way compared to the greedy approach. At each step of the algorithm,
whenever a choice—e.g., which type of tube should be used—is made, a new branch of
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the decision tree is created. Each leaf of the decision tree is associated with a certain
value of a functional to be optimized (based on some feature of the approximated and
target geometries), and at the end of the algorithm, the best choice is selected according
to the value of such functional. This ultimately leads to a final decision that is more
informed and optimal in the set of possibilities considering while exploring the tree.

Finally, the second drawback could be overcome by considering a second layer of op-
timization which would take into account the whole set of geometrical parameters M.
After the first approximated geometry is generated by the greedy algorithm, we would
define the optimal set of geometrical parameters M as the solution of the optimization
problem

M = argmin J(Q™(M),Q)

No
MEIL 21 Di

where functional (2™, ) could be defined, for example, as

Q\ (Q"(M)NQ
s, < 2L
(here, notation | - | indicates the measure of the set, namely its volume). This additional

step would allow to modify Q™(M) to account for the similarity with the original
geometry ). However, the evaluation of functionals depending on the volume of 2 and
Q™(M) is considerably expensive, and the fact that the optimization problem depends
on the whole set of parameters M makes the computation of the Jacobian by finite
differences in this scenario unfeasible. Therefore, such a strategy would represent a viable
alternative to the sole greedy algorithm only in the presence of efficient ways to evaluate
the discrepancy between Q™ (M) and €.

5.2 Online phase on an artificial geometry

We evaluate the performance of our ROM on the artificial problem employed for the
generation of the reduced basis. We recall that the Artificial geometry in Fig. 4.7, which
is not included in the set of 165 configurations used to produce the snapshots, is a
legitimate candidate to test the accuracy on geometries not “seen” in the offline phase.
The solution by the RB method is compared to the global solution obtained by considering
FE solutions in each subdomain (with the same meshes used in the RB case) coupled
with the discretization strategy presented in Section 4.2.3. We consider the same choice
for the discrete Lagrange multipliers space as in the snapshot generation phase. The
reasons for considering such comparison are the following: (i) being that the geometry
is exactly the same, it is possible to easily compute H! and L? errors for velocity and
pressure in order to verify the convergence of the RB approximation with respect to
the FE one, and (ii) it is feasible to fairly discuss the speedup achieved by the RB
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Figure 5.3 — The left and right columns—each composed of two sub-columns of plots—
refer to time ¢ = 0.15 s and ¢t = 0.25 s, respectively. First row: velocity magnitude volume
plot of the RB solution (sub-column left) and magnitude of the point-wise velocity error
w.r.t. the FE solution (sub-column right). Second row: pressure plot of the RB solution
(sub-column left) and absolute value of the point-wise pressure error w.r.t. the FE solution
(sub-column right). Third row: magnitude of the WSS of the RB solution (sub-column
left) and magnitude of the point-wise WSS error w.r.t. the FE solution (sub-column
right). The RB solution corresponds to the choice £, = 1073 and gp =102,
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Figure 5.4 — Error in velocity e, (left) and error in pressure e, (right), computed as in
Eq. (5.1), in function of the POD tolerances for velocity and pressure €, and €.

method, as the RB and FE solutions share the same computational mesh. As for the
generation of the reduced basis, we consider tg = 0s, T' = 0.3 s, and a second-order
BDF scheme with At = 2.5-1072 s. The boundary conditions are the same as the ones
shown in Fig. 4.7; therefore, by considering the mean velocity and diameter of the inlet
as characteristic velocity and dimension of the problem, the Reynolds number is about
Re = 150. Fig. 5.3 shows, in the first two rows, the magnitude of the velocity field and
pressure distribution at times ¢ = 0.15 s and ¢t = 0.25 s obtained with the RB method
and the corresponding point-wise errors with respect to the FE solution. The POD
tolerances in every subdomain have been set to ¢, = 1073 and ¢, = 1075. We observe
that, despite the global mesh being nonconforming, the velocity and pressure appear to
be quite smooth at the interfaces. The comparison with the FE solution highlights the
fact that the largest errors are committed in the region of the bifurcation. This is likely
due to the fact that, as discussed in Section 4.4, the reduced basis for the corresponding
building block (B) is based on a smaller number of snapshots. However, the RB and the
FE solutions match quite accurately overall, as the relative error is negligible in every
part of the domain. The last row of Fig. 5.3 depicts the distribution of the magnitude of
the WSS on the boundary of the artery in the RB solution and the magnitude of the
error with respect to the FE one. The influence of the coupling is noticeable: indeed, it
is clearly possible to spot the interfaces as regions with abnormally low or high WSS.
However, this effect is not due to the RB approximation but rather to the coupling
strategy: indeed, the RB and FE approximations are extremely close, as proven by the
small magnitude of the error on the WSS.

Fig. 5.4 shows the H! and L? relative errors in velocity and pressure integrated in time,
defined as

T T
2 = fO ”uh - uN”Qb,V 2 fo th _pNH%,Q

u = T 6= T
Jo ™2y Jo 12"

; (5.1)
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5.2. Online phase on an artificial geometry

Table 5.1 — Overall speedups w.r.t. the FE solution and, in parenthesis, speedups of the
solve part of the online phase, i.e. speedup relative to the total running time excluding
the setup part in which the reduced bases are loaded and the constant matrices are
assembled and projected onto the reduced spaces.

ep\ew,  1.6-1072 8-.107% 4.107% 2.107% 1-107% 5.1074

8-107°  33(50)  30(48) 26(43) 22(39) 17(32)  14(31)
4.1075  27(46)  25(44)  23(38)  21(38) 17(35)  13(30)
2.107°  28(45)  26(43) 23(41) 28(38) 15(33)  12(28)
1-1075  26(45)  25(44) 22(41)  17(33)  14(30)  12(29)

where HuH%y = Zfiﬂl Hujuqul(gj) and HPH%Q = Efiﬂl Hij%Q(Qj) are the broken norms.
The errors are plotted as functions of the velocity and pressure POD tolerances ¢,
and ¢, highlighting the convergence of the RB solution to the FE one as the reduced
basis size increases. Clearly, €, and €, both contribute to the errors in velocity and
pressure. Indeed, for large ¢,, e, and e, set on a plateau as €, decreases, indicating
that the error in the pressure is dominating the error in the velocity. For each data
point in Fig. 5.4, the corresponding speedup is reported in Table 5.1; both the full order
and reduced solutions are computed on a single core. The runtime of the reference FE
solution—which is composed of 641’502 dofs for velocity and pressure and 567 dofs for
the Lagrange multipliers—is 66’892 s (~ 18.5 hours). The speedups are relative to the
total runtime and, in parentheses, to the part of the online phase after the initial setup
(which include the loading of the reduced basis, the assembly of the constant matrices,
and their projection onto the reduced spaces, as shown in Fig. 4.10). The motivations
to consider both speedups are twofold. Firstly, in this thesis, we do not focus on the
optimization of the assembly part of the system, which could considerably increase
the total speedup; such optimization could be carried out, for example, by employing
(M)DEIM, as mentioned in Section 3.2.2. Secondly, the setup part of the RB algorithm
is particular to the geometry we are interested in. As a matter of fact, should we be
interested in solving flow problems corresponding to different boundary conditions and/or
fluid properties but on the same geometry of a specific patient, the setup phase can be
executed only once, and for each solution of the reduced system we take advantage of
the speedups relative to the only solve phase. The gain in performance is in all cases
quite substantial (at least one order of magnitude with respect to the full order solution),
and we observe, as expected, the trend of increasing speedup as the size of the reduced
system decreases. However, the careful profiling of the simulation highlights that most
of the time of the solve phase is spent in the assembly of the reduced convective term
rather than in the actual solution of the reduced system. This is because, as discussed in
Section 4.4.2, the exact assembly of the reduced convective terms entails two projections
and the construction of the full order convective term.

With the purpose of achieving higher speedups during the solution time, we consider the
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Figure 5.5 — Errors of reduced velocity and pressure against the FE solution vs time.
The colored lines refer to different choices of N, for the approximation of the nonlinear
convective term. The black dashed lines show the reference errors obtained without
approximation of the convective term with &, = 4 - 1072 and Ep =8 1075 (which are the
same tolerances used in the simulations corresponding to the colored lines) and ¢, = 1073
and g, = 107°.
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distance (cm)

Figure 5.6 — On the left, qualitative comparison of the reference mesh with the decomposed
one. On the right, quantitative estimation of the distance between the two.

approximation of the convective term given in Eq. (4.23). Fig. 5.5 shows the absolute
and relative H' and L? errors in velocity and pressure over time in function of different
degrees of truncation of the convective term (i.e. different values of N, ., which we set
equal to N ., = N, for every subdomain). The achieved speedups are, from N, = 10 to
N, = 120 and using the same notation adopted in Table 5.1, 56(998), 36(620), 22(464),
10(313), 5(215). The POD tolerances are constant and take the values ¢, = 4 - 1072 and
ep=28- 107°. We remark that the values of N, are to be considered in relation with the
decay of the RB solutions shown in Fig. 4.9, which refer to the velocity coefficients of
the reference solution corresponding to €, = 4 - 1073 and g, = 8-107°. As expected, the
runtime of the solve phase is greatly decreased with respect to both the FE solution,
against which the speedup achieved is always higher than 200, and with respect to the
RB solution with the convective term computed as in Eq. (4.21). As N, increases, the
total speedup rapidly decreases due to the quadratic dependence on that parameter of
the number of integrals computed during the setup phase. Nevertheless, we believe that
this strategy for approximating the convective term is of great benefit whenever it is
required to run multiple simulations on the same geometry, as, in this scenario, the setup
phase is only performed once.

5.3 Online phase on the aorta and iliac arteries

We consider a physiological geometry of an aorta with the two iliac arteries'. Our goal
is to evaluate the effects of the geometrical approximation on the solution given by our
ROM. In order to do so, we employ the geometries depicted in Fig. 5.6. Specifically, on
the left we show the decomposed geometry along with the “exact” one. On the right, we

! A SimVascular tutorial based on the same geometry considered here is available on the software
website (http://simvascular.github.io/docsQuickGuide.html).
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provide a quantitative analysis of the difference between the two.

The flow problem consists of imposing the same inflow profile shown in Fig. 4.7 at the
inlet (the aorta) and homogeneous Neumann conditions to the outlets (the iliac arteries).
The Reynolds number, computed as in Section 5.2, is approximately Re = 105. We take
T = 1.5s (i.e. two heartbeats) and At = 1.25-1073s.

Remark 5.3. Although this numerical example and the one presented in Section 5.4 deal
with physiological geometries, the boundary conditions that we consider at the outlets
(homogeneous Neumann conditions) are not. In cardiovascular simulations, indeed, it is
customary to couple each outlet with models simulating the resistance of the cardiovascular
system. One possibility is to employ a 0D three-element Windkessel model. However, such
models are usually dependent on the flow rate at the corresponding outlet, which therefore
complicates the computation of the Navier—Stokes Jacobian by introducing additional
terms (since the boundary conditions themselves are nonlinear). Hence, in this study, we
limit ourselves to non-physiological boundary conditions. We refer, e.g., to [LYDM20] for
more information about the three-element Windkessel model and implementation details.

As already anticipated, the reference simulation is computed with the SimVascular solver
(svSolver). This software is based on the FE method with P1-P1 elements and VMS-
SUPG stabilization; see Section 1.5. It is therefore challenging to devise a fair comparison
between the ROM—which, we recall, is built upon a P2-P1 discretization—and the
reference solution in terms of efficiency and accuracy. Nevertheless, we provide for the
sake of completeness some data regarding the reference solution. This is computed on a
fine mesh (composed of 1823827 nodes) that is selected by studying the convergence of
the WSS on the boundary; the simulation using SimVascular took 46’457 s (~ 13 hours).
It is important to notice that, due to the large number of dofs, the reference simulation
with Simvascular is obtained on 28 cores; in fact, due to implementation details, the
software does not allow us to compute a single-core solution for this particular problem.
This is another element that complicates the comparison with our ROM, which, in the
current state, is not implemented in a parallel framework.

In Fig. 5.7, we show the qualitative comparison of the velocity field magnitude, pressure,
and WSS distribution on the wall at two different timesteps. The RB solution is obtained
with &, = 1073 and Ep = 10~°. We observe that, despite the differences in the employed
geometries and in the underlying numerical discretization, the solutions share similar
features. For instance, the pressure distribution is qualitatively almost identical, and
the ranges for velocity and WSS magnitude achieved in every region are comparable. It
is apparent, however, that most of the error (on the velocity magnitude in particular)
is in the vicinity of the bifurcation. Again, this is due to the fact that our choice of
geometrical parameters for the corresponding building block does not allow for the
reference bifurcation to be deformed into the target one with sufficient accuracy. For
example, Fig. 4.2 shows that we do not take into account the possibility of varying the
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Figure 5.7 — The left and right columns refer to time ¢ = 0.9 s and ¢ = 1.25 s. First row:
velocity magnitude volume plot of the RB and reference solutions. Second row: pressure
plot of the RB and reference solutions. Third row: magnitude of the WSS of the RB and
reference solutions. The RB solution corresponds to the choice £, = 1073 and Ep = 107,
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radii of the outlets, and this reflects in a large geometric error, particularly on one of the
branches, as depicted in Fig. 5.6 (bottom branch in the bottom right plot).

A more quantitative analysis of the performance of the ROM with respect to the reference
solution is presented in Fig. 5.8. Here, we show the average of the WSS magnitude over
the three regions highlighted in the figure on the left, the pressure at the inlet and the
flow rate at the outlets, for the reference solution and for RB solutions corresponding to
different choices of tolerances and truncations for the approximation of the nonlinear
term. We chose to focus on a “fine” RB solution (RB1), where we do not apply the
truncation of the convective term, and more “coarse” but efficient RB solutions with
the approximation of the convective term (RB2, RB3, RB4); for details regarding the
employed POD tolerances and the number of terms in the truncated sum, we refer the
reader to the caption of Fig. 5.8. The setup, solve and total runtimes in seconds for
these simulations—which are run, differently from the reference simulation, on a single
core—are the following: for RB1, 4’240+ 36"170 = 40’410 (~ 11 hours, speedup of 1.1), for
RB2, 19/382 4+ 4'760 = 24’142 (~ 6.5 hours, speedup of 2), for RB2, 7456 + 2398 = 9/854
(~ 2.5 hours, speedup of 5), for RB3, 1’816 4+ 3/774 = 5’590 (~ 1.5 hours, speedup of 8).
In all cases, we achieve speedups larger than one with respect to the reference simulation
obtained with SimVascular (although the gain is negligible in the case of RB1) but on a
single core instead of 28. From the results presented in Fig. 5.8, we note that, while the
approximation of the pressure and flow rate is extremely precise for all RB settings, the
performance on the WSS is more challenging. The curves for the average WSS in the two
regions on the iliac arteries (B and C) are quite close to the reference ones compared to
the average WSS on the bifurcation (A). However, this is likely an effect of the geometric
approximation rather than the accuracy of the ROM per se. As a matter of fact, we
already noted in Fig. 5.7 that the largest errors are located in that area. We also remark
that the POD tolerance plays a more dramatic role in the quality of the solution than the
number of terms retained in the truncated nonlinear term N.. Indeed, the simulations
with the smallest tolerances (RB1 and RB2) and the largest ones (RB3 and RB4) lead
to similar results, regardless of the value of N.. Nevertheless, truncating the convective
term is beneficial to the efficiency of the ROM.

5.4 Online phase on the aortic arch

We observed how, in the numerical example of the previous section, the bifurcation
is the region where the largest errors are committed. The reason is that mapping a
reference bifurcation onto the physical configuration with good accuracy is a non-trivial
task, even in relatively simple geometries such as the one of the aorta with the iliac
arteries. Therefore, in this section, we investigate the possibility of considering a small
number of “geometrically exact” subdomains while still performing a modular geometrical
approximation of the remaining parts of the target geometry. The meshes of the non
approximated blocks are obtained directly from the target model, and therefore a reduced
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Figure 5.8 — Average WSS (in dyn/cm?) on the three regions marked on the figure on
the left (top row), and pressure p (in dyn/cm?) and flow rates @ (in cm3/s) at inlet and
outlets, respectively (bottom row). The black dashed line refers to the reference solution
computed by SimVascular, whereas the 4 colored lines are obtained with different RB
settings. RB1: ¢, =4-1073, RB2: ¢, = 8- 1073 and N, = 80, RB3: ¢, = 6.4 - 1072 and
N. =40, RB4: &, = 6.4- 1072 and N, = 20. In all cases, g, = 107°.

basis defined on those subdomains is not available. Therefore, in those regions, we consider
a local FE approximation.

Remark 5.4. In this section, we are mostly concerned with demonstrating a proof of
concept. We do not focus on the speedup relative to a reference solution, as the current
implementation lacks the necessary level of refinement to make the RB-FE hybrid method
truly competitive. A particular challenge in this regard is the fact that, when dealing
with FE simulations, one often prefers to adopt a sparse representation of the matrices
so as to minimize the memory footprint and maximize the efficiency of basic algebraic
operations. In the RB context, the matrices are instead typically dense. Therefore, an
efficient resolution strategy needs to handle these two types of data structures with the
goal of minimizing the conversions from one matrix representation to the other.

We consider a physiological geometry of an aorta with carotid and subclavian arteries.
As shown in Fig. 5.9, the two bifurcations—one in the aortic arch and one in the
brachiocephalic artery separating the right carotid artery from the right subclavian
artery—are more complex than the one appearing in the previous section. Here we
choose to employ P1-P1 elements with SUPG stabilization, which has been introduced in
Section 1.5. This choice, combined with the fact that we consider coarse meshes in those
blocks, leads to a relatively small number of dofs. The aortic arch FE space is composed
of 17781 and 5’927 velocity and pressure dofs, whereas the fluid in the bifurcation of
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Descending aorta,

Figure 5.9 — On the left, geometry decomposed into blocks. On the right, pattern of
the global matrix (the dimensions of the individual blocks are in scale) when employing
the RB tolerances ¢, = 1072 and ¢, = 107°. LC: left common carotid artery. LS: left
subclavian artery. RC: right common carotid artery. RS: right subclavian artery.

the brachiocephalic artery is approximated with 4’590 and 1’530 dofs for velocity and
pressure, respectively. Hence, the total number of FE dofs is 29/828. As shown in Fig. 5.9
(right), this represents the large majority of the variables in the global system when all
the other blocks are approximated with the RB method. Indeed, by employing the POD
tolerances €, = 1073 and ¢, = 107°, the global system has size 40’300 + 945 = 41/245,
where 40’300 is the number of dofs associated to the primal variables (RB and FE dofs for
velocity and pressure in all the blocks) and 945 is the total number of coupling Lagrange
multiplier basis functions. A simulation with the same meshes in the RB subdomains but
in which these are discretized with P2-P1 FE elements would require a total of 1’081'670

dofs for velocity and pressure.

As in the previous numerical example, we consider Dirichlet boundary conditions on
the aortic root and homogeneous Neumann boundary conditions on the outlets. The
imposed flow rate profile is the same as in Section 5.3, which leads to a Reynolds number
of Re = 90. Regarding the time discretization, we employ a BDF scheme of order 2 with
At =1.25-1072 s; the simulation is run from tg =0 s to 7' = 1.5 s.

Remark 5.5. The Reynolds number we consider in this example is far from physiological,
as in the aorta it is common to observe Re = 5’000 or higher [SS76]. However, one of
the limitations of the current solver is that, as presented in Section 4.4.2, we employ a
nonconsistent approximation of the Jacobian of the global system residual in order to
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increase the efficiency of the online phase of the algorithm. However, our approach is
valid in regimes in which the convective phenomena are not prevalent; in such cases, the
Newton—Raphson algorithm converges. The accurate approximation of the blood flow
in turbulent regimes requires then to devise more sophisticated ways to compute the
Jacobian.

Fig. 5.10 shows the velocity field magnitude, pressure and WSS in two time instances
of the simulation. Some of the conclusions drawn in the previous case also apply here:
the velocity field appears qualitatively smooth at the interface—we remark that at the
interfaces between RB and FE subdomains we are coupling solutions defined on quadratic
finite elements with linear ones—while the WSS approximation is smooth far from the
interfaces, which are clearly visible. This is likely due to the fact that, in this numerical
example, the geometrical approximation at the interfaces is even more challenging than
in Section 5.3 because the interfaces of the FE building blocks are not circles (hence, the
match between the neighboring subdomains is not exact). The pressure also appears to be
discontinuous across the interfaces, and this is probably a consequence of the geometrical
approximation too.

In Fig. 5.11, we show the flow rates over the second cardiac cycle at the inlet and each
outlet. Here we denote RB1 and RB2 the reduced bases obtained with POD tolerances
set to g, = 1072 and €, = 1073, respectively; in both cases Ep = 1075. Moreover, we
provide a sliced view of the geometry to show that the element sizes vary considerably
across all the subdomains (and even between neighboring ones). This is to stress once
again that the coupling method presented in Chapter 2 allows us to employ drastically
different mesh sizes and multiple discretization methods, but at the same time to obtain
a smooth global velocity field—the one in the figure corresponds to RB2—even with a
limited number of Lagrange multiplier basis functions (/N 5\5 = 63 per interface, for a total
of 945 basis functions). We remark that the POD tolerance does not play a significant
role in the flow rate at each outlet. This is due to the fact that the flow repartition
across the different arteries is, in this problem, performed by the bifurcations, which are
here modeled by the FE method and hence independent of the POD tolerance. Had the
boundary conditions at the outlets been more physiological, the flow repartition would
have been less dependent on the geometry of the bifurcations.

Remark 5.6. We recall that the kinematic condition of the hybrid method discussed in
Chapter 2 and appearing in W4.1 at the continuous level reads

/ K (uj—um) =0 vp e LU,
Tlim]

Choosing 17 = n, where n is the normal to the interface I'V" | is equivalent to imposing
the equilibrium of the flow rate across TU™l. Since the inclusion of the constant function
in the set of basis functions for the Lagrange multiplier is a necessary condition to the
well-posedness of the discrete problem, the flow rate is a priori conserved in the discrete
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obtained with POD tolerances ¢, = 102 and Ep = 1072,
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setting. This is true, however, if the interface TV is the same for both neighboring
subdomains. In this particular numerical example, we have already discussed how the
interfaces are non-matching because of the presence of the FE blocks (which do not
feature circular interfaces). The preservation of the flow rate is, therefore, a question
that needs to be addressed in case of imperfect geometrical approximation. In the inflow
profile plot in Fig. 5.11 we show, together with the imposed one, the sum of the flow rates
over all the outlets obtained with RB2 (the same function obtained with RB1 is nearly
identical and therefore it is not shown here). The difference between the two curves is not
significant. From a quantitative point of view, over the whole time period (0,7 = 1.5)
we register the relative difference of the flow rate

) Qoue(t) = [T Qin(t)]
| Qun(®)]

where Qi (t) is the imposed flow rate at time ¢ and Qout(t) is obtained by summing the

= 0.9%,

contributions over all the outlets. As mentioned, this discrepancy is likely to be caused
by the geometrical approximation and can be decreased by devising more sophisticated
methods to map reference circular interfaces onto the physical ones.

5.5 Concluding remarks

In this chapter, we demonstrated the capabilities of the method formalized in Chapter 4.
We employed the same geometry used for the offline phase and two physiological geome-
tries: one consisting of an aorta with the two iliac arteries and the other representing the
aortic arch with carotid and subclavian arteries. In the first case, we observed considerable
speedups—ifrom 12 to 33 over the total runtime and from 29 to 50 over the sole solve
phase—with respect to the full order solution. A considerable gain in performance has also
been achieved in the second case for some choices of POD tolerances, although the fact
that we considered a reference solution obtained with a different solver (i.e., SimVascular)
made the comparison in terms of runtime more complex. In both applications, we also
analyzed the performance in the WSS reconstruction, which is possible in our ROM—as
opposed, for example, to geometrical multiscale methods—because the three-dimensional
nature of the flow problem is preserved. Our goal with the last numerical experiment
was to demonstrate the feasibility of modeling a small subset of the subdomains with
the FE method. We showed that even in this scenario employing RB solutions in some
blocks allows us to reduce the size of the system, which in our test was largely composed
of FE dofs. We also verified that the velocity field was qualitatively smooth and that the
conservation of mass is approximately satisfied. However, we observed how the geometri-
cal approximation of the interfaces caused noticeable discontinuities in the pressure and
the WSS. This indicates that, to make this hybrid FE-RB approach a viable option in
realistic scenarios, a more involved mapping of the parametrized interfaces—that in our
case are circular for every choice of the geometrical parameters—needs to be devised.
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Conclusions

In this thesis, we described and validated a numerical method for the MOR of cardiovas-
cular flow. The main idea of the technique is to consider a geometrical discretization of
the geometry of interest into elementary subdomains, for example, tubes and bifurcations,
which are obtained as deformations of reference building blocks. Each of these building
blocks is equipped with a set of RB functions generated during a demanding offline phase.
In this phase, a large number of snapshots are sampled by solving flow problems with
the FE method on geometries decomposed by the same approach mentioned above. The
reduced basis is then generated by applying POD to the set of snapshots. In the online
phase of the reduced order method, the local solutions in the subdomains are found as a
linear combination of the RB functions.

A significant part of the algorithm is the coupling strategy. In the thesis, we presented
a nonconforming method based on the theory of primal hybrid methods in which the
coupling (kinematic and dynamic) conditions give rise to a global system featuring a saddle-
point structure. We defined a set of spectral basis functions on each interface, and we used
these to approximate the corresponding Lagrange multiplier. Our numerical experiments
demonstrated that this approach allows us to retain the expected h-convergence rate
of the primal discretization method by enlarging the system with a small number of
additional dofs (namely, those associated with the Lagrange multipliers). The method is
also flexible in that it allowed us to couple different discretization strategies—FE, IGA,
and RB methods—and different PDEs in a fluid-structure interaction benchmark.

The fact that the global system presents a saddle-point structure requires particular
attention, as this class of problems is classically associated with stability issues. Specifically,
it is crucial to verify that the inf-sup condition is satisfied in a discrete setting. While,
in the FE context, we verified only numerically that the inf-sup condition is generally
verified by considering a small number of Lagrange multiplier basis functions (which,
however, is typically also sufficient to obtain optimal convergence rates in h) when
using the RB method we resorted to ad-hoc supremizers. These are functions specifically
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computed to satisfy the inf-sup condition and are used to enrich the reduced basis.
Since we were dealing with two saddle-point problems at the same time (one involving
the incompressibility constraint in the Navier—Stokes equations and one related to the
coupling conditions), the stability of the global problem is recovered by enriching the
velocity reduced basis with two different sets of supremizers.

In the numerical results in Chapter 5, we addressed questions relative to the effects of
the RB and geometrical approximations, as well as to the expected gain in performance
with respect to the high-fidelity models. We showed that the results obtained with our
ROM were close to the ones relative to the FE method in terms of velocity, pressure,
and WSS and that, in some cases, it is reasonable to expect speedups of the order of
one order of magnitude (or two, if some of the bottlenecks of the algorithm, such as
the computation of the nonlinear term, are carefully optimized). We also observed that
the geometrical approximation plays an essential role in the approximation of specific
quantities such as the WSS.

We believe that the results reported in this thesis show great promise for the proposed
ROM to be successfully applied in realistic scenarios. Compared to other reduction
techniques for cardiovascular simulations such as 0D and 1D models, the combined use
of the RB method and Domain Decomposition has the advantage to preserve important
three-dimensional features of the flow and to allow for a local approximation of the WSS
distribution on the vessel boundary. Nevertheless, this work suggests several areas of
improvement that are addressed in more detail in the next section.

6.1 Perspectives and future work

The work carried out in this thesis could be extended in several directions. These include:

o Stabilization of the coupling problem. As mentioned, when using our nonconforming
method, the inf-sup condition in the FE context does not typically pose problems,
as the number of Lagrange multiplier basis functions necessary to achieve h-
convergence is usually smaller than the one for which the stability is lost. We
believe, nonetheless, that a viable way to ensure the well-posedness of the discrete
problem for any refinement level of the Lagrange multiplier space is through the
introduction of a stabilization term in the kinetic condition of the coupled problem.
As a matter of fact, stabilization approaches such as the ones presented in Section 1.5
aim at modifying the saddle-point structure of the system such that the discretized
global matrix features nonzero matrices in the diagonal blocks corresponding to the
Lagrange multipliers dofs. This is sometimes achieved by adding terms depending
on the residual of the equations in strong form, as in the VMS-SUPG approach. In
the case of the coupling, we believe that a possible candidate for such a stabilization
term could be derived by exploiting the fact that, at the continuous level, the

152



6.1. Perspectives and future work

difference between the Lagrange multiplier and the stress at the interface is zero.

Parallel implementation of the saddle-point preconditioner. In Section 4.3, we
presented a preconditioner for the global problem which takes advantage of its saddle-
point structure. We also described how the computation of the Schur complement
depends on operations which are mainly local to the subdomains. Hence, an
exciting development of our study is the investigation of the performance of a
parallel preconditioner in which the subdomains are mapped to separate cores (see
Remark 4.5).

Use of reduced fluid-structure interaction models in modular geometries. A standard
reduced model for fluid-structure interaction in cardiovascular applications considers
a vessel wall modeled as a membrane (as discussed in Section 1.6). Implementing
this model in our framework for fluid simulations in modular geometries would
significantly improve the accuracy of the numerical approximation in physiological
scenarios. Moreover, the popular 1D models are based on the assumption of
deformable vessel walls, and therefore a direct comparison between them and our
ROM makes sense only when fluid-structure interaction is taken into account.

Validation of the ROM in cases with physiological boundary conditions. We noted
in Remark 5.3 that the boundary conditions employed in this thesis are not
physiological. In future applications of our method to clinical cases, it will be
necessary to consider more complex nonlinear boundary conditions (e.g., the three-
element Windkessel model), which complicate the resolution of the problem, e.g.,
in the computation of the Jacobian of the nonlinear system.

Optimization of the current bottlenecks of the Reduced Order Method. In this thesis,
the setup of the ROM is expensive because it is performed by projecting the high-
fidelity matrices onto the reduced spaces. This also applies to the computation of
the nonlinear term of the Navier—Stokes equations (which is done in each iteration
of the Newton—Raphson algorithm). An approach based on interpolation methods
such as DEIM or its matrix variant (see Section 3.2.2) will greatly improve the
efficiency of the ROM and will be considered in the future.
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