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Abstract

In this thesis, we consider an anisotropic finite-range bond percolation model on Z2. On each
horizontal layer {(x, i) : x € Z} for i € Z, we have edges ((x, 1), (y,i)) for 1 < |x—y| < N with
N € N. There are also vertical edges connecting two nearest neighbor vertices on distinct layers
((x,1),(x,1+1)) for x,i € Z. On this graph, we consider the following anisotropic percolation
model: horizontal edges are open with probability A/(2N) with A = 1, while vertical edges
are open with probability € to be suitably tuned as N grows to infinity. This question is
motivated by a result on the analogous layered ferromagnetic Ising model at mean field critical
temperature (Fontes et al. (2015)).

We first deal with the critical case when A = 1. If ¢ = k N~2/%, we see a phase transition in
x: positive and finite constants Cj, C, exist so that there is no percolation if x < C; while
percolation occurs for x > C,. The derivation of the scaling limit is inspired by works on the
long range contact process (Mueller and Tribe (1995)). The proof relies on the analysis of
the scaling limit of the critical branching random walk that dominates the growth process
restricted to each horizontal layer and a careful analysis of the true horizontal growth process,
which is interesting by itself. A renormalization argument is used for the percolative regime.

We then deal with the supercritical case when A > 1. If e = eV

, we can also see a phase
transition in k. The horizontal and vertical edges can be discovered through subordinate
process in each regime. The proof is based on the analysis of supercritical branching random
walk but several levels of attritions are introduced to make sure the independent structure.
The comparison between our original percolation and the percolation on the inhomogeneous

square lattice is used in the renormalization scheme.

Keywords: Percolation, renormalization argument, branching random walk, critical scaling.
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Résumé

Dans cette these, nous considérons une percolation par arétes anisotrope et de portée finie
sur Z2. Sur chaque couche horizontale {(x,i) : x € Z}, avec i € Z, nous avons des arétes
((x,1), (y,0)) pour tous x, y € Z vérifiant 1 < |x — y| < N, pour N € N*. Il existe également des
arétes verticales reliant les sommets avec leurs deux voisins directs sur les couches verticales
{(x,1),(x,i+1)) pour x,i € Z. Sur ce graphe, nous considérons le modéle de percolation aniso-
trope suivant : les arétes horizontales sont ouvertes avec probabilité A/ (2N) avec A = 1, alors
que les arétes verticales sont ouvertes avec probabilité ¢ = ¢(N), qui sera convenablement
choisi lorsque N tend vers 'infini. Ce modeéle est motivé par un résultat sur le modele d’Ising
a couches analogues dans un champ moyen a température critique (Fontes et al. (2015)).
Nous étudions dans un premier temps le cas critique oi1 A = 1. Pour € = k N~?/%, nous mon-
trons I'existence d’'une transition de phase en « : il existe alors une constante C; > 0 telle que
la percolation n’'a pas lieu pour k¥ < C; et une constante Cy, a partir de laquelle la percola-
tion se produit (x > C,). La preuve repose sur ’analyse de la limite d’échelle de la marche
aléatoire branchante critique dominant le processus de croissance restreint a chaque couche
horizontale et une analyse minutieuse du véritable processus de croissance horizontal, qui est
intéressant en soi. Un argument de renormalisation est utilisé pour le régime percolatif et la
méthode utilisée pour dériver la limite d’échelle est inspirée des travaux de Mueller and Tribe
(1995) sur le processus de contact de longue portée.

Nous étudions aussi le cas surcritique avec A > 1. Les arétes horizontales et verticales peuvent
étre découvertes grace a des processus subordonnés dans chaque régime. Nous montrons,

dansle caotie = e ¥V

, existence d’une transition de phase en k. La preuve est basée sur
I'analyse de la marche aléatoire branchante surcritique munie de plusieurs niveaux d’attrition
assurant une structure indépendante. La comparaison entre notre percolation originale et la

percolation inhomogene sur Z? est utilisée dans le schéma de renormalisation.

Mots-clefs : Percolation, argument de renormalisation, marche aléatoire de branchement,
U'échelle critique.
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|§ Introduction

This thesis concerns an anisotropic percolation model and we will study some critical values
of this model. Our anisotropic percolation is an extension of classical percolation. Percolation
is a simple probabilistic model to study the behaviour of a certain fluid flowing in a random
porous medium. In the classical (bond) percolation, the medium is modelled by a graph [.2
on Z? with edges (x, y) connecting x, y € Z? that satisfy | x — yll; = |x; — y1] +|x2 — y2| = 1, and
the random structure equipped in this medium is to make the passing probability of the fluid
along each edge be p € [0, 1]. In higher dimensions, the medium can be modelled by a graph
L%, d = 2 on Z% with edges (x, y) connecting x, y € Z¢ that satisfy | x — y|l; = 1.

More generally, the medium can be an (infinite) graph G with a set of countable edges E and a
set of vertices V. Percolation can be either bond type (like the example above) or site type. In
the bond percolation, each edge e € E can be open or closed. We can encode a configuration
function w : E — {0,1}, where w(e) = 1 denotes the edge to be open, meaning that the fluid
passes through the bond e, and 0 if the edge is closed. The open edges form open clusters
which are random subgraph of G. Percolation occurs when there is an infinite open cluster
containing the origin for bond percolation. In the site percolation on G = (V, E), each vertex
v € V can be open or closed. We can then also define a state function w : V — {0, 1} with the
same meanings of 1 and 0 to be open and closed. v and v’ are connected if there exists a
finite path from v to v': there is a sequence of sites v; = v,-+-, v, = V' so that |v; —v;_1]| =1,
l1<i=nandw(v;) =1for1 <i < n. This partitions the vertex set into fully connected subsets.
Percolation occurs if the connected subset containing the origin is infinite.

The oldest bond percolation model can be traced back to the Bernoulli percolation introduced
by Broadbent and Hammersley (1957). In this model, a random environment is imposed on
the medium. Each edge is open with probability p, i.e. w(e), e € E are independent Bernoulli
random variables with parameter p. Let C c G be the collection of open edges and vertices
connected by the open edges containing the origin. Mathematicians are interested in studying
the connectivity structure of this random subgraph C.

A fundamental problem is for which values of p can we observe an infinite open cluster



Chapter 1. Introduction

(containing 0) as p increases on a multidimensional graph, e.g. Z%. A principal quantity in the
translation invariant system is the percolation probability, being the probability that there is
an infinite cluster C containing the origin,

0(p) =P, (IC| =00).
In fact, if 6(p) > 0, P,,(3 a unique infinite cluster) = 1.

On L4, the uniqueness of infinite cluster was first shown by Aizenman et al. (1987) and then
Burton and Keane (1989) used a beautiful trifurcation argument to prove this result. To see
0(p) = 0 when p is small, one simply observes that the probability that the origin is connected
to a site of L1-distance 7 is less than (2d p)" since there are less than (2d)” self avoiding paths
of length n. With the help of Peierl’s argument (Hammersley (1959)), one can also find that as
long as p sufficiently close to 1, 8(p) > 0. It is easily seen 8 (p) is monotone in p as in Figure 1.1.
This shows an existence of phase transition in p: for values p below a certain threshold, the
connected component containing 0 is finite and once p is above the threshold, this connected
component containing 0 is infinite with positive probability.

We define
pc(G) =supip:0(p) =0}.

By monotonicity, p. is critical in the following sense

=0 ifp<p,
0(p) ‘ P <Pc
>0 ifp>pc.

When G =11, it is of no interest, since whenever p < 1, there are infinitely many close edges
almost surely, and hence no infinite open cluster. This implies pc([l_l) =1. When d = 2,
we expect that the percolation probability behaves in the following manner 8(p.) = 0. The
behaviour of @ at criticality p. is unknown in general and we even do not know 8(p,) on L%
with 3 = d <10 (ref. Fitzner and van der Hofstad (2017)). But we can give some explicit answers
for bond percolation when d = 2.

For Bernoulli percolation on the square lattice Z?2, the lower bound of p.(Z?) was given by
Harris (1960) who showed that 6(1/2) = 0. In 1980, Kesten (1980) showed that the critical
probability on 72 is exactly 1/2 based on the Russo-Seymour-Welsh argument (Russo (1978)
and Seymour and Welsh (1978)). Lots of good properties hold in the Bernoulli percolation
on Z% which is invariant under rotation 77/2. First of all, the connection probability p is the
same regardless of the directions. This is what we call homogeneity. Most importantly, .2 has
a self-duality. Any configuration w on Z? is associated with a dual configuration w* on the

dual square lattice (Z2)* = 7 + (1

2 %) The configuration function

w*Ee*):=1-wle).
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Figure 1.1 — Percolation probability

Heuristically, the dual edge e* is open if the primal edge e is close. We can see that w*(e*) are
independent Bernoulli random variables with parameter p* := 1 — p. From here, it is natural
to guess that p, is the value when p = p* = 1/2. It is natural to consider the behaviour of the
percolation system at criticality. In general, it is very difficult to calculate the exact values
of p. except in several special cases. Since the eighties, thanks to the new tools like discrete
complex analysis, the explicit values for percolation and Ising model on the planar graph were
calculated from a new perspective.

Planar Bernoulli percolation and its criticality have been thoroughly investigated since the
eighties because of the good structure of square lattice or triangular lattice and the homo-
geneity of Bernoulli percolation. The conformal field theory suggested that at criticality, the
planar Bernoulli percolation is conformal invariant. In 2001, Smirnov (2001) gave an example
of conformal invariant property by showing Cardy’s formula for critical planar percolation on
the triangular lattice. Thanks to Cardy’s formula proved by Smirnov and Schramm-Loewner
evolution proposed by Schramm (1999), mathematicians are able to describe the scaling limit
of the interface between open and closed sites. The tool discrete complex analysis exploited
by Smirnov (2010) was used to prove many deep and beautiful results about the interface on
percolation, Ising model and generalized random cluster models.

However, mathematicians started to wonder what happens if we get rid of the good conditions
such as the opening probability of an edge p. is not a constant but depends on e € E. Suppose
the opening probability of edge e € E is p,. When p, # p but depends on the choice of e which
means that the model is inhomogeneous, we are interested in the connectivity properties in
this case. For instance, even though 6 (1) = 0, what happens if one vertical (or horizontal) line
on Z? breaks the homogeneity and there is a very strong preference to percolate on this line?
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One can think of a percolation model on Z?2 but for a fixed point x € Z,

px fy=wx),z=(@w+1,x), forvez,

Py,zy = .
p  otherwise.

It is clear that if p, = 1, then percolation occurs for any p. When p, < 1, it was shown by
Madras et al. (1994) that percolation does not occur when p < p. and by Barsky et al. (1991)
percolation occurs when p > p.. As long as py < 1, it does not change the result of Harris.

Theorem 1.1 (Zhang (1994)). On the square lattice 7%, for any0 < p, < 1, there is no percolation
atp=pc=73,ie 0(3)=0.

A similar model called Brochette percolation was introduced by Duminil-Copin et al. (2018).
Here, instead of along a certain vertical column E(x x Z), the configuration is inhomogeneous
on a collections of vertical columns E.; (A x Z) = {{(x1, x2), (X1, X2 + 1) : X1 € A, xp € Z}, A = Z.
The configuration {w(e), e € E(Z?)} with distribution ng 4 are then independent Bernoulli
random variables with parameters

p ife€E er(Ax2)
p =
g ife¢Ever(Ax2).
Suppose the columns of A are chosen randomly following a product probability measure v,
under which measure, column x x Z, x € Z is selected with probability p € [0, 1]. It was shown
that a small sub-criticality on g will not influence the existence of percolation if p > 1/2.

Theorem 1.2 (Duminil-Copin et al. (2018)). Foranye € (0,1/2] and p > 0, there exists 0 > 0 so
that
P20+£,pc—§(|c| =00) >0, v,— almostsurely.

This extends the result of Kesten (1982) about percolation on inhomogeneous square lattice.
The inhomogeneous percolation considered by Kesten is special case of Brochette percolation
when A = Z, then g is the opening probability of horizontal edges and p is the opening
probability of vertical edges. It was shown that8(p,q) >0if p+g>1and p+ g =1is called
informally 'the critical surface’. We emphasize that to find the critical value p in homogeneous
percolation or the critical relationship between p and g in inhomogeneous percolation is a
very sophisticated work.

In fact, anisotropy does exist in many fields of nature science. Liquid crystals are anisotropic
liquids and anisotropic magnet may occur in the plasma. However, the good property of
nearest-neighbour transition may not correspond to the nature. This issue arose in the Ising
model and a model was proposed by Kac et al. (1964) where the interaction between two
spins in a magnetic field was finite-range rather than only nearest-neighbour. This area seems
separate from percolation, but in fact, these two models can be coupled in Fortuin-Kasteleyn

4



percolation (introduced in detail later). Hence it is very natural to consider the finite range
interaction in percolation.

This was discussed by a series papers Kac et al. (1964) about Ising model when the distribution
of energy follows a finite-range law. To be more precise, consider a one-dimensional Kac-Ising
model as in Cassandro et al. (1993) which is a one-dimensional spin system with values +1.
The spin at site x € Z is 0. The system can be of infinite volume with x € Z or of finite volume
x € A c Z. The configuration space is then {1, +1¥ or{-1,+13A respectively. A Kac potential
is a L' (R) function Jy(r),y >0,r € Rsuch that J,(r) = yJ(yr) satisfies the following conditions:

Jry=0for|r|=1

Jiry>0for|ri<1

J(r)=J(=r)
e J(r)is continuousin [—1,1] and J'(r) is bounded in (-1,1)

e [J(rdr=1.
The Gibbs measure with Kac potential on finite graph A with free boundary condition is

1
exp (—H, (0)),

P} (0)=—
Y Z)//\

where Z)/,\ is the normalization factor and the Hamiltonian

H}No)=-p Y J(x-yDoso,. (1.1)
x#y and x,yeA

Suppose now we discard one more good property of percolation on I that the connection of
edges is no longer nearest-neighbour. Our model will be a finite-range and inhomogeneous
percolation on Z2. The transition inside each horizontal layer Z x i, i € Z follows a finite-range
law similar to that of Kac et al. (1964) and the transition between nearest layers Z x i and
7% x {i +1} is different from the horizontal layer. Intuitively speaking, we can imagine layers of
materials, the energy transitions inside the layer and between layers are different. Besides, we
allow the interaction inside a layer within a finite range.

Our aim is to find the critical relation between horizontal transition and vertical transition,
then get a much more complex relation than 'the critical surface’: p+ g =1.

Outline of the thesis

The thesis is structured as follows. Chapter 2 states the main results of this thesis and in-
troduces several important prerequisite tools and areas in the proof including stochastic

5



Chapter 1. Introduction

partial differential equations (SPDEs), the martingale problem (MP) and the renormalization
argument.

Chapter 3 and 4 study the finite-range anisotropic percolation on Z> when the horizontal
transition is critical. Chapter 3 shows the weak convergence of the horizontal movements to a
certain SPDE. An envelope process which dominates the horizontal process is introduced and
its weak convergence is also proved in Chapter 3. The relation between the two weak limits is
also discussed by a MP perspective.

After getting the weak limits of the envelope process and horizontal process, we then in Chapter
4 use the former one to find the upper bound behaviour of the critical relationship, above
which, percolation does occur. We then use the latter one and renormalization argument to
find the lower bound behaviour of the critical relationship, below which, we cannot observe a
percolation.

Chapter 5 investigates the case when horizontal transition is supercritical. The critical rela-
tionship between transition inside a layer and transition between layers is shown by renor-
malization argument and a meticulous treatment with the supercritical branching random
walk.



¥4 Results and Prerequisites

In this chapter, we first state our model including the anisotropic percolation we consider, the
horizontal process and the envelope process. We then review some tools that we will use in
the proof, such as SPDEs, weak convergence, martingale problems and renormalization (or
block) arguments.

2.1 The anisotropic percolation on 7>

We have seen the importance of inhomogeneity in percolation, hence we consider a percola-
tion model that is anisotropic in two ways:

* The horizontal interaction is finite-range but the vertical interaction is nearest-neighbour

* The connection probabilities along horizontal edges and vertical edges are different.

For this, we let Z2 = (V, E) be the graph with vertexset V = {v = (x,i) : x € Z,i € Z} and edge set
E={e=(vi,v2): v = (X, ir), k =1,2; either x; = xo,|i; —is] =10r iy =iz, 1<|x; — x2| < N}.

The edges are assigned in two senses: horizontal sense and vertical sense. Horizontally, we
can draw edge between two points within distance N. Vertically, we can draw edge between
two points within distance 1. The edge set can be then partitioned into two disjoint subsets
E = Ej UE,. Ej is the set of horizontal edges s.t. E, = {e = (vy,12) : i1 = i»} and E, is the set
of vertical edges s.t. E, = {e = (v, 12) : X1 = x»} (here (x, ix) corresponds to v, k =1,2). The
opening probability of each edge p. is inhomogeneous in the following sense. Each horizontal
edge is open with probability A/(2N), A > 0 and each vertical edge is open with probability
€(N), and they are all independent of each other.

A .
== ifee Ey,

pe={* (2.1)
e(N) ifeekE,.



Chapter 2. Results and Prerequisites

Horizontally, the opening probability % corresponds to the Kac-Ising model introduced in
Chapter 1 when the Kac potential J is uniform in [-1,1], the scaling factor y = ﬁ and the
inverse temperature § = 1. Two models can be coupled by the random-cluster measure
introduced later.

Remark. Notice that the A here does not have to be constant. The only thing that matters here
is that the expected number of edges connecting a certain site is bigger, equal or smaller than the
one which corresponds to supercritical, critical and subcritical branching random walk. This
criticality of the expected number of edges connecting with a certain site also relates to a more
general setting of ] in the Kac potential when f](r)dr >1,=1or<1.

Our main purpose is to find the criticality of (V) as N tends to infinity. A = 1 corresponds to
the critical horizontal mechanism and A > 1 corresponds to supercritical horizontal mecha-
nism. Heuristically speaking, if we only focus on one horizontal layer Z x i, A = 1 means that
the expected number of open horizontal edges connected from (x;, i) is 1. We will deal with the
critical case when A = 1 in Chapter 3 and 4 which is the main concern, then deal with the case
of A > 1 in Chapter 5, but the case when A < 1 is of no interest since percolation never appears
if € is small enough (depending on A but being uniform in N).

As was discussed in Chapter 1, one motivation of the finite-range comes from a series of works
Kac et al. (1964) and Kac and Helfand (1963), where the finite-range Kac-Ising model was
introduced. Addition of inhomogeneity to the Kac-Ising model was raised in Fontes et al.
(2015), where the authors investigated the existence of phase transition for an anisotropic
Ising spin system on the square lattice Z2. On each horizontal layer, {(x, i) : x € Z}, the {—1,+1}-
valued spins o (x, i) interact through a ferromagnetic Kac potential at the mean field critical
temperature. The distribution of configuration o on finite interval Ay = [-L, L] is

1
Py"*(0) = — exp (—Hy"*(0)),

where + correspond to +1 and —1 boundary conditions. H{,\ LE (0) is the Hamiltonian of the
configuration o as in (1.1),

Ho)=- )Y Jxyox oY Jxy=1,
x,yeAL y#x

where Jy(x,¥) = ¢cyy](y(x =) and one assumes J(r), r € R to be smooth and symmetric with
support in [-1,1], J(0) >0, f J(r)dr =1 and moreover Cy is the normalization constant (cy—1
as y — 0). To this one adds a small nearest-neighbour vertical interaction to H(o),

Hoo)=- ). Jyx,»oxio(y,i)—eoxi)o(x,i+]1).

(x,i)eA?

The authors proved that given any € > 0, for all y > 0 small p; # Iy, where p; , iy, denote the
Dobrushin-Lanford-Ruelle (DLR) measures obtained as thermodynamic limits of the Gibbs
measures with +1, respectively —1 boundary conditions (as L — co). The authors conjectured

8



2.1. The anisotropic percolation on 7>

that if € = e(y) = ky?'3, we shall see a different behaviour while varying .

The bridge between Ising model and percolation is connected through a big class of model
called Fortuin-Kasteleyn percolation (also called random-cluster model). The conjecture
in anisotropic Ising model above can help us to guess the vertical interaction €(N) in our
anisotropic percolation model (2.1). Conversely, the results in percolation can open a vision in
random cluster model which covers Ising and Potts model through FKG comparison theorem.

A random-cluster measure on G = (V,E), a sub-graph of Z¢ with boundary condition ¢ €
{0, 11E@\E and two parameters: p € (0,1) and g > 0 is defined on {0, 1}£ such that

1
(Pfg,q(w) = P { H pw(e)(l _ p)l—w(e) } qkf(‘“),

fd
;J,q ecE

where k(w) is the number of open clusters including isolated vertices in w U ¢ and Z,‘; q is the
normalization constant. The shape parameter g indicates a favour of clusters. g < 1 favours
fewer clusters and g > 1 favours more clusters.

Two extremal cases ¢ = 0,1 of special importance are the boundary configurations with all
edges close or all edges open respectively. ¢ = 0 denotes the free boundary condition when
Vee E(ZH\E, ¢(e) =0. ¢ =1 denotes the wired boundary condition which refer to the fact that
all the edges in E (Z*\E are connected together and only contribute 1 in k¢ (w).

To find the appearance of percolation in random-cluster model, which covers the appearance
of percolation in percolation model and appearance of phase transition in Ising model by
coupling, we need to define the limit measure as the sub-graph tends to Z¢.

Definition 2.1. Let p € [0,1] and q € (0,00). A probability measure ¢ on (Q,F) is called a
limit-random-cluster measure with parameters p and q if for some boundary condition € Q,
there exists a sequence (A, n=1,2,---) of boxes such that A, 1 7% asn — oo, and

= ¢ asn— oo.

4
(’b/\mpﬂ

The set of all such limit measures ¢ is denoted by #), 4.

It was shown (Grimmett (2009)) that for either b € {0, 1}, the weak limits

exist and are independent of the choice of (A;) ;1.

There is a second way to construct the infinite-volume random-cluster measure based on
Dobrushin-Lanford-Ruelle (DLR) Gibbs states.

Definition 2.2. Let p € [0,1] and q € (0,00). A probability measure ¢ on (Q, %) is called DLR

9



Chapter 2. Results and Prerequisites

random-cluster measure with parameters p and q if for all A€ & and finite boxes A < Z¢,
GAITN) = ¢, (A) forp-a.ed,

where T is the tail o -field generated by the states of edges on E(Z*)\E(A).

The special case g = 1 corresponds to percolation, g = 2 corresponds to Ising model and
q€1{2,3,---} corresponds to general Potts model with g local states. Here we give an example
to show how the random cluster model with g = 2 is coupled to the Ising model (Edwards and
Sokal (1988)).

Proposition 2.1. Suppose w ~ ¢p2. Sample an i.i.d. family of £1 random variables (o),
following Bernoulli(1/2) induced by the connected component ¢ of w. Seto y = o forany x € ¢
and 3 = —% log(1— p), then o ~ PS, which is the Ising measure with free boundary condition on
G.

Proof. Denote w ~ o if w(y,,) = 1 implies o = 0. The joint probability measure of w and o is
1 lwl
P(w,0)) = — (—p ) 2k@o—k@y
Zp,z l-p
Then sum over w,
1 o
o 5[
Zp,2 w~0 1- p

_ (1—P)_‘E‘ Z |w|(1_ |El-w 1 iy — .
=— p p) yletE(o)={e=xy:0x#0y}
Zp,z w~0
(1-p)H) ol |E\E(@)|~la]
=7 1-p)
Zp,z(l - p)'El we{o%E\E(d) P P

J

X

PIE|

= me—ﬂH(zﬂ since H(o) = —|E| +2|E(0)|.
p2l=p

O

The existence of phase transition in anisotropic Ising model can be formulated in terms of
existence of percolation for random-cluster measure with shape parameter g = 2 and edge
probabilities of {{vy, v2) € E: v1 = (X1, 1), V2 = (X2, i2)} to be

pUv1,v2) =1-e "N upery — e P, vyer,)-

Fontes et al. (2015) has shown that when € > 0 is a constant, there exists a phase transition.
To compare the measure ¢y, 4, and ¢, 4,, we need some basic definitions on the relation
between these two measures. The configuration space Q = {0, 1} is partially ordered: w; < w»

10



2.1. The anisotropic percolation on 7>

if w1(e) < w2(e),Ve € E. Arandom variable X : Q — R is called increasing if X(w1) < X(w>)
when w; < w,. For two probability measures p, u2 on Q, we say that y; is stochastically
smaller than p», noted as 1 <y p2 if By, (X) < E, (X) for all increasing random variables X on
Q.

Theorem 2.1 (Grimmett (2009) Chapter 3). Comparison inequalities:

* (/)pqul SngbPz,tiz ifch =42, 41 = 1 and p1 = pa.

; p p:
* Ppra ZstPpoge if 12 G2, L 2 1 and 5 = .

The probability of percolation for g = 2 is bounded from above by that when g = 1. As a
consequence, if there is no percolation when g = 1, we can conclude that there is no phase
transition for Ising model.

We suppose our €(N) =« N~?, b >0 and our aim in Chapter 3 and 4 is to find the critical value
of b when A =1 and show the different behaviours while x varies.

We first consider the behaviour at each single horizontal layer. For simplicity, we will consider
the horizontal behaviour on layer 0. With respect to layer 0, we denote ng as the cluster
containing 0 = (0,0):

<€5’ ={x:(0,0) =0 — (x,0) with all the edges along the path in Z x {0}},

where v; — v; means there is an open path from vertex v; to v». We can speak of generations
on each horizontal layer. x € <g(‘)) is of k-th generation if the shortest open path from (0,0) to
(x,0) is of length k. That means there are vertices v/, -, v;c such that v} = (0,0), v;c = (x,0) and
foranyl<i<k-1, (v;., v;.+1) € Ej, is open. Use Gz(x) € {0, 1} to indicate if the site (x,0) can be
reached from 0 at k-th generations, i.e. Gg(x) =1 indicates that (x, 0) is visited at generation
k. The sites of {Gg} k=0 form a process very close to a branching random walk starting from
0. The difference between {Gz}kzo and a critical branching random walk is the domain of
the state function. Denote {Gg}kzo as the critical branching random walk. At each time n,
particles at each occupied sites branch following Binomial(2N, 1/(2N)) and the offsprings
move to its 2N neighbours uniformly. The criticality means that the expected number of
offspring of each particle is one. Note that it is different from the model in Lalley (2009)
discussed in the next paragraph. The state function Gg(x) € Z, since it counts the number
of particles at an occupied site. However, the process {Gg}kzo only tells if the site is occupied
or not, hence Gg(x) € {0,1}. In Chapter 3, we will show that these two processes are not too
different on an appropriate time scale. This motivates us to consider the asymptotic density
on each horizontal layer and use it to derive the cumulated occupied sites over generations.
But the introduction of generations will cause a problem in the percolation system if we only
consider the branching random walk. Because we are interested in percolation, the vertical
connections should be considered only once over the generations. Therefore, the true process
we are considering is a branching random walk with attrition. Attrition is the rule that if any
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Chapter 2. Results and Prerequisites

Figure 2.1 — Attrition sites noted by x

site has been visited during the propagation, it cannot be visited again. Figure 2.1 helps to
explain the problem occurrs because of generations. For example on the mid layer, since the
vertical interaction only happens once, if it has already generated an vertical arrow upward
after the 1 generation left movement from its right neighbour (blue leftward arrow from the
right-most site), then the red rightward arrow from the left-most site after 2 generations should
not be counted again.

The way of dealing with horizontal propagation is motivated by the work of Lalley (2009) on
the scaling limit of spatial epidemics on the one-dimensional lattice Z to Dawson-Watanabe
process with killings. There are two processes (the SIR epidemics and the SIS expidemics)
considered in Lalley (2009). At each site i, there is a fixed population (or village) of N individu-
als and each of them can be either susceptible, infected or recovered (in the SIR epidemics).
The model runs in discrete time; an infected individual recovers after a unit of time; in the
SIR epidemics, infected individuals recover and are immune from infection, while in the
SIS epidemics, infected individuals become again susceptible after recoverty. An infected
individual may transmit the infection to randomly selected (susceptible) individuals in the
same or in the neighbouring villages. Denote py (i, j) as the transmission probability between
any infected particle at site i and any susceptible particle at site j = i + e, where e =0 or 1.
For any pair (x;, u;) of infected and susceptible individuals located at i and j respectively with
|i — j| =1, the transmission probability is taken as
1

PN(l,])=3—N»

which makes it asymptotically critical as N — co. The evolution of this dynamics can be
studied with the help of a branching random walk envelope: any individual at site x and time
t lives for one unit and reproduces, placing a random number of individuals at a nearest
site (village) y with |y — x| < 1, where the random number is of law Binomial(N, 1/(3N)). An
infected individual will stay infected for one unit of time then get recovered and cannot get
infected again (immune). The individuals are categorized into Susceptible, Infected and
Recovered (SIR) among which the number of infected and recovered (immune) individuals at
site x € Z and time n € N are denoted by Y, (x) and RY (x). Lalley (2009) studied the scaling

12



2.1. The anisotropic percolation on 7>

limit (space factor NP2 and time factor N) of this system, namely

N (/NB
Y[Nﬁt]( NPx)
vV NP

Initially, the support supp(X™(0,-)) c J, where J is compact. As N — oo,

for xe Z/V NP,

XN, x) =

XN, x) = X(8,%)

where X (¢, x) is the density of a Dawson-Watanabe process X; with initial density X (0, x) and
killing rate 6(¢, x) depending on the choice of . When < 2/5, 8(t,x) =0 and when 8 =2/5,

I3
Q(t,x):f X(s,x)ds.
0

Heuristically speaking, when f < 2/5, the cumulation of immune individuals over a time
period [tNP] is negligible. However, when f = 2/5, the cumulated immune individuals will
make a significant contribution to the deduction of infected individuals.

To study the scaling limit of our process on horizontal level, we first need to perform space and
time rescaling on the approximate density. First, we have to scale the space with N, then the
movement of the edges from x will have a uniform displacement on (x + [-1,1]) n (Z/N)\{0}.
Then, to get the weak convergence, we will renormalize the space and time with N¢ and N 2a
respectively. The state of the process at time n € Z* is given by én ():Z/N*** - 40,11, fn x)=0
indicates that the site x is vacant and 5 »(x) = 1 indicates that the site x is occupied. Two sites
are neighbors in the scaled space, denoted by y ~ xif [x—y| < N"% (or j ~ i if|j—i| < N in
the unrescaled space). We are going to use the idea in Mueller and Tribe (1995) to derive the
asymptotic approximate density of

1
2N«

Y éw

y~x

Ad(x) =

and study its limit after the above mentioned time change.

Since we are considering the existence of percolation, to consider the infinite cluster contain-
ing (0, 0) is equivalent to consider 2 | N24| equally spaced particles on {— [N+ 0,..., N9 }
(so the distance between particles in Z is of order N 1= " Indeed, if we denote [-1, 7]y =
[—r,r1NZ/NY? as the rescaled discrete interval, to show percolation we may take an initial
condition f o with finite support, such that A(EO)(x) =1 for x € [-1,1], and whose linear in-
terpolation tends (as N — oo) to a continuous function f with compact support such that
f(x) =1for x € [-1,1]. For simplicity, we may take f to vanish outside [-1 -6, 1 + ] for some
0 >0 fixed, and linear in [-1-6,1] and [1,1 + d].

The method in Lalley (2009) is to calculate the log-likelihood function with respect to a branch-
ing envelope with known asymptotic density. However, we do not have the log-likelihood
function in our case. A more standard argument is to show the weak convergence of the
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Chapter 2. Results and Prerequisites

rescaled continuous-time particle system by verifying the tightness criteria as Ethier and Kurtz
(2009) like in Cox et al. (2000), Durrett and Perkins (1999) and Mueller and Tribe (1995). We will
mainly refer to the way of Mueller and Tribe (1995) dealing with long-range contact process
and long-range voter model and adapt it to our discrete (space) model to get the asymptotic
SPDE. Our strategy on the horizontal layer is to derive the asymptotic density of the branching
random walk without attrition dominating the true system, where the states are denoted by
&(x). We call this process without attrition the envelope process and the state function

En(x):ZINVT® S 7.

The mechanism of this envelope process is as follows. The number of particles at site x
will increase by 1 if one of its neighbours branches following Binomial (2N, 1/(2N)) and then
chooses x uniformly among the 2N neighbours. The number of particles at site x after n+1
steps is

En(y)
Ep1 () =) ) ¥ (),

y~x w=1

where (n %1 (35 X)) w,n,y,x is an i.i.d. sequence with distribution Bernoulli(1/(2N)).

The horizontal process ¢ is dominated by this envelope process in two senses: ¢,,(-) does not
allow multiple particles at one site and any site visited before cannot be visited again. At the
end of Section 3.1, we will show that the probability of multiple particles at one site is very
small, of order O(N?@~D) which is negligible when a < 1.

Section 3.1 considers the asymptotic behaviour (as N — co) of the approximate density func-
tion of the dominating envelope process

1

A o)) = 5o

> Sieneey ()
y~x

extended to R as the linear interpolation of its values on Z/N'*®. This is made precise in
Theorem 2.2 below.

Remark. The same interpolation is used when considering the approximate density of the
process €.

Setting ey (x) = eM* for A € R, we define
%€ = {f :R— [0,00) continuous with | f(x)e; (x)| — 0 as |x|] — 0o, VA < 0},
to which we give the topology induced by the norms (|| - [}, A < 0), where
Iflia= sup | f(x)exr(x)].

In the following convergences (Theorem 2.2 and Theorem 2.3), we consider the law of A(¢) or
A(®) in the space D([0,00), %), the space of €-valued paths equipped with Skorohod topology.

14



2.1. The anisotropic percolation on 7>

Theorem 2.2. Assume that as N — oo, A(g) converges in € to a continuous function f with
compact support. For any a >0, as N — oo, A(¢|;n2a)) (x) converges in law to u(x), which is
the solution to one dimensional Dawson-Watanabe process:

Ouy 1 A

St =zAus+/uWi(t,-)

ot 6 t t (22)
up = f,

where A is the Laplacian operator acting in the spatial coordinates and W is the space-time
white noise.

Regarding the real horizontal process, we have to deduct the attritions from the envelope
process in two ways: the state at each site can only be occupied or vacant and any site can
only be visited once (refer Figure 2.1). The state function is then

En(x) 1 ZINYT = {0,1}.

The mechanism can be expressed as

1 if Y ;&0 =0and ¥y sy00 M1 (%) 2 1,

0 otherwise,

1 () =

where Ay (x) ={y~x: fk(y) = 1} having cardinality N (x) = ZyNXgEk(y) and (Mg+1 (), X))k, y,x 1S
an i.i.d. sequence with distribution Bernoulli(1/(2N)).

Theorem 2.3. Assume that as N — oo, A(€y) converges in € to a continuous function f with
compact support. When a = 1/5, as N — oo, A(ELthaJ)(x) converges in law to ii;(x), which is
the unique in law solution to the following SPDE

8 R R R — .
%:%Au[_utfotusd‘g‘f‘ AV u[W(t)') (2 3)
o =f,

where W is the space-time white noise.

We will show Theorem 2.2 and Theorem 2.3 in Chapter 3. After giving some prerequisite
knowledge about the solutions to SPDEs, we will discuss the renormalization argument in the
later part of this Chapter. When adding the vertical interactions and showing percolation, by
a renormalization argument, we can reduce our layered system to an oriented percolation
model. We can define a site in the renormalized space (or a block in the primary space) as
open if its corresponding block has a certain amount of cumulated density, since we have
already taken into account the attrition in the real system. After building the renormalization
argument, we are able to use the criteria in Durrett (1995) to determine the existence of
percolation. The main result in the critical horizontal case i.e. when A =1 in (2.1) is the
following.
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Theorem 2.4. When A = 1, the critical values of the scaling and interaction factors are b =
2a = 2/5. That is there exist positive constants C, and C, not depending on N such that for
Kk < Cy, there is no percolation and for x > Cs, there is a percolation, wherex N~" is the opening
probability of vertical edges.

The critical value @ = 1/5 can be guessed by standard coupling as in Lalley (2009). Initially,
there are 2| N?%] particles with at most one on each site and they are distributed uniformly on
2| N'*@] sites in [—1,1] y. In the beginning, there are O(N%~!) particles at each site on average
or we can say that every site in [-1, 1] i has a chance of O(N®™!) to hold on