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"I’m a scientist and I know what constitutes proof. But the reason I call myself by my childhood

name is to remind myself that a scientist must also be absolutely like a child. If he sees a thing,

he must say that he sees it, whether it was what he thought he was going to see or not.

See first, think later, then test. But always see first. Otherwise you will only see what you were

expecting. Most scientists forget that."

— Douglas Adams, The Ultimate Hitchhiker’s Guide to the Galaxy

To the people I love. . .
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Abstract

After more than thirty years of continuous research and development, the performances of

conventional Brillouin based distributed optical fiber sensors (DOFS) are now peaking, as

they are facing fundamental barriers that restrict the power of the light injected into the fiber.

For scientists, absolute limitations of this kind are hardly ever accepted as an insurmountable

obstacle, rather they are considered as an additional challenge that can always be overcome by

a cleverer, and often more complex apparatus. It is thus not surprising to find in the scientific

literature a large diversity of reports that describe refinements brought to the conventional

architectures of Brillouin based DOFS. In this thesis, we explore two entirely different ways

of pushing further the capabilities of conventional Brillouin based DOFS, which are first

thoroughly reviewed in a preliminary chapter devoted to depict the most fundamental aspects

of this technology.

An entire chapter is dedicated to an interdisciplinary study where the formalism and meth-

ods initially developed within the theory of digital signal processing to analyze linear time-

invariant systems are transposed to the case of DOFS. This methodology enables, first, to fully

understand the potential improvements and limitations in terms of performances of data post-

processing when applied to conventional Brillouin optical time-domain analyzers (BOTDA).

Then, the concept of deconvolution is presented as a promising tool to achieve sub-metric

spatial resolution measurement, which is challenging using direct methods due to the finite

lifetime of acoustic phonons in the fiber. Finally, this theory is put at use to revisit the concept

of optical pulse coding in BOTDA, demonstrating significant performances improvement

over conventional architectures, while circumventing the many practical implementation

restrictions met by other coding schemes.

The last section of this dissertation is dedicated to the study of a phenomenon known as

forward stimulated Brillouin scattering (FSBS). FSBS is foreseen as a potential candidate to

diversify the physical measurands that can be interrogated via DOFS, as it is highly sensitive

to the acoustic boundary conditions at the glass outer boundary of the fiber. Far from having

the longevity of other branches of DOFS, the performances of recently reported distributed

FSBS sensing schemes are still quite poor, hence there is still a large margin for improvement.

Here, the acoustic vibrations involved in FSBS are activated harmonically, and the resulting

refractive index modulation is picked up by an optical pulse that acts as a pump in a conven-
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tional Brillouin based sensor. First, a modified Brillouin optical time-domain reflectometer

is implemented, demonstrating distributed FSBS sensing with a SR of 8 m. While displaying

interesting features, this method is flawed by severe limitations, notably due to its intensity-

based operating principle. We then report, for the first time to the best of our knowledge, a

frequency based distributed FSBS sensing technique, that relies on the principle of serrodyne

modulation. The results obtained outperform any previously documented reports, achieving

a SR of 80 cm in a short section of bare single-mode fiber, and a SR of 2 m over 500 m of

polyimide coated fiber.

Key words: distributed optical fiber sensor, digital signal processing, forward stimulated

Brillouin scattering

iv



Résumé

Après plus de trente ans de recherche et développement intensifs, les performances des

capteurs à fibre optique répartis (CFOR) conventionnels basés sur la diffusion Brillouin ar-

rivent aujourd’hui à saturation, car ils se heurtent à des barrières physiques fondamentales qui

limitent la puissance de la lumière injectée dans la fibre. Pour les scientifiques, les limitations

de ce type ne sont presque jamais perçues comme un obstacle insurmontable, mais sont

plutôt considérées comme un défi supplémentaire qui peut toujours être surmonté par un

appareil au concept plus astucieux et souvent plus complexe. Il n’est donc pas surprenant

de trouver dans la littérature scientifique une grande variété de rapports qui décrivent des

perfectionnements apportés aux architectures conventionnelles des CFOR basé sur la diffu-

sion Brillouin. Dans cette thèse, nous présentons deux manières complètement différentes

d’améliorer les capacités des CFOR à diffusion Brillouin.

Tout d’abord, nous transposons le formalisme et les méthodes initialement développées dans

le cadre de la théorie du traitement de signaux numériques afin d’analyser les systèmes li-

néaires et invariants dans le temps au cas des CFOR. Cette méthodologie permet d’abord

de comprendre les améliorations et les limites potentielles en termes de performances du

traitement des données dans les COFR à diffusion Brillouin. Le concept de déconvolution est

ensuite présenté comme un outil prometteur pour effectuer des mesures avec une résolution

spatiale sub-métrique, ce qui constitue un défi pour les méthodes conventionnelles en raison

de la durée de vie limitée des phonons acoustiques dans la fibre. Cette théorie est ensuite

utilisée afin de revisiter le concept de codage par impulsion optique dans le cadre de la tech-

nologie BOTDA, permettant une amélioration significative des performances par rapport aux

architectures classiques, tout en palliant aux nombreuses contraintes pratiques rencontrées

dans d’autres schémas de codage.

Enfin, nous étudions un phénomène connu sous le nom de diffusion Brillouin stimulée vers

l’avant (FSBS). Très sensible aux propriétés acoustiques du matériau au contact de la fibre de

verre, la FSBS est un candidat potentiel à la diversification des quantités physiques pouvant

être mesurées par le biais des CFOR. Loin d’avoir la longévité d’autres technologies des CFOR,

les performances des appareils de mesure FSBS documentés à ce jour sont encore assez

faibles. Dans cette thèse, des ondes acoustiques sont activées de manière harmonique, et la

modulation de l’indice de réfraction qui en résulte est captée par une impulsion optique qui

agit comme une pompe dans un capteur Brillouin classique. Tout d’abord, un réflectomètre
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optique Brillouin modifié est mis en œuvre, permettant une mesure de la diffusion FSBS

répartie avec une résolution spatiale de 8 m. Bien que possédant des caractéristiques intéres-

santes, cette méthode présente de sérieux défauts, notamment en raison de son principe de

fonctionnement basé sur une détection d’intensité optique. Nous présentons ensuite, pour

la première fois à notre connaissance, une technique de détection FSBS distribuée basée sur

la fréquence, et qui repose sur le principe de la modulation serrodyne. Les résultats obtenus

sont meilleurs que tous les rapports établis précédemment, atteignant une résolution spatiale

de 80 cm dans une courte section de fibre monomode, et une résolution spatiale de 2 m dans

500 m de fibre revêtue de polyimide.

Mots clefs : capteur à fibre optique réparti, traitement numérique de signaux, diffusion

Brillouin stimulée vers l’avant
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1 Introduction

Brillouin scattering describes the interaction of light with sound. While both light and sound

fall under the denomination of "waves", one might wonder how such disparate objects can

influence one another. This fascinating physical mechanism, which was observed and studied

for the first time almost a century ago by Léon Brillouin [1], is made possible and efficient

in a suitable medium, through which both waves might exchange energy. It turns out that

optical fibers are a well-suited platform to observe, manipulate and of course harness infor-

mation from Brillouin scattering, or any other suitable scattering mechanism. By designing

proper optical interrogation techniques, the mechanical or thermodynamic properties of

an optical fiber can be retrieved all along its length, a process known as distributed optical

fiber sensing (DOFS). Far from being confined to a purely experimental environment such

as a laboratory, this technology is now widely used in diverse real-life applications. Optical

fibers are routinely embedded in all sorts of civil engineering structures, such as bridges, dams,

pipelines and many others, providing a fully distributed monitoring system that is equivalent

to a constellation of individual point sensors [2].

Nowadays, distributed optical fiber sensors encompass a broad variety of techniques that,

depending on their operating principle, all yield different performances in terms of key speci-

fications inherent to DOFS. Some methods are well suited to operate on very long distances

(tens of kilometers) with moderate spatial resolution (meter range) while others exhibit high

sensitivity to e.g temperature (mK) and/or deliver spatially resolved information with ex-

tremely sharp resolution (mm). Generally speaking, there is no method that outperforms all

others in every single aspect, hence some techniques are more suited to certain configurations

than others, depending on the considered requirements (sensing range, spatial resolution,

precision, cost, etc.). In this thesis, we focus on DOFS that rely on Brillouin scattering. More-

over, we shall restrict our analysis to time-domain techniques, which operate in their most

conventional implementation by injecting a single optical pulse into the sensing fiber and

measuring the corresponding backscattered response.

The first mention of a Brillouin based sensor was made in 1989 by Horiguchi et. al, and was

labelled as Brillouin optical time-domain analysis (BOTDA) [3]. As BOTDA requires access to
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Chapter 1. Introduction

both ends of the fiber, a single-end alternative was shortly investigated, yielding the so-called

Brillouin optical time-domain reflectometry (BOTDR) technique in 1993 [4]. Nowadays, that

is roughly thirty years after these pioneering works, these two techniques are now facing

fundamental limitations imposed by the triggering of non-linear effects which restrict the

amount of optical power to be launched in the fiber. While classical implementations of

BOTDA and BOTDR are not expected to spontaneously and significantly see major perfor-

mances improvement, there are yet many creative and ingenious strategies to be explored in

order to benefit further from these technologies. This dissertation presents some advanced

methods of Brillouin based DOFS, and is structured in three main chapters that cover the

following topics:

• Chapter 2 covers the fundamentals of distributed optical fiber sensing, starting with

a description of optical fibers. This includes their manufacturing process, the basic

light guiding mechanism of single-mode fibers as well as a description of the various

scattering mechanisms occurring in glass-made fibers. Finally, it provides with some

background knowledge on the characteristics of distributed optical fiber sensing, no-

tably describing a typical implementation of a BOTDR as well as a BOTDA.

• Chapter 3 presents an interdisciplinary study that merges knowledge from the theory

of digital signal processing with DOFS and revolves around the concept of linear time-

invariant (LTI) systems. After a mandatory introduction on this topic, one turn to analyze

in details how post-processing impacts the data delivered by a conventional BOTDA.

More specifically, a fundamental limit on the reduction of the experimental uncertainty

is drawn, under the strict restriction of preserving the initial spatial resolution of the

sensor. The concept of deconvolution is then put at use in two remarkable applications.

First, one illustrates how to access, via post-processing, the sharp spatial resolution

information contained in a coarser spatial resolution measurement, showing promising

results to achieve sub-meter distributed sensing. Finally, a novel form of optical pulse

coding (OPC) is presented. While showing similar performances improvement with

respect to other existing coding techniques, this method brings a solution to the many

practical difficulties encountered so far in any reported implementation of OPC, and

that severely hindered the potential of this fantastic technique.

• Chapter 4 is devoted to an emerging field of study that analyzes an opto-acoustic inter-

action known as forward stimulated Brillouin scattering (FSBS). While this phenomenon

has been documented for the first time in optical fibers as early as 1985 under the

denomination of guided wave acoustic Brillouin scattering [5], it recently drew a signifi-

cant interest within the fiber optic sensing community due to its potential to diversify

the sensing capabilities of DOFS [6]. Since this interaction involves acoustic waves

that are guided by the optical fiber, this chapter begins with a theoretical study that

describes the main features of the acoustic modes exhibited by a single-mode fiber. The

interaction itself (FSBS) is then thoroughly described, pinpointing aspects most relevant

to the topic of interest here, i.e. sensing. We then present two experimental setups
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aiming at measuring FSBS in a spatially-resolved way. Both techniques rely on activating

pure-tone acoustic waves in the fiber by launching a powerful activating optical pulse,

followed by a second reading pulse that acts as a pump in a dedicated backscattered

based time-of-flight interrogation technique. Early results obtained via a modified

BOTDR are first provided, achieving a spatial resolution of 8 m in a section of ~ 30 m

of bare fiber located at the remote end of a ~400 m long conventional fiber. Finally, a

frequency-based technique relying on serrodyne modulation is presented, achieving a

spatial resolution of only 80 cm in a remote distributed sensing configuration, and of

2 m in a ~500 m long fully sensitive poliymide coated fiber, showing major improvement

with respect to previous reports [7, 8].
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2 Fundamentals

This chapter depicts the fundamental features of distributed optical fiber sensing (DOFS). This

technology takes advantage of the massive growth in terms of development, manufacturing

and usage of optical fibers at a global scale, owing to their formidable data transmission

potential in an era revolving around telecommunication. It appears therefore natural to

offer first a brief description of optical fibers, as they are the host of the intricate physical

mechanisms that enable performing distributed sensing. Since all these effects stem from

the information carrier propagating in optical fibers, i.e. light, the latter is then treated as

an electromagnetic wave within the formalism of Maxwell’s equations. We then mention the

three main types of scattering processes occurring in an optical fiber, on which all of DOFS

rely, with a strong emphasis on Brillouin scattering, which occupies a central position in this

thesis. Finally, we provide with general aspects related to distributed sensing, enumerating

parameters used as specifications that enable classifying and comparing DOFS.

2.1 Optical fibers

Optical fibers are mostly known to have revolutionized cabled telecommunication, outper-

forming in every aspect wired transmission over metallic cables. Besides delivering informa-

tion with subsequent throughput, optical fibers are in addition a fantastic platform for sensing

applications. An in-depth understanding on this topic requires some preliminary knowledge

on the structure of optical fibers, which is tightly related to their manufacturing process.

We therefore start by providing general information related to optical fiber manufacturing,

pinpointing notions relevant to the topic of sensing.

2.1.1 Manufacturing process

Optical fibers rely on an effect known as waveguiding, which was demonstrated for light by

Jean-Daniel Colladon and Jacques Babinet as early as 1842 [9] by trapping sunlight into a

bent water jet via total internal reflection. More than 100 years later, Kao et al. theoretically
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Chapter 2. Fundamentals

demonstrated the potential use of glass-based optical fibers for long-haul communication

by analyzing the main sources of optical loss in glass [10], predicting that attenuation could

be brought down below 20 dB/km. Through intensive research lead over more than half a

century, optical attenuation could be lowered in silica-based optical fibers by several orders of

magnitude, modern fibers exhibiting attenuation levels so low, i.e. 0.17 dB/km at a wavelength

of 1550 nm, that they are approaching the fundamental limit imposed by Rayleigh scatter-

ing [11]. Nowadays, optical fibers encompass an extremely diverse portfolio following the

massive development of micro-structured fibers in the last three decades [12]. The fibers used

in the framework of this thesis are amongst the most conventional ones, and are known as

single-mode fibers (SMF). This designation refers to the waveguiding mechanism these fibers

rely on, as will be explained in section 2.2.

Silica-based SMFs are manufactured following a two step process. First, a magnified version

of the target fiber is fabricated by a vapor deposition process [2], i.e deposing a mixture of

pure silica (SiO2) and dopants, e.g. germania (GeO2) or boron oxide (B2O3), in concentric

layers, ending up with a glass cylinder exhibiting the same refractive index profile and aspect

ratio as the targeted SMF. This oversized fiber is called a preform, and is later drawn to proper

dimensions following the (simplified) procedure depicted in Fig.2.1 The preform is first heated

Holder

Preform

Furnace

Diameter ~125 m

Coating container

Diameter ~250 m

To spooling

Figure 2.1 – Optical fiber drawing from a preform. Here, only the main steps are described,
while in reality the entire process requires precise control and regulation.

to high temperature using a furnace, which softens the glass until it starts to drop, shrinking in

diameter while retaining its cross-sectional structure. The fiber is elongated until it reaches its

target diameter (125 µm for most SMFs) and is immediately dipped in a coating solution that
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2.1. Optical fibers

protects the fiber and improves its mechanical robustness. The most commonly used coating

material for SMFs is acrylate, which is usually applied in a dual layer of 62.5 µm, bringing the

total fiber diameter to 250 µm. The inner layer is softer while the outer layer is usually more

rigid. The issues encountered later on in chapter 4 respective to acrylate as a coating material

are mostly due to the softer inner layer.

Overall, the entire optical fiber manufacturing chain is extremely demanding, both in terms of

material purity and geometrical uniformity. Nevertheless, thanks to the technology at disposal

nowadays as well as decades of improving know-how, commercially available single-mode

fibers remarkably satisfy stringent requirements even over several tens of kilometers. To

illustrate this, and as it will come of great interest in chapter 4 of this thesis, typical tolerances

on the physical dimensions of conventional SMFs are about ±1 µm for the glass diameter

(125 µm) and about ±5 µm for the coating diameter (250 µm)I.

2.1.2 Characteristics of single-mode optical fibers

Following the procedure described in section 2.1.1, conventional single-mode fibers (SMFs)

end up exhibiting the structure shown in Fig.2.2. The optical fiber itself, i.e. the glass-rod, is

Core: Ø ~ 8 m (SMF)

Cladding: Ø ~ 125 m 

Coating: Ø ~ 250 m 

Figure 2.2 – Typical structure of a single-mode fiber (not to scale).

constituted of two distinct regions called core and cladding, respectively. Note that core and

cladding are forming a single piece of glass and are not physically dissociated as the figure

might suggest, rather they delimit distinct regions with different optical properties. Thanks

to the introduction of dopants in the preform manufacturing process, the refractive index of

either the core and/or the cladding might be increased or lowered with respect to pure silica.

In SMFs, light is guided by total internal reflection, which requires for the refractive index of

the core to be slightly higher than the one in the cladding. The refractive index difference for

SMFs,∆n is typically in the order of 0.3%-0.8%[13] which results from design requirements

regarding the waveguiding performances of the fiber (see section 2.2 for more details). Note

that while we described here the structure of a step-index fiber, i.e. the refractive index in the

core and the cladding are different but uniform in each region, other types of refractive index

profiles are possible to achieve optical waveguiding, notably graded-index fibers which exhibit

IThese values are made available by fiber manufacturers, e.g. Corning®(https://www.corning.com)
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Chapter 2. Fundamentals

a well-defined refractive index distribution from the core to the glass boundary [13].

The role of the coating is fundamental, but unrelated to the optical properties of the fiber.

It provides the entire structure with mechanical robustness by sealing the fiber from air

exposure, as the glass would otherwise turn brittle and too delicate to handle directly, let

alone be used in any practical application. Usually, optical fibers are further protected by one

or several additional layers, in which case the fiber is usually referred to as an optical fiber

cable. The most widely used coating material is undoubtedly acrylate, but other materials

such as polyimide or carbon are routinely used depending on the target application and/or

the environment hosting the fiber. In the later chapters of this dissertation (see chapter 4),

significant attention will be drawn to the coating material used in the sensing fibers considered,

as it plays a central role in the mechanical behavior of the fiber in terms of acoustic modes

propagation.

2.2 Optical fibers as electromagnetic waveguides

The waveguiding mechanism in single-mode optical fibers is typical of dielectric waveguides,

and is described based on the formalism of Maxwell’s equations. While the overall approach

remains superficial, an emphasis is put on key aspects particularly relevant to opto-acoustic

interactions.

2.2.1 Maxwell and the wave equation

Light waveguiding in optical fibers is classically described by the formalism of electromag-

netism, which was unified in 1862 by James Clerk Maxwell in a set of relations known as

Maxwell’s equations. Maxwell’s equations are an extremely powerful tool, that enable describ-

ing plethora of complex electromagnetic phenomena. They read [14, 15, 16]

∇×E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+J (2.2)

∇·D = ρ (2.3)

∇·B = 0 (2.4)

where E and D are the electric field and the electric flux density, respectively, H and B are the

magnetic field and the magnetic flux density, respectively, ρ is the density of free charges and

J is the current density. While equations (2.1)-(2.4) in their fundamental form are extremely

general, we shall restrict ourselves here to the specific case of optical fibers. The material is

therefore assumed to be non-magnetic, isotropic and homogeneous (by region) in addition to

be free of charges. This implies that we may set J = 0 in (2.2) and ρ = 0 in (2.3). Furthermore,
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2.2. Optical fibers as electromagnetic waveguides

we may write

D = ε0E +P (2.5)

B =µ0H (2.6)

where ε0 is the vacuum permittivity, P is the induced electric polarization and µ0 is the vac-

uum permeability. Then, by making use of equations (2.1)-(2.6) and after some simplifications

[14, 15] we end up with

∇2E − 1

c2
0

∂2E

∂t 2 =µ0
∂2P

∂t 2 (2.7)

where c0 = (ε0µ0)−1/2 is the speed of light in vacuum. Equation (2.7) is known as the wave

equation, and enables to describe a large variety of linear and nonlinear effects in optical

fibers or any other media. An essential aspect that needs to be considered when solving (2.7)

lies in the form taken by the polarization field P on the right-hand side of the wave equation.

As of now, and in order to understand the basic waveguiding mechanism of an optical fiber, it

is sufficient to assume that P is linear with respect to the electric field E . We thus write

P = ε0χE (2.8)

where χ is the electric susceptibility. Note that equation (2.8) implies that the medium is linear

and non-dispersive. The refractive index n is defined as

n =
√

1+χ (2.9)

such that we end up with

∇2E − n2

c2
0

∂2E

∂t 2 = 0 (2.10)

which is the form of the wave equation that will be used in the following section.

2.2.2 Optical modes

The wave equation in the form given in (2.10) is linear in terms of the electric field E because

dimensional and temporal derivatives are linear operators. In this case, it is usually simpler to

solve equation (2.10) in the frequency domain by taking its Fourier transform, yielding [14]

∇2Ẽ +ω2 n2

c2
0

Ẽ = 0 (2.11)

which is known as Helmholtz equation, in which ω denotes the angular frequency and Ẽ

is the Fourier transform of the electric field E . Equation (2.11) is then solved in cylindrical
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coordinates (r,θ, z), as the latter are far more suited than cartesian coordinates given the

geometry of an optical fiber (the z-axis is aligned with the fiber axis). Equation (2.11) is quite

cumbersome to solve directly due to the vectorial nature of the electric field Ẽ . The derivation

can fortunately be made more straightforward by remembering that the components of the

electric field are related by Maxwell’s equations (2.1)-(2.4) in the first place, hence we only

need to solve for one component of Ẽ and one component of H̃ . Note that the derivation of

the solution for the magnetic field is extremely similar to the one shown here, hence is of little

added interest and will not be explicitly performed. Equation (2.11) when restricted to the

z-component of the electric field Ẽz in cylindrical coordinates reads

∂2Ẽz

∂r 2 + 1

r

∂Ẽz

∂r
+ 1

r 2

∂2Ẽz

∂θ2 + ∂
2Ẽz

∂z2 +n2k2
0 Ẽz = 0 (2.12)

where k0 =ω/c0 is the wavevector in vacuum. Like many partial differential equations, (2.12)

is traditionally solved by the method of separation of variables, i.e. we express the solution as

a product of variables, each depending on a single parameter

Ẽz = W (ω)R(r )e i mθe iβz (2.13)

where i denotes the imaginary number, m is an integer and β is known as the propagation con-

stant. Note that W (ω) is a frequency-dependent scaling factor and could only be determined

through normalization by knowing e.g. the amount of optical power at a given frequency,

hence it is not treated further in the derivation. Inserting (2.13) into (2.12) and dividing by Ẽz

yields

∂2R

∂r 2 + 1

r

∂R

∂r
+

(
n2k2

0 −β2 − m2

r 2

)
R = 0 (2.14)

Equation (2.14) is a most classical equation which naturally arises due to the cylindrical nature

of the problem. It is known as Bessel’s equation, and assumes solutions in the form of Bessel

functions. The form of the solution is yet highly dependent on the term n2k2
0 −β2, more

particularly on its sign. The latter is influenced by the value of the refractive index n, which

takes two distinct values in the core (nco) and the cladding (ncl). The waveguiding mechanism

in single-mode step index fibers requires that n2k2
0 > β2 in the core, and n2k2

0 < β2 in the

cladding. As a consequence, and for an optical fiber with a core radius a, R(r ) takes the

following form

r ≤ a R(r ) = AJm(pr )+BYm(pr ) (2.15)

r ≥ a R(r ) = C Im(qr )+DKm(qr ) (2.16)

where Jm and Ym denote mth order Bessel functions of the first and second kind, respectively,

Im and Km denote mth order modified Bessel functions of the first and second kind, respec-

tively, while A, B , C and D are integration constants. The parameters p and q are defined as
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2.2. Optical fibers as electromagnetic waveguides

to be real valued, i.e.

p =
√

n2
cok2

0 −β2 (2.17)

q =
√
β2 −n2

clk
2
0 (2.18)

Equations (2.15) and (2.16) can be immediately simplified due to the very disparate nature

of the various Bessel functions in presence. In the core, we may set B = 0 as Ym diverges

when r approaches 0. In the cladding, Im are exponentially growing functions of r , hence we

may similarly set C = 0. The remaining integration constants A and D are scaling parameters

and may be merged in the amplitude response parameter W (ω), as they do not provide any

insight regarding the form of the solution. The derivation continues with the application of

the appropriate boundary conditions, which follow directly from Maxwell’s equations [16].

The boundary conditions state that the tangential components of the fields (E and H ) as well

as the normal components of the flux densities (D and B) must be continuous through the

interface of two dielectric materials. The whole procedure is lengthy, and offers no particular

relevant information, hence we directly provide the final result, known as the frequency

equation or dispersion relation [14]

[
J ′m(pa)

p Jm(pa)
+ K ′

m(qa)

qKm(qa)

][
J ′m(pa)

p Jm(pa)
+ n2

cl

n2
co

K ′
m(qa)

qKm(qa)

]
=

(
mβk0

(
n2

co −n2
cl

)
ancop2q2

)2

(2.19)

where the prime indicates the first order derivative with respect to the argument of the func-

tions. Generally speaking, and for a given value of m, there exist several values of β that satisfy

(2.19), usually designated as βmn . Thus, the complete solution for a given fiber (a, nco, ncl) at a

specified wavelength (k0) breaks down into a set of discrete independent solutions, known as

modes. Each mode is thus characterized by a given propagation constant βmn and a specific

field distribution. Equation (2.19) is a very general one, that applies to any step-index fiber

configuration. It can fortunately be greatly simplified when dealing with single-mode fibers,

which have the particularity to exhibit a very low refractive index difference∆n. Notice that

we assumed here that the fiber cladding diameter is infinite, i.e. we do not take into account

the cladding/coating (or cladding/air) interface. While this is fundamentally speaking wrong,

this assumption is perfectly reasonable as explicated in the following section.

2.2.3 Fundamental mode

The analysis presented here relies on a key simplification known as the weakly guiding approx-

imation [11, 13], which is valid only when nco ≈ ncl. In all generality, the modes described in

the previous section can be classified into several categories, which usually are related to their

field distribution. For instance, we may define TM modes which stand for transverse magnetic

modes where Hz = 0, as well as TE modes where similarly Ez = 0. Hybrid modes refer to all

other modes having six non-zeros components (Er , Eθ, Ez , Hr , Hθ, Hz ). In the weakly guided

approximation, hybrid modes are further divided in two categories known as EH and HE. As
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the refractive index difference reduces, several modes that were clearly dissociated tend to

degenerate, i.e. they end up satisfying the same frequency equation, at least to a very good

approximation [13]. Quite remarkably, by adding up the spatial distributions of all modes

sharing an identical propagation constant β, we end up with a new series of modes in which

the light is linearly polarized [11]. These fictive modes, i.e. in reality they are a combination

of the fiber real modes, are labelled as LPml (m ≥ 0, l ≥ 1) and are associated with simplified

versions of the frequency equation (2.19), which are summarized in table 2.1 [13]. Prior to

LPml mode (l≥1) Modes combination Frequency equation

LP0l HE1l
J0(pa)

p J1(pa)
=

K0(qa)

qK1(qa)

LP1l TE0l +TM0l +HE2l
J1(pa)

p J0(pa)
= − K1(qa)

qK0(qa)

LP2l EHm−1,l +HEm+1,l
Jm(pa)

p Jm−1(pa)
= − Km(qa)

qKm−1(qa)

Table 2.1 – Categorization of LP modes and associated frequency equation

draw fundamental conclusions related to LP modes, we first introduce the parameter V known

as the normalized frequency

V 2 = a2(p2 +q2) = a2k2
0

(
n2

co −n2
cl

)
(2.20)

which enables to define the cutoff condition of a given mode, that is determining whether

the mode is being guided or not. This is achieved by letting q → 0 (hence V → ap) in the

frequency equations provided in table 2.1, which yields the following conditions [13]

m = 0
J0(V )

V J1(V )
→∞ (2.21)

m ≥ 1
Jm(V )

V Jm−1(V )
→−∞ (2.22)

that enable classifying the different LP modes according to the order in which they are being

guided. The first mode of all is the LP01, which corresponds to the solution V = 0 in (2.21). The

value V = 0 implies that this mode is always guided, hence it is referred to as the fundamental

mode. The next mode to be guided is the LP11, which corresponds to the first zero of J0(V ),

that is V ≈ 2.405. The next guided modes are the LP02 and LP21 modes, where V ≈ 3.832

corresponds to the second zero of J1(V ) (V = 0 is the first zero) and so on. Practically speaking,

this implies that in order to secure a single-mode operation, one should maintain V <Vc =

2.405. There is however a trade-off, as setting V much lower than Vc would have disastrous

impacts on the waveguiding properties of the fiber. Indeed, a lower value of V results in the

mode being less confined to the core, that is a larger fraction of the optical power travels in the

cladding, making it more sensitive to bending loss [17], such that V is usually set close to Vc .

The fundamental mode shape radial profile R(r ) follows the Bessel functions defined in (2.15)
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2.3. Scattering mechanisms in optical fibers

for the core, and in (2.16) for the cladding. The mode shape is in practice often approximated

by a Gaussian function, i.e.

R(r ) ≈ exp

(
− r 2

w2

)
(2.23)

and the matching is excellent, as depicted in Fig.2.3 for V = 2.4. The beam waist w is to a first
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Figure 2.3 – Fundamental mode (LP01) radial profile for V = 2.4 and a fiber core radius of
a = 4 µm.

order approximation given by the core radius a, yet a more precise value might be obtained

from the following empirical expression, which is fairly accurate for values of V ranging from

1.2 to 2.4 [18]

w

a
≈ 0.65+1.619V −3/2 +2.879V −6 (2.24)

In this case, the beam waist is w ≈ 4.4 µm. It appears from Fig.2.3 that the power of the

fundamental mode (the square of the curves displayed) travels in both core and cladding. This

behavior is typical of dielectric waveguides, where the light is not confined to a given region

but rather spreads over the entire structure. Notice that while most of the amplitude vanishes

at a distance ~10 µm from the core, the cladding extends up to 125 µm, i.e. it is safe to consider

the cladding as infinite in all previous derivations. The shape of the fundamental mode will

turn extremely important in latter chapters on forward stimulated Brillouin scattering (FSBS),

as this interaction relies on the surface overlap between acoustic and optical modes of the

fiber.

2.3 Scattering mechanisms in optical fibers

When light is injected into an optical fiber, a fraction of its energy is continuously returned

to its emitting point due to different scattering processes. This backscattered light provides

information on the local condition of the fiber, as all scattering processes rely on the fiber opto-

mechanical or thermodynamic properties. The three major classes of scatterings occurring in

13



Chapter 2. Fundamentals

an optical fiber are depicted in Fig.2.4. Rayleigh scattering arises due to density fluctuations

Wavelength�0

Stokes componentsanti-Stokes components

Rayleigh

BrillouinBrillouin

Raman Raman

�B
~0.1 nm 

~10 GHz

~110 nm 

~13 THz
�R

Figure 2.4 – Scattering processes in optical fibers at a wavelength ~1550 nm.

in the medium, and is well known to be the main reason why the sky appears blue. It is

labelled as elastic scattering, because the scattered light does not experience any frequency

shift. In optical fibers, Rayleigh scattering is far stronger than Brillouin or Raman scattering in

terms of scattering efficiency. Both Brillouin and Raman scattering are inelastic scatterings,

i.e. the scattered light experiences a frequency shift with respect to the carrier frequency of

the incident light. In both cases, the backscatterd light comprises a red-shifted and a blue-

shifted components, known as Stokes and anti-Stokes components, respectively. Brillouin and

Raman scattering share similarities in the nature of the scattering process, but exhibit very

distinct behaviors. Raman scattering results from molecular scattering, yielding a broadband

spectrum, far shifted from the incident light central wavelength (~110 nm or ~13 THz for a

central wavelength of ~1550 nm). The frequency shift in Brillouin scattering, which involves

material displacement in the form of acoustic waves, is several orders of magnitude lower

(~0.1 nm or ~10 GHz for a central wavelength of ~1550 nm), and the spectrum of the scattered

light is far narrower than for Raman scattering owing to a strict phase matching requirement.

2.3.1 Rayleigh scattering

Rayleigh scattering results from the interaction between an incident electromagnetic field and

particles much smaller than the light wavelength [19, 20]. Through dimensional considera-

tions, lord Rayleigh was able as early as 1871 to predict that the intensity of light scattered by a

particle much smaller than the wavelength is inversely proportional to the fourth power of

the wavelength λ [21]. For a single particle presenting a polarizability α, the ratio of scattered

intensity Is over incident intensity Ii reads

Is

Ii
=

1

λ4

16π4 sin2(ϕ)α2

R2 (2.25)

where ϕ denotes the angle between the input polarization (linear) orientation and the di-

rection of the scattering and R is the distance from the scatterer to the observer. In optical

fibers, the "particles" initiating Rayleigh scattering are actually density fluctuations frozen in

the fiber structure during manufacturing, as well as material composition variations due to

inhomogeneous doping [11] (see section 2.1.1). The angular dependency of Rayleigh scatter-
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ing (2.25) implies that only a certain fraction of it will be recaptured by the fiber and guided

back towards the source, as pictured in Fig.2.5. While the amount of density fluctuations

Incident light
Scattered light

Recapture angle
Scatterer

Figure 2.5 – Illustration of Rayleigh scattering in optical fibers.

has been significantly alleviated over time by dedicated research, it will never be possible to

entirely suppress them in silica-based fibers, due to the amorphous nature of glass. Therefore,

Rayleigh scattering imposes a hard limit to the loss achievable in standard single-mode fibers.

The λ−4 dependency of Rayleigh scattering drove the telecommunication industry to operate

towards higher wavelengths, ultimately settling at λ≈ 1550 nm where material absorption

starts to dominate [14]. At this wavelength, Rayleigh scattering amounts to a loss of ~0.15

dB/km, which is nearly reached by modern commercially available fibersII. Following these

considerations, Rayleigh scattering was exploited at a very early stage to evaluate the loss over

entire optical links, and is still widely used nowadays both in laboratory as well as in industrial

environment. The first experimental implementation of what would later be known as an

optical time-domain reflectometer (OTDR) was demonstrated in 1976 by Barnoski et al. [22].

Incoherent optical time-domain reflectometry

An incoherent OTDR operates by launching incoherent light in the form of an optical pulse in a

given fiber or fiber link, i.e. comprising two or more cascaded optical fibers, and measuring the

returning power as a function of time. By time-of-flight evaluation, the time-dependent infor-

mation can be accurately mapped to a distance-dependent trace, and the power backscattered

from a given position by Rayleigh scattering PR (z) is given by [11]

PR (z) = P0αs(λ, z)Bc (λ, z)
W

2
e−2αz (2.26)

where P0 is the pulse peak power, αs is the scattering coefficient, Bc is the recapture cofficient,

W is the pulse width and α is the attenuation coefficient. The two factors 2 in (2.26) are

inherent to single-end access optical reflectometers. The factor 2 halving the pulse width W is

omnipresent in distributed sensing technologies, and is due to the counter-propagating nature

of the two signals in presence, i.e. the forward travelling pulse and the backward propagating

scattering (see section 2.4.1). The factor 2 in the exponential attenuation term is due to the

round-trip experienced by the light, i.e. the pulse undergoes the fiber attenuation until a given

IIFor instance, see the SMF-28 ULL by Corning®wich certifies loss lower than 0.17 dB/km
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position z, and the backscattered signal is again attenuated during its propagation back to the

detection system. A typical response of an incoherent OTDR is shown in Fig.2.6.a).

Sensing based on coherent Rayleigh scattering

Rayleigh scattering also has a strong potential for sensing applications when the incoher-

ent light source used in conventional OTDR is replaced with a highly coherent one, i.e. a

narrow-linewidth laser. The working principle is exactly the same as for incoherent OTDR,

except this time the detected signal exhibits a jagged-like pattern owing to the multiple in-

terferences between the signals emitted by individual scatterers within the pulse width, as

shown in Fig.2.6.b). This behavior was predicted as early as 1984 [23], but was considered

distance distance

Intensity (log.) Intensity (lin.) 

Reflections Fiber loss

Splicing loss
Fiber end

a) b)

Figure 2.6 – Typical response of incoherent OTDR (a) and Φ-OTDR (b).

at that time as a disruptive effect to the normal operation of conventional OTDR. Although

a priori chaotic, the typical pattern of the so called phase-OTDR or Φ-OTDR is repeatable

provided that the experimental conditions remain unchanged. Since the trace is determined

by interferometric process, it turns out that it is extremely sensitive to any change in the fiber

mechanical properties. This high sensitivity was first exploited in an intrusion sensor [24],

where even tenous vibrations could be detected owing to the high sensitivity of the system.

The sensitivity of Φ-OTDR based systems is better understood by pointing out that the phase

of an optical signal at a given frequency ν varies with distance z accordingly to the magnitude

of its wavevector k as

kz =
2πn(ε,T )ν

c0
z (2.27)

where the dependency of the refractive index n on strain ε and temperature T is emphasized.

Note that practically speaking, temperature changes mainly impact on the refractive index n,

while strain (ε) has a much larger contribution on the propagated distance z due to fiber elon-

gation/contraction. Many Φ-OTDRs operate by scanning the frequency of the interrogating

light source, which as seen from (2.27) can compensate for variations in the phase kz due to

strain and/or temperature changes. The sensitivity of Φ-OTDR systems is thus usually defined

as the ratio between the amplitude of the frequency excursion∆ν required to compensate for

a shift of one degree or one micro-strain µε. Typical values lie approximately one thousand
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times higher than Brillouin based systems [2], i.e.

∆ν

∆T
≈−1.3 GHz/K (2.28)

∆ν

∆ε
≈−150 MHz/µε (2.29)

2.3.2 Raman scattering

Raman scattering refers to the scattering of light with vibrational modes of the molecules

within a given medium [11, 14, 15, 20]. The interaction, reported for the first time in 1928

by Raman [25], is usually described using a quantum-mechanical approach, as shown in

Fig.2.7.a). The frequency shift of the Stokes and anti-Stokes branches of Raman scattering

Ground state

Vibrational state

Virtual state

Stokes anti-Stokes

ωp ωpωS ωAS

a)

k

b)

Optical phonon (Raman)

Acoustic phonon (Brillouin)

Figure 2.7 – a) Energy diagram of Raman scattering. b) Dispersion diagram of optical and
acoustic phonons.

can be understood by looking at the energy diagram shown in Fig.2.7.a). In the former case,

the molecule is in the ground state, and transits to a higher energy vibrational state through

a virtual state of even higher energy by absorbing a pump photon ωp . The energy balance

is brought by the emission of a photon with lower frequency ωS , explaining the red-shift

observed in Stokes scattering. If the molecule is already in a excited (vibrational) state, a

complementary process may occur where the transition this time leads to the generation of a

photon of higher energy (blue shifted)ωAS. A similar approach may be envisioned for Brillouin

scattering (see details in section 2.3.3), yet the two mechanisms are inherently different due to

the properties of the phonons involved in the process. This is depicted in Fig.2.7.b) [11], which

shows the energy-momentum relation of optical phonons, involved in Raman scattering,

and acoustic phonons, involved in Brillouin scattering. In the first case, the phonon may

exhibit high energy (ω) with zero momentum (k), while in the second case, the dispersion

diagram shows a radically different behavior as a vanishing momentum yields zero energy. As

detailed in the upcoming section, this implies that Brillouin scattering can only occur under

strict phase matching, which ensures that energy and momentum are conserved during the

interaction. This requirement is largely relaxed for Raman scattering, because the phonons
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involved show similar energy levels over a broad range of momentum, which implies that

a wide variety of optical waves will be able to satisfy the rules of energy and momentum

conservation. This explains why the observed Raman spectrum in optical fiber is so broad, as

it extends over ~40 THz at a wavelength of 1550 nm [14].

Raman based distributed sensing

Raman scattering was exploited in pioneer works to achieve distributed temperature sensing as

early as 1985 [26]. The operating principle of distributed Raman sensors relies on the thermal

activation of optical phonons in the fiber, which follows the Bose-Einstein distribution [11]

n̄ =

(
e

hΩ
kT −1

)−1

(2.30)

where n̄ is the average number of phonon at frequencyΩ and temperature T , while h and k

denote Planck and Boltzmann constants, respectively. Since a phonon is annihilated in the

anti-Stokes process, the scattering is proportional to n̄, while the generation of a new phonon

during the Stokes process implies that the scattering is proportional to n̄ +1 [11]. For Raman

scattering, the average number of thermally activated phonons is quite low, owing to the large

energyΩ involved in the process. Indeed, injectingΩ = 13 THz and T = 300 K in (2.30) yields

n̄ ≈ 0.14. Distributed Raman sensing then operates by acquiring the power of the anti-Stokes

PAS and the Stokes waves PS, and evaluating their ratio as

RA,S =
PAS

PS
∝ n̄

n̄ +1
= e−

hΩ
kT (2.31)

The sensitivity of Raman sensors at room temperature, i.e. the normalized variation of (2.31)

with respect to T is about [2]

1

RA,S

∆RA,S

∆T
≈ 0.74%/K (2.32)

While quite straightforward to implement, Raman distributed sensors face two major per-

formances limitations. First, the low amount of backscattered light often requires the use of

multimode fibers in order to increase the captured power, which in turns limit the maximum

sensing range due to inter-modal dispersion, that is due to the different propagation velocity

of the modes guided at the probing wavelength. Second, the measurement described by (2.31)

is an intensity measurement, hence will be impaired by wavelength dependent loss that will

not be properly alleviated by the ratio operation performed in (2.31) due to the large spectral

separation between the Stokes and the anti-Stokes waves.
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2.3. Scattering mechanisms in optical fibers

2.3.3 Spontaneous Brillouin scattering

Brillouin scattering accounts for one of the light-scattering mechanisms observable in an

optical fiber, and was described as early as 1922 by Léon Brillouin [1]. It originates from the

interaction of light with density fluctuations induced by the propagation of acoustic waves

in the fiber [11, 14, 15, 20]. The high optical intensity resulting from the tight confinement

of light in optical fibers combined to ultra-low propagation loss make this type of waveg-

uide propitious to the triggering of Brillouin scattering even at moderate input power. This

phenomenon was however described and observed way before the advent of optical fibers,

such that many approaches focus on modeling Brillouin scattering in bulk media, without

taking into account the impact of the guiding structure. Although such description predicts

accurately most of the features of Brillouin scattering in optical fibers, it fails to model the

impact induced by the guided propagation of acoustic waves on the scattered optical signal. In

particular, guided acoustic waves enable Brillouin scattering to occur in the forward direction,

a behavior prohibited in bulk opto-acoustic media. This specific mechanism is known as

forward stimulated Brillouin scattering (FSBS) and is thoroughly addressed in chapter 4.

Density waves

Classically, Brillouin scattering is modeled by twos sets of wave equations governing the

evolution of density fluctuations and light (2.7) in a given material. The density wave equation

takes the following form.

∂2∆ρ

∂t 2 −Γ∇2∂∆ρ

∂t
−V 2

a ∇2∆ρ = 0 (2.33)

Here,∆ρ describes the deviation of the density from its average value ρ0, which is assumed to

remain constant in both space and time, Γ is the acoustic damping coefficient and Va is the

acoustic velocity of longitudinal waves. In such conditions, equation (2.33) is decoupled from

the optical wave equation (2.7). This is perfectly reasonable, given that in spontaneous regime

the incident light should by definition not influence the scattering process. Equation (2.33) is

solved assuming a solution in the form of a plane wave depending on position r and time t as

∆ρ(r , t ) = Re
{

Qe i
(
q ·r−ΩA t

)}
(2.34)

where Q is the acoustic amplitude, q is the wavevector and ΩA is the acoustic angular fre-

quency. Injecting (2.34) into (2.33) yields

ΩA = −i
ΓB

2
+

√
Ω2

0 −
(
ΓB

2

)2

(2.35)
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where only the positive square root was retained as it carries a physical meaning. Ω0 is the

system natural frequency defined as

Ω0 = Va
∣∣q

∣∣ (2.36)

and ΓB , the acoustic decay rate, is related to the phonon lifetime τB as [27]

ΓB = τ−1
B =

(∣∣q
∣∣2
Γ

)
(2.37)

Injecting (2.35) into (2.34) yields

∆ρ(r , t ) = e−ΓB t/2Re
{

Qe i(q ·r−ΩB t)
}

(2.38)

which corresponds to a damped harmonic wave with

ΩB =

√
Ω2

0 −
(
ΓB

2

)2

(2.39)

Additional polarization

At first glance, there seems to be no influence from the density wave equation (2.33) on

the electromagnetic wave equation (2.7), yet such relation is required for light scattering to

occur. The origin of spontaneous Brillouin scattering lies in a physical phenomenon called

photoelasticity, which refers to the change in the optical properties of a given medium in

response to mechanical deformations. It can be expressed as [15, 20]

∆χ =
γe

ρ0
∆ρ (2.40)

where γe is the electrostrictive constant and∆χ indicates a change in electric susceptibility.

As a consequence of the induced susceptibility change∆χ, the polarization defined in (2.8)

acquires an additional term P spt, i.e.

P = ε0E
(
χ+∆χ)

= P lin +P spt (2.41)

The first term on the right-hand size of (2.41), P lin, yields the contribution to the linear

refractive index (2.9) while the second term is found by injecting (2.40) and (2.38) into (2.41)

P spt =
ε0γe

2ρ0
e−ΓB t/2Re

{
QE0e i [(ki+q)·r−(ωi+ΩB )t ] +QE0e i [(ki−q)·r−(ωi−ΩB )t ]

}
(2.42)

where Q designates the complex conjugate and we assumed a harmonic incident electric field

E (r , t ) of the form

E (r , t ) = Re
{

E0e i (ki ·r−ωi t )
}

(2.43)
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2.3. Scattering mechanisms in optical fibers

where E0, k i and ωi are the amplitude, wavevector and angular frequency of the electric field,

respectively.

Phase matching

The additional polarization (2.42) is linear with respect to the incident optical wave and

contains two distinct contributions. The first term, leading to anti-Stokes scattering, ex-

hibits a wavevector equal to ki + q and oscillates at a frequency ωi +ΩB , whereas the sec-

ond term corresponds to Stokes scattering, which wavevector and frequency are given by

ki − q and ωi −ΩB , respectively. In order to represent valid solutions to the wave equa-

tion, the newfound components must exhibit the typical dispersion of an optical wave.

kS = ki −q (2.44a)

ωS =ωi −ΩB = |kS | c0

n
(2.44b)

kaS = ki +q (2.45a)

ωaS =ωi +ΩB = |kaS| c0

n
(2.45b)

Equations (2.44) and (2.45) state conservation of energy and momentum in spontaneous

Brillouin scattering, as depicted in Fig.2.8. This representation of Brillouin scattering enables

ki

q

ks

θA

θS

Figure 2.8 – Three waves interaction satisfying phase-matching condition in Brillouin scat-
tering. The wavevectors denote the incident optical wave ki , the scattered wave ks and the
acoustic wave q .

to interpret the frequency shift experienced by the Stokes and anti-Stokes components as a

Doppler shift resulting from the scattering of the incident light by a moving Bragg grating.

Indeed, the frequency shift amounts toΩB , which turns proportional to the velocity of acoustic

waves in the fiber, as evidenced later on in equation (2.49). In the Stokes case, the incident

optical field propagates in the same direction as the acoustic wave, such that the scattered field

carrier frequency gets down-shifted. On the other hand, anti-Stokes scattering corresponds to

the scattering of light by a grating moving against the incident optical field, hence increasing
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the frequency of the scattered signal. Alternatively, Brillouin scattering may also be addressed

following the quantum-mechanical approach used to describe Raman scattering in section

2.3.2. The major difference lies in the fact that due to the large momentum carried by acoustic

waves (see Fig.2.7.b), the interaction requires this time a strict phase-matching as given by

equations (2.44) and (2.45).

Brillouin frequency shift

In order to simplify relations (2.44) and (2.45), one may observe that while optical frequencies

lie above a hundred Thz, the acoustic frequencies considered here are known a posteriori to

amount to several GHz only. It is thus safe to assume that

ωS ≈ωaS ≈ωi (2.46)

Therefore, (2.44b) and (2.45b) imply

|ki | ≈ |kaS| ≈ |kS| (2.47)

such that either (ki ,kS, q) or (ki ,kaS, q) form the sides of an isosceles triangle. Using the

cosine rule or any similar method, one retrieves

∣∣q
∣∣ = 2 |ki |sin

(
θs

2

)
(2.48)

where θs denotes the angle between ki and either kS or kaS (see Fig.2.8). We first neglect the

influence of damping by setting ΓB = 0 in (2.39), yielding

ΩB =Ω0 =
∣∣q

∣∣Va (2.49)

The acoustic frequency is finally given by

νB =
ΩB

2π
=

2Van

λ
sin

(
θs

2

)
(2.50)

where λ =ωi /(2πc0) is the optical wavelength. Equation (2.50) shows that Brillouin scattering

in bulk media is a directional process, i.e. its properties depend on the scattering angle. A

most important consideration is that there is no forward scattering component, a statement

that will be overruled when taking into account the acoustic waveguiding properties of the

fiber in chapter 4.2. The acoustic wavevector is largest for fully backward scattering, that is

for θs =π. In optical fibers, light propagation is constrained along the optical axis, such that

Brillouin scattering may be either fully forward (θ = 0) or backward (θ =π). The value of (2.50)

when θ =π is referred to as the Brillouin frequency shift (BFS)

νB =
2Van

λ
(2.51)
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Brillouin based sensing

For standard single mode optical fibers, νB lies usually between 9 GHz and 11 GHz. The exact

value depends on multiple parameters, including the presence of dopant in the core and/or

the cladding as well as the fabrication process, such that even two fibers fabricated in similar

conditions by the same manufacturer might exhibit different BFS. In Brillouin based sensors,

evaluation of the BFS provides information about whether the optical fiber is being subject

to mechanical deformation or temperature change. This can be explained by observing that

νB depends on the mechanical properties of the fiber through Va and n, although the latter

contribution is negligible compared to the former. Indeed, the acoustic velocity Va depends

directly on the medium density, which will inevitably vary should the fiber be elongated,

compressed or subject to a temperature change. For conventional SMFs at a wavelength of

~1550 nm, the sensitivities, that is the shift in BFS∆νB per degree T change or micro-strain

µε read

∆νB

∆T
≈ 1 MHz/K (2.52)

∆νB

∆µε
≈ 50 kHz/µε (2.53)

Note that compared to (2.28) and (2.29), these values are roughly three orders of magnitude

lower.

Acoustic damping

We now consider the impact of acoustic loss in our study. Taking into account a non-zero

acoustic damping rate ΓB , the temporal exponential decay described in (2.42) is analyzed

in the frequency domain by means of a Fourier transform, yielding the following scattered

intensitiy Is [20]

Is ∝ 1(
∆ω2 −Ω2

0

)2 +Γ 2
B∆ω

2
(2.54)

where∆ω indicates the frequency shift with respect to the natural frequency, i.e. ∆ω =ω−ωi .

Equation (2.54) has two implications on the abovementioned results. First, and although this is

negligible in all cases considered in the framework of this thesis, the value of the Brillouin shift

(2.51) is now determined by ∆ωmax =
√
Ω2

0 −Γ2
B /2. Second, the linewidth of the resonance

defined in (2.54), that is its full-width at half maximum (FWHM) is

∆νB =
ΓB

2π
=

1

2πτB
(2.55)

In conventional single-mode fibers at λ≈ 1550 nm, τB is approximatively equal to 6 ns, hence

∆νB ≈27 MHz [11].

23



Chapter 2. Fundamentals

2.3.4 Stimulated Brillouin scattering

Stimulated Brillouin scattering (SBS) differs from its spontaneous counterpart on one major

aspect; it is a nonlinear phenomenon. It arises from a positive feedback loop involving two

complementary physical effects known as photo-elasticity and electrostriction [14, 15]. While

photo-elasticity (also known as the elasto-optic effect) refers to the variation of refractive

index induced by density changes, electrostriction leads to an increase of material density

in a dielectric when subject the latter experiences an intense electric field [15]. The entire

process is depicted in Fig.2.9. Note that SBS is only possible provided that acoustic phonons

(k1, ω1)

(k2, ω2)

(kint, ωint)
(q, Ω)

Interferences Electrostriction

Photoelasticity

Scattered field

Incident field

Scattering

Acoustic wave

Figure 2.9 – Positive feedback loop in stimulated Brillouin scattering. The wavevectors denote
two counter-propagating optical waves optical wave (k1 and k2), the resulting interference
pattern (kint) as well as the acoustic wave q , each associated to the corresponding angular
frequency.

are generated in the interaction, hence the scattered wave refers to the Stokes wave. The Stokes

wave grows due to the scattering of the incident wave against the moving grating induced by

the acoustic wave (via photo-elasticity). The intensity pattern resulting from the interference

between the incident and scattered fields lead, through electrostriction, to the generation of

acoustic waves that add up constructively to the vibrations already present. As a consequence,

both the scattered field as well as the acoustic wave grow at the expense of the incident field.

Density waves driven by light

While the effect of photo-elasticity, that is the influence of acoustic waves on light scattering,

was taken into account by the additional polarization (2.42), considering electrostriction

requires to slightly modify the density wave equation given in (2.33). More specifically, we

introduce a driving term on the right-hand side of the equation, yielding [15]

∂2∆ρ

∂t 2 −Γ∇2∂∆ρ

∂t
−V 2

a ∇2∆ρ = −1

2
ε0γe∇2〈E ·E 〉 (2.56)
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where ε0 is the vacuum permittivity and the brackets indicate a time average operation. The

physical meaning behind (2.56) is clear. In stimulated regime, the density waves are driven by

the second order dimensional derivative of the time-averaged intensity 〈E ·E 〉. The efficiency

of this simulation depends on the electrostrictive coefficient γe . Note that the electric field E

in (2.56) refers to the total electric field in presence, i.e. it is given by the sum of the incident

electric field and the scattered electric field.

Three waves interaction

In order to simplify the description of SBS, we consider that the incident and scattered optical

waves are linearly polarized along the same axis. Therefore, we limit the analysis to scalar

quantities, written as

E 1 = Re{E1} = Re
{

A1(z, t )e i (k1z−ω1t )
}

(2.57)

E 2 = Re{E2} = Re
{

A2(z, t )e i (−k2z−ω2t )
}

(2.58)

∆ρ(z, t ) = Re
{

Q(z, t )e i (qz−Ωt )
}

(2.59)

where E1 and E2 denote the complex fields associated with E 1 and E 2, respectively. Note that

in our definition, E 2 is counterpropagating with respect to E 1 which is expected from (2.50).

Notice also that we denoted the acoustic angular frequency by the free parameterΩ, as here

the frequency of the acoustic wave is imposed by the frequency difference of the optical waves

involved in the interaction. In this configuration, we assumed that the two optical waves are

externally generated and sent into the fiber, which is known as a Brillouin amplifier. SBS might

as well originate from noise, i.e. by sending only a single optical wave into the fiber, which is

known as a Brillouin generator [15].

Acoustic waves at steady-state

The scalar product of the total electric field appearing on the right-hand side of (2.56) yields

E ·E = Re{E1}2 +Re{E2}2 + 1

2
Re{E1E2}+ 1

2
Re

{
E1Ē2

}
(2.60)

and the bar denotes once more the complex conjugate. Equation (2.60) contains various terms

oscillating at different frequencies. Due to the time-averaging operation performed in (2.56),

all components oscillating at optical frequencies vanish. Furthermore, and in order to end up

with a driving term that is phase-matched to the acoustic wave in presence (2.59), only the last

term on the right hand-side of equation (2.60) is retained in the remaining of the derivation.

Given the scalar approach adopted, the Laplacian operator in (2.56) reduces to a second order

derivative against z. Eventually, we end up with

−1

2
ε0γe∇2〈E ·E 〉 =

1

4
ε0γe q2Re

{
A1(z, t )Ā2(z, t )e i (qz−Ωt )

}
(2.61)
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where we have assumed phase-matching by defining q = k1 +k2 ≈ 2k1 ≈ 2k2 andΩ =ω1 −ω2.

Following the derivation performed in [15], we end up neglecting all temporal and spatial

derivatives when explicitly writing down (2.56), i.e. we assume steady state. Following (2.49),

we expressΩ0 = q2Va , inject (2.61) into (2.56) and end up with

Q =
1

4

ε0γe q2 A1(z, t )Ā2(z, t )(
Ω2

0 −Ω2 − iΩΓB
) (2.62)

which defines the amplitude of the acoustic wave Q at steady-state.

Additional polarization

Computation of the additional polarization Pstim in stimulated Brillouin scattering is per-

formed in a manner similar to the derivation of (2.42) for the spontaneous case. This time

however, the electric field E is the total electric field resulting from the addition of the two

counter-propagating waves E1 and E2. Explicitly,

Pstim =
ε0γe

ρ0
Re

{
Qe i (qz−Ωt )

}
Re{E1 +E2} (2.63)

and all wave parameters are defined in (2.57) to (2.59). Explicit derivation of (2.63) yields

to four different terms, only two of which are phase-matched with either E1 or E2 and are

retained in further derivation, i.e.

Pstim =
ε0γe

2ρ0

[
Re

{
Q A2e i (k1z−ω1t )

}
+Re

{
Q̄ A1e i (−k2z−ω2t )

}]
(2.64)

The slowly varying envelope approximation

We make a brief digression at this stage of the derivation to introduce a well known relationship

that will enable to simplify greatly the upcoming results, and is known as the slowly varying

envelope approximation [14, 15]. It is expressed as follows∣∣∣∣∂A(z, t )

∂t

∣∣∣∣¿|ω| |A(z, t )| (2.65)∣∣∣∣∂A(z, t )

∂z

∣∣∣∣¿|k| |A(z, t )| (2.66)

where A, k and ω refer to the amplitude, wavevector and angular frequency, respectively, of

any wave (optical or acoustic). Relations (2.65) and (2.66) state that the amplitude of a given

wave varies slowly over a few cycles, both in time and distance. The practical implication

will be to get rid of higher order derivatives, providing an approximate solution of reasonable

complexity.
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Coupled amplitude equations

The total electric field E as well as the additional polarization (2.64) consist of two terms, each

associated with a given optical wave E1 and E2. We thus end up with two equations after

their injection in the wave equation (2.7), which are simplified following the slowly varying

envelope approximation, yielding

∂A1

∂z
+ n

c0

∂A1

∂t
= i

ωγeQ A2

4ncρ0
(2.67)

−∂A2

∂z
+ n

c0

∂A2

∂t
= i

ωγeQ̄ A1

4ncρ0
(2.68)

We may now introduce the solution found for the acoustic amplitude (2.62). Assuming steady-

state by making temporal derivatives vanish, one end up with

d A1

d z
= i

ε0ωq2γ2
e

8nc0ρ0

A1 |A2|2(
Ω2

0 −Ω2 − iΩΓB
) (2.69)

d A2

d z
= −i

ε0ωq2γ2
e

8nc0ρ0

A2 |A1|2(
Ω2

0 −Ω2 + iΩΓB
) (2.70)

which now define a set of coupled equations. The form taken by these equations enables to

derive a new set of equations ruling the evolution of the optical intensities of the two waves

involved in SBS [15].

Coupled intensity equations

The intensity I associated with a plane wave of amplitude E0 propagating in a medium with

refractive index n is by definition

I =
c0nε0

2
|E0|2 (2.71)

which enables to derive coupled equations for the intensities I1 and I2 of the optical waves as

d I1

d z
=

c0nε0

2

(
A1

d Ā1

d z
+ Ā1

d A1

d z

)
(2.72)

d I2

d z
=

c0nε0

2

(
A2

d Ā2

d z
+ Ā2

d A2

d z

)
(2.73)

which can be explicitly obtained by inserting (2.69) and (2.70) into (2.72) and (2.73). In doing

so, we assume that the frequency difference between the optical waves is close to the natural

Brillouin frequency shift, i.e. we assumeΩ≈Ω0, yielding the following approximation(
Ω2

0 −Ω2)2 ≈ 4Ω2 (Ω0 −Ω)2 (2.74)
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which enables to express (2.72) and (2.73) as

d I1

d z
= −g I1I2 (2.75)

d I2

d z
= −g I1I2 (2.76)

where g is the Brillouin gain spectrum (BGS). The latter exhibits a Lorentzian lineshape

g = g0
(ΓB /2)2

(Ω0 −Ω)2 + (ΓB /2)2 (2.77)

and g0 is the Brillouin gain, given by

g0 =
γ2

eω
2

nVac3
0ρoΓB

(2.78)

and amounts approximately to 1.4×10−11 m/W in standard single-mode fibers at 1550 nm.

This value was evaluated using γe ≈ 0.902, ρ0 ≈ 2210 kg/m3 and Va ≈ 6000 m/s [14]. Sensing

platforms relying on SBS use exactly the same principle as for spontaneous Brillouin scattering,

i.e. the device aims at evaluating the value of the Brillouin frequency shiftΩ0 at every position

along the fiber. As will be discussed in section 2.4.6, time-domain based approaches require

for one of the waves I1 and I2 to be much smaller than the other, i.e. enabling to decouple

equations (2.75) and (2.76). Before concluding this section, let us notice that so far no identity

Frequency

Pump (z+)Stokes (z-) anti-Stokes (z-)

Spontaneous

regime

Stimulated

regime

Energy transferEnergy transfer

Figure 2.10 – Energy transfer in stimulated Brillouin scattering. The pump is counter-
propagating with respect to the Stokes and anti-Stokes waves.

has be put on the two intensities I1 and I2, simply we assumed that I1 is co-propagating with

the acoustic wave whereas I2 experiences a counter-propagating motion. Therefore, while

equation (2.75) describes the attenuation underwent by I1, equation (2.76) implies that I2

experiences amplification, i.e. energy is transferred from I1 to I2, that is from the wave of

higher frequency to the wave of lower frequency. Consider now a Brillouin generator scenario,

i.e. a single optical wave, referred to as the pump, is launched into an optical fiber. At low

input power, that is lower than the SBS critical power [14], the pump generates a spontaneous

backscattered Stokes and anti-Stokes waves. As the pump power grows and SBS starts to take

place, it appears that I1 might either play the role of the pump and I2 the one of the Stokes
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wave, or I1 might take the role of the anti-Stokes wave and I2 the one of the pump. This dual

process yields a unidirectional energy transfer as depicted in Fig.2.10. Note that this remains

valid if the optical waves are externally generated and sent counter-propagating in the fiber,

i.e. a signal located within the Stokes (anti-Stokes) BGS will experience gain (loss).

2.4 Distributed optical fiber sensing

In this section, we will provide with general notions on distributed optical fiber sensors

(DOFS), restricting the scope of the discussion to time-domain methods that operate by

sending an optical impulse into the fiber and acquiring a specific backscattered signal. While

all parameters presented here are valid for most time-domain DOFS, the analysis is articulated

around Brillouin based sensors, which were used to acquire all the results reported in this

dissertation.

2.4.1 Spatial resolution

Spatial resolution (SR) is a key parameter in distributed optical fiber sensors (DOFS), as it de-

fines the minimum distance between two independent events that can be fully distinguished.

It also specifies the minimum length of an event, such as e.g. a temperature change, which

magnitude can be fully evaluated by the sensor (or to 90% of its value depending on the defini-

tion [2]). In time-domain based DOFS, the spatial resolution is intricately related to the width

W of the pulse sent into the fiber. The counter-propagating motion of the interrogating pulse,

usually referred to as the pump, and the backscattered signal bringing back the information to

the end user introduces a factor two in the relationship, such that the spatial resolution ends

up being only half of the spatial extent covered by the pump, as explained in Fig.2.11.

Overlap

No overlap
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W/2

t=t0

W
4ct=t0+

W
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c
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c

c

c

Figure 2.11 – Illustration of spatial resolution in time-domain based distributed optical fiber
sensors.
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We consider an optical fiber comprising two events (labelled as 1 and 2) separated by a distance

equivalent to half of the pulse width W . At any time, due to e.g. Brillouin scattering, part

of the pump pulse energy is sent backwards into the fiber towards the emitting point of the

pulse. Both the pump and the backscattered signal travel at the group velocity of light at

the given wavelength, denoted c. At a given time t0, the leading edge of the pulse sees the

first event, hence the backscattered signal (in blue) already contains information related to

that event. After a delay corresponding to a quarter of the pulse duration, part of the newly

generated backscattered signal (in orange) overlaps with the previous emission due to the

finite propagation speed of the signals in the fiber. Therefore, part of the energy emitted at

t0 and at t0 +W /(4c) end up reaching the detector at the same time, mixing the information

from both locations. In order to avoid any information overlap, it is therefore sufficient for the

pulse to propagate on a distance equal to only half of its width, i.e. the backscattered signal

emitted at t0 +W /(2c) is totally dissociated from the one generated at t0. As a consequence,

the information on the second event does not mix with the information acquired for the first

event. The spatial resolution of a pulse based interrogator is thus

SR =
W

2
(2.79)

where W is the pulse width in meters. As will become clearer in section 2.4.2, the spatial

resolution of a given sensor is always compromised by other criteria, such as the sensing

distance. Overall, one would like to reduce the pulse width as much as possible, hence achieve

extremely sharp spatial resolution. However, this comes at the expense of energy, as the shorter

the pulse, the lower the backscattered signal, which in turns restricts the range of the sensor.

In DOFS, all parameters are interconnected, such that it is generally speaking not possible to

improve on one aspect without degrading on another.

2.4.2 Signal-to-noise ratio

Signal-to-noise ratio (SNR) is a very general concept, that describes the quality of a measure-

ment by evaluating the ratio of information, quantified by the signal power Ps , to the level of

detrimental fluctuations of the measurand induced by noise Pn , i.e.

SNR =
Ps

Pn
(2.80)

While this definition of SNR is intuitive and formal, accurate evaluation of the noise and

signal powers in practical applications is not that straightforward. As will be explained in

sections 2.4.5 and 2.4.6, Brillouin sensors operate by retrieving a bell-shaped curve known as

the Brillouin gain spectrum (BGS, see section 2.3.4) at each fiber location, as shown in Fig.2.12.

The SNR is thus more conveniently evaluated by proceeding to repeated measurements in

identical conditions, typically five as in Fig.2.12, and operate the following ratio

SNR =
µ

σ
(2.81)
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where µ and σ are the mean value and standard deviation of the BGS value at resonance

(maximum value), evaluated based on successive acquisitions. The SNR is a crucial parameter
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Figure 2.12 – 5 consecutive BGS measurements in reproducible conditions enabling evaluating
the signal-to-noise ratio. The unit of the y-axis (%) is intrinsic to the method used to acquire
the data, known as Brillouin optical time-domain analysis (BOTDA, see section 2.4.6).

for any acquisition system. For the case of Brillouin based sensors, the SNR can be shown to

be inversely proportional to the experimental uncertainty on e.g. the measured temperature

[28]. In time-domain based distributed optical fiber sensors (DOFS), the SNR is to a large

extent determined by the pulse energy and the noise characteristics of the photodetector at

the receiver side. For a given noise level, the SNR is thus entirely driven by the pulse energy,

which for a rectangular pulse amounts to a product between its width and its peak power. As

explained in section 2.4.1, the pulse width is usually set to meet a specific spatial resolution.

The pulse peak power can be increased only up to a certain amount, which is determined by the

onset of nonlinear effects, typically modulation instability (MI) in conventional single-mode

fibers [29]. As a consequence, conventional Brillouin based DOFS are now hitting fundamental

barriers, that define ultimate performances, provided that the noise is properly tackled [30].

The optimization of a given setup as well as solutions to improve the performances of Brillouin

based DOFS will be given in chapter 3.

2.4.3 Acquisition time

The acquisition time, quite naturally, defines the total amount of time required to perform

a given measurement while matching with certain requirements. The systems considered

in this dissertation rely on a frequency scanning, i.e. the Brillouin gain spectrum (BGS, as

shown in Fig.2.12) at each fiber location, which is stored in a 2-D matrix, is reconstructed by

concatenating a series of 1-D traces acquired at different frequencies. At each frequency, the

acquisition is averaged Navg times, an operation that is mandatory in DOFS due to the weak

backscattered optical power. Overall, for a frequency scanning performed on Nfreq points, the
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acquisition time T is

T = Nfreq

(
τswitch +Navg

2L

c

)
(2.82)

where L is the fiber length and c is the speed of light in the fiber. The parameter τswitch is

introduced to account for a delay in the switching time between two successive frequencies

due e.g. to the stabilization of the considered device. This amounts usually to ~ 1 ms and the

factor τswitch is dominant in short fibers. The transit time given by 2L/c accounts for the time

required for the pump pulse to reach the fiber end and for the backscattered signal to return,

i.e. a return trip to the fiber far end. This waiting time is mandatory as to prevent sending a

second pulse in the fiber while the information from the remote end is still on its way to the

detector. For a fiber of length L = 50 km, the return trip effectuated by light is ~ 0.5 ms, hence

the factor Navg2L/c turns dominant in long fibers, since the averaging number Navg is usually

set to several thousands. Note that equation (2.82) defines the ideal acquisition time, which is

usually not reached due to instrumental limitations in the acquisition system. It also enables

putting light on another trade-off related to the signal-to-noise ratio (SNR), as doubling the

averaging Navg will result in a noise reduction factor of
p

2, yet this will double the acquisition

time as evidenced in (2.82). This shows that improving the performances of a given sensor by

increasing the averaging number to a large amount is often not a suitable solution, as it would

lead to significantly longer measurement times.

2.4.4 Sensing range

The sensing range defines the maximum distance that can be interrogated by a given sensor.

It generally has to be trade-off with all abovementioned parameters. The main factor limiting

the sensing range is the fiber attenuation α, which imposes an exponential decay on the pulse

power as it travels down the fiber. In reflectometry, where only a pulse is sent into the fiber,

the detected signal Pdet(z) as a function of distance can be expressed as

Pdet(z) = P0e−2αz (2.83)

where P0 is the power measured at the fiber entrance and the factor two accounts once more

for a return trip in the fiber. Attenuation in optical fibers is often expressed in dB/km, by

computing the following ratio

10log10

(
Pdet(z)

P0

)
= 10log10

(
e−2αz) = −2z10log10 (e)α = −2αdBz (2.84)

Typically, αdB ≈0.2 dB/km, and a 3 dB loss is equivalent to a loss of half of the initial power

P0. If we again consider a fiber of L = 50 km, the signal measured at the fiber far end is

20 dB weaker than P0, which translates in linear scale to a factor 100. This immediately

signifies that the signal-to-noise ratio (SNR) at the fiber remote end is one hundred times

lower than at the fiber beginning. This explains why most specifications of commercially
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available DOFS have to be met at a given distance. In addition to the massive difference in

SNR between the fiber ends, the dynamic range of the photodetector in use must be also

properly designed as to accurately measure signals with different orders of magnitude. As will

be seen in section 2.4.6, this requirement can be relaxed when exploiting stimulated Brillouin

scattering (SBS), as the attenuation factor in the exponential decay of the power is halved

with respect to reflectometers relying on spontaneous scattering processes. Moreover, this

two-way attenuation is also compensated for in Brillouin optical time-domain reflectometry

(BOTDR), owing to the coherent detection process used to measured the backscatterd signal,

as elaborated in the upcoming section.

2.4.5 Brillouin optical time-domain reflectometry

Brillouin optical time-domain reflectometry (BOTDR) was first proposed in 1993 [4] as a

single-access alternative to Brillouin optical time-domain analysis (BOTDA, see section 2.4.6),

which requires launching light simultaneously from both ends of the fiber. BOTDR usually

relies on optical heterodyne detection, which is well suited to detect low amplitude signals

such as e.g. spontaneous Brillouin scattering. Consider two monochromatic optical signals,

linearly polarized along the same axis. They are represented by their electric field denoted

Esig = Re
{
Esig

}
= Re

{
Asige iωsigt

}
(2.85)

ELO = Re{ELO} = Re
{

ALOe iωLOt
}

(2.86)

where LO stands for local oscillator. Heterodyne detection operates by measuring the intensity

of the beat signal between Esig and ELO, i.e.

I ∝ ∣∣Esig +ELO
∣∣2 = Isig + ILO +2

√
IsigILO cos

[
(ωsig −ωLO)t

]
(2.87)

The two low-frequency contributions (Isig and ILO) are usually filtered out, such that the

last term on the right-hand side of (2.87) remains. This interference term oscillates at the

frequency difference between the signal frequency and the LO (ωsig−ωLO) and is proportional

to the square root of the product of the intensities of the two signals. This feature is extremely

convenient as it enables to compensate for a low intensity signal by mixing it with a strong

local oscillator, which is usually the case in BOTDR. Additionally, this square root dependency

also enables to counteract the double-path loss described by (2.83), i.e. the factor 2 in the

exponential vanishes, which implies that the requirement on the dynamic range of this system

is much reduced compared to a direct detection scheme.

A typical implementation of a BOTDR is shown in Fig.2.13 and operates as follows. The

coherent light emitted by a laser source is split in two branches by a coupler. The upper

branch is dedicated to shape the continuous-wave (CW) light from the laser into a rectangular

pump pulse (in green), amplify it and launch it in the fiber under test (FUT). This is achieved

by an intensity modulator, here a semiconductor optical amplifier (SOA) driven by a pulse
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Figure 2.13 – Typical implementation of a BOTDR. The abbreviations stand for: SOA - semi-
conductor optical amplifier, EDFA - Erbium doped fiber amplifier, RF - Radiofrequency, EOM -
electro-optic modulator, FUT - fiber under test, BPF - bandpass filter, LO - local oscillator.

generator. If required, the pulse might be further amplified by an erbium doped fiber amplifier

(EDFA) before its injection in the FUT through a circulator. This circulator is also responsible

to pick up the signal backscattered by the pump (in blue), and mix it with the local oscillator

(LO) generated in the lower branch of the setup (in red). The LO is generated from the

same light source as the pump, and comprises two sidebands induced by an electro-optic

modulator (EOM), which is driven at extinction by a radio frequency (RF) generator operating

at a tunable frequency fRF. Each sideband is thus frequency shifted with respect to the laser

carrier frequency ν0 by fRF, as shown in Fig.2.14.

The polarization scrambler plays a central role in the interferometric process taking place at

the photo-detector level and described by (2.87). Indeed, owing to the usage of conventional

single-mode fibers, the polarization state of the backscattered signal is random at each fiber

location [11]. Therefore, the detected beating signal turns dependent on the instantaneous

polarization states of the LO and the backscattered signal, which is random and prone to vary

over time, and thus requires proper polarization management, which can be implemented

by using e.g. a polarization scrambler. Overall, and without polarization compensation, the

measured intensity will exhibit sharp and large transitions. The role of the scrambler is thus to

alleviate this detrimental perturbation by averaging out the contributions from a multitude of

different, random polarization states of the LO.

The signal delivered by the photodetector is not monochromatic, i.e. it results from the

convolution between the LO and the fiber Brillouin gain spectrum (BGS). Note that the latter

is in addition usually larger than the fundamental BGS described in section 2.3.3 due to the

spectral broadening induced by the finite pump pulse width [31]. The role of the bandpass

filter (BPF) is twofolds. First, it filters out any unwanted DC component in the signal due

e.g. to a slight unbalance between the amplitudes of the waves sent into the photodetector

(balanced detection). Second, it enables sampling the BGS by letting energy flow only through

a very narrow frequency band. The magnitude of this signal that oscillates at the BPF central

frequency is finally delivered by an envelope detector. The detection process is detailed

in Fig.2.14, showing the transition from the optical domain to the electrical domain after
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Figure 2.14 – Heterodyne detection of spontaneous Brillouin scattering using balanced de-
tection. The LO frequency is set close to the fiber Brillouin frequency shift νB , such that the
beating signal, once converted to the electrical domain, can be sampled by a narrow bandpass
filter.

balanced detection. The gain spectrum can be retrieved by scanning fRF, thus sweeping the

electrical beat signal (in gray) through the bandpass filter seen on the right-hand side of the

figure.

2.4.6 Brillouin optical time-domain analysis

Initially, Brillouin optical time-domain anaylsis (BOTDA) was proposed as an alternative to

optical time-domain reflectometry based on incoherent Rayleigh scattering, i.e. the technique

aimed at evaluating the loss experienced by a signal propagating in an optical fiber [3]. Its

potential ability to perform distributed strain and temperature measurements was quickly un-

derstood, the first reports being published shortly after the first mention of the technique [32,

33]. BOTDA relies on stimulated Brillouin scattering (SBS), and operates by sending an optical

pulse from one end of the fiber, known as the pump, and a continuous-wave signal from the

other end, referred to as the probe. If the frequency difference between pump and probe is

close to the fiber Brillouin frequency shift (BFS), energy transfer occurs and the probe experi-

ences either amplification (if the probe frequency is lower than the pump) or attenuation (if

the probe frequency is higher than the pump), as depicted in Fig.2.15. The first scenario is

PumpProbe

SBS

Energy transfer

z0 L

Figure 2.15 – Operating principle of a BOTDA, involving an optical pulse (pump) and a coun-
terpropagating CW wave (probe).

known as Brillouin gain, as opposed to Brillouin loss in the second case. After its interaction

with the pump, the amplified (or attenuated) probe proceeds in the fiber, eventually reaching

the photodetector. A time acquisition of the probe intensity thus enables to retrieve local

information about the energy transfer occurring all along the fiber. Notice that we depicted

a unidirectional energy transfer in Fig.2.15, as if no energy was transferred from the probe
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to the pump, in apparent contradiction with equations (2.75) and (2.76). This is known as

the undepleted pump approximation [14, 15], and relies on the fact that the pump is larger

than the probe by several orders of magnitude. For instance, in long range BOTDA where the

fiber length exceeds 20 km, the pump power is capped to ~200 mW (23 dBm) by modulation

instability [29] while the probe power is usually maintained below 50 µW (-13 dBm) [34], in

order to avoid the so-called pump-depletion effect, which defines a scenario where the energy

transfer between pump and probe is too severe. Note that the requirement on the probe power

is nowadays relaxed to 250 µW (-6 dBm) by sending a dual-sideband probe signal into the

fiber [35].

Consider now a Brillouin gain configuration, i.e. the intensity I1 and I2 in equations (2.75)

and (2.76) refer to the pump and the Stokes wave, respectively. They are therefore respectively

labelled as Ipu and Ipr for the sake of clarity. The evolution of their intensity is described in a

three steps process.

1 Before interacting, pump and probe are injected from both ends of a fiber of length L.

Assuming they only experience the fiber attenuation α, their intensity reads

Ipu(z−) = Ipu(0)e−αz (2.88)

Ipr(z−) = Ipr(L)e−α(L−z) (2.89)

where the minus subscript indicates that SBS did not take place yet.

2 During SBS, we make use of the undepleted pump approximation, i.e. we assume that

the powerful pump pulse is unaffected by the interaction, hence we write

d Ipu

dz
= 0 (2.90)

which implies that Ipu(z−) = Ipu(z+) = Ipu(z). Assuming that the energy transfer is

constant over the pulse width W , solving of equation (2.76) yields

Ipr(z+) = Ipr(z−)eg Ipu(z)W (2.91)

3 After interacting with the pump, the probe proceeds down the fiber towards the pho-

toreceiver. The detected intensity is thus

Idet(z) = Ipr(z+)e−αz (2.92)

Finally, injecting (2.88), (2.89) and (2.91) into (2.92) yields

Idet(z) = Ipr(L)e−αLexp
(
g (z,∆ν)Ipu(0)e−αzW

)
(2.93)

where we emphasized the dependency of the Brillouin gain on both distance z and on the

frequency detuning between pump and probe ∆ν. Equation (2.93) comprises two distinct
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contributions. The first one corresponds to the probe intensity at the detector without SBS

interaction, hence we rename it

IDC = Ipr(L)e−αL (2.94)

The second one within the exponential function is labelled as the Brillouin linear gain G(z,∆ν),

enabling to express (2.93) as

Idet(z) = IDCeG
(
z,∆ν

)
(2.95)

By evaluating IDC, the linear Brillouin amplification denoted G(z,∆ν) can be retrieved by the

following normalization procedure [36]

G(z,∆ν) = g (z,∆ν)Ipu(0)e−αzW = ln

(
Idet(z)

IDC

)
(2.96)

The linear Brillouin gain G(z,∆ν) is the quantity that any BOTDA pursues to evaluate. Since it

is directly proportional to the Brillouin gain g (z,∆ν), it provides with identical knowledge on

the spectral shape of the Brillouin gain spectrum (BGS). In conventional single-mode fibers,

G(z,∆ν) is in the order of a few percent, as exemplified in Fig.2.12. Notice that G(z,∆ν) is

directly proportional to the pulse width W III, hence broadening the spatial resolution by

increasing W will yield a higher gain as a consequence from a larger energy transfer. Note also

that the G(z,∆ν) only fades with distance at a rate e−αz , i.e. the exponential attenuation is

only half the one of reflectometers operating in direct detection (2.83).

A practical implementation of a BOTDA, that shares many similarities with a Brillouin optical

time-domain reflectometer (BOTDR), is shown in Fig.2.16. The upper branch of the setup
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Figure 2.16 – Typical implementation of a BOTDA. The abbreviations stand for: SOA - semi-
conductor optical amplifier, EDFA - erbium doped fiber amplifier, RF - radiofrequency, EOM -
electro-optic modulator, FUT - fiber under test, FBG - fiber Bragg grating.

is once more dedicated to produce a high intensity rectangular pulse by shaping the light of

the laser source using an intensity modulator, here a semiconductor optical amplifier (SOA)

driven by a pulse generator. An erbium doped fiber amplifier (EDFA) might be used to increase

the pump power if required. The probe branch mostly consists of an electro-optic modulator

IIIThis is an approximation, as in reality the Brillouin gain fades rapidly when the pulse width approaches the
acoustic phonon lifetime, as explicated in section 3.3
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(EOM) driven at extinction by an RF modulator at a frequency fRF, producing a double side

band carrier suppressed continuous-wave (CW) signal. The probe flows into the fiber under

test (FUT), meeting with the pulse propagating in the opposite direction, which is stopped

by an optical isolator, preventing it from perturbing the operational conditions of the EOM.

After its propagation in the FUT, one of the two sidebands of the probe is filtered out by a

narrowband fiber Bragg grating before detection by a photodetector, as illustrated by the inset.

In this example, the FBG is set as to filter out the anti-Stokes wave, i.e. the device operates in

gain mode. Switching to loss mode is extremely straightforward, as it suffices to either tune the

FBG (if possible) to filter out the Stokes wave, or change the laser wavelength to achieve the

same result. Notice that in this configuration, the effect of pump depletion mentioned earlier

is virtually suppressed, because the side-band that is not being detected helps replenishing

the pump energy during SBS interaction.

In BOTDA, no additional filtering is required after detection due to the use of a narrow

linewidth laser source that serves as an optical fiber during the SBS energy transfer. The

Brillouin gain spectrum (BGS) all along the fiber is probed by scanning the EOM frequency fRF

accordingly, similarly to the case of BOTDR. Note that the requirements on the photodetector

for a BOTDA are radically different from the ones for a BOTDR, as the signal detected here con-

sists of a strong DC (IDC), which is being slighty amplified by the pump pulse (a few percents

only). Finally, notice that due to SBS relying on the interference pattern between pump and

probe, the polarization scrambler is once more devoted to average out fading effects due to

random variations of polarization states of the two waves.
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Digital signal processing (DSP) is a fundamental field of study that provides with the tools and

algorithms necessary to transform and analyze digital signals. By definition, a signal consists in

any physical quantity, which variations with respect to a given variable such as time or distance

are not random but carry some meaningful, underlying information [37]. The distinction

between a signal and a digital signal, is that the former often refers to analog signals, which

are continuous variables depending on continuous value parameters, whereas the latter imply

that the data consists in a discrete series of finite precision values that may be stored on any

digital memory. Except in rare cases, most signals encountered nowadays eventually end up

becoming digital through an important operation known as digitization, which consists in

assigning a single value to a continuously varying variable within a certain interval of the

free parameter it depends on, often time [38]. This scenario actually applies to any type of

distributed optical fiber sensor (DOFS), which irremediably end up digitizing the analog signal

delivered by an optical receiver. Due to its omnipresence in DOFS and more generally in any

scientific field of research, DSP is routinely used to process the raw data provided by a given

sensor in order to extract in a most efficient manner the targeted information. Quite naturally,

this processing operation is usually tailored to a specific application, and certain algorithms

or DSP techniques became standards to deal with the data delivered by a particular DOFS.

While this often yields good results, one have to be careful as to not reduce DSP to a set of

algorithms or to a series of steps to be taken blindly in order to process a specific data.

In this chapter, we explore how the theory of DSP, restricted to linear time-invariant (LTI)

systems, can be used to optimize the performances of a Brillouin optical time-domain analyser

(BOTDA). Furthermore, and by making use of very general methodologies, we will show that

proper post-processing offers other advantages. First, we will detail how to achieve flexible

spatial resolution, resolving information with a shorter spatial resolution than defined by the

pulse width. Finally, we will address the topic of optical pulse coding, which consists in sending

a well-defined sequence of pulse into the fiber before decoding the measured response to

outperform conventional single pulse systems. All these results yet require to become familiar

with certain concepts of DSP, which are presented in an introductory theoretical part.
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3.1 Basic concepts of digital signal processing

This section aims at introducing several key concepts of digital signal processing (DSP) which

find later on an application in the framework of distributed optical fiber sensing (DOFS).

Because an entire thesis would not be sufficient to address every possible aspect related

to DSP, we will restrict ourselves to techniques and algorithms that can be described by a

linear time-invariant system (LTI). This assumption is the cornerstone of every single result

presented in this chapter.

3.1.1 Linearity, time-invariance and convolution

Linear time-invariant (LTI) systems or filters are mathematical objects that can be described

by a linear convolution operation [37, 38]. The demonstration presented here closely follows

the one presented in [39]. So far, we deal with analog signals, i.e. we assume x(t) is a real-

valued function depending on a continuous and real-valued parameter t . An LTI system is

modelled as an operator L that modifies x(t ) while satisfying to the requirements of linearity

and time-invariance. We also introduce the Dirac impulse δ(t ), also known as delta function

(although formally it is not a function), which is used to characterize any LTI system. The

response of an LTI system to a Dirac is known as the impulse response, often labelled h(t ) [37,

38, 39]

h(t ) = L [δ(t )] (3.1)

The Dirac also exhibits the following property

x(t ) =
∫ +∞

−∞
x(u)δ(t −u)du (3.2)

which enables characterizing the behavior of any LTI system by its impulse response (3.1). To

do so, we rely on our definition and exploit the fact that the operator L is linear, i.e.

L [x(t )] =
∫ +∞

−∞
x(u)L [δ(t −u)]du (3.3)

Now, since the operator is also time-invariant, and using (3.1) we may write

L [x(t )] =
∫ +∞

−∞
x(u)h(t −u)du =

∫ +∞

−∞
h(u)x(t −u)du = x(t )∗h(t ) (3.4)

which shows that the effect of any LTI operator L on a signal x(t ) may be described by a linear

convolution between the signal and the impulse reponse of the system h(t ). This conclusion is

fundamental, as it will enable to model the response of many distributed optical fiber sensors

(DOFS) by means of their impulse response h(t). While the temporal response of a given

sensor is eventually the desired quantity as it can be mapped to a distance-map information

via a time of flight evaluation, many operations are performed in the frequency domain by
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means of the Fourier transform. While these concepts are well known, they are prerequisites

to introduce more specific concepts related to digital signal processing.

3.1.2 The continuous-time Fourier transform

The Fourier transform operation might be seen as the orthogonal projection of a function x(t )

on a vector-space which eigenvectors are complex exponentials e iωt , where ω is the angular

frequency. This can be seen by evaluating the response of a complex exponential to a linear

time-invariant (LTI) operator L characterized by an impulse reponse h(t ), i.e.

L
[

e iωt
]

=
∫ +∞

−∞
h(u)e iω(t−u)du = e iωt

∫ +∞

−∞
h(u)e−iωudu = e iωt ĥ(ω) (3.5)

and we recognize the eigenvalue ĥ(ω) as the Fourier transform of h(t ). The definition of the

Fourier transform can be extended to any function x(t ) belonging to the space of finite energy

function L 2(R) [39], and we can write the following Fourier transform pair, which we will refer

to specifically as the continuous-time Fourier transform (CTFT)

x̂(ω) =
∫ +∞

−∞
x(t )e−iωt d t (3.6)

x(t ) =
1

2π

∫ +∞

−∞
x̂(ω)e iωt dω (3.7)

We will know provide two fundamental results without demonstration. The first one, known

as Plancherel formula, states the conservation of energy as∫ +∞

−∞
|x(t )|2 d t =

1

2π

∫ +∞

−∞
|x̂(ω)|2 dω (3.8)

Finally, the convolution theorem states that

z(t ) = x(t )∗ y(t )
CTFT←→ ẑ(ω) = x̂(ω)ŷ(ω) (3.9a)

z(t ) = x(t )y(t )
CTFT←→ ẑ(ω) =

1

2π
x̂(ω)∗ ŷ(ω) (3.9b)

and is a central theorem in the theory of signal processing. It translates the fact that a complex

operation such as a convolution integral can be achieved by computing the Fourier transform

of the two functions independently, multiplying them and finally taking the inverse Fourier

transform of the result. Filtering operations are often far more intuitive when transposed to the

frequency domain, where the removal of certain frequencies can be more easily understood

than by direct inspection of the convolution operation in the time domain.
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Chapter 3. Digital signal processing applied to distributed optical fiber sensing

3.1.3 The sampling theorem and the discrete-time Fourier transform

All results presented so far were obtained considering continuous-time functions of continuous-

valued parameters. While some results will be exploited as such, one must also fully under-

stand how the mathematical tools and objects that are integral operations and continuous-

valued functions can be transposed to a world where every information is reduced to a series

of bits stored in a computer. This transition is mandatory as to adequately process the data de-

livered by a distributed optical fiber sensor (DOFS), provided that the latter may be described

as a linear time invariant (LTI) system. We will comment on that statement shortly on.

Consider now a real-valued continuous time signal x(t). The mathematical operation that

enables to transit from a continuous-time signal to a discrete-time signal is known as sampling,

and can be defined as [37, 38, 39]

x[m], x(mT ) (3.10)

where m is a positive integer, T is the time interval between two samples and the square

brackets emphasize that x[m] is a discrete-time signal. An important observation is that

the samples x[m] are now disconnected from any temporal basis provided by t , in other

words x[m] consists in a series of values stored in a 1-D vector. This will yield the concept of

normalized frequency, as explained here below. A question naturally arising when sampling a

signal is about the appropriate sampling rate or sampling frequency defined as

fs =
1

T
(3.11)

To determine this, we will consider that the sampling operation described in (3.10) is equivalent

to multiply x(t) with a Dirac comb δT (t), i.e. an infinite set of Diracs separated by a time

interval T

δT (t ) =
+∞∑

m=−∞
δ(t −mT ) (3.12)

which assumes the following Fourier transform with respect to frequency f =ω/2π

δ̂T ( f ) = fs

+∞∑
m=−∞

δ( f −m fs) (3.13)

The Fourier transform of a comb with a period of T is thus another comb but with a period fs

in the frequency domain. According to the convolution theorem (3.9), the sampling operation

(multiplication) transposed to the frequency domain yields a convolution between the Fourier

transform of x(t ) and the newly found Dirac comb, or explicitly

x[m] = x(t )δT ←→ x̂m( f ) = x̂( f )∗ δ̂T ( f ) (3.14)

where x̂m( f ) is the Fourier transform of x[m] and consists of infinite replica of the spectrum of
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the initial continuous-time signal x(t ) (scaled by fs), as illustrated in Fig.3.1. The fundamental

t f

x(t)
x[m]

T 0

fs fmax
FT

x(f)^

xm(f)
^

Figure 3.1 – Effect of sampling on the (normalized) spectrum of the signal x(t ).

principle of the sampling theorem is that one should avoid any spectral overlap between the

replica of the original spectrum x̂( f ), a phenomenon known as aliasing. This is mandatory

in order to perfectly reconstruct the original signal. To secure this, it clearly appears from

Fig.3.1 that the frequency extent of the signal being sampled x(t ) should not exceed half of the

sampling frequency, or reversely, the sampling frequency should be at least twice larger than

the maximum frequency of the signal fmax

fs ≥ 2 fmax (3.15)

The samples x[m] are now properly defined mathematically as to reflect the data resulting from

the digitization of an analog signal. Notice however that we are still stuck with a continuous-

valued function when moving on to the frequency domain. This operation is known as the

discrete-time Fourier transform (DTFT), and is not to be confused with the discrete Fourier

transform (DFT) detailed in the following section. The DTFT and its inverse are computed as

follows

x̂(Ω) =
N−1∑
m=0

x[m]e−i mΩ (3.16)

x[m] =
1

2π

∫ +π

−π
x̂(Ω)e i mΩdΩ (3.17)

where N is the number of samples in x[m] andΩ is the normalized angular frequency defined

as

Ω = 2πF =
ω

fs
(3.18)

where F is the normalized frequency and Ω is expressed in [radian/sample]. The concept

of normalized frequency naturally arises from the discarding of the temporal information

when sampling the signal, i.e there is no explicit time variable in (3.16), although implicitly the

samples are acquired at precise time-stamps (x[m] = x(mT )). Note that since m is an integer,

the periodicity of the DTFT is immediately highlighted in (3.16), and the period is equal to

2π (or 1 in terms of normalized frequency F ). This explains why in the inverse DTFT (3.17),

the integral is carried over the fundamental interval ranging from [−π,π]. The DTFT is a sort

of hybrid transform, lying midway between the continuous-time Fourier transform (CTFT),

43



Chapter 3. Digital signal processing applied to distributed optical fiber sensing

which relates two continuous-valued signals, and the DFT, which as we will see operates

between two discrete signals. As in the case of the CTFT, a relationship stating the energy

conservation exists and is given by

N−1∑
m=0

|x[m]|2 =
1

2π

∫ +π

−π
|x̂(Ω)|2 dΩ (3.19)

Notice that the integration interval in the normalized frequency domain is again [−π,π]. The

convolution theorem yields

z[m] = x[m]∗ y[m]
DTFT←→ ẑ(Ω) = x̂(Ω)ŷ(Ω) (3.20a)

z[m] = x[m]y[m]
DTFT←→ ẑ(Ω) =

1

2π
= x̂(Ω)

2π
~ ŷ(Ω) (3.20b)

where
2π
~ designates a circular convolution operation, which is similar in all aspects to the

linear convolution defined in (3.4), except that in this case the integration interval corresponds

to one period of the two signals (both periodic of period 2π), conventionally one uses [−π,π].

The distinction between the linear and circular convolution is critical, because it may cause a

lot of confusion when processing any numerical data.

3.1.4 The discrete Fourier transform

The discrete-time Fourier transform (DTFT) is not an adequate tool to process data with, as its

frequency domain representation cannot be reduced to a set of discrete values. This issue is

circumvented by sampling the DTFT, yielding the following definition of the discrete Fourier

transform (DFT) and its inverse

x̂[k] =
N−1∑
m=0

x[m]e−i 2πkm
N , where 0 ≤ k ≤ N −1 (3.21)

x[m] =
1

N

N−1∑
k=0

x̂[k]e i 2πkm
N (3.22)

where both sequences contain the same number of samples N . The DFT is a fantastic tool

to analyze the frequency content of signals after their digitization, especially thanks to fast

Fourier transform (FFT) algorithms, which designate efficient implementations of (3.21) and

(3.22) when N equals a power of 2 [37]. A most fundamental aspect when dealing with the

DFT, is that every signal is now to be considered as periodic of period N . While this may seem

counter-intuitive at first, it is perfectly reasonable when taking into account the effect induced

by sampling in section 3.1.3. As a reminder, sampling of a continuous-time signal x(t) led

to infinite replica of its initial spectrum after computation of the Fourier transform of x[m],

i.e. the Fourier transform of a digital signal is periodic. It seems thus natural that sampling

the continuous-valued spectrum delivered by the DTFT yields in turn a periodic signal in the

temporal domain. Therefore, any Fourier operation performed via the DFT must consider
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3.2. Basic concepts of digital signal processing

that the original signals are periodic, of period N . This is evidenced by the form taken by the

convolution theorem, i.e.

z[m] = x[m]
N
~ y[m]

DFT←→ ẑ[k] = x̂[k]ŷ[k] (3.23a)

z[m] = x[m]y[m]
DFT←→ ẑ[k] =

1

N
x̂[k]

N
~ ŷ[k] (3.23b)

where all convolution operations are now circular convolutions defined as

x[m]
N
~ y[m] =

N−1∑
m′=0

x[m′]y[〈m −m′〉N ] (3.24)

and the brackets 〈〉N denote the modulo operation. Finally, the Plancherel theorem reads

N−1∑
m=0

|x[m]|2 =
1

N

N−1∑
k=0

|x̂[k]|2 (3.25)

3.1.5 Distributed optical fiber sensors as LTI systems

Before proceeding with experimental results, it is important to understand which distributed

optical fiber sensors (DOFS) fall within the definition of a linear time-invariant system (LTI)

and which do not. Time-invariance is normally assumed in DOFS because one usually consid-

ers that the experimental conditions do not vary during the acquisition time. The key criterion

to discriminate whether the methodology developed here above applies to a given DOFS

is thus linearity. To provide with a counter-example, Φ-OTDR (see section 2.3.1) cannot be

described by an LTI system, because the response of the system is highly non-linear. Brillouin

optical time-domain reflectometry (BOTDR, see section 2.4.5) is also not directly an LTI system

due to the usage of coherent detection, that yields a response proportional to the square root

of the intensity. In this case, one could still retrieve an LTI response by squaring the measured

signal, but significant problems would arise due to cross-terms involving the signal and the

additive white Gaussian noise (AWGN) at detection. On another hand, the LTI description

fits both incoherent Rayleigh scattering optical time-domain reflectometry (OTDR), Raman

OTDR as well as Brillouin optical time-domain analysis (BOTDA), which all exhibit a response

linearly proportional to the optical intensity. All results reported in the following sections

were obtained for BOTDA, but could be transposed for the case of either incoherent OTDR or

Raman OTDR.
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3.2 Noise reduction in Brillouin optical time-domain analyzers

Most of the results presented in this section were published in the following article [30]I. We

analyze here the data delivered by a Brillouin optical time-domain analyser (BOTDA) with

the perspective of optimizing the final experimental uncertainty making use of digital signal

processing (DSP) methodologies. We first begin by describing the data acquisition process

in a BOTDA with an emphasis on notions that are relevant from a point of view of signal

processing theory such as a description of the noise sources encountered in a conventional

BOTDA. We then address the issue of curve fitting and how it impacts the experimental uncer-

tainty. Finally, we will show how to attain optimal performances in single-pulse configuration,

raising important issues regarding the usage of digital filtering, especially with respect to 2-D

algorithms.

3.2.1 Noise as a random process

A given measurement performed by any sensor is unavoidably corrupted by noise. In many

applications, including the configurations of distributed optical fiber sensors (DOFS) consid-

ered here, the noise can be modelled as an additive white Gaussian noise (AWGN), that is the

noisy acquired signal xn(t ) is expressed as

xn(t ) = x(t )+n(t ) (3.26)

where x(t) is the noise-free signal and n(t) designates noise. Here we must emphasize that

x(t ) and n(t ) are very different by nature, as x(t ) designates a deterministic signal while n(t ) is

a random signal, that is n(t) is actually a single realisation of a random process N (t). While

n(t ) is evidenced to be additive by the model defined by (3.26), the notions of white noise and

Gaussian noise are inherent to the statistical properties of the signal. A noise is Gaussian if its

probability density function is Gaussian with zero mean, that is

N (t ) ∼N (0,σ) (3.27)

and σ designates the standard deviation of the normal distribution N . The term white refers

to the power spectral density (PSD) Γnn( f ) of the noise, i.e. the distribution of power with

respect to frequency f , which is constant and infinite, explicitly

Γnn( f ) =σ2 (3.28)

and the fact that it equals the square of the standard deviation of (3.27) is clarified hereafter. If

one assumes that the random process is stationary [37], the autocorrelation function γnn(τ) of

I@2020 IEEE. Reprinted, with permission from S. Zaslawski, Z. Yang and L. Thévenaz, On the 2-D Post-
Processing of Brillouin Optical Time-Domainy analysis, J. Light. Technol. 38 (14), 3723-3736 (2020), doi =
10.1109/JLT.2020.2967091
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3.2. Noise reduction in Brillouin optical time-domain analyzers

the noise and its PSD form a continuous-time Fourier transform (CTFT) pair, i.e.

γnn(τ) =
∫ +∞

−∞
Γnn( f )e i 2π f τd f =σ2δ(τ) (3.29)

and the fact that γnn(τ) is proportional to a Dirac follows from (3.28). For a zero-mean signal,

the value of the autocorrelation at τ = 0 is equal to the variance of the considered random

process. An AWGN thus shows a uniform PSD equal to σ2 over the entire spectrum (3.28).

In the time-domain, this translates by a complete uncorrelation between sucessive samples

(3.29). Note that we only consider continuous-valued variables, as we shall detail the impact

of sampling on noise in section 3.2.4.

3.2.2 Noise sources in BOTDA

An example of a Brillouin optical time-domain analyzer (BOTDA) acquisition as well as its

decomposition following the model of additive white Gaussian noise (AGWN) defined by (3.26)

is shown in Fig.3.2. The noisy signal xn(t) (which we assume to be continuous although it

0 20 40 60 80 100 120

Time [ s]

471

472

473

474

475

V
o

lt
a

g
e

 [
m

V
]

0 20 40 60 80 100 120

Time [ s]

0 20 40 60 80 100 120

Time [ s]

-2

-1

-1

0

1

1

2

V
o

lt
a

g
e

 [
m

V
]

Figure 3.2 – Modelling of a BOTDA acquisition in time domain (xn(t ) and x(t ) share the same
y-axis).

is actually sampled) can be broken down into a pure signal x(t) and a single realisation of a

random process, i.e. an AWGN n(t) with standard deviation σn . The trace x(t) is typical of

a BOTDA, where the desired information given by the linear Brillouin gain G(z,∆ν) (2.96) is

contained in a small amplitude modulation (here about 2 mV) on top of a large DC signal

(~ 472 mV).

While a complete study on the noise sources in BOTDA is out of the scope of this dissertation,

we still provide with general information on the most common ones for the sake of complete-

ness. For an in-depth analysis including the optimization of the signal-to-noise ratio (SNR) by

acting on the system optical design, we refer the interested reader to [40]. In BOTDA, and more

generally speaking in most optical acquisitions systems, the most commonly found sources of

noise are shot noise and thermal noise [16]. Shot noise originates from the discrete nature of

light carriers (photons) as well as electrons that build up the electric current involved in the
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measurement process. The contribution to the variance due to shot noise on the measured

voltage V is [40]

σ2
sh = 2RL qV Bdet (3.30)

where RL is the resistive load that enables the transimpedance gain (photocurrent conversion

into a voltage), q is the elementary charge and Bdet is the detection bandwidth. Thermal noise

finds its origin in the thermally activated motion of electric charges in resistive elements and

is thus a direct function of the absolute temperature T . It can be expressed as

σ2
th = 4kB T RLBeq (3.31)

where kB is Boltzmann’s constant and Beq is the equivalent noise bandwidth. The fact that

the two bandwidths considered in (3.30) and (3.31) are in practice different is due to the

architecture of most photoreceivers, which very likely include a post-amplification step after

the transimpedance conversion that adds to the overall thermal noise [40]. Note that Beq

is usually not provided by photoreceiver manufacturers hence needs proper calibration in

well optimized system. The total noise of the system is finally characterized by the following

standard deviation

σn =
√
σ2

sh +σ2
th (3.32)

Note that shot noise is directly proportional to the signal power, hence it is usually negligible at

low optical powers whereas thermal noise is power-independent and its contribution remains

identical disregard of the power at input of the photoreceiver.

3.2.3 Curve fitting and experimental uncertainty

The amount of noise in any receiving system is irrelevant as such, and needs to be compared

to the level of the signal being measured in order to draw conclusions regarding the quality

of the acquisition, yielding the notion of signal-to-noise ratio (SNR), which is detailed in

section 2.4.2. While SNR is indeed a valid metric in Brillouin optical time domain analysis

(BOTDA), the precision of a measurement is preferably defined by the uncertainty on the

Brillouin frequency shift (BFS, see section 2.3.3). The BFS, usually labelled νB , is extracted

from the BOTDA measurement via a curve fitting process, or similar. The target here is not to

find the ultimate BFS extraction algorithm delivering the lowest experimental uncertainty, a

topic which has been thoroughly addressed in [41], rather one aims at drawing attention to

critical aspects inherent to this procedure. Curve fitting in BOTDA is spatial-resolution (SR)

dependent, because the pump pulse spectrum shapes the measured Brillouin gain spectrum

(BGS) through a convolution operation performed in the frequency domain [31]. We rely here

on quadratic fitting to extract the BFS, i.e. we fit in the least square sense a parabola to the

upper part of the BGS, as illustrated in Fig.3.3. Since quadratic fitting requires a prior estimate

of the BFS to deliver accurate results [41], the noisy BGS (in blue) is first smoothed using a
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Figure 3.3 – Quadratic fitting in a BOTDA with 2 m SR. The maximum value found from a
moving average filter in (a) is used to restrict the number of samples used in the quadratic
fitting operation performed in (b).

moving average filter or any similar low-pass filter. The peak frequency of this filtered curve (in

green) is then used as the center position of a windowing operation of width Wfit that restricts

the number of samples involved in the quadratic fitting operation (in red), which ultimately

delivers the BFS νB .

A valid question arising from this fitting procedure is how to optimize the width of the window

Wfit. Intuitively, taking into account a larger number of samples should provide with a better

estimate, as evidenced by the following relationship [28]

σB =
1

SNR

√
3δ∆νB

8
p

2(1−η)3/2
(3.33)

where σB is the uncertainty on νB , SNR is defined in (2.81), δ is the frequency scanning step in

the BOTDA measurement,∆νB is the BGS full width at half maximum (FWHM) and η defines

the number of points involved in the fitting process. More specifically, for a normalized BGS

which values range from 0 to 1, only samples greater or equal to η are retained. Equation

(3.33) is not intended to provide with an accurate numerical value, as it was derived assuming

that the true data is also a parabola. However, it provides with some meaningful insight on

the dependency on the experimental uncertainty of the BGS width (∆νB ), the frequency

scanning step (δ) and more importantly of the SNR, the latter being inversely proportional

to σB . With these considerations in mind, the impact of the fitting window width Wwidth on

σB was assessed by performing repeated BOTDA measurements at 1 m, 2 m and 5 m SR and

different SNR levels, explicitly 3 dB, 6 dB and 9 dB. The corresponding uncertainty σB as a

function of Wfit is shown in Fig.3.4.

Generally speaking, the uncertainty lowers when the fitting window widens. The improvement

is yet limited because the BGS in its full extent is never a parabola, i.e. there is an ideal

fitting window size. As evidenced by the curves shown in Fig.3.4, the impoverishment of

the experimental uncertainty due to an oversized window is moderate, but the increase
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Figure 3.4 – Experimental uncertainty σB for different spatial resolutions - 1 m (· ·×· ·), 2 m
(· ·�· ·) and 5 m (· ·♦· ·) - and different SNR levels - 3 dB (blue), 6 dB (red) and 9 dB (black).

in σB turns highly critical when Wfit decreases below a certain value. This is particularly

pronounced at low SNR, e.g. considering the results for a spatial resolution of 2 m and an SNR

of 3 dB (blue, squares). Notice that a simple adjustment of the fitting window from 50 MHz to

80 MHz enables almost halving the experimental uncertainty, illustrating the importance of

carefully optimizing the digital signal processing (DSP) algorithms used to analyze the raw

data delivered by a BOTDA. We draw the reader’s attention on the fact that a fitting window

of 50 MHz at 2 m SR does operate poorly at low SNR, but does not constitute a priori an

inconceivable choice, given that the BGS FWHM approximately equals 50 MHz (see Fig.3.3).

A good way of validating the behavior of any curve-fitting algorithm would be to observe

whether the inverse proportionality between SNR and σB is respected. Notice that this is

indeed the case in Fig.3.4 for a SR of 2 m and Wfit =80 MHz, that is the uncertainty at 6 dB SNR

(~1.6 MHz) is roughly half the uncertainty at 3 dB SNR (~3.4 MHz), while this relationship no

longer holds when Wfit =50 MHz (~1.8 MHz at 6 dB SNR compared to ~5.9 MHz at 3 dB SNR).

3.2.4 Noise aliasing and digital filtering

We now address the impact of sampling on noise. We will see that sampling also has an influ-

ence on the digital signal processing (DSP) operations that might be undertaken as to improve

the quality of the measurements by reducing noise. Recalling section 3.1.3, undersampling of a

deterministic signal x(t ) might lead to information loss and signal distortion as a consequence

from spectral overlap (see Fig.3.1). Since noise is a random process and therefore cannot be

represented by a signal exhibiting a well-defined Fourier transform, it is legitimate to wonder

about the consequences of a violation of the sampling theorem when considering noise. It

turns out that noise experiences a frequency folding similar to a signal, only that it involves

the noise power spectral density (PSD) Γnn( f ) rather than a direct Fourier transform [42].
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In order to grasp the implications of that statement, we will now consider a situation where

the sampling frequency fs is sufficiently high to avoid signal aliasing, but is not necessarily

adjusted as to prevent noise aliasing. This scenario, which is illustrated in Fig.3.5, is commonly

encountered in BOTDA and other distributed optical fiber sensors (DOFS), because the signal

bandwidth is essentially dictated by the pulse width, which is flexible, while the photoreceiver

is unique and its bandwidth is usually designed as to accommodate for the sharpest achievable

SR. The noise considered is assumed to be white, hence its PSD is uniform and amounts to

frequency
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Figure 3.5 – Impact of improperly setting the acquisition system sampling frequency leading
to noise aliasing.

a value of N0 when properly sampled, i.e. the noise extent is limited to fs/2 and the total

noise power in this case is thus N0 fs , considering a two-sided spectrum integration. This also

implies that the noise variance is equal to σ2
n = N0 fs . If we now consider a sampling frequency

fs2 = fs/2, noise aliasing occur and the upper-half of the noise PSD folds back over the lower

frequency band. Because we are dealing with noise, the noise power adds up linearly, and the

sampled noise PSD is now twice larger but occupies a frequency extent twice narrower. As a

consequence, the total noise power is conserved, and the noise variance remains σ2
n = N0 fs .

This implies that, as long as no digital filtering operation is involved, noise aliasing will have

no impact on the signal-to-noise ratio (SNR), and consequently the experimental uncertainty

σB will remain unchanged.

Noise aliasing yet severely hinders the potential of noise-reduction algorithm, for instance a

low-pass filter as exemplified here. This is illustrated in Fig.3.5 by the fact that the signal power

is evidently independent of the sampling frequency, and therefore so is the cutoff frequency of

the digital low-pass filter fc . The latter should be set larger than the frequency extent of the

signal, in order to avoid any distortion or information loss. Consequently, the filter will let any

power at frequencies lower than fc go through unaffected while highly suppressing any signal

power above fc . In the case of noise aliasing, the noise PSD exhibits a higher magnitude in a

reduced frequency band, hence the fraction of noise power effectively suppressed by the filter

is less than for a properly sampled signal, i.e. the improvement on the SNR is diminished.

This was experimentally demonstrated by performing repeated BOTDA measurements at

5 m spatial resolution, enabling illustrating this effect more clearly by reducing the signal

bandwidth to ~20 MHz. The measured σB along the fiber is shown in Fig.3.6 for a sampling

frequency of 200 MHz (blue), 100 MHz (red) and 50 MHz (black). Notice how the experimental
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uncertainty remains identical in all cases despite being sampled at significantly different

frequencies fs . If unprocessed, the experimental data thus do not suffer from an insufficient

sampling rate as long as signal aliasing is avoided. Now, let us observe the impact of filtering
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Figure 3.6 – Impact of noise aliasing on experimental uncertainty for raw and filtered data.
The green, orange and purple curves originate from the same data set as the blue, red and
black curves, respectively, but were numerically filtered with a Gaussian filter.

the raw data, associated to the blue, red and black curves, with a numerical Gaussian filter of

fixed bandwidth, yielding the experimental uncertainty profiles depicted in green, orange and

purple, respectively. The SNR at the fiber end, that is at a distance of 10 km, are indicated in

Fig.3.6. When applying a digital low-pass filter on the data, the SNR improvement reduces

by a factor 2 (from 6 dB improvement to 3 dB improvement) when reducing the sampling

frequency by a factor 4, in agreement with the square root dependency between noise variance

and the noise standard deviation used in our definition of SNR (2.81). This demonstrates the

critical need of adjusting the sampling frequency fs to the noise bandwidth rather than the

signal bandwidth in order to fully harness the potential of digital filters, or to reduce the overall

system bandwidth using e.g. an analog filter before proceeding to the sampling operation.

3.2.5 A note on the 2-D post-processing of BOTDA measurements

A Brillouin optical time domain analyser (BOTDA) measurement consists in a series of 1-D

traces, concatenated to form a 2-D matrix holding the value of the Brillouin gain at every

position z and every frequency detuning ∆ν. In order to clarify later descriptions, the 1-D

traces being concatenated are labelled as Brillouin gain profiles (BGP), as opposed to Brillouin

gain spectra (BGS), which refer to the sets of Brillouin gain value versus∆ν at a fixed distance

(see Fig.3.7). So far, we discussed noise reduction along a single dimension of this data matrix,

i.e. by filtering each acquisition performed at a fixed∆ν. Recently, there has been an outburst

of interest for 2-D signals processing algorithms, including techniques developed in the field

of image processing to improve the performances of BOTDA measurements by significantly

enlarging their signal-to-noise ratio (SNR) [43, 44]. Unfortunately, and despite numerous

publications claiming performances improvement, this SNR enhancement is illusory and
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3.2. Noise reduction in Brillouin optical time-domain analyzers

does not contribute to lower the experimental uncertainty by the same amount, as should be

the case according to equation (3.33). The confusion arising from the discrepancy between

an apparently measurable SNR improvement and a dissimilar σB reduction can be lifted by

means of a separable 2-D Gaussian numerical filter.

A 2-D Gaussian filter is completely defined by two parameters that define its spread in both

dimensions, conveniently labelled as σBGP and σBGS to match with the denomination used to

characterize the BOTDA matrix. The values taken by σBGP and σBGS depend both on the pulse

width, the former via its temporal (or dimensional) spread and the latter via its frequency

extent. In order to introduce some flexibility in the design of the 2-D Gaussian filter, we

allow some degrees of freedom by introducing two tuning parameters denoted kBGP and kBGS,

respectively, yielding the following definitions

σBGP =
Wpulse

kBGP∆t
(3.34)

σBGS =
∆νB

kBGSδ
(3.35)

where Wpulse and∆t designate the pulse temporal width and the sampling interval, respec-

tively, while∆νB and δ are the BGS full width at half maximum (FWHM) and the frequency

scanning step, respectively. The 2-D kernel of the numerical Gaussian filter fG is defined as

fG[m,n] =
1

2πσBGPσBGS
e
− m2

2σ2
BGP

+ n2

2σ2
BGS =

1p
2πσBGP

e
− m2

2σ2
BGP︸ ︷︷ ︸

fBGP[m]

1p
2πσBGS

e
− n2

2σ2
BGS︸ ︷︷ ︸

fBGS[n]

(3.36)

where 0 ≤ m ≤ NBGP, 0 ≤ n ≤ NBGS, and NBGP and NBGS denote the number of samples

in distance and in frequency detuning, respectively. In writing (3.36), we highlighted the

separability property of the Gaussian filter which allows to break down its effect along each

dimension of the BOTDA matrix independently by means of the 1-D filters fBGP and fBGS [39].

The effect of 2-D filtering on BOTDA measurements is assessed by following the procedure

depicted in Fig.3.7. First, the SNR and experimental uncertainty σB are evaluated on raw data,

SNR2D BOTDA

Matrix (Raw)

SNR B

1D Gaussian 

filter: BGP

Quadratic

fit

SR

BQuadratic

fit SR

2D BOTDA

Matrices (Denoised)

SNR

B

SR

Quadratic

fit

BGP

BGS 1D Gaussian 

filter: BGS

Figure 3.7 – Evaluation of the impact of 2-D filtering on BOTDA measurement.
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Chapter 3. Digital signal processing applied to distributed optical fiber sensing

i.e. before digital filtering. The same data set is then filtered on one hand by fBGP and on the

other hand by fBGS, before proceeding in each case to evaluate once more both SNR and σB .

While a reduction of the experimental uncertainty is desirable, it must no be performed at the

expense of other metrics of the BOTDA, in particular the processed data should not exhibit

a lower spatial resolution (SR) than the raw data. This is verified by analyzing the Brillouin

frequency shift (BFS) profile at a transition, realized in practice by immersing a section of

fiber (here 5 m long) in warm water, creating a hotspot, usually near the fiber end. The raw

data designated in Fig.3.7 consists in a BOTDA matrix for which the SNR at the fiber end

is 3 dB, corresponding to an experimental uncertainty of σB = 3.49 MHz. The BFS profiles

after filtering are shown in Fig.3.8, and the experimental SR is evaluated by comparing the

results with a reference profile acquired at high SNR (12 dB). Fig.3.8.(a) shows the evaluated
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Figure 3.8 – Evaluation of potential spatial resolution degradation due to 1-D filtering. The
raw data, i.e. before applying any numerical filter, exhibits an SNR of 3 dB for an experimental
uncertainty of σB = 3.49 MHz.

BFS profiles after filtering along each BGS, and varying the filter strength by tuning kBGS

between 2 and 6. Overall, the SNR improvement appears to be very large, i.e. from 3 dB

(raw data) up to 11 dB, corresponding to an 8 dB improvement. However, the experimental

uncertainty σB barely decreases when compared to the raw data (3.49 MHz), in apparent

total contradiction with equation (3.33). In addition, the BFS profile seems unaffected by the

filtering operation, disregard of the filter strength. The reason for this lies in the curve fitting

operation described in 3.2.3. Fundamentally, fitting a smooth curve over a noisy data set can

be seen as finding the optimal low-frequency trend, i.e. a sort of low-pass filtering operation. It

is actually mathematically equivalent, given that polynomial curve fitting may be described by

a dedicated class of filters known as Savitzky-Golay filters [45]. Therefore, any noise reduction

algorithm, being a simple Gaussian filter or a more advanced 2-D image processing algorithm,

will be redundant with respect to the curve fitting operation used to extract the BFS from the

BGS, and this includes any apparent SNR improvement. Notice for instance that the inverse

proportionality between SNR and σB in (3.33) was derived assuming statistical independence

between the samples, a condition which is violated by any denoising algorithm operating

along each BGS or in 2D.
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On a conclusive note, notice that in the case of Fig.3.8.(b), the SNR improvement, although

moderate, is this time accompanied by a consistent reduction in σB . Moreover, one observes

a clear deterioration of the experimental spatial resolution as the filter strength increases

for lower values of kBGP. This classical trade-off between SNR (or equivalently experimental

uncertainty) and SR that was described in sections 2.4.1 and 2.4.2, naturally shows up here

due to the filtering operation. This implies that one may improve the experimental uncer-

tainty a posteriori, provided that one can afford to downgrade the sensor spatial resolution.

Remarkably, the complementary operation, that is improving the SR at the expense of a poorer

SNR is also achievable, and is described in the following section.

3.3 Short spatial resolution retrieval

Most of the results presented in this section were published in the following article [46]II. In

most distributed optical fiber sensors (DOFS), spatial resolution (SR) is often regarded as a

key specification, as a finer SR is equivalent with a higher density of information or a larger

number of sensing points. Here, we illustrate how to achieve shorter SR in Brillouin optical

time domain analyzers (BOTDA) by proper post-processing of the acquired data. Despite the

appearance of unwanted numerical artifacts, the technique presented here is straightforward

to implement and enables overcoming some of the challenges specific to achieving short

SR in Brillouin based sensors. Moreover, it proves to significantly reduce the experimental

uncertainty at short SR compared to a conventional BOTDA that would operate at the targeted

spatial resolution.

3.3.1 Acoustic lifetime and spatial resolution

In a most direct approach, the simplest way to enhance the spatial resolution (SR) of a given

distributed optical fiber sensor (DOFS) operating in a time-domain approach is to reduce the

width of the optical pulse launched into the fiber. As mentioned in sections 2.4.1 and 2.4.2, this

improvement in the SR of the sensor is accompanied by a poorer precision due to the lower

energy of the backscattered signal. Note that since the pulse peak power is limited by the onset

of nonlinear effects such as modulation instability [29], the SR-SNR trade-off is unavoidable,

and the purpose here is not to provide with a general solution applicable to any time-domain

based DOFS. The discussion here is centered around BOTDA, for which the penalty of using a

narrow optical pulse is more severe once the pulse width approaches the phonon acoustic

lifetime in silica (~6 ns, see section 2.3.3). Indeed, below ~11 ns, corresponding roughly to a

spatial resolution of 1 m, the peak Brillouin gain turns highly non-linear with respect to the

pulse width [31]. This implies that shortening the pulse width by e.g. a factor 2 will not yield

to a response 2 times poorer, but maybe 4 or 6 times worse depending on the initial pulse

II@2020 OSA. Reprinted, with permission from S. Wang, Z. Yang, S. Zaslawski and L. Thévenaz, Short spatial
resolution retrieval from a long pulse Brillouin optical time-domain analysis trace, Opt. Lett. 45 (15), 4152-4155
(2020), doi = 10.1364/OL.397101
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width, although the pulse energy is indeed halved. While more advanced time-domain based

approaches [47, 48, 49] have been proposed to circumvent this difficulty, they all come at

the cost of a degradation in other key specifications of the sensor, e.g. the acquisition time.

Here we base our technique on the model developed in the previous section, i.e. we operate a

conventional BOTDA and rely on post-processing to extract the short SR information from the

response provided by a longer optical pulse.

3.3.2 Convolution and deconvolution

We proceed one step further in the linear time-invariant (LTI) model developed in section 3.2.1

and used to described the response of an LTI DOFS such as a BOTDA. More specifically, we

focus our attention on the pure signal response x(t ) appearing in equation (3.26) by taking into

account the effect of the pump pulse, denoted p(t ). Explicitly, the temporal BOTDA response

rp (t ) at a given frequency detuning∆ν reads

rp (t ) = p(t )∗h(t )+n(t ) (3.37)

where h(t) is the fiber intrinsic impulse response. Equation (3.37) states that the acquired

trace in time-domain results from the linear convolution between the fiber response and the

pump pulse, which is assumed to be rectangular and of duration Tp . Furthermore, the pump

pulse itself might be seen as resulting from the linear convolution between a shorter pulse

s(t ) of duration Ts and a series of Diracs separated by a time interval Ts . In order to take into

account the transient response of stimulated Brillouin scattering (SBS) in our model, each

Dirac is weighted by an exponential envelope e(t) that depends on the acoustic lifetime in

silica τB as illustrated in Fig.3.9, that is [27]

e(t ) = 1−e
− t

2τB (3.38)

Eventually, the pump pulse p(t ) is expressed as

p(t ) = s(t )∗d(t ) = s(t )∗ [
e(t )δTs (t )

(
u(t )−u(t −Tp )

)]
(3.39)

where δTs (t ) denotes a Dirac comb (see section 3.1.3) and u(t ) is the Heaviside step function

which is used to act as a rectangular window of duration Tp .

p(t) s(t) d(t)

= *

Tp

e(t)

Ts Ts

Figure 3.9 – Representation of a BOTDA pump pulse p(t ) as a series of shorter pulses s(t ).

Equations (3.37) and (3.39) describe the response of the sensor in the optical regime, i.e. before
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3.3. Short spatial resolution retrieval

acquisition. The sampling frequency requires now to take into account the targeted spatial

resolution defined by Ts rather than the used pump pulse duration Tp . Notice that without

surprise, this also implies to dimension the photodetector bandwidth accordingly.

The numerical short pulse response, denoted rs[m] is now recovered from the properly sam-

pled long pulse trace rp [m] in the frequency domain. Before proceeding further in the deriva-

tion, it is important to mention that since all calculations are carried out by means of the

discrete Fourier transform (DFT, see section 3.1.4), the multiplications performed in the fre-

quency domain correspond in practice to circular convolutions in the time domain. While this

has no impact in the present case because circular and linear convolution are here equivalent,

greater care will have to be taken when considering optical coding described in the following

section. From (3.37) and (3.39), the DFT of rp [m] reads

r̂p [k] = ŝ[k]d̂ [k]ĥ[k]+ n̂[k] (3.40)

and the short pulse response rs[m] is made available by performing the following inverse DFT

operation

rs[m] = IDFT

{
r̂p [k]

d̂ [k]

}
= s[m]∗h[m]+ IDFT

{
n̂[k]

d̂ [k]

}
(3.41)

also known as deconvolution. From (3.41), it appears that the short spatial resolution response

given by s[m]∗h[m] can always be perfectly recovered in theory. This is not entirely true in

practice and yields minor artifacts in the reconstructed signal at abrupt transitions, as detailed

in section 3.3.4. As will be lengthy discussed in the section devoted to optical coding, the

second term on the right-hand side of equation (3.41) is critical, as it might lead to severe noise

amplification due to the division operation performed in the frequency domain. Assuming

additive white Gaussian noise (AWGN, see section 3.2.1), and an initial noise variance of σ2
p ,

the scaled noise exhibits a variance σ2
s given by

σ2
s =

σ2
p

N

N−1∑
k=0

1∣∣d̂ [k]
∣∣2 (3.42)

The noise scaling factor Q is thus determined by the acoustic envelope (3.38) and is defined as

the increase in the noise standard deviation, i.e.

Q =
σs

σp
=

√√√√ 1

N

N−1∑
k=0

1∣∣d̂ [k]
∣∣2 ≈ 1.5 (3.43)

This noise amplification needs to be taken into account when evaluating the benefits of the

technique compared to a conventional BOTDA operating with a pulse of duration Ts .

57



Chapter 3. Digital signal processing applied to distributed optical fiber sensing

3.3.3 Performances improvement evaluation

The model developed in the previous section is compared, by means of numerical simula-

tions and experimental data, to the response of a conventional BOTDA. Despite the noise

enhancement factor described in (3.43), the proposed technique is expected to perform sig-

nificantly better than a direct measurement at short spatial resolution due to the removal of

the exponential envelope in the deconvolution operation (3.41). Notice that the pure signal

in the retrieved trace rs[m] is given by s[m]∗h[m], i.e. the linear convolution between the

short pulse and the fiber impulse response. Consequently, the Brillouin gain spectrum (BGS)

is the multiplication between the fundamental Brillouin resonance, that is approximatively a

Lorentzian function with a full-width at half maximum (FWHM) of ~27 MHz (see section 2.3.3)

and the pulse spectrum.

The shape of the measured resonance is thus expected to be dominated by the fundamental

BGS, and hence is expected to be as narrow as ~27 MHz disregard of the targeted SR. This

implies that compared to a conventional BOTDA acquisition that suffers from significant

spectral broadening at short SR [31], the retrieved BGS is expected to be narrower and peak

higher, as confirmed by the numerical simulations results shown in Fig.3.10.(a). Taking

into account the constant noise enhancement factor (3.43), both signal-to-noise ratio (SNR)

and experimental uncertainty σB still highly benefit from the procedure as evidenced in

Fig.3.10.(b). The improvement in experimental uncertainty is especially high for spatial

resolutions below 1 m.
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Figure 3.10 – (a). Comparison between the BGS acquired from a conventional BOTDA and the
short spatial resolution retrieval method developed here. (b) performance improvement in
terms of SNR and experimental uncertainty on the BFS (σB ).

These theoretical predictions are then challenged with experimental data, and the results are

shown in Fig.3.11. The fiber under test is approximately 50 km long, and is first measured

by a conventional BOTDA with a spatial resolution of 6 m, corresponding to a pump pulse

width of 60 ns. Fig.3.11.(a) shows the retrieved BGS with a spatial resolution of 2 m inside

and outside a 2 m long hotspot placed at the fiber remote end. Accordingly to the model
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developed here above, the BGS observed are indeed far narrower than for a conventional

BOTDA operating directly at a SR of 2 m, i.e. the full-width at half maximum (FWHM) of the

measured resonances is ~34 MHz, and can be compared to the 50 MHz wide BGS shown e.g.

in Fig.3.3 for a conventional BOTDA. The experimental uncertainty on the Brillouin frequency

shift (BFS) along the fiber is shown in Fig.3.11.(b), both for the proposed method (from 6 m to

2 m and 1 m) and for a conventional BOTDA operating at 2 m and 1 m. As anticipated from

Fig.3.10.(b), the improvement is about 1.56 for 2 m and 3.5 for 1 m, in excellent agreement

with our theoretical prediction.
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Figure 3.11 – (a) BGS retrieved inside and outside of a 2 m hotspot with a retrieved SR of also
2 m. (b) Experimental uncertainty between the proposed method and a conventional BOTDA.

3.3.4 Artifacts mitigation

Despite a significant improvement in terms of experimental uncertainty compared to a conven-

tional BOTDA operating at short SR, the Brillouin frequency shift (BFS) profile reconstructed

with the technique developed here above might display distortions at sharp transitions. These

artifacts, which are illustrated in Fig.3.12.(a), are the consequence from the definition of the

temporal acoustic envelope defined in (3.38), which is only true at resonance, i.e. when the

frequency detuning between pump and probe matches the fiber BFS [27]. Off-resonance, the

Brillouin gain exhibits an oscillatory behavior before settling to its steady-state value, hence

the acoustic envelope used in our model is not fully representative of the response of the

system, leading to distortions in the retrieved signal after deconvolution.

Empirically, these artifacts were measured to be no larger than 3 MHz, which is usually not an

issue in most configurations. In addition, these distortions were only observed before a sharp

transition in the BFS profile (see section 3.3.5), thus are not degrading the entire measurement.

Furthermore, and since they originate from the transient regime of the Brillouin interaction,

they are dependent on the initial width of the long pulse used in the acquisition, as exemplified

in Fig.3.12.(a) for an initial pulse width of 60 ns and 120 ns. If undesired, these numerical

artifacts might thus be alleviated by averaging the contributions of two measurements from
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Figure 3.12 – (a) Numerical artifacts before a sharp transition in the fiber BFS at a hotspot. (b)
Compensation of these artifacts by averaging the two profiles shown in (a).

two different spatial resolution, as shown in Fig.3.12.(b). The tradeoff to achieve a more

accurate measurement is thus to double the measurement time.

Following these results, a recent study addressed in more depth the source of these arti-

facts [50]. Since the main reason for the presence of the observed BFS distortions lies in the

discrepancy between the expected transient response of SBS (assumed to be exponential)

and the actual transient response of SBS (oscillatory and dependent on the underlying BFS

distribution), the idea presented in [50] relies on performing a deconvolution operation on a

differential pulse-pair (DPP) measurement (see hereafter), thus effectively suppressing the

contribution from the transient in the measured response. While this is a more elegant and

rigorous way of recovering a distortion free BFS, this again comes with the requirement to

perform an additional measurement. Eventually, it is a matter of choice for the end user to go

for a simpler implementation subject to mild distortions or for a slightly more complex setup

that delivers an artifact-free response.

3.3.5 Sub-meter spatial resolution

Finally, the proposed technique is challenged to perform in the sub-meter range, starting

from a spatial resolution of 4 m, corresponding to a pulse width of 40 ns. Measurements

are conducted on a ~10 km long fiber comprising a 20 cm long hotspot at its remote end.

The data is compared to the one acquired by a differential pulse-pair (DPP) technique [48],

which consists in performing two distinct BOTDA measurements at two slightly different pulse

widths (here 42 ns and 40 ns) and subtracting them before processing the result. Note that

in DPP, two measurements are mandatory while the technique presented here only requires

a single measurement, provided that one can afford the presence of the numerical artifacts

described in the previous section. The BFS profiles provided by the two techniques are shown

in Fig.3.13.(a).
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Figure 3.13 – (a) BFS profile between a DPP method and the proposed technique with a target
SR of 20 cm. The pulse widths in the DPP operation are 42 ns and 40 ns while the pulse width
of the proposed method is 40 ns. (b) corresponding experimental uncertainty.

Despite minor distortions, the BFS profiles are matching very well, demonstrating the capabil-

ities of the technique for sharp resolution sensing. In addition, the inset in Fig.3.13.(a) shows

that the two techniques yields very similar results even when the BFS varies rapidly along

the fiber, i.e. without detrimental artifacts. In addition to a halved measurement time, the

proposed approach also performs better in terms of experimental precision, as demonstrated

in Fig.3.13.(b), showing a ~1.7 reduction in BFS uncertainty. This improvement is mostly

attributed to the subtraction operation performed in DPP, which is sensitive to polarization

fading effects [51].

3.4 Genetic-optimised aperiodic coding

Most of the results presented in this section were published in the following article [52]III.

Here, we rely one more time on the methodology of linear time-invariant (LTI) systems to

develop an optical pulse coding method based on deconvolution. We first begin by introducing

the general concept of coding, emphasizing on its interest but also on the many difficulties

encountered so-far. Second, we present a solution that operates accordingly to the concept of

deconvolution, i.e. a very straightforward approach that yet requires the use of sophisticated

algorithms borrowed from the field of genetics. Finally, we present some experimental results

based on Brillouin optical time-domain analysis (BOTDA) that demonstrate the validity of the

method.

III@2020. Reprinted, with permission from X. Sun, Z. Yang, X. Hong, S. Zaslawski, S. Wang, M. A. Soto, X. Gao, J.
Wu and L. Thévenaz, Genetic-optimised aperiodic code for distributed optical fibre sensors, Nat. Commun. 11,
5774 (2020), doi = 10.1038/s41467-020-19201-1
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3.4.1 Challenges of optical pulse coding

Originally, pulse coding was developed for RADAR applications, which operate similarly to

many time-domain based distributed optical fiber sensors [53]. Optical pulse coding (OPC)

is a very general concept that does not only apply to BOTDA, although we will restrict the

scope of the analysis developed here below to this technique. OPC consists in sending in the

optical fiber a sequence of pulses, and decoding the information contained in the acquired

trace that results from a mixture of the individual responses produced by each pulse, as

illustrated in Fig.3.14. OPC rapidly arose as a promising candidate to effectively improve

Pulse sequence Coded response Single pulse response

Acquisition Decoding

Figure 3.14 – Concept of optical pulse coding.

the performances of many distributed optical fiber sensors (DOFS), by circumventing the

limitations imposed on the power of the optical waves launched in the fiber, i.e. in BOTDA the

pump pulse power is limited by the onset of modulation instability (MI) [29], and the probe

might trigger detrimental non-local effects if not kept below a certain threshold [35].

The first adaptation of pulse coding to an incoherent optical time-domain reflectometer

(OTDR) goes back as early as 1987 [54], while the first mention of OPC for BOTDA was demon-

strated much later in 2010 [55]. Although conceptually of great interest, OPC is yet facing a

series of practical difficulties that hinder its potential as a pure improvement over conventional

single-pulse based BOTDAs. A first major limitation lies in the additional acquisition and

processing time inherent to the existing codes, i.e. Golay coding requires to launch 4 pulse

sequences in the fiber [56], while in Simplex coding the number of launched sequences has

to be equal to the number of codewords [55]. More importantly, both methods are highly de-

pendent on the power uniformity of the sequence launched in the fiber to perform efficiently

and without distortions, which is impossible to secure without adding to the setup complexity

due to the uneven amplification brought by erbium doped fiber amplifiers (EDFA) over such a

long and non-uniform signal [36]. In this section, we illustrate how to create pulse sequences

with unique spectral properties, that enable launching a single pulse train in the fiber, and

decoding the corresponding response with negligible added time, bringing a solution to the

two major issues enounced previously.

3.4.2 Optical pulse coding based on deconvolution

The coding procedure developed in this section relies on the concept of deconvolution. Fol-

lowing a description very similar to (3.37), the digitized response of a Brillouin optical time-
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domain analyzer (BOTDA) rc [m] can be generalized to

rc [m] = d [m]∗p[m]︸ ︷︷ ︸
c[m]

∗h[m]+n[m] (3.44)

where c[m] is the coded pulse sequence, p[m] is the sampled pulse shape, h[m] is the fiber

impulse response and n[m] represents a digitized additive white Gaussian noise (AWGN). The

term d [m] is equal to a Dirac in case the system operates in single-pulse configuration, or is

a series of weighted-amplitude Diracs that represent the coding sequence. The processing

is performed in the frequency domain by means of the discrete Fourier transform (DFT),

which has to be evaluated for each signal on the total number of points resulting from the

two convolution operations performed in (3.44) and denoted N . In order to retrieve the

single-pulse response, a deconvolution operation similar to (3.41) is performed, yielding

rs[m] = IDFT

{
r̂c [k]

d̂ [k]

}
= p[m]∗h[m]+ IDFT

{
n̂[k]

d̂ [k]

}
(3.45)

which enables once more to perfectly retrieve the single-pulse response p[m]∗h[m]. Unlike

the short-spatial retrieval method presented in section 3.3, the noise term on the right-hand

side of (3.45) is highly critical. Indeed, with no prior requirement on the coding sequence, it

is hardly conceivable to anticipate and/or quantify any performance improvement as one

might just as well magnify the noise by a significant amount instead of reducing it. In order to

benefit from this coding and decoding procedure, the pulse sequence and more specifically its

spectral behavior need to be rigorously tailored by making use of a devoted genetic algorithm.

The reasons behind these conclusions are thoroughly developed in the following sections.

3.4.3 The noise scaling factor

The effect of the decoding process on noise is evaluated my means of the power spectral

density (PSD). Here, we assume that the noise is wide-sense stationary, thus enabling to

assess its statistical properties from a single observation. Following the conclusions drawn in

section 3.2.1, the initial noise variance (before decoding) is estimated from the auto-correlation

function γnn[m] as follows [37]

σ2
n = γnn[0] =

1

N

N−1∑
m=0

|n[m]|2 (3.46)

By making use of Plancherel’s theorem (3.25) we rewrite (3.46) as

σ2
n =

1

N 2

N−1∑
k=0

|n̂[k]|2 (3.47)
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Assuming an additive white Gaussian noise (AWGN), the PSD is defined to be uniform over

the entire frequency range, i.e.

|n̂[k]|2 = K /N ⇐⇒ σ2
n =

K

N 2 (3.48)

where K is a constant. The variance of the decoded noise denoted σ2
d , which corresponds to

the right-most term on the right-hand side of equation (3.45), is given by

σ2
d =

1

N 2

N−1∑
k=0

∣∣∣∣ n̂[k]

d̂ [k]

∣∣∣∣2

=
K

N 3

N−1∑
k=0

∣∣∣∣ 1

d̂ [k]

∣∣∣∣2

=
σ2

n

N

N−1∑
k=0

∣∣∣∣ 1

d̂ [k]

∣∣∣∣2

(3.49)

where we made use of (3.47) and (3.48). It then follows that the initial noise is either attenuated

or magnified according to the value of the noise scaling factor Q defined as

Q =
σ2

d

σ2
n

=
1

N

N−1∑
k=0

∣∣∣∣ 1

d̂ [k]

∣∣∣∣2

(3.50)

Q is thus entirely defined by the coding sequence d [n] through a complex relationship that

involves the inverse of its PSD. In order to minimize Q, one would require to find a sequence

composed of a series of 1 and 0 (see upcoming section), which spectral properties would

yield a low value of Q. To the best of our knowledge, this problem is way too complex to be

solved analytically, hence the search for proper sequences is to be carried through dedicated

algorithms. At this stage, initiating a search process would yield no conclusive results due to

the lack of any a priori information on the structure of the coding sequence. For instance,

one could ask what is the fraction of 1 with respect to the sequence length, i.e. how many 1

should we place in a sequence of N elements ? The answer to this question can be found by

thoroughly analyzing (3.50).

3.4.4 Coding gain

In deriving (3.50), we considered the discrete Fourier transform (DFT) performed over N

points, i.e. the total acquired number of points. In reality, the coding sequence d [m] corre-

sponds to the upsampled version of another sequence denoted u[m], as explicated in Fig.3.15.

The signal u[m] consists is a series of 1 and 0 that characterize entirely the coding sequence,

such that all spectral properties of d [m] can be inferred from u[m], and this for two reasons.

First, the zero-padding operation required in the DFT operation does not provide with any

additional information although it enables interpolating the discrete spectrum on a finer

grid [37]. Second, the DFT of the upsampled sequence d̂ [k] consists in a series of replica of

û[k], as proved here after. Notice that the upsampling operation can be formally expressed as

d [m] =
Nu−1∑
m′=0

u[m′]δ
[
m −m′Nx

]
0 ≤ m ≤ Nd −1 (3.51)

64



3.4. Genetic-optimised aperiodic coding

Upsampling

d[m]u[m]

Nu Nd

Zero-padding

N0

Nx

N

Figure 3.15 – Generation of a coding sequence of Nd elements from an Nx upsampling of an
initial sequence u[m]. The sequence is further padded with N0 zeroes before computing its
DFT over N acquired points.

yielding

d̂ [k] =
Nd−1∑
m=0

Nu−1∑
m′=0

u[m′]δ
[
m −m′Nx

]
e
−i 2πm k

Nd =
Nu−1∑
m′=0

u[m′]e−i 2πm′ k
Nu (3.52)

where 0 ≤ k ≤ Nd −1 and we used the relationship Nd /Nx = Nu . Note that although (3.52) may

be at first mistaken for the Fourier transform of u[m], the fact that the value of k goes beyond

Nu results in periodic replica of the original FFT û[k]. The Q factor defined in (3.50) may thus

equivalently be expressed as

Q =
1

Nu

Nu−1∑
k=0

∣∣∣∣ 1
ˆu[k]

∣∣∣∣2

(3.53)

We now analyze in greater details (3.53) by dissociating the contribution from the DC compo-

nent k = 0. Following the definition of the DFT (3.21), we find

|û[0]|2 =

∣∣∣∣∣Nu−1∑
m=0

u[m]

∣∣∣∣∣
2

= F 2
E (3.54)

where we defined the energy enhancement factor FE as the total number of ones in the

sequence, as illustrated in Fig.3.16. The physical meaning behind FE is clear, as each one

u[m]

k

|û[k]|2

FE
2

Nu

|û[k]|2 =NuFE-FEΣ
2

|u[m]|2 =FEΣ

Figure 3.16 – Spectral properties of the coding sequence based on energy conservation.

corresponds to the emission of a pulse in the sequence. We thus express the noise scaling
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factor (3.53) as

Q =
1

Nu

(
1

F 2
E

+
Nu−1∑
m=1

∣∣∣∣ 1

û[k]

∣∣∣∣2
)

(3.55)

Next, we apply the Cauchy-Schwarz inequality to the partial sum in (3.55) yielding(
Nu−1∑
m=1

∣∣∣∣ 1

û[k]

∣∣∣∣2
)(

Nu−1∑
m=1

|û[k]|2
)
≥

∣∣∣∣∣Nu−1∑
m=1

|û[k]|2
|û[k]|2

∣∣∣∣∣
2

= (Nu −1)2 (3.56)

Furthermore, and making use of Plancherel formula (3.25), we may write

Nu−1∑
m=1

|û[k]|2 = NuFE −F 2
E (3.57)

which allows us deriving the following inequality

Q ≥ 1

NuF 2
E

+ (Nu −1)2

N 2
uFE −F 2

E Nu
(3.58)

We now relate the sequence length Nu to the total number of ones in the sequence, i.e. the

energy enhancement factor FE , via

M =
Nu

FE
(3.59)

yielding

Q ≥ 1

MF 3
E

+ (MFE −1)2

MF 3
E (M −1)

(3.60)

Furthermore, we make the reasonable assumption that MFE >> 1, i.e. the coding sequence is

expected to provide a substantial energy enhancement, yielding

Q ≥ M

FE (M −1)
(3.61)

Here, let us recall that since Q was defined as the increase of the noise variance (3.50), and

since the decoding process yields the single pulse response without distortion (3.45), the

so-called coding gain Gc can be defined as the decrease in the noise standard deviation, thus

being consistent with the definition of signal-to-noise ratio (SNR) conventionally adopted

(2.81), i.e.

Gc =

√
1

Q
≤

√
FE (M −1)

M
(3.62)

In evaluating the performances of the coding technique, it is interesting to compare the coding

gain Gc to the reference coding gain provided by other methods such as simplex or Golay
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coding, i.e. Gr =
p

FE /2. This is achieved by computing the following coding ratio

RG =
Gc

Gr
≤

√
2(M −1)

M
(3.63)

3.4.5 Optimization of the coding sequence: spectrum management

In optimizing the gain delivered by the coding sequence, the parameter M , that defines the

number of 1 with respect to the length of the coding sequence (3.59), is of outermost impor-

tance. For a given energy enhancement factor FE , that is a fixed number of 1 or equivalently

a fixed number of optical pulses in the sequences, a larger value of M corresponds to an

overall longer sequence. From (3.63), it appears that the theoretical upper bound of the coding

gain increases as M gets larger, eventually saturating at a value
p

2 larger than the reference

coding gain. While this is true to some extent (see Fig.3.17.(a)), one should not forget that

equations (3.62) and (3.63) define inequalities, hence a coding gain of
p

2Gr when M gets

large only defines an upper bound value. This upper bound can only be met provided that

the sequence power spectral density (PSD) is perfectly flat, according to the Cauchy-Schwarz

inequality (3.56). Indeed, the Cauchy-Schwarz inequality yields the considered bandwidth

squared (Nu −1)2, hence the sequence PSD and its inverse should cancel each other out to

meet the equality. Therefore, setting only a few ones in an otherwise empty sequence would

have disastrous repercussions on the shape of the PSD, severely hindering the actual coding

gain. Intuitively, a signal composed in such a way would essentially be concentrated at low fre-

quencies, i.e. many spectral bands would be close to 0, leading to a large noise enhancement

in the decoding process.
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Figure 3.17 – (a) Coding ratio defined in (3.63). (b) Actual coding ratio delivered by the genetic
algorithm search. (c) Coding gain and coding ratio for M = 3.

Fig.3.17.(a) shows the evolution of the coding ratio (3.63) as a function of M , exhibiting a

rapidly growing trend that ends up saturating at value of
p

2. The coding gain RG of numerical

sequences delivered by a distributed genetic algorithmIV for various values of FE and as a

function of M is shown in Fig.3.17.(b). As expected, the coding ratio grows as M gets larger,

yet starts decaying again for values larger than 4. Empirically, it turns out that M should be

IVThe genetic algorithm is not detailed here, as one focuses here in elaborating the general principles of the
method rather than the specific tools used to put it in practice. A detailed description can be found in [52].
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between 3 and 4 as to optimize the coding gain, yielding a good trade-off between potential

gain and achievable gain. Finally, Fig.3.17.(c). demonstrates the performances of the proposed

technique compared to the reference gain, applicable e.g. for simplex coding. Overall, the

difference in performances is minor (less than 0.5 dB), and negligible in most practical cases.

Furthermore, and as mentioned in section 3.4.1, conventional coding schemes only operate

at specific code lengths, while the coding technique developed here is entirely flexible. This

aspect is critical in optimizing instruments for any experimental conditions.

One could wonder whether the use of a dedicated algorithm based on genetic search is justified

in order to find good coding sequences. To answer to this question, Fig.3.18.(a) illustrates

the result from a 10-hour search, where over 100 millions of coding sequences exhibiting

an enhancement factor FE = 40 and M = 3 were randomly generated. The red line in the

figure illustrates the theoretical coding gain
p

FE /2 ≈ 4.47. Even with such a massive data-set

generated, the search fails to produce a single sequence coming close enough to the theoretical

gain Gr , as evidenced in Fig.3.18.(b). In comparison, the distributed genetic search algorithm

enables finding a sequence with Gc = 4.35 in approximately 2 hours.
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Figure 3.18 – (a) Probability distribution of Gc by brute-force searching. (b) Zoom on values
ranging from 3.6 to 5.

3.4.6 Robustness to EDFA gain saturation

As mentioned in section 3.4.1, conventional optical pulse coding (OPC) techniques suffer from

distortions induced by erbium doped fiber amplifiers (EDFA) on the pulse sequence. The

reason for this is that the mathematical relations exploited in the decoding process are very

sensitive to any perturbation, especially for Golay coding [36]. In the proposed method, EDFA

induced distortions can be modelled as a multiplicative signal in the convolution operation

(3.44), yielding a convolution operation in the sequence power spectral density (PSD). This

trend can be accurately anticipated based on EDFA specification and implemented in the

model by defining a calibrated envelope signal, as illustrated in Fig.3.19. Actually, all results

presented in this section take into account EDFA saturation via this calibrated envelope in
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Ideal coding sequence

Actual coding sequence

Calibrated envelope

Figure 3.19 – Inclusion of EDFA gain saturation in the model.

the sequence searching process, demonstrating the robustness of the method as well as

its suitability to operate in a conventional Brillouin optical time-domain analyzer (BOTDA)

without hardware modification. In practical implementations, the pulse sequence distorted

by the EDFA should be measured, in order to retrieve the actual envelope to be used in the

deconvolution operation (3.45).

3.4.7 Experimental results

To demonstrate the feasibility of the proposed technique, experimental measurements were

performed on a 100 km long sensing fiber with a spatial resolution (SR) of 2 m (and later

on 1 m). The fiber includes a hotspot at its remote end, achieved by placing a section of

~2 m in a temperature controlled bath. The energy enhancement factor FE is adjusted to

be ~40, in order to avoid excessive noise at the fiber remote end (see discussion here after),

yielding a theoretical coding gain of Gc = 6.2 dB. The coded BOTDA response is compared to

a single pulse BOTDA acquisition, both averaged 1024 times, and a reference measurement

is performed with 17795 averages, corresponding to the same signal-to-noise ratio (SNR)

improvement as the one delivered by coding (10log10

p
17995/1024 = 6.2 dB). Fig.3.20.(a)

shows the acquired pulse sequence c[m] as well as the retrieved coding sequence made of

weighted Diracs d [m], evaluated by measuring the peak power of each pulse in the sequence.

Fig.3.20.(b) displays the measured Brillouin gain at resonance, either directly acquired or

resulting from the deconvolution operation in the case of the genetic-optimised (GO) coding,

i.e. the proposed technique. Visually, the trace suffers no distortion, as the exponential trend

is perfectly recovered. However, the trace (red) appears much thicker at the fiber beginning

than the reference (black), revealing a poorer SNR.

This is confirmed in Fig.3.20.(c), which displays the measured SNR (in dB) for all three acquisi-

tions along the fiber length. Increasing the number of averages naturally results in a uniform

SNR enhancement all along the fiber, while in the case of coding, the SNR at the fiber begin-

ning is actually lower than for the single-pulse case with 1024 averages. This feature is intrinsic

to any coding technique and is related to the increase in noise due to gain-dependent noise

sources, including polarization noise and beating noiseV. Indeed, while most noise sources are

negligible in single-pulse configuration due to the moderate Brillouin gain (e.g. 2.5% here), the

accumulated gain due to a sequence of pump pulse (e.g. here 40, corresponding to a total gain

VSee the supplementary note 3 of reference [52] for more details.
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Figure 3.20 – (a) Acquired pulse sequence and coding sequence (normalized). (b) Brillouin gain
at resonance. (c). Signal-to-noise ratio (SNR). (d) Brillouin frequency shift (BFS) at hotspot
location. (e) Experimental uncertainty with 2 m SR. (f) Experimental uncertainty with 1 m SR.

of 100%) severely amplifies these phenomena. Note that this limiting factor is included in the

design of the pulse sequence and sets a hard constraint on the targeted energy enhancement

factor FE . Nevertheless, the SNR reached by the GO-code at the fiber remote end matches the

one of the reference, demonstrating a significant performance improvement. Moreover, the

SNR decrease in the first section of the fiber is usually not an issue in most applications, given

that the resulting SNR is still sufficiently high (here above 10 dB), which secures an excellent

experimental uncertainty.

The GO-code is then shown to preserve the experimental spatial resolution, as evidenced in

Fig.3.20.(d) showing the Brillouin frequency shift (BFS) profile at the hotspot. As discussed in

section 3.2, the most valuable metric in BOTDA (besides spatial resolution preservation) is

the BFS uncertainty, displayed in Fig.3.20.(e). Notice that in spite of SNR penalty at the fiber

beginning, the experimental uncertainty is still very low (<0.5 MHz) over the first two-third

of the fiber length, and reaches a value of 0.63 MHz at the fiber remote end (red). Compared

to the single-pulse case (2.65 MHz, blue), this is equivalent to a 4.2 fold improvement, or

equivalently an increase of 6.2 dB, in excellent agreement with the theoretically predicted

value. The benefits of optical pulse coding (OPC) are most impactful in scenarios where the

original performances are low, i.e. starting from a poor SNR. This is illustrated in Fig.3.20.(f),

showing the experimental uncertainty for a single pulse BOTDA measurement with a SR

of 1 m acquired on the same fiber, as well as the BFS uncertainty delivered by GO-coded

BOTDA (FE = 200, Gc = 9.3 dB). In this case, the BFS uncertainty in single-pulse configuration

(18.9 MHz) translates for instance into a temperature uncertainty of ~18.9 °C, while the coded

BOTDA delivers an uncertainty of only 2.2 MHz (or 2.2 °C). The BFS uncertainty reduction is

this time a factor 8.6, perfectly matching the theoretical coding gain of 9.3 dB.
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4 Distributed forward stimulated
Brillouin scattering sensing

Forward stimulated Brillouin scattering (FSBS) refers to an opto-mechanical interaction in-

volving light and guided acoustic waves, hence it was initially labelled as guided acoustic

waves Brillouin scattering (GAWBS). The denomination "FSBS" is to some extent more in-

sightful than "GAWBS", as it emphasizes on the main characteristics of this interaction, that

is the light scattering occurs in the forward direction only. The first report of FSBS in optical

fibers goes back as early as 1985 [5], where it was described as an additional noise source for

optical signals. Interestingly, some of the features inherent to FSBS were documented some

15 years before in order to observe the acoustic modes of a cylindrical rod [57] or to model

birefringence effects in a Nd:YAG rod laser [58]. The phenomenon was further studied in

coming years, describing effects related to its polarization [59] as well as its bandwidth [60].

FSBS was later on studied in photonic crystal fibres to achieve coherent stimulated phonon

oscillation [61, 62].

Recently, FSBS drew substantial interest within the optical fiber sensing community, as it

was successfully demonstrated to perform liquid sensing by exploiting its dependency on the

acoustic impedance difference at the interface between two media [6]. Quite remarkably, the

light remains confined to the fiber core, i.e. the optical fiber operates in nominal conditions,

while the acoustic vibrations carry information from the fiber outer surface back to the core.

So far, FSBS based sensing faces two major difficulties:

1 The lack of any backscattered signal prevents direct distributed measurement of FSBS.

This intrinsic difficulty has been circumvented as of now by measuring the backscattered

response of an auxiliary signal, which experiences energy transfer due to FSBS [8, 63,

64].

2 The acrylate coating of conventional optical fibers greatly dampens acoustic waves,

drastically diminishing the efficiency of FSBS. This issue can be addressed by either

removing the fiber coating, but this makes it impractical owing to the fragility of the glass

rod, or by making use of another, more adapted coating material such as polyimide.
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Distributed FSBS sensing is still at an early stage of research, hence it is poorly performing

compared to other mature DOFS techniques. It is yet highly attractive due to its potential to

diversify the physical parameters measurable by DOFS, as it is not limited to sense quantity

having a direct impact on light propagation, such as temperature or strain in Brillouin optical

time-domain analysis (BOTDA). There is thus still a large margin for improvement, and this

chapter is dedicated to take a step into that direction. In order to understand the benefits and

limitations of FSBS, we first need to present a description of its physical properties, starting

with a study of acoustic waves propagation in optical fibers. We then discuss the potential

of FSBS for sensing, and enumerate aspects that are critical in most applications. Finally, we

introduce an original concept for distributed FSBS sensing based on serrodyne modulation [65,

66].

4.1 Acoustic waves propagation in optical fibers

As seen in chapter 2, optical fibers are manufactured as to be efficient waveguides for electro-

magnetic waves, i.e. light. They are also perfectly capable of supporting the propagation of

acoustic waves, as evidenced by the presence of Brillouin scattering, described in sections 2.3.3

and 2.3.4. An accurate description of forward stimulated Brillouin scattering (FSBS) requires a

more adequate theory than the density-wave equation used to characterize backward Brillouin

scattering (2.33). FSBS is studied in the framework of the theory of linear elasticity [67, 68, 69]

by solving the corresponding wave equation in cylindrical coordinates. Here the analysis is

kept succinct, showing only major steps in the derivation, while the detailed procedure can be

found in Appendix A.

4.1.1 The elastic waves equation

We consider first the optical fiber to be a plain rod of radius a, which corresponds to the case

where the fiber has been stripped of its protective coating. The geometry of the problem is

shown in Fig.4.1 in cylindrical coordinates. The following equation is valid for a linear and

x

z

y

a
r

^
r̂

ẑ

Figure 4.1 – Problem geometry in cylindrical coordinates (r,θ, z) as defined from Cartesian
coordinates (x, y, z) where a represents the fiber radius.
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4.1. Acoustic waves propagation in optical fibers

isotropic elastic material

µ∇2U+ (
λ+µ)∇ (∇·U)−ρ∂

2U

∂t 2 = 0 (4.1)

where U is the displacement field vector, and λ and µ are Lamé first and second parameters,

respectively. In the framework of linear elasticity, one always requires the knowledge on two

independent mechanical constants, such as the Lamé parameters here. Although they are

naturally related to the wave equation, the Lamé parameters are not necessarily physically

meaningful (except for µ which designates the shear modulus), nor familiarly encountered

when discussing the mechanical properties of a material. Fortunately, it is always possible to

derive all other mechanical parameters from two independent ones, for instance

λ =
Eσ

(1+σ)(1−2σ)
(4.2)

µ =
E

2(1+σ)
(4.3)

where E is the Young’s modulus and σ designates Poisson’s ratio. In its form, the acoustic wave

equation (4.1) shares some similarities with respect to the electromagnetic wave equation (2.7).

Quite remarkably, and as will be shown hereafter, the cylindrical geometry of the problem also

results in solution exhibiting a radial dependency depending on Bessel functions. We now

turn to the solving of equation (4.1) in cylindrical coordinates.

4.1.2 The potentials method

Solving of the wave equation is based on the potentials method, i.e. we express the displace-

ment field as [67]

U = ∇ψ+∇×Ψ (4.4)

whereψ is a dilatational potential (scalar) andΨ is an equivoluminal vector potential. Injecting

(4.4) into (4.1) yields two decoupled equations

V 2
d ∇2ψ− ∂

2ψ

∂t 2 = 0 (4.5)

V 2
s ∇2Ψ− ∂

2Ψ

∂t 2 = 0 (4.6)

where Vd and Vs are the dilatational waves and shear waves velocity, respectively, defined as

Vd =

√
λ+2µ

ρ
(4.7)

Vs =

√
µ

ρ
(4.8)
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Chapter 4. Distributed forward stimulated Brillouin scattering sensing

where ρ is the material density. In silica, Vd ≈ 5996 m/s while Vs ≈ 3740 m/s [6]. Before

proceeding further in solving equations (4.5) and (4.6) in cylindrical coordinates, we introduce

the following relationship

∇·Ψ = F (r,θ, z) (4.9)

where F designates an arbitrary function. The fact that F can be any function is known as

the gauge invariance principle. Indeed, in deriving (4.6) one comes across the following

relationship

∇ (∇· (∇×Ψ)) = ∇× (∇ (∇·Ψ)) = ∇× (∇F ) = 0 (4.10)

which equals 0 due to fundamental vectorial calculus identities. In solving for appropriate

boundary conditions to the problem, we shall make use of the additional degree of freedom

brought by (4.9) to greatly simplify the calculations.

4.1.3 Separation of variables

The potential equations (4.5) and (4.6) are solved again using the approach of the separation

of variables. We make the following Ansatz

ψ = f (r )cos(nθ)cos
(
γz −ωt

)
(4.11)

Ψr = gr (r )sin(nθ)sin
(
γz −ωt

)
(4.12)

Ψθ = gθ(r )cos(nθ)sin
(
γz −ωt

)
(4.13)

Ψz = gz (r )sin(nθ)cos
(
γz −ωt

)
(4.14)

where Ψr , Ψθ and Ψz designate the three components of Ψ, n is a positive integer, γ is the

propagation constant and ω is the angular frequency. The radial dependency f , gr , gθ and gz

are found by injecting equations (4.11) to (4.14) into (4.5) and (4.6). It turns out that both f

and gz obey the same Bessel equation, that is

f (r ) = AJn(αr ) (4.15)

gz (r ) = B3 Jn(βr ) (4.16)

where A and B3 are integration constants while α and β are given by

α2 =
ω2

V 2
d

−γ2 (4.17)

β2 =
ω2

V 2
s
−γ2 (4.18)
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4.1. Acoustic waves propagation in optical fibers

The two remaining function gθ and gz need to be addressed simultaneously. They both yield

again Bessel equations in the form

gr − gθ = 2B1 Jn+1(βr ) (4.19)

gr + gθ = 2B2 Jn−1(βr ) (4.20)

Here, we invoke the gauge invariance principle (4.9) to define F such that

gr = −gθ (4.21)

which yields B2 = 0 and

gr = B1 Jn+1(βr ) (4.22)

4.1.4 Boundary conditions

Now that the form of the radial dependency of the given eigenfunctions is known, we turn to

apply the corresponding boundary conditions to our problem. Here we consider the classical

stress-free boundary condition, in which the stress at the outer surface of the cylinder is

assumed to vanish. This condition corresponds to the case of a bare section of optical fiber

exposed to air, as will be better understood in the following section on sensing.

σr r |r =a = 0 (4.23a)

σrθ|r =a = 0 (4.23b)

σr z |r =a = 0 (4.23c)

The boundary conditions (4.23) are usually expressed in matrix form, that is

C B =



C11 C12 C13

C21 C22 C23

C31 C32 C33





A

B1

B3


=



0

0

0


(4.24)

and the coefficients Ci j of the matrix can be found in Appendix A.

4.1.5 The frequency equation

According to Cramer’s rule, the only way to avoid the trivial solution A = B1 = B3 = 0 in (4.24) is

to impose the following condition, known as the frequency equation or the dispersion relation
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Chapter 4. Distributed forward stimulated Brillouin scattering sensing

|C | = 0 (4.25)

As such, equation (4.25) is a very general one that provides a global solution to the problem

considered. Similar to the frequency equation for optical waves (2.19 ), it can be factorized

into a set of discrete solutions known as modes. The dominant parameter in the modal

classification is the azimuthal parameter n, which defines the symmetry of revolution of

the considered mode displacement profile. For instance, setting n = 0 yields on one side

the family of purely torsional modes, as well as the family of longitudinal-radial modes (see

Appendix A). Notice that for each set of parameters, there is an infinite number of solutions as

a consequence from the oscillatory nature of the Bessel functions involved in the frequency

equation (4.25).

4.1.6 Purely radial modes

In single-mode fibers (SMF), only torsional-radial modes with n = 2, denoted TR2m and purely

radial modes with n = 0, denoted R0m , are involved in Forward stimulated Brillouin scattering

(FSBS) [5]. The reason for this lies in the azimuthal symmetry of the electrostrictive driving

force, which exhibits two distinct contributions, one showing a purely radial symmetry while

the other shows a two-fold azimuthal symmetry [70]. Note that this assumption is invalidated

in multi-core fibers, for which other families of torsional-radial modes might be involved [71].

Interestingly, Sittig et al already mentioned in 1970 that TR2m modes exhibit birefringence at

the center of a glass cylindrical rod, hence showing a potential for light phase modulation [57].

In practical applications involving SMFs, TR2m modes are far less efficient than R0m modes [60],

hence they are not considered further in the remaining of this document. In FSBS, the opto-

mechanical coupling takes place between two co-propagating light-waves, therefore the

differential wave-vector, i.e. the acoustic wave-vector alongside the fiber axis, is extremely

small. Assuming n = 0 and γ = 0 in (4.25) yields the following factorization

|C | = −C23C11C32 = 0 (4.26)

where the terms C11 and C23 are associated with purely longitudinal modes and purely tor-

sional modes, respectively, and are thus not taken into account. The term C32 yields the

well-known dispersion relation for purely radial modes

2α

a
J1(αa)−β2 J0(αa) = 0 (4.27)

where α and β are given by equations (4.17) and (4.18), respectively. (4.27) is the characteristic

equation that enable to determine the frequency of purely-radial modes. The frequencies fm

of the 10 first modes for an SMF of radius a = 62.5 µm, with a density ρ = 2200 kg/m3, a Young’s

modulus of 73×109 Pa and a Poisson ratio of σ = 0.17 are given in Table.4.1
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4.2. Forward stimulated Brillouin scattering

fm [MHz] 30.2 81.7 130.2 178.3 226.3 274.1 322.0 369.8 417.7 465.5

Table 4.1 – Frequencies of purely radial modes (from R01 to R010).

Finally, the displacement profile of purely radial modes is entirely given by the radial compo-

nent of displacement Ur as

Ur (r ) = K J1(αr ) (4.28)

where K is an integration constant. The displacement profile of several acoustic modes are

compared with the fundamental mode profile of a single-mode fiber (see section 2.2.3) in

Fig.4.2. With increasing mode order, the number of lobes within a given profile gets larger,
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Figure 4.2 – Modes profiles of purely-radial modes R01, R03, R05 and R07 together with the
optical mode profile of a single-mode fiber, normalized to unity.

and the energy starts shifting toward the fiber core. As discussed in section 4.2.2, this behavior

defines the efficiency of FSBS, which is low for low-order modes due to a poor spatial overlap

between acoustic and optical mode profiles.

4.2 Forward stimulated Brillouin scattering

We now discuss forward stimulated Brillouin scattering (FSBS) in details, articulating the

analysis around the sensing potential of this effect in single-mode fibers. We first revisit the

wave-coupling interaction described for backward stimulated Brillouin scattering (SBS) in

section 2.3.4, evidencing the forward nature of the scattering as well as its mode-dependent

efficiency when considering the guided acoustic waves described in the previous section. We

then describe the sensing mechanism behind FSBS before proceeding to analyze the influence

of the fiber coating on the interaction, a topic of paramount importance for any realistic

practical application.
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Chapter 4. Distributed forward stimulated Brillouin scattering sensing

4.2.1 Wave coupling in FSBS

In the classical theory of Brillouin scattering, the scattering is essentially backward, as imposed

by a strict phase matching between the optical and acoustic waves in presence. Forward

scattering cannot occur because of the dispersion relation of the considered acoustic wave,

which is assumed to be linear (see section 2.3.3). The situation is entirely different for forward

stimulated Brillouin scattering (FSBS), as the purely radial modes described in section 4.1.6

exhibit a highly non-linear dispersion relation. Formally speaking, purely radial modes cease

to exist as soon as the acoustic wavevector γ (4.11) - (4.14) vanishes, and join a larger class

of modes known as longitudinal-radial modes (see Appendix A). Yet, and for the magnitude

of propagation considered, it is perfectly reasonable to still use the denomination of purely

radial modes R0m . Nevertheless, the dispersion relation for R0m modes is described by the

Pochhammer-Cree equation, which was discovered as early as 1876 by Pochhammer [72] and

independently later by Chree in 1889 [73], and is given by

2α

a
J1(αa)J1(βa)

(
β2 +γ2)− J0(αa)J1(βa)(β2 −γ2)2 −4γ2αβJ0(βa)J1(αa) = 0 (4.29)

Equation (4.29) is extremely complex, and numerous mathematical workarounds to analyze

it were found before having the availability of sufficient computational power [74, 75]. The

dispersion curves of the first ten R0m modes are shown in Fig.4.3, together with the dispersion

curve of the optical wave involved in FSBS.
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Figure 4.3 – Dispersion relation of the ten first purely radial modes near cutoff (γ = 0) compared
to the dispersion relation of an optical wave.

Owing to their different nature, optical waves and acoustic waves evolved in entirely differ-

ent regimes. While light exhibits a linear dispersion, acoustic waves involved in FSBS are

barely past cutoff, hence their dispersion curve is nearly flat. The phase-matching condition

stating the conservation of momentum (wavevector) and energy (frequency) is thus largely

relaxed compared to backward SBS, and is very similar to Raman scattering (hence it was

labelled Raman-like scattering in [61]). Indeed, for two co-propagating light waves exhibiting

78



4.2. Forward stimulated Brillouin scattering

a frequency difference of∆ω, phase matching is achieved provided that

∆ω

2π
= fm (4.30)

where fm is given by equation (4.27) or equivalently (4.29) when letting γ = 0.

4.2.2 Efficiency of FSBS: modal dependency

As evidenced by Fig.4.3, there is a large number of acoustic modes naturally involved in

forward stimulated Brillouin scattering (FSBS) in a conventional single-mode fiber (SMF).

The scattering efficiency is however highly mode-dependent. The scattering efficiency of

FSBS was already derived in [70] and later on thoroughly revisited in a series of publications

devoted to FSBS sensing in both SMF and multi-core fibers (MCF) by Zadok et al. from Bar-Ilan

universitiy in Tel Aviv [6, 7, 71, 76]. Physically speaking, FSBS manifests, via electrostriction

and photoelasticity, as a mode and frequency dependent refractive index perturbation∆n(m)
FSBS.

At a resonant frequency fm , this refractive index change is given by [7]

∆n(m)
FSBS =

P ( fm)

32πn2c0ρ

Q(m)
ES Q(m)

PE

fmΓm
(4.31)

where P ( fm) is the optical power at frequency fm , n is the refractive index, c0 is the speed

of light in vacuum and Γm is the acoustic damping rate, which will be thoroughly discussed

hereafter. The terms Q(m)
ES and Q(m)

PE designate overlap integrals associated with electrostriction

and photoelasticity, respectively [70]. The electrostriction overlap integral is equal to

Q(m)
ES = (a1 +4a2)2π

∫ a

0
EN (r )

dEN (r )

dr
U (m)

N (r )r dr (4.32)

where m designates the mode number. In (4.32), EN (r ) is the normalized optical wave electric

field profile (2.23), which we assume here to be Gaussian as described in section 2.2.3 and

U (m)
N is the mth normalized acoustic mode displacement profile (4.28). The normalization is

performed such that the integrated power (the absolute squared value of the field) is unitary.

The two constants a1 and a2 are related to the elasto-optic constants P11 (= 0.121 for fused

silica) and P12 (= 0.27 for fused silica) via [70]

a1 = −n4(P11 −P12) (4.33)

a2 = −n4P12 (4.34)

and ε0 is the vacuum permittivity. The photo-elastic integral yields

Q(m)
PE =

( a1

2
+a2

)
2π

∫ a

0
|EN (r )|2

(
dU (m)

N

dr
+ U (m)

N

r

)
r dr (4.35)
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Quite remarkably, and for the case of a single-mode fiber considered here, the two integrals

Q(m)
ES and Q(m)

PE , which are both frequency-dependent, yield almost identical results when

normalized to unity with respect to their maximum output. The influence from Q(m)
ES and Q(m)

PE

as well as the 1/ f dependency on∆n(m)
FSBS are illustrated in Fig.4.4. The overall efficiency (blue
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Figure 4.4 – Normalized FSBS induced refractive index change as a function of frequency.

line) is small for low-order modes, as a consequence from the poor spatial overlap between

optical and acoustic modes evidenced in Fig.4.2. As the frequency increases, the higher

concentration of acoustic energy towards the fiber core yields a larger overlap, hence the

overall efficiency increases despite the 1/ f trend. Past a certain mode (here the 9th mode at a

frequency of ~417 MHz), both the overlap integral as well as the 1/ f contribution tend to lower

the FSBS efficiency. The overlap integral eventually diminishes because past a certain point,

the optical field end up averaging out contributions from positive and negative acoustic lobes,

i.e. the overall refractive index modulation yields 0 [60]. As will be seen later on, this mode-

dependent efficiency is critical in the design of any experimental setup aiming at performing

distributed FSBS sensing.

4.2.3 Sensing properties of FSBS

So far, we left out the feature of forward stimulated Brillouin scattering (FSBS) most interesting

to this dissertation, i.e. its potential for sensing. From the very first measurements of FSBS, it

was understood that conventional fiber coating such as acrylate ended up acting as a damper

for acoustic waves [5]. Acoustic damping in this case originates from acoustic radiation at the

fiber-coating interface, very similarly to the optical loss produced by a semi-reflective surface

on a light wave. An interesting paper published as early as 1993 [60] documents this effect

in single-mode fibers (SMF), emphasizing at the time on torsional-radial (TR2m) modes. In

this report, two conclusions are drawn which are highly relevant to our study on distributed

FSBS sensing. First, the acoustic damping is mode-selective, and is far more severe for modes
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4.2. Forward stimulated Brillouin scattering

displaying a large displacement profile near the fiber cladding as the acoustic radiation is

in that case significant. Second, the observed resonance, and especially the measure of

the linewidth of each resonance with respect to frequency cannot be explained by acoustic

damping. Instead, the author concludes that the measured spectra result from the overlap

of multiple individual resonances exhibiting slightly different resonant frequencies. We shall

come back to these two aspects in the following section, and discuss their practical implication

on experimental measurements.

Similarly to a soft material such as acrylate, surrounding a section of bare fiber with a fluid

will end up having a similar effect on acoustic waves [60]. Formally speaking, the effect of the

fluid on the propagation of acoustic waves in the fiber is modelled by modifying the stress-free

boundary condition (4.23a) at the fiber-fluid interface [77]

σr r |r =a = −p(a) (4.36)

where p designates the fluid pressure. Assuming a negligible axial wavevector (γ = 0), the

following expression can be found [7]

σr r |r =a =ωZ ( f lu)
H0

(
ω/V ( f lu)

d

)
H1

(
ω/V ( f lu)

d

)Ur (a) (4.37)

where ω is the angular frequency, Z ( f lu) and V ( f lu)
d are the acoustic impedance of the fluid

and the longitudinal wave velocity in the fluid, respectively, while Hm designates the mth

order Hankel function. Note that in this case, the term corresponding to σr r is to be included

in the boundary condition matrix C , and the frequency equation (4.25) is solved by including

an imaginary part to the frequency, i.e. [7]

ω−→ω+ iΓ (4.38)

and Γ is the corresponding damping rate. About twenty years later, it was understood that

measuring the radiation loss of acoustic waves provided with information on the acoustic

impedance of the fluid in which the fiber is immersed. The first report of liquid sensing using

FSBS was made in 2016 by Antman et al. [6], where the authors successfully discriminated

between water and ethanol. Indeed, for a bare single-mode fiber of radius a, the acoustic

damping rate due to radiation loss can be expressed as

Γ =
V ( f i b)

d

2a
ln

(∣∣∣∣∣ Z ( f i b) −Z ( f lu)

Z ( f i b) +Z ( f lu)

∣∣∣∣∣
)

(4.39)

where Z ( f i b) and V ( f i b)
d are the acoustic impedance of the fiber and the longitudinal wave

velocity in the fiber, respectively. Equation (4.39) shows that the damping rate depends on

the (normalized) acoustic impedance difference between the two media. In order to provide

with some order of magnitudes, the acoustic impedance of silica is ~13.2×106 kg/(m2s) while
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Chapter 4. Distributed forward stimulated Brillouin scattering sensing

for air it is only ~416 kg/(m2s) [6], yielding a damping rate of only ~2π×0.5 kHz. Acoustic

waves are thus extremely long-lived when the fiber is exposed to air, which behaves as a high

quality acoustic cavity. The case is entirely different when the fiber is immersed in a fluid, e.g.

ethanol, which displays an acoustic impedance of ~0.95×106 kg/(m2s), corresponding to an

acoustic damping rate of ~2π×1.1 MHz. FSBS measurement setups thus aim at evaluating this

damping rate, and if possible in a spatially resolved way. Before stepping into considerations

regarding the practical implementation of a dedicated setup, we mention some critical aspects

related to the fiber coating.

4.2.4 The impact of coating

In most distributed optical fiber sensing (DOFS) applications, the fiber coating is important,

for instance it should be adapted when considering in situ applications instead of laboratory

experiments, but the choice of a given coating is not expected to profoundly modify the

behavior of the system. In FSBS sensing, the choice of a given coating is a major design

parameter to be taken into account as it affects the waveveguiding mechanism of the acoustic

vibrations involved in the process. As mentioned already in early works [5, 60], the widely

used acrylate coating is not a suitable choice for proper FSBS sensing, as its mechanical

properties and thickness make it act as an acoustic damper that severely attenuates acoustic

waves. Recently, the use of polyimide was foreseen as a promising alternative due to its better

acoustic impedance matching with silica, as well as being coated in thin layers [78, 79]. We

will see that, despite delivering indeed good performances in terms of acoustic sensing, the

impact of polyimide coating (in fact, any coating) is to be deeply considered in experiments.

A coated fiber may be represented by the geometry depicted in Fig.4.5, where the glass rod

a
b

U,  = cst  = 0

r1

2

Figure 4.5 – Cross-section of a coated fiber.

of radius a is surrounded by a protective layer of outer radius b. Label 1 designates the silica

glass while label 2 refers to the coating. Propagation of acoustic waves in such structures have

been intensively studied in the field of acoustics [80, 81]. When exposed to air, the boundary

conditions include continuity at the cladding-coating interface in addition to the stress-free

requirement on the fiber surface, i.e.
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U (1)
r

∣∣
r =a = U (2)

r
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The frequency equation of the general problem is now described by a 9×9 matrix, which

reduces to a 3×3 matrix for purely radial modes (see Appendix A.3 for more details). Due to

the added boundary conditions (4.40) compared to a bare fiber, some acoustic modes turn

out to be extremely sensitive to any variation in cladding or coating diameter. To illustrate this,

let us evaluate the cutoff frequency of purely radial modes in a bare fiber when the cladding

radius is varied by ±1 µm. The parameters for silica are ρ(Si ) = 2200 kg/m3, E (Si ) = 73×109 Pa

and σ(Si ) = 0.17. The results are shown in Fig.4.6.(a), which displays the relative frequency
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Figure 4.6 – Relative frequency excursion of R0m modes when the fiber cladding and/or coating
exhibits non-uniformities in the order of 1 µm for a bare fiber (a) and a polyimide coated
fiber (b).

excursion compared to a nominal radius of a0 = 62.5 µm corresponding to a conventional

single-mode fiber (SMF). The relative frequency shift is more or less mode independent and

amounts to about 5% of the mode nominal cutoff frequency. Note that this implies that the

absolute frequency excursion grows linearly with frequency, i.e. higher order modes exhibit

larger frequency variations induced by cladding non-uniformities. The same calculation

is shown in Fig.4.6.(b) for a coated SMF with an identical nominal cladding radius of a0 =

62.5 µm and a nominal coating thickness of 10 µm, yielding an external coating radius of

b0 = 72.5 µm. The parameters for polyimide are ρ(Po) = 1420 kg/m3, E (Po) = 2.5×109 Pa and
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σ(Po) = 0.34I. As evidenced in the figure, some modes exhibit a severe frequency deviation

when either the cladding or the coating radius is slightly modified (±1 µm) while other show

very little sensitivity. To understand this, let us compare the displacement profile of two

consecutive modes, i.e. R06 and R07, the former showing very little sensitivity while the later

exhibits a massive relative frequency excursion of nearly 15%. The (normalized) displacement

distributions of both modes are shown in Fig.4.7
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Figure 4.7 – Normalized displacement profile of the 6th and 7th purely radial mode in a coated
fiber for a coating thickness varying of ±1µm.

The major difference between these two modes is that a much larger fraction of acoustic

energy is present within the coating in the case of the R07 mode compared to the case of

the R06 mode. Consequently, the displacement distribution for the 6th mode is almost en-

tirely imposed by its contribution in the fiber, i.e. the mode shape in the fiber barely varies

when the coating diameter is modified. The situation is reversed for the 7th, which shows

an almost identical displacement distribution within the coating but exhibits massively dif-

ferent behaviours in the fiber. In addition to possible large frequency excursions, different

acoustic modes exhibit different damping rates when immersed in a liquid [7], as the acoustic

energy radiation exclusively depends on the displacement amplitude at the boundary with

the external environment [60]. It turns out that the acoustic damping rate of some modes

is far more sensitive to cladding and/or coating non-uniformities than others, yet this is far

more challenging to anticipate without in-depth studies of the fiber under test, as greatly

discussed in [7]. As will be detailed in section 4.4, selection of an acoustic mode in our case

is fully determined by experimental conditions, hence there is unfortunately no possibility

to deliberately select an acoustic mode displaying good acoustic properties. Since the fiber

condition cannot be known a priori, proper measurements will require dedicated calibration

to deliver accurate results.

IThe values for polyimide can be found here: http://www.mit.edu/~6.777/matprops/polyimide.htm
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4.2. Forward stimulated Brillouin scattering

4.2.5 FSBS in harmonic regime

Due to the lack of any backscattered light, performing distributed FSBS sensing was not a

straightforward task but was ingeniously achieved by measuring the backscattered response

of optical waves which experienced energy transfer due to FSBS, either via OTDR [64] or

BOTDA [52, 63]. We focus here on the second approach, in which acoustic waves are induced

via electrostriction by a strong pulse which is intensity modulated following a sinusoidal

pattern. By modifying the wave equation accordingly, the behavior of an optical fiber can

be related to a forced damped harmonic oscillator. This has profound consequences on

the implementation of dedicated FSBS sensing systems presented in the last sections of this

chapter.

Formally speaking, the analysis developed here is only valid for the case of a bare fiber. How-

ever, the temporal response of the system is expected to be entirely identical for a coated fiber,

the only difference lying in the modes displacement profiles, frequencies as well associated

damping rates which are parameters to the model. This assumption is further corroborated

by experimental results in section 4.4. The acoustic wave equation (4.1) is thus modified as

follows

µ∇2U+ (
λ+µ)∇ (∇·U)−ρ∂

2U

∂t 2 −2ρΓ
∂U

∂t
= D (4.41)

where we introduced a fictitious term that accounts for acoustic energy dissipation through the

damping rate coefficient Γ [68] and D represents a driving term induced by FSBS. Assuming

harmonic acoustic wave activation, the driving term takes the form

D = −Ad J1(αr )cos(ωd t )r̂ (4.42)

which corresponds to purely radial modes in a bare fiber or which describes the displacement

profile of purely radial modes in a coated fiber when restricted to the fiber itself (the glass). We

denoteωd = 2π fd and fd is the driving frequency, r̂ is a unit vector oriented along the r-axis and

the minus sign is introduced for later convenience. Note that the displacement amplitude Ad

could be formally calculated based on the analysis developed in section 4.2.2 but considering

only the contribution from electrostriction [70, 71]. However, we are interested here in the

functional dependency of the acoustic displacement subject to a harmonic activation, hence

we synthesize its amplitude in a constant-value parameter denoted Ad so far. The parameter

α is to be slightly modified to include the contribution from attenuation, i.e.

α =

√√√√ω2 +Γ 2

V 2
d

(4.43)

where ω =ωd in driven regime, and Vd is the longitudinal wave velocity (4.7). We assume that
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Chapter 4. Distributed forward stimulated Brillouin scattering sensing

a single-mode is activated, thus we make the following Ansatz regarding the solution

Ud = AJ1(αr )cos(ωd t −θ)r̂ (4.44)

where A is the amplitude of displacement, and θ is an additional phase term. Injecting (4.42)

and (4.44) into (4.41) yields

cos(ωd t −θ)
(
ω2

d −ω2
0

)+2Γωd sin(ωd t −θ) =
Ad

A
cos(ωd t ) (4.45)

where we have introduced the oscillator undamped resonance frequency, i.e.

ω0 =αVd (4.46)

which corresponds to the absence of acoustic loss modelled by setting Γ = 0 in (4.43). Equation

(4.45) is identical to the one of a forced damped harmonic oscillator. It assumes the following

solution

A =
Ad√

(ω2
0 −ω2

d )2 +4Γ2ω2
d

(4.47)

θ = tan−1

(
2ωdΓ

ω2
0 −ω2

d

)
(4.48)

which is represented graphically in Fig.4.8. The amplitude response is close to a Lorentzian

fd

A

f0

2

Figure 4.8 – Amplitude A and phase θ response of FSBS induced acoustic waves in a bare fiber
in harmonic regime.

and peaks at a value slightly lower than the undamped frequency f0, although in practice the

difference is completely negligible. The solution derived so far corresponds to the steady-state

response in driven regime, that is the optical field responsible to induce acoustic waves is still

present. However, in practical cases, this situation is to be avoided in order to prevent cross-

phase modulation between this activating field and another optical wave used to probe the

FSBS resonance [14, 15]. We will thus consider that once reaching steady-state, the activation

is to be abruptly interrupted, leading the system to oscillate freely until the acoustic vibrations

vanish. The governing equation in this case is still (4.41), only this time the driving term is
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4.3. Distributed FSBS measurement using broadband BOTDR

set to D = 0. This equation is now solved taking as initial condition the very last input from

the driven regime, i.e. we assume continuity in the solution. However, in the absence of

any external driving force, the acoustic cavity, that is the fiber, now oscillates at its natural

frequency, which is entirely determined by its mechanical and dimensional parameters, as

derived in section 4.1. The free-running refractive index perturbation, is thus found to be

∆n f r (t ) = A cos(ωm t −θ) (4.49)

whereωm is the angular frequency of the mth purely radial mode activated. Here we emphasize

that ωm does not equal ωd , but is the mode frequency closest to ωd . Note that the amplitude

response A was derived considering the displacement field, whereas equation (4.49) describes

the corresponding refractive index change. However, the two are proportionally related via the

photo-elastic overlap integral defined in (4.35) [71]. We can therefore merge all proportionality

constants into Ad in (4.47), and relate it to (4.31), yielding

Ad =
P ( fm)Q(m)

ES Q(m)
PE

8n2c0ρ
(4.50)

With this quite complete picture of the phenomenon, we now turn our attention to experi-

mental setups that enable probing the FSBS resonance in a spatially-resolved manner.

4.3 Distributed FSBS measurement using broadband BOTDR

Most of the results presented in this section were published in the following proceedings [46]II.

One critical aspect regarding distributed forward stimulated Brillouin scattering (FSBS) mea-

surement is the need to resort to a double-scanning process, either to scan both the FSBS as

well as the backward SBS resonances in Brillouin based approaches [52, 63], or to average

the contribution from coherent Rayleigh scattering when probing FSBS using an incoherent

optical time domain reflectometer (OTDR) [64]. This limitation has the major consequence

of significantly extending the overall acquisition time. In this section, we present one way

to circumvent this difficulty by making use of Brillouin optical time-domain reflectometry

(BOTDR), associated with a large bandwidth electrical filter.

4.3.1 Harmonic phase modulation

The core principle to achieve distributed FSBS sensing based on harmonic sensing is illus-

trated in Fig.4.9. A strong "activating" pulse, modulated in intensity at a frequency fd precedes

a second "reading" pulse that experiences refractive index modulation from the decaying

acoustic wave induced via FSBS. Note that the two pulses temporal profiles are strictly sepa-

II@2019 SPIE. Reprinted, with permission from S. Zaslawski, Z. Yang, S. Wang and L. Thévenaz, Distributed
forward stimulated Brillouin scattering measurement using broadband BOTDR, Seventh European Workshop on
Optical Fibre Sensors (11199), 323-326 (2019), doi = 10.1117/12.2540011
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Activating pulse

Reading pulse 1/fd

Decaying acoustic wave

Figure 4.9 – Basic principle of distributed FSBS sensing relying on harmonic activation.

rated in order to avoid any unwanted cross-phase modulation [63, 82]. The driving frequency

fd is set as to probe a given acoustic mode fm . The selection of the most suitable mode is

fiber and experiment dependent, and is largely influenced by the mode-dependent FSBS

efficiency described in section 4.2.2. In this experiment, the reading pulse width W is assumed

to be far larger than the acoustic wave period 1/ fm , such that many periods are contained

within the reading pulse duration. Furthermore, the effect of the additional phase (4.48) is

neglected, and averaged out in practice owing to the working principle of the experimental

layout. Consequently, the reading pulse experiences phase modulation as it propagates in the

fiber [63]

∆φ( fd , z, t ) =
2π

λ

∫ z

0
∆n( fd , z ′)cos

[
ωm(z ′)t

]
d z ′ (4.51)

where ωm = 2π fm , λ is the reading pulse wavelength and z is the position in the fiber. As

evidenced from equation (4.51), the forward nature of FSBS implies that the local effects

experienced by the pulse during its propagation in the fiber accumulate, such that one will

eventually require to resort to a differentiation operation to retrieve the local response. Equa-

tion (4.51) also emphasizes that the free-running frequency of the selected acoustic mode fm

is position dependent, as it might differ slightly from one location to another following the

variations in cladding diameter, as seen in section 4.2.4. Here, we assume that this variation

is negligible with respect to the integral operation performed in (4.51), hence we define the

accumulated phase-shift∆φacc as follows

∆φ( fd , z, t ) = cos(ωm t )
2π

λ

∫ z

0
∆n( fd , z ′)d z ′ = cos(ωm t )∆φacc( fd , z, t ) (4.52)

The perturbed electric field of the reading pulse might be expressed in complex notation as

Eread( fd , z, t ) = A(z, t )e i
[
kz−ωt+∆φ( fd ,z)

]
(4.53)

where A(z, t ) is the field amplitude, k is the wavevector and ω is the carrier angular frequency.

We now make use of the Jacobi-Anger expansion to obtain

Eread( fd , z, t ) = A(z, t )
∞∑

n=−∞
i n Jn

[
∆φacc( fd , z)

]
e i [kz+t (nωm−ω)] (4.54)

where Jn denotes the nth order ordinary Bessel function of the first kind. Equation (4.54)

yields the well known result associated to harmonic phase or frequency modulation, that
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is the presence of sidebands located at multiple of the modulating frequency (nωm) apart

from the carrier frequency. The evolution of the amplitude of each sideband, including the

component oscillating at the carrier frequency corresponding to n = 0, follows the associated

Bessel function. Consequently, the intensity of each sideband, labelled as In , is a function of

J 2
n . By using the well-known recurrence relation typical of Bessel functions (see Appendix A)

2n

x
Jn(x) = Jn−1(x)+ Jn+1(x) (4.55)

the accumulated FSBS induced phase change can be evaluated by measuring the intensity of

the first three sidebands as

∆φacc( fd , z) =
2
p

I1p
I0 +

p
I2

(4.56)

Finally, the local FSBS response is obtained after numerical differentiation of∆φacc( fd , z).

4.3.2 Experimental setup

The procedure described in the previous section was originally implemented by using Brillouin

optical time-domain analysis (BOTDA, see section 2.4.5) [63]. Each sideband intensity would

be evaluated by measuring the Brillouin gain spectrum (BGS) around the carrier frequency,

that is I0, as well as around I1 and I2. The overall process thus required to perform a complete

BOTDA acquisition three times, for each scanned FSBS frequency fd . The BOTDA scanning is

mandatory in order to keep track of the BGS maximum value since the Brillouin frequency

shift (BFS) might vary along the fiber due to strain even when the fiber temperature is main-

tained constant. The workaround presented here relies on Brillouin optical time domain

reflectometry (BOTDR, see section 2.4.5), and the experimental setup is depicted in Fig.4.10.

In this early experiment, the activating pulse was not fully optimized, hence we do not describe

Laser:

Figure 4.10 – Distributed FSBS measurement setup based on broadband BOTDR. The blue
path denotes the BOTDR, while the orange path shows the injection of the activating pulse in
the setup. The abbreviations stand for: SOA - semiconductor optical amplifier, EOM - electro-
optic modulator, RF - radio frequency, FUT - fiber under test, BPD - balanced photo-detector,
BPF -bandpass filter.
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its generation in details, as it will be done in the following section. The blue path depicts a

conventional BOTDR (see Fig.2.13, in section 2.4.5), where the light from a laser operating

at 1550 nm is used to generate, on one branch, a pump pulse (the reading pulse) by making

use of a semiconductor optical amplifier (SOA) driven by a pulse generator, and on the other

branch, a local oscillator (LO) by driving an electro-optic modulator at extinction (carrier

suppression mode) with a pure tone radio-frequency (RF) signal at a frequency fLO. The

polarization scrambler is used to simultaneously average out polarization-induced intensity

variations in the BOTDR at detection as well as the contribution from torsional-radial modes

in the FSBS interaction [6]. The filter enables filtering out the strong backscattered signal due

to the activating pulse. The major difference with a conventional BOTDR lies in the design of

the bandpass filter (BPF) located at the balanced photodetector (BPD) output, and which is

detailed here after.

In a BOTDR setup aiming at performing distributed sensing based on backward Brillouin

scattering, the electrical BPF is designed as to finely sample the fiber BGS by letting energy

flow only through a narrow frequency band (see section 2.4.5). Here, the approach is entirely

opposite, as the filter in use should capture the entire BGS at once, as illustrated in Fig.4.11.

This way, the signal at the BPF output after coherent detection is proportional to the BGS

fm

λ = 1550 nm fLO

+1
+2-1

-2

fBGS

frequency

ΔfBPF

fBGS - fLO

T,ε Band-pass
filter

fBPF

Beating

fm fm fm

Figure 4.11 – Coherent detection in broadband BOTDR. The BPF bandwidth is such that the
entire energy carried by the BGS around each sideband is entirely captured by the filter, even
under moderate temperature/strain.

integrated energy, which in turns is proportional to the sideband intensity in the phase-

modulation process described in the previous section. Note that additionally, and provided

that the fiber BFS is more or less uniform over its entire length, a sufficiently broad BPF

will capture the entire BGS despite the latter undergoing slight frequency excursions due

to temperature and/or strain. This makes this setup temperature and/or strain insensitive,

provided that the BFS deviation are such that the BGS remains at all time entirely within the

BPF pass-band. The acquisition is performed as follows. First, the LO frequency fLO is set

such that the beating from the BGS associated to the fundamental sideband (I0) equals the

BPF central frequency, i.e. fBGS − fLO = fBPF. Then, the LO frequency is either upshifted or

downshifted by fm to measure the first order sideband I1, and later on I2 following the same

procedure.

Overall, both the filter bandwidth as well as its central frequency should be carefully adjusted

in order to secure a proper operation by avoiding any cross-talk from the beating between
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4.3. Distributed FSBS measurement using broadband BOTDR

the LO and other sidebands than the one considered. While only two higher order sidebands

are represented in Fig.4.11, the frequency modulation can become sufficiently large such

that higher order sidebands should also be considered, especially if the interaction length

turns significant due to the accumulative nature of FSBS. One possible solution would be to

set the LO frequency far higher or far lower than the entire modulated spectrum (sidebands

included), but this would shift the BPF central frequency to higher values, implying to employ

a photodetector with a larger bandwidth.

4.3.3 Experimental Results

The setup described in Fig.4.10 was used to perform distributed FSBS sensing with a spatial

resolution (reading pulse half width) of 8 m. First of all, the capability of the bandpass filter

(BPF) to effectively capture the entire Brillouin gain spectrum (BGS) needs to be assessed. The

BPF has a bandwidth of∆ fBPF = 100 MHz which is centered around fBPF = 550 MHz. A prior

measurement is realized in the absence of the activating pulse, scanning the local oscillator

(LO) frequency fLO from 10 GHz to 10.6 GHz, the results of which are shown in Fig.4.12 The
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Figure 4.12 – Broadband BOTDR response as a function of fLO.

filter shape reveals to be asymmetric as it was realized by cascading a low-pass filter and a

high-pass filter. Nevertheless, the inset in Fig.4.12 illustrates a suitable operating region of

~30 MHz, over which the BOTDR response is uniform. From this preliminary measurement,

it turns out that the LO ideal frequency is 10.322 GHz, i.e. fLO is set to that value in order to

measure I0.

We now turn to actual FSBS sensing, activating the 8th purely radial mode at a frequency

fm ≈ 370 MHz. The fiber under test (FUT) is made of a section of ~30 m of bare fiber, which

coating has been chemically removed in order to enable FSBS sensing (see section 4.2), located

after a section of ~400 m of conventional coated fiber and followed by another section of

roughly 100 m of coated fiber. The fibers are all conventional single-mode fibers (SMF) with

a cladding radius of ~62.5 µm. In this dissertation, we refer to this configuration as remote

distributed sensing as opposed to fully distributed sensing, because only a short section of

fiber respective to the entire sensor length is actually sensitive. Moreover, and as will be further

discussed in upcoming sections, achieving fully distributed FSBS sensing is a more challenging
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task, because one then need to carefully handle the amount of accumulated effects resulting

from the forward scattering process.

Fig.4.13.(a) shows the measured sidebands as a function of distance. The transition from a

coated section of fiber to the bare fiber is clearly visible from the figure, and illustrates the

severe acoustic damping induced by the acrylate coating. Fig.4.13.(b) depicts the retrieved

0.0

0.5

1.0

1.5

2.0

2.5

V
o

lt
a

g
e

 (
m

V
)

(a)

I
0

I
1

I
2

0 100 200 300 400 500 600

Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
 (

ra
d

)

(b)

Air

Ethanol

Uncoated fiber

Figure 4.13 – (a) Sidebands intensities as a function of distance. (b) Retrieved accumulated
phase shift.

accumulated phase shift∆φacc, estimated from combining the measured sidebands inten-

sities according to (4.56). The orange line shows the case where the bare fiber is exposed

to air while the green curve shows the response once the bare fiber is immersed in ethanol,

illustrating once more the effect of acoustic damping induced this time by the fluid. Note that

in retrieving∆φacc, fiber attenuation and other common loss mechanisms are compensated

and do not influence the result (4.56). However, one major issue with this procedure is that

the signal-to-noise ratio (SNR) of the measured ∆φacc relies on the amplitude of I1, which

is vanishing at the fiber beginning, i.e. before FSBS could take place, such that the sensor

exhibits a dead-zone. This also implies that the SNR is position dependent.

The local FSBS response is now evaluated by performing numerical differentiation, and is

given in terms of refractive index modulation amplitude, that is we compute the following

value [63]

∆n( fd , z) =
λ

2π

∆φ( fd , z)−∆φ( fd , z −SR)

SR
(4.57)

where SR stands for spatial resolution (here 8 m). Local refractive index changes are shown in
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Fig.4.14.(a) in terms of distance for fd = 370 MHz, and in Fig.4.14.(b) in terms of fd at a location

within the section of bare fiber. The results emphasize the impossibility of achieving proper
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Figure 4.14 – Local FSBS induced refractive index change against (a) distance and (b) driving
frequency.

FSBS sensing in acrylate coated fiber, the response being almost ten times weaker when com-

pared to a bare fiber. Notice indeed that the response outside of the bare fiber in Fig.4.14.(a)

is not centered around 0, but around a small value (here ~0.2×10−9). Notice also how the

SNR improves over the first ~200 m of coated fiber due to the increase of I1, as evidenced by

the trace thickness. The measured FSBS resonances corresponding to air and ethanol are

displayed in Fig.4.14.(b). The resonance in ethanol is significantly broadened compared to the

one in air. Here, we refrain from fitting a theoretical curve to the experimental data, due to the

lack of a well-detailed model. Indeed, the measured resonances are substantially distorted

with respect to the true underlying FSBS response, and this for two reasons.

First, the finite activating pulse width (here 400 ns) yields a convolution operation between

the fundamental FSBS resonance and the pulse power spectral density, which is especially

detrimental when the FSBS resonance is narrow, that is in air. Indeed, theoretical calculations

show that the acoustic damping rate when the fiber is exposed to air should yield a resonance

of only a few kHz, while the spectrum measured here has a full width at half maximum (FWHM)

of ~2 MHz. Second, and as evidenced by the analysis performed in section 4.2.4, variations

in the fiber cladding diameter yield to excursions in the FSBS resonance frequency, which

in turn might induce a spectral broadening due to the overlap from many resonances with

different central frequencies. The amplitude and scale of such non-uniformities are difficult to

assess a priori, hence we refrain from assigning an associated damping rate Γ to the measured

response.
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4.3.4 Discussion

Despite representing an interesting proof of concept for single-scan distributed FSBS sensing,

the method present many drawbacks that hinder its potential for further development. First

of all, the harmonic phase-modulation model neglects the frequency variations induced

by fiber non-uniformities, making it intrinsically incomplete. Second, the mathematical

operations required to extract the information are not a suitable option, because 1) the

sensing region exhibits a blind zone at the fiber beginning and 2) the SNR varies along the

fiber. Second, this method can only work for moderate modulation depth, as the oscillating

nature of Bessel functions would yield further complications in the data processing in case

of strong modulation, i.e. the SNR would drop to 0 at locations corresponding to zeroes of

the Bessel function associated to I1. Third, the design of the bandpass filter can become

quite cumbersome if higher-order sidebands are taken into account and/or if the spatial

resolution decreases (which would broaden the BGS), which would consequently strengthen

the requirement on the BPF bandwidth. Fourth, and as all methods reported so far to the

best of our knowledge, the method developed here is intensity-based, hence is more severely

impacted by all sorts of noise sources than e.g. frequency-based methods, such as the one

described in the following section.

4.4 Distributed FSBS sensing based on serrodyne modulation

Most of the results presented in this section were published in the following article [83]III. We

present here a novel approach to achieve distributed forward stimulated Brillouin scattering

(FSBS) based on serrodyne modulation, which consists in applying a linear phase shift over

an optical signal, typically by generating a sawtooth waveform, resulting in a frequency

translation [66, 84]. Although the method requires a double scanning process, it enables

circumventing most of the drawbacks enumerated in section 4.3.4, which are inherent to

intensity-based techniques based on harmonic phase modulation. The proposed technique

was used to perform both remote distributed FSBS sensing as well as fully distributed FSBS

sensing with unprecedented spatial resolution compared to previous works [7, 52, 63, 64].

Before presenting and analyzing the results obtained, we begin this section with an explanation

of the method operating principle, followed by a presentation of the experimental setup.

4.4.1 Operating principle

The technique operating principle relies on the model developed in section 4.2.5. The idea is

similar to the previous section, only this time the reading pulse width is made shorter than

the acoustic wave period. This way, instead of experiencing harmonic phase modulation,

the reading pulse undergoes a net frequency shift proportional to the induced acoustic wave

III@2021 OSA. Reprinted, with permission from S. Zaslawski, Z. Yang and L. Thévenaz, Distributed optomechani-
cal fiber sensing based on serrodyne analysis, Optica 8 (3), 388-395 (2021), doi = 10.1364/OPTICA.414457
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amplitude as elaborated here below. We consider an optical fiber as a concatenation of

cylindrical acoustic cavities, which are brought to oscillation by launching an optical pulse, the

so-called activating pulse, which intensity is harmonically modulated at the driving frequency

fd . At a given fiber location z0, the FSBS induced refractive index perturbation is

∆n(ωd , z0, t ) = A(ωd , z0)cos[ωd t −θ(ωd , z0)] (4.58)

where A and θ are given in (4.47) and (4.48) and are illustrated on the right-hand side of

Fig.4.15, where Ad is given in (4.50). We now consider the impact of the decaying acoustic

wave (light blue) on a reading pulse (red) that follows the activating pulse with a delay ∆t ,

as illustrated in Fig. 4.15. Here, the additional phase-lag appearing in the forced damped
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Figure 4.15 – Acoustic and optical waves temporal profiles at a given fiber location.

harmonic oscillator model is of critical importance, as elaborated here after. The phase shift

induced on the reading pulse can be expressed as

∆φ(ωd , z0, t ) =
2π

λ
A(ωd , z0)cos[ωm(t −∆t )−θ(ωd , z0)] (4.59)

where λ is the reading pulse wavelength and ωm = 2π fm where fm is the frequency of the

mth acoustic mode. In the following demonstration, the time delay ∆t is assumed to be

set such that ωm∆t is an integer multiple of 2π thus (4.59) describes a cosine function. As

detailed hereafter, this yields a one-sided FSBS resonance, which is ideal in terms of sensing

performances. We shall come back on the impact that a change of∆t has on the experiment

working principle in section 4.4.5.

We are now interested in determining the frequency experienced by the pulse due to the

additional phase profile (4.59), and which is represented by the green curve on the right-

hand side of Fig.4.15. As seen from the figure, the measured resonance, that is the effective

frequency shift∆ f of the reading pulse against the driving frequency fd , is narrower than the
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pure amplitude response A. To intuitively understand this, let us consider two distinct cases:

1 fd is far-off resonance, i.e. fd ¿ fm or fd À fm . The former case is associated to θ = 0,

that is source and response are in-phase, while the latter case yields θ = π, i.e. source

and response are out of phase. In such situation, (4.59) might be well approximated by a

Taylor’s expansion as

∆φ(ωd , z0, t ) ≈ 2π

λ
A(ωd , z0)

(
1− ω2

m t 2

2

)
(4.60)

and the instantaneous frequency shift experienced by the pulse is

∆ f (ωd , z0, t ) =
1

2π

d∆φ(ωd , z0, t )

d t
=

A(ωd , z0)

λ
4π2 f 2

m t (4.61)

which is characteristic of a linear frequency chirp that broadens the pulse spectrum

without impacting its carrier frequency. Formally, this can be expressed as the average

frequency shift over the pulse duration W , i.e.

∆ f (ωd , z0) =
1

W

∫ ∆t+W /2

∆t−W /2
∆ f (ωd , z0, t )d t = 0 (4.62)

Note that in order for (4.62) to be true, the pulse width W needs to be sufficiently nar-

row, such that the limited development (4.60) is accurate enough. Therefore, far-off

resonance, the frequency shift induced on the reading pulse is greatly diminished due

to the contribution of the additional phase-lag θ.

2 fd is at resonance, i.e. fd = fm , which corresponds to the case θ =π/2, and (4.59) yield a

sinusoidal function. Consequently, the limited expansion of∆φ yields

∆φ(ωd , z0, t ) ≈ 2π

λ
A(ωd , z0)ωm t (4.63)

which corresponds to the following instantaneous frequency shift

∆ f (ωd , z0, t ) =
1

2π

d∆φ(ωd , z0, t )

d t
=

A(ωd , z0)

λ
2π fm (4.64)

and the net frequency shift experienced by the reading pulse is

∆ f (ωd , z0) =
1

W

∫ ∆t+W /2

∆t−W /2
∆ f (ωd , z0, t )d t =

A(ωd , z0)

λ
2π fm (4.65)

At resonance, the pulse experiences thus a pure frequency shift.

Notice that the two cases considered are furthermore scaled by the amplitude response

A(ωd , z0), which reaches a minimum in case 1) and a maximum in case 2). Based on this analy-
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sis, it can be understood that as fd is scanned across a given FSBS resonance fm , the frequency

shift experienced by the reading pulse ∆ f (ωd , z0) will describe a bell-shaped curve that is

narrower than A(ωd , z0). Fortunately, the measured response ∆ f (ωd , z0) can be univocally

mapped back to the underlying amplitude response A(ωd , z0) as elaborated here after, hence

measuring∆ f (ωd , z0) provides with a mean to evaluate the acoustic damping rate Γ all along

the sensing fiber. To the best of our knowledge, this is the first time that a distributed FSBS

sensing technique relies on evaluating a frequency shift rather than measuring the energy

exchange between optical tones. Despite requiring additional experimental complexity, this

method enables to deliver results with unprecedented spatial resolution (SR).

4.4.2 Experimental setup

The experimental setup is built around a conventional Brillouin optical time-domain analyzer

(BOTDA) and is shown in Fig.4.16. The two lasers operate at ~1550 nm, but are spectrally

 Coupler 1

-EOM I-EOM 1 I-EOM 2 EDFA 1

Laser 2

I-EOM 3

I-EOM 4

AWG 1 AWG 2

EDFA 2
RF generator

Pulse generator

Laser 1

 Coupler 2

 FUT

 Circulator 1

 Circulator 2

 FBG

 PD

 Synchronization

t
 Activating pulse (1 s) Reading pulse (4 ns)

 Scrambler

AWG 3

1/fd

EDFA 3

 1

 2  3  1

 2

 3

Figure 4.16 – Experimental setup showing the optical path of the activating pulse (orange) and
the reading pulse (read). The abbreviations stand for: AWG - arbitrary waveform generator,
EOM - electro-optic modulator, EDFA - erbium doped fiber amplifier, RF - radio frequency,
FUT - fiber under test, FBG - fiber Bragg grating, PD - photodetector

parted ~3 nm from each other. The orange path depicts the generation of a long rectangular

activating pulse modulated in intensity. First, the continuous-wave (CW) light from laser

1 is phase-modulated by a phase electro-optic modulator (Φ-EOM) driven by an arbitrary

waveform generator (AWG) which is loaded with a pseudo-random bit sequence (PRBS). The

purpose of this operation is to broaden the activating pulse spectrum via frequency dithering in

order to increase the threshold of non-linear effects, especially backward stimulated Brillouin

scattering (SBS) that may arise within the activating pulse itself. The sinusoidal intensity

modulation is to be taken more carefully as in the previous setup (see Fig.4.10), because

each reading pulse needs to meet the exact same refractive index pattern on each individual

acquisition. This problem is tackled by driving the intensity EOM 1 (I-EOM) with AWG 2,

which is loaded with a sinusoidal signal at frequency fd enabling a precise control of the

harmonic wave phase. Then, the activating pulse is shaped by I-EOM 2, which is driven by

AWG 3 loaded with a 1 µs long pre-distorted pulse shape that is designed to anticipate the
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distortion induced by the saturation of the following erbium doped fiber amplifier (EDFA 1),

and eventually delivering an activating pulse with uniform power all over its duration.

The red path is a conventional BOTDA (see Fig.2.16), which operates by splitting the light

from laser 2 in pump (upper part) and probe (lower part) branches by coupler 1. The pump,

i.e. the reading pulse, is generated by I-EOM 3 driven by a pulse generator and amplified by

EDFA 2 before coupling it with the activating pulse. The reading pulse duration is subject to

an important trade-off between FSBS efficiency and BOTDA performance. Actually, in order

to satisfy all equations derived in section 4.4.1, the reading pulse width should be small with

respect to the acoustic wave period 1/ fm . In the fibers measured here, FSBS is most efficient

at frequencies ranging between ~300 MHz and ~400 MHz (see Fig.4.4 for instance). Yet, this

would constraint the reading pulse to be typically shorter than 1 ns, for which the BOTDA

response is dramatically low due to the phonon acoustic lifetime in silica fibers [31]. We shall

see that the FSBS amplitude is actually capped in our experiment due to non-local effects,

hence we can afford to slightly diminish its efficiency. Ideal experimental conditions were

found by setting the reading pulse width to 4 ns, and activating acoustic waves at frequencies

around 130 MHz.

The probe consists in a double-sideband carrier suppressed CW signal, which is obtained by

driving I-EOM 4 at extinction with a radio frequency (RF) generator at a frequency fRF. EDFA

3 amplifies the probe before its injection in the fiber under test (FUT), which ensures reaching

maximum signal-to-noise ratio (SNR) at detection [40]. The sinusoidal pattern imposed

on the activating pulse as well as its gating signal together with the reading pulse require

precise synchronization, as evidenced by the black wire shown in the figure. This temporal

adjustment is necessary as to secure a well defined and stable time delay ∆t between the

two pulses. After combining the two paths through coupler 2, the presence of a polarization

scrambler enables to simultaneously average out polarization fading effects in the BOTDA as

well as the contribution from torsional-radial modes in the FSBS process. After its propagation

through the FUT, and before its detection by a 350 MHz photo-detector (PD), the probe sees

one of its sideband rejected by a fiber Bragg grating (FBG), which also enables filtering out any

strong backscattered emission from the activating pulse that might distort the measurement.

4.4.3 Acquisition process

Although the main distributed sensing is Brillouin optical time-domain analysis (BOTDA),

the acquisition process is reconsidered in order to adapt it to forward stimulated Brillouin

scattering (FSBS) sensing. The procedure is illustrated in Fig.4.17. Fig.4.17.(a) shows the pulses

sequence as they are launched into the sensing fiber. The activating pulse is only present

every second pulse acquisition, thus the frequency change induced by FSBS only affects every

second acquisition, as illustrated in Fig.4.17.(b) which depicts the net effect of FSBS on the

measured Brillouin gain at a fixed probe frequency fRF as well as the corresponding acquisition

window. Note that this ensures that only temperature and/or strain changes occurring within
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Figure 4.17 – (a) Pulses sequence launched in the fiber. (b) Brillouin gain at a given probe
frequency fRF illustrating the portion of signal acquired. (c) Post-processing yielding the local
frequency shift experienced by the reading pulse due to FSBS.

the time interval between two reading pulses (here a few tens of µs) can effectively influence

the measurement, which can be safely neglected here.

The data processing is detailed in Fig.4.17.(c). After acquisition, the two BOTDA measurements

are compared with each other by performing a cross-correlation between the corresponding

Brillouin gain spectra (BGS) at each fiber position. The cross-correlation maximum yields the

accumulated frequency shift along the fiber∆ f acc at a given driving frequency fd , which is

finally differentiated against distance to retrieve the local frequency shift experienced by the

pulse and denoted∆ f . Note that unfortunately, one resort once more to a double frequency

scanning process, i.e. one for the FSBS resonance and another for the BOTDA.

4.4.4 Numerical simulations

Throughout the following sections, we shall compare experimental results with numerical

simulations that reproduce the behavior of our experimental apparatus, a detailed pseudo-

code implementation of which can be found in Appendix B. The numerical simulation is

performed as follows:

• The fiber is modelled as a concatenation of resonances, defined by three parameters

Ad (z), f0(z) and Γ(z).

• At each fiber position, the FSBS induced additional phase profile∆φ(ωd , z, t ) (4.59) is

evaluated without approximation. The finite activating pulse duration is taken into

account by performing a convolution operation between the FSBS resonance defined

by equations (4.47) and (4.48) and a normalized sinc function corresponding to the

activating pulse width.

• This phase profile then increments the previously calculated phase profile in order to

account for the accumulative nature of FSBS.

• The accumulated phase profile is then impinged on the reading pulse.
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• The pure Brillouin gain spectrum (BGS) as well as the FSBS modified BGS are evaluated

as the convolution between the fundamental BGS and the reading pulse power spectral

density (PSD) [85].

• The cross-correlation between the two BGS is evaluated, and the frequency correspond-

ing to its maximum value is stored in a matrix that corresponds to the accumulated

frequency shift experienced by the pulse along the fiber due to FSBS.

The benefit of performing such simulations is twofold. First, it validates the theoretical

model developed in section 4.2.5. Second, it enables evaluating the damping rate Γ in actual

distributed FSBS measurements. Before delivering results related to sensing, we investigate on

the consequences of varying the time delay∆t between the activating and the reading pulse

(4.59) on the experiment operating principle.

4.4.5 Pulses synchronization

free-running oscillations

time

time

time

Activation stopped

f1<f0

f2=f0

f3>f0

fd

f 

fd

f

fd

f

fd

f

+2 ns

f1 f2 f3

Figure 4.18 – Impact of an added time-shift between the reading pulse and the activating pulse
on the retrieved FSBS resonance.

In this section, we explore how the temporal delay∆t between activating and reading pulses

can be seen as an additional degree of freedom in the experimental design. Moreover, and

for the sensing applications in which we are most interested here, this value needs to be

precisely adjusted as to deliver optimized results. In this experiment, the acoustic wave

frequency is assumed to be roughly equal to 130 MHz, yielding an acoustic period in the order

of 8 ns. Fig.4.18, depicts the measured FSBS response for different time delays∆t . The figure

reproduces some of the features shown in Fig.4.15, but focuses on the free-running oscillation.
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Notice for instance that the effect of acoustic damping is not shown here for the sake of

simplicity. The left-hand side of the figure shows four different reading pulses experiencing the

free-running acoustic field from the cavity, while the right-hand side depicts the corresponding

retrieved responses. The red pulse (associated with the uppermost response), corresponds

to the case presented in Fig.4.15, while subsequent pulses (by order blue, green and orange)

are each time delayed by 2 ns, corresponding roughly to ¼ of a period ( f0 ≈ 130 MHz). As

shown in the right-hand side of the figure, the retrieved FSBS responses turns asymmetric

with respect to f0 when the reading pulse is delayed by a quarter of a period (2 ns) with respect

to its initial delay∆t =∆τmax, and flips over when delayed by half a period (4 ns) with respect

to∆t .

The behavior predicted in Fig.4.18 is experimentally demonstrated by performing remote

distributed FSBS measurements in a section of ~30 m of bare fiber located at the remote

end of a ~200 m section of coated conventional single-mode fiber (SMF). The experimental

parameters used for this measurement are synthesized in Table.4.2.

Activating pulse (width/power) 1 µs / ~3 W

Reading pulse (width/power) 4 ns / ~1 W

Probe power (per sideband) ~700 mW

fRF (start/interval/# steps) 10.3 GHz / 10 MHz / 100

fd (start/interval/# steps) 128.5 MHz / 100 kHz / 40

Averaging 300

Table 4.2 – Parameters in the experiment dedicated to measure the impact of a change in the
temporal delay between activating and reading pulses. Optical powers are measured at the
FUT input.

All optical powers are adjusted as to maximize the signal-to-noise ratio (SNR) while securing

the absence of detrimental non-linear effects such as backward amplified spontaneous Bril-

louin scattering for the activating pulse [52], and modulation instability (MI) for the reading

pulse [29]. After acquiring the Brillouin gain response, each trace is digitally filtered by means

of a Gaussian filter with a bandwidth of 20 MHz, yielding here a spatial resolution (SR) of 5 m.

Note that this post-processing operation enables at the same time to improve the experimental

SNR by reducing additive white Gaussian noise (AWGN, see Chapter 3), but also because the

accumulated response due to FSBS is far larger over 5 m than the initial SR (40 cm). Notice

that in this experiment, one do not seek at reaching high performances, hence the averaging

is kept low (300) and the BOTDA frequency scanning step is coarse (10 MHz). The results are

displayed in Fig.4.19, where the colors of the different resonances shown are matching the

ones displayed in Fig.4.18.
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Figure 4.19 – Measured FSBS resonance (x-markers) compared to numerical simulations (solid
lines).

The matching between the numerical simulations (solid lines) and the experimental data

(x-markers) is excellent, especially in finer features such as the sidelobes, which are induced

by the finite duration of the activating pulse (see Supplement B.). We emphasize that all

acquisitions are rigorously identical, except for an additional time-shift of 2 ns of the reading

pulse between each case. While no specific application is targeted here, the results shown

here demonstrate a high flexibility to induce a bipolar frequency shift on a pulse obtained by

delaying either the activation or the reading pulse, or by operating at a frequency either below

or above the FSBS resonant frequency. Finally, notice that the discrepancies between the

observed resonances and the theoretical curves are very likely to originate from variations in

the fiber cladding diameter, resulting in a non-uniform FSBS resonance profile, as elaborated

hereafter.

4.4.6 Remote distributed FSBS sensing in bare fiber

The results presented here are obtained in the same fiber as in the previous section, i.e. FSBS

is only efficiently activated in a ~30 m long section of bare fiber located after ~200 m of

conventional SMF. The selected acoustic mode is the 3rd purely radial mode, at a frequency

fm ≈ 130 MHz. The delay between activating and reading pulses is carefully adjusted as to

maximize the system response, and the experimental parameters are provided in Table 4.3.

Note that compared to the previous setup (see Table 4.2), the acquisition time is significantly

longer due to a finer frequency scan in the BOTDA acqusition (4 MHz instead of 10 MHz) and

a larger averaging (4096 instead of 300). Each acquisition is this time digitally filtered by a

Gaussian filter with a bandwidth of ~125 MHz, yielding a final spatial resolution (SR) of 80 cm.

While the employed pulse width would potentially allow reaching a spatial resolution of 40 cm,
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Activating pulse (width/power) 1 µs / ~3 W

Reading pulse (width/power) 4 ns / ~1 W

Probe power (per sideband) ~700 mW

fRF (start/interval/# steps) 10.3 GHz / 4 MHz / 250

fd (start/interval/# steps) 128.5 MHz / 100 kHz / 40

Averaging 4096

Table 4.3 – Parameters to remotely measure FSBS in a single-mode fiber. Optical powers are
measured at the FUT input.

this requirement would yield an exaggerated acquisition time, hence it was decided to lower

the experimental SR to 80 cm, which still outperforms the latest reported results [52].

Fig.4.20 illustrates the procedure described in Fig.4.17. Fig.4.20.(a) shows the 2-D map of

the measured Brillouin gain in the fiber under test (FUT) without activation, while the black

curve depicts the corresponding Brillouin frequency shift (BFS). The two fibers, that is the

coated fiber as well as the bare segment, are discernible due to their different intrinsic BFS.

Fig.4.20.(b) enables observing the effect of the presence of the activating pulse when the
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Figure 4.20 – 2-D map of the Brillouin gain response without (a) and with activating pulse (b).
(c) 2-D map of the cross-correlation performed columnwise between (a) and (b).

driving frequency is within the fiber FSBS resonance ( fd = 130.4 MHz). Notice that FSBS is not

entirely extinguished in the coated SMF, but its effect is significantly weaker than in the bare

fiber segment, which displays a ~40 MHz shift over ~30 m of fiber. Finally, Fig.4.20.(c) shows a

2-D map of the cross-correlation operation performed columnwise between Fig.4.20.(a) and

Fig.4.20.(b) while the magenta line depicts the accumulated shift∆ f acc.

We now analyze the FSBS resonance after performing the required differentiation operation

described in Fig.4.17. The segment of bare fiber is first exposed to air (as in Fig.4.20) and is
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later on immersed in ethanol. Fig.4.21.(a) shows the local frequency shift∆ f at a fixed driving

frequency ( fd = 130.4 MHz) near the fiber end. The effect of acoustic damping due to ethanol

is clearly visible, as the signal amplitude drops by a factor ~5 when the fiber is immersed in

the fluid. The signal remains nevertheless well above the noise floor, which is quantified in

Fig.4.21.(b) that shows the experimental uncertainty as the standard deviation on the retrieved

frequency shift σ
∆ f

, and which was evaluated by performing 5 repeated measurements. The
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Figure 4.21 – (a) Local FSBS response ∆ f for fd = 130.4 MHz when the section of fiber is
exposed to air (blue) or immersed in ethanol (red). (b) Uncertainty on the measured frequency
shift. (c) Retrieved FSBS resonance in the middle of the segment of bare fiber.

experimental uncertainty being found to be lower than 0.03 MHz over the entire fiber, the

sharp signal variations observed in Fig.4.21.(a) cannot be explained by noise. It turns out that

these abrupt changes in the signal amplitude originate from non-uniformities in the FSBS

central resonance profile, as shown later on in Fig.4.22. Fig.4.21.(c) compares the measured

resonances in air and ethanol (x-markers) with the results obtained from the simulations

described in Appendix B.

In air, the resonance width is almost entirely determined by the activating pulse width (1 µs,

corresponding to 1 MHz). Yet the fine structure of the observed resonance, such as sidelobes,

is still dependent on the underlying damping rate. In air, the acoustic radiation loss (Γr ≈
2π×0.5 kHz [6]) contributes very little to the effective damping rate denoted Γe , which also

includes bulk material acoustic damping (Γm ≈ 2π×3 kHz [86]) as well as geometrical non-

uniformities such as cladding diameter variation, as discussed in section 4.2.4, and strain

non-uniformity Γn . This last parameter is difficult to estimate without a priori information,

hence it requires dedicated calibration. Overall, the effective damping rate Γe =Γr +Γm +Γn

delivering the most accurate fitting of the experimental resonance is found to be equal to

2π×80 kHz. This implies that cladding and/or strain variations only amount to 2π×76.5 kHz

over 80 cm, which is remarkably low as further elaborated in Fig.4.22. This ensures that in the

case of ethanol, most of the contribution to the total damping rate comes from the acoustic

radiation loss which amounts to Γr = 2π×1.1 MHz [6]. The theoretical curve (in magenta)

in Fig.4.21.(c) using this value shows good agreement with the experimentally measured
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resonance.

In order to complement these results, Fig.4.22.(a) provides with a 2-D map of the retrieved

frequency shift in the section of bare fiber. As evidenced from the figure, the non-uniformity

of the FSBS resonance frequency fm is indeed responsible for the signal amplitude variations

depicted in Fig.4.21.(a). These fluctuations are confirmed to be intrinsic to the fiber and

not the experimental method by swapping the fiber ends and repeating the measurement.

Fig.4.22.(b) shows a perfect match between this additional measurement and the initial
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Figure 4.22 – (a) 2-D map of the reconstructed FSBS resonance in the bare fiber. (b) Same as in
(a) but with swapped fiber ends. (c) Brillouin frequency shift (BFS) profile in the bare fiber.

acquisition performed in Fig.4.22.(a) once mirrored. The observed 0.3% variation in the

resonance frequency fm are mostly attributed to cladding non-uniformities, especially given

that the non-uniform strain profile along the fiber produces relative BFS variations one order

of magnitude lower (0.02%), hence this contribution can be largely ruled out [87]. These

observations yields two important conclusions for any sensing application. First, the effective

damping rate Γe needs to be properly calibrated all along the fiber, as different underlying

fm profiles might yield entirely different values of Γn . Notice for instance how a value of

Γn = 2π×76.5 kHz was attributed to the measured resonance in Fig. 4.21.(c), while the overall

observed fm variation amounts to 400 kHz (0.3% of ~130 MHz). This also implies that sensors

with coarser spatial resolutions will inevitably results in broader observed FSBS resonances, as

corroborated by previous reports [52, 63, 64, 88]. It is worth mentioning that, in addition, this

technique also enables to resolve changes in the fiber cladding diameter with such a sharp

spatial resolution (80 cm). It can therefore potentially be used to assess imperfections in the

physical dimensions of optical fibers or even waveguides, provided that the spatial resolution

can be reduced down to a sufficient extent.

105



Chapter 4. Distributed forward stimulated Brillouin scattering sensing

4.4.7 Accumulated effects in fully distributed FSBS sensing

We now address the problem of achieving fully distributed forward stimulated Brillouin scat-

tering (FSBS) sensing in a polyimide coated fiber. The benefit of using polyimide instead of

acrylate lies in the better impedance matching between silica (the fiber itself) and the coating,

yielding to improved performances in terms of FSBS activation while preserving the fiber

mechanical robustness. Due to the accumulative nature of FSBS, that is the increase in the

phase modulation experienced by the reading pulse with distance, one must now evaluate

whether the integrated effect will lead to unwanted consequences, such as signal distortion. To

the best of our knowledge, this topic has not been addressed yet in the literature, mostly due to

the fact that distributed FSBS sensing is an emerging field of research, and also because most

results reported actually correspond to remote distributed FSBS sensing [52, 63, 64]. Fully

distributed FSBS sensing in polyimide coated fiber has been presented in a recent work [7],

yet the aforementioned issue has not been discussed.

The study conducted hereafter is specific to the technique employed here, yet the general

conclusions are believed to apply to any distributed FSBS sensing scheme, since they all

rely on the same physical process. We analyze the effect of varying the activating pulse

power in a 500 m long fiber, which replicates the polyimide fiber used in the corresponding

experiments (see section 4.4.8). Following the procedure utilized in the study of non-local

effects in Brillouin optical time-domain analysis (BOTDA) [35], we simulate a worst case

scenario where the accumulated effect is most detrimental, i.e. we consider that the first

490 m of fiber are perfectly uniform ( fm = 130.5 MHz) while the last 10 m show a slightly

shifted FSBS resonance ( fm = 130.3 MHz).
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Figure 4.23 – (a) Accumulated frequency shift∆ f acc at resonance fd = 130.5 MHz. Retrieved
FSBS resonance with a spatial resolution of 2 m at 100 m (b), 400 m (c) and at fiber end (d).
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The results are shown in Fig.4.23. As will be explained in section 4.4.8, the spatial resolution

(SR) is to be slightly degraded in this configuration, that is from 80 cm to 2 m. Fig.4.23.(a)

shows the accumulated frequency shift∆ f acc along the fiber for fd = 130.5 MHz at different

activating pulse powers, ranging from blue (weakest) to black (strongest), corresponding to an

accumulated frequency shift going from 150 MHz to 300 MHz, respectively. Fig.4.23.(b), (c)

and (d) show the retrieved FSBS resonance at 100 m, 400 m and 500 m, respectively. Note that

according to our fiber design, all curves should match between Fig.4.23.(b) and (c), while the

resonances in (c) should display an identical shape while exhibiting a slightly lower central

frequency.

The simulation yields the following conclusion. For short distance, that is when the accumu-

lated phase modulation induced by FSBS is low, all resonances can be perfectly recovered.

After some distance, here exemplified at 400 m, the FSBS resonances turn distorted, and the

distortion is more pronounced for higher activating pulse power. This detrimental non-local

effect is even more severe at the fiber end, not only due to the extra accumulated distance of

100 m, but also due to the underlying FSBS resonance frequency shift. Overall, the total phase

modulation amplitude, which scales as the product between activating pulse power and fiber

distance, should be maintained below a certain level to secure safe operating conditions. Here,

this corresponds to the lowest activating pulse power, i.e. curves that are drawn in blue.

The numerical simulations performed here enable delimiting a safe zone for the specific

experimental setup and fiber used hereafter. While this falls out of the scope of this dissertation,

this problem ought to be addressed in depth, in order to draw theoretical limits to the strength

of the optical waves launched in the fiber, similar to other distributed optical fiber sensors

(DOFS) techniques [34, 89, 90]. The study is expected to be quite complex, as it depends

on many parameters that are both fiber and experiment dependent. Note for instance that

in our case, the reading pulse width also plays a critical role in the expected amount of

distortion because a shorter reading pulse will experience a narrower section of the sinusoidal

refractive index modulation (see Fig.4.15), hence the Taylor expansion derived in equations

(4.60) and (4.63) will be more accurate. This yet has to be trade-off with the loss of signal in

Brillouin optical time-domain analysis (BOTDA) due to a shorter pulse width [31]. With these

considerations in mind, we turn our attention to experimental results in polyimide coated

fiber.

4.4.8 Fully distributed FSBS sensing in polyimide coated fiber

We present the results of fully distributed FSBS sensing in a 500 m long polyimide coated

fiber. The fiber in use has a reduced cladding (diameter of 80 µm) and is coated with a thin

layer of polyimide (10 µm). Given our reading pulse width (4 ns), a suitable acoustic mode is

found around fm ≈ 126 MHz, corresponding to the 3rd purely radial mode. The corresponding

experimental parameters are synthesized in Table 4.4. Notice that with respect to the previous

scenario (see Table 4.3), the activating pulse power has been dropped by a factor ~3 in order to
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Activating pulse (width/power) 1 µs / ~1 W

Reading pulse (width/power) 4 ns / ~1 W

Probe power (per sideband) ~700 mW

fRF (start/interval/# steps) 10.3 GHz / 8 MHz / 180

fd (start/interval/# steps) 123.5 MHz / 100 kHz / 50

Averaging 4096

Table 4.4 – Parameters used to measure FSBS in a polyimide-coated single-mode fiber. Optical
powers are measured at the FUT input.

prevent the appearance of distortions at the fiber remote end as explicated in section 4.4.7.

In addition, FSBS efficiency is slightly lower in polyimide coated fibers than in bare fibers,

hence the data was post-processed with a numerical Gaussian filter exhibiting a bandwidth of

50 MHz, yielding a final spatial resolution (SR) of 2 m. The spatial resolution achieved is still

outperforming previously reported results, i.e. 100 m of SR in a 1.5 km long polyimide coated

fiber [7].
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Figure 4.24 – (a) 2-D map of the cross-correlation performed between the Brillouin gain spectra
of the fiber with activating pulse turned on and off ( fd = 126 MHz). (b) 2-D map of the retrieved
FSBS resonance along the 500 m polyimide coated fiber. (c) Same as in (b) but with swapped
fiber ends.

Fig.4.24.(a) shows the result of the cross-correlation operation, which is explicated in Fig.4.17,

when fd = 126 MHz and is to be compared to the case of the bare fiber shown in Fig.4.20.(c).

The whole fiber being strongly responsive to FSBS activation, the pulse carrier frequency

experiences a continuous frequency shift as it propagates in the fiber, reaching ~160 MHz over

~500 m. Note that this validates that FSBS can be probed over the entire fiber, especially at

the fiber beginning, which was not achievable with the previous technique that relied on a

broadband BOTDR (see section 4.3.4).
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4.4. Distributed FSBS sensing based on serrodyne modulation

Fig.4.24.(b) reveals the 2-D map of the reconstructed resonance with a SR of 2 m. The black

curve denotes the FSBS resonance frequency fm , which exhibits variations of ~0.7% that are

attributed to variations in cladding and/or coating diameter. The profile is confirmed to

originate from non-uniformities in the fiber rather than from experimental flaws by swapping

the fiber ends and repeating the measure, which results are shown in Fig.4.24.(c). Once more,

the initially measured profile but swapped (gray) perfectly matches the newly measured one

(red), thus confirming our observations.

We now evaluate the results from the perspective of a potential sensing application. To do

so, a segment of ~5 m near the fiber remote end is immersed in ethanol. Fig.4.25.(a) and (b)

show a magnified view of the fiber remote end when the sensing section is exposed to air or is

immersed in ethanol, respectively. As anticipated, the signal undergoes a significant amplitude

drop due to the broadening of the FSBS resonance as a consequence from enhanced acoustic

damping. While not clearly visible from that particular figure, the signal in ethanol remains

above the noise floor (see Fig.4.25.(d)), which is once more evaluated based on repeated

measurements. The experimental uncertainty on the retrieved frequency shift σ
∆ f

is shown

in Fig.4.25.(c) to be lower than 0.04 MHz over the entire fiber. The resonances observed within

the probing section are shown in Fig.4.25.(d). From numerical simulations (solid line), the

equivalent acoustic damping rate in air is found to be equal to Γe = 2π×240 kHz. This value is

significantly larger than for the case of the bare fiber (2π×80 kHz), but this outcome is not

surprising because 1) the glass-polyimide interface is the source of acoustic loss, and 2) the

spatial resolution is larger (2 m compared to 80 cm), hence the variations in the acoustic mode

resonant frequency are expected to contribute to a larger extent to the observed resonance

broadening.
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Figure 4.25 – 2-D map of the retrieved FSBS resonance over the last 50 m of sensing fiber when
the last ~5 m are exposed to air (a) or immersed in ethanol (b). (c) experimental uncertainty
with a spatial resolution of 2 m. (d) Retrieved FSBS resonance within the 5 m probing section.

Unfortunately, it was not possible to assign a resonance characterized by a single acoustic
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damping parameter to the measured response in ethanol. The reason lies in the sensitivity of

the acoustic damping rate to both cladding and/or coating diameter [7, 91], which implies

that the measured resonance results from a complicated mix of several individual spectra each

exhibiting different central frequencies and damping rates. As will be discussed here after, this

feature might severely compromise the accurate evaluation of the liquid damping rate, hence

make difficult to distinguish precisely between several fluids with similar acoustic impedances.

Nevertheless, the technique presented here is the first, to the best of our knowledge, to enable

analysing this phenomenon (FSBS) with such sharp spatial resolution.

4.4.9 Discussion

In this section, we presented a novel concept to perform distributed FSBS sensing. The method

is mostly interesting owing to the high spatial resolution reached in both types of FSBS sensing,

that is 80 cm in bare fiber for remote distributed sensing and 2 m in polyimide coated fiber for

fully distributed sensing. The precision of the measurement notably enabled quantifying the

changes in the acoustic properties of the fibers under test over their length, that are most likely

to originate from dimensional variations. While insightful, these results also raise questions

regarding the achievable performances of this type of sensor. Here for instance, it was not

possible to provide with a reliable evaluation of the acoustic damping rate of the liquid in

which the polyimide coated fiber was immersed. This does not imply that such technique will

find no practical application, nor that the accurate determination of liquid via FSBS sensing is

not feasible. Yet, it appears that significant added work is required in order to draw definitive

conclusions regarding the achievable performance of this emerging branch of distributed

optical fiber sensors (DOFS).

To the author’s opinion, the main challenge lies in the fiber design, which highly impacts on

the sensor performances. With the well-thought aim of achieving proper impedance matching,

the use of a thin layer of polyimide of coating might not be the most suitable option, due

to the strong sensitivity of certain acoustic modes (both in terms of central frequency and

damping rate) to any variation in the fiber (cladding and/or coating) dimension. The different

parameters that influence the acoustic behavior of the fiber all intervene in a complex trade-

off that includes FSBS efficiency, robustness to dimensional variations as well as sensitivity

to the environment acoustic impedance. Moreover, the dedicated interrogating technique

is also to be accounted for as an additional variable in this already heavy equation. Here

for instance, the use of BOTDA offered several advantages (high SNR, accurate frequency

shift evaluation, well-suited sensitivity), while constraining to activate lesser efficient FSBS

modes due to limitations inherent to the technique itself (phonon lifetime). To summarize,

distributed FSBS sensing is very likely far to have displayed its full potential, and it is the

author’s hope that the aforementioned study stems plentiful of creative solutions to tackle the

many issues yet hindering the potential of this technology.
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5 Conclusions and Perspectives

Without falling into the pitfall of repeating all presented facts and experimental measurements,

it appears quite natural at this stage to recapitulate the major advancements presented in

this dissertation in order to draw the logical conclusions of this work and, hopefully, prompt

further fruitful and innovative research. This delicate exercise requires to provide with an

objective appreciation of one’s own work, thus avoiding exaggerating its impact while rightfully

acknowledging the advances it brings to the scientific community. In doing so, one should try

not only to enumerate the benefits, but also the possible drawbacks and limitations associated

to a given technique. In order to preserve a coherent structure with respect to the core material

of this thesis, the aforementioned outline is split in two sections, one dealing with the matter of

digital signal processing (DSP) while the other treats of forward stimulated Brillouin scattering

(FSBS).

Digital signal processing

Digital signal processing (DSP) is omnipresent in research, especially in all fields of physics

and engineering that perform measurements by means of various sensing devices. Due to

the accessibility to a significant amount of computational power in modern days, algorithms

developed within the theory of DSP are routinely implemented and used by researchers

and scientists all around the world. To the author’s opinion, this crucial step is too often

overlooked, as the intricate implications of post-processing any given data are not always

known to a sufficient extent. This is perfectly understandable in a field of research such as

distributed optical fiber sensing (DOFS), because this cutting-edge technology is already

highly demanding in terms of knowledge and understanding of the core complex physical

mechanisms it relies on. Nevertheless, DOFS can highly benefit from a better understanding

of the theories associated to DSP, as demonstrated multiple times in this dissertation. Here,

we restricted the analysis to DOFS that behave as linear time-invariant (LTI) systems, focusing

our attention on Brillouin optical time-domain analysis (BOTDA). Although this framework of

research might seem narrow, it enabled delivering three complete works, all relying on the

concepts of convolution and deconvolution.
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First, this thesis established the theoretical limit of the experimental uncertainty reduction

brought by any 2-D algorithm on a given BOTDA measurement. The conclusion is that digital

filtering brings no additional improvement, provided that the system is fully optimized. While

this statement may appear to be disappointing, it came along with substantial knowledge

that finally enables to understand why it must be so. Additionally, this dissertation provides

with various guidelines on how to achieve such optimized state. For instance, and despite the

absence of a net benefit in terms of performance improvement, digital filtering algorithms

might still be used to optimize a given system, e.g. to compensate for a photodetector with a

built-in bandwidth that exceeds the targeted spatial resolution of the considered sensor. Far

from conveying the message that DSP algorithms are of no use to process the data of BOTDA

systems, these techniques yield a high flexibility to the end user, provided that the latter is

aware of the fundamental restrictions mentioned here above.

The concept of deconvolution was then used to demonstrate two remarkable applications.

First, one shown how to access to the sharp-resolution information hidden in a coarse-

resolution BOTDA measurement by making use of simple DSP algorithms based on a well-

suited theoretical model. The main advantage of such method is its flexibility, i.e. it makes

information at any spatial resolution available, provided that one can afford the unavoidable

associated loss in experimental uncertainty. Moreover, and especially for targeted spatial

resolutions lower than one meter, the precision reached this way is substantially larger than

the one that would be obtained by a direct measurement, hence highlighting the potential

of our technique. Nevertheless, the presented algorithm does not operate flawlessly, and

yields unwanted distortions at locations where the fiber Brillouin frequency shift experiences

rapid changes. While the presence of numerical artifacts in the reconstructed data might be

problematic in certain situations, these moderate distortions are very likely to be of negligible

importance in most practical cases. In future works, limitations met by conventional BOTDA

such as e.g. non-local effects and their impact on the measurement ought to be studied as

well for this type of approach.

Finally, the same model enabled to deliver an original implementation of optical pulse coding

(OPC). While far from being a novel concept, OPC has been facing many practical implemen-

tation issues that, until now, greatly hindered its potential to effectively deliver a substantial

performance improvement to various DOFS. Thanks to relying on a simpler and more robust

mathematical procedure than other implementations of OPC, the proposed technique cir-

cumvents all previously met technical challenges. While achieving similar results in terms of

theoretical signal-to-ratio enhancement compared to other existing techniques, the developed

method secures to meet this theoretical bound without adding to the setup complexity. In

other words, the main benefit of the proposed technique lies in its practicality, as it can be

readily implemented in most existing setups and immediately improve their capabilities,

whereas other techniques are far more cumbersome to implement in any real-life application.

As always, one should keep in mind that the proposed method, as well as any form of OPC,

suffer from inherent limitations in terms of performance improvement, that one must fully

grasp when considering to implement such a system.
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Overall, the presented work shows the fantastic potential of DSP as a decisive actor in future

developments of DOFS. Here, we barely scrapped the surface of this vast field of research,

restricting our analysis to systems that behave as linear and time-invariant. The theory of DSP

covers yet many exciting topics that might open doors to a whole new world of applications.

More specifically, one can point out the many techniques and interrogating schemes that do

not behave as linear time-invariant systems, and for which other methodologies ought to be

dedicated.

Forward stimulated Brillouin scattering

Forward stimulated Brillouin scattering (FSBS) emerged recently as a promising candidate to

diversify the quantities measurable by DOFS. While backward stimulated Brillouin scattering

and its associated features have been studied from the perspective of developing sensing

applications for many decades, only a few years separate us from the first mention of using

FSBS to intentionally measure the acoustic impedance of liquids (Antman et al. , 2016 [6]).

Naturally, one could not except for this emerging concept to catch up with more mature

DOFS techniques in such short time window, although there has been an abundance of

promising publications in recent years (most of which originate from the same group from

Bar-Ilan university in Tel-Aviv) that enabled to explain and grasp many intricate concepts

inherent to FSBS. Logically, the performances of dedicated developed interrogation procedures

remain still unsatisfactory, both in terms of spatial resolution as well as sensing range, which

contribute only to a modest number of resolved sensing points.

In this thesis, we took a major step in improving the performances of distributed FSBS sensors.

So far, all reported techniques relied on measuring the energy exchange of a multi-tone probe,

which exhibits the major limitation of suffering from power fluctuations induced by unwanted

non-linear effects, such as four-wave mixing. Moreover, some methods present other flaws,

such as a position-dependent SNR as presented in section 4.3. Most issues found in various

distributed FSBS sensing schemes were tackled by judiciously impinging a frequency shift on

a so called reading pulse from the refractive index modulation induced by FSBS, identical in

essence to a serrodyne modulation process. Owing to a better understanding of the harmonic

response of FSBS, and especially of the frequency dependent phase-lag contributing to the

mechanism, a comprehensive model was assembled, enabling to compare experimental data

with semi-analytical solutions based on numerical simulations. Overall, the performances

of the proposed technique are excellent, as the spatial resolution reached is far sharper than

previously documented. Still, there is a large margin for improvement, both on solving

issues related to the dedicated interrogation technique as well as from addressing technical

challenges inherent to FSBS itself.

Beginning with the latter, FSBS indeed presents certain characteristics that challenge its

accurate evaluation. The most striking one is the dependency of the involved acoustic modes

to variations in the dimensions of the corresponding waveguide, namely a bare fiber or a
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coated fiber. It turns out that this feature severely complicates the accurate evaluation of

the acoustic impedance of the fluid surrounding the fiber in polyimide coated fibers. While

this has not been overcome here, it is very likely that the solution lies in a more thoughtful

design of the sensing fiber, which so far was driven by the sole need to find a coating material

displaying suitable acoustic properties. This alone constitutes an interesting research topic,

as the design needs to account for several influences, including possibly the interrogating

method to be employed with the aforementioned fiber. Additionally, the accumulative nature

of FSBS constrains researchers so far to proceed to a numerical differentiation operation in

their data processing routine in order to retrieve the local FSBS response, which unavoidably

yields noise enhancement. It is not clear at this stage whether this operation is bound to

remain as a consequence from the forward nature of the scattering process, or if a clever

technique might be able to circumvent this irritating limiting factor. This is of course worth

investigating.

Finally, let us try to enumerate the limitations associated to the method itself. Here, one

refers to the serrodyne modulation scheme described in section 4.4. The results reported

here indicate that there is a limit to the accumulated phase-modulation process induced

by FSBS. More specifically, the total modulation depth might induce spectral distortions on

the pulse that complicate the estimation of the underwent frequency shift, hence imposing

a limit on the activation of FSBS. This ought to be further analyzed in details, in order to

be able to anticipate the optimized activating pulse power to be launched in a given fiber

under well defined experimental conditions. Furthermore, while the reading process has been

made to a large extent immune to unwanted power fluctuations, the activating pulse (which

is decoupled from the reading process) is still sensitive to any unwanted power fluctuation,

which would eventually bias the estimation of the frequency shift experienced by the reading

pulse. Eventually, and while a conventional BOTDA was used as a position resolved frequency

measuring tool, there is no guarantee that this particular technique is the most suited to

achieve this task, and other methods based e.g. on reflectometry might perform similarly or

even better. With the hope of sparking the creativity of many researchers, the author firmly

believes that the setup presented here, although currently outperforming the state-of-the-art,

is bound to meet a similar fate in a near future.
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A Solution of the acoustic wave equa-
tion in cylindrical coordinates

This appendix is intended to provide the steps necessary to obtain the distribution of acoustic

modes in a cylindric rod such as an optical fiber. An emphasis is put on so-called purely radial

modes (which are actually longitudinal modes), i.e. one of the two branches of modes which

displacement distribution do not vary with the azimuthal coordinate θ (the other branch is

the family of purely torsional modes).

A.1 Useful relationships

Before stepping into the resolution of the wave equation in cylindrical coordinates, several

useful identities of vector calculus are first provided.

A.1.1 Problem Geometry

The problem is better tackled in cylindrical coordinates, as pictured in Fig.A.1. The radial

extent from the origin is denoted r while the angle from the x-axis is denoted θ. The use

of cylindrical coordinates has many computational implications, especially with respect to

operations implying the del operator ∇. Useful relationships used throughout this document

are summarized in the following section.
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^
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ẑ

Figure A.1 – Problem geometry in cylindrical coordinates (r,θ, z).
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Appendix A. Solution of the acoustic wave equation in cylindrical coordinates

A.1.2 Nabla operations in cylindrical coordinates

Let f denote a scalar field, while Ar , Aθ and Az denote the components of a vector field A.

Gradient: ∇ f =
∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂+ ∂ f

∂z
ẑ (A.1)

Divergence: ∇·A =
1

r

∂ (r Ar )

∂r
+ 1

r

∂Aθ

∂θ
+ ∂Az

∂z
(A.2)

Curl: ∇×A =

(
1

r

∂Az

∂θ
− ∂Aθ

∂z

)
r̂+

(
∂Ar

∂z
− ∂Az

∂r

)
θ̂+ 1

r

(
∂ (r Aθ)

∂r
− ∂Ar

∂θ

)
ẑ (A.3)

Laplacian :∆ f =
1

r

∂

∂r

(
r
∂ f

∂r

)
+ 1

r 2

∂2 f

∂θ2 + ∂
2 f

∂z2 (A.4)

Vector Laplacian: ∆A =

(
∆Ar − Ar

r 2 − 2

r 2

∂Aθ

∂θ

)
r̂+

(
∆Aθ−

Aθ

r 2 + 2

r 2

∂Ar

∂θ

)
θ̂+∆Az ẑ (A.5)

A.1.3 Useful vector calculus identities

The following well-known relationships from vector calculus are required to simplify futher

calculations.

Divergence of gradient: ∇·∇ f =∆ f (A.6)

Curl of gradient: ∇×∇ f = 0 (A.7)

Divergence of curl: ∇· (∇×A) = 0 (A.8)

Curl of curl: ∇× (∇×A) = ∇ (∇·A)−∆A (A.9)

Laplacian of gradient: ∆
(∇ f

)
= ∇(

∆ f
)

(A.10)

Vector laplacian of curl: ∆ (∇×A) = ∇× (∆A) (A.11)

A.1.4 Bessel functions properties

The following expressions are given for Bessel functions of the first kind J although they remain

valid for Bessel functions of the second kind Y .

2n

αr
Jn(αr ) = Jn−1(αr )+ Jn+1(αr ) (A.12)

2

α

d Jn(αr )

dr
= Jn−1(αr )− Jn+1(αr ) (A.13)

Combining (A.12) and (A.13), the following useful identities may be derived

d Jn(αr )

dr
=

n

r
Jn(αr )−αJn+1(αr ) (A.14)

d Jn+1(αr )

dr
=αJn(αr )− n +1

r
Jn+1(αr ) (A.15)
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A.2. Useful relationships

A.1.5 Strain-displacement relations

Strain-displacement relations are fundamental in the theory of linear elasticity. Let Ur , Uθ and

Uz denote the components of a vector U in cylindrical coordinates. The components of the

strain tensor εi j are given by

εr r =
∂Ur

∂r
(A.16)

εθθ =
1

r

(
∂Uθ

∂θ
+Ur

)
(A.17)

εzz =
∂Uz

∂z
(A.18)

εrθ =
1

2

[
r
∂

∂r

(
Uθ

r

)
+ 1

r

∂Ur

∂θ

]
(A.19)

εθz =
1

2

[
∂Uθ

∂z
+ 1

r

∂Uz

∂θ

]
(A.20)

εr z =
1

2

[
∂Ur

∂z
+ ∂Uz

∂r

]
(A.21)

A.1.6 Stress-strain relations

Similarly to the strain-displacement relation, stress-strain relations are fundamentals relation-

ships. They are of particular interest here as the boundary conditions are imposed based on

stress. Consider the first and second Lamé parameters λ and µ,respectively. The components

of the stress tensor σi j are given by

σr r =λ∆ψ+2µεr r (A.22)

σθθ =λ∆ψ+2µεθθ (A.23)

σzz =λ∆ψ+2µεzz (A.24)

σrθ = 2µεrθ (A.25)

σθz = 2µεθz (A.26)

σr z = 2µεr z (A.27)

where

∆ψ = εr r +εθθ+εzz (A.28)

A.1.7 Boundary conditions

The following boundary conditions are valid for a free-cylinder. Other types of boundary

conditions may have to be specified in different situations, such as e.g. when considering a

clad cylinder. Based on Fig. 4.1, the boundary conditions read

σr r |r =a = 0 (A.29)

σrθ|r =a = 0 (A.30)

σr z |r =a = 0 (A.31)
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A.2 The acoustic wave equation in cylindrical coordinates

We now turn to the solving of the acoustic wave equation in cylindrical coordinates. The steps

provided here follow the procedure given in chapter 4 but with significant added details.

A.2.1 Homogeneous equation

The acoustic wave equation is given by [67, 68, 69]

µ∆U+ (
λ+µ)∇ (∇·U)−ρ∂

2U

∂t 2 = 0 (A.32)

where U is the vector displacement field, λ and µ are Lamé first and second parameters,

respectively, and ρ is the material density.

A.2.2 The potentials methods

Before solving (A.32), two potentials are introduced such that

U = ∇ψ+∇×Ψ (A.33)

where ψ is a dilatational potential (scalar) and Ψ is an equivoluminal potential (vectorial). In

addition, one requires that

∇·Ψ = F (r,θ, z, t ) (A.34)

where F (r,θ, z, t ) denotes an arbitrary function. Although (A.34) is not required to solve (A.32),

its introduction will greatly simplify further calculations. Injecting (A.33) into (A.32) yields

µ∆
(∇ψ+∇×Ψ)+ (

λ+µ)∇(∇· (∇ψ+∇×Ψ))
= ρ

∂2U

∂t 2

µ∆
(∇ψ)+µ∆ (∇×Ψ)+ (

λ+µ)∇(∇· (∇ψ)+ =0 see (A.8)

�����∇· (∇×Ψ)) = ρ
∂2U

∂t 2

see (A.10)
µ∇(∆ψ)+

see (A.11)
µ∇× (∆Ψ)+

see (A.6)(
λ+µ)∇(∆ψ) = ρ

∂2U

∂t 2

∇[
(λ+2µ)∆ψ

]+µ∇× [∆Ψ]
(A.33)

= ∇ρ∂
2ψ

∂t 2 +∇×ρ∂
2Ψ

∂t 2 (A.35)

which enables decoupling the contributions from the two potentials ψ and Ψ which must

satisfy independently

V 2
d∆ψ =

∂2ψ

∂t 2 (A.36)

V 2
s ∆Ψ =

∂2Ψ

∂t 2 (A.37)
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where Vd and Vs are the dilatational waves velocitiy and the shear waves velocitiy, respectively,

and are defined as

Vd =

√
λ+2µ

ρ
(A.38) Vs =

√
µ

ρ
(A.39)

The use of potential enables decoupling the contribution from shear and dilatational waves,

such that one must solve (A.36) and (A.37) rather than (A.32).

A.2.3 The gauge invariance principle

Before proceeding further, one must first take a step back and have another look at equation

(A.34), which states that the divergence of the equivoluminal potential Ψ is equal to a given

arbitrary scalar function F . This is true because F has no influence on the solution of equation

(A.32), hence (A.32) is said to be invariant under (A.34), which is also known as the Gauge

invariance principle. This can be better understood by looking back at the second step taken

into obtaining (A.35), where the following term

∇(∇· (∇×Ψ)) = 0 (A.40)

is always equal to 0 due to (A.8). However, (A.40) might be rewritten as

∇(∇· (∇×Ψ)) =

∆(∇×Ψ)+∇× (∇× (∇×Ψ)) =

∇× (∆Ψ+∇× (∇×Ψ)) =

∇× (∇(∇·Ψ)) = ∇× (∇F ) = 0 (A.41)

which holds true for any F since (A.41) is a fundamental vector calculus identity (A.7). One

must therefore keep in mind that any choice we make for F will result in an identical solution

for (A.32).

A.2.4 Separation of variables

The potentials are assumed to take the form

ψ = f (r )cos(nθ)cos(γz −ωt ) (A.42)

Ψr = gr (r )sin(nθ)sin(γz −ωt ) (A.43)

Ψθ = gθ(r )cos(nθ)sin(γz −ωt ) (A.44)

Ψz = gz (r )sin(nθ)cos(γz −ωt ) (A.45)

where Ψr , Ψθ and Ψz are the components of Ψ, n is a positive integer, γ is the propagation

constant and ω is the angular frequency. First, let us inject (A.42) into (A.36). Using (A.4) one
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Appendix A. Solution of the acoustic wave equation in cylindrical coordinates

get

V 2
d

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r 2

∂2ψ

∂θ2 + ∂
2ψ

∂z2

]
=
∂2ψ

∂t 2

∂2 f

∂r 2 + 1

r

∂ f

∂r
+ f

(
α2 − n2

r 2

)
= 0 (A.46)

where

α2 =
w2

V 2
d

−γ2 (A.47)

Therefore, and provided that f (r ) has to exist at r = 0, f (r ) has to take the form

f (r ) = AJn(αr ) (A.48)

where A is an integration constant and Jn denote Bessel functions of the first kind. From (A.37)

and (A.5) it can be deduced that gz obeys to the same equation as f such that

gz (r ) = B3 Jn(βr ) (A.49)

where B3 is an integration constant and β is defined as

β2 =
w2

V 2
s
−γ2 (A.50)

The situation is slightly more complex for Ψr and Ψθ, which must be taken care off simultane-

ously. First, let us focus on Ψr by working along the r̂ coordinate in equation (A.37) using (A.5)

and following a similar procedure as to establish (A.46)

V 2
s

[
1

r

∂

∂r

(
r
∂Ψr

∂r

)
+ 1

r 2

∂2Ψr

∂θ2 + ∂
2Ψr

∂z2 − Ψr

r 2 − 2

r 2

∂Ψθ
∂θ

]
=
∂2Ψr

∂t 2

V 2
s

[
1

r

∂gr

∂r
+ ∂

2gr

∂r 2 + 2n

r 2 gθ−
(

1+n2

r 2 +γ2
)

gr

]
= −grω

2

∂2gr

∂r 2 + 1

r

∂gr

∂r
+ 2n

r 2 gθ+ gr

(
β2 − 1+n2

r 2

)
= 0 (A.51)

A very similar development for Ψθ leads to

∂2gθ
∂r 2 + 1

r

∂gθ
∂r

+ 2n

r 2 gr + gθ

(
β2 − 1+n2

r 2

)
= 0 (A.52)

Both (A.51) and (A.52) look closely to the well known Bessel equation, except they both present

a coupled term proportional to gθ (gr ) in the equation of gr (gθ). This can addressed by
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A.2. The acoustic wave equation in cylindrical coordinates

subtracting (A.52) from (A.51), yielding

(
gr − gθ

)[ ∂2

∂r 2 + 1

r

∂

∂r
+β2 − (n +1)2

r 2

]
= 0 (A.53)

Similarly, adding (A.51) and (A.52) leads to

(
gr + gθ

)[ ∂2

∂r 2 + 1

r

∂

∂r
+β2 − (n −1)2

r 2

]
= 0 (A.54)

Hence, we find the following

gr − gθ = 2B1 Jn+1(βr ) (A.55)

gr + gθ = 2B2 Jn−1(βr ) (A.56)

where a factor 2 has been left out of the integration constants for later convenience. The

gauge invariance principle described in section A.2.3 is now used to simplify the system of

equations defined by (A.55) and (A.56). An intuitive justification is that, since ultimately we

are searching for a solution of the wave equation (A.32), we should find a vectorial field with

three components, hence three integrations constants must be sufficient to determine the

solution, whereas the potentials provide four constants. Mathematically, expression (A.34)

states that F (r,θ, z, t) can be take any form, as it will not impact the solution. Therefore, we

define it such that

gr = −gθ (A.57)

which leads to B2 = 0 and

gr = B1 Jn+1(βr ) (A.58)

A.2.5 Displacement, stress and strain

We can now express U explicitly using (A.33) as well as the identities (A.1) and (A.3)

Ur =
∂ψ

∂r
+ 1

r

∂Ψz

∂θ
− ∂Ψθ
∂z

=

[
∂ f

∂r
+ n

r
gz +γgr

]
cos(nθ)cos(γz −ωt ) (A.59)

Uθ =
1

r

∂ψ

∂θ
+ ∂Ψr

∂z
− ∂Ψz

∂r
=

[
−∂gz

∂r
− n

r
f +γgr

]
sin(nθ)cos(γz −ωt ) (A.60)

Uz =
∂ψ

∂z
+ 1

r

[
∂(rΨθ)

∂r
− ∂Ψr

∂θ

]
=

[
−n +1

r
gr − ∂gr

∂r
−γ f

]
cos(nθ)sin(γz −ωt ) (A.61)

Before proceeding further, here below are provided some interesting identities of the radial

functions of the components of U, which naturally follow from equations (A.48), (A.49) and

(A.58). In addition, we will denote partial derivative with respect to the radial coordinate r with

a prime, e.g. ∂ f

∂r
= f ′. This enables clarifying further computations, as other partial derivatives
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do not show up anymore.

f ′ =
n

r
f −αAJn+1(αr ) (A.62)

f ′′ =

[
n(n −1)

r 2 −α2
]

f + A
α

r
Jn+1(αr ) =

[
n2

r 2 −α2
]

f − 1

r
f ′ (A.63)

g ′
z =

n

r
gz −βB3 Jn+1(βr ) (A.64)

g ′′
z =

[
n(n −1)

r 2 −β2
]

gz +B3
β

r
Jn+1(βr ) =

[
n2

r 2 −β2
]

gz − 1

r
g ′

z (A.65)

g ′
r = −n +1

r
gr +B1βJn(βr ) (A.66)

g ′′
r =

[
(n +1)(n +2)

r 2 −β2
]

gr −B1
β

r
Jn(βr ) =

[
(n +1)2

r 2 −β2
]

gr − 1

r
g ′

r (A.67)

We apply now the strain-displacement relation (A.16) to compute εr r .

εr r =
[

f ′′+ n

r

(
g ′

z −
gz

r

)
+γg ′

r

]
cos(nθ)cos(γz −ωt )

εr r =

[(
n2

r 2 −α2
)

f − 1

r
f ′+ n

r

(
g ′

z −
gz

r

)
+γg ′

r

]
cos(nθ)cos(γz −ωt ) (A.68)

We then use (A.21) to compute εrθ

εrθ =
1

2

[
2n

r

(
f

r
− f ′

)
− g ′′

z +γ
(

g ′
r −

n +1

r
gr

)
− n2

r 2 gz + 1

r
g ′

z

]
sin(nθ)cos(γz −ωt )

εrθ =
1

2

[
2n

r

(
f

r
− f ′

)
+ gz

(
β2 − 2n2

r 2

)
+ 2

r
g ′

z +γ
(

g ′
r −

n +1

r
gr

)]
sin(nθ)cos(γz −ωt )

(A.69)

Finally, we use (A.19) to obtain εr z

εr z =
1

2

[
−2γ f ′− γn

r
gz − g ′′

r − n +1

r
g ′

r +
(

n +1

r 2 −γ2
)

gr

]
cos(nθ)sin(γz −ωt )

εr z =
1

2

[
−2γ f ′− γn

r
gz − n

r
g ′

r +
(
β2 −γ2 − n(n +1)

r 2

)
gr

]
cos(nθ)sin(γz −ωt ) (A.70)

The stress-strain relations (A.22), (A.25) and (A.27) yield

σr r =

{
−λ(α2 +γ2) f +2µ

[(
n2

r 2 −α2
)

f − 1

r
f ′+ n

r

(
g ′

z −
gz

r

)
+γg ′

r

]}
cos(nθ)cos(γz −ωt )

(A.71)

σrθ =µ

[
2n

r

(
f

r
− f ′

)
+ gz

(
β2 − 2n2

r 2

)
+ 2

r
g ′

z +γ
(

g ′
r −

n +1

r
gr

)]
sin(nθ)cos(γz −ωt )

(A.72)

σr z =µ

[
−2γ f ′− γn

r
gz − n

r
g ′

r +
(
β2 −γ2 − n(n +1)

r 2

)
gr

]
cos(nθ)sin(γz −ωt ) (A.73)
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A.2. The acoustic wave equation in cylindrical coordinates

A.2.6 Boundary conditions

We now apply the boundary conditions defined by (A.29), (A.30) and (A.31). In order to simplify

later calculations, we left out the common terms, i.e. all terms which do not purely depend

on the radial coordinate r . We inject (A.48), (A.49) and (A.58) into (A.22), (A.25) and (A.27),

while setting r = a and group the terms according to the unknown integration constants A, B1

and B3. This is quite straightforward, expect for σr r for which we preliminarily highlight the

following relationship. We make use of expression (A.38) and (A.39) as well as (A.47) and (A.50)

to perform the following operation

−λ(α2 +γ2)−2µα2 = −γω
2

V 2
d

−2µ

(
ω2

V 2
d

−γ2

)

−λ(α2 +γ2)−2µα2 = −ω
2

V 2
d

(
λ+2µ

)+2µγ2

−λ(α2 +γ2)−2µα2 = −ω
2

V 2
s
µ+2µγ2

−λ(α2 +γ2)−2µα2 =µ
(
γ2 −β2) (A.74)

The boundary conditions read

σr r |r =a =A

{[
γ2 −β2 + 2n(n −1)

a2

]
Jn(αa)+ 2α

a
Jn+1(αa)

}
+B12γ

{
βJn(βa)− n +1

a
Jn+1(βa)

}
+B3

2n

a

{
n −1

a
Jn(βa)−βJn+1(βa)

}
(A.75)

σrθ|r =a =A
2n

a

{
αJn+1(αa)− n −1

a
Jn(αa)

}
+B1γ

{
βJn(βa)− 2(n +1)

a
Jn+1(βa)

}
+B3

{[
β2 − 2n(n −1)

a2

]
Jn(βa)− 2β

a
Jn+1(βa)

}
(A.76)

σr z |r =a =A2γ
{
αJn+1(αa)− n

a
Jn(αa)

}
+B1

{[
β2 −γ2] Jn+1(βa)− nβ

a
Jn(βa)

}
+B3

{
−nγ

a
Jn(βa)

}
(A.77)
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A.2.7 The matrix form and the frequency equation

Equations (A.75), (A.76) and (A.77) are rewritten in the following form

C B =



C11 C12 C13

C21 C22 C23

C31 C32 C33





A

B1

B3


=



0

0

0


(A.78)

where the coefficients, which are simply repeated from (A.75), (A.76) and (A.77) are

C11 =

[
γ2 −β2 + 2n(n −1)

a2

]
Jn(αa)+ 2α

a
Jn+1(αa) (A.79)

C12 = 2γ

{
βJn(βa)− n +1

a
Jn+1(βa)

}
(A.80)

C13 =
2n

a

{
n −1

a
Jn(βa)−βJn+1(βa)

}
(A.81)

C21 =
2n

a

{
αJn+1(αa)− n −1

a
Jn(αa)

}
(A.82)

C22 = γ

{
βJn(βa)− 2(n +1)

a
Jn+1(βa)

}
(A.83)

C23 =

[
β2 − 2n(n −1)

a2

]
Jn(βa)− 2β

a
Jn+1(βa) (A.84)

C31 = 2γ
{
αJn+1(αa)− n

a
Jn(αa)

}
(A.85)

C32 =
[
β2 −γ2] Jn+1(βa)− nβ

a
Jn(βa) (A.86)

C33 = −nγ

a
Jn(βa) (A.87)

Note that, unfortunately, most of the coefficients found in the references are incorrect. Iden-

tical responses are however found in [80]. The coefficients labelled here Ci , j correspond to

coefficients a2C3+i , j in [80], where i , j = 1,2,3. Using Cramer’s rule, the unknown coefficients

are found to be

A =
|C1|
|C | (A.88) B1 =

|C2|
|C | (A.89) B3 =

|C3|
|C | (A.90)

where the Cm with m = 1,2,3 denote the C matrix (A.78 where the mth column has been

replaced by the right-hand side of equation (A.78), that is that column is equal to 0. In that

case, it appears obvious that the only way to avoid the trivial solution A = B1 = B3 = 0 is to

impose the following condition, also known as the frequency equation

|C | = 0 (A.91)
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Equation (A.91) is central in this study, as it imposes certain relationships between the co-

efficients Ci j of the matrix C . Depending on the fixed parameters λ, µ and ρ ( which are

imposed by the mechanical properties of the material considered) as well as the radius a of

the cylinder, only certain combinations of the free parameters n, α, β, γ and ω are possible. Of

all free parameters, n plays a particular role and is used to specify distinct families of solutions

called modes. For a given n, i.e. for a given mode family, solutions will be found when one

of the Bessel functions in the Ci j coefficients reaches 0. Since Bessel functions are infinitely

oscillating, there will be an infinite number of distinct solution for each value of n. Each

solution is often denoted with an integer number m, which defines the mode order. A given

mode specified by n,m then exhibit a certain dispersion relation which is determined by

(A.47) and (A.50), together with (A.91) that relates the angular frequency ω to the propagation

constant γ.

A.2.8 Longitudinal-radial modes

We now solely study solutions known as longitudinal-radial modes, which are one of the two

families of modes found when n = 0. This type of modes is fundamental in the study of forward

stimulated Brillouin scattering (FSBS), and will therefore be given a special treatment. Setting

n = 0 yields

C11 =
[
γ2 −β2] J0(αa)+ 2α

a
J1(αa) (A.92)

C12 = 2γ

{
βJ0(βa)− 1

a
J1(βa)

}
(A.93)

C13 = 0 (A.94)

C21 = 0 (A.95)

C22 = γ

{
βJ0n(βa)− 2

a
J1(βa)

}
(A.96)

C23 =β2 J0(βa)− 2β

a
J1(βa) (A.97)

C31 = 2γαJ1(αa) (A.98)

C32 =
[
β2 −γ2] J1(βa) (A.99)

C33 = 0 (A.100)

The matrix C hence takes the following form

C11 C12 0

0 C22 C23

C31 C32 0


(A.101)
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which means that the frequency equation (A.91) can be factored as

|C | = −C23

∣∣∣∣∣∣∣∣∣∣
C11 C12

C31 C32

∣∣∣∣∣∣∣∣∣∣
= 0 (A.102)

C23 = 0 yields solutions for purely torsional modes, which are not considered here, because they

do not contribute to FSBS [70] . The frequency equation for the family of longitudinal-radial

modes is hence given by

2α

a
J1(αa)J1(βa)

(
β2 +γ2)− J0(αa)J1(βa)(β2 −γ2)2 −4γ2αβJ0(βa)J1(αa) = 0 (A.103)

Equation (A.103) is central in this analysis, as it defines the particular conditions in terms of

momentum (wavevector) and energy (frequency) for which a mode belonging to the family of

longitudinal-radial modes will exist. It was determined as early as 1876 [72] by Pochhammer,

and independently later on in 1889 [73] by Chree. It can fortunately be further simplified here,

as the modes studied here are nearly activated at cutoff, that is their propagation constant is

nearly 0.

A.2.9 Purely radial acoustic modes

Equation (A.103) can be further simplified if we make the following assumption

γ≈ 0 (A.104)

First, let us notice that the matrix C from equation (A.78) takes the following form

C11 0 0

0 0 C23

0 C32 0


(A.105)

hence, its determinant factors out as

|C | = −C23C11C32 (A.106)

Coefficient C32 defines the family of purely longitudinal modes and will not be further inquired

here. Coefficient C11 yields

2α

a
J1(αa)−β2 J0(αa) = 0 (A.107)
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which defines the condition for purely radial modes to exist. Finally, setting n = γ = 0 in (A.59)

yields the displacement profile of purely radial modes, which only exists along r̂

Ur (r, t ) = −αAJn+1(αr )cos(ωt ) (A.108)

A.3 Acoustic modes in a coated fiber

The solution of the acoustic waves in cylindrical coordinates for a clad rod, which corresponds

to the case of a coated optical fiber, has been studied in many papers [80, 81, 92]. Here we

closely follow the derivation performed in [80] but only provide with the most important

results enabling determining the corresponding frequency equation.

A.3.1 Displacement field

Consider the cylindrical structure depicted in Fig-A.2 where a denotes the fiber radius and

a
b

U,  = cst  = 0

r1

2

Figure A.2 – Cross-section of a coated fiber.

b is the coating outer radius. Following the notation convention used so far, the potential

functions yield

f (i ) = A1i Zn
(∣∣α(i )

∣∣r
)+B1i Wn

(∣∣α(i )
∣∣r

)
g (i )

r = A2i Zn+1
(∣∣β(i )

∣∣r
)+B2i Wn+1

(∣∣β(i )
∣∣r

)
g (i )

z = A3i Zn
(∣∣β(i )

∣∣r
)+B3i Wn

(∣∣β(i )
∣∣r

)
(A.109)

where i = 1,2 refer to either the fiber or the coating, respectively, and the A j i and B j i are

integration constants. The functions Zn and Wn denote

Zn =

Jn if α(i ),β(i ) is real

In if α(i ),β(i ) is imaginary
(A.110)
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where In are modified Bessel functions of the first kind and

Wn =

Yn if α(i ),β(i ) is real

Kn if α(i ),β(i ) is imaginary
(A.111)

where Yn and Kn are Bessel functions of the second kind and modified Bessel functions of the

second kind, respectively. The displacements are explicitly given by:

Ur,i =

(
∂ f (i )

∂r
+ n

r
g (i )

z +ξg (i )
r

)
cos(nθ)cos(ξx +ωt ) (A.112)

Uθi =

(
−n

f (i )

r
+ξg (i )

r − ∂g (i )
z

∂r

)
sin(nθ)cos(ξx +ωt ) (A.113)

uxi =

(
−ξ f (i ) − ∂g (i )

r

∂r
− (1+n)

g (i )
r

r

)
cos(nθ)sin(ξx +ωt ) (A.114)

with B11 = B21 = B31 = 0 [80].

A.3.2 Frequency equation of purely radial modes

Identically to the case of a bare fiber, the solution of the equation proceeds with the applica-

tion of appropriate boundary conditions. For a coated fibers, the boundary conditions are

U (1)
r

∣∣
r =a = U (2)

r

∣∣
r =a (A.115a)

U (1)
θ

∣∣∣
r =a

= U (2)
θ

∣∣∣
r =a

(A.115b)

U (1)
z

∣∣
r =a = U (2)

z

∣∣
r =a (A.115c)

σ(1)
r r

∣∣
r =a = σ(2)

r r

∣∣
r =a (A.115d)

σ(1)
rθ

∣∣∣
r =a

= σ(2)
rθ

∣∣∣
r =a

(A.115e)

σ(1)
r z

∣∣
r =a = σ(2)

r z

∣∣
r =a (A.115f)

σ(2)
r r

∣∣
r =b = 0 (A.115g)

σ(2)
rθ

∣∣∣
r =b

= 0 (A.115h)

σ(2)
r z

∣∣
r =b = 0 (A.115i)

which yield once more a matrix equation of the form∣∣Ci j
∣∣ = 0 (A.116)

where this time C is 9×9. Note that in [80], the following coefficient is missing

C83 = K21b
∣∣β∣∣

1 Zn+1(
∣∣β∣∣

1 b)−nZn(
∣∣β∣∣

1 b) (A.117)

Fortunately, for purely radial modes with n = γ = 0, the general matrix equation (A.116) reduces

to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 C14 C15

C41 C44 C45

C71 C74 C75

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (A.118)
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and the coefficients are

C14 = 2b
∣∣α(2)

∣∣ Z1
(∣∣α(2)b

∣∣)−b2 (
β(2))2

Z0
(∣∣α(2)

∣∣b
)

(A.119a)
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B Distributed FSBS sensing: numerical
simulations

The numerical simulations developed in this section aim at providing with a semi-analytical

support for the experimental results described in section 4.4. They also serve as the basis

to estimate the acoustic damping rate Γ in all related experiments. The numerical simula-

tions presented in the remaining of this document all rely on the model described in the

sections 4.2.5 and 4.4.1. Both the propagation of the pulse as well as the extraction of the

frequency shift from the acquired data are considered. In addition, the model also accounts

for the duration of the activating pulse width. A pseudo-code implementation is provided

here below, followed by a more detailed explanation of crucial steps.

• Define activating pulse width: ∆τact

• Define reading pulse width: ∆τread

• Define distance axis: z

• Define time axis: t

• Define frequency axis for FSBS: fd

• Define frequency axis for BOTDA: fRF

• Define frequency axis for activating pulse spectrum: fsinc

• Define FSBS resonance profile: Ad (z), fm(z) and Γ(z)

• Compute fundamental BGS: BGSCW( fRF)

• Create normalized sinc profile: sinc(∆τact f sinc)

• Initialize reading pulse: pread,0(t ) = rect
(

t
∆τread

)
• for each k % Loop scanning through the FSBS frequency fd

◦ Initialize empty phase shift profile∆φ(t ) = 0

◦ for each l % Loop scanning through the distance axis z

∗ for each m % Loop scanning the activating pulse spectrum fsinc

− Current frequency f = fd [k]+ fsinc[m]
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Appendix B. Distributed FSBS sensing: numerical simulations

− Compute FSBS amplitude and phase response based on theoretical model:

A,θ = Model( f , Ad (z[l ]), fm(z[l ]),Γ(z[l ]))

− Compute local phase shift temporal profile:

∆φloc(t ) = A∗ sinc(∆τact fsinc[m])∗cos[2π( fm(z[l ])t + fsinc[m]∆τact/2−θ]

− Increment total phase shift profile:

∆φ(t ) =∆φ(t )+∆φloc(t )

− end

∗ Impinge phase profile onto reading pulse:

pread,∆t = pread,0 ∗exp(i 2π∆φ(t ))

∗ Compute pulse power spectral density (via fast Fourier transform) without and with

added phase profile:

p̂PSD,0( fRF) =
∣∣FFT

(
pread,0(t )

)∣∣2

p̂PSD,∆φ( fRF) =
∣∣∣FFT

(
pread,∆φ(t )

)∣∣∣2

∗ Convolution with fundamental BGS without and with added phase profile

BGS0( fRF) = BGSCW( fRF)~ p̂PSD,0( fRF)

BGS∆φ( fRF) = BGSCW( fRF)~ p̂PSD,∆φ( fRF)

∗ Perform cross-correlation

XCORR( fFR) = BGS0( fRF)?BGS∆φ( fRF)

∗ Store maximum frequency shift

∆ facc( fd [k], z[l ]) = max
f

(XCORR( fRF))

∗ end

◦ end

• end

The most important part of the implementation described here above lies in the computation

of the local phase shift profile denoted as∆φloc(t ). The operation performed actually corre-

sponds to the convolution between the local FSBS resonance and the Fourier transform of the

activating pulse gating (i.e. a rectangular function of duration∆τact). Therefore, the frequency

axis fsinc should be centered around 0, and spread sufficiently as to represent accurately

the spectral content of the activating pulse gating. This way, the newly defined frequency f

scans around the current driving frequency fd at each iteration m. The term fsinc[m]∆τact/2

originates from a time-shifting of the activating pulse of half of its duration in order to place it

before the reading pulse on the temporal axis t . Note that the total phase shift profile∆φ(t ) is

incremented all over distance, i.e. it only gets reinitialized to 0 on iterations of the outermost

loop (defined by variable k). This makes it accumulate as the pulse propagates in the fiber.

Note that the operator has a complete freedom over the FSBS resonance profile along the fiber,

which can be adjusted at each location by tuning Ad (z), fm(z) and Γ(z). The output value

is a 2-D matrix holding the value of the accumulated frequency shift along the fiber at each

activating frequency and position∆ facc( fd [k], z[l ]). Numerical differentiation along distance

is then required in order to retrieve the local information. While most parameters are easily

anticipated, the amplitude profile Ad (z) is set empirically, in order to replicate the observed

frequency shift in the different fibers tested.
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