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Abstract
Modern information technologies and human-centric communication systems employ ad-

vanced content representations for richer portrayals of the real world. The newly adopted

imaging modalities offer additional information cues and permit the depiction of realistic

sceneries, enabling immersive experiences and promoting the engagement of the user with

the content. In this context, point clouds have emerged as an attractive option to represent

immersive media. This type of visual data has seen a revived interest in the recent years,

following the release of low-cost depth sensors and the wide integration of modern graphics

processing units in mobile phones and personal computers. Point clouds can be naturally em-

ployed in extended reality applications that involve 6 degree-of-freedom interactions, allowing

adjustments of the 3-D visual information in a per-point basis. At the same time, complexity

reductions are promoted when compared to mesh modelling counterpart, due to the absence

of connectivity information and the elimination of corresponding constraints from acquisition

to rendering.

Yet, the vast amount of information that is required for faithful content representations implies

the necessity for efficient data structures and compression algorithms. In particular, new

coding schemes must be designed in order to reduce the amount of data and by extension

the costs in processing, storage, and transmission of point clouds, while lossy compression

solutions should restrain degradations for more appealing results. Furthermore, adequate

subjective quality evaluation methodologies tailored to the nature of this 3D imaging modality

are essential in order to obtain ground-truth data, and to better understand the impact of

compression and rendering artifacts in visual quality. The development of high-performing

objective metrics is also fundamental to accurately predict the perceptual quality of degraded

models.

In this thesis, we address the aforementioned challenges by proposing new subjective quality

assessment methodologies that better simulate realistic use-cases of 3D model consump-

tion. We examine several aspects related to point cloud visualization and display means,

by exploring different rendering approaches and by introducing experimental set-ups that

offer different degrees of interactivity to the end-user. The behavior of human observers in

6 degrees-of-freedom virtual reality scenes is analysed, and visual attention maps are con-

structed using head and gaze trajectories recorded from eye-tracking experiments. Moreover,

navigation data obtained from interactive subjective evaluations in desktop arrangements

are exploited to improve image-based quality metrics, whose performance is examined in

predicting visual impairments on point cloud contents. In the same line of research, we
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Abstract

design novel point-based quality predictors for point cloud topology and texture degradations,

and we rigorously analyse their performance using several subjectively annotated data sets.

Furthermore, adopting well-established subjective evaluation methodologies, state-of-the-art

compression solutions are benchmarked and best practices for rate allocation between ge-

ometry and texture encoding are derived. Lastly, a learning-based point cloud compression

solution for encoding of both geometric and color information is proposed, and the impact of

a series of parameters is examined on the obtained performance to pave the path for future

efforts on the field.

Keywords: Point cloud, perceptual quality, subjective evaluation, objective metrics, compres-

sion, visual attention, rendering, augmented reality, virtual reality, deep-neural networks.

iv



Sommario
Le moderne tecnologie informatiche e i sistemi di comunicazione centrati sugli utenti utiliz-

zano modalità di rappresentazione dei contenuti avanzate per ottenere ritratti più ricchi del

mondo reale. Queste nuove modalità visive offrono informazioni aggiuntive e permettono

di mostrare scenari realistici, creando esperienze immersive e promuovendo l’interazione

dell’utente col contenut. In questo contesto, emergono i point cloud come una valida opzione

per rappresentare contenuti multimediali immersivi. Questo tipo di dato visuale ha ottenuto

un rinnovato interesse in anni recenti, in seguito alla distribuzione di sensori di profondità

a basso costo e la diffusa integrazione di unità di elaborazione grafica moderne in personal

computer e cellulari. I point cloud possono essere utilizzati naturalmente in applicazioni di

extended reality che coinvolgono interazioni a 6 gradi di libertà, permettendo di cambiare

l’aspetto del modello 3D visualizzato punto per punto. Al tempo stesso, si osservano ridu-

zioni nella complessità rispetto alla controparte dei modelli mesh, dati dall’omissione di

informazioni sulla connettività e l’eliminazione dei corrispettivi limiti, dall’acquisizione al

rendering.

Tuttavia, la larga quantità di informazione che è richiesta per una rappresentazione fedele dei

contenuti indica la necessità di avere strutture dati e algoritmi di compressione efficienti. Nello

specifico, nuovi schemi di compressione devono essere progettati per ridurre la quantità di

dati e per estensione i costi di elaborazione, salvataggio e trasmissione di point cloud, mentre

soluzioni di compressione lossy devono limitare degradazioni visive per ottenere risultati

più piacevoli. Inoltre, metodologie di valutazione soggettiva adeguate e pensate su misura

per la natura di questa modalità di imaging 3D sono essenziali per ottenere informazioni

ground-truth e per meglio capire l’impatto degli algoritmi di compressione e di artefatti nel

rendering sulla qualità visiva. Lo sviluppo di metriche oggettive di qualità che siano altamente

performanti è anch’esso fondamentale per predirre accuratamente il livello di degradazione

dei modelli.

In questa tesi, affrontiamo le suddette sfide proponendo nuove metodologie di valutazione

soggettive che simulano più fedelmente usi realistici di consumo di modelli 3D. Esaminiamo

diversi aspetti legati alla visualizzazione e al display di point cloud, esplorando diversi mecca-

nismi di rendering e introducendo set-up sperimentali che offrono diversi gradi di interattività

per l’utente. Il comportamento dii osservatori umani in realtà virtuale con 6 gradi di libertà

è analizzato, e mappe di attenzione visiva sono create usando traiettorie oculari e craniali

registrate in esperimenti di eye-tracking. Inoltre, dati di navigazione ottenuti in esperimenti

soggettivi interattivi in assetti desktop sono sfruttati per migliorare metriche oggettive di qua-
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Sommario

lità basate su immagini, la cui performance nel predirre distorsioni visive su contenuti point

cloud è esaminata. Nella stessa linea di ricerca, progettiamo nuovi predittori punto-punto di

qualità per la valutazione oggettiva di qualità, per distorsioni sulla topologia e sullaa texture

dei point cloud, e analizziamo rigorosamente la loro performance usando diversi dataset con

annotazioni soggettive. Inoltre, con l’adozione di metodologie di valutazione soggettiva e

metriche oggettive collaudate, proponiamo un benchmark dello stato dell’arte in soluzioni di

compressione, e consigli sull’allocazione di rate per la codifica di dati di geometria e texture

sono ideati. Infine, si propone una soluzione di compressione learning-based per gestire la

codifica di attributi geometrici e di colore di contenuti point cloud, e l’impatto di una serie di

parametri sulla performance è esaminato, per aprire la strada a futuri lavori nel campo.

Parole chiave: Point cloud, qualità percepita, valutazione soggettiva, metriche oggettive,

compressione, attenzione visiva, rendering, realtà aumentata, realtà virtuale, reti neurali.
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1 Introduction

Innovations in emerging technologies to capture and consume immersive media today lay the

foundation for a future of richer information exchange and enhanced quality of experience.

Nowadays, 3D sensing technologies enable real-time acquisition of topological information of

the scene-space with high accuracy. Such information can be exploited in application domains

spanning from computer vision and robotics, to real-time communications. The significant

progress witnessed in extended reality (XR)1 technologies gives rise to applications ranging

from entertainment and gaming, to education and psychology. The envision of experts on the

field for the near future is the development of new formats based on the plenoptic function for

the representation of 3-D visual information that will provide richer portrayals to better mimic

real world sceneries (Ebrahimi et al., 2016). Such advancements will fuel the development of

new-generation imaging and communication systems, bringing new challenges and exciting

immersive experiences.

In this context, point cloud imaging denotes an attractive option for advanced content rep-

resentation. A point cloud is defined by a set of points, which are determined by their x, y

and z coordinates and characterize the content’s topology in the 3-D space. The appearance

and properties of the underlying surface can be determined by attributes that optionally ac-

company the location data, such as color, normals, curvatures and reflectance among others.

In essence, a point cloud can be interpreted as an organized or unorganized data structure,

which is obtained from a regular or irregular sampling of the surface of a 3D model. The

coordinates indicate the spatial position of the samples, while associated attributes provide

information that describes local surface properties (e.g., shape, texture, etc.).

The advent of high-quality depth sensors today provides the means for capturing depth-

enhanced data. Moreover, the ample accessibility of high-performing graphics processing

units (GPU) simplifies the processing, encoding, and rendering of 3D content. Such advances

establish the ground for imaging modalities that are well-suited for real-time applications,

such as point clouds, to thrive. This explains the reasons why this type of visual data has lately

1Extended, or cross reality (XR) term is employed to collectively refer to augmented, mixed and virtual reality
(AR/MR/VR) technologies.
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Chapter 1. Introduction

attracted a strong interest by the scientific community and industrial partners. This interest

can be confirmed from relevant activities of the JPEG and MPEG standardization bodies that

have been taking place the last few years. As a result of such efforts, notable progress in

compression technologies and quality evaluation frameworks has been attained, while MPEG

has developed the first point cloud compression standards (Schwarz et al., 2019) and JPEG has

recently issued a Call for Evidence in the context of the JPEG Pleno framework (WG1, 2020).

Released standards are expected to simplify interoperability across devices and lubricate the

integration of this technology in daily use-cases. The interested reader can refer to a recent

JPEG document “Use cases and requirements” (Perry, 2018), for a comprehensive summary of

target applications for point clouds.

Point cloud imaging offers a number of advantages mainly laying on the flexibility it offers

in every processing step from acquisition to rendering. However, these qualities come at

the cost of a vast amount of information that is required to faithfully represent 3D models.

Thus, efficient data structures and compression algorithms are inevitable. Compression

methods aim at reducing the data requirements for storage and transmission. However, lossy

schemes, which grant larger reductions, result in visual degradations that affect the perceived

quality of a model and, in turn, the user experience. Thus, it is of critical importance to

define adequate and reproducible frameworks to accurately evaluate the impact of content

distortions, providing us with the means to achieve a fine balance between visual quality and

data size. For this purpose, quality assessment methodologies are required. Relevant methods

can be classified as subjective, or objective, and are essential for perceptual quality assessment

of degraded models and performance evaluation of encoding engines. Objective quality

metrics rely on algorithms that provide predictions of the perceived quality of a distorted

content. Subjective quality methods require the participation of observers in experiments to

collect individual quality scores for the testing material. Although costly and time-consuming,

subjective experiments are widely accepted to unveil ground-truth scores, since they depend

on opinions of targeted end-users.

Considering the wide diversity of point cloud uses-cases, the posed challenges differ and

should be tackled under different objectives. Specifically, in our work, point clouds are

approached as a standalone 3D content representation that can be acquired in real-time

for entertainment purposes; a representative example is 3D tele-immersive systems. Thus,

from our perspective, aspects related to measuring and predicting perceptual quality, or

the establishment of low-complexity rendering schemes with visually appealing results, are

relevant and extensively explored in our studies. This is important to note because, for

instance, when considering autonomous driving applications, the point cloud data quality is

also extremely important, but in a different sense and under a different objective.

In this thesis, we address open questions arising in the field of point cloud quality evaluation

and compression. In particular, we propose frameworks for both subjective and objective

quality assessment of both colorless and colored point cloud models. For the former, we

extend traditional approaches for conventional 2D imaging by incorporating interactivity and

2



1.1. Contributions

introducing experimental settings that offer different degrees of freedom (DoF) to the end user.

For the latter, we develop objective quality metrics that operate on the point cloud domain, in

order to predict perceptual degradations that exhibit on topological and textural information.

In addition, we evaluate widely popular predictors in 2D imaging by applying the correspond-

ing algorithms on projected views of the models, and we propose practices to improve their

performance. The state-of-the-art point cloud encoding engines are benchmarked, and rate

allocation between geometry and texture encoding is investigated using subjective opinions

from a carefully designed large-scale experiment. Finally, a flexible learning-based compres-

sion approach is proposed that can handle the encoding of both geometry information and

color attributes of point cloud contents.

1.1 Contributions

Our contributions can be clustered in three main parts, which coincide with the organization

of the manuscript. In the first part, we explore and define subjective methodologies to measure

the perceptual quality of point cloud contents. In the second part, we design and evaluate

objective quality metrics to predict the perceptual quality of point cloud contents. In the third

part, we assess state-of-the-art encoding engines and introduce our own deep learning-based

solution.

1.1.1 Measuring perceptual quality

In this part we experiment with several subjective evaluation frameworks and methodologies

that are tailored to the richer nature of 3D content representations. We initiate our efforts

by investigating the impact of adopting different test methods, which have been extended to

incorporate interactivity, for quality assessment of point clouds. We then proceed and evaluate

a radically different approach in an AR inspection scenario with 6DoF using the same testing

material. In these experiments, the models are displayed as collections of point primitives.

Provided the ambiguity in the perception of the underlying shape by the usage of raw point

samples, we conduct a subjective experiment after converting the point cloud data to meshes

for display purposes. In the aforementioned studies, point cloud topology is only considered

in order to reduce the parameter space, since the textural information might act as distractor.

In a later stage, we experiment with higher resolution point clouds enriched with color at-

tributes in order to account for more realistic use-cases of 3D modelling. For visualization

purposes, we develop several point-based rendering schemes. In particular, a splat-based

rendering method is initially implemented, which relies on a pre-processing step to assign a

geometric shape and size to each point sample. Using this solution, we investigate the impact

of the geometric shape selection based on human preferences. Moreover, this renderer is

employed for quality evaluation of point cloud models compressed under a well-established

codec using different combinations of geometric and textural distortions. The same stimuli

are assessed using a second rendering solution, which relies on real-time voxelization, and
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projection of the obtained voxel grid to a displayed image. In the first rendering scheme, each

splat size can be adapted to local point densities, which ensures visualization of watertight

models, but leads to coarser surface approximations for sparser content representations. In

the second implementation, all voxels are mapped to fixed-size pixel neighborhoods, thus,

visual artifacts in the form of missing pixels are perceived for sparser models. The subjective

scores obtained from both experiments are compared to draw conclusions regarding their

statistical equivalence and to identify potentially diverging rating trends, in response to the

different nature of rendering artifacts.

In a third stage, we exploit VR systems to provide a fully-controlled testing environment for

subjective evaluation of point cloud contents. For this purpose, we initially design a suitable

scene that grants a high sense of realism with minimal distractions. The user consumes the

virtual world by means of a headset and can interact with 6DoF via physical movements

or using the VR controllers. The point clouds are displayed using a point-based rendering

approach that can be configured off-line for visual adjustments per model. In this platform

we conduct subjective experiments for quality assessment of state-of-the-art color encoding

engines using two protocols; that is, an interactive extension of a conventional test method,

and a newly introduced variant. Moreover, the same VR setting is employed in an eye-tracking

experiment that is conducted in order to quantify the visual attention of users in immersive

scenes under a task-dependent protocol. After integrating and calibrating a dedicated hard-

ware in the headset, head and gaze data cues are recorded during inspection of point clouds

by users. A methodology to utilize highest-quality gaze measurements is developed based on

a per-session error profiling and a scheme to decide the fixation areas on the observed point

clouds is proposed. Finally, a prototype of a virtual museum is implemented that allows more

realistic human interactions, while also previously developed functionalities for recording and

analysis of user behavior are improved and discussed.

1.1.2 Modelling perceptual quality

In this part we describe and evaluate proposed solutions of perceptual quality predictors for

point cloud contents, which can be distinguished in point-based and image-based. Regarding

the first class, we initiate by describing an algorithm based on the similarity of local surface

approximations of underlying shapes, reflected through normal vectors. This algorithm is

based on the angular similarity of tangent planes that correspond to associated point samples

between the pristine and the distorted model. Provided that the method relies on normal

attributes, our performance analysis is conducted using widely adopted normal estimation

algorithms and different configurations. The impact of the estimated measurements is quan-

tified and insights are obtained together with best practices for higher prediction accuracy.

Our efforts are then focused on the design and performance evaluation of a family of features

that are computed using estimators of a distribution’s dispersion. These features are extracted

from local neighborhoods and capture the local deviations of quantities that are defined per

attribute, including topology and color information. To obtain a quality score for the level of
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degradation of the corresponding attribute, an error value is computed by comparing features

that are obtained from associated neighborhoods between the pristine and the distorted

model, simulating the working principle of the structural similarity index (SSIM) (Wang et al.,

2004). As part of the metric, a voxelization step is proposed, and can be optionally enabled

prior to feature extraction, in order to simulate distant inspection. The performance of the

proposed scheme is evaluated under different attribute selection, voxel resolution, dispersion

estimator, and neighborhood size, using several subjectively annotated data sets as ground

truth.

Regarding image-based approaches, we assess the prediction power of 2D imaging quality

metrics on projected views of point cloud contents. For this purpose, we define an objective

quality evaluation framework and acquire views of the point clouds from different camera

layouts, using the same rendering scheme that was employed for user consumption. To

examine generalization capabilities, the image-based metrics are benchmarked against two

subjectively annotated data sets that are comprised of the same models, evaluated under

two different rendering schemes. The impact of removing irrelevant background information

is gauged, before proceeding to the exploration of potential benefits by enabling additional

model views in the computation of the metrics. Moreover, we compute objective quality

scores that consider the entire navigation experience of users during subjective evaluation,

and evaluate their prediction power. Finally, we devise an ad-hoc methodology to weight

model views that are captured from the camera layouts of our quality evaluation framework

according to user inspection duration, showing promising results.

In the last chapter of this part, we rigorously evaluate the performance of current point cloud

objective quality metrics. For this purpose, human scores that were obtained from a large-scale

subjective quality evaluation campaign of the state-of-the-art MPEG point cloud compression

solutions serve as the ground truth.

1.1.3 Towards efficient compression

In this part, we initiate by conducting a subjective experiment to evaluate the performance of

the state-of-the-art encoding engines that have been developed in the context of the MPEG

standardization activities. A point-based rendering scheme is developed and integrated in

an evaluation framework that can support interactivity between the users and the displayed

models. The evaluations are performed in two dislocated laboratories that participate in the

efforts. The performance of the tested encoding algorithms is evaluated and useful insights

are provided regarding strengths and weaknesses of each approach. Moreover, experiments

to draw conclusions regarding the allocation of bits in geometry and color encoding of the

MPEG compression solutions that operate on the point cloud domain are conducted.

Lastly, a deep learning-based approach is proposed to encode both the topology and the

texture of point clouds. The network architecture is flexible in encoding one, or both of

the aforementioned attributes. This gives rise to compare two different schemas; that is, a
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unified network, which is trained on colored point clouds and encodes geometry and color

as a holistic representation, against a combination of two separately trained networks, with

the first dedicated to geometry and the second to color compression. Moreover, the impact

of different network parameters is explored in the performance of our solution, such as the

training data set, the color space, and the loss function selection.
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2 Related work

In this chapter we report relevant work on point cloud imaging. We refer to technologies and

methods from acquisition to rendering, with a particular focus on domains that are covered in

a higher depth throughout this dissertation.

2.1 Acquisition

The acquisition of 3D point clouds has been widely investigated over the last decades. There is

a large range of technologies for point cloud capturing, which can be clustered in a variety of

ways. Hereafter, we refer to the most popular ones nowadays, and classify them based on the

nature of sensors they require as (a) passive, and (b) active techniques.

2.1.1 Passive techniques

Passive techniques do not interfere with the model, rather, they rely on recorded information,

most commonly in the form of 2D imaging, depicting the reflected energy from a model.

Stereo vision methods are falling in this category and rely on two or more cameras that cap-

ture a scene. In the simplest case, two instances are sufficient, however, techniques in order

to increase the accuracy using multiple images have been available for several years (Oku-

tomi and Kanade, 1993). For high quality results, the cameras need to be calibrated; that is,

camera parameters need to be either known in advance or estimated. From the captured

images, feature points are extracted and matched through automatic algorithms that fall in

the category of the “correspondence problem”, which has been extensively investigated in

the literature (Scharstein and Szeliski, 2002). To simplify the procedure, it is very common to

apply image rectification in order to project the images onto a common plane, and from the

disparity map that occurs, the depth is estimated through triangulation (Hartley and Sturm,

1997). The quality of the point cloud data depends on the solution to the correspondence

problem (Dhond and Aggarwal, 1989), the camera calibration procedure, as well as properties

of the scene space (e.g., shape, reflectivity). A relevant technique is the so-called structure-
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from-motion (Westoby et al., 2012) that makes use of a large number of monocular images

taken over different time frames from different viewpoints, typically, under the assumption

of a stationary scene. In the general case, the camera pose and the scene geometry need

to be estimated simultaneously, thus, resulting in a more challenging problem. When the

computations are performed in real-time, often required in robotics community, this problem

is referred to as Simultaneous Localization And Mapping (SLAM) (Durrant-Whyte and Bailey,

2006).

Photogrammetry techniques are similar, in the sense that they are based on the same principle

of extracting a 3D point cloud from two or more 2D images that are taken from different

positions and capture the same scene. In this case, the camera calibration and orientation

is critical. Image measurements are identified and employed for matching purposes. These

measurements can be obtained either through automatic, or semi-automatic, or manual

processing with the intervention of an operator often assisting in obtaining more accurate

results (Remondino and El-Hakim, 2006). The working principles of stereo vision and pho-

togrammetry techniques share similarities. However, the relevant approaches are developed

from different communities, namely, computer vision and photogrammetric, and reflect dif-

ferent objectives. In the former case the main goal is the automation of the procedure, which

implies relaxations on the processing pipeline, whereas in the latter case, the main objective

lays on obtaining highly accurate results (Hartley and Mundy, 1993).

There are several other less common methods that are based on captured images, such as shape

from texture, shape from focus/defocus, shape from specularity, shape from shadows, shape from

shading, shape from silhouette, shape from contours, and shape from edge gradients (Sansoni

et al., 2009; Pavlidis et al., 2007; Remondino and El-Hakim, 2006; Mada et al., 2003). However,

they typically lead to low resolution point cloud data and, thus, they are not further analysed.

2.1.2 Active techniques

Active techniques make use of the received energy after emission of properly formatted light,

or any other form of electromagnetic energy that interacts with the model.

A time-of-flight camera is a range imaging camera system that estimates the distance of a

surface based on the speed of light. In particular, a transmitter unit emits a laser pulse, and a

receiving sensor detects its reflection (Kolb et al., 2010). The distance can be estimated based

on the measured round-trip time. The emitted pulse may also be modulated, and in this

case, a phase shift analysis is performed between the emitted and detected light to resolve the

distance (Gokturk et al., 2004). The time-of-flight technology is employed in Light Detection

And Ranging (LiDAR) scanners. The two terms are often confused and used as interchangeable.

For a review on methods and applications of time-of-flight cameras, the interested reader can

refer to (Hansard et al., 2012).

Laser scanning systems are based on emission of a laser from a source in the form of a point, or
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a beam that impinges on the surface of the model, and its reflection is detected by a dedicated

camera. The triangulation principle is employed in this technology in order to extract depth

information (Chen et al., 2000). High accuracy and low vulnerability to illumination conditions

are characteristic advantages of these systems.

The structured light technology is based on a projector that is producing specific patterns, and

is working in cooperation with one or more cameras that capture the projected pattern. This

method is also part of the triangulation-based family systems, however, the basic working

principle lies on the deformation of the projected patterns due to the 3D shape of the objects.

There is a multitude of different patterns proposed for this task, such as fringes, stripes,

grid or dot designs, complex patterns with curves, which are time, space, or color coded.

For a comprehensive review of structured light theory, patterns, applications and design,

the interested reader may referred to (Geng, 2011; Salvi et al., 2004). A key advantage of

these methods when compared to passive photogrammetry is the ability to determine planar

surfaces, such as walls and floors, due to the usage of projected light patterns. It should also

be noted that they are typically more sensitive to lighting conditions, when compared to laser

scanners. Finally, for both of them, particular care should be devoted to transparent and highly

reflective surfaces.

2.1.3 Discussion

The above-mentioned methodologies are not mutually exclusive. For instance, in one of the

most widely cited surveys that was conducted for the digitization of exposed statues, the

so-called Digital Michelangelo Project (Levoy et al., 2000), laser scanners, time-of-flight and

digital still cameras were used in order to acquire, align, and merge scanned data. Nowadays,

photogrammetry and computer vision algorithms are used by companies, such as Pix4d1, to

transform 2D imagery that may be captured even from drones into 3D maps.

For smaller-scale applications, the development of RGB-D cameras witnessed in the last few

years, is also noteworthy. In particular, after 2010 and the release of Kinect v1, a significant

interest from the industrial sector has been observed, which today is translated to the wide

availability of low-cost depth sensing technologies. The Intel RealSense suite and the Kinect

line of sensors are widely used as computer peripherals. These technologies make use of

stereo vision, time-of-flight, structured light, or hybrid systems that involve more than one

technologies, which collaborate with synchronized RGB cameras in order to append depth

values to the RGB color of the pixels. For instance, Kinect v1 measures the depth using

structured light and Kinect v2 is based on the time-of-flight technology (Wasenmüller and

Stricker, 2017). The RealSense R200 makes use of one RGB camera that is synchronized with

two left-and-right calibrated cameras and an infra-red projector that emits a dot pattern, in

order to provide depth-enhanced RGB information (Keselman et al., 2017). Nowadays, depth

sensing technologies are also integrated in mobile phones, such as the new-generation Apple,

1https://www.pix4d.com/
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Samsung and Huawei devices.

Point clouds can be also artificially generated either algorithmically or by hand, from various

software applications available in consumer market. There is a wide range of relevant software

packages that can be employed today, such as Blender, 3D CAD (Computer-Aided Design),

AutoCAD, Rhino3d, Sketchup, MeshLab, Point Cloud Library (PCL), and MATLAB, to name

a few. Finally, deep learning methods can be exploited for point cloud data production.

Generative neural network approaches have been proposed that operate directly on the

point cloud domain (Achlioptas et al., 2018), while also, 3D shape reconstruction using mesh

modelling can be performed from a single RGB image (Wang et al., 2018a; Ge et al., 2019).

Considering both ad-hoc generated models and deep learning applications that represent 3D

visual information in the form of meshes, point clouds can be obtained either by exporting

the vertex information, or by sub-sampling the faces of the exported mesh files.

In the context of this thesis, we employ well-established point cloud data sets that are cap-

tured from active sensing technologies in real-life, or from simulated acquisition scenarios.

Moreover, for experimentation purposes, we create artificial models that depict simple geo-

metric shapes using mathematical equations, and generate high-quality point cloud data by

sub-sampling mesh contents.

2.2 Compression

The prevalent approaches that have been widely explored in the literature for point cloud

compression can be clustered as model-based and projection-based. More recently, deep

learning-based solutions were proposed and are expected to gain significant popularity in the

near future.

2.2.1 Model-based encoding

Model-based approaches operate on the point cloud data domain and can be further sub-

divided to geometric and attribute encoding algorithms.

Geometry encoding: Compression of point cloud topology relies on efficient data structures,

with octrees (Jackins and Tanimoto, 1980; Meagher, 1982) denoting the most common selec-

tion nowadays. One of the early works on the field presented in (Gumhold et al., 2005), is based

on a prediction tree that is built using a greedy algorithm, which aims at minimizing residual

errors. In (Merry et al., 2006), a single-rate encoding scheme is proposed and a spanning tree is

constructed based on multiple geometry predictors to exploit correlations between neighbors.

A multi-resolution predictive coding method is described in (Waschbüsch et al., 2004) that

relies on identification of pairs, which is interpreted as a graph matching problem in their

context. From these pairs, representative samples are defined, and residual errors from the
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original points are estimated and encoded.

The kd-tree decomposition is introduced in (Gandoin and Devillers, 2002) to recursively split

the space and encode the number of points that lies in one out of two partitions. This approach

is adapted in (Peng and Kuo, 2003) to make use of octree structures and occupancy maps for

the encoding of the points positions. In (Schnabel and Klein, 2006) and (Huang et al., 2006), the

octree structure is exploited in progressive compression schemes that rely on approximations

of the underlying surfaces to predict neighboring occupancy. The latter study is extended

in (Huang et al., 2008) in order to handle compression of color attributes.

An extension paradigm to dynamic sequences using the exclusive disjunction operator for

inter-frame prediction is presented in (Kammerl et al., 2012) and implemented in PCL (Rusu

and Cousins, 2011), with each frame represented by an octree. In (Garcia and de Queiroz,

2017), temporal relationships among frames are additionally considered for lossless prediction

by reordering each octree based on previous frames, before entropy coding. In (de Queiroz

and Chou, 2017a), the motion-compensation encoding concept is extended from video to the

dynamic point cloud domain. A voxelized point cloud is split into blocks and each block is

encoded using an intra, or a motion-compensation mode based on a decision that is taken in

the rate-distortion sense, respecting low complexity requirements for real-time operation.

A context-based lossless intra-frame encoding method is reported in (Garcia and de Queiroz,

2018), using the parent values and parent positions of an octree sequence, which denotes

an ordered occupancy map of the octree data structure. In another recent line for static

models compression, denser shape approximations are enabled after octree decomposition

by reconstructing the underlying surface of a model using triangular primitives, also known as

“Triangle Soup” (TriSoup), as described in (Pavez et al., 2018). Moreover, the usage of planar

surfaces is proposed in (Dricot and Ascenso, 2019), graph-based geometric enhancements

are introduced in (de Oliveira Rente et al., 2019) and volumetric functions are employed

in (Krivokuća et al., 2020).

It is noteworthy that an octree-based and a TriSoup-based implementation are integrated in

the MPEG Geometry-based Point Cloud Compression (G-PCC) codec (MPEG 3DG, 2019).

Color encoding: Color and potential compression of additional attributes were natively han-

dled together with geometry by some of the early studies on the field (Waschbüsch et al., 2004;

Schnabel and Klein, 2006; Huang et al., 2008). More recent algorithms are dedicated to topol-

ogy compression, leaving space for the development of color-only encoding solutions. The

latter are typically applied on either the uncompressed, or the restored (i.e., decompressed)

geometry.

Color attribute encoding using Graph Fourier Transform (GFT) was initially presented in (Zhang

et al., 2014) and further extended in (Shao et al., 2017), by enabling Laplacian sparsity, as

well as in (Thanou et al., 2016) for inter-frame encoding of dynamic sequences. A 3-D intra
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prediction scheme based on neighboring blocks is described in (Cohen et al., 2016b), followed

by a modified version of the shape-adaptive Discrete Cosine Transform (DCT) to handle miss-

ing points, before quantization. The work is extended in (Cohen et al., 2016a) by devising an

algorithm to compact the blocks before applying any transform, and modifying the neighbor-

hood identification to create the graph. The Region Adaptive Hierarchical Transform (RAHT)

based on the Haar wavelet transform is introduced in (de Queiroz and Chou, 2016) offering a

high-performance solution with significant complexity reductions. In (de Queiroz and Chou,

2017b), the Gaussian Process Transform (GPT) is employed to exploit geometry correlations.

The algorithm described in (Zhang et al., 2018) is based on a hierarchical segmentation that is

resolved by an initial global color-based and a subsequent local geometry-based segmentation

to compile points in clusters that attain similar characteristics. A virtual adaptive sampling

process is proposed in (Hou et al., 2017), enabling a sparse representation formulation for

recovering the color values of occupied voxels in block partitions. The previous work is ex-

tended in (Gu et al., 2020b) by incorporating an inter-block prediction strategy and an entropy

coding scheme for the transform coefficients. In (Gu et al., 2020a), based on the assumption

that adjacent points share color similarities, representative points from previously encoded

clusters are selected and employed to predict color values of points in the current cluster,

making use of a graph structure that reflects the underlying geometry. A graph transform is

used on top for the residuals. In (Chou et al., 2020), volumetric functions are employed to

encode color attributes. A hierarchical structure is detailed in (Mammou et al., 2017) with

points that belong to a lower layer being used to predict attributes at a higher layer of details.

This scheme is further improved in (Mammou et al., 2018) by introducing a Lifting step.

The color codecs described in (de Queiroz and Chou, 2016) and (Mammou et al., 2018) are

integrated in the MPEG G-PCC, and can be used in combination with any of the two available

geometry encoding modules.

2.2.2 Projection-based encoding

Projection-based algorithms operate on the image domain and exploit the high performance

of 2D imaging codecs, which are applied on projected views of point clouds.

In this category falls an early study on the field described in (Ochotta and Saupe, 2004), which

is based on encoding of regularly sampled height fields from surface patches (i.e., point

clusters that are partitioned), over base planes. A similar working principle of height fields

decomposition is proposed in (Golla and Klein, 2015), with additional usage of occupancy

maps. The voxel-based encoding scheme with adjustable level-of-details that is introduced,

makes the algorithm suitable for real-time systems.

In (Houshiar and Nüchter, 2015), traditional 2D imaging compression algorithms, such as

PNG, TIFF, JPEG and JPEG2000 are applied on panorama images that are produced after

equirectangular projection of point cloud depth, color and reflectance values. Depth maps
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are employed to represent point cloud data in (Bletterer et al., 2016) and a multi-resolution

analysis is described for progressive encoding. An end-to-end tele-immersive system is

proposed in (Mekuria et al., 2017a), exploiting the JPEG coding engine to encode the color of

points that are projected onto planar surfaces in a depth-first tree traversal order.

In (Mammou et al., 2017), a patch-based point cloud projection is proposed, where the

patches are assembled in a video sequence. This work essentially established the basis of

the emerging MPEG Video-based Point Cloud Compression (V-PCC) test model (MPEG 3DG,

2020). The latter employs HEVC to encode the two video sequences that are generated to

capture geometry and texture information of a point cloud. Additional metadata to reconstruct

the model are compressed separately. In recent studies, algorithms to improve the encoding

efficiency of V-PCC are proposed, based on appropriate padding of the projected patches (Li

et al., 2020a), and better predictions of the motion vector (Li et al., 2020b).

2.2.3 Deep learning-based encoding

Deep learning architectures were recently employed for compression of visual data repre-

sentations, showing promising results. The success and efficiency that has been observed in

2D imaging modalities has driven the interest for extending these approaches in point cloud

imaging, which denotes a higher-dimensionality and irregular content representation.

The majority of deep-learning approaches for point cloud imaging are currently based on

auto-encoding architectures that target compression of geometry-only information, which is

realized in a block-by-block basis. In particular, one of the first attempts is reported in (Quach

et al., 2019), proposing a shallow, yet efficient architecture composed of convolution and de-

convolution layers for analysis and synthesis, respectively. Differentiable rate and quantization

estimations are approximated (Ballé et al., 2016), and the focal loss is employed to obtain

a quality score for the reconstructed model. In a more recent work (Quach et al., 2020b),

the impact of several parameters added to the initial network version (Quach et al., 2019) is

evaluated through a series of experiments. Among the additions, a hyper-prior model and

deeper transforms, as well as the fine tuning of the balance weight employed in the focal loss

and adaptive thresholding, were found to improve the performance.

Another early study on the field is presented in (Guarda et al., 2019b), which also adopts a small

number of convolution and de-convolution layers for analysis and synthesis. Quantization is

performed on the latent representation, and the result is entropy coded. The weighted binary

cross entropy is used to measure the reconstruction error in the loss function. This study

provides a detailed description of the key stages of an auto-encoder network architecture.

Moreover, performance evaluation results show that a larger number of filters per layer is

only beneficial at larger bit-rates. The same authors extend their efforts in (Guarda et al.,

2019a) and conduct rate-distortion performance analysis on the latent space using the same

network (Guarda et al., 2019b). In (Guarda et al., 2020), the network architecture is enriched

with a hyper-prior and the possibility of explicit quantization via down-scaling and upscaling,
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before and after feeding the latent representation to the Variational Auto-Encoding (VAE)

module, respectively. Benchmarking results indicate the presence of a sweet spot when using

implicit (governed by the selection of λ in the loss function) and explicit quantization that can

lead to significant computational reductions.

In (Wang et al., 2019), a deeper auto-encoding architecture is proposed, based on 3D con-

volution layers stacked with Voxception-ResNet (VRN) structures and a hyper-prior imple-

mented as a VAE. Several pre-processing steps are employed including voxelization, scaling

and partition before feeding a point cloud in blocks to the network, and the weighted binary

cross-entropy is used to estimate the reconstruction loss, similarly to (Guarda et al., 2019b).

The performance of this network shows promising results, achieving comparable, if not better

performance when compared to V-PCC. Experimentation with different partition sizes and

adaptive thresholding for classification of a voxel as occupied or not, are part of the study. A

multi-scale hierarchical encoder is proposed in (Huang and Liu, 2019) based on local features

that are extracted at each layer. A sparsity term employed in the loss function enables sparse

coding and higher efficiency in encoding point cloud geometry.

The aforementioned studies are handling point clouds as 3D occupancy maps on regular grids.

In (Yan et al., 2019), raw point clouds are fed to the proposed architecture, which makes use of

the PointNet (Qi et al., 2017) to extract features from unorganized coordinates in 3D space.

The synthesis transform is represented by a generative fully-connected network, using the

Chamfer distance in the loss function.

A study on the compression of point cloud attributes is introduced in (Quach et al., 2020a),

relying on folding a 2D grid onto a point cloud and then mapping the attributes on top of

it. Thus, the 3D is converted to a 2D encoding problem, provided the estimation of accurate

parametric functions for folding and low-distortion attribute mapping techniques. An advan-

tage of this approach is the usage of highly efficient 2D imaging techniques for point cloud

compression; yet, a bottleneck is the low accuracy of the folding in the geometrically complex

parts of a model. In (Alexiou et al., 2020a) geometry and/or color information is encoded

directly in the 3D domain by extracting features from regular grids exploiting 3D convolutions;

thus, spatial redundancies are captured for both types of information. Moreover, the influence

of a series of encoding parameters is evaluated.

2.2.4 Discussion

The MPEG V-PCC model has recently obtained the Final Draft International Standard (FDIS)

status (MPEG 3D Graphics Coding, 2020), whereas the MPEG G-PCC model has been pro-

moted to the Committee Draft (CD) stage, and is expected to reach its final milestone by mid

2021 (MPEG Systems, 2020). The two models are widely considered the state of the art in point

cloud compression for dynamic and static point cloud contents, respectively. For excellent

recent reviews on coding approaches, the interested reader may refer to (Pereira et al., 2020;

Cao et al., 2019).
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In the context of this thesis, model-based and projection-based encoding engines are em-

ployed to denote realistic types of point cloud degradations. We initiate by using a simple

octree encoding for the topology of colorless models, as implemented in PCL (Rusu and

Cousins, 2011). The codec proposed in (Mekuria et al., 2017a) and served as the anchor im-

plementation in the MPEG point cloud compression activities, while also the state-of-the-art

MPEG V-PCC (Mammou, 2017) and G-PCC (Mammou et al., 2019) variants are extensively

used in our experimentation efforts for colored models.

Contributions: Our contribution to the state-of-the-art in point cloud compression is the

following paper: (Alexiou et al., 2020a), which introduces a learning-based approach for

geometry and color encoding, and is detailed in chapter 10.

2.3 Rendering

Rendering solutions for point cloud data span over a wide range, which can be clustered

in multitude ways. In this section we refer to technologies that have been developed for

visualization of contents that are represented by point samples. We make a coarse distinction

and split them in two of the most popular research lines in computer graphics community,

namely, point-based and mesh-based rendering.

2.3.1 Point-based rendering

In this category fall several techniques that explicitly employ point rendering primitives

without connectivity information to display a model.

In a pioneering work, Levoy and Whitted (Levoy and Whitted, 1985) were the first to propose

the use of points in computer graphics, stating that points in 3D should be viewed analogously

to pixels in 2D. Among the early studies, a point-based rendering technique is proposed

in (Grossman and Dally, 1998), where objects are represented by points with depth and

color information that are obtained after off-line sampling. During run-time, the points are

projected onto a pixel grid using orthographic projection. In (Pfister et al., 2000), the use

of viewer-facing discs, namely surfels, is introduced, extending the previous effort. In the

simplest case, a surfel would be just a point in 3D space with a constant color value. Additional

attributes can be optionally associated, such as normal, radius and shading. Appropriate

sampling and filtering is performed in a pre-processing step, with the resulting samples

being arranged in a hierarchical octree data structure. Note that in the above schemes, the

reconstruction of the displayed image (i.e., hole filling) is performed in the image space. In

the same line, a more recent work is presented in (Marroquim et al., 2007), proposing a new

image reconstruction scheme with a hardware-accelerated implementation.

Zwicker et al. (Zwicker et al., 2001) proposed the use of surface splatting to mitigate sampling
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issues and discontinuities in the rendered image. This technique is based on overlapping of

elliptical primitives that are projected in image space and filtered using low-pass Gaussian ker-

nels, which corresponds to a re-sampling operation. The pixel values incorporate aggregated

contributions of surrounding neighbors from this processing before projection onto the screen.

This texture filtering technique is also known as Elliptical Weighted Average (EWA) splatting.

Appropriate adaptations for GPU-compliant implementations are described in (Ren et al.,

2002) and (Guennebaud and Paulin, 2003). Further improvements are introduced in (Zwicker

et al., 2004) by accurate splatting in terms of perspective in the image space, and by adding clip

lines on the splats to improve sharpness. In (Botsch et al., 2004), Phong splats are proposed

using a normal field per-pixel that varies linearly, reportedly leading to visual enhancements.

A rendering framework in GPU is described in (Botsch and Kobbelt, 2003), relying on elliptical

splat shapes with two-pass Gaussian filtering. A hierarchical point-based rendering method

based on an octree decomposition is described in (Botsch et al., 2002), which can be applied

to render either points or splats. Exploiting the proposed structure, computational reductions

can be achieved with respect to the original implementation of EWA splatting.

Among the most widely cited papers are (Alexa et al., 2001; Alexa et al., 2003), which propose

the use of smooth Moving Least Square (MLS) surfaces to approximate the model shape that is

defined by point samples. In this case, re-sampling in performed in the object space to adjust

the density of the projected points onto the image grid. In (Rusinkiewicz and Levoy, 2000), the

QSplat system, one of the most broadly regarded studies is described. The rendering scheme

relies on a hierarchy of spheres with different radii to display the model at different resolutions.

Every node represents a part of the object’s surface with a position, a radius and a normal. The

development of QSplat was triggered by the need to render large-scale data sets obtained by

the Digital Michelangelo project (Levoy et al., 2000).

An excellent survey on the field of early-developed techniques can be found in (Kobbelt and

Botsch, 2004), while in (Sainz and Pajarola, 2004), an effort to compare the performance of

primitives and algorithms for point-based rendering is detailed.

In more recent studies, an adaptive splatting approach tailored to facial point sets is described

in (Kim et al., 2012) for realistic rendering. A feature detector is employed to exploit the

prior information regarding the sensitivity of human perception in facial characteristics, in a

re-sampling stage that is followed by splat optimization. A hole-filling algorithm is applied in

the image space to avoid perception of missing information. This approach was favored over

increasing the splat size, as being less computationally expensive for the context of the aimed

application while also reducing the presence of bluriness artifacts. In (Preiner et al., 2012), a

real-time rendering approach for dynamic point clouds is proposed. The scheme is based on

rendering of surface-aligned splats with size and normal that are estimated on-the-fly in the

screen space based on their k-nearest neighbors.

The development of out-of-core hierarchical data structures that make efficient use of GPUs

to handle the immediate rendering of massive point clouds with fast responsiveness for
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interactive applications has been a relevant research topic for the community. In fact, the

studies (Pfister et al., 2000) and (Rusinkiewicz and Levoy, 2000) can be considered as early

ancestors of multi-resolution schemes. Sequential data structures adjusted to the current

level of detail are introduced in (Dachsbacher et al., 2003), while in (Gobbetti and Marton,

2004), a layered tree structure is demonstrated partitioning the point cloud space into chunks.

In (Wimmer and Scheiblauer, 2006), nested octrees are proposed making use of memory

optimized sequential data structures, with the same concept applied on a web-based rendering

application described in (Schütz, 2016). In a recent study (Schütz et al., 2019), an algorithm

that enables rendering with a continuous level of detail is proposed and evaluated in a VR

scenario, which constitutes a challenging set-up considering the level of responsiveness that

is required.

2.3.2 Mesh-based rendering

This category implies the application of a surface reconstruction algorithm on the point cloud

data, which can be enabled either off-line or on-line, in order to display a polygonal mesh at

execution time.

The reconstruction of a continuous surface from a set of point samples is an ill-posed problem,

in the sense that there is no unique solution. It also denotes a well-studied topic in the

literature. The points are typically interpreted as discrete samples and the objective of relevant

algorithms is to extract the underlying surface. After surface reconstruction, a model is stored

as a polygonal mesh.

One of the most popular early studies on the field is the marching cube algorithm (Lorensen

and Cline, 1987). The objective is to reconstruct an iso-surface from a set of points that are

regularly sampled. In each cube, the value of each vertex is compared with an iso-value, in

order to determine which vertex is inside and outside the surface. A total of 15 unique cases

of surface intersections are possible. As a result, the corresponding vertices are outputted.

Surface reconstruction from unorganized points (Hoppe et al., 1992) denotes a pioneering

work. The proposed algorithm is based on the signed distances of points from the underlying

surface, which is locally approximated by corresponding tangent planes. The surface is

estimated by the zero level set of the signed distance field.

The screened Poisson surface reconstruction (Kazhdan and Hoppe, 2013) is another well-

established algorithm. It ensures watertight models and leads to high-quality smooth output

surfaces for good quality input data. The working principle relies on the computation of

an indicator function (i.e., a function that encloses an area) and the reconstructed surface

is obtained by extracting an appropriate iso-surface. Normal vectors are required with the

input data and serve as samples of the gradient for the indicator function. Under this logic,

the problem reduces in finding a function whose gradient best approximates the normals

of the points, considering also constraints related to the positions of the points. A GPU

implementation of the Poisson surface reconstruction algorithm (Kazhdan et al., 2006), which
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denotes an earlier version without the usage of positional constraints, is proposed in (Zhou

et al., 2011).

The aforementioned, denote a few noteworthy algorithms among a vast number of surface

reconstruction approaches that have been developed to infer the underlying shape of a model

from point cloud data. The performance of existing methods depends on several irregularities

that might be present in the provided sets of points. Sampling density, noise, outliers and

missing data are some of the geometric factors that influence the outcome. Moreover, certain

approaches depend on the presence of additional attributes, such as oriented, or unoriented

normal vectors and how accurately they approximate the underlying shape. In (Berger et al.,

2017), an excellent review of surface reconstruction algorithms is provided, clustering existing

approaches per prior assumptions, point cloud artifacts, and input requirements, among

others.

2.3.3 Discussion

Point-based rendering approaches offer more versatile and higher accuracy solutions to dis-

play point cloud data. Under conditions, they are spanning from advanced methods for

visualization of highly realistic models, to low-complexity techniques that are friendly to con-

tent acquired in real-time. On the negative side, they do not grant continuous silhouettes. The

distribution of points is crucial for their performance, and the majority of the schemes require

algorithmic-dependent re-sampling before display. In addition, sophisticated techniques

commonly introduce computational costs during run-time, for better visual representations.

On the contrary, mesh-based rendering can ensure watertight models under the appropriate

selection and configuration of a surface reconstruction algorithm, with visual results, though,

depending on the points arrangement. This class of methods is rather efficient in terms

of rendering performance. However, they are less flexible in representing complex surface

topology or dynamic scenes due to connectivity information, making them less suitable for

real-time communication systems. Moreover, relevant algorithms often introduce losses in

regard to the original points positions.

In the context of this thesis, we mostly experiment with point-based schemes, while also, a

mesh-based rendering approach is used for point cloud visualization purposes. Concerning

the latter, the screened Poisson surface reconstruction (Kazhdan and Hoppe, 2013) is selected,

due to its ability to produce high-quality mesh models without discontinuities. Regarding

the former, algorithms that rely on splats of fixed or adaptive size are employed, denoting

low-complexity solutions of minimal overhead for the rendering pipeline. The deployed point-

based methods do not alter the location data of the provided contents and can be used for

both organized and unorganized point clouds. They might be sub-optimal in terms of visual

appearance when compared to more sophisticated point-based or model-based rendering

methods. Yet, they are advocated as more appropriate in the aspect of not introducing any am-

biguous or lossy step before content display, and are better suited for real-time rendering. The
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first is of crucial importance, since the adopted rendering schemes are commonly employed

for subjective quality evaluation of point cloud codecs. Involving any additional processing

after encoding and before subjective assessment might introduce biases, which should be

thoroughly investigated and justified.

Contributions: Our contribution to the existing pool of point cloud renderers is the release of

two point-based implementations that are developed as part of the following papers: (Alexiou

et al., 2020a,b) for web and VR applications, respectively. The realizations are described in

annexes D.3 and D.4, while the corresponding software is employed in experiments detailed

in chapters 9 and 5, respectively.

2.4 Quality assessment

Quality evaluation methodologies for 3D model representations were initially introduced and

applied on polygonal meshes, which has been the prevailing format in the field of computer

graphics.

Subjective tests to obtain ground-truth data for visual quality of static geometry-only mesh

models have been conducted in the past, subject to simplification (Watson et al., 2001; Ro-

gowitz and Rushmeier, 2001; Yixin Pan et al., 2005), noise addition (Lavoué, 2009) and smooth-

ing (Lavoué et al., 2006), watermarking (Gelasca et al., 2005; Corsini et al., 2007) and position

quantization (Váša and Rus, 2012) artifacts. In (Guo et al., 2016), the perceived quality of

textured models under geometric and color degradations is assessed. Subjective evaluation

of compression artifacts is conducted in a VR setting and described in (Christaki et al., 2019),

using non-textured mesh models that are clustered in two quality groups. In (Gutiérrez et al.,

2020), a subjective experiment in MR with 6DoF is performed to assess both geometry and

texture encoding distortions.

A significant amount of efforts has been also devoted on the development of objective qual-

ity metrics for mesh contents, which can be classified as: (a) image-based, and (b) model-

based (Lavoué and Mantiuk, 2015). Widely-used model-based predictors rely on simple

geometric projected errors (i.e., Hausdorff distance or Root-Mean-Squared error), dihedral

angles (Váša and Rus, 2012), curvature statistics (Lavoué et al., 2006; Torkhani et al., 2012)

computed at multiple resolutions (Lavoué, 2011), Geometric Laplacian (Karni and Gotsman,

2000; Sorkine et al., 2003), per-model roughness measurements (Corsini et al., 2007; Wang

et al., 2012), or strain energy (Bian et al., 2009). Image-based metrics were initially introduced

for perceptually-based tasks, such as mesh simplification in (Lindstrom and Turk, 2000; Qu

and Meyer, 2008; Luebke and Hallen, 2001). Only recently their performance in predicting

visual quality was evaluated and compared to model-based techniques in (Lavoué et al., 2016).

The reader can refer to (Bulbul et al., 2011; Corsini et al., 2013; Lavoué and Mantiuk, 2015)

for comprehensive reviews on subjective and objective quality assessment methodologies for

mesh modelling.

19



Chapter 2. Related work

The rest of this section is focused on the state-of-the-art in point cloud quality assessment. In

a first part, subjective evaluation studies are detailed and notable outcomes are presented,

whilst in a second part, the working principles of current objective quality algorithms are

highlighted.

2.4.1 Subjective quality assessment

The first subjective evaluation study for point clouds is reported in (Zhang et al., 2014), which

denotes an effort to assess visual quality of models at different geometric resolutions and

different levels of noise that were introduced in both geometry and color. For the former,

several down-sampling factors were selected to increase sparsity, while for the latter, uniformly

distributed noise was applied to the coordinates, or the color attributes of the reference models.

In these experiments, raw point clouds were displayed in a flat screen that was installed in a

desktop set-up. The results showed an almost linear relationship between the down-sampling

factor and the visual quality ratings, while color distortions were found to be less severe when

compared to geometric degradations.

A 3D tele-immersive system is proposed in (Mekuria et al., 2017a) where the users are able to

interact with naturalistic (dynamic point cloud) and synthetic (computer generated) models

in a virtual scene. In this MR application, subjective experiments were conducted allowing

the participants to navigate in the virtual environment through the use of the mouse cursor

in a desktop setting. The proposed encoding solution that was employed to compress the

naturalistic content of the scene was evaluated, among several other aspects of quality (e.g.,

level of immersiveness and realism).

In (Mekuria et al., 2017b), performance results of the codec presented in (Mekuria et al., 2017a)

are reported, from a quality assessment campaign that was conducted in the framework of the

Call for Proposals issued by the MPEG committee (MPEG 3DG and Requirements, 2017). Both

static and dynamic point cloud models were evaluated under several encoding categories,

settings, and bit-rates. Animated image sequences of the models captured from predefined

viewpoints were generated and assessed under passive inspection using a single-stimulus test

method. The point clouds were rendered using cubes as primitive elements of fixed size across

a model. This study aimed at providing a performance benchmark for a well-established

encoding solution and evaluation framework.

Interactive variants of existing test methods are proposed in (Alexiou and Ebrahimi, 2017a,b) to

assess the quality of geometry-only point clouds in a desktop setting. In both studies, Gaussian

noise and Octree-pruning was employed to simulate position errors from sensor inaccuracies

and compression artifacts, respectively, and to account for degradations of different nature.

The models were simultaneously displayed as point sets side-by-side, while human subjects

were able to interact without timing constraints before grading the visual quality of the models.

This is the first attempt dedicated to evaluate the prediction power of metrics existing at the

time. In (Alexiou et al., 2017), the same authors extended their efforts by proposing an AR
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evaluation scenario using a head-mounted display. In the latter framework, the observers were

able to interact with the virtual assets with 6DoF by physical movements in the real-world.

A rigorous statistical analysis between the two experiments (Alexiou and Ebrahimi, 2017b;

Alexiou et al., 2017) is reported in (Alexiou and Ebrahimi, 2018b), revealing different rating

trends under the usage of different test equipment as a function of the degradation type under

assessment. Moreover, influencing factors are identified and discussed.

A quality assessment study of position de-noising algorithms is performed in (Javaheri et al.,

2017a). To this aim, impulse noise was initially added to the models in order to simulate

outlier errors. After outlier removal, different levels of Gaussian noise were introduced to

mimic sensor imprecisions. Then, two de-noising algorithms, namely Tikhonov and total

variation regularization, were evaluated. For rendering purposes, the screened Poisson sur-

face reconstruction (Kazhdan and Hoppe, 2013) was employed. The resulting mesh models

were captured by different viewpoints from a virtual camera, forming video sequences. The

reference and the degraded models were shown sequentially to human subjects in order to

rate the perceived level of impairment of the latter.

The visual quality of colored point clouds under octree- and graph-based geometry encoding

was evaluated in (Javaheri et al., 2017b), both by subjective and objective means. The color

attributes of the models remained uncompressed to assess the impact of these geometry-only

degradations; that is, sparser content representations are obtained from the first, while block-

ing artifacts are perceived from the latter. Static models representing inanimate objects and

human figures were selected and assessed at three quality levels. Cubic geometric primitives

of adaptive size based on local neighborhoods were employed for rendering purposes. A spiral

camera path moving around a model (i.e., from a full view to a closer look) was defined to

capture images from different perspectives. Animated sequences of the stimuli were generated

and passively consumed by the subjects using the double-stimulus sequential test method.

This is the first study with benchmarking results on more than one compression algorithms.

In (Alexiou et al., 2018) subjective experiments were conducted in five different test laborato-

ries to assess the visual quality of colorless point clouds, enabling the screened Poisson surface

reconstruction algorithm (Kazhdan and Hoppe, 2013) as a rendering methodology. The point

cloud contents were degraded using Octree-pruning, and the observers visualized the mesh

models side-by-side in a passive way. Although different 2D monitors were employed by the

participated laboratories, the collected subjective scores were found to be strongly correlated.

Moreover, statistical differences between the quality scores obtained from this experiment

and the study conducted in (Alexiou and Ebrahimi, 2017b), indicated that different visual

representations of the same point clouds might lead to different conclusions. In (Alexious

et al., 2018), an identical experimental design is used, with human subjects consuming the re-

constructed mesh models through various 3D display types/technologies (i.e., passive, active,

and auto-stereoscopic). The results show very high correlation and very similar rating trends

with respect to previous efforts (Alexiou et al., 2018), suggesting that human judgements on

this data set and under the adopted test method are not significantly affected by the display
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equipment.

The visual quality of voxelized colored point clouds was evaluated in (Torlig et al., 2018a) in sub-

jective experiments that were performed in two intercontinental laboratories. Orthographic

projections after real-time voxelization of both the reference and the distorted models were

simultaneously shown to the subjects by means of an interactive renderer that was developed

and described. Point clouds representing both inanimate objects and human figures were

selected and compressed by the codec described in (Mekuria et al., 2017a), using combinations

of geometric and color degradation levels. The results showed that subjects rate more severely

distortions on human models. Moreover, using this codec, marginal gains are brought by

color improvements at low geometric resolutions, indicating that the visual quality is rather

limited at high sparsity. This is the first study reporting performance evaluation results of

image-based quality metrics for point cloud contents.

In (Alexiou and Ebrahimi, 2019), identically degraded models as in (Torlig et al., 2018a) were

assessed using a different rendering scheme. In particular, the point clouds were rendered

using cubes as primitive geometric shapes of adaptive sizes based on local neighborhoods.

Reference and impaired models were simultaneously displayed in an interactive platform for

the evaluation of the latter, with the user’s behavior being recorded. The rating trends found

to be very similar to (Torlig et al., 2018a). The logged interactivity information was further

analyzed and used to identify important perspectives of the models under assessment. The

performance of image-based quality metrics was improved by proposed modifications in the

relevant computational pipeline and a weighting scheme that exploits interactivity data was

additionally proposed.

In (da Silva Cruz et al., 2019), the results of a subjective evaluation campaign that was issued

in the framework of the JPEG Pleno (Ebrahimi et al., 2016) activities, are reported. Subjective

experiments were conducted in three different laboratories in order to assess the visual quality

of point clouds under an octree- and a projection-based encoding scheme. A passive evalua-

tion protocol in conventional monitors was selected and different camera paths were defined

to capture the models under assessment. The reference and impaired stimuli were rendered

side-by-side using points of fixed size, which was specified per model and degradation level.

This is reported to be the first study aiming at defining test conditions for both small- and

large-scale point clouds. The former class corresponds to models that are normally consumed

outer-wise, whereas the latter represent scenes which are typically consumed inner-wise. The

results indicate that regular sparsity introduced by octree-based algorithms is preferred by

human subjects with respect to missing structures that appeared in the encoded models from

the projection-based counterpart, due to occluded regions.

Subjective evaluations of a volumetric video data set that was acquired and released was

performed in (Zerman et al., 2019), under compression artifacts from the MPEG V-PCC.

Two point cloud sequences sampled at four different resolutions were encoded under four

quality levels of geometry and color distortions, leading to a total of 32 volumetric videos.
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The stimuli were subjectively assessed in a passive way using two test methods; that is, a

side-by-side evaluation of the distorted model and a pairwise comparison. The point clouds

were rendered using primitive ellipsoidal elements of fixed size, determined heuristically to

result in visualization of watertight models. The results showed that the visual quality was

not significantly affected by geometric degradations, as long as the resolution of an encoded

model allows adequate representation. Moreover, color impairments from V-PCC were found

to be more annoying than geometric artifacts.

Subjective quality evaluation of different types of degradations, including Gaussian noise in

both topology and texture, octree down-sampling and compression artifacts from the MPEG

test models was conducted in (Su et al., 2019), using a wide set of colored models that were

generated in the framework of the study. A passive inspection protocol with simultaneous

visualization of the reference and distorted stimuli was employed for quality assessment.

Point primitives of minimum size were employed for display purposes, with a virtual camera

orbiting around each model at a fixed viewing distance to capture views. Among the outcomes,

results showed that V-PCC outperforms the alternative codecs, especially at low bit-rates.

In (Alexiou et al., 2019a), a quality evaluation campaign was conducted in order to benchmark

both subjectively and objectively the state-of-the-art MPEG test models, including V-PCC

and all G-PCC variants. Several point clouds with diverse characteristics were employed and

compressed following test conditions dictated by MPEG experts. The encoded versions were

evaluated in an interactive platform with side-by-side visualization of the reference and the

distorted models. The stimuli were displayed using splats of adaptive size based on local

sparsity. As part of the study, subjective experiments under a pairwise comparison protocol

were additionally performed, in order to conclude on preferable rate-allocation strategies for

geometry, and geometry-plus-color encoding.

Static point clouds were evaluated in (Javaheri et al., 2019) subject to geometric compression

artifacts under different rendering approaches. That is, geometry-only point primitives of

fixed size with shading, geometry-plus-color point primitives of fixed size using the original

color after a re-coloring step without shading, and geometry-only meshes after screened

Poisson surface reconstruction (Kazhdan and Hoppe, 2013) with shading. For each rendering

solution, a different evaluation session was established using the double-stimulus sequential

test method. Regarding the selected encoders, the V-PCC and G-PCC using the TriSoup module

were considered, together with the PCL octree-based codec. Results show that different scoring

behaviors might be observed for the same compression impairments, as a function of the

rendering approach. Moreover, the scoring deviations might vary per codec. Finally, it was

suggested that texture information might mask underlying geometric distortions.

Visual quality assessment of dynamic point cloud contents visualized in a virtual reality

scenario, both in 3DoF and 6DoF, is presented in (Subramanyam et al., 2020). Human figures

from real-life acquisition and artificially generated were recruited, and encoded using the

V-PCC and the anchor codec of the MPEG studies (Mekuria et al., 2017a). The models were
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displayed in the virtual scene using quads of fixed size and were consumed by means of a

head-mounted display. The users were allowed to navigate by physical movements in the

6DoF scenario, while remained sited for the purposes of the 3DoF counterpart. The subjects

were required to rate the visual quality of each sequence using an absolute category rating

protocol with a hidden reference. Results showed the superiority of V-PCC at low bit-rates,

while statistical equivalence was found with the MPEG anchor at higher bit-rates as a function

of the content. Finally, the inability of the codecs to achieve transparent visual quality was

remarked.

Perceptual quality of static point clouds in VR was also evaluated in (Alexiou et al., 2020b). The

users were able to interact with the stimuli in a 6DoF inspection scenario inside a virtual scene

that was specifically designed to avoid distractions. The color encoding modules of the MPEG

G-PCC test model were evaluated under octree-based geometry compression. For this purpose,

two double-stimulus protocols with sequential inspection were adopted and compared. The

models were displayed using quads of adaptive size that were interpolated before rendering to

smooth the surfaces. The user behavior during evaluation was also analysed to provide further

insights.

A study on the comparison of point cloud against mesh representations for compression of

volumetric video is conducted in (Zerman et al., 2020). The Google Draco and JPEG encoding

engines were employed for geometry and texture of mesh, respectively, while V-PCC and

G-PCC were recruited to encode geometry and color of point cloud versions. As part of the

study, the efficiency of the latter MPEG point cloud codecs was also analysed. All models

were evaluated in a passive protocol using absolute category rating with hidden references

from both content representations, while point clouds were displayed using fixed-size point

primitives. Results show that the point cloud encoding-plus-rendering pipeline leads to better

performance at low bit-rates, whereas higher quality levels are achieved by the mesh-based

counterpart. However, the latter is attained for bit-rates that well-exceed the point cloud ones.

Finally, among the MPEG alternatives, the superiority of the V-PCC was confirmed.

Similarly, a subjective evaluation of volumetric videos using both point cloud and mesh

technologies is detailed in (Cao et al., 2020). Several additional factors were considered

in the experimental design, among which the target bit-rate, the content resolution, and

the viewing distance. To decrease the parameter space, for every target bit-rate, a manual

identification of the optimal combination for model resolution and compression parameters

per viewing distance was performed in a perceptual sense. The selected stimuli were evaluated

following passive inspection protocols in two experiments that were carried out. In the first,

the subjects rated the visual quality of models that were displayed using both types of content

representations under a single-stimulus test method. In the second, a pairwise comparison

between the same models represented as point clouds and meshes was issued. Based on

the results, subjects favored the point cloud alternative at lower bit-rates. Moreover, the

viewing distance was found to be an important factor, and mesh modelling was preferred at

closer distances. At higher bit-rates and distant inspection, human opinions expressed equal

24



2.4. Quality assessment

preference.

Subjective quality assessment of dynamic point clouds is conducted in (van der Hooft et al.,

2020) in an adaptive streaming scenario hosted by the system described in (van der Hooft et al.,

2019). For the purposes of the study, volumetric video sequences were selected and encoded

at different quality levels using V-PCC. More than one models were placed in the same scene

under different arrangements, and were visited with different navigation paths. The streamed

cues were subjectively evaluated after passive consumption in a desktop setting. Among the

experimental parameters, different bandwidth conditions, bit-rate allocation schemes, and

prediction strategies were examined.

In (Perry et al., 2020), the performance of the MPEG codecs was assessed in terms of bit-rate

against quality, using static colored point clouds. In this framework, the V-PCC and certain

combinations of geometry and color encoding modules from G-PCC reference software were

selected. The experiments were performed in four independent laboratories that participated

in the relevant JPEG Exploration Study activities. A passive inspection protocol with a side-by-

side visualization was employed, using fixed-size point primitives to display the models. The

experimental set-up of each laboratory varied. Yet, the collected subjective scores exhibited

high inter-laboratory correlation.

In (Yang et al., 2020), subjective quality assessment was issued on a large set of widely-

employed colored models. Several degradation types affecting both the geometry and the

color information were introduced, consisting of octree-pruning, noise injection in the coordi-

nates and the RGB values, random down-sampling, and combinations of the above to further

augment the visual impairments. The experiments were conducted using a single-stimulus,

interactive evaluation protocol under a fixed inspection distance between the virtual camera

and the model’s origin. Among the main objectives of this study was to establish a large-scale

subjectively annotated data set and to introduce a new objective quality metric.

In Table 2.1, a summary of existing subjective evaluation studies is attempted considering

several experimental factors, in order to provide an informative synthesis of the current

approaches.

2.4.2 Objective quality metrics

Objective quality metrics for point cloud contents can be distinguished as: (a) point-based,

and (b) image-based approaches, which is very similar to the corresponding classification in

mesh modelling (Lavoué and Mantiuk, 2015). The idea of converting point clouds to meshes

prior to application of relevant algorithms was discarded quickly, as this additional processing

step is commonly lossy.
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Table 2.1 – A categorization of subjective studies in terms of model [G: geometry, C: col-
ored], motion [S: static, D: dynamic, B: both], distortion [GN: geometry noise, CN: color
noise, DN: de-noise, D: down-sampling, O: octree pruning, C: compression, S: streaming],
rendering [Min-P/T: minimum size points/triangles, Fix-P/Q/E/C: fixed size points/quad-
s/ellipsoids/cubes, Adp-P/Q/C: adaptive size points/quads/cubes, Prj-V: projected voxels,
Mesh: reconstructed mesh], inspection [I: interactive, P: passive], and protocol [DS-Seq/Sim:
double stimulus sequential/simultaneous, SS: single stimulus, PC: paired comparison]. Unk
stands for unspecified.

Paper Model Motion Distortion Rendering Inspection Protocol

(Zhang et al., 2014) C S D & GN & CN Min-P Unk Unk

(Mekuria et al., 2017a) C D C Min-P I SS

(Mekuria et al., 2017b) C B C Fix-C P (zoom) SS

(Alexiou and Ebrahimi, 2017a) G S O & GN Min-P I DS-Sim

(Javaheri et al., 2017a) G S DN Mesh P DS-Seq

(Alexiou and Ebrahimi, 2017b) G S O & GN Min-P I SS & DS-Sim

(Javaheri et al., 2017b) C S C Adp-C P (zoom) DS-Seq

(Alexiou et al., 2017) G S O & GN Min-T I (AR) DS-Sim

(Alexiou et al., 2018) G S O Mesh P DS-Sim

(Alexious et al., 2018) G S O Mesh P DS-Sim

(Torlig et al., 2018a) C S C Prj-V I DS-Sim

(da Silva Cruz et al., 2019) C S C Fix-P P DS-Sim

(Alexiou and Ebrahimi, 2019) C S C Adp-C I DS-Sim

(Zerman et al., 2019) C D C Fix-E P DS-Sim

(Su et al., 2019) C S CN & GN & O & C Min-P P DS-Sim

(Alexiou et al., 2019a) C S C Adp-P I DS-Sim & PC

(Javaheri et al., 2019) G & C S C Fix-P & Mesh P DS-Seq

(Subramanyam et al., 2020) C D C Fix-Q I (VR) SS

(Alexiou et al., 2020b) C S C Adp-Q I (VR) DS-Seq

(Zerman et al., 2020) C D C Fix-P & Mesh P SS

(van der Hooft et al., 2020) C D C & S Fix-P P (zoom) SS

(Cao et al., 2020) C D C Min-P & Mesh P SS & PC

(Perry et al., 2020) C S C Fix-P P DS-Sim

(Yang et al., 2020) C S CN & GN & D & O Min-P I (no zoom) SS

Point-based metrics

Current point-based predictors evaluate the level of impairment based on geometry and/or

color properties of a point cloud model.

The majority of the proposed methods consist of full-reference approaches; this is, the pres-

ence of the original content is required for the computations. In full-reference metrics, a

correspondence between the pristine and the impaired stimuli is essential. For this purpose,

one model is selected as the reference and the other is set under evaluation. An association for

each point of the latter model is then founded. Most commonly, for each queried sample of

the model under evaluation, the nearest point or neighborhood that belongs to the reference

is identified. Yet, there are metrics that follow different association algorithms, as it will be

explained below.
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After establishing correspondence, for every point of the model under evaluation, an individual

error is obtained. A global degradation score for the entire model is computed via pooling

across the individual values, with the most common choices being a simple average, the

Mean Square Error (MSE), the Root-Mean-Square (RMS) error, and the Hausdorff distance.

Note that by choosing one model as the reference, a specific correspondence and, in turn, a

particular global degradation score is derived. Thus, for quality prediction that is independent

of the reference selection, the so-called symmetric error is used. One way to export such a

measurement is to set both the pristine and the impaired models as a reference, compute

both global degradation scores and apply a function that grants symmetry, such as the max or

the average pooling. Hereafter, the aforementioned procedure is implied when we refer to the

symmetric error.

Early-developed predictors rely on simple distances between pairs of points that are associated

under the nearest neighbor rule and assess geometry-only distortions. The point-to-point

metric measures the Euclidean distance that separates the corresponding samples in the 3D

space. Thus, an individual error value reflects the geometric displacement of a point from its

reference position. The point-to-plane metric (Tian et al., 2017b) relies on the projected error

of a queried point across the normal vector that corresponds to the reference sample. Hence,

an error value indicates the deviation of a point from its linearly approximated reference

surface. Using any of the above metrics, the MSE or the Hausdorff distance are more often

used to obtain a global degradation score, while the symmetric error with max pooling is

adopted to provide the final prediction.

The geometric Peak-Signal-to-Noise-Ratio (PSNR) measurement is proposed for the afore-

mentioned metrics in (Tian et al., 2017a) to account for differently scaled contents. This is

computed based on the ratio of a squared peak constant value, potentially multiplied by a

scalar, divided by the symmetric squared error (e.g., MSE or squared Hausdorff distance). The

peak can be set equal to the maximum nearest-neighbor distance of the original content. Al-

ternatively, when the metrics are applied on voxelized models, the square root of the voxel grid

diagonal, or the voxel grid resolution can be used instead. Note that, provided the symmetric

error and the peak value, the PSNR is straightforwardly computed.

A pooling method referred to as the generalized Hausdorff distance is proposed in (Javaheri

et al., 2020a), to improve the performance of the point-to-point and point-to-plane variants.

The rationale is to exclude a percentage of the largest individual error values from the com-

putation of the global degradation score, in order to mitigate the sensitivity of the Hausdorff

distance to the presence of outlying points. Moreover, the same authors revise the compu-

tation of the geometric PSNR in (Javaheri et al., 2020b). In particular, the peak value in the

numerator is replaced by estimators of the content’s intrinsic resolution, which is computed as

the maximum, or the average of nearest neighbors distances. A second formulation involves

the regularization of the numerator using the previously defined intrinsic, or the so-called

rendering resolution of the content. The latter is obtained by computing the average over

projected distances of nearest neighbors onto the plane that is perpendicular to the normal
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vector of each point.

The point-to-distribution geometry-based metric is introduced in (Javaheri et al., 2020c). In

this case, the correspondence is realized between a point of the model under evaluation and a

nearest neighborhood that belongs to the reference. An individual error for a queried point is

computed using the Mahalanobis distance, in order to take under consideration properties

of the local distribution of the reference samples. A degradation score for a model under

evaluation is obtained by means of a simple average, with the symmetric error based on max

pooling.

The plane-to-plane metric (Alexiou and Ebrahimi, 2018c) is based on the angular similarity

of unoriented normals, or equivalently tangent planes, that correspond to pairs of nearest

points that belong to the reference and the model under evaluation. Each individual error

quantifies the difference in orientation between the linear local surface approximations of

the corresponding models’ shapes. A global degradation score is obtained using the average,

or the MSE over individual angular similarity scores of the model under evaluation, and the

symmetric error provides a final quality prediction.

In the same category of geometric predictors falls the PC-MSDM (Meynet et al., 2019). This is

an extension of the well-known mesh-based MSDM metric (Lavoué et al., 2006; Lavoué, 2011)

to point cloud contents. It relies on features that exploit local curvature statistics between

pairs of associated points. The pairs are composed of reference samples and their projections

onto surfaces that are fitted to the distorted model. The curvature values are computed after

applying least-squares fitting of quadric surfaces in local neighborhoods defined around the

associated points. A global degradation score is obtained using the Minkowski distance over

individual error values, while a symmetric error is computed using average pooling. This

metric was recently enhanced to include textural information by extracting additional color-

based features. Moreover, a recommended weighting function was established in order to

provide a global degradation score that considers both geometry and color distortions (Meynet

et al., 2020). In the case of PC-MSDM, an asymmetric error is used.

In (Diniz et al., 2020b), local binary pattern (LBP) descriptors applied on the luminance

channel are employed to estimate texture distortion. Voxelized point clouds are required as

inputs, and the descriptors are computed on the k-nearest neighborhood of each point, thus,

extending the 2D approach in the 3D space. Histograms of the extracted feature maps (i.e.,

labels) are obtained for both the reference and the distorted models. The histograms are then

compared through a distance metric (i.e., Euclidean distance) before applying a regression

algorithm to provide a quality score. This work was later extended in (Diniz et al., 2020a) to

additionally take under consideration the point-to-plane distance between the point clouds,

and the point-to-point distance between the corresponding feature maps in the computation

of the prediction value.

In (Alexiou and Ebrahimi, 2020), statistical local features are proposed to compute a quality

score, similarly to SSIM (Wang et al., 2004) in the image domain. The features are extracted
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from local neighborhoods around each point, and are applied on quantities that are defined

per attribute, considering location, color, normal and curvature information. A correspon-

dence between samples from the model under evaluation and the reference is achieved using

the geometric nearest neighbor. A global degradation score is obtained by pooling across

an error map that reflects differences of the feature values between associated points, per

attribute. Moreover, a voxelization step is proposed and optionally enabled prior to the feature

extraction, which can lead to better predictions. Both asymmetric and symmetric errors using

max pooling are exported.

A reduced-reference metric, namely PCM_RR, is described in (Viola and Cesar, 2020), relying

on a diverse set of global features from location, color and normal information. In particular,

1D histograms are obtained from the coordinates of a model considering each axis, and the

luminance values from the color attributes. Histograms reflecting shape uniformity, which is

estimated based on angular similarity between normal vectors per local neighborhood, are

also employed. Relevant distances are applied to compare the approximated distributions of

the reference and the distorted models, in order to provide a quality score. Note that only the

aforementioned statistics are required for the computation of this metric, thus, placing it to

the reduced-reference class.

Simple point-based methods that assess the color of an impaired model make use of conven-

tional formulas from 2D content representations. In particular, the formulas are applied on

pairs of associated points. Similarly to the geometry-only case, the nearest neighbor rule is

typically employed to achieve correspondence. A global degradation score is then estimated

based on the MSE, or the corresponding PSNR, from individual error values that are obtained

for the model under evaluation. The computations can be performed either in the RGB or the

YCbCr color spaces. Finally, the symmetric error using max pooling is typically adopted to

provide a prediction value.

In (Viola et al., 2020), metrics for color distortions that are based on histograms and an

extension of correlograms to point cloud data, are introduced and benchmarked. Luminance-

only and a weighted average including luminance and chroma components are evaluated

to characterize the color distribution of a model. Several distances are also examined for

comparison purposes. Finally, evaluation analysis of a weighted combination between the

best-performing color-based predictor that is proposed and an existing geometry-based metric

(i.e., point-to-plane) is reported.

Image-based metrics

In the image-based approaches, firstly used in (de Queiroz and Chou, 2017a) for point clouds,

the rendered models are mapped onto planar surfaces, on which conventional 2D imaging

metrics are applied to provide a quality score (Torlig et al., 2018a).

Requirements for the presence of the original model at run-time depend on the working
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principle of the selected 2D imaging metric. So far, only full-reference approaches have been

examined for quality evaluation of point clouds. In this case, views of the pristine and the

impaired models are captured under identical camera parameters in order to compute an

objective quality score. A global degradation is then estimated as an average, or a weighted

average of the objective values that are derived under the adopted camera settings.

There are several factors that may influence the results of image-based metrics’ computations.

First and foremost is the rendering scheme that is employed to display point cloud data,

together with the environmental and lighting conditions that are adjusted in the virtual scene.

Note that the aforementioned specifications have a strong impact on the visual appearance of

a model and can be set differently for users consumption and metrics execution. Moreover,

the number of cameras and the configuration of each camera’s parameters for the acquisition

of model views, also affect the obtained scores. For this reason, image-based metrics are con-

sidered as rendering-dependent and view-dependent solutions (Lavoué et al., 2016; Alexiou

et al., 2019a).

Nonetheless, image-based approaches are capable of simultaneously capturing both geomet-

ric and color degradations, as reflected in the selected renderer. In some cases, the realization

of a simple rendering method might be part of the implementation of an objective metric, such

as voxelization at a manually-defined voxel grid resolution as described in (Torlig et al., 2018b)

and implemented by respective software2. In principle, though, reproducing the rendering

methodology and conditions that are set during consumption is preferred, since it allows

to capture views of the content as experienced by users. For this purpose, snapshots of the

models are commonly acquired from the corresponding application used for visualization.

Independently of the rendering scheme, the number of viewpoints and the parameters of the

virtual camera can be set arbitrarily in order to capture the stimuli. Naturally, it is desirable to

cover the maximum surface of a model, thereby incorporating as much visual information as

possible in the extracted views. Yet, enabling a large number may lead to redundancies and

extra computational costs, without guaranteeing performance improvements, as indicated

in (Alexiou and Ebrahimi, 2019). Excluding pixels from the views that don’t belong to the

effective part of the displayed model (i.e., background information), was found to improve the

accuracy of the predicted quality in (Alexiou and Ebrahimi, 2019). Moreover, the estimation

of the global degradation score by incorporating importance weights based on the time of

inspection of human subjects was proposed in the same study, and was found to increase the

prediction performance.

Finally, in (Yang et al., 2020), an image-based metric is introduced based on a weighted

combination of global and local features, which are extracted from texture and depth images

that are captured after projecting the point cloud onto the 6 faces of a surrounding cube.

The Jensen-Shannon (JS) divergence on the luminance channel serves as the global feature,

whereas the local features consist of a depth edge map that reflects discontinuities, texture

2https://github.com/digitalivp/ProjectedPSNR
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similarity that is applied on color components, and an estimated content complexity factor.

In Table 2.2, a categorized outline of current objective quality metrics is reported.

Table 2.2 – A categorization of objective quality metrics in terms of class [FR: full-reference, RR:
reduced-reference], domain [P: point-based, I: image-based], inputs [L: location, N: normals,
C: curvatures, RGB.: red-green-blue color, TI: texture image, DI: depth image], and features.
The character “&” indicates AND, while “|” denotes CONDITION with optional inputs referred
on the left side.

Paper Class Domain Inputs Features

(Tian et al., 2017b) FR P L & N Projected error

(Alexiou and Ebrahimi, 2018c) FR P L & N Angular similarity

(Torlig et al., 2018a) FR I TI Metric-dependent

(Alexiou and Ebrahimi, 2019) FR I TI Metric-dependent

(Meynet et al., 2019) FR P L Curvature local statistics

(Diniz et al., 2020b) FR P L & RGB LBP histograms

(Javaheri et al., 2020a) FR P N | L
Euclidean distance, or
projected error

(Meynet et al., 2020) FR P L & RGB
Curvature and luma-chroma-hue
local statistics

(Viola et al., 2020) FR P RGB Luma histogram

(Alexiou and Ebrahimi, 2020) FR P N, C, RGB | L
Location, angular similarity,
curvature, or luma local statistics

(Javaheri et al., 2020c) FR P L Mahalanobis distance

(Viola and Cesar, 2020) RR P L & N & RGB
Location, angular similarity and
luma histograms

(Diniz et al., 2020a) FR P L & RGB
LBP histogram, distance, and
projected error

(Javaheri et al., 2020b) FR P N | L
Euclidean distance, or
projected error

(Yang et al., 2020) FR I TI & DI
Depth-edge and texture similarity,
and luma JS divergence

2.4.3 Discussion

Subjective quality assessment methodologies unveil the ground truth for quality character-

ization of impaired models. However, they denote expensive procedures in terms of time

and computational costs that depend on the recruitment of human subjects to consume and

evaluate the degradation level of the stimuli under evaluation. Objective quality metrics aim

at providing accurate predictions for the visual quality of the impaired models after executing

the corresponding algorithms. Yet, their validity needs to be verified through benchmarking

against subjective opinions. It is noteworthy that the performance of a predictor might depend

on the selection of contents and the types of degradation.

In the context of this thesis, we extensively experiment with both types of evaluation means for

point cloud contents. In particular, we employ and extend well-established subjective quality
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assessment methodologies. Moreover, we develop new point-based algorithms for quality

prediction and experiment with the performance of image-based approaches. Finally, we

recruit state-of-the-art objective quality metrics for benchmarking, and discuss their strong

and weak points in order to draw conclusions regarding their performance and best-practices

for their usage.

Contributions: Our contributions to the state-of-the-art in subjective quality evaluation

studies are the following papers: (Alexiou and Ebrahimi, 2017a,b; Alexiou et al., 2017, 2018;

Alexious et al., 2018; da Silva Cruz et al., 2019; Alexiou and Ebrahimi, 2019; Alexiou et al., 2019a,

2020b; Perry et al., 2020), which essentially form part I of this dissertation and chapter 9 of

part III. Note that we haven’t referred to relevant work in visual attention, which is the topic of

our interest in (Alexiou et al., 2019b) and, in principle, can fall in the broader class of subjective

experimentation. Pertinent studies are detailed in section 5, where we report our work. In the

field of objective quality evaluation, the following papers have been published: (Alexiou and

Ebrahimi, 2018a,c; Torlig et al., 2018a; Alexiou and Ebrahimi, 2019, 2020), which are detailed

and evaluated in part II. Finally, publicly open software and data sets are provided to further

facilitate research on the field (see annex E).
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3 Quality evaluation of point clouds
geometry

Visual quality of content representations is strongly linked to the user experience. Thus, the

foundation of adequate methodologies for its quantification is crucial for human-centric

applications. The perceptual quality of a content is evaluated through either objective, or

subjective methods. In the first case, algorithms are designed to estimate the impact of

signal degradations in terms of visual artifacts, and aim at providing accurate predictions of

perceived quality. In the second case, evaluation experiments with the participation of human

observers are conducted in order to rate its visual quality. Subjective quality assessments

provide the ground truth since they depend on opinions of targeted end-users. Yet, they

require an explicit design that allows repeatability and ensures reliability of the results. The

Recommendations ITU-R BT.500-13 (ITU-R BT.500-13, 2012), ITU-T P.910 (ITU-T P.910, 2008)

and ITU-T P.913 (ITU-T P.913, 2016) denote well-established and widely adopted manuals

tailored for this purpose. In particular, they specify test methods, experimental designs and

evaluation procedures, among other, for conventional 2D imaging modalities. However, it

is unclear whether these standards should be employed as such, or the provided guidelines

should be extended and adjusted to the richer features of 3D contents.

In this chapter we examine and define alternative methodologies for subjective quality as-

sessment of point cloud contents. Our objective is to explore more realistic, yet, adequate

paradigms that exploit the higher levels of interactivity that are offered by 3D visual data repre-

sentations. To this aim, as a first step, we describe the stimuli that were collected and prepared

to assemble the point cloud data set that will be used throughout our experimentation. Then,

we focus on the evaluation of testing parameters, such as the test methods, display devices,

and rendering schemes, after extending protocols from 2D to 3D imaging to integrate human

interaction. In particular, experiments are performed to understand the impact of including

explicit references in subjective quality assessment of point clouds. Moreover, an evaluation

scenario is designed and conducted in AR, where participants inspect and interact with the

queried stimuli through 6DoF by means of a head-mounted display (HMD). Correlation of

subjective opinions from the previous experiments leads to useful insights regarding the effect

of the display equipment in rating the same testing material. Finally, an experiment is per-
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formed to evaluate the quality of point cloud contents after conversion to polygonal meshes.

The latter is a common rendering approach that allows visualization of watertight models.

We compare ratings from subjects inspecting the same stimuli under these two different

visual data representations, namely point clouds and meshes, to draw conclusions regarding

their statistical equivalence. In these efforts, we opt for geometry-only models to limit the

parameter space of our experiments, since color information might be cited as distracting.

This chapter is based on material that has been published in (Alexiou and Ebrahimi, 2017a,b;

Alexiou et al., 2017, 2018; Alexious et al., 2018; Alexiou and Ebrahimi, 2018b).

3.1 Data set preparation

3.1.1 Content selection

A total of 7 geometry-only models are selected to assemble our data set. Cube, and sphere are

synthesized using corresponding mathematical formulas, while torus is artificially produced

in MeshLab (Cignoni et al., 2008) to represent synthetic point clouds with perfect geometry.

Vase is a model captured by Intel RealSense R2001 and constitutes a representative content

with irregular structure that can be acquired from a low-cost consumer market device. Egyp-

tian_mask2 is a model employed in relevant point cloud compression activities and the Call

for Proposals issued by the MPEG standardization committee (MPEG 3DG and Requirements,

2017), also denoting a content with irregular topology. Finally, bunny and dragon are selected

from the Stanford 3D Scanning Repository3 and represent point clouds with less irregular

geometry and smooth underlying surfaces.

These models are selected to form a representative data set, considering the following proper-

ties: (a) Simplicity, as it would have been difficult for complex scenes to be distinguishable in

the absence of color. Although simple, the complexity of contents covers a reasonable range.

(b) Diversity of geometric structure, as different artifacts may be observed by applying different

types of degradations. The selected models are generated by different means, resulting in

different levels of geometric irregularity. (c) Similarity of point density4, as the number of

points comprising a point cloud directly affects the faithfulness of the represented model.

3.1.2 Content preparation

The selected contents are scaled to fit in a minimum bounding cube of size 1 in order to

normalize the impact of the applied distortions. To restrict the point density levels to a narrow

range, a sparser version of the dragon is employed (i.e., namely, dragon_vrip_res3), while the

initially captured vase and the originally released egyptian_mask models are downsampled

1https://intel.ly/2IID8FB, last accessed 12/2020
2http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/, last accessed 01/2020
3http://graphics.stanford.edu/data/3Dscanrep/, last accessed 12/2020
4Point density is defined as the number of points divided by the volume of the minimum bounding box.
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(a) bunny (b) cube (c) dragon (d) egyptian_mask

(e) sphere (f) torus* (g) vase

Figure 3.1 – Reference point cloud contents.

Table 3.1 – Geometric characterization of the reference point cloud contents.

bunny cube dragon egyptian_mask sphere torus vase

Points 35947 30246 22998 31601 30135 31250 36022

Min D 3.79 ·10−5 0.0101 7.58 ·10−4 0.0070 1.48 ·10−4 0.0042 0.0055

Max D 0.0144 0.0141 0.0113 0.0497 0.012825 0.0084 0.0104

X/Y/Z 1/0.99/0.78 1/1/1 1/0.71/0.45 0.99/1/0.82 1/1/1 1/0.33/1 0.68/1/0.68

using the CloudCompare software. The downsampling is performed by discarding points,

such that no neighbors at the sparser version are closer than a specified threshold distance.

This algorithm avoids displacements of the original coordinates, thus, maintaining the default

structure of a content.

The prepared models are used as the reference contents in our experiments; in Figure 3.1

their snapshots are illustrated, while in Table 3.1 corresponding information regarding their

geometric composition is reported.

3.1.3 Degradation types

In this study, two radically different types of geometric degradations are employed and as-

sessed: (a) Gaussian noise, which results in points’ displacements, and (b) Octree-pruning,

which leads to point reduction and mapping to a regular grid. In both cases, the distortion
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(a) Cube: (left) original, (middle) Octree-pruning with p = 50%, (right) Gaussian noise with σ= 0.008

(b) Dragon: (left) original, (middle) Octree-pruning with p = 50%, (right) Gaussian noise with σ= 0.008

Figure 3.2 – Illustrative examples of the visual artifacts that are introduced by the selected
types of degradation.

levels are selected to cover a wide range of subjective scores, spanning from the lowest to the

highest. In Figure 3.2, indicative examples of the types of artifacts that are generated under

both types of degradation are presented.

Gaussian noise: It is widely used in the literature to simulate position errors due to depth

sensor imperfections, or errors occurred after stereoscopic triangulation. In this case, we

assume that the noise affects the coordinates of every point of a model, across each X, Y

and Z axis. The injection of Gaussian noise, leads to the perception of scattered geometric

arrangements, which are becoming more evident as the level of the noise is increasing.

For our experiments, this type of degradation is implemented using custom MATLAB scripts.

The distortion level is determined by a target standard deviation, σ, that takes a value from

the set {0.0005,0.002,0.008,0.016}. Note that the coordinates of the point clouds are ranging

over [0,1].

Octree-pruning: This type of impairment is obtained after octree decomposition at a selected

level-of-detail (LoD), or a tree-depth. It leads to points’ removal and displacement, giving rise

to visible distortions in the form of structural loss. In principle, larger LoDs, or lower tree-
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Table 3.2 – Configuration parameters for Octree-pruning. With *, we annotate contents that
are employed only during the training.

Content LoD values Input points Actual percentage Target percentage

bunny

0.007 32957 8.32% 10%

0.010 25209 29.87% 30%

0.012 17763 50.59% 50%

0.016 10870 69.76% 70%

cube

0.015 27541 8.94% 10%

0.017 20888 30.94% 30%

0.020 15002 50.40% 50%

0.025 9602 68.25% 70%

dragon

0.008 20847 9.35% 10%

0.010 16487 28.31% 30%

0.013 11539 49.83% 50%

0.017 7026 69.45% 70%

egyptian_mask

0.008 28393 10.15% 10%

0.010 22061 30.19% 30%

0.013 15790 50.03% 50%

0.017 9466 70.04% 70%

sphere

0.004 27298 9.41% 10%

0.011 21100 29.98% 30%

0.015 15168 49.67% 50%

0.020 8977 70.21% 70%

torus*

0.005 30566 2.19% 2%

0.007 27968 10.50% 10%

0.010 21901 29.92% 30%

0.012 15715 49.71% 50%

0.017 9539 69.47% 70%

vase

0.007 32454 9.90% 10%

0.009 25217 30.00% 30%

0.011 17963 50.13% 50%

0.015 10693 70.31% 70%

depths are resulting in lower number of output points. See annex B.1 for further information.

For our experiments, Octree-pruning is implemented using the PCL software (Rusu and

Cousins, 2011) version 1.8.0, selecting LoD values per content in order to discard a target per-

centage of the original number of points, p, that takes a value from the set {10%,30%,50%,70%}.

A deviation of ±2% is allowed for p. The actual percentages that are achieved are reported in

Table 3.2, per stimulus. Note that for torus, which is a content that serves for training purposes,

an additional version with p = 2% is prepared.
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3.2 Evaluation methodologies

In this section we examine the influence of adopting different test methods in subjective

quality assessment of point cloud contents. In particular, we conduct two separate subjective

experiments following two of the most popular evaluation protocols, namely, the absolute

category rating (ACR) and the degradation category rating (DCR), commonly and hereafter

referred to as Double-Stimulus Impairment Scale (DSIS). The former is a test method that

better simulates real-life consumption of visual data, whereas the latter is commonly employed

to rate the fidelity of a distorted content with respect to its original version. In this study, we

extend the aforementioned protocols by allowing the observers to interact with the queried

stimuli, exploiting the 3D nature of the represented models. We employ the same rating scale,

asking the participants to rate the level of impairment of the distorted stimulus with respect

to their implicit, and a provided explicit reference, for the ACR and the DSIS experiment,

respectively. To avoid additional influencing factors that might act as distractors such as

texture or shading, geometry-only models are employed and displayed as raw point clouds.

To fairly compare the selected test methods, the same desktop arrangement in a controlled

testing environment is configured, and the same contents, degradation types, and degradation

levels are evaluated by human observers. The objective is to address whether the subjects

rate the testing material in the same way and, more generally, what is the impact of adopting

different test methods in subjective quality assessment of point cloud representations.

3.2.1 Data set

In this study, the contents bunny, cube, dragon, sphere, and vase are selected. As detailed in

section 3.1, the contents are pre-processed and scaled in a bounding cube of size 1, with their

coordinates spanning in the range [0,1]. Both types of degradation are evaluated, namely,

Gaussian noise and Octree-pruning, to account for substantially different artifacts, as shown

in Figure 3.2. A target standard deviation, σ= {0.0005,0.002,0.008,0.016}, is employed in the

former case, whereas a target percentage of discarding points, p = {10%,30%,50%,70%}, is

defined in the latter case to account for different degradation levels.

3.2.2 Methodology

Test methods

Two widely known test methods are selected for this study, namely, (i) simultaneous DSIS,

and (ii) ACR, using the same 5-rating impairment scale (5 - imperceptible, 4 - perceptible,

but not annoying, 3 - slightly annoying, 2 - annoying, 1 - very annoying). The first method is

commonly preferred for its high discriminative power and reliability, since subjects are able to

visualize the degraded and the reference models side-by-side, facilitating the identification of

differences. Moreover, the DSIS is renown for eliminating biases from personal preferences

of observers over particular contents, as opposed to the ACR counterpart. However, the
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Figure 3.3 – Rendering application screen-shot showing the original vase on the right and the
hidden reference on the left.

latter accounts for a more realistic type of media consumption. In the DSIS test method, the

participants were instructed to rate the level of impairment of the distorted model with respect

to an explicit reference that was provided and clearly annotated. In the ACR test method, the

subjects were asked to rate the level of impairment of the distorted model with respect to their

implicit/internal reference.

Both protocols are tailored to allow interactivity. In particular, through the renderer, the

subjects were able to inspect, rotate, translate and zoom in/out to the point clouds in real-time

using the mouse, and provide their scores using the keyboard. Despite the fact that passive

evaluations enable identical viewing experience among users, it was considered important

to let subjects get familiar with this type of visual data representation by allowing them to

naturally interact, until they feel certain for their judgement. Hence, no time limitation was

imposed during evaluations. Finally, a free viewing protocol was followed, meaning that the

users were allowed to adjust their sitting position with respect to the screen.

Rendering

To render the stimuli the PCL visualizer is employed. The point clouds are displayed as

collections of points, with each point represented by a single pixel onto the screen. The

background color of the visualizer was set to black, while the color of the stimuli was set to

white in order to increase the contrast and avoid distractions. A snapshot of the renderer is

depicted in Figure 3.3.
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Figure 3.4 – Participant inspecting the point clouds under assessment in the desktop set-up.

Testing environment

The experiments were conducted in the MMSPG laboratory, which fulfils the ITU-R Rec-

ommendation BT.500-13 (ITU-R BT.500-13, 2012) for subjective evaluation of visual data.

A 30-inch Apple Cinema Display with a resolution of 2560x1600 was installed in the room.

The luminance of the foreground and the background of the renderer was measured on the

screen as 354 and 0.5 nits, respectively, using a luminosity sensor5. In Figure 3.4, a participant

interacting with the stimuli under evaluation in our testing environment is presented.

Experimental design

Provided that the nature of artifacts that are introduced by Gaussian noise and Octree-pruning

drastically differs, 4 separate sessions were held in total: (i) DSIS with Gaussian noise, (ii) DSIS

with Octree-pruning, (iii) ACR with Gaussian noise, and (iv) ACR with Octree-pruning. Each

session was launched after a training phase, where special care was given in order for the

subjects to well-understand the impact of the corresponding type of impairment. Moreover,

subjects were familiarized with the interaction part. During the testing, the same content was

never displayed consecutively in order to avoid contextual effects. A different permutation of

5X-Rite i1 Display Pro - http://www.xrite.com/
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the presentation order of stimuli was deployed per session and per subject, while for the DSIS

test method, the side of the reference in the screen was selected randomly for every subject.

In each session, a total of 5 contents and 4 degradation values were used, along with a hidden

reference for sanity check, leading to 25 stimuli per session. A total of 28 naive subjects (17

males and 11 females) participated in the experiments; 12 of them were involved in both

while 16 participated in just one experiment, leading to 20 scores per stimulus. The age was

ranging from 20.56 to 37.4 with an average of 28.18 and a median of 28.04 years of age.

Data processing

The MOS and CIs are computed to characterize the quality level and uncertainty of a particular

stimulus, as described in annex A.1.1. Moreover, to compare the test methods, performance

indexes described in annex A.2 are employed, which are issued per type of degradation. In

particular, the ACR is compared against the DSIS test method after Gaussian noise and Octree-

pruning, separately.

3.2.3 Results

Subjective results

Subject screening was applied on the collected scores of every experiment (i.e., test method)

and each session (i.e., Gaussian noise and Octree-pruning). In the ACR experiment, no outlier

was detected in none of the two sessions leading to 20 out of the 20 scores for both cases, while

in the DSIS experiment one outlier was detected in the second session leading to 20 out of 20

and 19 out of 20 scores for Gaussian noise and Octree-pruning, respectively.

In Figures 3.5 and 3.6 the MOS and the corresponding CIs are indicated against the degradation

levels for every type of impairment for the DSIS and ACR experiments, respectively. The

markers with faces indicate the scores for the distorted point clouds, while the markers

without faces (i.e., at the top-left corner) correspond to the ratings of the hidden references.

Results from both experiments indicate similar rating distributions with a general tendency

of increasing MOS as the level of impairment is decreasing. It can be seen that, in the case

of Gaussian noise, the subjective scores are decreasing following a logarithmic trend as the

target standard deviation is increasing, for every content. However, this is not the case with

Octree-pruning, where the shape of the model seems to influence the perceived distortions

(e.g., cube).

Using the DSIS protocol in the presence of Guassian noise, very similar scores are observed

for every degradation level independently of the content, thus, suggesting that the subjects

are able to recognize the amount of introduced noise. Using the ACR protocol, the dragon and

vase are rated slightly but consistently lower than the other models, for every target standard
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Figure 3.5 – Subjective scores against degradation levels using the DSIS test method.
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Figure 3.6 – Subjective scores against degradation levels using the ACR test method.

deviation. In fact, this tendency is even clearer in the ratings of the hidden references. For

dragon, we assume that this behavior is observed due to the complexity of the object. In

particular, although the density of is similar across contents, dragon is a substantially more

complex object. This speculation could be partially verified by how the subjects rate the

hidden reference in the Octree-pruning session, which is notably lower with respect to other

hidden references, meaning that subjects tend to believe that the reference dragon is already

simplified. Regarding vase, the difference in subjective scores is assumed to be observed due

to its irregular geometric structure. There are two main reasons for this: (a) the training phase,

which was conducted involving a content with more regular geometry; thus, when irregular

topology was observed, participants tended to associate it with the existence of noise, and (b)

a general preference of subjects towards regularly placed coordinates. Note though, that in

the case of Octree-pruning, the reference version of vase is rated similarly to the other hidden
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references; this is due to the absence of geometric regularity that was expected under this type

of degradation, but not perceived by the subjects.

Using both DSIS and ACR protocols with Octree-pruning, we observe that cube, is rated remark-

ably higher than any other content, for every degradation level. The octree decomposition

leads to elimination of high frequency components, which results to visible artifacts in the

form of structural loss. Thus, more severe distortions are observed in point clouds with high

curvature values and irregular structures, whereas the perception of the geometric arrange-

ment of regular contents with planar underlying surfaces, such as cube, is not significantly

impacted. Moreover, a steep increase of the MOS of the sphere can be observed for p = 10%,

for both ACR and DSIS experiments. This phenomenon can be explained by the non-uniform

distribution of points; that is, the density of points in the poles is much higher and, thus,

for p = 10%, limited artifacts is perceived in the remaining surface. Finally, bunny is rated

remarkably lower for p = 10% when compared to p = 30% in the ACR session. This is because,

indeed, additional artifacts are perceived in the latter case. Yet, in the DSIS test method, this

MOS decrease is not observed. This leads to the assumption that subjects tend to rate based

on the number of points of the processed point cloud when the reference content is provided.

The aforementioned observations suggest that simplifying objects without considering their

underlying geometric properties may lead to enhanced visual distortions.

Comparison of test methods

In Table 3.3, the performance indexes of the MOS obtained from the DSIS (i.e., which is

considered as ground truth) against the MOS from the ACR test methods are provided. No

fitting, linear and cubic fitting are applied on the scores obtained from the ACR. Moreover, in

Figure 3.7 the scatter plots comparing the subjective scores of the DSIS against the ACR are

presented. The horizontal and vertical bars indicate CIs that are as computed by the scores of

the test method indicated in the corresponding label. The linear and cubic fitting curves are

also included.

In Table 3.4, the performance indexes of the MOS obtained from the ACR (i.e., ground truth)

against the MOS from the DSIS are reported under all fitting functions, while in Figure 3.8,

corresponding scatter plots are depicted.

A comparison of the average CIs shows that, in general, the uncertainty regarding the quality

level of each stimulus is higher when using the ACR protocol, which can be explained by the

absence of an explicit reference. In particular, the CIs were found to be 5.67% and 5.06% larger

when using the ACR with respect to the DSIS in the presence of Gaussian noise and after

Octree-pruning, respectively.

Based on our results, it is clear that the subjective scores from both test methods are strongly

correlated when evaluating point clouds subject to Gaussian noise. The linear fitting function

achieves an angle of 45° in Figure 3.7a and 44.5° in Figure 3.8a, indicating almost perfect
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Figure 3.7 – Comparison of subjective scores obtained from both test methods (DSIS is set as
the ground truth).

Table 3.3 – Performance indexes to compare the test methods (DSIS is set as the ground truth).

Gaussian noise

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.992 0.976 0.211 0.20 100% 0% 0% 95.79% 0% 1.58% 2.63%

Linear fitting 0.992 0.976 0.175 0.10 100% 0% 0% 95.79% 0% 1.58% 2.63%

Cubic fitting 0.992 0.976 0.174 0.05 100% 0% 0% 95.79% 0% 1.58% 2.63%

Octree-pruning

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.948 0.955 0.305 0.20 100% 0% 0% 84.74% 0% 8.95% 6.32%

Linear fitting 0.948 0.955 0.304 0.20 100% 0% 0% 84.74% 0% 7.89% 7.37%

Cubic fitting 0.952 0.955 0.291 0.20 100% 0% 0% 86.84% 0% 8.42% 4.74%

linear correlation. The intercepts of 1.11 and 0.96, though, in the former and the latter case

respectively, indicate a slight tendency of higher ratings in the DSIS test method, consistently.

The high PLCC and SROCC indexes, as well as the low RMSE and OR values, confirm the

close correlation. Furthermore, a CE of 100% indicates no statistically significant difference

between the MOS obtained from the two test methods. Finally, the FR of 0% and the marginal

FD and FT percentages verify that the two protocols lead to almost identical conclusions for

the assessment of two stimuli.

Results after Octree-pruning show that when scores from the DSIS experiment are considered

as ground truth, an angle of 44.6° with an intercept of 1.24 are achieved, whereas when the ACR

scores are set as the ground truth an angle of 42.3° with an intercept of 1.46 are observed. The

linearity and monotonicity coefficients are high in both cases while the RMSE and OR values

are still relatively low. Moreover, the CE is 100% and the FR is 0%. The high FD percentages
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Figure 3.8 – Comparison of subjective scores obtained from both test methods (ACR is set as
the ground truth).

Table 3.4 – Performance indexes to compare the test methods (ACR is set as the ground truth).

Gaussian noise

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.992 0.976 0.211 0.25 100% 0% 0% 95.79% 0% 2.63% 1.58%

Linear fitting 0.992 0.976 0.173 0.10 100% 0% 0% 95.79% 0% 2.63% 1.58%

Cubic fitting 0.992 0.976 0.171 0.05 100% 0% 0% 95.79% 0% 1.58% 2.63%

Octree-pruning

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.948 0.955 0.305 0.15 100% 0% 0% 84.74% 0% 6.32% 8.95%

Linear fitting 0.948 0.955 0.292 0.20 100% 0% 0% 83.68% 0% 4.74% 11.58%

Cubic fitting 0.954 0.955 0.275 0.10 100% 0% 0% 83.16% 0% 4.21% 12.63%

observed in Table 3.3 when setting the DSIS scores as ground truth, though, suggest that this

test method does not differentiate two stimuli, while the ACR methodology decides that they

are statistically different. This is confirmed through the high FT percentages of Table 3.4.

These results indicate that stimuli with equivalent scores in the DSIS, are rated differently in

the ACR experiment, and is mainly observed here for distorted versions of different contents.

This can be explained by the presence of the reference model in the former case, thus, enabling

relative comparisons per content.

3.3 Display devices

Richer content representations, such as point clouds, can be consumed in conventional

monitors, smart-phones and HMDs. Depending on the device, different levels of interactivity

are offered to the users, which may affect the perception and, by extension, the perceived
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quality of the displayed visual data. In this study, we explore the prospect of conducting

subjective quality assessment of point cloud representations in AR. The subjects are able

to inspect and interact with the models that are placed as virtual assets in the real world

through physical movements and can be consumed by means of an HMD. We then compare

the scores collected in this experimental set-up to human opinions obtained from a desktop

arrangement, to identify potentially deviating rating trends. To limit the parameter space of

our experiment while exploiting previous efforts, colorless point clouds are assessed without

enabling any illumination or shading during rendering. To ensure fair comparison, identical

contents, degradation types and levels were chosen for both experiments. The objective of this

study is to, first, define a subjective evaluation methodology that exploits the full potentials of

advanced content representations and, second, to examine whether utterly different display

devices that create different user experiences lead to the same conclusions for the visual

quality of point clouds, even when only the geometry of the models is evaluated.

3.3.1 Data set

In this study, the contents bunny, cube, dragon, sphere, torus and vase were selected for the

purposes of our experiment. Torus was used in the training stage, thus, it was excluded from

the test. As detailed in section 3.1, the contents are pre-processed and scaled in a bounding

cube of size 1, with their coordinates lying in [0,1]. Both types of degradation are evaluated,

namely, Gaussian noise and Octree-pruning. In the first case, a target standard deviation,

σ= {0.0005,0.002,0.008,0.016}, is employed, whereas in the second case a target percentage

of discarding points, p = {10%,30%,50%,70%}, is defined to simulate different degradation

levels.

3.3.2 Methodology

Test method

The simultaneous DSIS protocol, which was found to be consistent for rating the level of

impairment of point clouds according to the results of section 3.2.3, is adopted in the HMD

AR experiment. Both the reference and the distorted models are visualized side-by-side, under

the same 5-rating impairment scale (5 - imperceptible, 4 - perceptible, but not annoying, 3 -

slightly annoying, 2 - annoying, 1 - very annoying), with the subjects instructed to rate the level

of impairment of the distorted model with respect to the provided reference.

In both experiments, the subjects interacted with the stimuli under evaluation in a free viewing

fashion, while exploiting the DoF that were offered by the corresponding display device. For

the desktop experiment, this means that the subjects were able to change their initial distance

between their position and the screen, while inspecting the stimuli from the selected viewpoint

specified by mouse movements. For the HMD AR experiment, the subjects were free to interact

with the queried stimuli by changing their physical position with 6DoF interactions in the real
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Figure 3.9 – Rendering application screen shot showing the reference bunny on the left and its
impaired version with Gaussian noise of σ= 0.008 on the right.

world (e.g., coming closer, changing their point of view, etc.). No restrictions were introduced

in terms of time duration, or viewpoint selection for the evaluation of the stimuli. At the end

of each individual evaluation, the subjects were informing the operator and were providing a

score orally after listening to the rating scale that would select from. The order of the rating

scale was provided identically after each pair of stimuli and for every subject.

Rendering

As described in section 3.2.2, the PCL visualizer was employed in the desktop set-up. The

background color was set to black, and the foreground was set to white.

In the HMD AR set-up, as in the desktop arrangement, the models were displayed as collections

of points. In this case, though, each point was represented by an atomic triangle of minimum

size. Provided that these atomic triangles were significantly smaller than the dimensions of a

point cloud model, they were perceived as points by an observer. The virtual assets were added

on top of the real scenery, defining an AR scenario. Thus, the background of the renderer was

the real-world environment with colors involving different shades of grey, while the color of

the points was set to white. The models under assessment were placed in a fixed location on

top of a test table, which was covered by a medium grey tissue. In Figure 3.9, a snapshot of the

renderer is provided showing a pair of virtual models in the real-world scene.
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Figure 3.10 – Participant inspecting the point clouds under assessment in the HMD AR set-up.

Testing environment

The desktop experiment is detailed in section 3.2.2, where the reader may refer for more

details. In brief, it was conducted in a controlled environment in the MMSPG laboratory with

a desktop set-up using an Apple Cinema Display.

The HMD experiment was also conducted in the MMSPG laboratory. The subjects were

observing the stimuli by means of the Occipital Bridge AR headset6, using an iPhone 6S as the

screen with a resolution of 326 pixels per inch. The Occipital Bridge software development

kit libraries allow rendering of a real world scene captured by the phone’s camera with an

attached wide angle lens of 120 degree field of view. The luminance values of the points and

the test table surface were measured on the screen as 595.28 and 38.91 nits, respectively. In

Figure 3.10, a participant interacting with the virtual testing models is illustrated.

Experimental design

Similarly to the evaluation procedure followed in the desktop experiment, the HMD AR

experiment was split in two sessions; that is, one session was held for the assessment of stimuli

6https://bridge.occipital.com/
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subject to Gaussian noise and a separate session was conducted for Octree-pruning distortions.

Each session was launched after a training phase, where the subjects were informed about

the general characteristics of the type of noise they would assess, and got familiarized with

the HMD set-up. During the testing, the subjects were asked to stand in front of the test table

that was installed in the scene at the distance of 1 meter at the beginning of each evaluation,

and then, they were free to interact with the queried stimuli at will. For the presentation of the

stimuli, particular care was given in order to randomize the order of the observed pairs per

session and subject. Moreover, the position of the reference was picked randomly per subject

and remained fixed across a session.

In each session of the HMD AR experiment, 5 contents and 4 degradation values were used

along with a hidden reference resulting in 25 stimuli per session. A total of 24 naive subjects

(14 males and 10 females) participated in the experiments; 18 of them were involved in both

sessions while 6 participated in just one, leading to 21 scores per stimulus. The age was ranging

from 25 to 32 with an average of 27.66 and a median of 28 years of age.

Data processing

The MOS and CIs are computed to quantify the perceived quality of a particular stimulus. To

compare the two visualization methods, the performance indexes described in annex A.2 are

applied on the derived scores per type of degradation.

3.3.3 Results

Subjective results

The analysis of the subjective scores from the desktop set-up is reported in section 3.2.3. In this

section, we present the results from the HMD AR experiment, following the same procedure to

allow comparisons. In particular, subject screening according to the ITU-R Recommendation

BT.500-13 (ITU-R BT.500-13, 2012) was applied on the scores collected from each session (i.e.,

Gaussian noise and Octree-pruning), revealing 3 and 1 outliers for Gaussian noise (i.e., 18/21)

and Octree-pruning (i.e., 20/21), respectively.

In Figure 3.11 the MOS along with the CIs against the degradation values are depicted, with

markers without faces (i.e., at the top-left corner of the Figures 3.11a and 3.11b) indicating

the scores of the hidden references. It can be observed that as the standard deviation of the

Gaussian noise is increasing, the MOS is decreasing. The subjects seem to be able to recognize

easily the amount of noise introduced, independently of the displayed content. The particular

test method that is adopted (i.e., simultaneous DSIS), also, assists to obtain such results, since

the subjects are always aware of the reference content and can base their judgements on

relative geometric differences.

Conversely, when the contents are subject to Octree-pruning distortions, the underlying
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Figure 3.11 – Subjective scores against degradation levels in the HMD AR experiment.

surface and the shape of the content seems to play a significant role. As the number of points

is decreasing, less details and more rough representations of curved edges are observed, which

leads subjects to penalize distorted stimuli of higher curvature with lower scores. For instance,

cube is rated remarkably higher than any other content (except for sphere at p = 10%). The

structural loss occurred after octree decomposition is not perceived as truly annoying for this

particular content, because it does not affect its geometric structure. Moreover, the models

sphere, bunny and vase are similarly rated, whilst dragon, which is the most complex, is notably

under-rated. Any removal of points for this particular object has higher impact, and even for

p = 10% the MOS is much lower than the MOS of the hidden reference. Another reason for

dragon’s scores is its geometry. The shape of this content and, specifically, the ratio between

height and length is such that it looks remarkably smaller than the other models, despite the

fact that all point clouds were scaled to fit in the same bounding cube. Since the subjects

mostly kept a fixed distance during evaluation, perceiving one object as smaller than the

others may have affected their ratings. Vase’s irregular structure is transformed to a regular

representation after Octree-pruning. Provided that subjects tend to rate based on relative

differences, the MOS of the vase is systematically lower than the MOS of bunny and sphere,

whose geometry is more regular. Finally, as sphere is artificially generated, the density of points

in poles is much higher. For p = 10%, no remarkable impairments occur in the remaining

surface and, thus, it is rated similarly to the hidden reference.

Based on observations extracted during the experimental procedure, most of the subjects

prefer to stay static. Although the performance of the device is sufficient, and just a few

subjects experienced motion sickness, there were very few cases of users that were feeling

confident with the interactivity part. The level of interaction and the viewing position are

important factors, and in order to compensate their impact on the MOS and CIs, we would

suggest to use more than 15 subjects, which is a number proposed for quality assessment of

conventional content. Furthermore, subjects tend to rate models based on the number of
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Figure 3.12 – Comparison of subjective scores obtained under both display devices (Desktop
scores are set as the ground truth).

Table 3.5 – Performance indexes to compare display devices (Desktop scores are set as the
ground truth).

Gaussian noise

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.988 0.959 0.234 0.30 100% 0% 0% 94.21% 0% 3.68% 2.11%

Linear fitting 0.988 0.959 0.210 0.25 100% 0% 0% 94.21% 0% 3.68% 2.11%

Cubic fitting 0.990 0.959 0.192 0.15 100% 0% 0% 96.32% 0% 0.53% 3.16%

Octree-pruning

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.879 0.872 0.544 0.60 90% 0% 10% 73.68% 0% 17.89% 8.42%

Linear fitting 0.879 0.872 0.454 0.45 95% 0% 5% 72.11% 0% 15.26% 12.63%

Cubic fitting 0.885 0.872 0.443 0.45 100% 0% 0% 76.32% 0% 14.21% 9.47%

points and, in general, they prefer regular representations. For instance, in the case of vase

for p = 10%, a few subjects asked why there is no option to rate the processed content higher

than the reference.

These results are quite similar to the conclusions obtained in section 3.2.3. In order to quantify

potential rating differences between the two experiments, namely, desktop and HMD AR, we

statistically analyse the corresponding subjective scores.

Comparison of display devices

In Table 3.5, the performance indexes of the MOS obtained from the desktop set-up (i.e.,

which is considered as ground truth) against the MOS from the HMD AR set-up are reported

after applying no fitting, linear and cubic fitting on the latter, while in Figure 3.12 scatter
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Figure 3.13 – Comparison of subjective scores obtained under both display devices (HMD AR
scores are set as the ground truth).

Table 3.6 – Performance indexes to compare display devices (HMD AR scores are set as the
ground truth).

Gaussian noise

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.988 0.959 0.234 0.25 100% 0% 0% 94.21% 0% 2.11% 3.68%

Linear fitting 0.988 0.959 0.214 0.15 100% 0% 0% 94.21% 0% 2.11% 3.68%

Cubic fitting 0.990 0.959 0.195 0.15 100% 0% 0% 94.21% 0% 2.63% 3.16%

Octree-pruning

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.879 0.872 0.544 0.45 90% 10% 0% 73.68% 0% 8.42% 17.89%

Linear fitting 0.879 0.872 0.486 0.45 95% 5% 0% 73.68% 0% 8.42% 17.89%

Cubic fitting 0.891 0.872 0.463 0.35 100% 0% 0% 74.74% 0% 6.84% 18.42%

plots comparing the subjective scores from the two set-ups are illustrated, for both types of

degradation. Similarly, in Table 3.6 and Figure 3.13, the performance indexes and scatter plots

of the MOS collected from both tests are depicted, considering the HMD AR set-up as ground

truth.

Based on our results, it is evident that for both types of degradation, the CIs associated with

scores obtained from the HMD AR experiment are larger. In particular, for Gaussian noise

and Octree-pruning, the CIs from the HMD AR are on average 11.54% and 7.31% bigger when

compared to the desktop set-up, respectively. The latter values are obtained by averaging over

all possible combinations of valid subjects, when the cardinality of one set of scores is higher

than the other’s. For Gaussian noise, the standard error is 0.0168 for desktop and 0.0261 for

HMD AR, respectively, while for Octree-pruning, the standard error is 0.0202 for the desktop

and 0.0184 for the HMD AR set-up. This behavior is partially due to the higher level of interac-
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tivity that is offered by an HMD device, leading to in principle different viewing experiences

among subjects and across stimuli. Moreover, the real environment scenery as a background

is an additional factor that could have influenced the perception of the virtual objects. Despite

the fact that no issues were reported by the subjects, the level of discomfort when wearing an

HMD is admittedly higher and could lead to rating inconsistencies throughout a session. To

average such statistical uncertainties, a larger number of participants is proposed.

Concerning the results in the presence of Gaussian noise, in Figures 3.12a and 3.13a, the

linear fitting function achieves an angle of 44.2° and 45.1°, with an intercept of 0.96 and 1.14,

respectively. This indicates that although highly correlated, the scores obtained in a desktop

arrangement are consistently slightly lower. The strong correlation is verified by the high PLCC

and SROCC values of Tables 3.5 and 3.6. A CE percentage of 100% implies that the MOS of the

distorted contents, as rated in both testbeds, are statistically equivalent. The FR is 0%, while

the FD and FT percentages are also rather low (below 3.7%).

Regarding the results after Octree-pruning, in Figures 3.12b and 3.13b the linear fitting function

achieves an angle of 39.4° and 43.3° with an intercept of 1.23 and 1.63, respectively, without

revealing any particular trend. Based on the performance indexes of Tables 3.5 and 3.6, the

selection of a different testbed may lead to different conclusions regarding the visual quality of

Octree-pruning artifacts. In particular, the PLCC and SROCC values are lower, while the RMSE

and OR coefficients are remarkably higher with respect to the Gaussian noise case. A CE below

100% indicates that there is a percentage of distorted models for which the MOS values are

statistically distinguishable, with the subjects over-estimating the visual quality using the HMD

AR set-up. In fact, sphere is clearly under-rated in the desktop set-up, which is assumed to be

a result of the structured-type of loss that is perceived when this content is displayed in a flat

monitor. In the HMD AR experiment, these artifacts are not visible, potentially, due to the lower

phone’s resolution and the short eye-to-screen distance. A substantial difference is observed

at a degradation level of p = 10% for this content. As mentioned in section 3.2.3, in this case

the main distortions exhibit on the sphere’s poles. Thus, the users couldn’t easily detect them

in the HMD AR setting, as it would have been practically difficult to assess the contents from

the top or the bottom, and maintain the same distance as if they were standing in front of the

content. Finally, despite the fact that the FR index remains at 0%, high percentages of FD in

Table 3.5 and FT in Table 3.6 suggest that models that are not differentiated in the desktop

set-up, may be rated differently in the HMD AR test. The poor performance can be verified by

the large spread of the distribution of data points in the scatter plots 3.12b and 3.13b.

3.4 Rendering schemes

In many applications, point cloud data are not meant to be displayed directly, rather processed

to extract information about the imaged scenery; an indicative example is the usage of LiDAR

technologies in autonomous driving. However, in other application scenarios, such as in

entertainment industry, humans are targeted as the end-users to consume the point cloud
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contents. In the latter case, it is rather common to apply surface reconstruction for rendering

purposes. This is, algorithms that treat point clouds as sets of discrete samples and aim

at inferring continuous underlying surfaces. The reconstructed models are represented as

polygonal meshes, which have been extensively exploited for 3D modelling in computer

graphics. In this study, we investigate such an alternative visualization approach in the context

of subjective quality assessment of point cloud geometry. In particular, we employ a popular

surface reconstruction algorithm and convert point cloud to mesh representations before

rendering. Then, we ask from human observers to rate the visual quality of the latter. The

tests are conducted in five independent research laboratories employing different display

equipment in desktop arrangements. Initially, an analysis of the correlation between the

human opinions collected from all participated laboratories is issued. Then, we compare the

scores derived from this experiment with subjective ratings obtained from a prior experiment

using the same stimuli, but this time rendered as collections of points. The main objective of

this study is to identify whether similar conclusions regarding the visual quality of point cloud

data can be drawn when using these two different rendering schemes.

3.4.1 Data set

In this study, the contents bunny, cube, dragon, sphere, torus and vase, are selected and

evaluated in our experiments. Torus is used for training purposes, thus, it was excluded

from the test. The contents are pre-processed as described in section 3.1, and translated at

the origin (0, 0, 0). The Octree-pruning is only employed in this experiment to degrade the

models, as it is considered more relevant, using the same target percentage of point removal,

p = {10%,30%,50%,70%}.

3.4.2 Methodology

Test method

The simultaneous DSIS test method is adopted with a 5-level impairment scale (5 - impercep-

tible, 4 - perceptible, but not annoying, 3 - slightly annoying, 2 - annoying, 1 -very annoying),

including a hidden reference for sanity check. Thus, both the reference and the degraded

stimuli were simultaneously shown to the observer, side-by-side, and every subject rated the

visual quality of the processed with respect to the reference stimulus.

The subjects consumed the testing material passively by inspecting generated 2D viseo se-

quences that show different views of the models. In every experiment, a free viewing (FV)

scenario was adopted; that is, after the initial position, every subject was free to move closer

or further from the screen during the evaluation. This is because different objects could be

perceived of different volume. For instance, from a fixed distance between the observer and

the screen, the dragon is perceived smaller with respect to the sphere, due to the different ratio

between height and length. The initial viewing distance that was adopted together with the
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Table 3.7 – Equipment details per laboratory.

EPFL UBI UC UNIN UP

Monitor Apple Cinema ASUS Sony Sony Dimenco

Model M9179LL/A PB287Q KD-49X8005C KD55x8505 DM504MA5

Inches 30" 28" 49" 55" 50"

Resolution 2560x1600 3840x2160 3840x2160 3840x2160 1920x1080

View distance 0.7 m (FV) 1.5 m (FV) 1.8 m (FV ±30 cm) 1.5 m (FV) 1.5 m (FV)

limitation of movements that was optionally imposed in every laboratory can be found in

Table 3.7. The video sequences were consumed through the MPV7 video player, for which a

custom interface was developed to allow subjects to provide their scores, either during or after

the completion of the animation.

Rendering

For rendering purposes, the Screened Poisson surface reconstruction algorithm (Kazhdan

and Hoppe, 2013) is selected. The CloudCompare implementation is employed with a tree-

depth of 8 and default parameters. This method is popular due to: (i) high performance,

(ii) availability in open source software, (iii) guaranteed generation of watertight objects,

(iv) adjustable complexity, as a function of the tree-depth, and (v) reproducibility of the

generated meshes. Yet, it relies on the presence of normal vectors. In the absence of this type

of attributes from the point cloud data, normal vectors need to be estimated. To this aim, the

CloudCompare software was used with default settings; that is, the radius to identify a nearest

neighborhood was selected automatically per stimulus, and a plane fitting was employed.

Then, on the same tool, the normal vectors were oriented using a Minimum Spanning Tree

of 6 nearest neighbors. After visual inspection, the orientation of a model’s vectors was flipped,

if needed. In Figure 3.14, the reference models after conversion to mesh representations are

illustrated. In Figure 3.15, each reconstructed version of the bunny model is depicted, in

order to provide visual examples of the distortions that occur in mesh representations from

Octree-pruning.

To render the meshes, the default VTK8 visualizer, as integrated in PCL was employed. The

default lighting conditions were set to the scene and flat shading was applied in order to avoid

masking visible artifacts. A white color was used for the foreground and black color for the

background in order to enhance contrast and reduce distractions. To capture projected views,

the models were placed at the origin of the virtual environment and a fixed distance from

the camera was set to avoid changes of the model’s size that may be perceived as the virtual

camera is circularly moving around it. The camera rotated around the horizontal first and,

then, around the vertical axis of the center of the object in steps of 1°. In every step, a still

7https://mpv.io/
8https://vtk.org/
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(a) bunny (b) cube (c) dragon (d) egyptian_mask

(e) sphere (f) torus* (g) vase

Figure 3.14 – Reference point cloud contents after conversion to meshes.

(a) p = 10% (b) p = 30% (c) p = 50% (d) p = 70%

Figure 3.15 – Reconstructed bunny under all degradation levels from Octree-pruning.

frame was captured, leading to a total of 720 frames. The still images were then losslessly

compressed with an H.264/AVC encoder, producing an animated video of 30 fps with a total

duration of 24 seconds, which were inspected by the subjects to rate the visual quality of the

models under assessment.

Testing environment

The subjective experiments were conducted in 5 laboratories: École Polytechnique Fédérale de

Lausanne (EPFL), Lausanne, Switzerland; University of Beira Interior (UBI), Covilhã, Portugal;

University of Coimbra (UC), Coimbra, Portugal; University North (UNIN), Varaždin, Croatia
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Table 3.8 – Subjects information per laboratory.

EPFL UBI UC UNIN UP

Males 11 17 9 14 30

Females 9 5 11 6 14

Overall 20 22 20 20 44

Year span 21-37 21-50 21-54 19-57 19-59

Average age 28.88 30.59 29.45 26.45 23.32

Median age 28.39 28 23 21.5 22

and Univeristy of Patras (UP), Patras, Greece. The conditions of every test environment

were adjusted to follow the ITU-R Recommendation BT.500-13 (ITU-R BT.500-13, 2012). The

equipment that was installed in each laboratory can be found in Table 3.7, for every university.

Experimental design

At the beginning of each evaluation session, a training session took place in order to familiarize

the subjects with the artifacts under assessment. The torus was selected for this purpose

and, hence, it was excluded from the actual subjective tests. The training was performed

using 3 animated video sequences that represented 3 different levels of degradation in order

to indicatively illustrate the range of visible distortions. To avoid biases during testing, for

half of the subjects the reference was placed on the right and the degraded content on the

left side of the screen, and vice-versa for the rest. The presentation order of the stimuli was

randomly picked per subject, while particular care was given to avoid displaying the same

model consecutively.

An overall of 30 scores were obtained per evaluation session, considering that each subject

assessed 6 test contents degraded in 4 distinct levels along with the hidden references. Infor-

mation regarding the demographics of the test subjects are provided in Table 3.8.

Data processing

The MOS and CIs are employed to characterize the visual quality per stimulus. To compare

the two rendering schemes, the performance indexes described in annex A.2 are employed.

3.4.3 Results

Subjective results

The results of the experiment conducted under raw point cloud rendering are reported in

section 3.2.3. Hereafter, we present the subjective scores from the current experiment, which

is based on visualization of the reconstructed mesh models. In particular, outlier detection
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Figure 3.16 – Subjective scores against degradation levels per laboratory.

based on the Recommendation (ITU-R BT.500-13, 2012) was initially applied on the human

opinions from each test laboratory, separately. In both EPFL and UNIN 1 outlier was found, in

UP 6 outliers were identified, while no outliers were revealed for the rest of the laboratories.

The subjective scores for the distorted versions of the 6 contents under evaluation are shown

in Figure 3.16, with the caption of each sub-figure indicating the laboratory from which they

were derived. Notice that we provide plots only from two participants, since very similar

curves are obtained for the rest. Notably, it can be observed that the MOS for cube remains

high, independently of the level of distortion. For the other meshes the MOS is increasing

as the target percentage of removed points is decreasing, with the exception of the lowest

degradation level, where the MOS is stable or even slightly higher. This can be explained by

the lower degree of polynomial functions that were used by the reconstruction algorithm to

produce the surfaces of the mesh, leading to smoother surfaces. This was caused by the vast

reduction of the number of points for these distorted contents. An example can be viewed in

Figure 3.15, where less artifacts are visible in the stimulus of Figure 3.15a when compared to

the stimulus of Figure 3.15b. Another observation is the generally low scores that are given to

all contents, excluding cube. It is evident that the reconstructed models are not rated as visually

appealing, which might by the result of a sub-optimal configuration for the reconstruction

algorithm. Yet, in the absence of best practices, an exhaustive manual search for parameter

adjustment per stimulus is too tedious, risking to introduce bias in the scoring distributions

by favoring a particular content/stimulus over another. Thus, it was decided to employ the

same, default configuration across all stimuli.

Inter-laboratory correlations

In Table 3.9, performance indexes for every combination of participated laboratories are

provided without applying any regression model, showing in principle strong correlation
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Figure 3.17 – Comparison of subjective scores obtained from different laboratories (Bold text
represents the ground truth).

Table 3.9 – Performance indexes without using any fitting function for inter-laboratory correla-
tion (Bold text represents the ground truth)

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

EPFL vs UBI 0.940 0.890 0.391 0.417 100% 0% 0% 83.33% 0% 1.09% 15.58%

EPFL vs UC 0.967 0.922 0.298 0.292 100% 0% 0% 88.77% 0% 0.72% 10.51%

EPFL vs UNIN 0.975 0.927 0.384 0.375 100% 0% 0% 88.41% 0% 0.72% 10.87%

EPFL vs UP 0.987 0.969 0.199 0.125 100% 0% 0% 92.75% 0% 6.16% 1.09%

UBI vs UC 0.973 0.869 0.281 0.208 100% 0% 0% 94.93% 0% 3.62% 1.45%

UBI vs UNIN 0.954 0.838 0.435 0.333 95.83% 0% 4.17% 94.57% 0% 4.35% 1.09%

UBI vs UP 0.971 0.904 0.284 0.125 100% 0% 0% 80.80% 0% 19.20% 0.00%

UC vs UNIN 0.973 0.903 0.338 0.208 100% 0% 0% 92.39% 0% 4.71% 2.90%

UC vs UP 0.985 0.948 0.195 0.125 100% 0% 0% 85.87% 0% 14.13% 0.00%

UNIN vs UP 0.984 0.938 0.288 0.333 100% 0% 0% 84.06% 0% 15.94% 0.00%
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between subjective scores in each case. Provided that different desktop equipment was

installed in each university, as reported in Table 3.7, a general conclusion that can be drawn

is that subjective evaluations using this data representation do not highly depend on the

specifications of the monitor. In general, the PLCC and SROCC coefficients are high, whilst

the RMSE and OR values remain low, indicating high accuracy and consistency of the ratings,

respectively. The FR, which is the most severe type of error remains 0%, while the CD is above

83.3%, which indicates that for a big percentage of pairs of stimuli, the same conclusions can

be drawn by two test labs. In UP we observe smaller CIs with respect to the rest of the test

laboratories, as result of the higher number of participants; specifically, the CIs of EPFL, UBI,

UC and UNIN are on average 41.39%, 70.96% and 61.91% and 48.79% larger than the CIs of UP,

respectively. This explains why the FD percentages are consistently high when the UP is not set

as the ground truth, meaning that there are cases where scores obtained from the ground-truth

laboratory suggest that two stimuli are rated statistically equivalently, whereas scores from

the UP indicate statistical distinction. Based on the performance indexes, there is a small

percentage of stimuli that is over-estimated in UBI when compared to the corresponding

scores in UNIN. However, in the rest of the cases, a CE of 100% is achieved. In Figure 3.17,

scatter plots showing the comparison of MOS between two pairs of universities are indicatively

presented along with every fitting function, to visually interpret the strong correlation results.

Notice that the pair UBI and UNIN, essentially, denotes the worst combination according to

the performance indexes; yet, the correlation is still good. Very similar graphs are obtained for

the rest of the combinations.

Comparison of rendering schemes

Finally, the subjective scores from this test (excluding egyptian_mask) are compared to ratings

derived in a previous experiment, where the visual quality of the same degraded point clouds

was assessed without enabling any reconstruction algorithm for rendering. The latter was

conducted in the EPFL laboratory using an interactive variant of the same test method (i.e.,

simultaneous DSIS with 5-rating impairment scale), under identical environmental conditions

and test equipment, as described in section 3.2. Thus, the scores of EPFL from the current

experiment are used to issue the statistical analysis. No fitting, linear and cubic regression

models were applied, as reported in Table 3.10, while in Figure 3.18, scatter plots indicating

the correlation between the two experiments are provided.

Based on our analysis, the correlation between these two tests is poor. Despite the fact that a

relatively high percentage of CE is observed, there is no consistent trend, with some stimuli

being over-estimated and some others under-estimated when using one rendering scheme

with respect to the other. Moreover, the low percentages of CD indicate that scores from the

two experiments frequently lead to statistical differences for the visual quality of two stimuli.

The weak correlation is also evident from Figure 3.18, where the scattered data points indicate

different ranking order, lack of monotonicity and accuracy. Our results suggest that the visual

quality of identically distorted contents is affected by the use of a surface reconstruction
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Figure 3.18 – Comparison of subjective scores obtained under both rendering schemes (Bold
text represents the ground truth).

Table 3.10 – Performance indexes to compare the rendering schemes (Bold text represents the
ground truth).

Point cloud vs Mesh

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.796 0.729 0.723 0.600 80% 10% 10% 67.37% 0.00% 18.95% 13.68%

Linear fitting 0.796 0.729 0.576 0.650 90% 5% 5% 63.68% 0.00% 13.16% 23.16%

Cubic fitting 0.804 0.729 0.565 0.600 85% 10% 5% 68.42% 0.00% 15.26% 16.32%

Mesh vs Point cloud

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.796 0.729 0.723 0.600 80% 10% 10% 67.37% 0.00% 13.68% 18.95%

Linear fitting 0.796 0.729 0.721 0.600 75% 15% 10% 67.37% 0.00% 13.68% 18.95%

Cubic fitting 0.808 0.729 0.702 0.500 80% 10% 10% 68.95% 0.00% 5.79% 25.26%

algorithm for rendering purposes.

To obtain a watertight model, commonly, the coordinates of the points are modified to best

match the fitting surfaces. This lossy procedure leads to geometric deviations that might

reduce or enhance artifacts as perceived on the originally distorted point cloud data, while

an extra ambiguous step is introduced by judging the visual quality of the latter using a

different 3D visual data representation. Thus, it can be deduced that quality scores after en-

abling and disabling surface reconstruction to render point cloud data, might lead to different

conclusions on the visual quality of a particular stimulus. Finally, provided that different

reconstruction algorithms and configurations typically lead to different mesh representations,

it becomes clear that experimental set-ups for quality evaluation of point cloud contents using

such a rendering scheme should be cautiously designed.
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Chapter 3. Quality evaluation of point clouds geometry

3.5 Conclusions

In this chapter we examine and propose different evaluation methodologies and protocols for

subjective quality assessment of point cloud contents. We compare different test methods,

display equipment and rendering schemes, to draw conclusions regarding their statistical

relevance. Our results show that despite point cloud being a modality with ambiguous notion

of visual quality, high correlation is achieved between two of the most widely-adopted test

methods, namely, ACR and DSIS. The former allows explicit assessment of the visual quality

of the displayed model, however, it gives space to biases arising from implicit inter-content

comparisons and personal preferences. For instance, adopting ACR, the dragon and vase

were rated consistently lower in the presence of Gaussian noise in our experiment, due to

higher complexity and geometric irregularity, respectively. The DSIS protocol found to be

more consistent in terms of identification of the level of impairment of a degraded content,

allowing though subjects to rate based on relative differences (i.e., geometric distances, or

number of points) between the queried stimulus and the provided reference. The smaller

CIs that were observed in the DSIS case, suggest the participation of more subjects in ACR

experiments.

Using the more consistent DSIS approach, we proceed by investigating the impact of adopting

different display devices of different degrees-of-freedom in the context of subjective quality

evaluation. Our results reveal that different rating trends are observed under the usage of

different equipment as a function of the degradation type under assessment. In particular,

although in the presence of Gaussian noise, scores obtained from the desktop and the HMD

AR set-ups were found to follow very similar trends, this is not the case for Octree-pruning. Our

study suggests that the former is a type of degradation that can be easier and more consistently

identified even across different devices, while the latter is challenging in terms of identification,

whose perception is affected by the display means. Thus, leading to the conclusion that visual

quality assessment should be conducted using the target equipment for consumption.

In the last part, we aimed at investigating the impact of applying a different rendering mech-

anism for the testing material. In particular, using Octree-pruning as the sole degradation

type, we enabled surface reconstruction for visualization of distorted point cloud data. This

experiment was performed on five independent laboratories revealing high correlation among

the participants, despite the variety of the displays that were employed. Using the scores of the

same laboratory, a comparison between the ratings of subjects visualizing the same stimuli

using two different visual data representations, namely sets of points and reconstructed sur-

faces, showed that the human opinions on visual quality are affected by the usage of surface

reconstruction.

The generated data set and subjective scores collected from our experimentation efforts are

made publicly available for research purposes. For more information, see annex E.
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clouds

The rendering approach that is employed to display point cloud data determines the visual

outcome and strongly affects the perceived quality. Moreover, knowing how a content is ren-

dered, may also determine the way it is acquired, transmitted and compressed. For point cloud

contents, several rendering schemes have been proposed in the literature. The most common

can be clustered as either (a) point-based, or (b) mesh-based techniques. In Figure 4.1, a

point cloud model is presented at its original form, after point-based rendering and surface

reconstruction, to provide an indicative illustration.

Reconstruction algorithms generate a polygonal mesh from a point cloud model. This 3D vi-

sual data representation is defined by a set of vertices together with associated faces expressed

through connectivity information. Point clouds can be converted to polygonal meshes using a

wide range of methodologies, with simple triangles being typically used as faces. Although

meshes are the prevailing representation for 3D objects, they denote costly rendering ap-

proaches in terms of time and computational complexity for real-time applications. Moreover,

the processing to infer high-quality underlying surfaces from discrete samples is typically lossy,

meaning that points displacements and reductions might occur. Such lossy procedures make

impossible the 1-1 mapping between point clouds and meshes, which is rather problematic in

applications where inverse conversions are required. Furthermore, the types and the levels

of visual distortions turn out to be very different in converted meshes with respect to the

original point cloud representations, governed by the configuration and the selection of the

reconstruction scheme. Consequently, it is clear that using meshes for deciding the quality of

point cloud data is a sub-optimal approach, confirmed also from correlation results that are

presented in section 3.4.

The concept of using points as primitive elements to represent 3D models has been proposed

in a pioneering work presented in (Levoy and Whitted, 1985). In its simplest form, each point

is represented by a single pixel. However, fidelity-wise, this is rather inefficient, while also it

denotes an unnatural way of 3D modelling consumption, if no additional processing takes

place to fill holes that appear in case the resolution of the model is sparser than the image grid

that is projected. Furthermore, the extrapolation of the model surfaces from individual point
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Chapter 4. Quality evaluation of colored point clouds

(a) Original model (b) Point-based rendering (c) Reconstructed mesh

Figure 4.1 – Point cloud content using different rendering methods.

samples, introduces high levels of ambiguity in perception, making also the definition of visual

quality a challenging task. Thus, in point-based rendering techniques, points are typically

replaced by splats to acquire volumetric dimension and more efficiently approximate the

surface. Additional attributes of points such as color, or normals can be additionally reflected

on the splats. The size of each splat can be either fixed, or adaptive across a model, while the

geometric shape can be either 2-D or 3-D. In the former case, the orientation of 2D splats can

be either predetermined in the world coordinate system, or adjustable to face the camera of

the user. Moreover, it is common to take under consideration the distribution of points in

a neighborhood to orient and stretch the corresponding rendering primitive in order to fill

the local region accordingly (e.g., major and minor axis of an ellipsoidal). More sophisticated

techniques enable surface splatting and texture filtering, or additional processing in the image

space for hole filling, in order to produce high-quality surface approximations and water-tight

models. Yet, these approaches despite the high performance in terms of visual appearance,

introduce extra workload in the rendering pipeline, leading essentially to a trade-off between

complexity and visual quality.

In this chapter we employ simple point-based rendering approaches in the context of sub-

jective quality assessment of colored point clouds. We initially experiment with different

primitive elements that are employed to display the point cloud data, in order to understand

whether splat properties, such as the shape and orientation, influence the preference of hu-

man subjects. Then, we proceed with the design and realization of two subjective quality
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evaluation experiments under substantially different rendering schemes, and we investigate

their impact in deciding the visual quality of point cloud contents subject to geometry and

color compression artifacts based on statistical analysis. As part of the study, conclusions

regarding the efficiency of the selected codec, and insights related to the rating trends from

the participants are provided.

It should be noted that our implementations should not be confused with the well-known

surface splatting algorithms (Zwicker et al., 2004). The term splat, in our context, refers to a

simple geometric shape that replaces a point in order to give a dimensional aspect with the

possibility to re-size, orient and color. Thus, the rendering schemes denote low-complexity

solutions, which are suitable for real-time communication systems, at the expense of lower

visual quality.

This chapter is based on material that has been published in (Torlig et al., 2018a; Alexiou and

Ebrahimi, 2019).

4.1 Point rendering primitives

The usage of splats provides an efficient way to represent point clouds with pleasing visual

results under conditions, with the main advantage of not introducing any lossy intermediate

processing in point cloud topology. There are multiple geometric shapes that can be used to

represent a point. However, it remains unknown whether advantages that are coming from

the properties of a particular selection are preferred over others.

In this study, we aim to shed some light on the issue by determining users preference under

different point rendering primitives in terms of visual appearance. In particular, we conduct

an experiment using three out of the most popular 2D and 3D splat shapes to render a point

cloud, namely, disks, cubes, and spheres. As a result, different visual representations are

obtained and shown to human subjects, which are then asked to choose the one they prefer.

The assessments are conducted in a desktop set-up and the participants are allowed to interact

with the stimuli under evaluation in a side-by-side fashion, essentially enabling a pairwise

comparison protocol. Note that the usage of different geometric shapes might lead to the

perception of different artifacts. For instance, the less computationally demanding 2D splats

lead to a more refined representation of curves by better approximating the underlying surface.

This is achieved provided that, in our implementation, the orientation of the splats is defined

by the normals of the points. At the same time, mis-oriented 2D splats may lead to visible

holes. On the contrary, 3D shapes are better suited for perception of watertight surfaces and

do not depend on normal vectors. Yet, they introduce higher load during rendering and lead

to rougher approximations of curves. Thus, in this experiment, the objective is to understand

whether particular visual artifacts occurring under the usage of corresponding point rendering

primitives are perceived as more annoying than others, and under which conditions. To enable

a fair comparison between the geometric shapes to the maximum possible extent, we opt

splat sizes that lead to the same maximum projected area onto the screen.
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Chapter 4. Quality evaluation of colored point clouds

(a) amphoriskos (b) egyptian_mask (c) head (d) shiva

(e) loot (f) queen (g) redandblack (h) longdress

Figure 4.2 – Original point cloud contents.

4.1.1 Data set

Content selection

A total of 8 static colored contents, namely, amphoriskos, head, egyptian_mask, shiva, long-

dress, loot, queen, and redandblack are employed in this experiment. Every model belongs

to either the JPEG1 or the MPEG2 point cloud repositories, except of amphoriskos, which is

recruited from the Sketchfab3 platform. In Figure 4.2, the original versions of these point

clouds are depicted.

Content preparation

The contents were selected and prepared in order to obtain categorical influencing factors

that may affect the results. For instance, four contents were selected to represent “Objects”,

and four others to represent “Human” figures. Moreover, considering that the original number

1https://jpeg.org/plenodb/, last accessed 12/2020
2http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/, last accessed 01/2020
3https://bit.ly/3nekULm, last accessed 12/2020
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4.1. Point rendering primitives

Table 4.1 – Point cloud contents characterization.

Content Type Sparsity Input points CC Distance Output points

amphoriskos Object High 147,420 0.002 49,440

head Object Low 14,025,710 0.032 187,282

egyptian_mask Object Low 272,689 0.007 189,439

shiva Object High 1,010,591 0.045 54,308

longdress Human Low 857,966 1.5 189,398

loot Human High 805,285 3 55,004

queen Human Low 1,000,993 1.7 218,681

redandblack Human High 757,691 3 51,318

of points lies in a wide range, down-sampling was applied aiming at two different levels of

sparsity, namely, “Low” and “High”. The down-sampling was implemented in CloudCompare

software, by setting a maximum allowed distance between nearest neighbors and discarding

intermediate points. Note that the models that belong to the type “Human” were originally

voxelized at a voxel-depth of 10 bits, whilst the initial topology of the rest was more irregular

with coordinates spanning in an arbitrary range. In Table 4.1, we present geometric character-

istics, as well as the classification of every content regarding the influencing parameters of

interest.

4.1.2 Methodology

Test method

A pairwise comparison was used in this experiment giving the option of tie in order to avoid

forced decisions. The participants were asked to inspect both representations and choose

their preferred one based on the following scale: (i) “A is better than B”, (ii) “No difference”,

and (iii) “B is better than A”, where A and B refer to the presented stimuli, which were clearly

annotated on the screen. This test method is well-known for its high discriminatory power and

accuracy. It can be particularly useful when evaluating abstract perceptual dimensions, such

as in this case, where the same models under different visual representations are assessed.

Moreover, the fact that the users are not asked to provide grades, rather their preferences,

implies less cognitive load and less bias introduced to the votes.

The deployed protocol allowed interactivity between the subjects and the displayed stimuli;

that is, the participants were able to interact with the stimuli through the renderer by zooming,

rotation, and translation using the mouse. The models were inspected simultaneously, while

their views were in synch and adjusted to the selections of the user in real-time. Radio buttons

were also installed in the graphical layout implemented in QT library4 to display the adopted

4https://www.qt.io/
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Chapter 4. Quality evaluation of colored point clouds

ternary scale and allowed users to submit their preference through mouse-clicks. Moreover,

there were no restrictions imposed in terms of time duration, or user navigation during

evaluations. Finally, a free viewing inspection was adopted, with the subjects being able to

adjust their sitting position with respect to the screen.

Rendering

The renderer described in annex D.2 was employed in this study, using three primitive geo-

metric objects to represent splats, namely, disks, cubes and spheres. For fairness purposes,

the default size of the source elements are set with the aim of attaining the same maximum

projected area onto the screen. For disks, this is achieved when the normal vector is aligned

to the camera direction, whereas for cube, when the space diagonal is aligned to the camera

direction, forming the regular hexagon as a projected shape. In more details, for cubes, we use

the unit cube, which leads to a projected area that spans between 1 and
p

3, depending on the

camera direction. For disks and spheres, we set a radius of 0.743, which results to a projected

area between ∼ 0 and 1.73 for the former, and 1.73 for the latter.

For this experiment, we enable an adaptive splat size policy; that is, after the construction

of each source element as described above, the size of each rendered splat is adjusted to

local neighborhood sparsity considering k = 10 nearest neighbors. To orient the 2D disks,

the normal vectors are estimated using the least-square plane fitting algorithm proposed

in (Hoppe et al., 1992) over k = 10 nearest neighbors.

The background color of the renderer was set to black, while for display purposes and to avoid

masking or enhancing visual artifacts, the default lighting conditions and flat shading were

enabled in the scene. Finally, a perspective projection was enabled to provide users with a

more realistic view.

Testing environment

The experiment was conducted in MMSPG laboratory, which follows the ITU-R Recommenda-

tion BT.500-13 (ITU-R BT.500-13, 2012). An ambient light of 15 lux was adjusted in the testing

room, and a luminance of 115 cd/m2 was set and measured on the screen. The monitor that

used is an EIZO ColorEdge CG318 of 31.1 inches and 4096x2160 resolution.

Experimental design

The experiment was split in two stages: (a) the training and (b) the actual test. In the training,

the subjects got familiarized with the rating scale and the interactivity part. For this purpose,

another dummy content was selected, which was not used in the actual tests.

For half of the subjects, the position of a stimulus from a specific pair under comparison was

set at the right side, while for the other half, it was displayed on the left side of the screen.
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Figure 4.3 – Pair comparison of point rendering primitives across all contents.

Moreover, the presentation order of the pairs was randomly picked for every session. To reduce

temporal references, it was intentionally avoided to show the same content consecutively.

Moreover, the physical distance between a viewer and the monitor was adjusted at per each

subject’s preference.

For each of the 8 point clouds, we have 3 different point rendering primitives, which were

all compared to each other per content, leading to 24 comparisons that were made from

every subject. A total of 14 naive participants (12 males and 2 females) were recruited in the

experiment after passing acuity and color vision tests based on Snellen chart and Ishihara

plates. Their age was ranging between 20.9 and 27.7, with a mean of 23.2 and a median of 22.7.

Data processing

The votes that were obtained from the experiment are presented in the form of bars. Win and

ties percentages are clearly separated and reported in order to draw conclusions regarding the

preferred point rendering primitive. Moreover, we extract a MOS and a corresponding CI for

each alternative representation using the BTL model, as described in annex A.1.2, by equally

splitting the ties.

4.1.3 Results

In Figure 4.3, we present the votes of participants in the form of win percentages computed

over all contents. These bars effectively summarize the aggregated preference of the subjects

for the point rendering primitives that were considered and compared. From this graph, we

observe a trend for subjects preferring 3D cube and sphere primitives against the 2D disk, as

implemented in our rendering application. Moreover, when comparing models represented
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(b) Disks vs cubes
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(c) Cubes vs spheres

Figure 4.4 – Pair comparison of point rendering primitives per content.

with spheres and cubes, a high percentage of subjects does not indicate a clear preference; yet,

when excluding the ties, the spheres are more frequently selected.

In Figure 4.4 the participants’ selections are illustrated as win percentages for each pair

combination of primitives, per content. When comparing disks against spheres, we remark

that the latter are favoured by large margins for point clouds that represent human figures.

Higher win percentages for disks are observed in the case of egyptian_mask and shiva, which

are still limited below 36%, with most of the subjects declaring that they don’t prefer one

representation over the other, for these two contents. Similar, yet more polarized votes are

observed when comparing models using disk against cube primitives. Specifically, favouring

disks over cubes is even less frequent for point clouds depicting human figures, whereas

for models representing objects, the participants state a preference for the disks with win

percentages of up to 43% (against a maximum of 36% for cubes). When comparing cubes

against spheres, we generally note a very small percentage of a clear win for the former over

the latter. Moreover, it is very frequent for subjects to submit no preference among the two

content representations. However, when participants differentiate the two versions, they

clearly prefer spheres.

In Figure 4.5, the normalized quality scores and the associated CIs computed from the partici-

pants votes are presented for each point rendering primitive, after equally splitting the ties to

the two classes under comparison. Results from this analysis are in alignment with our earlier

observations. In particular, the highest score is associated to the sphere, thus, indicating the

supremacy of this particular shape to represent point clouds models. Second follows the cube,

confirming that 3D primitives are in principle favoured, and last comes the disk shape.

In Figures 4.6, we depict visual examples of point clouds that were shown to participants of

this experiment, under all point rendering primitives that were considered. For demonstration

purposes, we use the same visualizer that was employed in the subjective evaluations, while

the models are captured from the same viewpoint to allow comparisons. In the case of

longdress, displayed in Figure 4.6a, we remark that despite the more refined edges that are

attained when using disks (e.g., face shape, nose width), impairments in the form of blurriness
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Figure 4.5 – Normalized quality scores from subjective preferences for the adopted point
rendering primitives.

are noted especially in the facial characteristics of the model, which are clearly more annoying.

Using cubes these distortions are limited, and they are further reduced by the usage of spheres.

Moreover, color details are also sharper in the latter, which denotes another potential reason

to explain the votes distribution indicated in Figure 4.4 for this particular content. In the case

of egyptian_mask, shown in Figure 4.6b, marginal differences can be observed between the

three content variants, which is also reflected on the equivalent win percentages, or the large

number of ties that are observed in Figure 4.4. Similar observations are made for the rest of

the contents.

It should be noted that, assuming a frontal view of a model and a normal vector that is parallel

to the camera direction, the disk splat will be shown larger than the cube. Between disks and

spheres, despite the theoretical equivalence of the projected area, the depth dimension in the

latter case generally leads to better preservation of details. These remarks are more evident in

the corresponding content representations of longdress in Figure 4.6a.

To identify whether the sparsity level of a content is a factor that influences the opinions of

subjects regarding the preferred primitive shape, we repeat the same analysis by computing

the normalized quality scores and the CIs over all models that are clustered as of “Low” and

“High” sparsity per Table 4.1, separately. Additionally, to understand whether the type of

content affects the subjects’ preference, the same procedure is repeated after aggregating the

preference scores for all point clouds that depict “Human” figures and “Object” models.

Based on our results, illustrated in the first row of Figure 4.7, we observe that similar scores

are associated to the point rendering primitives for both cases of sparsity levels. However,

when splitting the point clouds per type of represented content, indicated in the second

row of Figure 4.7, we observe different trends. In particular, when showing “Human” figures,

subjects prefer cubes over disks, however, when presenting “Objects”, there is a tendency of
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Chapter 4. Quality evaluation of colored point clouds

(a) longdress

(b) egyptian_mask

Figure 4.6 – Content representations using disks, cubes and spheres as point rendering primi-
tives from left to right.

favouring disks over cubes, indicating that different shapes might be preferred as a function

of the displayed model and its intrinsic geometric properties. In this result, it should be
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(a) Sparsity level: “Low”
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(b) Sparsity level: “High”
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(c) Type: “Object”

disk cube sphere
0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a
li
z
e
d

 q
u

a
li
ty

 s
c
o

re

(d) Type: “Human”

Figure 4.7 – Subjective scores after aggregating preferences over point clouds of the same
sparsity level in the first row, and the same content type in the second row.

recalled and accounted the fact that the topology of models composing the “Objects” sub-set

includes more outlying points and missing regions, with respect to models that belong to the

“Human” sub-set. Finally, the CIs of the normalized scores of Figure 4.7c are large, thus, no

safe conclusions can be drawn.

4.2 Point-based rendering schemes

In this section we examine two ad-hoc point-based rendering alternatives that are developed

for point cloud subjective quality evaluation purposes. In particular, one rendering scheme

stems from previous efforts detailed in section 4.1 and makes use of primitive geometric

objects that replace point samples with a custom shape and adaptive size. This technique will

be referred to, hereafter, as splat-based. The second rendering scheme, namely voxel-based,

quantizes the topology of the point cloud under inspection in real-time, with the outcome

being orthographically projected on a 2D image plane that is consumed by the user. The two
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(a) Splat-based rendering (b) Voxel-based rendering

Figure 4.8 – Operational logic of the rendering schemes under evaluation.

rendering schemes follow different rationales on delivering the content to the observers, which

are summarized in Figure 4.8. The first, is based on displaying the entire volumetric element,

which is represented by a cube of an arbitrary size in this experiment and is employed to

represent a point sample, whereas in the latter, the point is projected to a fixed neighborhood

of pixels. Thus, visible artifacts of different nature occur. Using the splat-based approach, the

point cloud models are perceived as watertight. However, during user inspection and as the

camera is rotating, different splat sizes might be observed due to orientation changes, trig-

gering small-scale flickering artifacts. More importantly, at lower geometric resolutions, the

amplification of the splat sizes that is enabled to avoid the perception of hollow regions, leads

to coarser surface approximations. On the contrary, in the case of the voxel-based renderer,

artifacts in the form of missing pixels are perceived for sparser content representations. For the

purpose of this study, a state-of-the-art codec is employed and multiple encoding configura-

tions using different combinations of geometric and color degradation levels are applied. The

degraded stimuli are evaluated using the rendering solutions in separate experiments that are

conducted under identical set-ups. Using both sets of quality scores, the performance of the

encoder is analysed, the preferences of subjects are statistically determined, and influencing

factors are identified. Finally, the two rating distributions are compared in order to examine

whether the developed rendering approaches lead to the same conclusions regarding the

subjective quality characterization of the same stimuli.

4.2.1 Data set

Content selection

A total of 7 static contents with diverse characteristics were selected for the experiments. In

particular, both human figures and inanimate objects were considered, each having different

levels of geometry and color details. The longdress, loot, redandblack, and statue_klimt con-

tents were chosen from the MPEG repository5 and belong to the first type. The romanoillamp

and biplane models were selected from the JPEG Pleno repository7, while the amphoriskos

56

7https://jpeg.org/plenodb/, last accessed 12/2020
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Pre-processing Scaling & 
Translation EncodingVoxelization

Reference Distorted

Content preparation Degradation type

Figure 4.9 – Pre-visualization processing workflow.

point cloud was found in the online platform Sketchfab8. Such point clouds are typically

scanned through depth sensors that provide either directly or indirectly a cloud of points

representing their 3D shape. Typical use cases involve applications where such models are

consumed from the outside.

Content preparation

The point cloud contents were initially prepared based on the work-flow indicated in Fig-

ure 4.9. In particular, pre-processing and voxelization stages were enabled in order to reduce

influencing factors, such as the number of points and the geometric structure. The scaling and

translation step ensure that the coordinates of the models are spanning in the same range at

the input and the output of the selected encoder. Please note that with green color we annotate

preparation steps that were issued on a subset of the test contents, whilst with blue color we

specify processing that was enabled on the whole data set. Below, we provide implementation

details for every stage of preparation.

Pre-processing: This step was enabled in order to ensure a narrow range for the number of

points across contents. Specifically, biplane is provided in multiple versions that correspond

to different scans. In this experiment, we used a combined version that provides a fully recon-

structed model (i.e., 1x1_Biplane_Combined_000), which consists of approximately 106 ·106

points and inroduces heavy workload in the rendering pipeline. To reduce this number to ac-

ceptable limits, we applied subsampling using CloudCompare, by setting a maximum allowed

distance between nearest neighbors equal to 0.009. For amphoriskos, the original model is

represented by approximately 200 ·103 points. To increase the resolution for a better content

representation, we initially applied the Poisson Surface Reconstruction algorithm (Kazhdan

and Hoppe, 2013), as implemented in CloudCompare and using the default configurations

with 1 samples per node. The normal vectors associated with the coordinates of the original

model were employed for this purpose. From the reconstructed mesh, 1 ·106 points were

sampled by randomly picking a given number on each triangle, using the same software.

Regarding romanoillamp, the associated connectivity information that is originally carried

8https://bit.ly/3nekULm, last accessed 12/2020
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(a) amphoriskos (b) biplane (c) longdress (d) loot

(e) redandblack (f) romanoillamp (g) statue_klimt

Figure 4.10 – Reference test contents.

Table 4.2 – Geometric description of every reference content.

amphoriskos biplane longdress loot redandblack romanoillamp statue_klimt

Points 828,820 773,447 857,966 805,285 757,691 636,097 482,941

Min D 9.78 ·10−4 9.78 ·10−4 10.11 ·10−4 10.20 ·10−4 10.35 ·10−4 9.78 ·10−4 9.78 ·10−4

Max D 23.94 ·10−4 470.83 ·10−4 22.61 ·10−4 20.39 ·10−4 25.36 ·10−4 693.76 ·10−4 100.17 ·10−4

X/Y/Z 0.60/1/0.68 0.65/0.23/1 0.40/1/0.20 0.35/1/0.41 0.44/1/0.30 1/0.45/0.51 0.30/1/0.29

with this content was discarded, while all the vertexes were kept to represent the point cloud.

For the rest of the contents, no pre-processing was applied.

Voxelization: With this operation, we ensure a regular-spaced geometric structure for the

point clouds in order to avoid biases that may be introduced by either the encoder or the

rendering scheme. In particular, given that a subset of our data set (i.e., human figures) was

already voxelized, we converted the continuous geometric representations of the rest of the

contents (i.e., object models) into sets of voxels that lie in three-dimensional lattices of octree-

depth equal to 10, in order to remove this influencing factor (i.e., irregular geometric structure)

from our results. See annex B.2 for implementation details.

Scaling & Translation: This step ensures that the geometry of both the reference and the

distorted contents lies in the same dynamic range. Specifically, the selected codec produces

point clouds with output coordinates that are proportionally located in the range [−0.5, 0.5]3
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Table 4.3 – Percentage of discarded points, and geometry and color bpp per encoded stimulus.

Content Octree-depth
Percentage of

Geometry bpp
Color bpp

discarded points QP = 10 QP = 50 QP = 90

amphoriskos

OD = 10 0% 5.006 0.301 1.004 2.889

OD = 09 46.08% 1.561 0.188 0.612 1.764

OD = 08 83.39% 0.400 0.078 0.234 0.652

biplane

OD = 10 0% 2.890 0.589 2.101 4.926

OD = 09 67.31% 0.618 0.209 0.686 1.623

OD = 08 91.96% 0.142 0.069 0.191 0.430

longdress

OD = 10 0% 2.520 0.347 1.169 3.423

OD = 09 70.37% 0.649 0.125 0.414 1.178

OD = 08 92.24% 0.169 0.047 0.134 0.358

loot

OD = 10 0% 2.556 0.182 0.561 1.716

OD = 09 70.01% 0.662 0.073 0.213 0.636

OD = 08 92.16% 0.173 0.034 0.078 0.210

redandblack

OD = 10 0% 2.694 0.199 0.632 2.037

OD = 09 68.91% 0.699 0.084 0.249 0.773

OD = 08 91.87% 0.182 0.039 0.093 0.258

romanoillamp

OD = 10 0% 3.827 0.289 1.124 3.492

OD = 09 57.53% 1.059 0.136 0.491 1.488

OD = 08 87.86% 0.282 0.055 0.159 0.447

statue_klimt

OD = 10 0% 4.552 0.413 1.392 3.889

OD = 09 49.44% 1.384 0.240 0.792 2.147

OD = 08 85.00% 0.324 0.098 0.286 0.722

with respect to the input. To avoid the perception of different dimensions across contents,

the voxelized point clouds were first scaled to the range [0,1]3 and then centered to the

origin (0, 0, 0). The output of this step produces the reference contents of this experiment, as

indicated in Figure 4.9. In Figure 4.10, the reference point clouds employed in the study are

illustrated, while in Table 4.2, their intrinsic geometric characteristics is provided.

Degradation type

After preparation, the contents are encoded to produce the distorted versions evaluated by

human subjects, as indicated in the last step of the work-flow as per Figure 4.9. For this

purpose, a well-established point cloud codec is employed to account for representative

compression distortions that are introduced in both geometry and color information.

Encoding: For encoding engine, the open source software that was employed as the anchor in

the Call for Proposals issued by MPEG on point cloud compression (MPEG 3DG and Require-

ments, 2017) was selected. It denotes a typical octree-based compression scheme, with the
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color attributes encoded using the JPEG algorithm, after they are mapped to an image grid

using a depth-first order tree traversal; a detailed description can be found in (Mekuria et al.,

2017a). To obtain a wide range of impairments, 3 quality levels for geometry and 3 quality

levels for color degradations were defined. Specifically, the reference point clouds are encoded

using octree tree-depth (OD) of 8, 9 and 10, to account for low, medium, and high geometry

quality levels. Moreover, to reflect different levels of color fidelity, the JPEG quality parameter

(QP) was set to 10, 50 and 90, respectively. The rest of the encoding options were identically

set to the default configurations provided with the software release9. The point clouds were

compressed using all possible combinations of geometry and color quality levels, leading to a

total of 9 degradations per content. The output of this preparation step essentially produces

the distorted testing material. In Table 4.3, the bits per input point (bpp) for geometry and

color information are provided along with the corresponding percentage of discarded points,

to grasp the sparsity level per stimulus. As expected, for the same OD and QP values, the

distribution of both geometry and color bpp varies per content.

4.2.2 Methodology

Test method

The simultaneous DSIS protocol with 5-grading scale (5: Imperceptible, 4: Perceptible, but not

annoying, 3: Slightly annoying, 2: Annoying, 1: Very annoying) was selected for its high accu-

racy and consistency in subjective quality assessment of point clouds, for both experiments.

The reference and the distorted stimuli were visualized side-by-side by subjects, while being

clearly annotated. An interactive extension of the protocol was enabled, by allowing users to

inspect the models under evaluation at the selected viewpoints through zooming, rotation,

and translation, without any restrictions in terms of time duration; thus, participants were

able to spend as much time as needed for every individual assessment, before making their

judgement. The subjects were required to submit a quality score through a GUI based on the

level of impairment of the distorted model with respect to the reference counterpart. A free

viewing protocol was followed, meaning that the users were allowed to adjust their position

with respect to the screen.

Rendering

Splat-based rendering: The splat-based visualizer used in this study makes use of the render-

ing software described in annex D.2, and is implemented in the VTK library. The stimuli are

presented side-by-side and subjects are able to interact with them in sync by rotation, transla-

tion and zooming. The visualizer covers the entire resolution of the screen. A screen-shot of

the evaluation testbed as configured for the experiment is presented in Figure 4.11.

In this study, we opt for cubic splats of adaptive size, which provide a good compromise

9https://github.com/cwi-dis/cwi-pcl-codec
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Figure 4.11 – Splat-based subjective evaluation testbed.

between computational overhead during rendering and visual quality. In particular, the splats

are adjusted to the sparsity level of each local neighborhood that is defined around each

point sample considering k = 10 nearest neighbors. An additional scaling factor is employed,

amplifying the obtained splat sizes by a factor of 1.25. This value was empirically defined after

expert viewing to avoid the perception of hollow regions with this data set. Note that the same

splat scaling was applied for every stimulus.

The preparation of the stimuli was realized in an off-line mode, as described in annex D.2,

and during the evaluations the prepared material was loaded into the renderer. This imple-

mentation allows fast responsiveness in user’s interactions and low waiting times in between

stimuli inspection. The background of the scene is set to (127, 127, 127) in RGB colorspace,

to account for a non-distraction mid-grey color. The default lighting conditions in VTK were

enabled without introducing any shading model. Finally, a perspective projection was enabled

to better simulate realistic visual perception.

Voxel-based rendering: The voxel-based rendering software used in this experiment is de-

scribed in annex D.1. It denotes an ad-hoc implementation developed in C++, handling both

rendering and interactivity in real-time. The stimuli are presented side-by-side in a GUI

developed in QT library that allows subjects to interact with them by rotation, translation and

zooming through the mouse. A set of rating scores that users can choose from is also part of

the GUI. A screen-shot of this evaluation testbed is presented in Figure 4.12.

In this study case, an image grid of resolution of 1024×1024 in selected to project the point

cloud models. The choice of this resolution is made due to the octree depth of 10 that is set for
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Figure 4.12 – Voxel-based subjective evaluation testbed.

all the reference models of our data set; thus leading to a 1-1 mapping between voxels and

pixels at the initial pre-determined distance between the camera and the model. Upon user’s

actions (e.g., zooming in or out), the neighborhood of pixel over which a voxel is projected is

correspondingly adjusted by a zoom factor.

The background color of the scene is set to (127, 127, 127) in RGB colorspace, to account for

a non-distraction mid-grey color. An orthographic projection is used. It should be noted

that, due to computational overhead from operations that are performed in real-time, the

responsiveness of the system is moderate with respect to the splat-based rendering; yet, it was

considered acceptable from the users without limiting the scope of the experiment.

Testing environment

The experiments were conducted in the MMSPG laboratory, which fulfils the Recommenda-

tion (ITU-R BT.500-13, 2012) for subjective evaluation of visual data representations. Specif-

ically, the room is equipped with neon lamps of 6500 K color temperature, while the color

of the walls and the curtains is mid gray. For both experiments, identical testing conditions

were enabled. In particular, a typical desktop set-up involving an Apple Cinema Display of 27-

inches and 2560x1440 resolution (Model A1316) was installed in the room. The brightness

of the screen was always set to 120 cd/m2 with a D65 white point profile, while the lighting

conditions were adjusted for ambient light of 15 lux measured next to the screen, for both

experiments.
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Experimental design

Both experiments were split in a training and a testing stage. In the training, the subjects

got familiarized with this type of visual data representation and the types of artifacts that

would be assessed during the actual test. Additionally, the training served the purpose of

letting participants adapt with the interaction part of the corresponding subjective evaluation

framework. For this purpose, the statue_klimt content was selected; thus, it was excluded from

the corresponding testing stages in both experiments. During training specific instructions

and descriptions were delivered to the participants by the operator, instructing them to

explicitly rate the visual quality of the degraded stimuli with respect to the reference, in terms

of how annoying is for them the level of impairment. For both tests, at the beginning of each

evaluation, a default frontal view of each content was displayed to every subject, which were

then free to interact with the displayed models. In order to remove contextual effects from

the quality scores, the position of the reference was randomly selected for every subject, and

remained fixed across an entire testing session. Thus, for half of the subjects, the position

of the reference was set at the right side of the screen with the distorted model placed at the

left, and vice versa for the other half. Furthermore, the presentation order of the stimuli was

randomly picked for every session. To reduce temporal references, we intentionally avoided

showing the same content consecutively.

In each session, 6 contents and 9 degradations were assessed along with a hidden reference

for sanity check, leading to 60 stimuli. A total of 20 subjects participated in the experiment

using the voxel-based renderer, comprised of 6 females and 14 males, with an average age

of 28 years old. In the experiment using the splat-based renderer, 20 subjects were recruited

comprised of 10 males and 10 females, with an average of 26.7 years of age.

Data processing

The MOS and CIs are employed to characterize the visual quality per stimulus. To compare

the two rendering schemes, we make use of the performance indexes that are described in

annex A.2.

4.2.3 Results

Subjective results

The outlier detection algorithm defined in the ITU-R Recommendation BT.500-13 (ITU-R

BT.500-13, 2012) was separately issued on the collected subjective scores from each experi-

ment, in order to exclude subjects whose ratings deviated drastically from the rest of the scores.

No outliers were identified, leading to a total of 20 out of 20 quality scores per stimulus, in

each experiment.

The subjective results of the 6 contents that were involved in both tests are shown in Figure 4.13,
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Figure 4.13 – Subjective scores against degradation levels using both rendering solutions.

with the caption of each sub-figure indicating the experiment from which they were collected.

Specifically, the MOS along with the CI for every stimulus are presented against the geometry

and color degradation levels. The naming convention is {ODXX,QPYY}, where OD and QP

stand for octree-depth and the JPEG quality parameter, respectively, with XX ∈ {08, 09, 10} and

YY ∈ {10, 50, 90} denoting the geometry and color quality levels.

Based on our results, it is evident that the quality scores from both experiments follow a

similar trend. In particular, the subjective ratings vary per type of degradation for the same

content. It is noted that for the sparsest versions (i.e., OD = 08), the mean score is increasing

slowly as the color quality level is getting better, independently of the model. Higher rates of

increase are observed as the geometric resolution becomes higher. This outcome essentially

indicates that, when the geometric resolution of a content remains low, the overall perceptual

quality is severely affected, regardless of color improvements. This rating behavior can be

partially explained by the usage of the octree structure as basis for point cloud compression. In

particular, by reducing the geometric resolution of an octree, an increasing number of points

that belongs to the original model naturally falls within the leaf nodes. Thus, considering that

the color of an output voxel is given by blending the colors of the input points in the same leaf

node, color degradations in the form of blurriness are amplified at lower tree-depths.

It is important to note that, in the voxel-based renderer, the absence of geometric details

is expressed by the presence of missing pixels, whereas in the splat-based renderer larger

primitives are displayed. Specifically, in the former case, a single voxel is projected in a limited

neighborhood of pixels, as a function of the zooming applied by user interaction. As such,

missing information is mainly observed in contents encoded at an OD = 8, while for OD = 9,

such artifacts become visible only when a viewer inspects the object from very close virtual

distances after zooming. In the splat-based counterpart, the primitive sizes are adjusted

to the sparser local neighborhoods, resulting in rougher representations of the underlying
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(a) OD10_QP10 (b) OD09_QP10 (c) OD08_QP10

(d) OD10_QP10 (e) OD09_QP10 (f) OD08_QP10

Figure 4.14 – Screen-shots of the frontal view of amphoriskos, encoded at the lowest color
quality and every geometric degradation level. Top row: models displayed in the splat-based
renderer. Bottom row: models displayed in the voxel-based renderer.

surfaces. Similarly, these artifacts are more evident at lower octree-depths. In Figures 4.14

and 4.15, various encoded versions of the amphoriskos and the longdress models are illustrated

as displayed in both rendering schemes, in order to provide visual examples of representative

distortion artifacts.

Another conclusion that can be drawn based on Figure 4.13 is that, for a specific degradation

level, the perceptual quality notably differs depending on the type of content. In fact, subjects

seem to be more critical with point clouds that represent humans, when compared to point

clouds that represent inanimate objects. Smaller rating deviations are observed between

contents that belong to the same type (i.e., humans, or objects), indicating that similar scoring

distributions can be observed within the groups. A Wilcoxon signed-rank conducted on

the scores reveals that there is a significant effect of content type on the distribution of

the scores for both visualization methods, with large effect sizes (splat based: Z = 16.242,

p = 0.000, r = 0.494; voxel based: Z = 15.194, p = 0.000, r = 0.462). This can be explained

considering that (a) our perception is more sensitive to degradations on visual information

that represents humans, and (b) the same acquisition means were employed to capture the

85



Chapter 4. Quality evaluation of colored point clouds

(a) OD10_QP90 (b) OD09_QP90 (c) OD08_QP90

(d) OD10_QP90 (e) OD09_QP90 (f) OD08_QP90

Figure 4.15 – Screen-shots of the frontal view of longdress, encoded at the highest color quality
and every geometric degradation level. Top row: models displayed in the splat-based renderer.
Bottom row: models displayed in the voxel-based renderer.

human models, which implies that they are subject to the same acquisition error. Thus,

compression algorithms might result in similar distortion patterns. On the other hand, the

objects were captured using different technologies, which leads to a wider range of acquisition

and compression distortions.

Furthermore, by inspecting the total bit-rates of the encoded contents, as reported in Table 4.3,

we conclude that higher bit-rates do not necessarily lead to better visual quality. For instance,

for every stimulus, subjects from both experiments showed their clear preference in the

combination of best color quality (i.e., QP = 90) with medium geometry (i.e., OD = 09), when

compared to best geometry quality level (i.e., OD = 10) with the worst color quality (i.e., QP =

10); the latter combination requires higher bit-rates for every model. Although the obtained

bpp values are codec dependent, such observations suggest that savings may be achieved by

appropriate allocation of bits between geometry and color.

In Figures 4.16, we consolidate the results and present the MOS against the total bit-rates

(geometry-plus-color), for both experiments. Different colors correspond to the testing con-
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Figure 4.16 – Subjective scores against total bit-rates using both rendering solutions.

tents, whereas different markers correspond to the encoding configurations. In principle, the

scatter plots using quality scores from both tests are rather similar. In both cases, the trends of

preferring certain combinations of geometry and color distortions that lead to smaller bit-rate

requirements over more expensive configurations are clear.

To further examine the aforementioned observations, a one-tail t-test at a 5% significance level

was issued on the collected data, separately, per experiment. The null hypothesis assumes that

the subjective mean of a stimulus at a particular color and geometry level is the same with the

average score of another encoded version of the same content, which is subject to a different

combination of degradations. This procedure is repeated for all contents. Aggregated numbers

of preference are presented and color-coded in Figure 4.17, to reveal how often a particular

combination that is shown in a row was preferred over a combination that is depicted in a

corresponding column.

Based on Figure 4.17, it can be observed that for both rendering schemes, the combinations

OD09_QP50 and OD09_QP90 are preferred 2 and 5 times in a total of 6 contents against the

combination OD10_QP10. In a similar comparison at a lower geometry quality level, the

combinations OD08_QP50 and OD08_QP90 were preferred 1 and 3 times against OD09_QP10

using the voxel-based renderer, and only once OD08_QP90 was favored over OD09_QP10

when using the splat-based rendering scheme. These results summarize that, for this codec,

it is preferable to increase color quality when the geometric resolution is adequate, rather

than further improving the topology at the expense of color. Moreover, under heavily dis-

torted geometry, the priority should be to improve the topological information, since color

improvements do not bring any visual benefits.

Regarding the different trends of subjective preferences between the two renderers, they are

related to the different nature of visual artifacts, as reflected to the selected contents. Using

the voxel-based renderer, color improvements at the lowest geometry quality level (i.e., OD
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Figure 4.17 – Significance difference matrices at a 5% level per experiment, indicating the
preference of subjects for a particular degradation against all others. Note that 0 and 6 denote
the minimum and maximum numbers of preference, respectively, given a total of 6 contents.

= 08) are rated statistically higher, whereas using the splat-based renderer, these trends are

not as consistent. In particular, OD08_QP50 and OD08_QP90 were preferred 6 times each

against OD08_QP10 in the former case, whereas in the latter case they were preferred 2 and

4 times, respectively. According to Figure 4.13b, the corresponding MOS are marginally, but

steadily increasing with larger QPs at OD08 under voxel-based rendering. On the contrary,

based on Figure 4.13a, using the splat-based counterpart leads to a substantial upgrade of the

quality scores for amphoriskos and romanoillamp with color improvements at OD08, while

subjective ratings for human figures remain very low. This results suggests that, the level of

visual artifacts that are introduced with very sparse models from the splat-based renderer, are

model-dependent.

Comparison of rendering schemes

In Table 4.4 and Figure 4.18, the performance indexes and scatter plots comparing the MOS

obtained from the splat-based against the MOS from the voxel-based experiments are provided.

In both cases, no-fitting, linear and cubic fitting functions are enabled. Note that in the scatter

plots, the horizontal and vertical bars indicate CIs as computed by the scores obtained from

the experiment depicted in the corresponding label.

It is noteworthy that the CIs obtained from the voxel-based experiment are 19.25% larger with

respect to the splat-based counterpart, indicating a higher uncertainty regarding the quality

score of the testing stimuli. Yet, our results show a strong correlation between the ratings

collected from both experiments. In particular, the linear fitting function achieves an angle of

44.3° in Figure 4.18a and 44.7° in Figure 4.18b, with corresponding intercepts of 0.97 and 1.08,
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Figure 4.18 – Comparison of subjective scores obtained under both rendering solutions (Bold
text represents the ground truth).

Table 4.4 – Performance indexes to compare the rendering solutions (Bold text represents the
ground truth).

Splat-based vs Voxel-based

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.981 0.979 0.231 0.315 100% 0% 0% 87.49% 0.00% 5.38% 7.13%

Linear fitting 0.981 0.979 0.220 0.315 100% 0% 0% 87.35% 0.00% 4.47% 8.18%

Cubic fitting 0.982 0.979 0.216 0.315 100% 0% 0% 87.84% 0.00% 5.31% 6.85%

Voxel-based vs Splat-based

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.981 0.979 0.231 0.241 100% 0% 0% 87.49% 0% 7.13% 5.38%

Linear fitting 0.981 0.979 0.221 0.185 100% 0% 0% 87.49% 0% 7.13% 5.38%

Cubic fitting 0.983 0.979 0.213 0.222 100% 0% 0% 87.91% 0% 5.38% 6.71%

thus, confirming the high linear relationship between the score distributions observed in the

scatter plots. The high PLCC values under any fitting function provide further evidence on the

matter. The relatively low RMSE and OR indicate good accuracy and consistency, while the

high SROCC index shows that both experiments agree on the ranking of the testing stimuli

in terms of visual quality. Furthermore, a CE of 100% indicates no statistically significant

difference between the MOS obtained from the two experiments. The FD and FT percentages

indicate that there are cases where one experiment might differentiate the quality level of a

particular stimulus over another, while the other would not. However, the 0% for the FR index

indicates no false ranking, which is the most offensive type of error.

Significance differences matrices computed in the rating population of each experiment, show

statistical differences on how color improvements are rated under the lowest geometric quality

between the two rendering solutions. In principle, though, based on the results of the above
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analysis, we may conclude that the two experiments are well-correlated, leading to similar

conclusions regarding the quality of the stimuli under assessment, despite the different nature

of visual artifacts occurring from the two rendering schemes. A Mann-Whitney U-test was

computed on the scores to evaluate the difference in the perception of splat-based rendering

with respect to the voxel-based counterpart, to validate our findings. No significant effect was

found (Z =−0.9935, p = 0.3205, r = 0.0214).

4.3 Conclusions

In this chapter we explore and compare different point-based rendering schemes that were

developed for displaying colored point cloud contents. In a first experiment, we compare

different 2D and 3D geometric objects, namely disks, cubes and spheres, as point rendering

primitives, under various point clouds of diverse characteristics. The obtained content rep-

resentations were shown side-by-side to human subjects, which were asked to submit their

preference. Our results suggest that the 3D variants were in principle preferred as rendering

primitive elements in our testbed, with spheric splats outperforming the alternatives. This can

be explained by the better preservation of details, and the elimination of flickering artifacts

from splat size fluctuations as the camera is rotating, due to the shape of this object. Moreover,

the orientation of 3D splats doesn’t depend on normal vectors, thus, potential hollow regions

due to mis-orientations are avoided. The cube splats were found to be the second best option

over all contents, according to human opinions. However, further analysis on the matter shows

that the type of represented model, its intrinsic geometric characteristics and color details,

might affect this ranking. In particular, it was found that in case of contents of type “Human”,

cubes were found to be preferred over disks, whereas for models of type “Objects”, disks were

rated higher. On the contrary, the sparsity level, which accounts for the second influencing

factor under examination, showed no impact in the opinion of subjects, with cubes always

denoting the second preferred choice.

In a second experiment, we employ and compare two point-based rendering implementations

for purposes of subjective quality evaluation. The so-called splat-based renderer is based

on representing points via cubic primitive elements of adaptive size across a model, and

denotes a compromised solution between quality and complexity according to the results of

the first experiment. The second alternative, namely voxel-based renderer, relies on real-time

voxelization of the displayed models, which are orthographically projected onto a 2D image

grid. The types of artifacts that occur from these two rendering approaches are different. In

particular, larger splat sizes are obtained as the topology of a point cloud becomes sparser

in the former, whereas in the latter, missing information in the form of pixels is perceived.

To examine whether the two renderers lead to the same conclusions regarding the visual

quality of the same point clouds, two subjective quality experiments were conducted with

identical design and equipment. To this aim, a state-of-the-art codec was employed and

several geometric and color quality levels were combined to account for a wide range of

degradation levels. Despite statistical differences in the subjective scores that were bounded
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to the lowest-geometric quality models, our analysis reveals high correlation between the two

rendering approaches. Our results show that the adopted point-based schemes, although

simple, they are consistent in perceptual quality evaluation of the compressed point clouds.

Yet, our study comes with a limitation, which stems from the usage of a single codec, thus,

implying the need for further experimentation in order to draw generalizable conclusions re-

garding the statistical equivalence of the two rendering methods. Pertaining the performance

of the encoder, our results show that higher bit-rate doesn’t necessarily grant better visual

quality. Specifically, it was shown that a combination of mid-range geometry and high color

quality levels is statistically preferred over high geometry with low color quality levels, with

the latter consistently demanding higher bit-rates. Moreover, subjective opinions indicate

that low geometric resolutions govern the visual appearance, with marginal improvements

brought by improving the quality of color.

91





5 Exploring immersive technologies

The remarkable advances of extended/cross technologies in recent years have resulted in a

greater demand for richer imaging modalities that better approximate real-world sceneries.

VR systems, in particular, aim at providing immersive experiences that stimulate human

senses and increase the engagement of the user with the displayed imagery. In relevant

applications, high-quality content is essential for enhancing the realism and the sense of

presence. When real-time communication with 3D imaging is targeted (e.g., tele-presence),

additional requirements are imposed related to the efficiency and flexibility for capturing,

compressing and displaying of the visual data. In this context, point clouds have emerged as

an attractive option by providing the possibility of adjusting the visual quality of a model per

point, eliminating any dependency imposed by connectivity information from acquisition

to rendering. Yet, there is a limited number of studies in the literature addressing challenges

that are related to the perception of quality for such content representations in immersive

environments, despite being considered as one of the main use-cases.

In this chapter we explore the potential of VR technology as the means to consume point

cloud contents in 6DoF immersive inspection scenarios. Our initial efforts are focused on

subjective quality evaluation experiments that are conducted in a virtual scene, which is

carefully designed for this purpose. Evaluation protocols that are extended to account for

interactivity are proposed and adopted in order to enable consistent comparison between a

reference and the queried stimulus. High-quality models are selected and shown to human

subjects, following a point-based rendering scheme that is configured for visually pleasing

results. Moreover, interactivity patterns are extracted from the recorded camera positions

in order to provide further insights regarding the user behavior. To better understand how

people consume the models and what regions draw their attention, we proceed by conducting

an eye-tracking experiment by integrating the necessary equipment in the same set-up. As

previously, we aim at promoting interactivity between the user and the content, thus, the

same non-distracting scene is employed. Moreover, a task is assigned to every participant to

further motivate their engagement, and allowing us to receive feedback regarding properties

that are preferred and considered as important for their experience. The recorded gaze and
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head cues are processed to obtain importance weights that are associated to the points of

each model, essentially, reflecting fixation density maps. To this aim, an heuristic algorithm

is developed in order to exploit high-quality gaze measurements, and an ad-hoc scheme is

proposed to determine areas of fixations in point cloud representations. Finally, we design and

develop an application paradigm for behavioral recording and analysis in a virtual world that

better simulates real-life experiences. In particular, a virtual museum is constructed, which is

not restricted to a single scene, rather it is extended to several rooms with cultural heritage

models exposition that can be visited by the user at will. In this application, both head- and

gaze-related data streams can be recorded from the corresponding hardware, while auxiliary

modules are integrated in order to enable better synchronization between the two streams

and provide the means to benchmark the eye-tracking device.

This chapter is based on material that has been published in (Alexiou et al., 2019b, 2020b).

5.1 Subjective quality evaluation in virtual reality

In previous chapters, we have proposed and analysed several subjective quality evaluation

methodologies for point clouds, under a wide range of display devices and rendering ap-

proaches, for both colorless and colored models. The experimentation was carried out mainly

in desktop set-ups, while also an AR inspection scenario was deployed for geometry-only

contents. The results have led to useful insights for best practices and conclusions regarding

the influence of several factors that might affect scoring distributions, providing a foundation

for subjective quality assessment for this visual data representation.

The objective of this study is to extend previous efforts by proposing the use of a 6DoF im-

mersive experience in a VR environment to rate the visual quality of point cloud contents.

VR applications not only enable interactivity and immersiveness, but they also allow the

establishment of identical viewing conditions in fully-controlled environments, and facilitate

reproducible research. For the purposes of this experiment, a set of high-quality textured point

clouds was generated, forming the so-called PointXR dataset (Alexiou and Ebrahimi, 2020).

Models from this data set are recruited to serve as the reference contents for our evaluation

study. Color attributes are encoded using both color encoding modules that are integrated

in the the state-of-the-art MPEG G-PCC (MPEG 3DG, 2019) test model, choosing encoding

configurations that permit a fair comparison. To display the models, a point-based rendering

approach with adaptive splat size and shader interpolation is enabled in order to eliminate

surface discontinuities. Moreover, several environmental conditions are adjusted to avoid

distractions and enhance realism, while an intuitive controlling system is deployed to improve

interactivity means between the user and the content. Anticipating the particularities of 3D

modelling display in such environments, we adopt suitable protocols that are adjusted to our

needs. For instance, in a virtual scene, human figures would be displayed at the real-world

size, in order to enhance the realism. In this example, if a simultaneous double-stimulus com-

parison was selected, close inspection would have been problematic due to the fact that the
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(a) guanyin (2286975) (b) muse (2092701) (c) roy (2272748)

(d) shield (2380435) (e) tiki (1540246)

Figure 5.1 – Frontal view of the models.

user cannot obtain a side-by-side view of the same angle for both models at his/her viewport.

This can only be attained from distant inspection, where details might not be perceived. Thus,

to evaluate the quality of the compressed stimuli in our set-up, we adopt the “sequential DSIS”,

and a proposed variant suitable for evaluation of near-lossless compression, namely, “alter-

nating DSIS", both adjusted to accommodate interactivity. Finally, we analyse the behavior of

the users based on interactivity data that was recorded during the subjective evaluations.

5.1.1 Data set

Content selection

A set of five high-quality point clouds was recruited from the PointXR dataset that represent

cultural heritage models (Alexiou et al., 2020b).

Content preparation

The models were initially voxelized at 10-bit depth (see annex B.2 for implementation details).

In particular, their coordinates were quantized, with the output geometry ranging in [0, 1023]3.
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The color value of each output voxel was obtained after averaging the color values of the

input points that fall in the same voxel. A frontal view of each voxelized model is illustrated in

Figure 5.1, indicating the naming that is adopted in the paper and the number of points after

voxelization in parenthesis.

Degradation type

The contents were encoded using G-PCC version 8.0 test model. The Octree encoding module

was selected to compress the geometry, while both Lifting and RAHT (de Queiroz and Chou,

2016) codecs were used for color compression. To define the configuration parameters for the

Octree-plus-Lifting combination, the MPEG Common Test Conditions (MPEG 3DG, 2017) were

followed. The degradation levels R02, R03, R04 and R06, annotated as D01-D04 in this study,

were selected after expert viewing to represent a range of visual quality levels that spans from

very low to very high. For the Octree-plus-RAHT combination, the encoding configurations

for geometry remained unaltered. However, the quantization parameter for RAHT (QP) was

appropriately adjusted in order to achieve the same bit-rate as Lifting, per model, to secure

a fair comparison. This is because although identical QP values were originally used in the

CTC for both color codecs, it is evident that Lifting requires more bits than RAHT at the same

degradation level. In Table 5.1, the QP values that were used for RAHT (R-QP) and Lifting

(L-QP), along with the posititionQuantizationScale (PQS) for the Octree encoding module are

reported, per degradation level.

Table 5.1 – Encoding configurations per model.

Degradation PQS L-QP R-QP

level All All guanyin muse roy shield tiki

D01 (R02) 0.25 46 41 41 41 41 41

D02 (R03) 0.5 40 36 35 35 36 36

D03 (R04) 0.75 34 31 30 30 31 30

D04 (R06) 0.9375 22 20 19 19 20 19

5.1.2 Methodology

Test methods

In this study, two evaluation protocols were employed, both based on DSIS with a 9-grading

scale (9: Imperceptible, 7: Perceptible, but not annoying, 5: Slightly annoying, 3: Annoying,

1: Very annoying). The first protocol is the sequential DSIS, where the reference model is

initially presented to the subjects, followed by the distorted model. The second protocol is

the alternating DSIS, where the subjects are allowed to toggle between the reference and

the distorted model at will. In the first variant, the reference visual quality of a model is

presented to the users, which are subsequently asked to provide a score for the distorted
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version displayed next. Hence, temporal masking naturally takes place. In the second variant,

the users can visit the reference model at any point they decide. Thus, the scores might capture

more accurately relative differences between the models.

In both experiments, the users were able to interact with the stimuli under evaluation with

6DoF in the VR environment. In particular, the subjects were able to navigate both physically

in the real world and by teleporting to the position of their preference in the virtual room (i.e.,

locomotion) using VR controllers. To avoid additional test parameters, no manipulation of the

models (e.g., drag, re-size) was allowed. Finally, no time limitations were imposed.

Rendering

The reference models were loaded in the Rendering scene of the PointXR toolbox described

in annex D.4 in order to adjust visualization-related parameters. After experimentation, it

was decided to render the models using adaptive point size based on 3 nearest neighbors,

and enable the shader interpolation mode. Both quad and disk shaders were evaluated,

with the latter bringing no visual enhancements under the aforementioned configuration.

On the contrary, the rendering performance was improving in terms of frame rate (i.e., fps),

when using the quad shader. Thus, the latter option was selected. A global point scaling

value was adjusted per model after expert viewing in order to eliminate hollow regions while

achieving the highest possible fidelity. Finally, the models were scaled at a natural size. For

smaller objects, a stage of proportional dimensions was placed in the room, and the models

were arranged on top for comfort viewing. In Table 5.2, the rendering configurations are

summarized per model. Notice that the same settings were employed for the corresponding

encoded versions.

Table 5.2 – Rendering configurations per model.

guanyin muse roy shield tiki

shader Quad Quad Quad Quad Quad

shaderInterpolation Yes Yes Yes Yes Yes

adaptivePoint Yes Yes Yes Yes Yes

pointScalingFactor 0.6 0.65 0.7 0.65 0.6

modelScalingFactor 0.002 0.0018 0.002 0.0014 0.002

Testing environment

The test was conducted in a controlled physical room of size 3×3 meters. The HTC VIVE

Pro headset was used to consume the models in VR with a resolution of 2880×1600 pixels, a

field of view of 110°, and a frame rate of 90 Hz. The VIVE base stations were installed in the

room to track the position of the user and reflect the corresponding position in the virtual

environment.
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Figure 5.2 – Virtual environment.

The virtual environment designed for the test consisted of a non-distracting room with par-

allelepiped shape of dimensions 9×9×5 (virtual unit meters) and mid-grey walls of low re-

flectivity. Each model was positioned in the center of the room, and a point light source was

placed right above at a height of 3. The pre-computed real-time global illumination option

was selected, and shadows of the model were visible on the floor of the room to enhance the

realism and the sense of presence. A sign, clearly indicating whether a reference or a distorted

model was inspected at every time instance, was placed on the floor in front of the model. An

example of the virtual environment is depicted in Figure 5.2. Moreover, in Figure 5.3, instances

of a subject interacting with the virtual world are illustrated.

Experimental design

The sequential DSIS experiment chronologically preceded the alternating DSIS counterpart.

Both experiments were split in a training and testing stage. In the former, the subjects were able

to get acquainted with the virtual environment, the navigation controls, and the evaluation

protocol, as well as with representative types of visual distortions they would assess. In the

latter, the queried stimuli were evaluated.

The stimuli were displayed in a random order per subject and protocol, while avoiding con-

secutive evaluations of the same content. At the beginning of each evaluation, the position

of the subject was randomly selected in the room to motivate interactivity and inspection

from various viewpoints. The loading of the models in the virtual room was performed at the

beginning of each evaluation step. Then, depending on the users actions, one model would be

visible and the other hidden. Provided that prefabricated objects were employed in run-time,
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(a) Subject inspecting a model (b) Subject interacting (c) Subject rating

Figure 5.3 – Experimental set-up.

as exported from the Rendering scene of the PointXR toolbox, no delays were perceived when

moving to the next evaluation step. Moreover, the alternation between the models could be

performed instantaneously. In order to avoid flickering that could be sensed even in cases of

negligible differences, a delay in the presentation of the next model was intentionally imposed.

In particular, a delay of 1 sec was used for the sequential DSIS, and a delay of 0.25 sec was

used for the alternating DSIS. For the second case, we allow a faster response to avoid making

the delay a factor that prevents subjects from switching between models.

For each of the 5 point clouds, there were 4 degradation levels obtained from 2 color codecs,

leading to a total of 40 stimuli that were assessed. For each user, an extra evaluation step was

added at the beginning of each experiment, in order to ensure that the subject was familiar

with the task at hand. The obtained scores from this step were later discarded. A total of

24 subjects participated in the experiments, with 20 subjects evaluating the models in each

protocol. For individuals who participated in both sessions, a 2-days rest period was imposed

in between to avoid temporal bias. The subjects population consisted of 15 males and 9

females, with an average age of 26.4 (min 19, max 33).

Data processing

The MOS and CIs were computed to characterize the quality level and uncertainty of a par-

ticular stimulus. Moreover, to compare the test methods, performance indexes described in

annex A.2 were employed.

5.1.3 Results

Subjective results

Subjective quality scores for the point cloud models were obtained from both experiments.

Outlier detection based on the ITU-R Recommendation BT.500-13 (ITU-R BT.500-13, 2012)
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Figure 5.4 – Subjective scores against color bit-rates from both codecs, using both test methods.

was applied on each test, separately. No subject with deviating scoring behavior was identified

and, thus, each individual rating was accounted to compute the MOS and the 95% confidence

intervals assuming a Student’s t-distribution. Moreover, the position and viewing angle of the

users were recorded in real-time at the rendering frequency of 90 Hz, in order to analyse their

behavior in VR.

In Figure 5.4, we present graphs for two of the models used in the experiments, indicating

the MOS as a function of the color bit-rates, for both codecs and evaluation protocols. The

bit-rate is presented in bits-per-(input)-point, which denotes the ratio of the total number of

bits divided by the number of input points. It can be seen that the MOS is improving as the

bit-rate is increasing, while the levels of visual quality for each model spans the entire scoring

space. As expected, the range of color bpp varies per model; that is, models with narrow color

distribution, such as muse, require bit-rates as low as 0.4 bpp to achieve transparency, whereas

models with high color variability, such as guanyin, need higher bit-rates. Very similar scoring

trends are obtained for the rest of the models.

Based on Figure 5.4, the performance of the color encoders is equivalent. To validate this

observation, we compare the two codecs across all contents under both test methods. In

particular, in Figure 5.5 and Table 5.3, we provide the scatter plot and the performance indexes

after comparing the subjective quality scores for the same degradation levels of RAHT against

Lifting, which is set as the ground truth, using both protocols. We observe that when using

the sequential variant the correlation slightly worsens. However, in both cases it remains very

high, indicating that there is no preference of the subjects for one codec over the other. A non-

parametric one-way ANOVA applied on the scores obtained from both evaluation protocols

separately, per color encoder, results in p-values of 0.6927 and 0.809 for the alternating and the

sequential DSIS, respectively, which confirms that the color codecs are statistically equivalent

in both cases.
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Figure 5.5 – Comparison of subjective scores between RAHT and Lifting (ground truth) color
codec.

Table 5.3 – Performance indexes to compare RAHT against Lifting (ground truth) color codec.

Alternating DSIS

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.998 0.988 0.206 0.100 100% 0% 0% 97.37% 0% 1.05% 1.58%

Linear fitting 0.998 0.988 0.194 0.100 100% 0% 0% 97.37% 0% 1.05% 1.58%

Cubic fitting 0.998 0.988 0.190 0.150 100% 0% 0% 97.89% 0% 1.05% 1.05%

Sequential DSIS

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.991 0.968 0.381 0.100 100% 0% 0% 92.63% 0% 4.74% 2.63%

Linear fitting 0.991 0.968 0.377 0.150 100% 0% 0% 92.63% 0% 4.74% 2.63%

Cubic fitting 0.992 0.968 0.358 0.150 100% 0% 0% 93.16% 0% 3.16% 3.68%

Comparison of test methods

Regarding the comparison of the two DSIS protocols that were employed in our experiments,

a scatter plot and the performance indexes that indicate the correlation between the corre-

sponding score distributions are depicted in Figure 5.6 and Table 5.4. In principle, we observe

strong correlation between the two test methods, confirmed by all performance indexes that

were computed, independently of the employed regression model. As the data was not nor-

mally distributed according to the Shapiro-Wilk normality test (W = 0.88, p < .001), we test

statistical significance between the evaluation protocols through a non-parametric Wilcoxon

rank-sum test, and no significance was found (Z = −0.40, p = 0.689, r = 0.01). The linear

fitting function achieves an angle of 46.5° and 42.99° with an intercept of -0.33 and 0.39 in

Figures 5.6a and 5.6b, respectively, indicating a general tendency to rate slightly higher the

low-quality model and lower the high-quality models in the alternating counterpart. This
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Figure 5.6 – Comparison of subjective scores obtained under both DSIS variants (Bold text
represents the ground truth).

Table 5.4 – Performance indexes to compare the DSIS variants (Bold text represents the ground
truth).

Alternating vs Sequential

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.991 0.979 0.412 0.325 100% 0% 0% 93.72% 0% 2.05% 4.23%

Linear fitting 0.991 0.979 0.379 0.300 100% 0% 0% 93.72% 0% 2.56% 3.72%

Cubic fitting 0.993 0.979 0.353 0.225 100% 0% 0% 93.59% 0% 2.56% 3.85%

Sequential vs Alternating

PLCC SROCC RMSE OR CE UE OE CD FR FD FT

No fitting 0.991 0.979 0.412 0.175 100% 0% 0% 93.72% 0% 4.23% 2.05%

Linear fitting 0.991 0.979 0.357 0.150 100% 0% 0% 93.72% 0% 3.72% 2.56%

Cubic fitting 0.993 0.979 0.321 0.100 100% 0% 0% 93.46% 0% 2.56% 3.97%

can be explained by the fact that subjects were having access to the distorted model upon

demand, thus, it was easier to spot and penalize small quality deviations. Another notable

outcome is the fact that the confidence intervals in the sequential protocol were found to be

by 27% larger with respect to the alternating, showing that the latter approach leads to smaller

rating variability and higher consistency. However, the learning effect on the stimuli should be

accounted in this result, considering that several subjects participated in both sessions.

A post-questionnaire that was filled by the subjects participating in both sessions, shows that

the alternating DSIS variant is universally preferred. The most common key-words that were

provided to justify their choice were: “precise”, “no memorization”, and “faster”. The observers,

in principle, agreed that the alternating protocol is more effective with high-quality models,

while a participant noted that potential biases might be introduced in the sequential protocol,
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Figure 5.7 – Average time of interaction.

as the subjects might grade non-existing distortions. This can especially be problematic in

the case of point clouds, where the quality of the non-compressed content might not excel

already. Although such trends are not visible in our results, future studies might benefit from

such remarks.

Regarding the characteristics of the population of the test, the majority of the users were naive.

Specifically, 6 out of 24 subjects were using a headset for the first time, and 15 had tried some

times. The participants were evidently satisfied with the level of immersion, the visual quality

of the contents and the total quality of experience, with an average score of 4.4, 4.3 and 4.3 out

of 5, respectively (5: Excellent, 4: Good, 3: Fair, 2: Poor, 1: Bad). A total of 5 subjects felt mild

discomfort, whereas the rest reported that they didn’t face any symptom. Finally, 3 subjects

suggested that a headset without cables would have enhanced their experience.

The characterization “faster” given by the subjects for the alternating DSIS, is confirmed by the

average time the users spent per stimulus. In particular, an analysis of the logged interactivity

information reveals that, for the alternating case, a subject needed on average 13.7±7.3 sec

(6.2 on Distorted and 7.5 on Reference), whereas 23±15.2 sec (12.4 on Reference and 10.6

on Distorted) were spent in the sequential counterpart. No particular trends are identified

when the average interaction time is clustered per model or per codec. However, clear trends

are observed for different degradation levels, as can be shown in Figure 5.7. In particular, it

is obvious that as the quality level is increasing, more time is allocated from the subjects on

the distorted models for both scenarios. Moreover, for the alternating variant, the total time

of interaction decreases as the degradation increases. This is due to the fact that during the

sequential protocol, the user is unaware of the quality level of the distorted model. Thus, the

amount of time that will be spent in the reference model is independent from the distorted
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(b) Sequential DSIS

Figure 5.8 – Interactivity patterns per evaluation protocol.

version. However, in the case of the alternating protocol, the user can switch between the two

models at will. In such a case, if the distorted model is of low quality, a low score will be given

without further inspection. On the contrary, in case of a high-quality distorted model, more

time will be needed before providing a score.

This explanation can be confirmed by the number of times the subjects inspected the reference

model before providing a score during the DSIS alternating experiment. In particular, by

grouping the number of re-visiting the reference model per quality level, an average of 1.4, 2.5,

3.9 and 4.5 is observed for D01, D02, D03 and D04, respectively. Note that the results show no

particular tendencies when we compute the average per content (ranges between 2.9 and 3.2),

or per codec (average of 3.1 for both Lifting and RAHT).

In Figure 5.8, illustrations of interactivity patterns are provided for each experiment. The

virtual test room is represented by a grid, with each square corresponding to a surface of

0.5×0.5 virtual unit meters. The time spent at each position of the room, averaged across

stimuli and subjects, is color coded, with brighter values indicating larger time intervals. The

colorbar, on the right of each figure, indicates the range and is measured in sec. From these

interactivity patterns, it can be seen that the users were more static in the alternating variant.

In both cases, the participants spent most of their time in close frontal views, despite the fact

that the starting position was randomized. However, in the case of the sequential protocol,

more perspectives and distances were tested.

5.2 Visual attention in virtual reality

Visual saliency is a fundamental topic that studies the identification of the regions of a scene

that draw the attention of observers, by exploring the mechanisms of human visual system.

Models that predict human visual attention are attractive in computer vision and signal
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processing communities, and have been proposed for radically different types of imaging.

For 3D visual information, saliency detection is an active and largely open area of research

the last decade. In particular, several algorithms are reported for predicting salient regions,

based on mesh and point cloud data. Well-known mesh-based saliency schemes depend on

center-surround filters with Gaussian-weighted curvatures (Lee et al., 2005), shape matching

algorithms (Shilane and Funkhouser, 2007), per vertex distinctness with shape extremities

and patch association (Leifman et al., 2012), local contrast and global rarity (Wu et al., 2013),

spectral attributes (Song et al., 2014), and relations to unsalient regions of the content (Tao

et al., 2015). Point cloud-based models rely on regional contrast using the Fast Point Feature

Histogram as local shape descriptors to identify distinctness per point (Shtrom et al., 2013)

or cluster (Tasse et al., 2015), comparison of local surface properties at different scales and

distances (Akman and Jonker, 2010), or covariance descriptors (Guo et al., 2018). Interested

readers can refer to (Liu et al., 2016) for a detailed survey.

Visual saliency models are typically validated using as ground-truth fixation density maps that

are collected from eye-tracking experiments. In the case of 3D imaging, a limited number

of studies has been recorded. Howlett et al. (Howlett et al., 2005) conducted an eye-tracking

experiment on mesh simplification algorithms. The subjects were able to examine the de-

graded models from different viewports through rotation using key arrows. In (Kim et al.,

2010), the performance of (Lee et al., 2005) was assessed using gaze data that were obtained

after inspection of projected images from meshes. Wang et al. (Wang et al., 2016) performed an

experiment with 3D printed figures. This work was recently extended to account for different

viewing positions and model construction materials (Wang et al., 2018b). The collected eye-

tracking data were mapped onto the 3D meshes to form fixation maps. Lavoué et al. (Lavoué

et al., 2018) carried an eye-tracking campaign with animated videos of 3D meshes. Several

influencing factors were considered, such as model shape, camera position, material, and

illumination. It is noteworthy that the two most popular data sets that serve as ground truth,

are obtained from experiments where subjects were asked to manually select points that are

“interesting, or defining” (Dutagaci et al., 2012), or “likely to be selected by other people” (Chen

et al., 2012).

Although the experimental settings that are typically employed in the aforementioned studies

provide accurate gaze measurements in highly controlled set-ups, they lead to rather un-

natural ways of consumption, with limited or non-existent user engagement. Furthermore,

despite the current availability of dedicated VR platforms, the influence of visualizing 3D

models in immersive experiences hasn’t been explored yet. Visual saliency of VR contents

has been investigated in the form of omnidirectional image and video sequences using head-

mounted displays. Specifically, several models (Bogdanova et al., 2008; Maugey et al., 2017),

testbeds (Upenik et al., 2016; Abreu et al., 2017) and data sets (Corbillon et al., 2017; Rai et al.,

2017; David et al., 2018; Knorr et al., 2018) have been proposed for gaze- and/or head-tracking

data. In (Sitzmann et al., 2018), the authors performed a thorough analysis on gaze and head

data collected from extensive experimentation using static omnidirectional panoramas on

several testing set-ups. The collected gaze and head orientations from the participants were
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(a) amphoriskos (b) biplane (c) egyptian_mask (d) longdress

(e) loot (f) redandblack (g) romanoillamp (h) shiva

(i) soldier (j) statue_klimt (k) the20smaria (l) ulliwegner

Figure 5.9 – Selected contents for the experiment.

thoroughly analysed, showing that head trajectories are sufficient to predict saliency in a VR

setting.

In this study we extend the state-of-the-art by tracking the visual attention of observers in an

immersive VR experience with 6DoF. We design a virtual reality scene that offers high levels

of realism with limited distractions. A wide range of static point cloud models is inspected

by human subjects, while their gaze is captured in real-time. To motivate user exploration,

a task-dependent protocol is adopted. The recorded visual attention information is used to

extract fixation density maps. To obtain high quality fixation points, an heuristic algorithm is

developed that utilizes every recorded gaze measurement from the two eye-cameras that are

installed in our set-up. The fixation density maps can be interpreted as importance weights

that are associated to the points of the model. Using a simple color mapping technique the

latter are transformed to heat maps in order to visually display regions of higher interest for

the models of our data set.

106



5.2. Visual attention in virtual reality

Table 5.5 – Point cloud contents characterization.

Content Type Voxelized Voxel depth Scaling Points

amphoriskos Object 7 10 9.78 ·10−4 814,474

biplane Object 7 10 39.10 ·10−4 1,181,016

egyptian_mask Object 3 12 2.44 ·10−4 272,684

longdress Human 3 10 18.71 ·10−4 857,966

loot Human 3 10 18.86 ·10−4 805,285

redandblack Human 3 10 19.15 ·10−4 757,691

romanoillamp Object 7 10 9.78 ·10−4 636,127

shiva Object 3 12 2.43 ·10−4 1,009,132

soldier Human 3 10 19.01 ·10−4 1,089,091

statue_klimt Object 3 12 4.88 ·10−4 499,660

the20smaria Human 7 10 18.01 ·10−4 1,553,937

ulliwegner Human 7 12 4.52 ·10−4 811,019

5.2.1 Data set

In this study, 12 static point clouds that are naturally consumed outer-wise were selected (6

objects and 6 human figures). The majority of models have been recruited from the JPEG1

and the MPEG2 repositories, which were released for purposes of point cloud compression

related activities, with amphoriskos retrieved from Sketchfab3. The acquisition technique for

each model varies, thus leading to different types of artifacts on their structure and texture.

Moreover, some of the models were voxelized by default, whilst for some others, the geometry

was spanning in an arbitrary range. Thus, to minimize the impact of geometrical irregularities,

the non-voxelized contents were also voxelized (see annex B.2 for implementation details).

The voxel depth was selected per model after ensuring high system responsiveness to avoid

discomfort of the subjects in the virtual environment. In Figure 5.9, the pristine models are

illustrated, while in Table 5.5, additional information regarding the (optional) pre-processing,

and the final geometric intrinsic resolutions, are detailed.

5.2.2 Methodology

Apparatus

The virtual environment was designed in Unity, which provides an open source platform with

high flexibility for the creation of virtual games and modular structure to facilitate integration

of external plug-ins. An HTC VIVE Pro headset was used as a viewport to the virtual world

with a resolution of 2880x1600 pixels (1400x1600 per eye, 615 ppi), a field of view of 110°, and a

1https://jpeg.org/plenodb/, last accessed 12/2020
2http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/, last accessed 01/2020
3https://bit.ly/3nekULm, last accessed 12/2020
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(a) Headset with eye trackers (b) Controllers

Figure 5.10 – Apparatus of the experiment.

frame rate of 90 Hz. To enable interaction between the user and the virtual world, the VIVE

controllers were employed and configured using the Steam VR plug-in. In particular, following

the naming of Figure 5.10b, the trackpad button was selected for tele-porting around the

virtual world, the grip buttons of the left and right controllers were used to rotate the camera

by 45° left-wise and right-wise, respectively, and the trigger button was employed to proceed

to the next stage of the evaluation. Moreover, users were able to interact with the virtual world

through physical movements; yet, with the above configuration, we ensured that people could

limit their physical actions in case they would feel uncomfortable.

To capture gaze data, the Pupil Labs eye tracker (Kassner et al., 2014) was attached to the

headset, as shown in Figure 5.10a. This hardware device consists of two eye-cameras that

track both eyes independently at a frequency of 120 Hz with an accuracy of 0.60° under ideal

conditions. In particular, the eye-cameras record image sequences, and at each frame the pupil

positions are detected. The pupil positions are then mapped to gaze points in viewport space.

The gaze points together with associated quality values indicating the detection accuracy of

the corresponding pupil positions are delivered to Unity, denoting the eye-data stream. The

headset position and rotation was tracked by VIVE base stations installed in the physical room,

forming the head-data stream. Both eye- and head-data streams were synchronized with

the rendering frame rate in Unity, before being exported. Thus, the recorded information

corresponds to the effective frames that were visualized by a user.

The detection of pupil positions in the recorded image cues from the eye-cameras is performed

by open-source software (i.e., Pupil Capture, Pupil Service) that is coming with the hardware.

Relevant scripts provide implementations of gaze mapping, video recording, data streaming

and events broadcast, while also additional plug-ins such as blink and fixation detection can

be enabled. The Pupil Capture is a higher-level software providing an interface and more

features with respect to the Pupil Service counterpart, which is designed for the implemen-

tation of lower-level operations. Thus, in our experimentation, the former is employed. The
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Figure 5.11 – Schematic diagram with the hardware and software modules together with their
inter-dependencies.

(a) Algorithm view: the squares show the initial estima-
tions of pupil region, while the red dot in the middle
shows the exact pupil position (the higher the opacity,
the higher the confidence)

(b) Region of Interest: The square box indicates the
region over which the pupil position will be searched

Figure 5.12 – Eye camera window from Pupil Capture software.

communication with Unity is established through the HMD-eyes plug-in, which is developed

by Pupil Labs specifically for supporting the integration of the hardware in HTC VIVE and

Microsoft Hololens. The HMD-eyes is also responsible for the calibration of the eye-tracker,

so that pupil positions can be mapped to gaze points in virtual coordinates inside Unity. A

high-level diagram indicating the hardware/software dependencies is provided in Figure 5.11 .

The accuracy of the eye tracker mainly depends on two operations: (a) the detection of pupil

positions in recorded images, and (b) the mapping of pupil positions to gaze points in the

viewport domain. For the former, there are several configuration parameters that are offered

through the Pupil Capture API and can be adjusted individually per eye-camera, such as the

focal length, the region of interest (i.e., the part of the image over which the position of the

pupil will be searched, as shown in Figure 5.12), the absolute exposure time (which leads

to brightness changes in the recorded images), and the resolution of the captured images

(the higher the resolution the more data are processed, thus, potentially leading to lower

frame rates), among others. Note also that there were two models implemented, namely, 2D
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(a) Object on stage (b) Human figure

Figure 5.13 – Virtual reality scene. The environment and the illumination are not distracting,
while the shadows underneath the models enhance the sense or realism.

and 3D detection mode, with the first being more stable at the time of the experiment. The

second operation, which maps the pupil position, requires calibration of the eye-tracking

device, which is handled from the HMD-eyes project as mentioned earlier. Several parameters

can be configured, such as the number and the positions of the markers, as well as the time

duration of their appearance. Despite the fact that the marker color changes during calibration

to reflect the quality of the pupil positions detection, which indicates the reliability of the

mapping, there is no way to validate the accuracy of the gaze measurements in the virtual

world. Moreover, in the case of virtual reality using an HMD, the relative position between

the eye and the camera could change during the experiment due to HMD slippages. If this

happens, the mapping between pupil and gaze positions will be inaccurate. For these reasons,

as will be explained later, an error profiling is issued after each evaluation session.

Rendering

Every model was loaded in Unity using the Pcx importer4, which converts a point cloud into a

mesh-based object. The default renderer provides the options to display a content as a set

of a raw points, or disks of fixed size. In this experiment, an earlier version of the renderer

described in annex D.4 was employed. In particular, the quad shader with adaptive point size

based on 5 nearest neighbors was selected, and the shader interpolation (Schütz and Wimmer,

2015) option was enabled, simulating an adaptive screen faced paraboloid that resulted in

water-tight surfaces.

Testing environment

The virtual world consisted of a non-distracting room in the shape of a parallelepiped (10×
10×5 virtual units), with mid-grey walls. The users were able to interact through the VIVE

4https://github.com/keijiro/Pcx
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(a) Calibration: Required to learn the mapping func-
tion between pupil positions and gaze points in the
virtual world. The markers appear on the periphery
of this circle that is shown using this background. It is
repeated before each model inspection

(b) Error profiling: Required to evaluate the accuracy
of the gaze measurements. The markers appear on a
regular grid in the virtual scene of the experiment. It is
repeated after each model inspection. If enabled, the
angular error is displayed to the viewport in real-time

Figure 5.14 – Gaze points calibration and evaluation of measurements.

controllers, or physically navigate in the real world space (3.5×3.5 meters) while also rotate

their body and orient their head to capture their preferred view. To promote interaction, the

initial position of the users entering in the virtual scene for inspection was selected randomly,

yet, it was intentionally avoided to appear far away from the models. The models were placed

in the middle of the room and were scaled appropriately to simulate realistic sizes. For instance,

the height of human figures was set to 1.85. Smaller objects (i.e., amphoriskos, egyptian_mask,

romanoillamp, shiva) were placed on top of a stage to allow natural viewing. To enhance

realism, real-time lighting was applied to the scene using a point light source, while shadows

were enabled through a custom script developed by the authors. In particular, by projecting

vectors defined from the position of the light and every point of the content, a shadow texture

was computed and applied on a quad primitive object, simulating a first order light reflection.

Examples of the VR scene with two different contents are illustrated in Figure 5.13.

Experimental design

Before the experiment, visual acuity and color vision of every subject was tested using Snellen

and Ishihara charts. Then, each subject was familiarized with the controllers and the naming

of each button in order to be able to communicate easier. The inter-pupillary distance was

measured and the headset was adjusted by the operator accordingly. A second operator

ensured that high quality gaze data were obtained by adjusting configurations in the Pupil

Capture API, when needed.

A training phase preceded the actual test. The test was split in two rounds (15-20 minutes
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each), with a mandatory 5-minute break in between. During training, the subjects acquainted

with the virtual environment and the navigation means on a dummy content. After feeling

comfortable with the set-up, they were informed about the task that was assigned to them:

“We ask you to examine a set of models; after visualization, we will ask you to order them based

on your preference. We will also ask what is the criterion of your preference”. Moreover, they

were instructed that it was not necessary to remember any model, as access to corresponding

images would be given at the end of a round. To facilitate their task and to identify potential

divergence in the criteria of preference, in the first round the set of 6 objects was visualized,

while in the second, the 6 human figures were inspected in random order. No time limitations

were applied for the training or the actual test.

For every model and each subject, a session was split into three consecutive steps:

1. Calibration to (re-)map the pupil positions to gaze points in viewport coordinates. For

this purpose, the HMD-eyes software was used with 7 markers appeared on a circle

and fixed depth in a 2D calibration mode, as illustrated in Figure 5.14a. The mapping

function is estimated using a bi-variate regression model.

2. Inspection of models is the step where the participants are consuming the 3D model,

while their viewing behavior is recorded.

3. Error profiling is issued at the end of each session in order to estimate the accuracy of the

gaze measurements due to calibration inaccuracies, or HMD displacements. Assuming

a worst-case scenario for HMD slippage at the end of a session, a regular grid of 9

markers at pre-defined positions in the virtual scene are presented to the users, which

are asked to stare at them for a certain period of time. In Figure 5.14b, an example of

the presentation of one marker is indicatively depicted. The center-top, center-bottom,

left and right markers were positioned at ±18.25° in the vertical and horizontal axes,

respectively, while the visual angle between the middle and corner markers was 25° at a

distance of 1 virtual units, with respect to the camera position and orientation. Based

on the recorded gaze measurements, the average angular error is computed per marker

in an off-line post-processing step. A threshold of 7.5° was used to discard unintentional

gazing, and a minimum of 100 samples was required; in case of fewer samples, a marker

was classified as invalid. This procedure allows us to decide whether the gaze data

obtained from a certain session is accurate or not.

A total of 21 subjects (12 males and 9 females) was recruited for this study in a volunteering

basis with a min of 20.8, a max of 38.9 and an average of 26.7 years of age.

Data processing

The recorded data consist of left and right gaze positions, estimated after mapping the pupil

positions in viewport space, which is normalized and relative to the camera. The middle gaze
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Figure 5.15 – Estimation of angular error for gaze points. On the left figure, we present the gaze
point g and its four adjacent markers mi , i = {1,2,3,4}. We assume that the corresponding
angular errors are valid. In the middle figure, the two candidate surrounding triangles are
depicted, indicated as T1 and T2. Given that g is closer to the vertices of T1, the barycentric
coordinates of g in T1 are computed and, then, interpolated in order to estimate the angular
error of the gaze point g .

position is also obtained as a simple average of the above. Thus, provided the camera position,

for every human gaze sample, we get three distinct measurements from left, right and middle

gaze positions (gaze types) that approximate the actual point of gaze. Instead of selecting only

one out of these three measurements, considering that physical movements may affect the

accuracy of pupil detection on different regions of the screen due to HMD displacements, we

devise an heuristic method to keep gaze positions of lower angular error.

Initially, for every human gaze sample, the quality value assigned to the right and left gaze

position is individually assessed. A gaze position is discarded if the quality value is lower

than 0.5. If at least one is discarded, the middle gaze position cannot be used. In case both

values are 0, the sample is classified as blink. Moreover, a gaze position is discarded if it is

outside the range determined by the markers’ positions.

After removing low-confidence and out-of-range gaze positions, the angular error of each

remaining gaze position is estimated. For this purpose, the data collected from the error

profiling established after each session are used, where the average angular error at each

marker is estimated, for every gaze type. For each gaze position, the 4 markers surrounding it

are selected as displayed in Figure 5.15. There are two triangles enclosing a point that is lying

between four equally spaced vertices. We start from the triangle whose vertices are closest

to the gaze position. A barycentric interpolation with weights equal to the corresponding

angular errors obtained from the profiling is applied. If there is an invalid marker in the first

triangle, we proceed to the second. If there is an invalid marker in the second triangle too, the

gaze position is discarded. Finally, among the remaining gaze positions, the gaze type with the

smallest angular error is kept. This is repeated for every human gaze sample to maintain high

quality estimations while avoiding discarding useful data.

To identify fixation points, the dispersion-based I-DT algorithm (Salvucci and Goldberg, 2000)

is employed with 150 ms minimum duration and 1° maximum dispersion. The window length

is adjusted to avoid duplicated fixations. An additional constraint that a fixation can only
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truncated-cone-sector
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(b) Illustration in 2D for identification of fixation. Frontal points (red) are considered
and occluded points (grey) are excluded. Higher weights (higher opacity) are given
to samples closer to the origin and the central ray of the cone

Figure 5.16 – Visual interpretations for hey-components employed in the proposed heuristic
methodology to identify fixations.

be obtained from consecutive measurements of the same gaze type is set, while a minimum

number of 4 samples is required for a period of 150 ms.

After a fixation is detected, the average gaze position is estimated over the duration of the

fixation. The corresponding average angular error is computed based on barycentric interpo-

lation, similarly to what has been done for individual gaze positions. If the fixation point is

out-of-range, or there is no triangle with valid markers, the fixation is discarded. Otherwise,

the direction of the fixation is computed as the vector between the average camera and average

gaze position in world coordinates, over the duration of the fixation.

A cone is cast towards this direction, and the points of the model that fall inside the cone are

collected. Since no colliding can be achieved with points, a set of angles and distances to split

the cone into a non-overlapping set of volumes is defined, which we call cone-sectors. More-

over, a threshold of acceptable depth, z, for the points that lie in a cone-sector is determined,

leading to a truncated-cone-sector, as shown in Figure 5.16a. The latter is defined by the

current cone-sector, the enclosed point that is closest to the origin, and the acceptable depth

along the direction of the cone. Once a truncated-cone-sector is identified, the remaining

points lying in the same cone-sector are not considered. Thus, frontal points of the model are

selected, while points that correspond to occluded regions are discarded. This procedure is

repeated for every cone-sector, and the resultant set of points constitutes the fixation.

Finally, the points determined from the procedure above are weighted as follows. Let f be

a fixation with angular error θ and duration t . Let x be a point of the fixation, p its distance

from the central ray of the cone, and d the distance between the origin and the projection of x
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onto the ray. With σ f = d · tan(θ), the importance weight of the point x is given as:

w(x) = t√
2πσ2

f

e
− p2

2σ2
f . (5.1)

An illustrative example in 2D is provided in Figure 5.16b.

Sessions where a high percentage of fixations come from low-quality, or out-of-range gaze

measurements should be avoided, as they would not be representative of the entire viewing

experience of one user. Thus, sessions with good tracking accuracy and high percentage of

in-range fixations are determined; the former is based on the ratio of the total number of

low-confidence gaze positions excluding blinks, divided by the total number of gaze positions,

whereas the latter is based on the ratio of in-range divided by the total fixations. A threshold

of 17.5% is set for low-confidence and 75% for in-range fixations. If both conditions are

satisfied, a session is qualified as valid. The fixation points from valid sessions are aggregated

across the subjects for each model, forming a fixation density map.

Head-tracking: In this part of the analysis we use only the head-trajectories in order to

compute importance weights for each point of a model. The employed approach has been

proposed in previous work on omnidirectional imaging (Upenik et al., 2016), however, it can

be straightforwardly applied in our case study. In particular, we decide that a user is not on a

transitional head-movement based on a threshold of 20 degrees/sec that we set for the head

velocity. For each sample that is falling below this threshold, a cone of angle equal to 10° is

emitted based on the recorded head position and rotation. The frontal points of the model

under inspection are identified, as explained earlier, and a Gaussian weighting is applied as a

function of (only) the distance from the central ray of the cone.

5.2.3 Results

Following the proposed method, 72.22% of the sessions were used to form fixation density

maps (15.17±2.48 subjects per model), with an average of 9.92% low-confidence gaze samples

and 92.24% in-range fixations. The average number of valid fixations per model is 44.29±7.17,

with a duration of 259.16±30.42 ms, and an angular error of 1.90° ± 0.84°. This corresponds to

a reduction of 50.90%, 46.33%, and 53.20% with respect to the angular error estimated during

error profiling for the right, left, and middle gaze, respectively, on the set of valid sessions.

Based on the recorded gaze data obtained from the subjects, in Figure 5.17, we present the

probabilities of gaze and fixation position at different viewing angles as measured in the

virtual world. These results suggest that the sight of the users tends to deviate from the horizon

following a Laplacian distribution with a peak between 5° and 10°.

In Figure 5.18, importance weights from fixation density maps are illustrated using gaze
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Figure 5.17 – Histograms indicating the probability of gaze and fixation positions as a function
of the viewing angle with respect to the head direction.

and head cues. It can be seen that visual attention is attracted by low-level features such as

edges and contrast, and high-level features such as faces. Attention is also drawn on text and

signs (e.g., biplane), on unexpected objects (e.g., chest of ulli wegner), and degradations (e.g.,

surface discontinuities in egyptian_mask). These observations are in alignment with trends

observed in visual attention experiments using other types of imaging modalities in different

environments.

In Figure 5.19, the importance weights obtained using only the head data-streams are pre-

sented. We observe that models with regions that attract the interest of people and do not

deviate much from the horizon (in the same height, or slightly up or down), the estimations

are good. For instance, the faces of human figures, of the upper parts of amporiskos and shiva.

However, when staring up or down, it is natural for the gaze to further extend corresponding

head movement towards the direction of interest. In such cases, the gaze predictions, which

are obtained from the head directions are poor. This can be seen in the case of biplane and

egyptian_mask, which are inspected from above and, especially in the latter case, where the

user’s interest was intended to be in the bottom part of the content, as Figure 5.18 suggests.

The average time of interaction found to be similar for both objects and human figures data

sets (60.9±10.7 against 56.4±4.6 sec.). A tendency of subjects spending more time on bigger

and more complicated objects (e.g., biplane) was naturally observed. The models were mostly

inspected from mid- to close-range distances. For example, the 76% of the recorded gaze

samples in the human figures data set (height of 1.85 virtual units) are collected from distances

of inspection that lie inside a circle of radius 2.5 virtual units. In Figure 5.20, the behavior of the

users in terms of aggregated time of inspection across all models is indicated. For illustration

purposes, a random point cloud is placed in the middle. The virtual room is represented

by a grid on a 2D histogram, with each square representing an area of 0.5×0.5 virtual units.

Brighter color values indicate larger aggregated time of inspection across all models and users.
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(a) amphoriskos (b) biplane (c) egyptianmask (d) longdress

(e) loot (f) redandblack (g) romanoillamp (h) shiva

(i) soldier (j) statueklimt (k) the20smaria (l) ulliwegner

Figure 5.18 – Importance weights from fixation density maps using gaze information.

It is evident that users prefer the frontal and rear views of the models.

Based on post-questionnaires, the majority of the participants were naive users of VR. The

immersion level and the total quality of experience was reported to be high, with grades of

4.15 and 4.35 out of 5, respectively. The visual quality of the contents under inspection was

graded as 3.7. For the above questions a 5-grading scale was used (5: Excellent, 4: Good, 3:

Fair, 2: Poor, 1: Bad). The discomfort levels were rated low, with 1.15 out of 3 (1: No, 2: Mild,

3: Strong). Finally, regarding the criteria of preference, “realistic” (6), “details (e.g., hair)” (6),

“friendliness” (3), and “color” (3) were the most common keywords for human figures, while

the most popular for objects were “realistic” (5), “smoothness” (3), “color” (3), and “aesthetic”

(2). In parenthesis, the number of keyword occurrence is indicated, in a total of 21 subjects.
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(a) amphoriskos (b) biplane (c) egyptianmask (d) longdress

(e) loot (f) redandblack (g) romanoillamp (h) shiva

(i) soldier (j) statueklimt (k) the20smaria (l) ulliwegner

Figure 5.19 – Importance weights from using head-trajectories.

Figure 5.20 – Time of inspection across models and users.
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Figure 5.21 – Overview of the virtual museum.

5.3 Towards visual attention in virtual museums

The advances in 3D technologies over the past decades have resulted in integration of AR

and VR applications in our nowadays lives. VR technologies, in particular, offer immersive

experiences with high quality content, in fully controlled and reproducible sceneries. These

denote attractive features that can reduce the parameter space and adjust influencing factors

of a viewing session, which is typically challenging in the real world. When VR applications are

combined with eye-tracking, the exact visual experience of a user can be recorded, accessed

and reproduced with high accuracy. Such information permits studying and analysing the

user behavior, which is critical in a wide range of research domains spanning from marketing

and gaming, to psychology and neuroscience.

In our previous efforts, user movements in 6DoF VR experiences were tracked in the context

of subjective quality evaluation, while eye-tracking was additionally enabled to study visual

attention on point cloud contents. For these studies, a generic virtual scene was designed

that ensured no distractions, while the evaluation methodology that was adopted promoted

exploration of the user. In this work, we design a virtual environment that serves a more

specific application, while enhancing the realism of the experience and the naturalness of

users interactions with the virtual world. In other terms, in the first case a virtual scene was

created to display models, whereas in the second case, a virtual world is constructed where the

models are part of it. Specifically, the virtual environment represents a museum comprised

of a main corridor and exposition rooms. In each room, a cultural heritage model in the

form of point cloud is presented. The user is free to choose the navigation path and in which

room he/she will enter, at will. This application aims at simulating a realistic experience of a

user visiting a museum, while offering the possibility of tracking both head and gaze cues for
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(a) Main corridor view (b) Room view

Figure 5.22 – Exemplary views of the virtual environment from the user’s perspective.

analysis purposes, provided the corresponding hardware. Moreover, auxiliary tools that are

device-dependant are developed as modules that can be enabled or disabled, allowing: (a)

better synchronization between gaze- and head-related data streams, and (b) benchmarking

of the eye-tracking device.

5.3.1 Scene design

The virtual museum is designed using the Unity 3D development engine and is consumed

by means of an HTC VIVE Pro headset. The users are able to navigate in the virtual world

with 6DoF through physical movements, while also they can teleport by using the trackpad

button of the VIVE controllers (see Figure 5.10b). Optionally, the head position and rotation

(i.e., virtual camera) can be recorded in Unity at the system frame rate, while the user’s gaze

can be tracked by the Pupil Labs hardware that must be integrated in the headset.

An overview of the museum is illustrated in Figure 5.21. As can be seen, there is an external

space, which serves as the entrance and is created to better simulate real-life designs. A

main corridor is constructed in the middle of the layout, with a number of exposition rooms

placed in a symmetric way on the left and the right side. In Figure 5.22a, the view of the user

while walking in the main corridor is indicated. The entrance in each exposition room is

granted through a door, which opens with a simple hand hover over the door handle using

the controller. Upon entrance, a point cloud model appears in the center the room and is

oriented so that the frontal view is faced, as depicted in Figure 5.22b. A configuration file

carries information regarding the arrangement of models inside the rooms. Each room is

identical, with dimensions of 10×10×5 virtual units. To represent the models, the renderer

described in annex D.4 is employed. Thus, prefabricated models of adjustable appearance are

loaded in run-time. The size of the models is adjustable, and can be configured in the same

configuration file. In our experimentation, we set realistic sizes to facilitate inspection. In case

of smaller objects, a stone stage was additionally employed, as presented in Figure 5.22b, to

better simulate realistic conditions and to ease user inspection.
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(a) User navigating in the corridor (b) User inspecting a model

Figure 5.23 – Demonstration of user interactions that is played-back using the recorded data.
The head position is indicated by the white avatar and the gaze direction by the purple line.

Users can freely navigate in the virtual space; however, certain limitations are enabled to avoid

confusions and enhance realism. For instance, users cannot walk on the stairs placed in the

entrance of the museum, since it is a rather unrealistic experience when not accompanied

with external stimuli that simulate the feeling of changing ground level. Moreover, users

cannot enter a room through the walls, rather, they should use the door handle. The latter

also permits to efficiently display and hide models upon user’s entrance in a room, in order

to reduce the rendering costs and increase system responsiveness (i.e., assets that are not

currently inspected, are not loaded).

5.3.2 Supplementary tools

Time synchronisation between Unity and Pupil Labs

In eye-tracking experiments in 6DoF virtual environments, both head and gaze information

is required in order to extract the position of the user and the point of interest at any time

instance. In our experimental set-up, the gaze cues are recorded by the Pupil Labs software,

whereas the head cues are recorded in Unity, which has access to the virtual camera parameters

(i.e., position and orientation) in world coordinates. Provided that each application has its

own clock, the two time series (i.e., data streams) need to be synchronised.

In our previous efforts, the adopted methodology relied on subscription of Unity to the gaze

topic implemented by Pupil Labs in order to receive the respective data. The received packages

were extracted and, at every frame refresh, the latest available gaze-relevant information

was recorded together with the current head data in an external file. This way, head and

gaze information was synchronized per effective frame. In the current implementation,

we synchronize the gaze and head data streams using the Pupil Labs TimeSync.cs script,
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Figure 5.24 – Menu for configuration of markers.

Figure 5.25 – Built-in markers integrated in the module.

which calculates the time offset between the two clocks. In particular, we call the function

TimeSync.GetPupilTimestamp() from Unity, in order to obtain the Pupil Labs time. We

store as tS the Unity time the function is called and as tR the Unity time we receive the response.

The Unity time that corresponds to the Pupil Labs time returned from the function is set as

0.5× (tS + tR ), in order to account for the round-trip communication delay.

In Figure 5.23, a snapshot from the play-back of a user’s experience based on the recorded

gaze and head-data streams is demonstrated. The white avatar indicates the head position,

and the purple line the gaze direction.

Module for benchmarking of eye-tracker

A benchmarking module was developed to quantify the accuracy of the eye-tracking device,

by computing the angular difference between the estimated and the target gaze point. This

way, the quality of the recorded material can be evaluated and conclusions can be drawn

regarding their validity. Moreover, such an application may allow investigation of the device

performance under different conditions, such as the position of the headset, or the subject’s

physiology (i.e., eyes color and shape, wearing contact lenses) among others, which might

122



5.3. Towards visual attention in virtual museums

affect the accuracy of the measurements.

The benchmarking scene is simple and non-distracting. A sequence of markers with known

position and random presentation order appear consecutively, for a pre-determined time

duration. The subjects are asked to stare at the markers as soon as they appear, which is very

similar to a typical calibration procedure. Provided the marker position, the accuracy of the

measurements to estimate the gaze position can be computed.

Regarding the markers, we consider four aspects that can be adjusted though a menu that is

provided in the Unity editor, illustrated in Figure 5.24.

Appearance: Different geometrical shapes and textures can be used as markers. In our pack-

age the spherical, cubic, eye and cross-hair marker indicated in Figure 5.25 are provided.

Position: The marker positions should allow for a variety of gaze angles in order to compute

the device performance under a wide range of eye movements. Moreover, the markers should

be placed at different depths in order to account for different eye vergence. In our implemen-

tation, the markers positions are set by defining a set of rings. The shape of each ring is defined

by its “Radius” and the “Center position”, as shown in Figure 5.24. Moreover, the “Number of

markers” is set individually for each ring and they are placed at equally spaced positions. The

“Angle offset” option sets the angle of the markers around the ring, allowing a wide range of

constellations. Note that the “Central Marker” option adds a marker at the center of the ring.

Orientation: The orientation of the markers can be adjusted to face the camera (i.e., the

subject) through the “Face camera” option. For the spherical marker, this option is obviously

superfluous. However, for the cross-hair marker, for example, it allows the subject to target at

the markers head-on, and not from the side.

Size: Finally, the “Normalize marker” option sets the size of each marker so that it takes up

a certain angle in the subject’s field of view. This angle is set with the “Normalization angle”

setting, which can be useful to prevent close markers from being too large.

In this section we have describe our recent efforts in creating virtual worlds, as well as our

considerations and development of tools that allow to accurately capture head and gaze

information of users interacting with it. Preliminary tests have been concluded with success

(see Figure 5.23) and are inspiring for further experimentation that will be carried in the future.
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5.4 Conclusions

In this chapter we exploit VR technology to conduct subjective experiments with point cloud

contents. Virtual environments are designed to serve our purposes and rigorously described

to allow reproducibility. In particular, a simple, non-distracting scene is developed to perform

subjective quality assessment with 6DoF of point clouds under color distortions occurring

from the two color encoding modules of the state-of-the-art MPEG G-PCC encoding engine. A

well-established test method is adjusted to the interactive nature of the inspection protocol

that was adopted, and a new variant is proposed. The results indicate statistical equivalence

of the two color codecs that were tested, based on the subjective scores obtained from both

test methods. Moreover, the proposed alternating DSIS protocol was found to result in lower

uncertainty for the perceived quality of the displayed stimuli, and it was generally preferred by

the participants. Analysis of the interaction patterns extracted from the recorded navigation of

the subjects during evaluation showed a preference for close-range, frontal view examination.

The same scene was then employed in an eye-tracking experiment that was conducted to

identify regions of interest for popular point cloud models. A task-dependent viewing scenario

was adopted and head-plus-gaze information was recorded in real-time. The experiment was

split in two sessions, and subjects were asked to visualize the set of models that belongs to the

same content type (i.e., objects and human). At the end of the experiment, the participants

were requested to set a criterion of preference and order the models accordingly. Based on the

received feedback, the “realism” was the most common criterion for both types of contents,

which coincides with our prior expectations for this experimental set-up. After processing the

recorded material, fixation density maps were extracted in the form of importance weights.

To improve the accuracy of our measurements and to compensate limitations of the eye-

tracking hardware due to headset slippage, a method to exploit the highest-quality recorded

gaze data was introduced based on a per-session error profiling, reducing remarkably the

average angular error. Moreover, a scheme to determine areas of fixations in a point cloud was

proposed, dealing with the particularity of this type of content representation; that is provided

that points have no dimensions, common techniques that make use of colliders cannot be

exploited.

Finally, we develop and describe functionalities that have been integrated in a proof-of-

concept application of a virtual environment that allows more realistic human interactions.

This virtual world essentially represents a museum, which is a common VR use-case. Asso-

ciated modules that improve the synchronization between gaze and head data streams are

implemented and described, while also a scene to benchmark the gaze measurements that

are obtained from an eye-tracking hardware is detailed, providing insights that can be useful

in future attempts.

For the purposes of our experimentation, a high-quality point cloud data set was generated,

so-called PointXR dataset, which was publicly released. Moreover, the application that was

employed in our VR experiments and additional rendering tools, namely PointXR toolbox, have
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been also freely distributed. Finally, the subjective scores collected from the experiment that

was conducted to assess the G-PCC color encoding module, form the PointXR experimental

data which was also made publicly available. Information on how to retrieve and where to

refer for additional information are provided in annex E.
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6 Point-based objective quality metrics

Objective quality evaluation is a research area involved in the design of algorithms that predict

visual quality of contents, typically as they would be perceived by human end-users. This

research field is impactful on several tasks that are related to information and communication

systems. For instance, having access to accurate predictions of visual quality for contents

after encoding or transmission can greatly assist in improving user experience, by updating

corresponding configurations of the underlying systems to reduce perceptual impairments.

Moreover, the benchmarking of new solutions can be facilitated by carrying out performance

evaluation analysis using objective scores from well-performing predictors instead of human

opinions. The latter are collected from subjective experiments, which are assumed to reveal

ground-truth visual quality ratings; yet, they are costly and cumbersome, as well as limited in

terms of ad-hoc implementation and large scale realization.

The development of predictors that accurately decide the level of visual distortions from

realistic types of degradations (e.g., noise, compression) for different imaging modalities,

has been at the center of attention of the research community with a relevant interest for

many years. The initial focus was naturally drawn on conventional images, where it was

early understood that naive implementations of error quantification in a pixel-by-pixel basis,

e.g., MSE, did not correlate well with human judgements. As a consequence, efforts were

concentrated on approaches that consider characteristics of the human visual system. These,

in principle, can be categorized as bottom-up, and top-down. The former denote theoretical

approaches that aim at measuring perceived errors in a content, whereas the latter signify

engineering solutions that aim at capturing properties of human visual perception. Objective

quality metrics can also be clustered based on the availability of the original version of the

content at run-time as full-reference, reduced-reference and no-reference metrics.

In the field of 3-D imaging, top-down full-reference approaches are the most common. They

have been largely explored in the case of polygonal meshes, and more recently extended to

point cloud data. In fact, a substantial amount of work has been lately carried out on the

latter type of content representation, which has led to numerous new objective methods for

perceptual quality prediction. Current point cloud metrics can be classified as (a) point-based,
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and (b) image-based. The former class operates on the point cloud domain, thus, requiring

as inputs point cloud contents, whereas the latter predictors function on the image domain,

making use of algorithms that are applied on projected views of the models.

In this chapter, we describe and validate our contributions in point cloud objective quality

assessment that relies on the primal 3-D data. The proposed solutions exploit explicit and/or

implicit information that is carried in a point cloud format, hence, falling in the point-based

class.

We initiate by defining the point cloud angular similarity metric, hereafter often referred

to as plane-to-plane. This predictor makes use of normal vectors in order to compute the

angular similarity of tangent planes between an original and a degraded model, capturing

geometry-only degradations. Its performance clearly depends on the quality of the relevant

attribute data, and the approximations the latter provide for the underlying model surfaces.

To shed light on the matter, the plane-to-plane metric is benchmarked under different normal

estimation algorithms and configurations, using several subjectively annotated data sets. This

performance analysis allows us to calibrate the metric, and obtain insights regarding the

relationship between surface approximations and prediction accuracy.

We then proceed to the definition of the point cloud structural similarity metric, also cited

as PointSSIM. This method relies on statistical dispersion measurements that characterize

distributions of point cloud topology and/or color properties in local neighborhoods. In

particular, features that capture local variations in the selected attribute domains (i.e., location,

normal, curvature, and color) are extracted and compared between an original and a degraded

model, resembling the operation of the well-known SSIM (Wang et al., 2004). To compute

relevant statistics, a series of dispersion estimators is recruited. Moreover, a voxelization step

is proposed and applied prior to feature extraction, in order to eliminate intrinsic resolution

differences across stimuli and mimic distant inspection. The performance of the metric is

benchmarked under different attributes, dispersion estimators, neighborhood sizes, and voxel

resolutions, against various subjectively annotated data sets. This process permits in-depth

understanding of the metric’s performance, with respect to the parameter configuration.

This chapter is based on material that has been published in (Alexiou and Ebrahimi, 2018c,

2020).

6.1 Point cloud angular similarity

In the visualization process of a point cloud content, the human brain tends to interpolate the

individual point samples in order to perceive the underlying model. Degraded versions of a

content typically lead to a different number of point samples, and coordinates that deviate

from their original position, introducing visual impairments. Such perceptual differences

could be quantified by a measurement of similarity between corresponding surfaces fitted to

the pristine and the impaired point samples.
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To obtain a surface similarity measurement, one solution is to convert the point cloud data to

mesh representations. However, this approach brings the issue of sensitivity on the selection

and configuration of the surface reconstruction algorithm by introducing extra complexity

and ambiguity in the obtained objective quality scores. A relevant subjective study described

in section 3.4, reveals that distortions applied on the point cloud domain lead to visual

artifacts of different nature after surface reconstruction, which might be rated differently. A

simpler approach is to consider tangent planes to estimated fitted surfaces. In particular,

the dihedral angle between tangent planes quantifies the local similarity of corresponding

surfaces by measuring the orientation difference. Using the angular similarity formula instead,

an equivalent measurement is obtained, additionally bringing the advantages of a distance

metric.

Our algorithm aims at capturing perceptual degradations by computing the similarity of

surface approximations between a pristine and an impaired model. In particular, it relies

on the angular similarity between tangent planes that correspond to pairs of nearest points

from the reference and the model under evaluation. The points can be interpreted as discrete

samples drawn from underlying continuous surfaces, and the tangent planes as local linear

approximations of the surfaces at those particular coordinates. Finally, the tangent planes are

defined as perpendicular to normal vectors, which can accompany coordinate data in a point

cloud format; hence, the latter are employed in practice to compute angular similarity scores.

In this section the proposed point cloud angular similarity metric is defined. Implementation

details are provided and limitations of the algorithm are explicitly described. The performance

of the metric is analysed under different approximations of underlying surfaces, which are

reflected on the estimated normals, and against numerous subjectively annotated data sets.

6.1.1 Definition

Let us consider a point a, with its associated normal vector ~na that belongs to the set of

points A, which represents model O A . Let us also consider another point b, with its normal

vector ~nb that belongs to another set of points B , which represents another model OB . Let

us finally assume that the coordinates of a and b are identical, as shown in Figure 6.1. The

difference between the normal vectors ~na and ~nb is expressed through the angle θ, which is

equal to the angle between the corresponding tangent planes perpendicular to these normals.

Differently oriented tangent planes indicate that different local surfaces connect the points a

and b with their corresponding neighbors in sets A and B . Thus, a larger angle θ implies a

larger difference between the local surfaces of models O A and OB , respectively

Let us assume that point cloud A is the pristine content and point cloud B is an impaired

version. By setting A as the reference, for each point b that belongs to B , the nearest point a

is identified in the reference using the Euclidean distance, in order to measure the angular

similarity of adjacent surfaces.
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Figure 6.1 – Point cloud angular similarity metric.

The cosine similarity sim between the tangent planes of a and b is initially derived according

to Equation 6.1

sim= cos(θ) = �na ·�nb

||�na || ||�nb ||
(6.1)

where θ is the angle between�na and�nb and sim ∈ [−1, 1]. Then, the inverse cosine is computed

and the angle θ̂ = arccos(sim) is estimated. Notice that different notations are used, since θ ∈
[0,2π] while θ̂ ∈ [0,π], by the definition of the inverse cosine. Considering that we are only

interested in the angular similarity between tangent planes, we want to keep the minimum out

of the two angles that can be formed between the intersecting planes (i.e., dihedral angle); thus,

we define θ̃ = min{θ̂, π− θ̂}, with θ̃ ∈ [0, π/2]. An equivalent expression is given by Equation 6.2

θ̃ = arccos(|sim|) (6.2)

where sim is calculated using Equation 6.1. Notice that this quantity essentially reflects the

angle between two unoriented normal vectors.

Lastly, the angular similarityasimB ,A(b) between the tangent planes of a and b, bounded in

the range [0, 1] and using A as reference, is given by Equation 6.3.

asimB ,A(b) = 1− 2 θ̃

π
(6.3)

After computing a similarity value for each point of the point cloud under evaluation, in this

case B , a pooling method P
(• )

is applied in order to calculate a global score ASIMB ,A that
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characterizes the degradation of B with respect to A, as shown in Equation 6.4.

ASIMB ,A =P
(
asimB ,A(b)

)
(6.4)

Indicative examples of widely-used pooling algorithms for the computation of a global degra-

dation score are given in Equations 6.5 and 6.6.

P
(
asim(m)

)= 1

M

(
M∑

m=1
asim(m)q

) 1
p

(6.5)

P
(
asim(m)

)= ∑M
m=1 w(m) asim(m)∑M

m=1 w(m)
(6.6)

where m indicates a point and M the cardinality of the point cloud under evaluation, asim(m) =
{asimB ,A(m), asimA,B (m)} is the angular similarity by respectively setting A and B as the ref-

erence, w(m) denotes a corresponding weight, and q, p ∈R0+ . More often, the mean and the

MSE are employed for pooling.

In an analogous way, the global score ASIMA,B is derived to reflect the degradation of A with

respect to B , after setting the latter as reference. The final point cloud angular similarity (or

plane-to-plane) score ASIM is defined as the symmetric error, obtained after setting both

models as reference and keeping the minimum out of the two global degradation scores, as

depicted in Equation 6.7.

ASIM= min
{
ASIMB ,A , ASIMA,B

}
(6.7)

The description of the metric is summarized in Algorithm 1.

Algorithm 1

1: Set as reference point cloud A
2: for all b ∈ B do
3: Identify a as the nearest neighbor of b in A
4: Compute angular similarity asimB ,A(b)

5: Compute global degradation ASIMB ,A

6: Set as reference point cloud B
7: for all a ∈ A do
8: Identify b as the nearest neighbor of a in B
9: Compute angular similarity asimA,B (a)

10: Compute global degradation ASIMA,B

11: Compute angular similarity (plane-to-plane) ASIM

Complexity

The complexity of the proposed algorithm is limited by the selection of the algorithm to

identify nearest neighbors. In particular, let us set point cloud A as the reference content.
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Assuming a linear search approach, the computational complexity to specify a nearest neigh-

bor a for a point b, would be O (M), with M the cardinality of A. Following a k-d tree approach,

a space-partitioning data structure of M points should be initially constructed, which is an

operation of O (M log M). Then, the search in the k-d tree to determine a nearest neighbor a

for a point b, is an operation of O (log M). After establishing a pair of associated points, the

angular similarity is computed. Considering that the calculation is constant in regard to the

number of points, a cost of O (1) is added on the top. The aforementioned procedure, excluding

the potential k-d tree construction, is repeated ∀b ∈ B . Then, the computation of the global

degradation score poses an additional complexity of O (N ), with N the cardinality of B , since

it is a function of the number of points of the point cloud under evaluation B . Analogously,

we obtain the computational costs after setting point cloud B as the reference. The consoli-

dated computational complexity of the proposed algorithm is max{O (M log M), O (N log N )},

assuming a k-d tree, or O (N M) assuming a linear search approach for the identification of

the nearest neighbors.

Limitations

The main limitations of the proposed metric are: (a) It captures geometry-only degradations.

(b) It is a full-reference metric, indicating that both the pristine and the impaired point clouds

should be available in order to compute an objective quality score. (c) The association of points

between the reference and the model under evaluation to compute the angular similarity is

based on nearest neighbors in the Euclidean space, which implies that the metric is vulnerable

to translation and scaling. (d) It relies on normal vectors, requiring this attribute to coexist

with the coordinates of both the pristine and the impaired point clouds, or to be estimated in

case of absence. No specific normal estimation methodology is imposed on our side as part

of the metric’s implementation. Ideally, normals would be given as attributes along with the

point cloud content. However, this is often not the case. Since the accuracy of this predictor

depends on how the normal vectors approximate the underlying surfaces, we analyse the

performance of the metric under different surface approximations and subjectively annotated

data sets, showing the results in section 6.1.2.

6.1.2 Validation methodology

Data sets

A total of 4 subjectively annotated data sets is recruited in order to evaluate the performance

of the point cloud angular similarity metric, which are briefly summarized below.

G-PCD: This data set has been assembled from our efforts published in (Alexiou and Ebrahimi,

2017b). It consists of 5 geometry-only static point clouds that are generated by different means,

depicting simple objects. The contents are distorted by injecting Gaussian noise and after
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Octree-pruning at 4 degradation levels. The subjective experiments were conducted using

an interactive platform in a desktop set-up and the models were rendered as collections of

points. Two test methods were adopted, namely, simultaneous DSIS and ACR. Provided the

different type of visual distortions from each degradation type, a different session was held

per test method and type of impairment. In our analysis, subjective scores obtained from all

sessions are considered. More details regarding the generation of stimuli and the subjective

experiments are provided in sections 3.1 and 3.2, respectively.

J-PCED2: The so-called J-PCED2 data set is published in (Perry et al., 2020) under the frame-

work of activities conducted by JPEG experts that participated in the Exploratory Study 2,

issued by the JPEG Pleno AhG on Point Clouds. It contains 6 colored static point clouds that

represent human figures, whose geometry and color is encoded using the V-PCC and two

G-PCC variants at 5 degradation levels. Regarding the latter, the Octree and TriSoup modules

are enabled for geometry encoding and the Lifting module for color encoding. The contents

are compressed following the MPEG Common Test Conditions document (MPEG 3DG, 2017);

the exact encoding configurations can be found in the respective paper. The encoded stimuli

were subjectively evaluated using points of fixed size in four independent laboratories, under

a passive evaluation protocol. The MOS that serve as the ground truth in our analysis are

obtained after merging the scores from the participated laboratories, since they were found to

be highly correlated. Further details can be found in (Perry et al., 2020).

M-PCCD: This data set is created from our efforts that are published in (Alexiou et al., 2019b).

It contains 8 colored static point clouds that represent both human figures and inanimate

objects, whose geometry and color is encoded using the V-PCC and the four G-PCC variants

(i.e., Octree-plus-Lifting, Octree-plus-RHAT, TriSoup-plus-Lifting and TriSoup-plus-RAHT)

under the MPEG Common Test Conditions (MPEG 3DG, 2017). The compressed point clouds

were rendered using adaptive point sizes in subjective experiments that were conducted in two

independent laboratories, following an interactive assessment protocol. Since the results from

the two experiments were strongly correlated (Alexiou et al., 2019b), the ground-truth MOS

that are considered are obtained after pooling together the two subjective rating populations.

We refer to details about the generation of stimuli and the subjective experiment in sections 9.1

and 9.2, respectively.

IRPC: This data set is published in (Javaheri et al., 2019). It consists of 6 static colored

point clouds whose geometry only is compressed using three codecs, namely, V-PCC, G-

PCC (TriSoup module) and PCL, at 3 degradation levels. Two of the models were selected from

the class inanimate objects, two were obtained from the class buildings and facades, and the

remaining two from the class people of the MPEG data set. The point clouds were subjectively

evaluated in three different sessions, including and excluding color information. In this study,

we make use of scores from the rpoint session, which was conducted using a fixed-size point-
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based rendering without color information. The point clouds were evaluated passively, after

sequential inspection of video sequences showing the reference and the distorted models.

Further details can be found in the corresponding paper (Javaheri et al., 2019).

All data sets consist of point clouds with diverse characteristics, resulting from the different

nature of the represented models and the acquisition technologies that were employed. More-

over, the wide span of degradation schemes leads to different types of artifacts, making them

representative and suitable candidates for benchmarking purposes.

Computation of quality metrics

To evaluate the performance of the proposed method on G-PCD, the normals of all stimuli

are estimated using the k-nearest neighbor (k-nn) plane fitting algorithm with k = 6, as im-

plemented in PCL. Angular similarity scores are then computed using the estimated normal

vectors between pairs of associated points from the model under evaluation and the corre-

sponding reference. In this data set, we use both the mean (i.e., AVG) and the MSE pooling

methods in order to calculate a corresponding global degradation score for each model under

evaluation. For every pooling method, a plane-to-plane score is obtained using the symmetric

error, as per Equation 6.6.

As described in section 6.1.1, the performance of the proposed metric depends on normal

vectors and how they approximate the underlying surfaces. Therefore, in order to quantify their

impact in the prediction accuracy of the metric, as part of our subsequent analysis we consider

different algorithms and configurations for normal estimation. In particular, we choose

three widely-used schemes, namely, (a) plane fitting using k-nn, (b) plane fitting using range

search, and (c) quadric fitting using range search with radius R, also referred to as R-search,

which are applied on different neighborhood sizes around every queried point. For the former

algorithm, we use the MeshLab implementation, whereas for the latter two, the CloudCompare

software is employed. Note that in annex C, the accuracy of these schemes is evaluated against

ground-truth normal vectors, by means of angular error. Moreover, implementation details

are provided and valuable insights are drawn regarding their performance on this task.

The prediction accuracy of the plane-to-plane metric subject to the aforementioned normal

estimation approaches is analysed using the J-PCED2, M-PCCD and IRPC data sets. To avoid

including the same location data more than once in the formulation of neighborhoods for

computing the normals, duplicated coordinates are discarded, for each stimulus of every data

set. After this pre-processing step, we proceed to estimate the normals. Specifically, using the

k-nn with plane fitting algorithm, neighborhoods of 8, 16, 32, 64, 128, 256, 512 and 1024 points

are employed, for all data sets. Using range search with plane and quadric fitting, an R of 5, 10,

20, 30, 40 and 50 is used in the former two data sets (i.e., J-PCED2 and M-PCCD). In the case

of IRPC, to account for the presence of the same contents at multiple resolutions i.e., facade,

frog, house, and mask), the radius is adjusted accordingly. In particular, contents of this data

set with voxel resolution equal to 12 bits were down-voxelized to 10 bits before encoding with
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V-PCC, in order to respect the limitations of the codec. Thus, the 10-bit content version serves

as the uncompressed reference for V-PCC encodings, whereas the 12-bit version denotes the

reference for G-PCC and PCL encodings. In order to estimate normals over the same region of

such a content, the range search radius for stimuli with resolution of 4096 is multiplied by 4

with respect to stimuli of 1024 resolution. At the end, a radius of 5, 10, 15, 20, 25 and 30 is used

for 10-bit contents, whereas a radius of 20, 40, 60, 100 and 120 is employed for 12-bit contents,

respectively.

Using every selected algorithm and configuration, the normal vectors of each point cloud of

a data set are determined. Based on the estimated attributes, angular similarity scores are

computed for a model under evaluation with respect to a reference. The MSE pooling method

is applied to obtain a global degradation value, and a plane-to-plane score for a stimulus is

given by the symmetric error, as described in section 6.1.1.

For comparison purposes, well-established objective quality metrics are additionally evaluated

on all data sets. In particular, the point-to-point with MSE, the point-to-plane with MSE, the

corresponding geometric PSNR variants, and, for colored stimuli, the color PSNR computed

on the luminance channel are employed. It should be noted that the PSNR point-to-point

and point-to-plane with MSE, also referred to as PSNR D1 and PSNR D2 respectively, together

with the color PSNR in Y, U and V components, were employed by the MPEG standardiza-

tion committee to carry out objective quality evaluation in the recent point cloud Call for

Proposals (MPEG 3DG and Requirements, 2017). In our analysis, we additionally report the

prediction accuracy of the non-PSNR variants, since they were often found to outperform

the alternatives in the selected data sets. Moreover, we exclude the color PSNR in U and

V chromatic components, given that they were found to consistently under-perform with

respect to the luminance-based predictions.

The metrics are computed using the software ver. 0.13.5 (Tian et al., 2017c). For the execution

of the point-to-plane, default normals that are coming with the released contents are employed

when possible, otherwise they are estimated. In particular, k-nn plane fitting using k = 6 as

implemented in PCL is used for the G-PCD contents. Moreover, k-nn plane fitting with k = 12

as implemented in PCL is employed for contents ricardo10 and sarah9 from the J-PCED2,

and the contents amphoriskos, biplane, head, romanoillamp and the20smaria from the M-

PCCD data set. For IRPC, the normals published with this data set are recruited. In order

to compute the geometric PSNR variants for the stimuli of G-PCD, the maximum nearest-

neighbor distance of a pristine content is automatically set as the peak signal value, provided

that the point clouds of this data set are not voxelized. For the rest of the data sets, the voxel

grid resolution of the pristine models is given as input to the software, and the corresponding

voxel grid diagonal is set as the peak in the numerator of the ratio. For the calculation of the

luminance PSNR, the color attributes are converted from the original RGB to the YCbCr color

space, following the ITU-R Recommendation BT.709-6 (ITU-R BT.709-6, 2015), as implemented

in the same software. In all cases, the symmetric error is utilized, which is obtained by setting

both the pristine and the impaired model as a reference, and keeping the maximum error.
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Figure 6.2 – G-PCD: Subjective against objective scores from the best-performing proposed
(left) and anchor (right) quality metrics under Gaussian noise, using the ACR test method.

Table 6.1 – G-PCD: Performance indexes of objective quality metrics under Gaussian noise, for
both test methods.

ACR test method DSIS test method

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

plane-to-plane_AVG 0.963 0.967 0.372 0.450 0.959 0.947 0.392 0.400

plane-to-plane_MSE 0.969 0.967 0.339 0.400 0.965 0.947 0.364 0.400

point-to-point_MSE 0.977 0.927 0.302 0.500 0.984 0.948 0.249 0.300

point-to-plane_MSE 0.978 0.937 0.288 0.350 0.937 0.921 0.485 0.650

PSNR point-to-point_MSE 0.993 0.985 0.162 0.150 0.993 0.971 0.168 0.100

PSNR point-to-plane_MSE 0.992 0.978 0.172 0.150 0.991 0.963 0.188 0.150

Benchmarking of quality metrics

To benchmark the objective quality metrics, we follow the methodology described in sec-

tion A.3. In particular, the subjective MOS are considered as the ground truth and are com-

pared to predicted MOS values that are obtained from the objective methods, using logistic

regression. Then, the PLCC, the SROCC, the RMSE, and the OR are computed between the

MOS and the predicted MOS values, to account for linearity, monotonicity, accuracy and

consistency of the quality predictors, respectively.

6.1.3 Results

Performance evaluation on G-PCD

In Table 6.1, the performance indexes of the objective metrics under evaluation are provided

after Gaussian noise, against the subjective scores collected under both test methods. In

Figure 6.2, we demonstrate scatter plots of subjective against objective quality scores from the

138



6.1. Point cloud angular similarity

plane-to-plane_MSE

M
O

S

bunny

cube

dragon

sphere

vase

logistic fitting

PSNR point-to-point_MSE

M
O

S

bunny

cube

dragon

sphere

vase

logistic fitting

Figure 6.3 – G-PCD: Subjective against objective scores from the best-performing proposed
(left) and anchor (right) quality metrics under Octree-pruning, using the ACR test method.

Table 6.2 – G-PCD: Performance indexes of objective quality metrics under Octree-pruning,
for both test methods.

ACR test method DSIS test method

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

plane-to-plane_AVG 0.954 0.935 0.273 0.150 0.896 0.903 0.423 0.300

plane-to-plane_MSE 0.955 0.940 0.272 0.150 0.894 0.904 0.427 0.350

point-to-point_MSE 0.431 -0.024 0.826 0.550 0.193 -0.178 0.937 0.700

point-to-plane_MSE 0.618 0.029 0.720 0.500 0.386 -0.118 0.892 0.700

PSNR point-to-point_MSE 0.224 0.141 0.891 0.650 0.284 0.276 0.912 0.500

PSNR point-to-plane_MSE 0.614 0.110 0.724 0.421 0.415 -0.055 0.861 0.579

best-performing proposed and anchor algorithms, using the test method that revealed the

highest correlation (i.e., ACR). Regarding the anchors, the PSNR point-to-point with MSE was

found to outperform the alternatives using both the ACR and the DSIS test methods, whereas

for the plane-to-plane variants, the MSE is marginally better.

Based on our analysis, strong correlation between objective and subjective scores can be

observed in the presence of Gaussian noise, for both the anchor and the proposed objective

quality metrics. Provided that the anchors measure geometric distances of closest points be-

tween the original and the distorted models, by increasing the standard deviation of the noise,

the objective scores naturally worsen. The subjects were able to recognize such distortions

and identify the amount of noise introduced by the level of points’ displacement. Notably,

the proposed metric achieves comparable performance, albeit the displacement of points

typically leads to lower quality in the normal estimation process. It should be accounted that

the selected normal estimation algorithm is generally considered as robust against noise.

In Table 6.2 and Figure 6.3, performance indexes and scatter plots are depicted after Octree-

pruning. Based on our results, the correlation between subjective and objective scores is
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(c) Quadric fitting using R-search

Figure 6.4 – J-PCED2: Performance indexes PLCC and SROCC of plane-to-plane metric, per
normal estimation algorithm and configuration.

poor for every anchor metric. In general, this type of degradation leads to elimination of high

frequency components and the perception of visual artifacts in the form of structural loss.

Thus, the visual quality of point clouds with high curvature values and irregular topology is

more severely impacted, whereas the structure of low curvature geometry models with regular

geometry is not significantly affected, thus, leading to less perceptible visual degradations.

The anchor metrics, despite capturing position errors after pruning, do not consider local sur-

face properties. Specifically, point-to-point metrics assign the same error value to a deviation

of a point from the original position, independently of the underlying shape. Point-to-plane

metrics assign different errors based on the direction of displacement of a point; that is, if a

point deviates along the tangent plane perpendicular to the reference normal vector, no error

occurs. However, in the corner case of a regular vertical displacement of a grid of points, high

error values will be attained, while perceptual quality is not really affected by such distortions.

This can explain the low prediction power in contents such as cube. On the contrary, plane-

to-plane metrics rely on similarity between surface approximations, which qualifies them as

better to capture such degradations, as proven by the higher correlation.

Performance evaluation on J-PCED2

In this data set we initiate by evaluating the performance of the plane-to-plane metric, subject

to the selected normal estimation algorithms and neighborhood sizes. In particular, the PLCC

and the SROCC correlation coefficients that were computed for each testing case, are depicted

in Figure 6.4. It can be observed that when using plane fitting with k-nn, the performance

of the metric is improving as the number of neighbors is increasing up to k = 256, whereas

it remains almost the same for k = 512 and decreases for k = 1024. When using plane fitting

with range search, the indexes are stable and high for R up to 20, above which they slowly

decay. A similar trend is observed for quadric fitting, with slightly better performance and

fewer deviations of the PLCC and SROCC indexes across the tested ranges.

Evidently, the prediction power of the plane-to-plane metric varies across different normal
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(a) Plane fitting using k-nn, with k = 8, 64, 512 from left to right
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(b) Plane fitting using R-search, with R = 5, 20, 50 from left to right
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(c) Quadric fitting using R-search, with R = 5, 20, 50 from left to right

Figure 6.5 – J-PCED2: Subjective against objective scores from plane-to-plane metric, per
normal estimation algorithm and configuration.

estimation algorithms and settings. This indicates the importance for a careful selection of a

normal estimation methodology, prior to the computation of objective scores. Based on our

results, we can conclude that the range search-based algorithms are substantially more robust

to the selection of a neighbhood size, among the examined sets.

In Figure 6.5, scatter plots using 3 indicative configurations of neighborhood sizes (small,

mid and large) per normal estimation algorithm are illustrated, in order to visually interpret

the prediction accuracy of the proposed metric and the impact of normal estimation on

the obtained quality scores. Based on the plots, it can be confirmed that plane and quadric

fitting with range search lead to very similar result, as suggested earlier. Using the k-nn

algorithm for neighborhood formulation, poor generalization capabilities might be observed
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Figure 6.6 – J-PCED2: Subjective against objective scores from the best-performing configura-
tion (i.e., plane fitting with k = 256) of the proposed (left) and anchor (right) quality metrics.
The right plot is zoomed-in to provide a more informative view, capturing the majority of
stimuli.

Table 6.3 – J-PCED2: Performance indexes of objective quality metrics. For plane-to-plane,
the best-performing configuration per normal estimation algorithm is reported, using the
following notation: [fitting surface, neighborhood configuration].

PLCC SROCC RMSE OR

plane-to-plane_MSE [plane, k = 256] 0.936 0.925 0.403 0.589

plane-to-plane_MSE [plane, R = 20] 0.924 0.917 0.438 0.656

plane-to-plane_MSE [quadric, R = 30] 0.930 0.924 0.421 0.667

point-to-point_MSE 0.947 0.935 0.369 0.667

point-to-plane_MSE 0.958 0.954 0.327 0.589

PSNR point-to-point_MSE 0.869 0.855 0.540 0.753

PSNR point-to-plane_MSE 0.911 0.915 0.449 0.612

PSNR_Y 0.888 0.893 0.526 0.689

(i.e., across different contents), especially when a small k is used. As the neighborhood size

is increasing, such deviations are narrowed. Moreover, the spanning-range of the similarity

scores is decreasing as the neighborhoods are enlarged using both k-nn and range search

variants, which is reasonable if we consider that the estimated surfaces are getting smoother.

Thus, less differences and higher similarity scores are obtained.

In Table 6.3, indexes for the best-performing configurations of the proposed metric are re-

ported, per normal estimation algorithm. Moreover, the prediction accuracy of the anchors

is indicated for comparison purposes. As can be seen, the point cloud angular similarity

metric with plane fitting and k = 256 attains the best predictions, with marginal differences

when compared to quadric fitting with R = 30. Under the best-performing normal estimation

settings, the proposed method is found to be superior than the PSNR-based metrics, while
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(c) Quadric fitting using R-search

Figure 6.7 – M-PCCD: Performance indexes PLCC and SROCC of plane-to-plane metric, per
normal estimation algorithm and configuration.

closely following the non-PSNR geometric predictors that achieve the highest performance. It

should be remarked that the prediction power of the plane-to-plane remains competitive for

the majority of tested neighborhoods, when employing the range search variants.

In Figure 6.6, scatter plots with subjective against objective quality scores are provided, as

computed from the most efficient anchor metric, and the plane-to-plane algorithm using

the highest-performing normal estimation configuration. As can be observed both methods

attain a good linear and monotonic relationship.

Note that this data set consists of contents with very similar geometry, since the majority of

them depict humans, while at higher degradation levels, both the geometry and the color

attributes are simultaneously encoded at lower qualities. This explains the high accuracy

that is achieved by geometry-only predictors. The lower performance of the PSNR-based

geometric metrics can be explained by the presence of sarah9, whose voxel depth is lower (i.e.,

9 bits) than the rest of the contents (i.e., 10 bits). Provided that the voxel resolution is set as the

peak signal in the computation of PSNR, the corresponding objective scores are mapped to a

shifted range with respect to the other contents, without accurately reflecting the respective

differences in subjective opinions.

Performance evaluation on M-PCCD

The PLCC and the SROCC indexes of the plane-to-plane metric achieved for each neigh-

borhood size and normal estimation algorithm over M-PCCD are reported in Figure 6.7. In

principle, our results are very similar to the ones obtained using J-PCED2, with the only excep-

tion that the performance is lower in this case. However, this is a general tendency for all the

metrics that were examined, as shown in Table 6.4. The decreased overall performance can be

explained, firstly, from the more diverse type of contents (i.e., human figures and inanimate

objects) and, secondly, by the larger number of stimuli and codecs that were evaluated, making

this data set a more challenging benchmarking set-up. Based on Figure 6.7, it can be again

remarked the lower sensitivity of the plane-to-plane metric in the selection of a neighborhood
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(a) Plane fitting using k-nn, with k = 8, 64, 512 from left to right
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(b) Plane fitting using R-search, with R = 5, 20, 50 from left to right
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(c) Quadric fitting using R-search, with R = 5, 20, 50 from left to right

Figure 6.8 – M-PCCD: Subjective against objective scores from plane-to-plane metric, per
normal estimation algorithm and configuration.

size for normal estimation under the range search variants, which perform very similarly.

In Figure 6.8, scatter plots with subjective scores against plane-to-plane predictions, under 3

representative configurations (small, mid and large neighborhood sizes) per normal estimation

algorithm are depicted. In principle, our results coincide with earlier observations made

on the J-PCED2 data set. We note that head and, especially, biplane contents behave as

outliers, having a negative impact in the overall performance. Their irregular topology due

to acquisition noise influences the normal estimation computations, and that explains the

deviations that are observed in the predicted scores with respect to the rest of the contents.

One potential solution would be to consider larger neighborhoods for such noisier contents,

in order to enforce smoother surface approximations and reduce differences with respect to

predicted scores for contents with more regular geometry.

144



6.1. Point cloud angular similarity

plane-to-plane_MSE

M
O

S
amphoriskos

biplane

head

longdress

loot

romanoillamp

soldier

the20smaria

logistic fitting

point-to-plane_MSE

M
O

S

amphoriskos

biplane

head

longdress

loot

romanoillamp

soldier

the20smaria

logistic fitting

Figure 6.9 – M-PCCD: Subjective against objective scores from the best-performing configura-
tion (i.e., quadric fitting with R = 30) of the proposed (left) and anchor (right) quality metrics.
The right plot is zoomed-in to provide a more informative view, capturing the majority of
stimuli.

Table 6.4 – M-PCCD: Performance indexes of objective quality metrics. For plane-to-plane,
the best-performing configuration per normal estimation algorithm is reported, using the
following notation: [fitting surface, neighborhood configuration].

PLCC SROCC RMSE OR

plane-to-plane_MSE [plane, k = 512] 0.775 0.791 0.862 0.802

plane-to-plane_MSE [plane, R = 30] 0.813 0.813 0.794 0.832

plane-to-plane_MSE [quadric, R = 30] 0.827 0.831 0.766 0.819

point-to-point_MSE 0.845 0.868 0.728 0.841

point-to-plane_MSE 0.858 0.884 0.700 0.832

PSNR point-to-point_MSE 0.720 0.759 0.885 0.819

PSNR point-to-plane_MSE 0.756 0.807 0.834 0.852

PSNR_Y 0.671 0.662 1.011 0.871

In Table 6.4, the coefficients of the best-performing configurations per normal estimation

algorithm are reported for the proposed method, together with performance indexes for

anchor metrics on this data set. As can be seen, the quadric fitting with R = 30 is identified

as the best normal estimation setting. When compared to the anchors, the performance of

the plane-to-plane using best-performing configurations is superior than the PSNR-based

geometric and color predictors, and closely follows the point-to-point and point-to-plane with

MSE. Analogously to the J-PCED2 data set, the range search variants for normal estimation are

competitive independently of the neighborhood size, among the examined cases. Moreover,

the performance of the PSNR-based geometric metrics was found to be negatively impacted by

the presence of head, which is of lower voxel resolution with respect to the rest of the contents

(i.e., 9 and 10 voxel bit-depths, respectively.) Finally, it is noteworthy that the poor results of
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(b) Plane fitting using R-search
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(c) Quadric fitting using R-search

Figure 6.10 – IRPC: Performance indexes PLCC and SROCC of plane-to-plane metric, per
normal estimation algorithm and configuration.

the PSNR_Y algorithm arise from its inefficiency to generalize predictions across different

contents.

In Figure 6.9, scatter plots of subjective against objective scores from the best anchor method,

and the plane-to-plane metric under the best-performing normal estimation settings, are

illustrated. It is evident that both approaches have limitations, most apparently the inability

of the plane-to-plane to adequately capture perceived distortions on the biplane content, as

mentioned earlier.

The performance drop in this data set can be justified by the different nature of artifacts

from the radically different encoding schemes, combined with the diverse topology of the

contents. Moreover, it should be accounted that the models are colored, and as such they were

subjectively evaluated. The fact that both metrics ignore color has an immediate negative

impact on their prediction accuracy in this data set, considering that some of the stimuli have

identical geometry and different color information. The latter is observed when using the

same geometry and a different color encoding module that are part of the G-PCC test model.

We refer to chapter 8 for a performance evaluation study of the state-of-the-art objective

quality metrics over this data set.

Performance evaluation on IRPC

The PLCC and the SROCC indexes that are computed for each neighborhood size and normal

estimation algorithm using the IRPC data set, are illustrated in Figure 6.10. According to

our results, the performance of the metric when using the k-nn algorithm is substantially

lower with respect to the range search counterparts. In particular, despite an increase in

performance as the neighborhoods are enlarging, the prediction remains at low accuracy

levels. Using the range search algorithms, the coefficients are similarly improving from low- to

mid-radii, where they start decaying. In general, an overall lower performance is observed,

with respect to the previous data sets. The composition of contents spanning from small-scale
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(a) Plane fitting using k-nn, with k = 8, 64, 512 from left to right
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(b) Plane fitting using R-search, with R = 5/20, 15/60, 30/120 for 1024/4096 voxel resolution contents, respectively,
from left to right
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(c) Quadric fitting using R-search, with R = 5/20, 15/60, 30/120 for 1024/4096 voxel resolution contents, respec-
tively, from left to right

Figure 6.11 – IRPC: Subjective against objective scores from plane-to-plane metric, per normal
estimation algorithm and configuration.

objects to large-scale buildings with varying levels of acquisition noise and missing regions,

makes this a challenging set-up, which is reflected to the deteriorated prediction power of all

metrics, as reported in Table 6.5.

Scatter plots of subjective against objective quality scores from the proposed metric are

presented in Figure 6.11, under a small, mid and large neighborhood size for the selected

normal estimation algorithms. It is observed that the performance of the k-nn is remarkably

worse, and particularly when using small or large k’s. Yet, when using range search, similar

general trends with respect to our previous analysis are noted, with plane-to-plane scores

spanning at a narrower range as the neighborhood is increasing, and achieving good linear
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Figure 6.12 – IRPC: Subjective against objective scores from the best-performing configuration
(i.e., linear fitting with R = 10/40 for 10-bit and 12-bit contents, respectively) of the proposed
(left) and anchor (right) quality metrics.

Table 6.5 – IRPC: Performance indexes of objective quality metrics. For plane-to-plane, the
best-performing configuration per normal estimation algorithm is reported, using the follow-
ing notation: [fitting surface, neighborhood configuration].

PLCC SROCC RMSE OR

plane-to-plane_MSE [plane, k = 128] 0.702 0.673 0.711 -

plane-to-plane_MSE [plane, R = 10/40] 0.849 0.843 0.527 -

plane-to-plane_MSE [quadric, R = 15/60] 0.845 0.830 0.533 -

point-to-point_MSE 0.460 0.319 0.886 -

point-to-plane_MSE 0.537 0.428 0.842 -

PSNR point-to-point_MSE 0.668 0.647 0.743 -

PSNR point-to-plane_MSE 0.724 0.704 0.689 -

and monotonic relationships under certain configurations.

The best-performing coefficients of the anchor and the plane-to-plane metric, per normal

estimation algorithm, are reported in Table 6.5. As shown, estimating the normals using

range search leads to a prediction accuracy that outperforms the k-nn alternatives, under all

examined neighborhood sizes. The best performance is attained using linear fitting with R =
10/40 for 10-bit and 12-bit contents, respectively, with marginal differences when compared

to the best-performing configuration under quadric fitting. In this data set, the proposed

metric is found to outperform the anchor methods with substantial differences. Recall that the

subjective scores that serve as the ground-truth in our analysis, reflect the perceived quality of

the stimuli as rated in the absence of color.

Finally, in Figure 6.12, scatter plots using the best normal estimation configuration for the

proposed metric and the highest-performing anchor predictor are provided, showcasing the
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6.1. Point cloud angular similarity

superior performance of the former.

It is noteworthy that the best-performing metric reported in the literature is given in (Javaheri

et al., 2020a), with PLCC = 0.801 and SROCC = 0.777, using the point-to-plane with Hausdorff

over the 99% of the ranked distances, and min pooling to obtain a symmetric error.

6.1.4 Discussion

According to the performance analysis reported in the previous section, the plane-to-plane

competes, or outperforms well-established solutions, provided a good configuration of the

selected normal estimation algorithm. The neighborhood size over which the normals are

estimated may act as a regularizer, which can be adjusted per content in a data set to enhance

the generalization capabilities of the metric. Our observations suggest that it is often beneficial

to employ larger neighborhood sizes with larger resolution point clouds, and contents with

more irregular topology (i.e., acquisition noise).

Regarding the impact of the examined normal estimation algorithms on the performance of

the plane-to-plane metric, the latter was found to be less sensitive to the neighborhood size

selection and generally behaving better when using the range search variants with respect to

k-nn. Note that the range search algorithm doesn’t define the number of samples that form a

neighborhood; rather, a spatial sub-space of equal volume is defined around every queried

point. On the contrary, by using the k-nn alternative, the normal vector of a point is estimated

across a fixed number of samples over a neighborhood that expands arbitrarily.

In the framework of the plane-to-plane computation, it should be additionally considered

that the same normal estimation scheme is applied to pristine and impaired stimuli. When

computing the angular similarity between a reference and a model under evaluation, the

corresponding surface approximations are essentially compared. Using the same search

radius for both models, leads to estimated normal vectors that reflect the same region of the

content. On the contrary, using the k-nn approach, the normals will reflect surfaces that

extend analogously to the local sparsity of the models. The former approach is intuitively

more coherent, and its selection is further justified by the higher robustness it reveals across

different neighborhood sizes.

The performance of the k-nn scheme with small k’s is rather unstable, which is further deteri-

orated by varying intrinsic geometric characteristics between the stimuli of a data set. As k

is getting larger, smoother surfaces are obtained under any location data arrangement; thus,

the angular similarity between a reference and a distorted model will be higher. This can

explain why we observe lower prediction accuracy at small k values, whereas with larger k’s,

the objective scores are higher and span in a narrower range.

As mentioned earlier, the range search variants were found to be robust against different

neighborhood sizes, meaning, that good performance is attained for a fairly large selection of

radii. The latter might seem counter-intuitive considering our findings reported in annex C,
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Figure 6.13 – Visualization of the reference longdress with point shading. The normal vectors
are estimated with plane fitting and k = 8,32,128 and 512 from left to right.

where we study the accuracy of the same normal estimation algorithms. In particular, our

results show that by exceeding a threshold for the searching radius, the normal estimation

error is increasing rapidly. Conversely, when using larger radii for normal estimation, the

prediction performance of the plane-to-plane metric is higher with respect to lower radii,

where lower angular error would be expected (i.e., considering neighborhood sizes relative

to the content resolution). Note that by computing the normals at larger neighborhoods, the

approximated surfaces are becoming smoother, which simulates the application of a low-pass

filter. Such an operation doesn’t necessarily lead to more accurate results in terms of normal

estimation error. Evidently, though, it may be better at capturing perceptual distortions, when

properly configured. Notably, our conclusions indicate that optimizations to achieve lower

normal estimation errors do not necessarily lead to better performance for the plane-to-plane

metric.

A visualization example is provided in Figure 6.13, showing the longdress model rendered

using point shading assisted by the estimated normal vectors under ambient light. In this

illustration, a plane fitting with the k-nn approach is used, and results using k = {8,32,128,512}

are indicatively presented. As we can see, at very small neighborhoods the estimated normal

vectors wrongly reflect high-frequency geometric components, while as the size is increasing,

the underlying surfaces are getting smoother. It should be noted that longdress is a model with

approximately 800K points and mid-range geometric complexity. Thus, consulting Figure C.2a,

a configuration of k = 32 is expected to provide relatively good results in terms of normal

estimation error, which is confirmed by the illustration in Figure 6.13.
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6.1. Point cloud angular similarity

Figure 6.14 – Illustration of normal surface approximations. The geometry of the reference
model longdress, a version after encoding with Octree at R02, and another version after
encoding using TriSoup at R01 following the MPEG Common Test Conditions are displayed,
from left to right. The normal vectors are estimated using plane fitting with range search and
radius 10. The obtained plane-to-plane scores are 0.883 and 0.796, for the second and third
stimulus, respectively.

Summarizing our findings, the plane-to-plane metric can provide good predictions of visual

quality, given a good configuration of the algorithm to estimate normals. The range search

variants were found to be better approaches for normal estimation in the context of the metric’s

computation, which is supported by both quantitative results and interpretable notions. In

brief, they denote more robust solutions in regard to the neighborhood size selection, and

they grant that the underlying surfaces under comparison approximate the same region of the

content. In Figure 6.14, indicative degraded versions of the longdress, after normal estimation

using range search with R = 10 are displayed, under point shading. The geometric distortions

of the models are visible and accompanied by corresponding quality scores that are exported

from the plane-to-plane metric.
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6.2 Point cloud structural similarity

Point cloud geometry is fundamental for the topological definition of a 3D content. Thus, early

works on the field of point cloud objective quality assessment explicitly focus on this type of

information. Yet, more recent submissions aim at assessing distortions in color attributes

and, often, incorporating them to a weighted sum together with predictions of geometric

degradations. Textural information defines, to a large extent, the appearance of a content

with the potentials of masking or enhancing underlying geometric distortions. Hence, it is of

critical importance for the final judgement of an observer, regarding the perceptual quality of

a content.

For both geometric and color-based quality prediction, there is a multitude of algorithms that

has been proposed in the literature, ranging from simple distances to more elaborate methods

that capture local deviations. So far, approaches that rely on local statistics were found to

outperform the alternatives, denoting more promising directions for future developments. In

particular, the pooling that is locally applied by such algorithms for the extraction of relevant

features, may simulate processes that take place in the human visual system, thus, better

quantifying the perceived quality of a content. This logic has been earlier exploited in 2-D

imaging algorithms, laying the basis for some of the most successful objective quality metrics.

Under the same principle, our algorithm aims at capturing perceptual degradations based

on the similarity of structural features that are locally extracted from a point cloud attribute

(i.e., location, normal, curvature, color) of a pristine and an impaired model. The operating

method shares similarities with the SSIM (Wang et al., 2004), thus, our metric is henceforth

referred to as PointSSIM. In particular, relevant quantities are defined per attribute, and

dispersion statistics are estimated from local populations. These measurements are obtained

per point and denote our features that describe local properties of a point cloud attribute. After

establishing associations based on nearest neighbors between points from the reference and

the model under evaluation, the corresponding feature values are compared. A voxelization

step can be optionally enabled prior to feature extraction, in order to reduce cross-content

density differences and produce differently scaled versions of the models.

In this section, the proposed point cloud structural similarity metric is defined. The imple-

mentation of the metric is detailed, and the parameter space of the algorithm is reported. In

regard to the prediction accuracy of the metric, (a) the efficiency of the point cloud attributes

over which the algorithm is applied is explored, (b) a family of statistical dispersion estimators

is evaluated, (c) the impact of the neighborhood size to compute the features is analysed,

and (d) the effect of a voxelization step prior to feature computation is investigated. The

performance analysis is conducted using available data sets with diverse characteristics and

reveals best-performing attributes, features, and configurations.

From a different perspective, this study can also be regarded as an exploration of the appli-

cability of the SSIM operating principle in a higher dimensional, irregular space (volumetric

content), incorporating not only color, but also topological coherence among local regions.
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Figure 6.15 – Block diagram of the feature extraction steps. Ṗ indicates an input point cloud,
and P the point cloud at the output of the voxelization step. The features map F d ,k,t ,e (P )
consists of structural features extracted from every point p that belongs to P , for a selected
voxel bit-depth d , neighborhood size k, attribute t and dispersion estimator e.

6.2.1 Definition

The core idea behind measuring structural similarity is to capture local changes of visual

information. Instead of comparing attributes directly associated with every point, we extract

features from local neighborhoods, in order to capture local relationships and distribution

variations among adjacent points. Specifically, we define relevant quantities that reflect

properties of point cloud attributes, and for every point we estimate the statistical dispersion

of their distribution in their local neighborhood. Such a statistical dispersion measurement

forms a feature value for every point.

Structural features

A schematic overview of the feature extraction pipeline is illustrated in Figure 6.15, with each

processing step described below.

Point fusion enables removal of duplicated coordinates and averaging of corresponding color

values with identical locations across a point cloud. This step prevents enlisting points with the

same position more than once during neighborhood identification. Moreover, redundant point

correspondences between the model under evaluation and the reference for the computation

of structural similarity scores (described below), are discarded.

Voxelization permits simulation of distant inspection, by down-scaling the resolution of a

point cloud content. The voxelization is realized by quantizing the coordinates of a model

and averaging the color between points with identical quantized positions. The voxel grid is

defined by a target voxel bit-depth d , which can be manually adjusted. In our implementation,

no clipping is applied on voxelized coordinates lying outside of the grid, in order to avoid

introducing extra loss. Note that point reduction and color blending is applied only on models

whose intrinsic resolution is larger than the target. Intrinsic resolution refers to the resolution

of a content prior to a potential upscaling (i.e., mapping of a sparser point cloud to a higher

resolution voxel grid). For models whose intrinsic resolution is smaller than the target, the

color distribution remains unaltered, and the topology is upscaled without impacting the

number of points.

Neighborhood identification defines the local region N (p) for every point p that belongs to
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a point cloud P . For this task, two are the most common approaches, namely, k-nn, and

range search. In the first method, the set is extended until the specified number of points is

reached, whereas in the second method, the set consists of points whose distance is smaller

than the specified radius. Thus, in the former case, the range is adaptive in terms of size and

the number of points is fixed, whereas in the latter case the range is fixed and the number of

points can vary. In our implementation, the k nearest neighbors of every point are employed,

thus, fixating the sample population of each neighborhood.

Quantities computation leads to sets that characterize local properties of a point cloud at-

tribute. In our algorithm, we take into consideration quantities defined for point cloud

locations, normal vectors, curvatures, and colors:

• A set of location-based quantities X k,l
p for a given point p are defined based on the Eu-

clidean distances between this point and every point p̃ that belongs to its neighborhood

N (p) with |N | = k, as per Equation 6.8. Note that p, p̃ ∈R3 by default, and ‖•‖2 specifies

the l2 norm. The corresponding features assess the regularity of the local geometric

structure.

X k,l
p = {‖p − p̃‖2

∣∣ p̃ ∈ N (p), p̃ 6= p
}

(6.8)

• A set of normal-based quantities X k,n
p for given point p are defined based on the angular

similarity between the normal vector of this point ~np , and the normal vector ~np̃ of each

neighbor p̃ that belongs to the neighborhood N (p) with |N | = k, as per Equation 6.9.

Note that the angular similarity formula is essentially applied on the unoriented vectors.

The corresponding features evaluate the roughness of the local surface.

X k,n
p =

{
arccos

( ∣∣~np ·~np̃
∣∣

||~np || ||~np̃ ||

) ∣∣∣∣∣ p̃ ∈ N (p), p̃ 6= p

}
(6.9)

• A set of curvature-based quantities X k,c
p for given point p are defined by the curvature

values C(p̃) of the points p̃ that belong to the neighborhood N (p) with |N | = k, as

per Equation 6.10. The corresponding features, analogously to the normal-related

quantities, evaluate the roughness of the local surface.

X k,c
p = {

C(p̃)
∣∣ p̃ ∈ N (p)

}
(6.10)

• A set of color-based quantities X k,y
p for given point p are defined by the luminance

values Y(p̃) of the points p̃ that belong to the neighborhood N (p) with |N | = k, as per

Equation 6.11. The corresponding features estimate the local contrast, similarly to

SSIM (Wang et al., 2004).

X k,y
p = {

Y(p̃)
∣∣ p̃ ∈ N (p)

}
(6.11)

Feature computation enables the application of a dispersion estimator on a set X k,t
p for given

point p and neighborhood size k, with t ∈ {l , n, c, y} specifying the point cloud attribute.
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B

a

A

b

Figure 6.16 – Illustrative example of point association. The model A is set as the reference and
the model B as under evaluation. The point a belongs to A and denotes the nearest neighbor
of point b that belongs to B . The local neighborhoods N (a) and N (b) are defined around the
former and the latter, respectively, in order to compute corresponding features.

Several dispersion estimators exist, and such measurements are often utilized to estimate

scale parameters; that is, population parameters that indicate the spread of a distribution.

In our implementation, an estimator e can be selected from the following pool: standard

deviation (σX ), variance
(
σ2

X

)
, mean absolute deviation

(
µADX

)
, median absolute deviation

(mADX ), coefficient of variation (COVX ), and quartile coefficient of dispersion
(
QCDX

)
, using

Equations 6.12-6.15 for the last four metrics, respectively

µADX = E(X −µX ) (6.12)

mADX = E(X −mX ) (6.13)

COVX = σX

µX
(6.14)

QCDX = QX (3)−QX (1)

QX (3)+QX (1)
(6.15)

where E(•) indicates expectation, µX the mean, mX is the median, and QX (i ) denotes the i -th

quartile of a set X .

Quality score

Using the aforementioned procedure, features are extracted from a reference and a model

under evaluation and subsequently compared in pairs of associated points, in order to obtain

a quality score. Let us assume that point cloud A is the pristine content and point cloud B

is an impaired version, as obtained after the voxelization step, per Figure 6.15. By setting A

as the reference, each point b that belongs to B is associated to the nearest reference point a
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in the Euclidean space, in order to compute the structural similarity of adjacent topological

regions, as presented in Figure 6.16.

An error value E d ,k,t ,e
B ,A (b) is computed for point b as the relative difference between the corre-

sponding feature values, using Equation 6.16

E d ,k,t ,e
B ,A (b) =

∣∣F d ,k,t ,e (b)−F d ,k,t ,e (a)
∣∣

max
{∣∣F d ,k,t ,e (b)

∣∣, ∣∣F d ,k,t ,e (a)
∣∣}+ε (6.16)

with ε expressing an arbitrarily small number to avoid undefined operations; in our simula-

tions, we set ε equal to the machine rounding error for floating point numbers.

A structural similarity score S d ,k,t ,e
B ,A (b) is obtained by taking the complement of 1 to this error

value, as depicted in Equation 6.17.

S d ,k,t ,e
B ,A (b) = 1−E d ,k,t ,e

B ,A (b) (6.17)

A global degradation score PointSSIMd ,k,t ,e
B ,A for the model under evaluation B with respect

to A is estimated by applying a pooling method P
(• )

on the individual structural similarity

scores that are obtained for every b ∈ B , as indicated in Equation 6.18.

PointSSIMd ,k,t ,e
B ,A =P

(
S d ,k,t ,e

B ,A (b)
)

(6.18)

Indicative examples of pooling methods are given in Equation 6.19

P
(
S d ,k,t ,e

B ,A (b)
)= 1

|B |

( ∑
b∈B

S d ,k,t ,e
B ,A (b)q

) 1
p

(6.19)

where |B | indicates the cardinality of the point cloud under evaluation B , and q, p ∈R0+ . More

frequently, the mean or the MSE are employed for pooling.

Analogously, the global degradation score PointSSIMd ,k,t ,e
A,B is obtained, by setting B as the

reference and A as the model under evaluation. The symmetric error PointSSIMd ,k,t ,e can be

computed using Equation 6.20.

PointSSIMd ,k,t ,e = min
{
PointSSIMd ,k,t ,e

B ,A , PointSSIMd ,k,t ,e
A,B

}
(6.20)

The description for the computation of the global degradation score using A as the reference

is summarized in Algorithm 2. In an analogous way, the global degradation score using B as

the reference is computed. The symmetric error can then be straightforwardly obtained.
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Algorithm 2

1: For both models, fuse duplicated points
2: For both models, voxelize at bit-depth d
3: Set as reference A
4: for all a ∈ A do
5: For neighbor size k, identify neighborhood N (a)
6: For attribute t , compute set of quantities X k,t

a

7: For estimator e, extract feature F d ,k,t ,e (a)

8: for all b ∈ B do
9: For neighbor size k, identify neighborhood N (b)

10: For attribute t , compute set of quantities X k,t
b

11: For estimator e, extract feature F d ,k,t ,e (b)
12: Identify a as the nearest neighbor of b in A
13: Compute error E d ,k,t ,e

B ,A (b)

14: Compute structural similarity S d ,k,t ,e
B ,A (b)

15: Compute global degradation PointSSIMd ,k,t ,e
B ,A

6.2.2 Validation methodology

Data sets

A total of 3 subjectively annotated data sets is recruited in order to evaluate the performance

of the point cloud structural similarity metric. In particular, we employ the J-PCED2, M-PCCD

and IRPC, which have been summarized in section 6.1.2. Regarding IRPC, we additionally

use as ground truth subjective scores that were collected from the so-called rcolor session. In

particular, the subjective evaluation of the stimuli was conducted using point-based rendering

with color information that was obtained from the reference models through a re-coloring

step. Further details can be found in the corresponding paper (Javaheri et al., 2019).

Computation of quality metrics

In our analysis, we explore the parameter space of the proposed metric. In particular, we

let k take values from {6,12,24,48}, in order to examine the impact of the neighborhood size

over which a structural feature is computed. Moreover, to evaluate the effect of employing a

different dispersion estimator, all the statistics described in section 6.2.1 are employed. Under

every combination of neighborhood size and dispersion estimator, the performance of every

attribute-based feature that is defined in section 6.2.1 is evaluated. Finally, to explore potential

benefits by computing structural similarity scores on scaled models, voxelization is applied

using several target voxel bit-depths on best-performing attribute-based features, per data set.

Note that the same voxel bit-depth is always used for a reference and a model under evaluation.

In order to compute a total degradation score for a model under evaluation, average pooling is

applied. The above analysis is repeated using both the pristine and the impaired models as a
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reference, and the symmetric error is additionally computed. Marginal improvements were

identified when using the impaired models as a reference, thus, the corresponding objective

quality scores are employed in our results.

For the computation of normal-based and curvature-based quantities at the execution of the

PointSSIM metric, relevant attributes are estimated using quadric surface fitting, which is

implemented following the algorithm described in (Meynet et al., 2020). In our implementa-

tion, the k nearest neighbors of each point are initially identified, with k = 12 being used in

our simulations. A Principal Component Analysis (PCA) is issued to provide an orthonormal

basis and a linear approximation of the local surface, which passes from the centroid of the

neighborhood. A least-squares error quadratic fitting function is computed across the normal

of the plane, after transferring the origin of the orthonormal basis from the centroid to the

transformed point of focus. The normal vector in this new coordinate system is obtained by

simply computing the gradient of the locally fitted quadric surface at that point. Then, the

inverse transform brings the estimated normal vector back to the original coordinate system.

Moreover, the mean curvature value at the point of focus is computed from the coefficients of

the fitted quadric surface, as described in (Meynet et al., 2020).

For comparison purposes, the point-to-point with MSE, point-to-plane with MSE, the corre-

sponding geometric PSNR variants, and, for colored stimuli, the color PSNR computed on

the luminance channel are additionally evaluated, using the software ver. 0.13.5 (Tian et al.,

2017c). Details regarding their execution are provided in section 6.1.2.

Benchmarking of quality metrics

To evaluate how well an objective metric is able to estimate perceptual quality, MOS computed

from ratings of subjects that participate in an experiment are required and serve as ground

truth. The objective quality scores are typically benchmarked after applying a regression

model. In our case, the logistic function is used following the methodology described in

section A.3. The PLCC, the SROCC, the RMSE, and the OR are computed to conclude on the

linearity, monotonicity, and accuracy of the objective quality predictors, respectively.

6.2.3 Results

Performance evaluation on J-PCED2

In Figure 6.17, the performance of the PointSSIM is provided on J-PCED2 without enabling

voxelization, and under every combination of neighborhood size, dispersion estimator, and

attribute. In particular, each figure depicts the performance of features extracted from a

particular attribute, for all estimators and neighborhood sizes. Correlation coefficients are

displayed in the form of bars, with thick bars denoting the PLCC and thin bars indicating the

SROCC index. They are grouped per estimator, which is indicated on the x-axis, and in each

group, the four selected neighborhoods are displayed in an increasing order.

158
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(a) Location-based features (b) Normal-based features

(c) Curvature-based features (d) Luminance-based features

Figure 6.17 – J-PCED2: Performance indexes PLCC (thick bars) and SROCC (thin bars) are
grouped per metric. In every group, the neighborhood size is 6,12,24 and 48, from left to right.

Our results show that curvature-based features are better quality predictors in this data set,

with objective scores achieving a highly linear and monotonous relationship with respect to

subjective opinions. In principle, the performance of all estimators is very similar, with COV

and QCD denoting sub-optimal solutions. Moreover, it is evident that the neighborhood size

doesn’t critically affect the predicted scores, although marginal improvements are brought

with larger k’s.

Certain configurations using the location-based features are found to be the second best

option in this data set. However, their instability in regard to the neighborhood size, suggests

limited generalization capabilities. On the contrary, the luminance-based features, despite

showing slightly lower performance, provide substantially higher consistency on this matter.

Moreover, the majority of the estimators lead to good performance results, with mAD denot-

ing the only exception with notable drops. Normal-based features also lead to fairly good

results, with correlation coefficients improving as the neighborhoods are expanded, under

any estimator.
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(a) k = 6 (b) k = 12

(c) k = 24 (d) k = 48

Figure 6.18 – J-PCED2: Curvature-based features. Performance indexes PLCC (thick bars) and
SROCC (thin bars) are grouped per metric. In every group, the corner left bar corresponds to
no voxelization, whereas the rest of the bars correspond to voxel bit-depths equal to 9, 8, 7 and
6, from left to right.

In Figure 6.18, the PLCC and SROCC indexes for the curvature-based features are presented

after voxelization at bit-depths d , starting at the lowest resolution present in the data set and

progressively decreasing. In particular, J-PCED2 consists of stimuli with voxel resolution equal

to 9 and 10 bit-depth. In our simulations, we employ d = {9, 8, 7, 6}, with d = 9 indicating that

all stimuli are voxelized at a resolution of 512. The performance using the original stimuli is

shown for comparison purposes.

Our results show that a voxel depth of 9, leads to better, or similar PLCC and SROCC values

when compared to the no-voxelization case. Moreover, we observe that when voxelizing at 9

bits, as the neighborhood is increasing, the performance using these estimators is decreasing.

This denotes an inverse relationship with respect to the one observed at the no-voxelization

case (i.e., better performance at larger neighoborhoods). This trend can be explained con-

sidering that a smaller voxel resolution implies a decrease in point count. Thus, the same
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Figure 6.19 – J-PCED2: Subjective against objective scores from the best-performing config-
uration (i.e., curvature-based features, voxel depth of 9 bits, dispersion estimator σ2, neigh-
borhood size of 6) of the proposed (left) and anchor (right) quality metrics. The right plot is
zoomed-in to provide a more informative view, capturing the majority of stimuli.

Table 6.6 – J-PCED2: Performance indexes of objective quality metrics. For PointSSIM, the
best-performing configuration is reported, using the following notation: [attribute, voxel
depth, dispersion estimator, neighborhood size].

PLCC SROCC RMSE OR

PointSSIM [curvature, 9 bits, σ2, 6] 0.948 0.951 0.363 0.578

point-to-point_MSE 0.947 0.935 0.369 0.667

point-to-plane_MSE 0.958 0.954 0.327 0.589

PSNR point-to-point_MSE 0.869 0.855 0.540 0.753

PSNR point-to-plane_MSE 0.911 0.915 0.449 0.612

PSNR_Y 0.888 0.893 0.526 0.689

neighborhood size will correspond to a larger region of a content under evaluation. These

results suggest that there is sweet spot for determining of the region over which the features

are extracted. A voxelization below 9 bits leads to a performance decline, when considering

the features with the best-performing estimators σ, σ2 and µAD. This is reasonable if we

consider that by excessive down-sampling of the models’ topology, higher-resolution details

are lost, while also sparser regions or missing points in the encoded models, are alleviated.

On the other hand, the COV and QCD estimators perform better at lower voxel resolutions,

independently of the neighborhood size.

In Table 6.6, performance indexes for the best-performing configuration of the proposed

metric and the anchor algorithms are reported. As can be seen, the PointSSIM using curvature-

based features that are extracted from voxelized stimuli at 9 bit-depth withσ2 and k = 6, attains

the best prediction, when compared to the alternative configurations of the metric. Under

these settings, the performance of PointSSIM is high and very similar to the best-performing
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(a) Location-based features (b) Normal-based features

(c) Curvature-based features (d) Luminance-based features

Figure 6.20 – M-PCCD: Performance indexes PLCC (thick bars) and SROCC (thin bars) are
grouped per metric. In every group, the neighborhood size is 6,12,24 and 48, from left to right.

point-to-plane with MSE. As reported in section 6.1.3, geometry-based predictors perform

well on this data set due to the similarities in the topology of the contents.

Finally, in Figure 6.19, scatter plots with subjective against objective quality scores are provided,

using the best-performing anchor method and PointSSIM configuration, visually confirming

the high performance indexes. We remark that PointSSIM leads to very accurate results for all

contents, with sarah9 following a slightly different trend.

Performance evaluation on M-PCCD

In Figure 6.20, the performance of the PointSSIM is indicated on M-PCCD without enabling

voxelization, and for every neighborhood size, dispersion estimator, and attribute under

consideration, analogously to the previous section.

Our results show that luminance-based features are superior in this data set, in terms of
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(a) k = 6 (b) k = 12

(c) k = 24 (d) k = 48

Figure 6.21 – M-PCCD: Luminance-based features. Performance indexes PLCC (thick bars)
and SROCC (thin bars) are grouped per metric. In every group, the corner left bar corresponds
to no voxelization, whereas the rest of the bars correspond to voxel bit-depths equal to 9, 8, 7
and 6, from left to right.

prediction accuracy. In principle, the performance of all estimators is very similar, with mAD

under-performing at smaller neighborhoods, although still achieving good results. We observe

that the neighborhood size is not critical, albeit slightly better performance is obtained for the

majority of the estimators in mid-ranges (i.e., k equal to 12 or 24).

The curvature-based features denote the second best-performing solution. For the dispersion

estimators that work better, namely, σ, σ2, µAD and mAD, the number of neighbors k is also

not crucial. Regarding location-based features, they are rather unstable with respect to the

local neighborhood size, while the majority of normal-based features tend to improve as the

neighborhoods are enlarging, similarly to the behavior observed in our analysis over J-PCED2.

In Figure 6.21, the PLCC and SROCC indexes for the curvature-based features are presented

after voxelization at bit-depths d , starting at the lowest resolution present in the data set and

progressively decreasing. In particular, M-PCCD consists of stimuli with voxel resolution equal
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Figure 6.22 – M-PCCD: Subjective against objective scores from the best-performing con-
figuration (i.e., luminance-based features, voxel depth of 9 bits, dispersion estimator σ2,
neighborhood size of 12) of the proposed (left) and anchor (right) quality metrics. The right
plot is zoomed-in to provide a more informative view, capturing the majority of stimuli.

Table 6.7 – M-PCCD: Performance indexes of objective quality metrics. For PointSSIM, the
best-performing configuration is reported, using the following notation: [attribute, voxel
depth, dispersion estimator, neighborhood size].

PLCC SROCC RMSE OR

PointSSIM [luminance, 9 bits, σ2, 12] 0.929 0.936 0.504 0.716

point-to-point_MSE 0.845 0.868 0.728 0.841

point-to-plane_MSE 0.858 0.884 0.700 0.832

PSNR point-to-point_MSE 0.720 0.759 0.885 0.819

PSNR point-to-plane_MSE 0.756 0.807 0.834 0.852

PSNR_Y 0.671 0.662 1.011 0.871

to 9 and 10 bit-depth. In our simulations, we employ d = {9, 8, 7, 6}, with d = 9 indicating that

all stimuli are voxelized at a resolution of 512.

As mentioned earlier, for the original voxel resolution, a general increase in performance can be

observed as the neighborhood size increases for all estimators excluding QCD, achieving a peak

at k = 12 or 24, whereas for larger neighborhoods, performance starts decreasing. However,

when the voxel resolution is set progressively lower, we observe that the best performance

for a particular estimator is obtained with increasingly smaller neighborhoods, analogously

to the trend observed on J-PCED2. Moreover, we note that for a given neighborhood size,

the performance decays progressively at lower voxel resolutions, after reaching a peak. The

deteriorated performance that is observed at lower voxel bit-depths (e.g., d = 6, 7), is justified

by the increasing levels of blurring artifacts that appear due to voxelization, which are further

enhanced for models with color compression distortions.
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(a) Location-based features (b) Normal-based features

(c) Curvature-based features

Figure 6.23 – IRPC rpoint: Performance indexes PLCC (thick bars) and SROCC (thin bars) are
grouped per metric. In every group, the neighborhood size is 6,12,24 and 48, from left to right.

In Table 6.7 and Figure 6.22, performance indexes and scatter plots of the best-performing

configuration of the proposed metric and the most efficient anchor method are provided,

respectively. As can be seen, the PointSSIM using luminance-based features that are extracted

from voxelized stimuli at 9 bit-depth with σ2 and k = 12 attains the best prediction, when com-

pared to the alternatives. Similarly good results are obtained when applying no-voxelization,

or under different estimators and neighborhood sizes, as can be observed in Figure 6.21,

indicating that these features provide a robust solution for this data set.

We refer to chapter 8 for a performance evaluation study of the state-of-the-art objective

quality metrics over this data set.

Performance evaluation on IRPC

Rpoint session: In Figure 6.23, plots with the performance of geometry-relevant features

are presented, using as ground truth subjective scores collected from the rpoint session of
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(a) k = 6 (b) k = 12

(c) k = 24 (d) k = 48

Figure 6.24 – IRPC rpoint: Normal-based features. Performance indexes PLCC (thick bars) and
SROCC (thin bars) are grouped per metric. In every group, the corner left bar corresponds to
no voxelization, whereas the rest of the bars correspond to voxel bit-depths equal to 10, 9, 8
and 7, from left to right.

the IRPC data set; this is the session where the models were presented without any color

information.

Our results show that location-based and curvature-based features perform very poorly in

predicting perceptual impairments in this data set. Using PointSSIM with normal-based

features and large neighborhoods leads to better performance, which is still overall limited

with respect to previous data sets.

In Figure 6.24, the performance of the normal-based features is illustrated after voxelizing the

stimuli at bit-depths d = {10, 9, 8, 7}, provided that IRPC consists of 10 and 12 bit-depth stimuli.

As usual, the performance without applying voxelization is also displayed for comparison

purposes.

As can be observed, the performance of the majority of estimators is improving as the neigh-
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Figure 6.25 – IRPC rpoint: Subjective against objective scores from the best-performing
configuration (i.e., normal-based features, voxel depth of 9 bits, dispersion estimator QCD,
neighborhood size of 48) of the proposed (left) and anchor (right) quality metrics.

Table 6.8 – IRPC rpoint: Performance indexes of objective quality metrics. For PointSSIM,
the best-performing configuration is reported, using the following notation: [attribute, voxel
depth, dispersion estimator, neighborhood size].

PLCC SROCC RMSE OR

PointSSIM [normal, 9 bits, QCD, 48] 0.843 0.848 0.537 -

point-to-point_MSE 0.460 0.319 0.886 -

point-to-plane_MSE 0.537 0.428 0.842 -

PSNR point-to-point_MSE 0.668 0.647 0.743 -

PSNR point-to-plane_MSE 0.724 0.704 0.689 -

borhood size is increasing for voxel depths higher than 9, whereas for voxel depths lower

than 9, the performance is increasing as the neighborhood size is decreasing. A global peak

is noted at a voxel depth equal to 9, across all estimators and neighborhood sizes. At this

particular voxel depth, the number of points across the stimuli of this data set spans in a

narrower range (i.e., similar density), while the models are still represented adequately (i.e.,

details are preserved). Voxelizing at lower bit-depths leads to very simplistic representations

of the models, thus, the performance reasonably drops, whereas at bit-depth larger than 9, the

point count across stimuli spans in a wide range.

Note that the point density has an effect on the estimation of attributes (i.e., normals, curva-

tures) as well as in the computation of features, provided that a k-nn approach is adopted to

form neighborhoods in both cases. As shown in annex C and section 6.1.3, the region over

which the surface is approximated has a strong influence on the accuracy of the estimated

attributes, and the performance of metrics that make us of them, respectively. Yet, this effect

can be moderated by an appropriate selection of a target voxel resolution.
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(a) Location-based features (b) Normal-based features

(c) Curvature-based features (d) Luminance-based features

Figure 6.26 – IRPC rcolor: Performance indexes PLCC (thick bars) and SROCC (thin bars) are
grouped per metric. In every group, the neighborhood size is 6,12,24 and 48, from left to right.

In Table 6.8, performance indexes for the best-performing configuration of PointSSIM and

anchor methods are reported. It is clear that the proposed metric provides a better alternative

in this data set, showing substantial performance gains with respect to the competitors. The

good performance of normal-based features in this data set is in accordance with the results

obtained under the benchmarking of the plane-to-plane metric in section 6.1.3.

Finally, in Figure 6.25, scatter plots with subjective against objective quality scores are pro-

vided, using the highest performing anchor method and the aforementioned configuration

for PointSSIM. Evidently, the performance of the former metric is rather limited, while the

correlation of the PointSSIM scores with the subjective ground truth is fairly accurate.

It is noteworthy that the best-performing metric reported in the literature is given in (Javaheri

et al., 2020a), with PLCC = 0.801 and SROCC = 0.777, using the point-to-plane with Hausdorff

over the 99% of the ranked distances, and min pooling to obtain a symmetric error.
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(a) k = 6 (b) k = 12

(c) k = 24 (d) k = 48

Figure 6.27 – IRPC rcolor: Luminance-based features. Performance indexes PLCC (thick bars)
and SROCC (thin bars) are grouped per metric. In every group, the corner left bar corresponds
to no voxelization, whereas the rest of the bars correspond to voxel bit-depths equal to 10, 9, 8
and 7, from left to right.

Rcolor session: In Figure 6.26, similar plots are provided to present the performance of the

metrics in the IRPC data set, under the rcolor session.

In this case, the luminance-based features are found to be the most accurate predictors.

However, their performance is notably deteriorated with respect to the J-PCED2 and M-PCCD

data sets. This performance decrease can be explained by the fact that the color is not directly

degraded in this case. Nonetheless, distortions are inherently added from point re-positioning

and down-sampling due to geometry encoding.

The second best option is given by the location-based features, in regard to the PLCC index.

However, the low SROCC values indicate that the predictions are not very reliable. The majority

of features that capture surface roughness perform very poorly, with the exception of some

metrics, namely, σ, σ2, µAD and mAD, applied on curvature values. The overall limited

performance can be justified by the diverse topology of the contents of this data set, which

169



Chapter 6. Point-based objective quality metrics

PointSSIM

M
O

S

facade

frog

house

mask

longdress

loot

logistic fitting

PSNR point-to-point_MSE

M
O

S

facade

frog

house

mask

longdress

loot

logistic fitting

Figure 6.28 – IRPC rcolor: Subjective against objective scores from the best-performing con-
figuration (i.e., luminance-based features, voxel depth of 8 bits, dispersion estimator mAD,
neighborhood size of 24) of the proposed (left) and anchor (right) quality metrics.

Table 6.9 – IRPC rcolor: Performance indexes of objective quality metrics. For PointSSIM,
the best-performing configuration is reported, using the following notation: [attribute, voxel
depth, dispersion estimator, neighborhood size].

PLCC SROCC RMSE OR

PointSSIM [luminance, 8 bits, mAD, 24] 0.893 0.832 0.448 -

point-to-point_MSE 0.629 0.606 0.775 -

point-to-plane_MSE 0.650 0.631 0.758 -

PSNR point-to-point_MSE 0.792 0.737 0.608 -

PSNR point-to-plane_MSE 0.780 0.685 0.624 -

PSNR_Y 0.695 0.672 0.717 -

may impact negatively the estimated quantities (i.e., normals, curvatures). Moreover, recall

that the models were subjectively evaluated in the presence of color in this session, which may

act as a distractor for judging the underlying geometric distortions.

Interestingly, though, the curvature-based features predict better subjective scores obtained

from the rcolor session, when compared to their performance over the rpoint session, whereas

the opposite holds for the normal-based features.

In Figure 6.27, the performance of luminance-based features is demonstrated for different

voxel bit-depths, and under every neighborhood size and dispersion estimator. Based on our

results, a remarkable performance increase is observed, when voxelizing at a voxel depth of

8 bits. This outcome can be explained by the fact that, as part of the voxelization process,

color values belonging to the same block are blended. Geometry degradations applied to

the same block will then affect the blending process. Thus, through voxelization, geometry

degradations are essentially reflected on the output color attributes.
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In Table 6.9, performance indexes for the best-performing configuration of PointSSIM and

the anchor metrics under consideration are reported. As can be seen, PointSSIM achieves the

most accurate predictions, when compared to the alternative solutions. Finally, in Figure 6.28,

scatter plots with subjective against objective quality scores are provided, using the highest

performing anchor method and the aforementioned configuration for PointSSIM, confirming

the superior performance of the latter.

It is noteworthy that the best-performing metric reported in the literature for this data set is

given in (Meynet et al., 2020) from PCQM, with PLCC = 0.90 and SROCC = 0.83.

6.2.4 Discussion

As introduced at the beginning of the chapter, the core idea behind our work was to adapt the

idea of “structural similarity” to irregular, multi-dimensional topologies. Translating image

metrics to this type of domain underlines the need to include surface information along with

texture, in order to get a more comprehensive model for visual distortion.

In this study, we consider three types of attributes which aim at quantifying visual degradations

of 3-D shapes, along with the luminance-based features which explore the perception of color.

Depending on the data set under study, different attributes achieve the best performance,

which can be explained by the different geometric and color characteristics of the models

under examination. However, the human visual system does not easily separate between

shape and color distortion. Indeed, textural information can mask or worsen geometric

imperfections, and vice versa.

Throughout our analysis, it is evident that the luminance-based features are the most consis-

tent and accurate predictors across the tested data sets. Moreover, we observed that, when

geometric impairments are reflected on the color attributes, color-based features were found

to be a rather effective way to accurately predict perceptual degradations. The formulation

of neighborhoods to compute local statistics is essential, permitting color-based features to

capture topological distortions, which explains their higher prediction power.

Another key component of our work is the possibility of defining a desired voxel bit-depth

on which the metric can be computed. In general, voxelization enables color smoothing

and regular down-sampling of geometry, allowing to simulate visual inspection from farther

distances. In our context, it is employed as a way to reduce cross-content density differences,

enabling measurements that capture distortions of the model at different scales, potentially,

providing a more suitable range for objective quality predictors. In that sense, it introduces

the concept of “multi-scale" quality evaluation approaches to point cloud contents.

A fine balance, of course, needs to be established between the voxel resolution and the neigh-

borhood size. A too narrow neighborhood may not capture low-frequency components of

the underlying surface; on the other hand, too large neighborhoods will not accurately reflect

the local properties of the area under consideration. However, the optimal configuration can
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Figure 6.29 – Illustration of a point structural similarity map (black indicates similarity of 1).
In the first row, the luminance component of the reference model longdress, and two versions
after encoding with V-PCC at R03 and R01 following the MPEG Common Test Conditions are
displayed, from left to right. In the bottom row, the corresponding structural similarity scores
using luminance-based features are provided. The obtained PointSSIM scores are 0.519 and
0.359, for the second and the third stimulus, respectively.

differ per data set, depending on the implicit characteristics of the contents, as well as the

acquisition technology that was used to capture them.

The formulation of neighborhoods to compute local statistics, and voxelization prior to fea-

tures extraction, are two approaches that enable inheritance of distortions from the geometry

domain to color error values. The former introduces a spatial dimension to the measurements,

whereas the second reduces topological differences between the reference and the model

under evaluation, while mapping corresponding distortions to the output color attributes.

A representative example was given in our analysis, showcasing the success of color-based

features in generalizing to geometry-only distortions, while the effectiveness of the luminance-

based features was confirmed over every tested data set.

In Figure 6.29, a visual example of structural similarity maps that were obtained from two

encoded stimuli is provided, using the best-performing configuration of the luminance-based

features. The luminance component of the point clouds under exam are additionally given, to

allow visual comparisons between the erroneous parts of the image and the corresponding

structural similarity scores. In this example, the metric’s ability to capture blurriness artifacts
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of the models under evaluation is demonstrated.

Note that combining the attributes under exam to provide a unified distortion value might

lead to more robustness and better performance across data sets. Moreover, consolidating

individual measurements under different point cloud scales to obtaining a final score, may

further improve the prediction accuracy of the quality estimates. Automatically derived

configurations for the selection of features, estimation of attributes, voxel resolutions, and

neighborhood sizes, at multiple point cloud scales, is left as a future work. Finally, remark that

our algorithmic pipeline can be extended to other point cloud attributes, while it is not limited

to the set of quantities, or the estimators that were defined as part of this study.

6.3 Conclusions

In this chapter we describe our proposed objective quality metrics that directly operate on

the point cloud domain to predict visual impairments. We initiate by introducing a geometry-

based predictor, namely plane-to-plane, which relies on the angular similarity of unoriented

normal vectors between associated points that belong to an original and a distorted model.

To benchmark the metric, several subjectively annotated data sets were recruited. Provided

the sensitivity of this method to the normal attribute information, our performance eval-

uation study is considering 3 widely used normal estimation algorithms and a variety of

configurations. Our results show that, the algorithm that is employed for the neighborhood

identification over which the normals are estimated, is crucial. In particular, among the

examined cases, the range search-based algorithms were found to behave better, driving the

plane-to-plane metric to higher performance. Moreover, they were found to be less sensitive

in regard to the neighborhood size selection with respect to the k-nn variant. This can be ex-

plained by the fact that they permit comparison of normal vectors that reflect surfaces, which

correspond to the same local region of the content. Moreover, from the range search-based

variants that were examined, quadric led to slightly better results than plane fitting, albeit

the performance of the metric wasn’t critically impacted by the order of polynomial surface.

Best-performing configurations show high prediction power and competitive results across a

number of subjectively annotated data sets, with respect to widely-used quality metrics that

served as anchors in our experimentation.

We then proceed with the description of the PointSSIM metric. The principle of operation

for this predictor relies on estimates of dispersion for the local distribution of quantities that

reflect properties of a point cloud attribute. In this framework, structural features that measure

local topological or color consistencies were defined and evaluated. Our results show that,

under different data sets, features extracted from different point cloud attributes may be more

effective in providing accurate predictions. Intrinsic characteristics, and topological and color

distributions of the stimuli that comprise a data set are essential on this matter. As part of

the metric, a voxelization step is introduced, which can be optionally enabled. This module

unleashes interesting properties that can be exploited during feature extraction. For instance,
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different combinations of target voxel resolutions and neighborhood sizes over which features

are computed, or attributes are estimated (i.e., normals, curvatures) can be activated. Thus,

relevant measurements that reflect perceptual impairments at different scales can be obtained.

Another advantage is that it offers the possibility of eliminating cross-content point density

variations. This property was demonstrated in benchmarking of data sets including contents at

multiple voxel resolutions. The performance of the metric was extensively analysed on several

data sets, outperforming well-established alternative methods, under proper configurations.

Prototype implementations of the plane-to-plane and PointSSIM metrics are made publicly

available. Information on how to retrieve the scripts and where to refer for additional informa-

tion are provided in annex E.
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7 Image-based objective quality metrics

Point cloud objective quality assessment is typically performed by metrics, which can be

distinguished in two main categories: (a) point-based, and (b) image-based, as introduced in

the previous chapter. The former denotes a class of algorithms that operates on the 3D point

cloud domain, whereas the latter signifies the application of methods that operate on the 2D

image domain, after capturing views of the rendered 3D models under evaluation.

Regarding point-based metrics, predictions rely on the quantification of distortions that are

present in point cloud attributes. Such attributes can be either explicitly stored in a point

cloud format, or can be estimated from the given data. In metrics that depend on more than

one attributes, each of them is most commonly treated separately, and a pooling method is

issued on the individual measurements. Ideally, the pooling should take under consideration

the sensitivity of human perception in order to compute a total quality score. In practice,

a weighted average is employed and optimal weights are identified per data set through

regression analysis. However, for such schemes there is ambiguity regarding the generalization

abilities with unseen degraded models. Other limitations of point-based metrics include

potential dependencies on attributes that need to be estimated before execution, such as

normal vectors or curvature values. As seen in previous chapters, the performance of relevant

metrics can be strongly affected by the selection and configuration of the estimation algorithm.

The uncertainty of the predictions is further enhanced when considering that a different

rendering mechanism may be employed to display a model. Specifically, a rendering method

may mask or enhance distortions, thus, affecting the visual appearance and in turn the

perceived quality of a model. Such refinements are often not taken into account and, therefore,

they are not typically captured by current point-based approaches.

Image-based counterparts offer a solution to evaluate visual quality in a more holistic way.

Specifically, by obtaining views of the displayed model, both geometric and color degradations

are reflected as introduced by the corresponding rendering device. Then, high-performing

2D imaging algorithms can be employed to assess perceptual quality. Yet, there are several

drawbacks that are coming with this approach. Specifically, image-based metrics denote

view-dependent and rendering-dependent solutions (Lavoué et al., 2016; Alexiou et al., 2019a).
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The former indicates that the predictions may vary for a different set of views, which implies

that the camera distance, position and orientation, as well as the number of acquired images,

will affect the quality scores. The latter denotes that the rendering pipeline together with the

environmental and lighting conditions of the virtual scene can govern the visual outcome. For

this purpose, it is often advised to reproduce the same rendering settings to the ones employed

during subjective consumption, in order to simulate the visual experience of the end-user.

Although this might be feasible in some applications, for some others it can be considered

too tedious and, often, too complicated for quality evaluation purposes. For instance, when

tuning transmission or compression schemes in real-time communications, relaxations in

complexity are required.

In this chapter, we investigate the performance of image-based objective quality metrics on

point cloud contents. In the first part, a relevant quality assessment framework is defined.

The scheme is validated with two data sets that contain the same testing material, which

was subjectively evaluated under two different rendering schemes. This way, generalization

capabilities of the approach are examined. Influencing factors such as the relevance of the

background information in the computation of the metrics, and the number of views that

are employed for estimating the perceived quality of a model are also investigated. In the

second part, we exploit user’s recorded behavior during subjective assessment of the stimuli

in objective quality evaluation. We initiate by examining whether an average objective score

across the frames that were inspected by subjects leads to accurate predictions. Anticipating

limitations of the approach, we proceed by proposing a weighting scheme that is applied on

model views acquired from fixed camera arrangements. The weights are computed using

human interactivity data, under the hypothesis that the importance of a view is related to the

duration of inspection from participants.

This chapter is based on material that has been published in (Torlig et al., 2018a; Alexiou and

Ebrahimi, 2019).

7.1 Exploiting model views

In this section, we describe a framework for image-based point cloud objective quality eval-

uation. The system relies on snapshots of the models, which are displayed using the same

rendering settings that were applied during subjective assessment. Thus, the visual appear-

ance of the point clouds as were displayed to the users is reproduced. Model views are captured

from camera layouts that allow evenly distributed viewpoints from a fixed distance. Then,

2D imaging metrics are applied on the acquired images. Corresponding quality scores are

computed and pooled together to provide a prediction of visual quality for the model under

assessment. Using this framework, we evaluate the effectiveness of 2D imaging algorithms

in capturing point cloud distortions, as shown through different renderers. For this task,

we use a set of point clouds that was subjectively assessed under two different rendering

schemes. Objective scores are computed using a fixed set of viewpoints that grant coverage
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(a) K = 6 (b) K = 12 (c) K = 42 (d) K = 162

Figure 7.1 – Camera layouts to capture views of the models.

of the model’s outer view. In this context, the performance of the metrics is evaluated, and

insights are drawn regarding their generalization capabilities. In a second step, we evaluate the

impact of background pixels removal from the computations in order to improve prediction

accuracy. Finally, we examine the performance of the system by integrating additional views

in the derivation of a global quality score for the model under evaluation.

7.1.1 Model views generation

Given a distance, a 3D model can be inspected from an infinite number of points of the

surrounding view sphere. Enabling a vast amount of viewpoints, though, is both impractical

and unnecessary, as in a dense configuration two successive points provide very similar

information. In our analysis, a model can be captured by K regularly-spaced viewpoints with

the following camera layouts: (a) a single point that captures the frontal view (i.e., K = 1),

in order to examine whether a single image corresponding to the initial view of the model

that was displayed to the subjects provides a good approximation of its visual quality; (b)

the vertices of a surrounding octahedron (i.e., K = 6), which provides the minimum set of

most diverse views that capture the entire outer view of a model; and (c) points lying on a

surrounding geodesic sphere with coordinates determined by iterative subdivisions of a regular

icosahedron up to 2 levels (i.e., K = 12, 42, 162). The latter is a commonly used arrangement

in studies for view selection (Lavoué et al., 2016; Bonaventura et al., 2018), that provides

a consistent approach to approximate uniformly distributed samples that are lying on the

surface of a sphere. By iteratively subdividing the regular icosahedron, gradual granularity with

progressive integration of new viewpoints on the previous set is achieved. This is important in

order to identify whether additional views can improve the prediction accuracy. In Figure 7.1,

indicative examples of the camera arrangements are illustrated.

Besides the number of viewpoints, additional influencing factors, such as the rendering

configurations, the distance between the content and the camera, the direction of the camera,

the lighting conditions, and the type of projection (e.g., orthographic, perspective) may vary.

In our set-up, we enable, wherever possible, the exact same settings that were used in the

subjective experiments in order to better simulate the user’s experience and decrease the
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Figure 7.2 – Model views captured from a camera layout with K = 6.

parameter space, simplifying our analysis. In particular, the rendering configurations (i.e.,

splat size or voxel grid resolution), bitmap resolutions, lighting conditions, shading models

and types of projection are replicated to render the models. The distance between the camera

and the model is fixed to match the one that was determined for the initial view presented to

the subjects, ensuring that a model can be comfortably seen in its entirety from every point

of the view sphere. The direction of the camera points at the center of the sphere, which is

also the origin of the models, while the pose of each content can be determined at will. Under

these settings, from each camera position, a 2D image is captured for every model, as shown

in Figure 7.2.

7.1.2 Validation methodology

Data sets

A set of 6 static point clouds degraded using the CWI-PCL (Mekuria et al., 2017a) encoding

engine are evaluated under two different rendering schemes, namely, voxel-based and splat-

based, resulting in two subjectively annotated data sets, hereafter named after the type of

rendering solution that was applied. Detailed information regarding the experiments can

be found in section 4.2. In brief, the selected point clouds represent both human figures

and inanimate objects, while different combinations of geometry and color quality levels are

employed for encoding. The subjective evaluations were held in two separate experiments

using identical testing environment and equipment. The simultaneous DSIS test method with

5-grading scale was employed in both, while interactivity without limitations was granted

through corresponding testbed platforms that were deployed. The rendering schemes are

summarized below.

The voxel-based renderer relies on real-time voxelization that is performed on the transformed

coordinates of the model under inspection, according to user’s interactions. The texture

information lying on the voxels is orthographically projected onto an image that is displayed

into the screen, with every voxel occupying a neighborhood of pixels that is determined by

the viewing distance. A mid-grey color, (127, 127, 127) in RGB colorspace, was employed as
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(a) Voxel-based renderer (res. 1024×1024) (b) Splat-based renderer (res. 1100×1440)

Figure 7.3 – Initial frontal view of reference model loot as displayed to participants during
subjective evaluations in corresponding testbeds.

background. No lighting, or shading models were applied. More details regarding this renderer

can be found in annex D.1.

The splat-based renderer makes use of cubic primitives of adaptive size based on local densi-

ties, in order to provide watertight views of the models under inspection. In this experiment,

a perspective projection was adopted, while the background color was set to the same RGB

color (127, 127, 127). The default lighting conditions were enabled; that is, a headlight located

at the current camera position, without any shading model. More details on this rendering

solution are provided in annex D.2.

Note that the aforementioned rendering schemes lead to very different types of artifacts. That

is, perception of missing pixels in the case of voxel-based, and coarse surface approximations

in the case of splat-based counterpart are observed, as illustrated in Figures 4.14 and 4.15.

Further details regarding the voxel-based and the splat-based experiments can be found in

section 4.2.

Computation of quality metrics

In this study, we evaluate the performance of 4 well-established 2D methods, namely, PSNR,

SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003) and VIFp (Sheikh and Bovik, 2006)

(i.e., multi-scale in pixel domain), applied on the luminance channel, after conversion of

the original RGB color attributes to the YCbCr colorspace using the ITU-R Recommendation
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BT.709-6 (ITU-R BT.709-6, 2015).

Following the procedure detailed in section 7.1.1, views of the rendered model under evalu-

ation and its reference version are acquired from every camera position, for a given camera

layout. For each metric, an objective score is computed per viewpoint, and an overall quality

prediction is obtained by average pooling. Notice that during image acquisition, even small

misalignments between model views will have a dramatic effect on the computed scores.

Remark also that in this data set, the orientation of the models was aligned; for instance, for

K = 1, the frontal view was obtained for every model, thus, no modifications were applied in

their original pose.

The distance between the position of the cameras and the origin of the models was set equal to

the initial view that was presented to the subjects. The captured images match the resolution of

the bitmaps that were displayed during subjective evaluations. That is, 1024×1024 for the voxel-

based, and 1100×1440 for the splat-based experiment. The rest of the rendering parameters

were replicated from the corresponding subjective evaluation testbed, as mentioned earlier.

An illustrative example of the initial frontal view of loot, as presented to the users from both

renderers, can be found in Figure 7.3. The images are exported in either RGB or RGBA col-

orspace, depending on the application. For instance, transparency information may assist

in the identification of the foreground, thus, determining the effective part of the image that

contains the displayed model. Under all circumstances, the objective metrics were computed

by MATLAB implementations and, when applicable, official script releases were employed1.

To obtain a reference regarding the performance of the image-based metrics with respect

to well-established point-based approaches, the point-to-point with MSE, point-to-plane

with MSE, the corresponding geometric PSNR variants, and the color PSNR computed on

the luminance channel are additionally evaluated, using the software ver. 0.13.5 (Tian et al.,

2017c). Details regarding their execution are provided in section 6.1.2, under the computation

of metrics sub-section. Note that in this data set, we estimate the normals of all contents using

k-nn plane fitting with k = 12, as implemented in PCL.

Benchmarking of quality metrics

Following the methodology detailed in section A.3, the PLCC, the SROCC, the RMSE, and

the OR performance indexes are computed between pairs of MOS and predicted MOS, to

measure the performance of the plane-to-plane metric against the subjective ground truth.

The predicted MOS is obtained after applying the logistic fitting function on the objective

quality scores.

1http://live.ece.utexas.edu/research/Quality/index_algorithms.htm
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Figure 7.4 – Subjective against objective scores from the best-performing image-based quality
metrics per type of content, under voxel-based rendering.

Table 7.1 – Performance indexes of image-based quality metrics per type of content, under
voxel-based rendering.

Inanimate objects Human figures

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

PSNR 0.807 0.791 0.719 0.630 0.728 0.735 0.650 0.667

SSIM 0.883 0.836 0.572 0.593 0.847 0.820 0.503 0.667

MS-SSIM 0.934 0.931 0.436 0.407 0.883 0.875 0.444 0.556

VIFp 0.908 0.936 0.511 0.556 0.898 0.859 0.417 0.556

point-to-point_MSE 0.825 0.822 0.688 0.630 0.700 0.702 0.678 0.593

point-to-plane_MSE 0.816 0.755 0.705 0.667 0.699 0.693 0.679 0.593

PSNR point-to-point_MSE 0.825 0.822 0.688 0.630 0.701 0.709 0.675 0.593

PSNR point-to-plane_MSE 0.822 0.755 0.693 0.667 0.701 0.693 0.675 0.593

PSNR_Y 0.694 0.712 0.876 0.815 0.823 0.701 0.539 0.704

7.1.3 Results

For analysis purposes and to highlight differences introduced by every parameter under

examination in our quality evaluation framework, we opt to split the point clouds according to

their type of content; that is, human figures and inanimate objects. This decision is supported

by the analysis carried out in section 4.2.3, reporting different rating behaviors for the two types

of content, in both data sets, which was confirmed by corresponding statistical comparison.

Rendering schemes

As a first step, the generalization capabilities of the image-based metrics are investigated. For

this analysis, we set K = 6, which essentially denotes that every model is projected on the faces
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Figure 7.5 – Subjective against objective scores from the best-performing image-based quality
metrics per type of content, under splat-based rendering.

Table 7.2 – Performance indexes of image-based quality metrics per type of content, under
splat-based rendering.

Inanimate objects Human figures

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

PSNR 0.677 0.672 0.891 0.852 0.713 0.763 0.640 0.889

SSIM 0.768 0.717 0.774 0.741 0.848 0.819 0.484 0.667

MS-SSIM 0.937 0.910 0.422 0.593 0.918 0.925 0.361 0.593

VIFp 0.900 0.893 0.529 0.630 0.885 0.889 0.427 0.630

point-to-point_MSE 0.763 0.769 0.781 0.815 0.783 0.789 0.567 0.704

point-to-plane_MSE 0.759 0.693 0.787 0.852 0.782 0.763 0.570 0.704

PSNR point-to-point_MSE 0.771 0.769 0.770 0.815 0.784 0.799 0.566 0.704

PSNR point-to-plane_MSE 0.759 0.684 0.787 0.852 0.784 0.763 0.566 0.704

PSNR_Y 0.782 0.756 0.753 0.741 0.765 0.658 0.587 0.852

of a surrounding cube.

In Table 7.1, the performance indexes for the image-based metrics and the point-based anchor

methods against the ground truth subjective scores are reported, under the voxel-based

rendering. In Figure 7.4, scatter plots with the overall best-performing quality predictor (see

below) are illustrated, per type of content. Based on the performance indexes, it is evident that

the image-based metrics perform better than the point-based counterparts, showing higher

accuracy in predicting perceptual quality in both sets of contents. It should be noted that

point-based approaches are limited by the fact that they either examine geometry-only or

color-only distortions for a model under evaluation. For instance, encoding the geometry of

a point cloud at a specific degradation level and increasing the color quality, doesn’t lead to

any improvements in the predictions of geometry-only metrics. On the contrary, image-based
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7.1. Exploiting model views

Figure 7.6 – Model view of longdress as consumed by subjects (left) and after removing the
background information (right).

methods are able to capture such distortions. Among the examined metrics, the MS-SSIM

was found to achieve the best performance. One justification for this outcome could be the

multiple scaling that takes part in the computations, which simulates perception of models

from different distances.

Similarly, in Table 7.2 and Figure 7.5, performance indexes and scatter plots are provided using

the scores obtained from the splat-based experiment. Our results are equivalent. In fact, the

prediction power of the image-based metrics is even better in this test, outperforming the

point-based alternatives with larger margins.

A general remark is that, in both data sets, better performance is attained for point clouds that

represent inanimate objects. Note also that the two data sets are comprised essentially from

the same point clouds, thus, the point-based quality scores are the same. However, these point

clouds were rendered differently, which implies that the visual outcome was different and,

hence, the subjective ratings differ (see section 4.2). These variations cannot be captured by

point-based metrics, which is evident by the differences of PLCC and SROCC between the two

tests. At the same time, substantially narrower variations and higher scores are observed for

the same performance indexes using MS-SSIM and VIFp, which suggests better adaptation.

Background removal

Considering Figures 7.4 and 7.5, it can be observed that the objective scores in the second

case are higher. This can be explained by the larger region that background covers in the

second model view, which is evident in Figure 7.3. When the entire image is taken into
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Figure 7.7 – Subjective against objective scores from the best-performing image-based quality
metrics per type of content, computed after background removal, under splat-based rendering.

Table 7.3 – Performance indexes of image-based quality metrics per type of content, computed
on the entire model views and after background removal, under splat-based rendering.

Inanimate objects Human figures
PLCC SROCC RMSE OR PLCC SROCC RMSE OR

PSNR 0.677 0.672 0.891 0.852 0.713 0.763 0.640 0.889

PSNR (F) 0.639 0.604 0.929 0.815 0.692 0.723 0.659 0.852

SSIM 0.768 0.717 0.774 0.741 0.848 0.819 0.484 0.667
SSIM (F) 0.907 0.898 0.510 0.741 0.838 0.788 0.498 0.741

MS-SSIM 0.937 0.910 0.422 0.593 0.918 0.925 0.361 0.593

MS-SSIM (F) 0.955 0.944 0.359 0.556 0.933 0.927 0.328 0.519

VIFp 0.900 0.893 0.529 0.630 0.885 0.889 0.427 0.630

VIFp (F) 0.926 0.924 0.456 0.704 0.921 0.921 0.357 0.556

account in the computation of the metrics, background pixels contribute in the objective

score that is obtained. However, the quality of a model is subjectively assessed based on the

foreground; moreover, objective scores shouldn’t depend on the amount of background pixels

that surround a displayed model.

In this second step, the impact of discarding background pixels from the computation of image-

based metrics is evaluated. A visual illustration of a model view by including and excluding

background information is provided in Figure 7.6. For this task, the splat-based data set is

selected, using K = 6 views. For the application of the metrics on the foreground of the images,

the original scripts are modified accordingly. Note that there are several approaches for the

determination of the region over which they can be computed. In this study we preliminarily

tested the foreground of the reference, the union and the intersection between the reference
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and the distorted foregrounds. Based on our results, the union of foregrounds was found to

perform better than the alternatives, while constituting an intuitively more coherent approach.

Thus, results adopting this solution are reported. Regarding the application of filters on pixels

that belong to (foreground) edges of the model, as part of the execution of particular metrics

(e.g., SSIM), the background color was accounted to better simulate the way the views were

consumed by subjects.

In Table 7.3 the performance indexes are reported by computing objective scores on the

entire image and the identified foreground region (F). In Figure 7.7, scatter plots of the best-

performing metrics are illustrated. Based on our results, improvements are remarked for the

SSIM when evaluating objects, and for MS-SSIM and VIFp in both types of content. This

comes as a result of the enhanced generalization capabilities of the metrics across models,

which can be seen when comparing Figures 7.5 and 7.7. Finally, based on the same figures, it

is noted that the objective scores span a larger range when considering only the foreground

pixels, with respect to the whole image.

Camera layouts

In our previous efforts, we set K = 6 model views to compute the image-based metrics, for

analysis purposes. In this third step, we investigate whether further improvements in terms

of correlation are achieved by considering additional viewing angles of the model under

evaluation. For simplicity reasons, in the forthcoming analysis only the MS-SSIM applied on

the foreground of the images is considered, as the best-performing metric. It is noteworthy

that similar results are obtained using VIFp.

In Table 7.4, the performance indexes using MS-SSIM are depicted, under every supported

camera layout from the proposed framework. Based on our results, the performance of the

metrics remains stable in the case of inanimate objects, or even decreases in the case of human

figures, when introducing additional views. In fact, for the latter case, the best performance is

achieved when using only the frontal view of the model, while similarly accurate predictions

are achieved in the former case. Scatter plots indicating the performance of the metrics using

K = 1 are depicted in Figure 7.8.

By repeating the same procedure using only the frontal view from the voxel-based render-

ing experiment, we confirm that the performance indexes are high. In particular, using the

MS-SSIM, we observe
{
PLCC, SROCC, RMSE, OR

}
equal to

{
0.921,0.882,0.475,0.482

}
for inan-

imate objects and
{
0.871,0.840,0.466,0.556

}
for human figures, respectively. These indexes

denote comparable performance with the one observed using K = 6 views, reported in the

first part of this section. Note that, in this case, we include the background information in the

computations, in order to permit comparisons.

Our results suggest that enabling additional views doesn’t necessarily lead to better visual

quality predictions of the rendered model. At the same time, even one view could be sufficient
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Figure 7.8 – Subjective against objective scores from MS-SSIM per type of content, computed
on K = 1 model view after background removal, under splat-based rendering.

Table 7.4 – Performance indexes of MS-SSIM per type of content, computed on model views
from different camera layouts after background removal, under splat-based rendering.

Inanimate objects Human figures

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

K = 1 0.951 0.944 0.373 0.519 0.952 0.935 0.279 0.519

K = 6 0.955 0.944 0.359 0.556 0.933 0.927 0.328 0.519

K = 12 0.949 0.944 0.381 0.519 0.926 0.920 0.344 0.519

K = 42 0.949 0.945 0.383 0.519 0.926 0.915 0.345 0.556

K = 162 0.949 0.945 0.384 0.519 0.925 0.915 0.347 0.519

to achieve high performance.

7.2 Exploiting user views

In the analysis that was conducted in the previous section, a fixed set of viewpoints was defined

in order to characterize the visual quality of a model. Moreover, each view was treated with

equal importance. However, this might not be representative of the experience of the users

when interacting with the contents. In this section we examine whether user navigation data

recorded during subjective evaluation can be exploited to improve the prediction performance

of image-based metrics.

The most straightforward approach to include user behavior is to objectively quantify the

entire visual experience of a user and compare the aggregated prediction to the corresponding

subjective rating. This can be performed by pooling across objective scores that are extracted

from frames that were inspected by the user during subjective assessment. However, a main
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down-side of this method is the computational overhead. Moreover, the impact of the cam-

era distance on the obtained scores should be taken under consideration. In particular, by

increasing or decreasing the camera distance under a fixed orientation, the same model view

is inspected from closer or distant locations. The difference of the objective scores, though,

might not reflect the dissimilarity that is perceived, raising the need for a properly configured

distance-aware weighting function.

Another approach is to employ the user interaction behavior as a weighting base for our fixed

model set-up. Specifically, we fix the camera distance, and we consider a finite set of camera

positions on the viewing sphere, analogously to what was done in the previous section. This

allows us to reduce the computational overhead and essentially normalize the objective scores

at a given distance. We opt to map the camera positions of the user onto the closest viewpoints

in a given camera layout, with larger weights assigned to more frequently visualized viewpoints.

This approach ensures that a pre-determined number of model views will be employed for

quality prediction, and that the score of a model view that was visited more often will have a

higher impact on the final quality score.

This algorithm is based on the logic that different perspectives of a 3D model might be of

different importance, as they could be more or less representative or informative regarding

the presented content. Our hypothesis is that model views inspected for larger time duration

during subjective evaluations are more important for the characterization of the overall

perceived quality. For objective quality evaluation, this has been considered in (Lavoué et al.,

2016) using importance weights obtained based on a surface visibility algorithm, typically

used for viewpoint preference selection (Bonaventura et al., 2018).

7.2.1 User interactivity

Navigation tracks

In this scenario, we consider the entire set of frames that was inspected by each user in the

splat-based experiment. Let us define a navigation track as a set of recorded interactions

that corresponds to the inspection of a model by a subject. To obtain an objective score for a

particular stimulus, each navigation track of every user is employed and the corresponding

experiences are reproduced. Note that the recorded information is extracted by periodical

system calls at screen refresh rate, which record the camera parameters and a corresponding

timestamp. To compute a score that characterizes a navigation track, the corresponding

frames are exported in an off-line playback module using this timestamp information. For

instance, if a particular view was inspected for 1 second, and we assume 60 fps, this frame will

be considered 60 times. For each frame, an objective score is computed on the foreground

of the displayed model, and the estimated average across all extracted frames provides a

corresponding prediction. The same procedure is repeated for each navigation track and, for

each stimulus, the global average across users is employed.
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It is remarked that this scenario serves as a first, naive attempt to provide an anchor perfor-

mance for predictions that consider behavioral information during subjective evaluations.

Note that the computations are taking place on the raw captured data, without considering

any algorithm to identify potentially outlier behaviors from subjects. Thus, the scope is limited.

Yet, it is examined to provide a basis for comparison.

Importance weights

In this alternative scenario, an importance weight based on the same navigation tracks is

assigned to every view of a model from a predefined camera layout. To this aim, it was decided

to pre-filter the interactivity information to reduce the noise. In particular, as a first step,

a time threshold is applied on each navigation track (i.e., interactions of a subject while

inspecting a stimulus), in order to remove transitional views that were not carefully examined.

In our case, the time threshold is set as one second. This step resulted in keeping viewpoints

that correspond to the ∼ 66% of the total interaction time. Secondly, interactivity data that

corresponds to translations of the objects and, thus, different camera directions is excluded,

as the translations are not considered in the camera layouts for the generation of views in our

framework. In our experiment, a total of ∼ 18% of the recorded data from the previous step is

further discarded. On the remaining data, each viewpoint of every navigation track is mapped

to the nearest camera position in the selected camera arrangement. The total duration of

inspection of a stimulus from one view can be obtained by aggregating the individual times of

its inspection from that particular view across every subject. The total duration of inspection

of a content from a particular view can be analogously derived by combining the individual

times of inspection of stimuli that correspond to the content’s variations (i.e., compressed

versions). The weights of a stimulus or a content are computed as the ratio of the duration

of inspection of the corresponding views, divided by the total time of interaction. In our

case, weights per content are computed, and these weights are applied on the views that are

obtained for every content’s variation.

7.2.2 Validation methodology

Data sets

The subjectively annotated data set using the splat-based rendering scheme described in

section 4.2, is employed in this study. Note that, in this experiment, behavioral information

was recorded in real-time and the design was adjusted accordingly to be able to test our

assumptions. Specifically, considering that the occurrence of fatigue could add bias on the

time duration the subjects would spend on every evaluation, the test was split in two sessions

of less that 10 minutes each.
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Computation of quality metrics

The same procedures for model views generation and objective quality scores computation

detailed in section 7.1 are followed in this experiment. To compute the objective scores

that correspond to every navigation track, a play-back module was additionally developed,

reproducing the experience of each user in the subjective evaluation platform, and extracting

every frame that was inspected based on the recorded information (i.e., camera parameters

and timestamp). The quality metrics are applied on the luminance channel, considering only

the foreground of the images, similarly to what was described in the previous section.

Benchmarking of quality metrics

Identically to previous efforts, following section A.3, the PLCC, SROCC, RMSE and OR indexes

are employed to characterize the performance of the objective quality metrics.

7.2.3 Results

Navigation tracks

In Table 7.5, performance indexes are reported using objective scores that were computed

considering all frames that were inspected by users, as detailed earlier. For comparison

purposes, we additionally reprint the performance indexes that were obtained using the

objective quality framework described in section 7.1, with K = 6 views and after computing

the objective scores on the foreground (i.e., sub-section background removal from 7.1.3).

In Figure 7.9, scatter plots indicating the accuracy of the best-performing objective predictions

considering the navigation tracks against the ground-truth subjective scores are illustrated,

per type of content.

Our results show notable performance drops when compared to the prediction accuracy that is

achieved by employing the fixed camera set-up with K = 6 (or, in fact, any fixed camera layout

presented in section 7.1). This outcome can be explained by the substantial fluctuation of

objective quality scores within a single navigation track, mainly due to the viewing distance. As

an indicative example, in Figure 7.10, the distribution of objective scores from the navigation

tracks of all users during subjective evaluation of encoded models from two contents, namely

amphoriskos and longdress, are illustrated. In particular, the y-axis depicts indexes that

correspond to subjects, whereas the x-axis denotes MS-SSIM scores. Each marker corresponds

to a frame that was inspected by a particular subject. The color of each marker indicates the

subjective score that was given by this subject; thus, reasonably, all markers that correspond

to a navigation track of a user are annotated with the same score. By observing this plot, we

can confirm that the objective scores are indeed spanning over a large interval for each user,

thus, increasing the uncertainty of the obtained measurements.
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Figure 7.9 – Subjective against objective scores from the best-performing image-based quality
metrics per type of content, computed on the navigation tracks of the users.

Table 7.5 – Performance indexes of image-based quality metrics per type of content, computed
on the navigation tracks of the users and by using the camera layout with K = 6 model views.

Inanimate objects Human figures
PLCC SROCC RMSE OR PLCC SROCC RMSE OR

PSNR 0.652 0.601 0.916 0.778 0.740 0.795 0.615 0.815
PSNR (K = 6) 0.639 0.604 0.929 0.815 0.692 0.723 0.659 0.852

SSIM 0.807 0.789 0.715 0.778 0.797 0.777 0.550 0.778

SSIM (K = 6) 0.907 0.898 0.510 0.741 0.838 0.788 0.498 0.741

MS-SSIM 0.872 0.878 0.593 0.630 0.918 0.897 0.362 0.667

MS-SSIM (K = 6) 0.955 0.944 0.359 0.556 0.933 0.927 0.328 0.519

VIFp 0.845 0.860 0.647 0.704 0.914 0.905 0.372 0.704

VIFp (K = 6) 0.926 0.924 0.456 0.704 0.921 0.921 0.357 0.556

It is noteworthy that this approach essentially considers model views that hold the subjects

attention, since the more time a user spends on a particular view, the higher is its influence on

the estimated average. Thus, at a first glance, the results counter our initial intuition regarding

the identification of important views based on human interactivity. More importantly, though,

they highlight the sensitivity of the image-based metrics on the viewing distance.

Note that the same analysis was repeated by considering unique frames from every navigation

track, essentially considering only the views that were visualized, regardless of the time.

Despite marginal gains, the performance was still lower than computing the metrics using

K = 6, as reported in Table 7.5.
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Figure 7.10 – MS-SSIM scores from the navigation tracks of every user inspecting a stimulus.
In the first and second row, encoded versions of the model amphoriskos and longdress are
depicted, respectively. Corresponding frontal views of the stimuli under consideration are
provided in Figures 4.14 and 4.15. Remark that the evaluation of a given stimulus starts with
the same frontal view for all the users; thus, the corresponding MS-SSIM value will be present
for all subjects. Also note that at low quality levels, users are interacting less.

Importance weights

Table 7.6 provides the performance indexes obtained by excluding (AVG) and including (WAVG)

user interactivity, over all camera layouts that were examined. The former denotes that the

quality prediction of a model is obtained by averaging the individual objective scores that are

computed based on the model views acquired from a given camera layout (i.e., reprinted from

sub-section camera layouts of 7.1.3). The latter signifies the use of interactivity data in order

to assign weights on the individual objective scores, before computing the weighted average

as our prediction of visual quality for a model. As described in section 7.2.1, these weights

are obtained after mapping the camera position of each view inspected by every user to the

closest viewpoint of a given camera layout, and by considering the ratio of the aggregated time

duration across all variations of a content divided by the total time of inspection. Note that

the metrics are computed on the foreground of the images. Moreover, the MS-SSIM metric

is only displayed, since it was found to be the best predictor across all tested cases. Similar

trends are observed when using the VIFp.

According to our results, it is remarked that this method leads to substantial improvements

with respect to the performance of the naive anchor paradigm that was described earlier
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Table 7.6 – Performance indexes of MS-SSIM per type of content, computed by including
(WAVG) and excluding (AVG) user interactivity information on model views obtained under all
camera layouts.

Inanimate objects Human figures
PLCC SROCC RMSE OR PLCC SROCC RMSE OR

K = 1 (AVG) 0.951 0.944 0.373 0.519 0.952 0.935 0.279 0.519

K = 1 (WAVG) 0.951 0.944 0.373 0.519 0.952 0.935 0.279 0.519

K = 6 (AVG) 0.955 0.944 0.359 0.556 0.933 0.927 0.328 0.519
K = 6 (WAVG) 0.956 0.944 0.356 0.519 0.949 0.935 0.289 0.519

K = 12 (AVG) 0.949 0.944 0.381 0.519 0.926 0.920 0.344 0.519
K = 12 (WAVG) 0.951 0.949 0.376 0.556 0.943 0.935 0.303 0.519

K = 42 (AVG) 0.949 0.945 0.383 0.519 0.926 0.915 0.345 0.556

K = 42 (WAVG) 0.951 0.947 0.374 0.519 0.949 0.933 0.289 0.519

K = 162 (AVG) 0.949 0.945 0.384 0.519 0.925 0.915 0.347 0.519
K = 162 (WAVG) 0.949 0.942 0.382 0.556 0.948 0.936 0.290 0.519

and reported in Table 7.5. Moreover, when comparing the performance indexes by including

and excluding importance weights, it is evident that equal and consistently better results are

obtained for inanimate objects and human bodies, respectively, under any camera layout. For

inanimate objects, marginal differences are observed under all configurations, whereas for

human bodies, it evident that the performance notably worsens by excluding interactivity

data, as the number of views is increasing.

In Figure 7.11, the importance weights associated with every view on the camera layout with

K = 162 are presented for every model. For contents that represent inanimate objects, subjects

tend to allocate more time on views that are more informative, as indicated in Figures 7.11a-

7.11c. For instance, greater weights are observed at viewpoints that are located on top of

the biplane and the romanoillamp contents, and around the equator of amphoriskos, which

is a rather symmetric model. For models that represent human figures, users consistently

spend more time in frontal views, as can be seen in Figures 7.11d-7.11f. This outcome is in

accordance with (Dutagaci et al., 2010), where subjects were explicitly asked to select the best

view of a wide range of 3D models, in which a clear preference for frontal views in human

bodies and faces is reported. This may explain why for human bodies data set the frontal view

is found to be among the best configurations. In Figure 7.12, different views of two models

with corresponding importance weights are indicatively presented.

In Table 7.7, the percentages of views with nonzero weights at every camera arrangement are

reported, along with the average duration of inspection per content. Interestingly, subjects

spent on average 30%−40% less time with human bodies with respect to inanimate objects.

In particular, romanoillamp and loot were inspected from the least number of views from

the inanimate objects and human bodies sets, respectively. As can be seen, capturing and
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(a) amphoriskos (b) biplane (c) romanoillamp

(d) loot (e) longdress (f) redandblack

Figure 7.11 – Dot markers on the view sphere correspond to camera positions for a 2-level
subdivision of an icosahedron (K = 162). The color code represents the ranking of weights,
ranging from dark blue (minimum) to dark red (maximum).

computing the metrics on viewpoints with nonzero weights is beneficial performance- and

complexity-wise, with greater gains as the number of viewpoints is increasing.

Table 7.7 – Percentage of viewpoints with non-zero weights under all camera layouts and
average time of users inspection, per content.

Inanimate objects Human figures
amphoriskos biplane romanoillamp longdress loot redandblack

K = 6 100% 100% 100% 100% 100% 100%
K = 12 100% 100% 100% 91.67% 91.67% 83.33%
K = 42 95.24% 92.86% 88.10% 57.14% 61.90% 64.29%
K = 162 64.81% 65.43% 61.73% 32.72% 32.10% 31.48%

Avg. time 16.47 sec 14.44 sec 14.01 sec 10.25 sec 9.19 sec 9.75 sec
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(a) w = 0.0437 (b) w = 0.0174 (c) w = 0.0027

(d) w = 0.0356 (e) w = 0.0144 (f) w = 0.0021

Figure 7.12 – Views of model biplane on top and loot on the bottom, with corresponding
importance weights.

7.3 Conclusions

In this chapter we investigate the performance of image-based objective quality metrics for

point cloud contents. Our results suggest that they denote an effective solution that can

outperform the prediction accuracy of point-based algorithms. Notably, the MS-SSIM was

consistently identified as the best option among the metrics under examination, potentially

due to its ability to simulate views from different distances.

As part of the study, we initially define a quality evaluation framework that can support camera

layouts granting uniformly distributed positions on the view-sphere, from where projections

of the model are acquired. We proceed by examining the generalization capabilities of image-

based metrics using subjective opinions for the same point clouds, displayed under different

194



7.3. Conclusions

rendering schemes in two separate experiments. Benchmarking results show high prediction

power in both cases, outperforming point-based counterparts. Moreover, better adjustability

is observed with respect to the latter approaches; that is, smaller variations of correlation

coefficients, which remain at high levels. On a second stage, the performance is improved

by proposing the removal of background information from the computations. Furthermore

this modification secures coherency, considering that the obtained scores are not affected by

the presence of information that is irrelevant to the quality of the displayed model. Next, the

integration of additional views for quality prediction is evaluated. Our results indicate that

additional projections do not necessarily lead to further improvements, showing that even

one view could be sufficient for good performance.

Finally, we investigate whether interactions from subjects could be exploited to improve

the prediction accuracy of image-based metrics. For this purpose, the visual experiences

of users evaluating point cloud stimuli were reproduced and objective quality metrics were

computed considering all the displayed frames. It was shown that using the entire recorded

information denotes a sub-optimal approach, both performance- and complexity-wise. On

the contrary, exploiting the recorded interactivity in terms of salient viewing perspectives led

to performance improvements. In particular, an alternative strategy was devised, assuming

that more frequently visited views have a higher influence in the subjective opinions. Given a

camera arrangement, model views obtained from the closest camera positions were weighted

higher based on this assumption. Our results show that the proposed weighting function can

be beneficial, as the prediction power of the objective quality metrics is improved, especially

in the case of models representing human bodies in our data set.
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8 Benchmarking of objective quality
metrics

In this chapter, we evaluate the performance of popular objective quality metrics for point

clouds, using a subjectively annotated data set that consists of diverse contents, encoded

using the state-of-the-art MPEG test models. In particular, the point-to-point and point-

to-plane (Tian et al., 2017b) variants, the color MSE and PSNR of the luminance and each

chrominance component computed separately and combined based on a weighted average,

comprise the so-called MPEG PCC metrics. Moreover, we consider the point-to-distribution

based on the Mahalanobis distance (Javaheri et al., 2020c), the plane-to-plane (Alexiou and

Ebrahimi, 2018c), the PCQM (Meynet et al., 2020), for which every feature and the proposed

formula to obtain a global weighted average are evaluated separately, the PointSSIM (Alexiou

and Ebrahimi, 2020), which is computed on best configurations per attribute-based features,

and the PCM_RR (Viola and Cesar, 2020). Finally, popular image-based metrics are evaluated

using projected views of the models that are obtained from different camera layouts.

This chapter is based on material that has been published in (Alexiou et al., 2019a).

8.1 Validation methodology

8.1.1 Data set

The subjectively annotated data set that is recruited in this performance evaluation analysis,

labelled as M-PCCD, is assembled in the context of our efforts published in (Alexiou et al.,

2019a). Briefly, the data set consists of 8 static colored point clouds with varying characteristics

in terms of topological and textural compositions that represent both human figures and

inanimate objects, namely, amphoriskos [10-bit], biplane [10-bit], head [9-bit], longdress

[10-bit], loot [10-bit], romanoillamp [10-bit], soldier [10-bit], and the20smaria [10-bit]. Each

pristine model is either by default (i.e., longdress, loot and soldier) or manually voxelized,

with the voxel bit-depth resolution indicated in brackets. The contents are compressed

using the MPEG encoding engines. In particular, the V-PCC, and the four G-PCC variants

(i.e., Octree-plus-RAHT, Octree-plus-Lifting, TriSoup-plus-RAHT, TriSoup-plus-Lifting) are
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employed and configured following the MPEG Common Test Conditions document (MPEG

3DG and Requirements, 2017). The subjective experiments were conducted in two dislocated

laboratories. The participants rated the visual quality of the stimuli by means of an interactive

evaluation platform in a desktop setting under the simultaneous DSIS test method, with the

point clouds rendered using screen-faced splats of adaptive size. The rating populations

collected in both laboratories exhibited strong correlation, as described in section 9.2.3, thus,

they were pooled together in order to compute the MOS and the corresponding CIs that serve

as our ground truth. We refer to details about the generation of stimuli and the subjective

experiment in sections 9.1 and 9.2, respectively.

8.1.2 Computation of quality metrics

The implementation of the point-to-point and point-to-plane metrics relies on the software

version 0.13.5 that is presented in (Tian et al., 2017c). Both the MSE and the Hausdorff distance

(i.e., HSD) are used as pooling methods to produce global degradation scores from individual

errors that are extracted from pairs of associated points. The geometric PSNR scores are

additionally considered using the corresponding voxel grid resolution of each pristine model to

obtain the peak value. For the color PSNR and MSE metrics, the color attributes are converted

from the original RGB to the YCbCr color space, following the ITU-R Recommendation BT.709-

6 (ITU-R BT.709-6, 2015), as implemented in the same software release. To compute a weighted

average incorporating luminance and chrominance distortions, the Equation 8.1 is used,

following (Ohm et al., 2012). Note that the same formulation is employed to also compute the

weighted average of the color MSE scores (i.e., MSE_YUV).

PSNR_YUV = (6 ·PSNR_Y+PSNR_U+PSNR_V)/8 (8.1)

For each aforementioned metric, the symmetric error is adopted. Moreover, the default normal

vectors that are associated with a pristine model are employed to compute the point-to-plane

metric, when available (i.e., longdress, loot, and soldier). For the rest of the contents, normals

are estimated based on plane fitting using 12 nearest neighbors, as implemented in PCL.

For the point-to-distribution metric, the source code provided in (Javaheri et al., 2020c) is

executed. The default neighborhood size of 31 was set for the computations. To compute a

global degradation score, both the mean and the MSE pooling methods are employed, named

after MMD and MSMD, respectively. In both cases, the symmetric error provides the final

predictions.

For the plane-to-plane metric, the version 1.0 of the software that is released with (Alexiou

and Ebrahimi, 2018a) is employed. The normal vectors are estimated using quadric fitting

with range search of radius equal to 30, following the results of our study in section 6.1. To

compute a global angular similarity score, the average (i.e., AVG) and the MSE are employed

as pooling methods and, for both cases, the symmetric error is used.
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For the PointSSIM, the scripts that are released with (Alexiou and Ebrahimi, 2020) are employed.

The PointSSIM is applied on location, normal, curvature and color point cloud attributes,

using every dispersion estimator, neighborhood size and target voxel resolution presented

in section 6.2. Moreover, following the results of the analysis, the impaired model is set as

the reference (i.e., the metric is computed looping for every point of the pristine model)

and average pooling is applied to compute a global degradation score. In this analysis, best-

performing configurations per attribute are reported.

For PCQM and PCM_RR, the software coming with the studies (Meynet et al., 2020) and (Viola

and Cesar, 2020), respectively, are employed as such.

Regarding image-based approaches, the same rendering settings that were adopted during

subjective evaluation are employed, and projected views of the displayed point clouds are

acquired. The exported bitmaps are 1024×1024, which is identical to the resolution of the

canvas that was used to present the models to the participants. The stimuli are captured from

K = 1, 6, and 42 viewpoints, using the camera layout that is described in section 7.1.1. Note

that the orientation of the contents from this data set is not aligned; thus, the frontal view of

each model is manually selected for K = 1. Considering K > 1 viewpoints, a simple average,

the RMS and the MSE were tested as pooling methods in order to obtain a global degradation

score. Moreover, four approaches were examined to define a mask that determines the region

of pixels over which the 2D metrics are computed: (a) the entire captured image without

removing any background information, (b) the foreground of the projected reference, (c) the

union and (d) the intersection of foregrounds of the projected pristine and impaired models.

The PSNR, SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003), and VIFp (Sheikh and Bovik,

2006) (i.e., multi-scale in pixel domain) metrics are selected and evaluated. The implementa-

tions of the last 3 algorithms are based on open-source MATLAB scripts1, which were modified

to account for the application of the mask. All metrics are applied on the luminance channel,

after conversion of the RGB color values to the YCbCr colorspace using the ITU-R Recom-

mendation BT.709-6 (ITU-R BT.709-6, 2015). Based on our results, the union of foregrounds

was found to outperform the alternatives and, hence, the performance indexes following this

approach are reported. It is noteworthy that clear performance drops are observed when

using the entire image, especially for the metrics PSNR, SSIM and MS-SSIM, suggesting that

involving background pixels in the computations is not recommended, as also seen in the

corresponding analysis of section 7.1.3. Regarding the pooling methods, minor differences

were remarked with slight improvements when using the average score; thus, the latter is

employed to report our results.

8.1.3 Benchmarking of quality metrics

The objective quality metrics are benchmarked against ground-truth subjective MOS, and

performance indexes are computed to indicate their prediction power, as described in sec-

1http://live.ece.utexas.edu/research/Quality/index_algorithms.htm
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tion A.3. In this case, we enrich our analysis by considering additional fitting functions, as

suggested in the Recommendation ITU-T J.149 (ITU-T J.149, 2004). In particular, a linear, a

monotonic polynomial of third order, and a logistic model are employed, which are given by

Equations 8.2, 8.3 and 8.4, respectively.

P(x) = a · x +b (8.2)

P(x) = a · x3 +b · x2 + c · x +d (8.3)

P(x) = a + b

1+exp−c·(x−d)
(8.4)

where a, b, c and d are determined using a least squares method for each regression model,

separately. To evaluate the performance of an objective quality metric, the PLCC, SROCC,

RMSE, and OR indexes are computed between MOS and P
(
MOS

)
under every fitting function.

8.2 Results

Entire data set

In Table 8.1 the performance indexes of our benchmarking analysis are reported, for each

tested regression model. Note that values close to 0 indicate no-linear for PLCC and no-

monotonic relationship for SROCC, while values close to 1 or -1 indicate high positive or

negative correlation, respectively. RMSE and OR are ranging between 0 and 1, with lower

values indicating higher accuracy and consistency, respectively. Also remark that in order to

report the per-attribute configurations of PointSSIM, we use the following notation: [attribute,

voxel depth, dispersion estimator, neighborhood size].

In Figure 8.1, scatter plots of subjective against objective quality scores are presented for a

selection of metrics, in order to provide a visual illustration of their performance. Note that

for point-to-plane with MSE, PCQM, MMD, and PCM_RR metrics, a closer view in a narrower

range of the objective scores is provided.

According to the indexes of Table 8.1, the PointSSIM is the best-performing objective quality

metric when applied on luminance-based features that are extracted usingσ2 as dispersion es-

timator in neighborhoods of 12 nearest points at a 9-bit voxel depth. Notably, the performance

indexes of this predictor are not substantially affected by the regression model selection. This

indicates that the metric follows a largely linear trend with respect to the subjective scores,

a property that is desirable as it allows for easier differentiation among values. In contrast,

performance drops with lower order polynomial fitting functions indicate that a metric doesn’t

exhibit a linear behavior and its energy is concentrated in a limited range of values.
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Table 8.1 – Performance indexes computed over the entire data set.

Linear Cubic Logistic

SROCC PLCC RMSE OR PLCC RMSE OR PLCC RMSE OR

M
P

E
G

P
C

C
m

et
ri

cs

point-to-point_HSD -0.370 0.004 1.363 0.905 0.056 1.361 0.901 0.004 1.363 0.905
point-to-point_MSE 0.868 0.484 1.193 0.858 0.691 0.985 0.841 0.845 0.728 0.841
point-to-plane_HSD 0.505 0.207 1.334 0.875 0.279 1.309 0.884 0.672 1.009 0.866
point-to-plane_MSE 0.884 0.448 1.219 0.862 0.663 1.021 0.841 0.858 0.700 0.832

PSNR point-to-point_HSD 0.225 0.236 1.239 0.884 0.476 1.121 0.907 0.559 1.056 0.866
PSNR point-to-point_MSE 0.759 0.679 0.935 0.833 0.723 0.880 0.801 0.720 0.885 0.819
PSNR point-to-plane_HSD 0.382 0.405 1.165 0.866 0.511 1.095 0.931 0.511 1.095 0.921
PSNR point-to-plane_MSE 0.807 0.711 0.896 0.833 0.757 0.833 0.833 0.756 0.834 0.852

MSE_Y 0.662 0.407 1.246 0.884 0.525 1.160 0.892 0.656 1.029 0.853
MSE_U 0.440 0.358 1.273 0.862 0.381 1.261 0.897 0.399 1.250 0.897
MSE_V 0.624 0.314 1.294 0.884 0.380 1.261 0.888 0.604 1.086 0.853
MSE_YUV 0.663 0.410 1.244 0.884 0.528 1.158 0.888 0.653 1.033 0.849

PSNR_Y 0.662 0.654 1.031 0.884 0.670 1.012 0.879 0.671 1.011 0.871
PSNR_U 0.440 0.432 1.229 0.892 0.451 1.217 0.888 0.428 1.232 0.897
PSNR_V 0.624 0.587 1.103 0.884 0.597 1.094 0.888 0.604 1.086 0.862
PSNR_YUV 0.660 0.646 1.040 0.879 0.654 1.032 0.866 0.653 1.033 0.849

MMD 0.887 0.617 1.073 0.853 0.827 0.767 0.819 0.865 0.685 0.802
MSMD 0.882 0.488 1.190 0.862 0.678 1.002 0.866 0.853 0.713 0.819

PSNR MMD 0.822 0.740 0.918 0.845 0.790 0.836 0.828 0.789 0.837 0.832
PSNR MSMD 0.837 0.753 0.898 0.832 0.795 0.827 0.810 0.799 0.821 0.819

plane-to-plane_AVG 0.822 0.618 1.071 0.879 0.782 0.849 0.853 0.819 0.782 0.823
plane-to-plane_MSE 0.831 0.648 1.039 0.875 0.800 0.819 0.836 0.827 0.766 0.819

P
C

Q
M

Curvature comparison 0.754 0.669 1.013 0.832 0.737 0.921 0.832 0.754 0.896 0.806
Curvature contrast 0.805 0.707 0.964 0.841 0.777 0.857 0.810 0.792 0.832 0.815
Curvature structure 0.771 0.718 0.950 0.871 0.769 0.871 0.823 0.760 0.887 0.832
Lightness comparison 0.883 0.452 1.216 0.875 0.607 1.084 0.888 0.836 0.748 0.875
Lightness contrast 0.908 0.669 1.013 0.888 0.830 0.761 0.802 0.865 0.685 0.793
Lightness structure 0.891 0.829 0.762 0.823 0.887 0.630 0.789 0.883 0.640 0.806
Chroma comparison 0.840 0.475 1.199 0.866 0.671 1.011 0.875 0.795 0.828 0.858
Hue comparison 0.631 0.503 1.178 0.905 0.609 1.081 0.845 0.618 1.072 0.819

PCMQ 0.915 0.607 1.083 0.866 0.829 0.763 0.845 0.899 0.596 0.750

P
o

in
tS

SI
M Location, orig., σ2, 12 0.835 0.782 0.850 0.828 0.820 0.780 0.819 0.828 0.765 0.754

Normal, orig., σ, 48 0.745 0.718 0.949 0.853 0.742 0.914 0.849 0.745 0.910 0.810
Curvature, orig., mAD, 24 0.871 0.782 0.850 0.853 0.817 0.787 0.849 0.854 0.710 0.797
Luminance, 9-bit, σ2, 12 0.936 0.905 0.581 0.789 0.922 0.529 0.772 0.929 0.504 0.716

PCM_RR 0.888 0.555 1.134 0.871 0.796 0.825 0.853 0.868 0.677 0.802

I m
ag

e-
b

as
ed

PSNR [1-view] 0.621 0.589 1.102 0.853 0.604 1.086 0.836 0.651 1.035 0.871
PSNR [6-views] 0.598 0.577 1.113 0.875 0.591 1.100 0.862 0.636 1.052 0.819
PSNR [42-views] 0.628 0.597 1.093 0.871 0.611 1.079 0.858 0.667 1.015 0.802

SSIM [1-view] 0.649 0.617 1.073 0.888 0.644 1.043 0.875 0.625 1.065 0.884
SSIM [6-views] 0.636 0.611 1.079 0.879 0.635 1.053 0.858 0.615 1.076 0.884
SSIM [42-views] 0.633 0.609 1.081 0.879 0.636 1.052 0.862 0.613 1.078 0.871

MS-SSIM [1-views] 0.731 0.610 1.080 0.892 0.675 1.005 0.884 0.667 1.017 0.884
MS-SSIM [6-views] 0.746 0.618 1.072 0.849 0.698 0.976 0.875 0.692 0.985 0.879
MS-SSIM [42-views] 0.752 0.623 1.067 0.862 0.701 0.972 0.879 0.694 0.982 0.888

VIFp [1-view] 0.714 0.675 1.006 0.845 0.685 0.993 0.866 0.670 1.012 0.849
VIFp [6-views] 0.734 0.690 0.987 0.841 0.708 0.963 0.836 0.690 0.988 0.858
VIFp [42-views] 0.742 0.697 0.978 0.853 0.716 0.951 0.823 0.698 0.977 0.858
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Figure 8.1 – Subjective against objective scores for a selection of metrics, considering the entire
data set. A zoomed view is provided for PCQM, MMD, PCM_RR and point-to-plane with MSE.
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Figure 8.1 – Subjective against objective scores for a selection of metrics, considering the entire
data set.

The PCQM and, particularly, the lightness-based features were found to achieve similarly

high performance with PointSSIM, validating the effectiveness of such measurements to

capture visual impairments. Moreover, the performance of PCM_RR is noteworthy, especially

considering that it denotes a reduced reference metric. The results imply the efficiency of the

global feature maps that are proposed as part of this method.

Considering color-only predictors that rely in simple point-to-point comparisons, limited

performance is observed. Among these metrics, the PSNR computed on the luminance is

better correlated with subjective opinions. Marginal differences are identified when compared

to the weighted average performed by PSNR_YUV that also involves chrominance components.

Based on Figure 8.1h, we observe that PSNR_Y provides rather accurate predictions on a per

content basis; however, its generalization capabilities are poor, showing the inability of the

metric to adapt to different topologies.

On this aspect, our results indicate the great benefits that are brought by approaches that rely

on local pooling for the extraction of color-related features, with respect to point-to-point

comparison. That is, the formulation of neighborhoods incorporates a spatial dimension

to the measurements. Thus, related statistics not only assess textural information, but also

carry underlying geometric distortions in an implicit manner. This can explain the higher

performance of the luminance-based features of PointSSIM and PCQM, with respect to the

more simplistic comparisons that are performed in PSNR_Y.

Regarding geometry-only predictors, the MMD was found the best choice, closely followed

by the point-to-plane with MSE, the curvature-based features of PointSSIM and the point-to-

point with MSE. This result suggests that taking under consideration the correlations among

the distribution of points in a reference neighborhood in order to quantify the error of an
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impaired point, has benefits with respect to capturing deviations from a reference position, or

a planar surface approximation, as implemented from the point-to-point and point-to-plane

methods, respectively. The most evident gains are visible in the form of higher robustness

against the selection of a regression method. The same properties are observed from the

curvature-based features of PointSSIM, which show even less PLCC divergences across fitting

functions, indicating a stronger linear relationship. A similar observation can also be made for

the slightly worse-performing location-based features of PointSSIM, the plane-to-plane and

the curvature-based statistics of PCQM.

Considering PSNR variants of geometric-only predictors, it is noteworthy that they show less

deviations across fitting functions in relation to the non-normalized errors. However, their

performance is consistently worse under the logistic fitting. Note that the content head is of

lower voxel resolution, which leads the PSNR-based metrics to map the corresponding scores

to a lower quality range, which doesn’t properly reflect the judgement of subjects. This trend is

obvious when comparing the scatter plots of point-to-plane with MSE and its PSNR variation

that are shown in Figures 8.1e and 8.1f, respectively.

It should be remarked that for the majority of metrics that assess geometry-only distortions, de-

spite the high values observed for linearity and monotonicity indexes, the lower performance

in RMSE and OR implies lower accuracy and consistency of the predictions. This is reasonable

given that the data set consists of colored models, and in particular considering that it includes

stimuli with the same geometry information and different color artifacts (e.g., stimuli encoded

with Octree-plus-Lifting and Octree-plus-RAHT at the same degradation level). In such cases,

geometry-only methods would assign the same score since they ignore color impairments.

Despite such limiting factors, the overall performance indexes suggest good prediction power

across the entire data set. Notice that the simultaneous quality reduction of the stimuli in

both geometry and color information at each higher degradation level, assists to the obtained

results.

Regarding image-based metrics, it is evident that the performance is substantially lower when

compared to state-of-the-art point-based counterparts. The best predictions are achieved by

the MS-SSIM algorithm for this class of algorithms. The additional views were not found to

crucially alter the performance of the algorithms, confirming previous observations made in

section 7.1. In Figure 8.1g, we observe that the MS-SSIM provides good results per content,

however, performs poorly in generalizing predicted scores across different contents.

Per codec

To obtain further insights regarding the performance of the metrics, we repeat our benchmark-

ing analysis after splitting the data set per stimuli compressed by the same codec. In Table 8.2,

the PLCC and SROCC performance indexes for a sub-set of representative metrics is reported.

It can be observed that PointSSIM achieves the best results in all cases, with luminance-based

204



8.2. Results

0 0.2 0.4 0.6 0.8 1

PointSSIM [location, orig., 
2
, 12]

1

2

3

4

5
M

O
S

amphoriskos

biplane

head

longdress

loot

romanoillamp

soldier

the20smaria

linear

cubic

logistic

0 0.02 0.04 0.06 0.08 0.1 0.12
PCQM

1

2

3

4

5

M
O

S

amphoriskos

biplane

head

longdress

loot

romanoillamp

soldier

the20smaria

linear

cubic

logistic

0 0.01 0.02 0.03 0.04
PCM_RR

1

2

3

4

5

M
O

S

amphoriskos

biplane

head

longdress

loot

romanoillamp

soldier

the20smaria

linear

cubic

logistic

(a) Octree-plus-Lifting
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Figure 8.2 – Subjective against objective scores for a selection of metrics, considering stimuli
clustered per codec.

Table 8.2 – Performance indexes computed over stimuli clustered per codec.

Octree+Lifting Octree+RAHT TriSoup+Lifting Trisoup+RAHT V-PCC

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

point-to-point_MSE 0.934 0.922 0.930 0.931 0.885 0.828 0.824 0.781 0.460 0.420
point-to-plane_MSE 0.921 0.931 0.918 0.936 0.909 0.871 0.856 0.839 0.735 0.688

PSNR point-to-point_MSE 0.880 0.900 0.846 0.884 0.539 0.591 0.589 0.486 0.299 0.282
PSNR point-to-plane_MSE 0.867 0.897 0.836 0.876 0.653 0.673 0.707 0.546 0.603 0.553

PSNR_Y 0.726 0.723 0.714 0.726 0.789 0.658 0.734 0.632 0.376 0.333
PSNR_YUV 0.723 0.724 0.713 0.735 0.770 0.645 0.715 0.623 0.324 0.316

MMD 0.895 0.889 0.892 0.893 0.922 0.907 0.879 0.875 0.718 0.690

plane-to-plane_MSE 0.908 0.903 0.876 0.881 0.886 0.813 0.800 0.754 0.635 0.553

PCMQ 0.941 0.932 0.939 0.923 0.909 0.893 0.884 0.895 0.748 0.736

PointSSIM [location, orig., σ2, 12] 0.960 0.951 0.939 0.937 0.824 0.722 0.768 0.649 0.273 0.142
PointSSIM [normal, orig., σ, 48] 0.812 0.852 0.787 0.829 0.850 0.763 0.769 0.690 0.657 0.644
PointSSIM [curvature, orig., mAD, 24] 0.941 0.932 0.919 0.918 0.870 0.826 0.796 0.747 0.675 0.653
PointSSIM [luminance, 9 bits, σ2, 12] 0.953 0.943 0.955 0.948 0.942 0.932 0.941 0.948 0.858 0.876

PCM_RR 0.934 0.931 0.918 0.926 0.870 0.822 0.865 0.877 0.716 0.648

MS-SSIM [1-view] 0.802 0.807 0.777 0.812 0.820 0.700 0.748 0.664 0.282 0.348
MS-SSIM [42-views] 0.832 0.831 0.834 0.831 0.814 0.708 0.746 0.690 0.305 0.354

features showing superior performance under the majority of codecs, with notable differences

in the case of V-PCC. Based on the performance indexes, visual quality prediction of models

that are compressed by this codec is a bottleneck for all metrics, which can be explained by the

types of impairments that are introduced. In particular, V-PCC leads to coarser local surface
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approximations as a result of the patch-based encoding and, rather frequently, to a larger

number of encoded points with respect to the original. Note that point count reductions

facilitate the performance of the metrics, and denote distortions that are easier to be captured.

This can be confirmed by the substantial improvements that are observed by all methods

against Octree-based codecs. The latter leads to regular down-sampling and models of higher

sparsity as the degradation level is increasing. Based on Table 8.4, we remark a plethora of

metrics with high performance, with PCQM, point-to-point, point-to-plane and PCM_RR,

closely following PointSSIM features and achieving very accurate results.

Considering TriSoup-based distortions, the same set of metrics provides good predictions,

with the addition of MMD. Yet, the overall performance drops, with respect to the Octree-based

counterpart. Interestingly, the point-to-plane behaves better than the point-to-point against

these artifacts, whereas in the case of Octree-based distortions the opposite is true. The

planar surface approximations that are employed to reconstruct the topology of the encoded

models lead to visual impairments, that are not as effectively captured by the point-to-point

approaches.

Finally, we observe that the performance of image-based metrics is poor across all codecs

excluding Octree-based, stemming from the lack of generalization capabilities.

In Figure 8.2, scatter plots depicting subjective against objective scores from the three best-

performing metrics are provided for stimuli encoded with Octree-plus-Lifting and V-PCC.

For the former, smooth trends are observed for all three algorithms, confirming the high

performance indexes. The latter plots, on the other hand, clearly indicate the performance

decline of the metrics in the presence of V-PCC distortions. Focusing on the best-performing

PointSSIM and PCQM, distinct trends per content are observed, indicating the difficulty of

metrics to generalize quality predictions for this codec.

Per content type

We continue our analysis by splitting the data per type of content (i.e., human figures and

inanimate objects), following the same approach we adopted in chapter 7. The majority of

the human figure models have been captured by the same equipment, thus, they exhibit the

same acquisition noise. On the other hand, such artifacts in the case of the inanimate objects

class are more diverse. Moreover, from previous experimentation (see section 4.2.3), we have

observed that subjects judge more critically distortions on human figures.

In the attached Table 8.3, the performance indexes of a representative sub-set of metrics

is reported, against stimuli clustered per type of content. It is noteworthy that by splitting

the data set in such a manner, the performance of all the metrics is remarkably improved,

especially in the case of human figures.

The PointSSIM using color-based features and the PCQM are found to outperform the al-

ternatives in the inanimate objects and the human figures set, respectively. In particular,
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(b) Human figures

Figure 8.3 – Subjective against objective scores for a selection of metrics, considering stimuli
clustered per type of content.

Table 8.3 – Performance indexes computed over stimuli clustered per type of content.

Inanimate objects Human figures

PLCC SROCC RMSE OR PLCC SROCC RMSE OR

point-to-point_MSE 0.884 0.895 0.672 0.793 0.942 0.937 0.412 0.724
point-to-plane_MSE 0.869 0.892 0.711 0.810 0.933 0.941 0.441 0.664

PSNR point-to-point_MSE 0.795 0.814 0.834 0.824 0.926 0.924 0.413 0.694
PSNR point-to-plane_MSE 0.815 0.840 0.796 0.778 0.910 0.929 0.452 0.667

PSNR_Y 0.729 0.727 0.983 0.853 0.869 0.887 0.607 0.741
PSNR_YUV 0.738 0.742 0.968 0.862 0.839 0.855 0.667 0.750

MMD 0.857 0.871 0.739 0.793 0.934 0.931 0.436 0.690

plane-to-plane_MSE 0.774 0.779 0.908 0.879 0.911 0.925 0.504 0.690

PCMQ 0.952 0.958 0.439 0.586 0.949 0.960 0.385 0.612

PointSSIM [location, orig., σ2, 12] 0.770 0.770 0.917 0.845 0.921 0.905 0.478 0.707
PointSSIM [normal, orig., σ, 48] 0.679 0.709 1.054 0.836 0.849 0.797 0.648 0.784
PointSSIM [curvature, orig., mAD, 24] 0.813 0.840 0.836 0.767 0.893 0.913 0.552 0.750
PointSSIM [luminance, 9 bits, σ2, 12] 0.961 0.965 0.399 0.629 0.913 0.924 0.501 0.741

PCM_RR 0.881 0.896 0.679 0.681 0.911 0.917 0.506 0.707

MS-SSIM [1-view] 0.798 0.817 0.865 0.905 0.917 0.940 0.488 0.750
MS-SSIM [42-views] 0.829 0.846 0.802 0.845 0.917 0.937 0.488 0.741
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PCQM is found to attain high performance, which is stable among both clusters. Considering

the set of objects, the PCM_RR is ranked below PCQM with substantial differences, and is

closely followed by the point-to-point and point-to-plane with MSE. In the human figures data

set, which is comprised of contents with more regular topology, several metrics are excelling.

Interestingly, the performance of PointSSIM is dropping, showing better performance in the

set of objects.

After splitting the stimuli per type of content, the image-based predictors are found to be

competitive with respect to the point-based alternatives. Interestingly, for human figures

the best performance is attained using 1 view, whereas for inanimate objects, K = 42 views

perform better, using MS-SSIM and logistic function in both cases, validating the trends that

were observed in the results of section 7.1.

A reason behind the limited performance of image-based methods when considering the entire

data set, is assumed to be the different levels and types of noise among the reference point

cloud representations. Typical distortions due to acquisition may lead to the presence of noisy

geometric structures, missing regions, or color noise and, thus, in reference models of varying

quality. On top of that, compression degradations have a different impact in each content,

which prevents generalization. Moreover, despite the fact that image-based metrics capture

visual artifacts as displayed by the renderer, they are not optimized for impairments that occur

due to geometry alterations, since they are tested and optimized to capture degradation in

natural images. Computations in a pixel-by-pixel basis (or small pixel neighborboods) will

naturally be affected, without necessarily reflecting the impact of perceived distortions. This

is especially true for point clouds that represent objects in this data set, whose geometry is

rather irregular (e.g., biplane, head), and can be confirmed by Figure 8.1g.

Per content

Finally, in the last step of our analysis, we compute the performance indexes after splitting the

data set per content. That is, correlation coefficients are computed over all encoded versions

of each content, separately. Then, the average and the standard deviation of the performance

indexes are computed across all contents, and reported in Table 8.4.

Based on our results, the best predictions per content are provided by PSNR_Y and PCQM,

closely followed by the image-based MS-SSIM, luminance-based features of PointSSIM and

PCM_RR. Interestingly, the performance of PSNR_Y surpasses more sophisticated solutions of

higher complexity in this task. The prediction accuracy of this method per content can be con-

firmed by the corresponding trends that are presented in Figure 8.1h. This outcome highlights

the efficiency of luminance-based measurements in evaluating the level of visual impairments,

and underlines the limitations of point-to-point attribute comparisons in generalizing across

different topologies.

Consulting Table 8.4, substantial gains are reported in the performance of the image-based
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Table 8.4 – Performance indexes computed over each content’s variations (mean ± standard
deviation).

PLCC SROCC RMSE OR

point-to-point_MSE 0.930 ± 0.042 0.939 ± 0.027 0.480 ± 0.181 0.698 ± 0.118
point-to-plane_MSE 0.915 ± 0.043 0.924 ± 0.029 0.535 ± 0.172 0.677 ± 0.119

PSNR point-to-point_MSE 0.919 ± 0.049 0.926 ± 0.034 0.479 ± 0.196 0.681 ± 0.106
PSNR point-to-plane_MSE 0.900 ± 0.050 0.907 ± 0.036 0.537 ± 0.182 0.667 ± 0.134

PSNR_Y 0.971 ± 0.015 0.976 ± 0.010 0.313 ± 0.079 0.565 ± 0.082
PSNR_YUV 0.969 ± 0.017 0.972 ± 0.014 0.320 ± 0.084 0.547 ± 0.050

MMD 0.928 ± 0.044 0.932 ± 0.035 0.489 ± 0.179 0.733 ± 0.086

plane-to-plane_MSE 0.913 ± 0.043 0.914 ± 0.040 0.540 ± 0.168 0.681 ± 0.107

PCMQ 0.972 ± 0.015 0.972 ± 0.010 0.305 ± 0.079 0.491 ± 0.126

PointSSIM [location, orig., σ2, 12] 0.868 ± 0.107 0.845 ± 0.148 0.630 ± 0.279 0.716 ± 0.110
PointSSIM [normal, orig., σ, 48] 0.803 ± 0.092 0.768 ± 0.094 0.786 ± 0.199 0.780 ± 0.080
PointSSIM [curvature, orig., mAD, 24] 0.868 ± 0.075 0.886 ± 0.064 0.642 ± 0.216 0.724 ± 0.092
PointSSIM [luminance, 9 bits, σ2, 12] 0.963 ± 0.018 0.960 ± 0.013 0.350 ± 0.087 0.621 ± 0.107

PCM_RR 0.949 ± 0.031 0.946 ± 0.029 0.412 ± 0.117 0.629 ± 0.122

MS-SSIM [1-view] 0.952 ± 0.021 0.966 ± 0.012 0.407 ± 0.108 0.647 ± 0.097
MS-SSIM [42-views] 0.962 ± 0.020 0.969 ± 0.011 0.364 ± 0.119 0.586 ± 0.104

metrics. In fact, our results suggest that estimating the visual quality of a compressed model

using even 1 view, can lead to very accurate estimations. This can be explained by the fact that

the image-based metric are able to capture progressively higher distortions with respect to the

same reference content; that is, for each content, the monotonicity of the distortion scores

is followed closely. However, the same distortion score might be mapped to different quality

levels when considering other contents. Our results coincide with observations of (Lavoué

et al., 2016) in regard to the performance of image-based metrics on geometric mesh models,

showing that correlation results are very high when considering variations of a content under

a single degradation type, while substantially decreasing otherwise.

8.3 Conclusions

In this section, existing point cloud objective quality metrics are rigorously benchmarked,

using subjectively annotated models that were encoded with the state-of-the-art MPEG codecs.

Our results indicate that the PointSSIM provides accurate predictions under all testing con-

ditions that was examined in this data set, with PCQM attaining an equivalently high perfor-

mance. Luminance-based statistics were found to provide consistently accurate results, as

proven by the accuracy of the corresponding measurements that are part of both aforemen-

tioned metrics. Moreover, results show that capturing local changes is the most promising

approach, showing remarkable improvements over earlier-developed metrics that rely on

point-to-point comparisons. Metrics that make use of a combination of the above, showed
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the best performance in this data set. This outcome can be explained by their underlying

working principle. That is, luminance-based measurements are effective in quantifying color

degradations, while geometric distortions are implicitly captured by the formulation of local

neighborhoods in order to extract local features. Following our results, this is an efficient way

to combine geometrical and textural distortions, leading to highly-performing predictors that

are able to generalize across different topologies.
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9 Benchmarking of MPEG codecs

In view of the increasing progress and development of 3-D scanning and rendering devices,

acquisition and display of free viewpoint video (FVV) has become viable (Alexiadis et al., 2013;

Collet et al., 2015; Schwarz et al., 2019). This type of visual data representation describes

3D scenes through geometry information (shape, size, position in 3D space) and associated

attributes (e.g., color, reflectance), plus any temporal changes. FVV can be displayed in

head-mounted devices, unleashing a great potential for innovations in XR applications. Indus-

trial partners and manufacturers have expressed relevant interest in extending technologies

available in consumer market with the possibility to represent real world scenarios in three

dimensions. The development of immersive information and communication systems (e.g.,

tele-presence), 3D sensing for smart cities, robotics, and autonomous driving, are just some of

the possibilities that can be envisioned to dominate in the near future.

There are several alternatives of advanced content representations that could be employed

in such application scenarios. Point cloud imaging is well-suited for richer simulations in

real-time because of the relatively low complexity and high efficiency in capturing, encoding

and rendering of 3D models. Yet, the vast amount of information that is typically required to

represent this type of content, indicates the necessity for efficient data representations and

compression algorithms. Lossy compression solutions, although able to drastically reduce the

amount of data and by extension the costs in processing, storage, and transmission, come at

the expense of visual degradations. In order to address the trade-off between data size and

visual quality, or more generally to evaluate the efficiency of an encoding solution, quality

assessment of decompressed contents is of paramount importance. In this context, visual

quality can be assessed through either objective or subjective means. The former is performed

by algorithms that provide predictions, while the latter, although costly and time-consuming,

is widely accepted to unveil the ground-truth for the perceived quality of a degraded model.

In this study, the objective is to benchmark the state-of-the-art MPEG point cloud encoding

engines, using subjective quality assessment methodologies. In particular, a diverse set of

point cloud contents is initially recruited and prepared for encoding. Then, a large-scale

performance evaluation study is carried for geometry and color compression algorithms as

213



Chapter 9. Benchmarking of MPEG codecs

(a) amphoriskos (b) biplane (c) head (d) romanoillamp

(e) longdress (f) loot (g) redandblack (h) soldier (i) the20smaria

Figure 9.1 – Reference point cloud models. The set of objects is presented in the first row,
whilst the set of human figures is illustrated in the second row.

Table 9.1 – Summary of content retrieval information, processing, and point specifications.

Content Repository Pre-processing Voxelization Voxel dept Input points Output points

O
b

je
ct

s amphoriskos Sketchfab 3 3 10 -bit 147.420 814.474
biplane JPEG 7 3 10-bit 106.199.111 1.181.016
head MPEG 7 3 9-bit 14.025.710 938.112
romanoillamp JPEG 3 3 10-bit 1.286.052 636.127

H
u

m
an

longdress MPEG 7 7 10 -bit 857.966 857.966
loot MPEG 7 7 10 -bit 805.285 805.285
redandblack MPEG 7 7 10 -bit 757.691 757.691
soldier MPEG 7 7 10 -bit 1.089.091 1.089.091
the20smaria MPEG 7 3 10 -bit 10.383.094 1.553.937

implemented in V-PCC (Mammou, 2017) and G-PCC (Mammou et al., 2019) test models using

the MPEG Common Test Conditions (MPEG 3DG, 2017). Furthermore, different rate allocation

schemes for geometry and texture encoding are analyzed and tested to draw conclusions

on the best-performing approach in terms of perceived quality for a given bit-rate. The

results of such a comprehensive evaluation provide useful insights for future development, or

improvements of existing compression solutions.

This chapter is based on material that has been published in (Alexiou et al., 2019a).
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9.1 Data set preparation

9.1.1 Content selection

A total of 9 static models are used in the experiments. The selected models denote a rep-

resentative set of point clouds with diverse characteristics in terms of geometry and color

details, with the majority of them being considered in recent activities of the JPEG and MPEG

committees. The contents depict either human figures, or inanimate objects. The former

set of point clouds consists of the longdress (longdress_vox10_1300), loot (loot_vox10_1200),

redandblack(redandblack_vox10_1550) (Eon et al., 2017), soldier (soldier_vox10_0690), and

the20smaria (HHI_The20sMaria_Frame_00600) models, which were obtained from the MPEG

repository1 and were provided by corresponding contributions (Eon et al., 2017; Ebner, 2018).

The latter set is composed by amphoriskos, biplane (1x1_Biplane_Combined_000), head

(Head_00039), and romanoillamp. The first model was retrieved from the online platform

Sketchfab2, the second and the last were selected from the JPEG Pleno repository3, while head

was recruited from the MPEG database.

Such point clouds are typically acquired when objects are scanned by sensors that provide

either directly or indirectly a cloud of points with information representing their 3D shapes.

Typical use cases involve applications in desktop computers, hand-held devices, or head-

mounted displays, where the 3D models are consumed outer-wise.

9.1.2 Content preparation

The selected codecs under assessment handle solely point clouds with integer coordinates.

Thus, models that have not been provided as such in the selected databases were manually

voxelized after eventual pre-processing. In particular, the contents amphoriskos and romanoil-

lamp were initially pre-processed. For amphoriskos, the resolution of the original version is

rather low; hence, to increase the quality of the model representation, the screened Poisson

surface reconstruction algorithm (Kazhdan and Hoppe, 2013) was applied and a point cloud

was generated by sampling the resulting mesh. The CloudCompare software was used with the

default configurations of the algorithm and 1 sample per node, while the normal vectors that

were initially associated to the coordinates of the original model were employed. From the

reconstructed mesh, a target of 1 million points was set and obtained by randomly sampling a

fixed number of samples on each triangle, resulting in a point cloud with irregular geometry.

Regarding romanoillamp, the original model is essentially a polygonal mesh object. A point

cloud version was produced by discarding any connectivity information and maintaining the

original points’ coordinates and color information.

In a next step, contents with non-integer coordinates are voxelized; that is, quantization of

1http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/, last accessed 01/2020
2https://bit.ly/3nekULm, last accessed 12/2020
3https://jpeg.org/plenodb/, last accessed 12/2020
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coordinates, which leads to a regular down-sampling of geometry, while the color is obtained

after sampling among the points that fall in each voxel to avoid texture smoothing, thus, lead-

ing to more challenging encoding conditions (see annex B.2 for implementation details). Voxel

grids of 10-bit depth resolution are used for the contents amphoriskos, biplane, romanoillamp

and the20smaria, whereas a 9-bit depth voxel grid is employed for head. It should be noted

that, although a voxelized version of the latter model is provided in the MPEG repository,

the number of output points is too large, making its usage cumbersome in the interactive

rendering platform that was employed for subjective quality assessment. For this purpose,

it was decided to use a smaller bit depth for this content. Another remark worth making is

that for our tests design, it was considered important to eliminate influencing factors that are

related to the sparsity of the models and would affect the visual quality of the rendered models.

For instance, visual impairments naturally arise by assigning larger splats on models with

lower resolutions, when visualization of watertight surfaces is required. At the same time, the

size of the model, directly related to the number of points, should allow high responsiveness

and fast interactivity in a rendering platform.

Representative poses of the reference contents after the preparation steps detailed above are

shown in Figure 9.1, while related information is summarized in Table 9.1.

9.1.3 Degradation types

The model degradations under study were derived from the application of lossy compression.

The contents were encoded using the latest versions of the state-of-the-art compression

techniques for point clouds at the time of this writing, namely version 5.1 of V-PCC (Mammou,

2017) and version 6.0-rc1 of G-PCC (Mammou et al., 2019). The configuration of the encoders

for our experiments respects the guidelines detailed in the MPEG Common Test Conditions

document (MPEG 3DG, 2017). Below, a brief summary of the working principle of each test

model and encoding module is presented.

Video-based Point Cloud Compression: V-PCC, also known as TMC2 (Test Model Category 2),

takes advantage of already deployed 2D video codecs to compress geometry and texture

information of dynamic point clouds (or Category 2). V-PCC’s framework depends on a Pre-

processing module, which converts the point cloud data into a set of different video sequences,

as shown in Figure 9.2.

In essence, two video sequences, one for capturing the geometry information of the point

cloud data (padded geometry video) and another for capturing the texture information

(padded texture video), are generated and compressed using HEVC (Bross et al., 2012), the

state-of-the-art 2D video codec. Additional metadata (occupancy map and auxiliary patch

info) needed to interpret the two video sequences are also generated and compressed sepa-

rately. The total amount of information is conveyed to the decoder in order to allow for the

decoding of the compressed point cloud.
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9.1. Data set preparation

Figure 9.2 – V-PCC compression process. The original point cloud is initially decomposed
into geometry video, texture video and metadata. Both video contents are smoothed by
Padding to allow for the best HEVC (Bross et al., 2012) performance. The compressed bit-
streams (metadata, geometry video and texture video) are packed into a single bit-stream: the
compressed point cloud.

Geometry-based Point Cloud Compression: G-PCC, also known as TMC13 (Test Model Cat-

egories 1 and 3), is a coding technology to compress Category 1 (static) and Category 3

(dynamically acquired) point clouds. Despite the fact that our work is focused on models that

belong by default to Category 1, the contents under test are encoded using all the available

set-up combinations to investigate the suitability and the performance of the entire space of

the available options. Thus, configurations typically recommended for Category 3 contents,

are also employed. It is suitable, thus, to present an overview of the entire G-PCC framework.

The basic approach consists in encoding the geometry information at first and, then, using

Figure 9.3 – Overview of G-PCC geometry encoder. After voxelization, the geometry is encoded
either by Octree or by TriSoup modules, which depends on Octree.
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Figure 9.4 – Overview of G-PCC color attribute encoder. In the scope of this work, either RAHT
or Lifting are used to encode contents under test.

the decoded geometry to encode the associated attributes. For Category 3 point clouds, the

compressed geometry is typically represented as an octree (Meagher, 1982) (Octree Encoding

module in Figure 9.3) from the root all the way down to a leaf level of individual voxels.

For Category 1 point clouds, the compressed geometry is typically represented by a pruned

octree (i.e., an octree from the root down to a leaf level of blocks larger than voxels) plus a

model that approximates the surface within each leaf of the pruned octree, provided by the

TriSoup Encoding module. The approximation is built using a series of triangles (a triangle

soup (Schwarz et al., 2019; Pavez et al., 2018)) and yields good results for a dense surface point

cloud.

In order to meet rate or distortion targets, the geometry encoding modules can introduce losses

in the geometry information in such a way that the list of 3D reconstructed points, or refined

vertices, may differ from the source 3D-point list. Therefore, a re-coloring module is needed

to provide attribute information to the refined coordinates after lossy geometry compression.

This step is performed by extracting color values from the original (uncompressed) point

cloud. In particular, G-PCC uses neighborhood information from the original model to infer

the colors for the refined vertices. The output of the re-coloring module is a list of attributes

(colors) corresponding to the refined vertices list. Figure 9.4 presents the G-PCC’s color

encoder, which has as input the re-colored geometry.

There are three attribute coding methods in G-PCC: Region Adaptive Hierarchical Trans-

form (RAHT module in Figure 9.4) coding (de Queiroz and Chou, 2016), interpolation-based

hierarchical nearest-neighbor prediction (Predicting Transform), and interpolation-based

hierarchical nearest-neighbor prediction with an update/lifting step (Lifting module). RAHT

and Lifting are typically used for Category 1 data, while Predicting is typically used for Cat-

egory 3 data. Since our work is focused on Category 1 contents, every combination of the

two geometry encoding modules (Octree and TriSoup) in conjunction with the two attribute

coding techniques (RAHT and Lifting) is employed.
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9.2 MPEG Common Test Conditions

In this experiment, we evaluate the performance of the emerging MPEG compression ap-

proaches, namely, V-PCC, and G-PCC with geometry encoding modules Octree and TriSoup

combined with color encoding modules RAHT and Lifting, for a total of five encoding solutions.

The codecs are assessed under test conditions and encoding configurations defined by the

MPEG committee in the Common Test Conditions document (MPEG 3DG, 2017), in order

to ensure fair evaluation and to have a preliminary understanding of the level of perceived

distortions with respect to the achieved bit-rate. In this section, the experiment design is

described in details; the possibility of pooling results obtained in two different laboratory

settings is discussed and analyzed, and the results of the subjective quality evaluation are

presented. For the same purpose, the most popular objective quality metrics are employed,

and their prediction performance is evaluated.

9.2.1 Data set

For this experiment, every model presented in section 9.1 is encoded using six degradation

levels for the four combinations of the G-PCC encoders (from most degraded to least degraded:

R1, R2, R3, R4, R5, R6). Moreover, five degradation levels for the V-PCC codec (from most

degraded to least degraded: R1, R2, R3, R4, R5) were obtained, following the Common Test

Conditions released by the MPEG committee (MPEG 3DG, 2017). Using the V-PCC codec,

the degradation levels were achieved by modifying the geometry and texture Quantization

Parameter (QP). For both the G-PCC geometry encoders, the positionQuantizationScale
parameter was configured to specify the maximum voxel depth of a compressed point cloud.

To define the size of the block on which the triangular soup approximation is applied, the

log2_trisoup_node_size was additionally adjusted. From now on, the first and the second

parameters will be referred to as depth and level, respectively, in accordance with (Schwarz

et al., 2019). It is worth clarifying that, setting the level parameter to 0 reduces the TriSoup

module to the Octree. For both the G-PCC color encoders, the color QP was adjusted per

degradation level, accordingly. Finally, the parameters levelOfDetailCount and dist2 were

set to 12 and 3, respectively, for every content, when using the Lifting module.

9.2.2 Methodology

Test method

In this experiment, the simultaneous DSIS protocol with 5-grading scale was adopted (5:

Imperceptible, 4: Perceptible, but not annoying, 3: Slightly annoying, 2: Annoying, 1: Very

annoying). The reference and the distorted stimuli were clearly annotated and visualized

side-by-side by the subjects. A division element with radio buttons was placed below the

rendering canvases, enlisting the definitions of the selected grading scale among which the

subjects had to choose. For the assessment of the visual quality of the models, an interactive
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(a) Reference (b) V-PCC, Degr. level = R1 (c) Octree+Lifting, Degr. level = R3

(d) Octree+RAHT, Degr. level = R3 (e) TriSoup+Lifting, Degr. level = R3 (f) TriSoup+RAHT, Degr. level = R3

Figure 9.5 – Illustration of artifacts occurred after encoding the content amphoriskos with the
codecs under evaluation. To obtain comparable visual quality, different degradation levels are
selected for V-PCC and G-PCC variants.

evaluation protocol was adopted to simulate realistic consumption, allowing the participants

to modify their viewpoint (i.e., rotation, translation and zoom) at their preference without

imposing any time limitations. Notice that the interaction commands given by a subject were

simultaneously applied on both stimuli (i.e., reference and distorted); thus, the same camera

settings were always used in both models. A free viewing protocol was followed, allowing the

users to adjust their position with respect to the screen.

Rendering

The stimuli were displayed using the renderer presented and described in annex D.3. A non-

distracting mid-grey color was set as the background. The camera zoom parameter was limited

in a reasonable range, allowing visualization of a model in a scale from 0.2 up to 5 times the

initial size. Note that the initial view allows capturing of the highest dimension of the content

in its entirety. This range was specified in order to avoid distortions from corner cases of close

and remote viewpoints.
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In simple splat-based rendering implementations for point cloud data, there is an obvious

trade-off between sharpness and impression of watertight models; that is, as the splat size is

increasing, the perception of missing regions in the model becomes less likely, at the expense

of blurriness. Given that, in principle, the density of points varies across a model, adjusting

the splat size based on local resolutions can improve the visual quality. Thus, in this study, an

adaptive point size approach was selected to render the models, similarly to (Javaheri et al.,

2017b; Alexiou and Ebrahimi, 2019). In particular, the splat size of a point was set adaptively

based on the local mean distance of its 12 nearest neighbors, if it wasn’t identified as an

outlier; in the latter case, the global mean distance, computed over the same neighborhood

population was used instead, to avoid magnification of isolated points. More details about this

algorithm can be found in annex D.2. After assigning an initial size from the above procedure,

every splat was additionally multiplied by a scaling factor that was determined per content.

The scaling factor was selected after expert viewing, ensuring a good compromise between

sharpness and perception of watertight surfaces for each reference content. In particular a

value of 1.45 was chosen for amphoriskos, 1.1 for biplane, 1.3 for romanoillamp and 1.05 for

the rest of the contents. Notice that the same scaling factor is applied for each variation of

the content. In Figure 9.5, the reference model amphoriskos along with encoded versions at a

comparable visual quality are displayed using the developed renderer, to indicatively illustrate

the nature of impairments that are introduced by every codec under assessment.

Testing environment

The subjective evaluation experiments were conducted in two laboratories across two different

countries, namely, MMSPG at EPFL in Lausanne, Switzerland and LISA at UNB in Brasilia,

Brazil. In both cases, a desktop set-up involving an Apple Cinema Display of 27-inches and

2560x1440 resolution (Model A1316) calibrated with the ITU-R Recommendation BT.709-

5 (ITU-R BT.709-6, 2015) color profile was installed. At EPFL, the experiments were performed

in a room that fulfills the ITU-R Recommendation BT.500-13 (ITU-R BT.500-13, 2012) for

subjective evaluation of visual data representations. The room is equipped with neon lamps

of 6500 K color temperature, while the color of the walls and the curtains is mid gray. The

brightness of the screen was set to 120 cd/m2 with a D65 white point profile, while the

lighting conditions were adjusted for ambient light of 15 lux, as was measured next to the

screen, according to the ITU-R Recommendation BT.2022 (ITU-R BT.2022, 2012). At UNB, the

test room was isolated, with no exterior light affecting the assessment. The wall color was

white, and the lighting conditions involved a single ceiling luminary with aluminum louvres

containing two fluorescent lamps of 4000 K color temperature.

Experimental design

A training session preceded the test, where the subjects got familiarized with the task, the

evaluation protocol, and the grading scale by showing references of representative distortions

using the redandblack content; thus, this model was excluded from the actual test. Identical
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Figure 9.6 – Illustration of the evaluation platform. Both reference and distorted models are
presented side-by-side while being clearly remarked. Users’ judgements can be submitted
through the rating panel. The green bar at the bottom indicates the progress in the current
batch.

instructions were given in both laboratories that participated in the subjective evaluations.

At the beginning of each evaluation, a randomly selected view was presented to each subject

at a fixed distance, ensuring entire model visualization. To avoid contextual effects, the

side of the reference onto the screen was randomly picked for every participant. Moreover,

the presentation order of stimuli was randomized per subject and the same content was

never displayed consecutively throughout the test, in order to avoid temporal references. In

Figure 9.6, an example of the evaluation platform is presented.

In each session, 8 contents and 29 degradations were assessed with a hidden reference and a

dummy content for sanity check, leading to 244 stimuli per session. Each session was equally

divided in four batches. Each participant was asked to complete two batches of 61 contents,

with a 10-minute enforced break in between to avoid fatigue. A total of 40 subjects participated

in the experiments at EPFL, involving 16 females and 24 males with an average of 23.4 years

old. Another 40 subjects were recruited at UNB, comprising of 14 females and 26 males, with

an average of 24.3 years of age. Thus, 20 scores per stimulus were obtained in each laboratory,

for a total of 40 scores.

Data processing

Subjective quality evaluation: To evaluate the perceptual quality of the encoded stimuli based

on subjective opinions, the MOS and the CIs were computed from the quality scores collected

at each participated laboratory separately, as described in annex A.1.1.
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Figure 9.7 – Comparison of subjective scores obtained from the participated laboratories (Bold
text represents the ground truth).

Table 9.2 – Performance indexes depicting the correlation between subjective scores from the
participating test laboratories (Bold text represents the ground truth).

EPFL vs UNB

PLCC SROCC RMSE OR CE UE OE

No fitting 0.984 0.986 0.297 0.254 100% 0% 0%
Linear fitting 0.984 0.986 0.250 0.396 100% 0% 0%
Cubic fitting 0.988 0.986 0.221 0.300 100% 0% 0%

UNB vs EPFL

PLCC SROCC RMSE OR CE UE OE

No fitting 0.984 0.986 0.297 0.171 100% 0% 0%
Linear fitting 0.984 0.986 0.250 0.371 100% 0% 0%
Cubic fitting 0.989 0.986 0.211 0.283 100% 0% 0%

Inter-laboratory correlation: Subsequently, in order to determine the statistical equivalence

of the results between the two tests, the statistical measurements described in annexes A.2.2

and A.2.3 were employed. In particular, the PLCC, SROCC, RMSE and OR indexes were

computed to assess linearity, monotonicity, accuracy and consistency. Moreover, the CE, UE

and OR percentages were calculated to decide whether statistically distinguishable scores are

obtained for the stimuli under assessment from the two test population. Finally, to better

understand whether the results from the two tests conducted in EPFL and UNB could be

pooled together, the SOS coefficient was computed for both tests, as described in section A.2.5.

Note that close values of a denote similarity among the distribution of the scores, and can be

used to determine whether pooling is advisable.
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Figure 9.8 – MOS vs SOS fitting for scores obtained in EPFL and UNB, with relative SOS
coefficient a. The shaded plot indicates the 95% confidence bounds for both fittings.

9.2.3 Results

Inter-laboratory analysis: In Figure 9.7, scatter plots indicating the relationship between the

ratings of each stimulus from both laboratories are presented. The horizontal and vertical

bars associated with every point depict the CIs of the scores that were collected in the labo-

ratory indicated by the corresponding label. In Table 9.2, the performance indexes from the

correlation analysis that was conducted using the scores from both laboratories as ground

truth are reported. As can be observed, the subjective scores are highly-correlated. The CIs

obtained from the UNB scores are on average 8.25% smaller with respect to the CIs from EPFL

ratings, indicating lower score deviations in the former laboratory. Although the linear fitting

function achieves an angle of 44.62°, with an intercept of −0.12 (using EPFL scores as ground

truth), it is evident that for mid-range visual quality models, higher scores are observed in

UNB. Thus, naturally, the usage of a cubic monotonic fitting function can capture this trend

and leads to further improvements, especially when considering the RMSE index. The 100%

correct estimation index signifies no statistical differences when comparing pairs of MOS

from the two labs individually; however, the high CIs associated with each data point assist on

obtaining such a result.

In Figure 9.8 the SOS fitting for scores obtained at EPFL and UNB is illustrated, with respective

95% confidence bounds. As shown in the plot, the values of a are very similar and lie within

the confidence bound of the other, with an MSE of 0.0360 and 0.0355, respectively. When

combining the results of both tests, we obtain a = 0.2755 with an MSE of 0.0317.
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Figure 9.9 – Subjective scores against bit-rates from the degradation levels defined for every
codec, grouped per content. Curves for point clouds that represent inanimate objects are
illustrated.

The high performance indexes values and the similar a coefficients suggest that the results

from the two experiments are statistically equivalent and the scores can be safely pooled

together. Thus, for the next steps of our analysis, the two sets are merged and the MOS as well

as the CIs are computed on the combined set, assuming that each individual rating is coming

from the same population.

Subjective quality evaluation: In Figure 9.9 and 9.10, the MOS along with associated CIs are

presented against bit-rates achieved by each codec, per type of content. The bit-rates are

computed as the total number of bits of an encoded stimulus divided by the number of input

points of its reference version. Our results show that for low bit-rates, V-PCC outperforms

the variants of G-PCC, especially in the case of the cleaner set of point clouds that represents
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Figure 9.10 – Subjective scores against bit-rates from the degradation levels defined for ev-
ery codec, grouped per content. Curves for point clouds that represent human figures are
illustrated.

human figures. This trend is observed mainly due to the texture smoothing done through

low-pass filtering, which leads to less annoying visual distortions with respect to the aggressive

blockiness and blurriness that are introduced by the G-PCC color encoders at low bit-rates.

Another critical advantage is the ability of V-PCC to maintain, or even increase the number of

output points while the quality is decreasing. In the case of more complex and rather noisy

contents, such as biplane and head, no significant gains are observed. This is due to the high

bit-rate demands to capture the complex geometry of these models, and the less precise shape

approximations by the set of planar patches that are employed.

Although highly efficient at low bit-rates, V-PCC doesn’t achieve transparent, or close to

transparent quality, at least for the tested degradation levels. In fact, a saturation, or even

a drop in the ratings is noted for the human figures when reaching the lowest degradation.
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(a) Degradation level = R4 (b) Degradation level = R5

Figure 9.11 – Soldier encoded with V-PCC. Although the R4 degraded version is blurrier with
respect to R5, missing points in the latter model were rated as more annoying. (examples are
highlighted in the figures).

(a) Degradation level = R2 (b) Degradation level = R3

Figure 9.12 – Biplane encoded with V-PCC. The color smoothing resulting from the low-pass
filtering in texture leads to less annoying artifacts for R2 with respect to R3.

This is explained by the fact that subjects were able to perceive holes across the models,

which comes as a result of point reduction. The latter is a side effect of the planar patch
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Table 9.3 – Results of the Welch’s t-test performed on the scores associated with color encoding
module Lifting and RAHT, for geometry encoder Octree and TriSoup and for every degradation
level. The number indicates the ratio of contents for which the color encoding module of each
row is significantly better than the module of each column.

R1 R2 R3 R4 R5 R6
Lifting RAHT Lifting RAHT Lifting RAHT Lifting RAHT Lifting RAHT Lifting RAHT

O
ct

re
e Lifting - 0 - 0.25 - 0.5 - 0.375 - 0.125 - 0.375

RAHT 0 - 0 - 0 - 0 - 0.125 - 0.125 -

Tr
iS

o
u

p Lifting - 0.25 - 0.875 - 0.625 - 0.25 - 0.125 - 0.5
RAHT 0 - 0 - 0.125 - 0.25 - 0.125 - 0 -

approximation that does not improve the geometrical accuracy. An exemplar case can be

observed in Figure 9.11 for the soldier model. Another noteworthy behavior is the drop of

the visual quality for biplane, between the second and the third degradation level. This is

observed because, while the geometric representation of both stimuli is equally coarse, in the

first case the more drastic texture smoothing essentially reduces the amount of noise, leading

to more visually pleasing results, as shown in Figure 9.12.

Regarding the variants of the G-PCC geometry encoding modules, no decisions can be made on

the efficiency of each approach, considering that different bit-rates are in principle achieved.

By fixing the bit-rate and assuming that interpolated points provide a good approximation of

the perceived quality, it seems that the performance of Octree is equivalent or better than the

TriSoup, for the same color encoder. The Octree encoding module leads to sparser content

representations with regular displacement, while the number of output points is increasing as

the depth of the octree increases. The TriSoup geometry encoder leads to coarser triangular

surface approximations, as the level is decreasing, without critically affecting the number of

points. Missing regions in the form of triangles are typically introduced at higher degradation

levels. Based on our results, despite the high number of output points when using the TriSoup

module, it seems that the presence of holes is rated, at best, as equally annoying. Thus, this

type of degradation doesn’t bring any clear advantages over sparser, but regularly sampled

content approximations resulting from the Octree.

Regarding the efficiency of the color encoding approaches supported by G-PCC, the Lifting

color encoding module is found to be marginally better than the RAHT module. The latter

encoder is based on 3D Haar transform and introduces artifacts in the form of blockiness,

due to the quantization of the DC color component of voxels at lower levels that is used to

predict the color of voxels at higher levels. The former encoder is based on the prediction of a

voxel’s color value based on neighborhood information, resulting in visual impairments in

the form of blurriness. Supported by the fact that close bit-rate values were achieved by the

two modules, a one-tailed Welch’s t-test is performed at 5% significance value to gauge how

many times one color encoding module is found to be statistically better than the other, for

Octree and TriSoup geometry encoders separately. Results are summarized in Table 9.3, and

228



9.3. Rate allocation for geometry encoding

show a slight preference for the Lifting module with respect to the RAHT module. In fact, in

the Octree case, the Lifting model is either considered equivalent or better than the RAHT

counterpart, the opposite being true only for the lowest degradation values R5 and R6 for 1

out of 8 contents. In the TriSoup case, the number of contents for which the Lifting module is

considered better than RAHT either surpasses or matches the number of contents for which

the opposite is true. Thus, we can generalize that a slight preference for the Lifting encoding

scheme can be observed with respect to the RAHT counterpart. However, note that slightly

higher color bit-rates are in principle required by the former approach following the MPEG

Common Test Conditions (MPEG 3DG, 2017).

Limitations: The experiment described in this section provides a subjective evaluation of

visual quality for point cloud contents under compression artifacts generated by the latest

MPEG efforts on the matter. However, this study is not without its limitations.

To ensure a fair comparison, the MPEG Common Test Conditions (MPEG 3DG, 2017) were

adopted in selecting the encoding parameters. However, the configurations stated in the doc-

ument do not cover the range of possible distortions associated with point cloud compression.

The fact that V-PCC fails to reach transparent quality is an illustration.

Moreover, for a given target bit-rate, different combinations of geometry and color parameters

could be tested, resulting in very different artifacts. The encoding configurations defined in the

MPEG Common Test Conditions (MPEG 3DG, 2017) focus on degrading both geometry and

color simultaneously. Although the obtained settings are suitable for comparison purposes

of updated versions of the encoders, there is no other obvious reason why this should be

enforced. Thus, it would be beneficial to test whether a different rate allocation could lead to

better visual quality.

Furthermore, the selection of the encoding parameters leads to large variations in file size,

and consequently on achieved bit-rates; this makes comparing different encoding solutions

particularly challenging, as they are not studied at the same conditions.

Finally, the choice of parameters results in some configurations not being evaluated. For

example, the best configurations for TriSoup (R6) corresponds to the Octree encoding module;

conversely, the approximation level 1 is never tested. Several intermediate solutions, arising

from a more varied approach in selecting both depth and level parameters, are not tested.

9.3 Rate allocation for geometry encoding

Results from previous section showed that, while clear gains in compression efficiency could

be seen when adopting V-PCC for point cloud encoding, drawing conclusions about the

differences between Octree and TriSoup encoding in G-PCC is more challenging. In order to

gain more insights on the impact of geometry encoding, a second experiment was conducted
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Table 9.4 – Selected encoding parameters of G-PCC for experiment 2, for high and low target
bit-rates. The depth parameter indicates the resolution of the Octree structure, whereas the
level parameter indicates the TriSoup approximation.

amphoriskos biplane longdress loot the20smaria
depth level bpp depth level bpp depth level bpp depth level bpp depth level bpp

h
ig

h
b

it
-r

at
e G0 512 0 2.01 544 0 1.88 768 0 2.94 576 0 0.82 608 0 1.27

G1 416 1 2.05 480 1 1.82 608 1 2.90 448 1 0.88 512 1 1.27
G2 576 2 1.96 608 2 1.84 864 2 2.94 672 2 0.83 736 2 1.26
G3 736 3 1.97 736 3 1.88 992 3 2.87 928 3 0.85 928 3 1.28

lo
w

b
it

-r
at

e G0 192 0 0.45 288 0 0.49 384 0 1.00 320 0 0.32 256 0 0.26
G1 160 1 0.47 256 1 0.51 320 1 0.99 256 1 0.33 224 1 0.28
G2 224 2 0.48 320 2 0.48 416 2 0.92 384 2 0.32 320 2 0.28
G3 256 3 0.45 416 3 0.50 480 3 1.00 480 3 0.34 384 3 0.26

to determine whether particular types of geometry artifacts are preferred against others.

9.3.1 Data set

Five contents are selected out from the data set described in section 9.1, to reduce the length

and cost of the subjective assessment, while maintaining a wide range of variety. In particular,

two models representing objects (amphoriskos and biplane) and three models representing

human figures (longdress, loot and the20smaria) were recruited for the test. For each content,

two target bit-rates were selected after expert viewing, to model high and low levels of quality

degradations. At every bit-rate point, four geometry configurations of the G-PCC codec were

evaluated. In particular, the highest depth value d that matched the targeted bit-rate without

employing surface approximation was selected (TriSoup level value l set to 0). This would

represent the pure Octree encoding module, labeled with G0. Subsequently, combinations

of d and l were selected such that the final encoded point cloud would meet the bit-rate

requirements, for l = {1,2,3}. For l = 1, that meant decreasing the value of d with respect to

configuration G0, as the TriSoup configuration is expected to generate a higher number of

points for level 1 with respect to the Octree (configuration G1). This is due to the fact that

TriSoup creates a surface approximation of the occupied blocks, constrained to intersect each

edge of the block at most once. For l = 1 (which signifies a block size of 2× 2× 2 voxels),

this results in an increase in the amount of points for the decoded point cloud. For l = 2,3,

the increase of number of points is mitigated by the progressively larger block sizes; thus,

increasing values of d were chosen to match the bit-rate (configurations G2 and G3). This led

to 8 configurations per content, for a total of 40 stimuli. For all configurations, the Lifting color

module was used, as a slightly better performance was shown in the previous test with respect

to RAHT. The color QP was always set to 4 to ensure no color degradations, which could have

an effect on the rating.

A summary of the encoding parameters and achieved bit-rate for each content can be found

in Table 9.4.
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9.3.2 Methodology

Test method

A pairwise comparison methodology with ternary voting system was selected, due its high

discriminatory power, in order to collect human preferences regarding the visual quality of

two geometry encoded model versions. This protocol is advised from ITU-T Recommenda-

tions (ITU-T P.910, 2008), when stimuli are nearly equal in quality. Moreover, this test method

is valuable to assess more abstract dimensions, which is in alignment with the scope of the

experiment to decide what types of visual impairments are more annoying. In order to avoid

forced choices in case of imperceptible differences among the two stimuli, a ternary voting

system was adopted. The subjects were able to interact with the stimuli under evaluation

through mouse movements, similarly to the test described in section 9.2, while a free viewing

protocol was also adopted.

Rendering

The models were displayed using the exact same settings that were described in the sub-

section rendering of section 9.2.2.

Testing environment

The test was performed in UNB, using the same conditions and the same room, as described

in the sub-section testing environment of section 9.2.2.

Experimental design

Each subject was presented a pair of point cloud stimuli, displayed in a side-by-side manner,

and was asked to declare which of the two models they preferred, with the option of no

preference. The comparisons were only performed between the same content and within the

same target bit-rate, for a total of 60 pairs to be assessed. Particular care was given to avoid

displaying the same content consecutively, while the order of the stimuli was randomized per

subject.

One training example was shown to the subjects to help them familiarize with the testbed and

the task at hand; two identical stimuli of high quality that weren’t part of the test were used for

the purpose. Additionally, one dummy content was added at the beginning of the test to ease

participants into the task, and the associated scores were discarded.

A total number of 25 subjects participated, involving 13 males and 12 females, with an average

of 25 years of age.
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Figure 9.13 – Preference and tie probabilities for each pair of configurations under test in
experiment 2, for the high bit-rate case. The color blue (yellow) of the bar indicates the
probability of the configuration on the left (right) side being preferred over the one on the
right (left) side. The orange bar indicates the tie probability.

Data processing

Outlier detection was performed on the data according to (Lee et al., 2013). One outlier was

found, and the scores associated with it were subsequently discarded.

For each pair under assessment, the winning frequency wi j of stimulus i against stimulus

j was computed, along with the ties ti j . In order to obtain the preference probabilities, the

winning and tie frequencies were divided by the total number of subjects after outlier detection.

The normalized MOS scores on a 0-100 scale were obtained from the winning frequencies

by applying the Bradley-Terry-Luce (BTL) model, according to the Recommendation ITU-T

J.149 (ITU-T J.149, 2004) and as described in annex A.1.2.

9.3.3 Results

Figures 9.13 and 9.14 depict the preference and tie probabilities for each pair of configurations

i and j under test, for each content, for high and low target bit-rates, respectively.

Results show that the pure Octree configuration G0 is clearly the preferred approach. This

conclusion can be drawn from the preference probabilities, which indicate that it is likely
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Figure 9.14 – Preference and tie probabilities for each pair of configurations under test in
experiment 2, for the low bit-rate case. The color blue (yellow) of the bar indicates the
probability of the configuration on the left (right) side being preferred over the one on the
right (left) side. The orange bar indicates the tie probability.

for the Octree to be rated as either equal or better in perceived quality with respect to all the

other configurations, for both low and high bit-rates. The sole exception in this trend is the

comparison of G0 with G3 for amphoriskos, at low bit-rate, for which the latter configuration is

preferred more frequently. In fact, when discarding the ties in the computation of the winning

frequencies, configuration G0 is considered as worse than one of the other configurations in

only 8.70% and 15.65% for high and low bit-rates, respectively. Ties account for 16% of the

total number of ratings assigned to G0.

Conversely, configuration G1 seems to yield the worst performance, as it is considered better

than other configurations in only 14% of the cases, and is rated as worse in 77.10% of the cases

(71.30% and 88.70% for high and low bit-rates, respectively). In comparison, configuration G2

is rated as worse in 36.09% of the cases, and configuration G3 in 48.99% of the cases, while ties

account for 18.26% and 8.12%, respectively.

Considering the high bit-rate case, besides configuration G0, which is likely to be either

preferred or considered equal to all other configurations, G2 is the second-best configuration,

as it is rated as better than configurations G1 and G3 in the majority of the cases, and is

considered nearly equal to configuration G3 for content loot. It is worth mentioning that it is

also considered nearly equivalent in quality with configuration G0 for content amphoriskos.
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Figure 9.15 – Normalized MOS and relative CIs obtained from the winning frequencies gathered
in experiment 2, for each configuration, averaged across the contents, separately for high and
low bit-rates.

Finally, configuration G3 is rated as yielding better results with respect to configuration G1

for point clouds representing human figures, whereas for object models, it is rated as worse

than G1. However, it is universally considered worse than configuration G0 and G2, with the

aforementioned exception of content loot.

For the low bit-rate case, G0 is confirmed as the approach yielding the best results, as it is

always outperforming G1 and is rated to be either better or equivalent to configurations G2

and G3. Configuration G1 is outperformed by all the other configurations, with the notable

exception of content biplane, for which it is considered equivalent with respect to configura-

tion G2, and for which it outperforms configuration G3. The outlier behavior of this content

can be explained by the presence of noise in its reference version, which has an impact on

the perception of geometry degradation. Between configurations G2 and G3, the latter is

preferred, as it achieves either equivalent or better quality with respect to the former. Thus, it

appears that a better depth resolution was preferred for low bit-rates, even if it came at the

cost of a coarser surface approximation, at least when comparing TriSoup levels 2 and 3.

Figure 9.15 depicts the normalized MOS obtained from the winning frequencies, along with the

respective CIs, as averaged across the contents. The blue bar represents the scores associated

to the high bit-rate, whereas the orange bar represents the scores associated to the low bit-rate.

Results clearly show the superiority of the Octree configuration with respect to the TriSoup

ones; moreover, they confirm that configuration G1 seems to yield the worst performance

in terms of visual quality. For high bit-rate, configuration G2 is preferred with respect to

configuration G3, whereas for low bit-rate, the opposite was found to be true.
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Table 9.5 – Selected encoding parameters of G-PCC for experiment 3, for high and low target
bit-rates. The depth parameter indicates the resolution of the Octree structure, whereas the
QP parameter indicates the quantization parameter for the Lifting encoding module.

amphoriskos biplane longdress loot the20smaria

depth QP bpp depth QP bpp depth QP bpp depth QP bpp depth QP bpp

h
ig

h
b

it
-r

at
e B0 768 34 2.57 768 34 1.79 896 28 2.38 896 28 1.19 896 28 1.73

B1 672 26 2.62 672 30 1.81 736 24 2.40 736 22 1.18 832 26 1.71
B2 800 38 2.59 928 40 1.80 992 30 2.36 992 32 1.20 960 30 1.74

lo
w

b
it

-r
at

e B0 512 40 0.90 512 40 0.52 768 34 1.30 768 34 0.78 768 34 0.94
B1 480 36 0.91 480 38 0.52 576 28 1.30 704 30 0.77 640 28 0.94
B2 544 44 1.03 576 44 0.51 896 38 1.31 800 38 0.76 864 40 0.95

Results of the subjective experiment show that the surface approximation generated by the

TriSoup module is rarely considered as superior than the regular Octree structure. This is

especially true when the surface approximation is done at level l = 1, which, for the same

bit-rate, demands a lower depth precision with respect to the Octree module. Increasing the

depth precision by applying a coarser surface approximation (l = 2,3) yields better results

within the TriSoup module; however, the quality is still considered worse than what obtained

at a lower depth precision by the Octree module.

9.4 Rate allocation for geometry and color encoding

One of the main limitations of the experiment conducted using the Common Test Conditions,

can be pinpointed to its inability to analyze geometry and color degradations separately, or to

identify the impact of different levels of impairment on the visual quality due to the simultane-

ous quality reduction in both texture and geometry. However, since several configurations of

the geometry and texture encoding modules could lead to the same target bit-rate, it is not a

given that choosing a medium level of degradation for both modules will lend the best possible

results in terms of perceived quality. For instance, discarding some geometry information to

be able to increase the quality of the texture encoding, or the opposite, could lead to more

visually pleasing outcomes. Thus, it is critical to assess whether between the geometry and

texture encoders and within a target bit-rate, which bit allocation is most efficient and visually

pleasant. Thus, in this experiment, we test which combination of color and geometry encoding

parameters would lead to the best results in terms of visual quality.

9.4.1 Data set

The same contents that were selected for the second experiment were also used in this test.

For each content, two target bit-rates were chosen based on the results of the first experiment

(section 9.2), to model medium-high and medium-low levels of quality degradation in terms
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of both geometry and color. The Octree geometry in combination with the Lifting color

encoding modules were adopted as the individually preferred alternatives from the previous

experimentation. For contents amphoriskos and biplane, bit-rate R3 was selected for the

low target bit-rate and R4 was selected for the high target bit-rate, whereas for contents

longdress, loot and the20smaria bit-rates R4 and R5 were selected as low and high target bit-

rate, respectively. Those encoded contents would form configuration B0. For every rate, the

geometry and color quantization parameters were modified such that the same target bit-rate

would be achieved. This is performed by either decreasing the parameter depth, which would

allow allocation of more bits to the texture encoder (configuration B1), or by increasing the

depth in the geometry encoder, which would lead in quality reduction of the texture encoder

to match the target bit-rate (configuration B2). This way, the configuration of preference can

be obtained in a rate allocation problem.

A summary of the encoding parameters and achieved bit-rates per content is reported in

Table 9.5. We remind the readers that higher levels of QP correspond to a coarser color

encoding, whereas lower levels of depth represent a decrease in geometry precision.

9.4.2 Methodology

Test method

The same test method described in the corresponding sub-section of 9.3.2 was employed in

this experiment; that is, a pair comparison with the option of tie, realized in an interactive

platform under a free viewing protocol.

Rendering

Identical configurations were employed, as detailed in the sub-section rendering of sec-

tion 9.2.2.

Testing environment

This test was performed at EPFL under the same conditions and the same room described in

the sub-section testing environment of section 9.2.2.

Experimental design

One training example was shown to the subjects to help them familiarize with the testbed

and the task at hand; two identical contents with high quality that were excluded from the

test were used for the purpose. Additionally, one dummy content was added at the beginning

of the test to ease participants into the task, and the associated scores were discarded. The

same guidelines were followed for the order and presentation of the stimuli under assessment,
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Figure 9.16 – Preference and tie probabilities for each pair of configurations under test in
experiment 3, for the high bit-rate case. The color blue (yellow) of the bar indicates the
probability of the configuration on the left (right) side being preferred over the one on the
right (left) side. The orange bar indicates the tie probability.

as described in the sub-section experimental design of section 9.3.2. A total number of 25

subjects participated, involving 17 males and 8 females, with an average of 29.13 years of age.

Data processing

Outlier detection was performed on the data according to (Lee et al., 2013). No outlier was

detected among the subjects. The same data processing as described in section 9.3.2.

9.4.3 Results

Figures 9.16 and 9.17 present the preference and tie probabilities for each pair of configurations

i and j under test, for each content, for high and low target bit-rates, respectively. Results show

that, depending on the content and its target bit-rate, different rate allocation for geometry

and color can be preferred. For the high bit-rate case, configuration B2 seems to yield better

results than its counterparts for contents longdress, loot and the20smaria (albeit marginally,

for the latter, when compared to B0); for contents biplane, it outperforms configuration B1,

but not B0, while for content amphoriskos, it is outperformed by both configurations. For all
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Figure 9.17 – Preference and tie probabilities for each pair of configurations under test in
experiment 3, for the low bit-rate case. The color blue (yellow) of the bar indicates the
probability of the configuration on the left (right) side being preferred over the one on the
right (left) side. The orange bar indicates the tie probability.

contents, B0 seems to be slightly preferred or considered equal to configuration B1, indicating

a general trend that favors better geometry accuracy than color fidelity.

For low bit-rates, results are more varied. For contents amphoriskos, biplane and loot, B1

seems to be the winning configuration, as it is rated to be either better or equal than the other

two configurations. This indicates that color fidelity is preferred over geometry resolution. For

contents amphoriskos and loot, configuration B0 is the second-best rated, confirming this

trend; however, for content biplane B2 seems to be preferred with respect to B0. In the case of

content longdress and the20smaria, however, B1 seems to be the least preferred solution, as

both configurations B0 and B2 have a higher probability of being preferred with respect to

B1. For both contents, B0 is considered as yielding a better visual quality with respect to B2,

although marginally so for content longdress.

Figure 9.18 depicts the normalized MOS obtained from the winning frequencies using the BLT

model. It can be observed that the relative CIs are quite large, probably due to the differences

in performance between different contents. The general trend indicates that for high bit-rates,

B2 is the best configuration, followed by B0, which points towards a preference for more

level of details in geometry with respect to color. However, for low bit-rates B2 is the worst
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Figure 9.18 – Normalized MOS and relative CIs obtained from the winning frequencies gathered
in experiment 3, for each configuration, averaged across the contents, separately for high and
low bit-rates.

configuration, and B1 seems to be highly preferred. This suggests that for low bit-rates, better

color fidelity might be more important than geometrical accuracy.

Results of the subjective experiment show that, depending on the targeted bit-rate, different

configurations of geometry and color could be preferred. In particular, for high bit-rates,

better geometry precision is preferred, whereas for low bit-rates, color fidelity seems to be the

most important parameter. Yet, any decision for a rate allocation problem should be done on

a content basis, as results vary significantly among them.

9.5 Conclusions

In this study, a comprehensive quality assessment and analysis of the emerging MPEG point

cloud compression has been carried, through subjective evaluations. Our efforts were initially

focused on quality assessment experiments using the Common Test Conditions, as defined by

the MPEG committee, and experts’ selection of encoding configurations. For this purpose, a

diverse set of point cloud models was selected, prepared, encoded, and evaluated subjectively,

using a point-based rendering software that was developed. The first experiment provided

useful insights regarding the performance of the encoders and the types of degradation they

introduce, yet, limitations were identified and described. Among them is the inability to draw

solid conclusions about the efficiency of the G-PCC encoder. This could shed some light on the

preference among the different visual artifacts introduced by the Octree and the TriSoup mod-

ules. Thus, a second experiment was conducted showing that human subjects prefer regular

down-sampling over triangulated surface approximations, at both low and high bit-rates. We
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have also addressed the restriction of the initial set of encoding configurations of downgrading

both the geometry and color quantization parameters simultaneously, to investigate whether

a better rate allocation scheme is possible. The results of the third experiment on this matter

showed that, roughly, higher color quality is preferred at low bit-rates, while higher geometry

precision is favoured at high bit-rates, even though results may vary among different contents.

The subjective scores obtained from the first experiment reported in this chapter have been

made publicly available. Additional information is provided in annex E.
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Point cloud imaging has emerged as an efficient and popular solution to represent immersive

visual information. However, the large volume of data generated in the acquisition process

reveals the need of efficient compression solutions in order to store and transmit such contents.

Several standardization committees are in the process of finalizing efficient compression

schemes to cope with the large volume of information that point clouds require. At the same

time, recent efforts on learning-based compression approaches have been shown to exhibit

good performance in the coding of conventional image and video contents. It is currently an

open question how learning-based coding performs when applied to point cloud data.

In static point cloud compression, there are different approaches aiming at reducing the data

size of geometric or textural information. Notably, the most popular solutions employ tree data

structures, graphs, or patches of projected views of a model. The first rely on data structures

that can efficiently organize the spatial placement of the points, such as k-d trees and octrees;

the second employ graph arrangements to represent a model with nodes indicating a point,

or a neighborhood. The latter approaches are based on plane projections of a model that are

typically obtained from different perspectives and can be encoded using conventional 2D

imaging compression solutions. Lately, auto-encoding neural network architectures have been

proposed to compress point cloud geometry, extending similar efforts that have preceded

in 2D imaging. Despite the fact that this type of point cloud coding is still at its infancy,

the results are very promising, with the current solutions competing, if not outperforming,

state-of-the-art algorithms.

Inspired by the great potentials that neural networks show in learning transforms for compress-

ing visual data representations, in this study we extend previous efforts by learning geometry

and color attributes of point cloud models. In particular, we initiate by extending a publicly

available geometry-only point cloud auto-encoding solution in learning transforms for a holis-

tic data representation including both geometry and color. We analyse the performance of

this unified network, using widely employed objective quality metrics that focus on geometric

and color degradations. Moreover, we examine the impact of assigning various weights to

geometry and color distortion terms in the loss function, to understand whether an optimal

241



Chapter 10. Learning-based encoding

weighting scheme can be found. The performance of this model is compared to a different

architecture that is composed of two separately trained networks dedicated to geometry and

color. Furthermore, the proposed model is benchmarked against a widely-used coding so-

lution, which denotes the anchor in the recent point cloud compression-related efforts of

the MPEG standardization body. A set of meta-analysis studies is also reported, carried to

understanding the impact of data set, color space, and loss function selection, among others,

in the network performance. Results demonstrate that the adopted architecture is able to

perform competitively with respect to well-established solutions for point cloud compression,

both in the geometry and color domain, especially at low bitrates.

To the best of our knowledge, there is only one study focused on compression of point cloud

attributes, described in (Quach et al., 2020a), which is based on folding a 2D grid onto a point

cloud and then mapping the attributes on top of it. An advantage of this approach is the

application of highly efficient 2D imaging techniques for point cloud compression; yet, a

bottleneck is the low accuracy of the folding in geometrically complex parts of a model. In our

study, we handle geometry and/or color in the 3D domain by extracting features from regular

grids making use of 3D convolutions, which enable capturing of spatial redundancies for both

types of information. The study aims to provide useful insights for future references focused

on the matter.

This chapter is based on material that has been published in (Alexiou et al., 2020a).

10.1 Network architecture

The network encodes a point cloud in a block-by-block basis, similarly to previous efforts on

the field (Guarda et al., 2019b,a, 2020; Wang et al., 2019). Thus, every point cloud is initially

partitioned into non-overlapping blocks of a specified dimension. Each block is sequentially

fed into the network and encoded independently through an auto-encoding architecture. After

decoding, a compressed variation of the initial block at the original dimension is exported.

Remark that partitioning a point cloud into blocks has two main advantages; that is, lower

computational demands in handling input units, and random access, provided that every

block is interpreted as an independent sample. Yet, it comes with the limitation that spatial

redundancies cannot be largely exploited when blocks of low resolution are selected.

10.1.1 Input

The geometry and texture of every input unit is provided in a typical format, which resembles

a 6-tuple list, with each entry denoting a point that is defined by its x, y and z coordinates

followed by the r , g and b color values. The input point cloud data are considered voxelized,

thus, the original format can be easily converted to a 3D voxel grid. This data representation

allows us to exploit 3D convolution kernels to capture spatial redundancies in the output

feature maps. The 3D voxel grid is then partitioned into blocks of a specified resolution, and
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each block is associated with a number of input channels that carry topological and potentially

textural information, depending on the task. In particular, the blocks are of resolution K ×K ×
K × Ĉ , with Ĉ = 1 for geometry-only compression and Ĉ = 4 for color-only or geometry-plus-

color encoding. In all cases, the first channel contains values of 0 or 1 to indicate occupied

voxels. The optionally-enabled, additional color channels contain values between 0 and 1,

obtained after a scaling step.

10.1.2 Auto-encoder

The network architecture adopts as a baseline the model proposed in (Quach et al., 2019).

As the majority of the current auto-encoding solutions, the processing pipeline can be de-

composed in three main parts; that is, an analysis stage consisting of convolution layers, a

synthesis stage that is composed of de-convolution layers, and a bottleneck in the middle

that corresponds to the latent representation. Our selection for this baseline is motivated

by the fact that it denotes a publicly available, efficient implementation of an end-to-end

auto-encoder with good performance on geometry compression. Moreover, similar core

architectures have been employed in 2D image-based paradigms, revealing high-performance

in terms of compression efficiency.

(a) The base model’s structure (Quach et al., 2019) (b) The unified model’s structure

Figure 10.1 – Auto-encoding architecture.

Base model

In this model, only point cloud geometry is encoded (Quach et al., 2019). The architecture is

composed of three 3D convolution layers at the encoder and their symmetric transposed con-

volution (i.e., de-convolution) counterparts at the decoder side, as illustrated in Figure 10.1a.

The first term of each block of a diagram denotes the number of filters (i.e., N ), the second

term denotes the size of the filters (i.e., 93), the third term is the size of the stride (i.e., 23), the

forth term is the type of activation function, and the fifth term indicates if bias is applied.

At the encoding stage, a 3D point cloud block is given as an input. A selection of stride

size higher than 1 implies down-sampling of the input representation. In our case, a stride
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size of 23, denotes down-sampling of the input unit by a factor of 0.5 in each dimension

at the output of each layer. Quantization is applied on the latent representation, which is

obtained at the output of the encoder. During training, the quantization is replaced by additive

uniform noise (Ballé et al., 2016), in order to ensure that the gradient is defined for the back-

propagation operation. Moreover, the rate is estimated using differential entropies (Ballé et al.,

2016), provided that the values at the output of the quantization step are continuous. During

testing, the floating point latent representation is quantized with trained probability tables,

and the bitstream is obtained by entropy coding.

At the decoding stage, the bitstream is received and passes from a set of de-convolution layers

with stride size equal to 23, which implies up-sampling by a factor of 2. Through a series of

symmetric de-convolution layers, the compact feature maps are decoded and the point cloud

geometry can be recovered in the form of 3D blocks. A loss function is employed to quantify

the reconstruction distortion and train the model in an end-to-end manner performing joint

optimization of both rate and distortion. For this purpose, a multiplier is employed to steer

the trade-off at will. In particular, the loss is composed of this multiplier (weight term) λg , a

distortion term Dg , and a rate term R that represents bits per input occupied voxel (bpp) as

follows:

L = R +λg Dg (10.1)

Note that by modifying the λg term, the bitrates and the reconstructed quality can be tuned;

that is, by setting a higher weight, the model will focus more on learning how to preserve

geometry information and less on compressing, thus, resulting in higher reconstruction quality

at the expense of higher bitrate. The distortion term is computed by comparing the original

X with the recovered point cloud X̃ . This task can be interpreted as a binary classification

problem, hence, the focal loss is employed to assess the reconstruction error, defined as in (Lin

et al., 2017) and given in Equation 10.2

FL(ṗx ) =−αx (1− ṗx )γ log(ṗx ),

FL(X̃ ) =
∑

x∈X
FL(ṗx ), (10.2)

where ṗx is defined as px if the voxel x is occupied and 1−px if the voxel is unoccupied, px is

the output value of the voxel x indicating probability of whether the voxel is occupied or not.

αx is defined as α if the voxel x is occupied and 1−α otherwise.

Unified model

In this model, point cloud geometry and/or color attributes can be encoded. The same

architecture as in the base model is employed, with some necessary modifications to support

the enhanced functionality, illustrated in Figure 10.1b. In this diagram, red color is used to

highlight differences with respect to the original version. Specifically, the number of channels

for the last layer of the decoder, C , is set to either 1, 3 or 4 depending on the task. For geometry
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compression, C is equal to 1, for color compression C equals 3, while for geometry-plus-color

compression, C is equal to 4. Notice that a ReLU activation function is added at the final layer

of the encoder, while at the final layer of the decoder, the activation function is switched to

sigmoid in order to ensure that the output values lie in the range [0,1].

To train the network for point cloud geometry compression, we employ a slight variation of

the loss function defined in (Quach et al., 2019) and provided in Equation 10.1. In particular,

the distortion term is normalized by dividing with the total number of voxels, such that it

represents a measurement of distortion per voxel.

To train the network for point cloud color compression, a similar formulation is adopted.

In this case, the focal loss is replaced by a simple l2 norm, which is computed between the

original and the reconstructed color values across the occupied voxels of the input block. The

color loss is normalized by dividing with the number of occupied voxels of a block to reflect

the distortion per occupied voxel.

Note that both geometry and color distortion terms are normalized by the number of points

that effectively contribute to the loss. For color degradation, a logarithmic function of the l2

norm is computed to obtain scores in the same range with the geometry term. In Equation 10.3,

the updated loss function used for for color-only compression is provided.

L = R +λc Dc (10.3)

To train the network for point cloud geometry-plus-color compression, both metrics are

employed and both distortion terms are included in the loss function, as indicated in Equa-

tion 10.4. Notice that the overall quality of the restored model as well as a different quality

preservation scheme can be enabled for the two attribute types by selecting different λ values.

Note that subscripts g and c indicate geometry and color, respectively.

L = R + (λg Dg +λc Dc ) (10.4)

10.1.3 Output

For each input block, a bit-stream representing the encoded latent representation is received

at the decoder side. After de-compression, an equally sized degraded version of the block is

obtained. When geometry-only compression is required, the model outputs 1 channel that

indicates occupancy. In color-only compression, 3 color channels are obtained. Notice that,

in this case, the receiver knows the point cloud topology; thus, the compressed attributes per

point are found at the corresponding voxel position at the output blocks. For geometry-plus-

color compression, 4 channels are obtained combining occupancy and color information. In

all cases, the output blocks that are extracted from the same point cloud are merged together

following a particular order, to restore the de-compressed point cloud. Finally, the optionally

compressed color values are converted back to the original range [0,255].
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(a) amphoriskos (b) andrew (c) biplane (d) egyptianmask (e) matis (f) nefertiti

(g) queen (h) redandblack (i) thaidancer (j) tiki (k) ulliwegner (l) zeus

Figure 10.2 – Sample models used for training.

(a) bumbameuboi (b) guanyin (c) longdress (d) phil (e) rhetorician (f) romanoillamp

Figure 10.3 – Models used for testing.

10.2 Experimental setup

10.2.1 Data set

For the purposes of this study, a selection of high resolution point clouds from several reposi-

tories was pursued in order to form a collection of training and testing models with diverse

characteristics in geometry and color. In particular, a total of 50 models were selected from

the MPEG1, JPEG Pleno2, PointXR (Alexiou et al., 2020b), VSENSE (Zerman et al., 2019), and

M-PCCD (Alexiou et al., 2019a) data sets, forming the so-called High Resolution Geometry

and Color (HiResGC) data set. The JPEG Pleno and MPEG repositories consist of colored

models that were assembled in the context of relevant standardization activities, containing

representative sets of real-life acquired and synthetic point clouds that span across a variety

of categories, such as, inanimate models, cultural heritage, human bodies, etc. The PointXR

dataset (Alexiou et al., 2020b) consists of low-noise, high quality point clouds that represent

cultural heritage models, obtained after conversion from their original mesh content repre-

sentations. The VSENSE data set (Zerman et al., 2019) consists of two dynamic sequences of

human bodies, thus, including several frames of the same figures at different poses. From

1http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/, last accessed 01/2020
2https://jpeg.org/plenodb/, last accessed 12/2020
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this repository, only a representative, low-noise frame was selected per sequence. Finally, a

content coming with the M-PCCD data set (Alexiou et al., 2019a) was recruited, to further

enhance the data.

The majority of the models were voxelized at a bit depth of 10, independently of their original

content representation (i.e., raw or voxelized at a higher grid resolution). Sparser point clouds

were voxelized at a bit depth of 9, as in (Guarda et al., 2019b), while models with geometry

originally lying at a grid of lower resolution (e.g., 9), remained as such (e.g., Microsoft Upper

Bodies). Moreover, the color attributes were normalized in a range between 0 and 1. The

collected point clouds were partitioned into blocks, with the latter denoting the input data

that are fed into the network.

Training data

The training data consists of the entire set of point clouds that were collected, excluding 6

models that comprise our testing set. A part of the selected models is illustrated in Figure 10.2.

The training models were partitioned into non-overlapping blocks of size K , with K = 32

or 64 depending on the task at hand, with each block being handled independently in our

network. Following (Guarda et al., 2019b), blocks that contain less than 500 occupied points

were discarded, as they carry limited relevant information. From the remaining blocks, a total

of 10,000 samples were randomly picked to form our training set.

Testing data

The testing data consists of the models that have been specified in the Common Test Con-

ditions document authored by the JPEG standardization committee as a result of its latest

efforts (Perry, 2020). The employed models denote a representative set of inanimate objects

and human figures with a relatively wide range of geometric arrangement and color distribu-

tion, as illustrated in Figure 10.3. For the testing data, block sizes of K = 128 are used, except

if otherwise mentioned. Note that it is a rather common approach (Quach et al., 2019) to

use different resolutions for training and testing blocks, whose influence is investigated in

section 10.4.2.

10.2.2 Evaluation methodology

In this study, we opt two objective quality metrics that are largely employed in the literature

in order to allow cross-comparisons, and we evaluate the quality of geometry and color

information for the compressed models, separately. For evaluation of geometric distortions,

we choose the symmetric point-to-plane metric with MSE using the PSNR variant, noted

hereafter as D2-PSNR. The D2-PSNR captures topological distortions in a point cloud model

by measuring the deviation of the coordinates of a distorted point from a linear approximation

of the reference surface. To compute the PSNR variant, the resolution of the voxel grid that
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the content lies in is employed at the numerator of the ratio. Two error values are obtained by

setting both the compressed and the original model as a reference, and the symmetric error

is obtained by choosing the maximum out of the two error values. For evaluation of color

distortions, the symmetric color PSNR is adopted. The well-known formula from 2D imaging

is employed, using the nearest neighbors algorithm to establish associations between the

reference and the content under evaluation. To compute a quality score, the color values of

the point cloud models are converted from the original RGB to the YCbCr colorspace using the

ITU-R Recommendation BT.709-6 (ITU-R BT.709-6, 2015). This metric from now is referred to

as YUV-PSNR. To compute a total score, a weighted average between the luma and the two

chrominance channels is obtained using weights 6, 1 and 1, as in (Ohm et al., 2012). This

procedure is repeated setting both the original and the distorted models as the reference and

the maximum error is kept to account for the symmetric YUV-PSNR score.

To compute both metrics the MPEG software version 0.13.5 is used (Tian et al., 2017c). For the

D2-PSNR, normal vectors are required to be associated with the coordinates of the testing mod-

els. In this case, we used a plane fitting algorithm with 10 nearest neighbors as implemented

in MeshLab v2020.06.

10.2.3 Network configurations

To train the network, we select a number of filters N = 32 per layer, a batch size of 16, and

a number of output channels C = 4, to involve both geometry and color information. The

Adam optimizer (Kingma and Ba, 2014) is set with learning rate equal to 10−4 and β1 = 0.9 and

β2 = 0.999. The loss function given in Equation 10.4 is employed, using α= 0.9 and γ= 2.0

for the focal loss computation given by Equation 10.2. The experiments are conducted using

Python 3.6 and Tensorflow 1.13.1. As mentioned earlier, training blocks of size K = 32 and

testing blocks of size K = 128 are in principle employed, except if otherwise declared.

10.3 Experimental results

When compressing both the geometric structure and the color attributes of point cloud

contents using neural networks, two main approaches can be identified. The first approach

relies on creating a holistic representation of both dimensions, feeding both geometry and

color information to a network designed to compress both simultaneously. The second

approach relies on designing two separate networks to be used sequentially: one that handles

geometry, and another that deals with compressing the color attributes. The first approach is

advantageous in terms of computational and time resources. Moreover, it allows for an holistic

evaluation of point cloud distortions, given a loss function that can reliably detect artifacts

in both geometry and color domains at the same time. In the second approach, networks

dedicated on a particular type of information are employed and, thus, a better performance is

expected provided the usage of the same network hyper-parameters (i.e., number and size

of filters, size of strides, etc). Furthermore, the rate allocation for each component can be
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Figure 10.4 – Rate-distortion performance of the unified network architecture, according to
geometry metric D2-PSNR, with different λ allocations to geometry and color (λg :λc ). Solid
black represents pure geometry compression (λc = 0), solid red represents 1:1 allocation.
Dashed lines represent allocations for which λg >λc , whereas for dotted lines, λg <λc .

manipulated independently, thus leading to higher flexibility in the encoding process.

In this section, we describe and provide performance evaluation results for a series of exper-

iments conducted using the unified model as a baseline, which compresses geometry and

color attributes simultaneously. In particular, we analyse how the performance of the network

is affected when different weights are given to either geometry or color distortions. Then, we

compare the performance of our unified model with respect to using separate networks to

encode geometry and color information. Finally, benchmarking results against the MPEG

anchor are depicted to indicate the performance of the network against a well-established

encoding solution.

10.3.1 Geometry against color impairments using the unified network

Figures 10.4 and 10.5 depict the performance evaluation of using the unified model to com-

press both geometry and color, according to geometry metric D2-PSNR and color metric

YUV-PSNR, respectively, for all testing contents. To obtain the curves, parameters λg and λc

in the loss function are weighted in order to obtain different allocation schemes, indicated by

λg :λc . For these experiments, the unified model described in section 10.1.2 and illustrated in

Figure 10.1b is employed.
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Figure 10.5 – Rate-distortion performance of the unified network architecture, according to
geometry metric YUV-PSNR, with different λ allocations to geometry and color (λg :λc ). Solid
black represents pure color compression (λg = 0), solid red represents 1:1 allocation. Dashed
lines represent allocations for which λg >λc , whereas for dotted lines, λg <λc .

In Table 10.1, the values of λg and λc that were selected to achieve the desired weighting for

geometry and color distortions, respectively, are reported. Figure 10.4 indicates how different

weighting schemes for geometry and color distortions affect the quality of the reconstructed

point cloud in the geometry domain, expressed through the D2-PSNR metric. In particular,

the solid black line shows the performance when the color distortion is not considered in

the computation of the loss function (λc = 0). As such, it represents an upper limit on the

performance in terms of geometrical distortions. The solid red line indicates the performance

when equal weights are assigned to both color and geometry distortions, which we consider

as the baseline. As expected, an increase in performance can be observed when more relative

Table 10.1 – Selected values of λg and λc for the computation of the loss function as in
Equation 10.4, to achieve various distortion allocation schemes with ratios λg :λc , for different
bitrate values (from smallest to largest, R1 to R4).

1:1 0:1 1:4 1:9 1:19 1:0 4:1 9:1 19:1
λg λc λg λc λg λc λg λc λg λc λg λc λg λc λg λc λg λc

R1 20 20 0 40 8 32 4 36 2 38 40 0 32 8 36 4 38 2
R2 100 100 0 200 40 160 20 180 10 190 200 0 160 40 180 20 190 10
R3 500 500 0 1000 200 800 100 900 50 950 1000 0 800 200 900 100 950 50
R4 2500 2500 0 5000 1000 4000 500 4500 150 4750 5000 0 4000 1000 4500 500 4750 150
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Figure 10.6 – Bjontegaard dB gains for each allocation λg :λc with respect to allocation 1:1, for
color metric YUV-PSNR (blue) and geometry metric D2-PSNR (red). Dashed lines represent
dB gains when using pure color compression (blue) or pure geometry compression (red), with
respect to 1:1 baseline.

weight is assigned to the geometry distortion in the loss function (dashed lines). However, the

increase in performance is not as remarkable as the dB losses that are observed when more

relative weight is assigned to the color distortion term (dotted lines). In fact, the performance

for weight ratios 4:1, 9:1, and 19:1 is approximately equivalent for all contents.

A similar trend can be observed in Figure 10.5, which presents the performance of the same

weighting schemes in terms of color distortion, represented by the YUV-PSNR metric. As in

Figure 10.4, the solid black line indicates the performance when the color distortion is only

considered in the loss function (λg = 0). It is noteworthy that, certain allocation schemes mark

an increase in performance with respect to the theoretical upper limit 0:1 at low bitrates. This

is due to the fact that the computation of the color metric depends on the underlying geometry.

Thus, in a geometry-plus-color compression scheme, the reconstructed error is measured

on a different than the input topology, which might lead to such behaviours, especially in

such low color quality levels. As expected, allocation schemes which favor color distortions

(dotted lines) achieve better performance with respect to the 1:1 baseline (depicted in solid

red). However, sharp loss in performance can be observed when more weight is assigned to

geometry distortions, at the expense of color information (dashed lines).

In order to better analyse the impact of varying the relative importance of color or geometry

information in the loss function calculation, we computed the Bjontegaard dB gains obtained
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(a) Reference (b) 1:1, λg = 2500,λc = 2500 (c) 1:19, λg = 250,λc = 4750 (d) 19:1, λg = 4750,λc = 250

Figure 10.7 – Visual comparison for longdress, for different distortion allocation ratios.

(a) Reference (b) 1:1, λg = 100,λc = 100 (c) 1:19, λg = 10,λc = 190 (d) 19:1, λg = 190,λc = 10

Figure 10.8 – Visual comparison for guanyin, for different distortion allocation ratios.

by each allocation scheme under exam, with respect to the 1:1 baseline. Results are depicted

in Figure 10.6, separately for each test content. Blue color indicates dB gains computed

with respect to the color metric YUV-PSNR, whereas red color indicates gains with respect

to geometry metric D2-PSNR. Dashed lines represent the theoretical upper limit, i.e., the

gains obtained when using only geometry (1:0, red dashed) or only color (0:1, blue dashed)

allocations.

As we observed before, the gains with respect to the baseline (bars above the 0 line) are quite

modest, and tend to saturate between the 1:9 and 1:19 allocation schemes in the case of color

gains, and between 9:1 and 19:1 in the case of geometry gains. However, steep losses in dB

are observed as the distortion allocation schemes become more unbalanced. For content

longdress, for instance, we observe a loss of -5.96 dB in the geometry domain when the 1:19

weighting ratio is selected, whereas the corresponding gains in terms of color distortions are

limited to 1.08 dB (see Figure 10.6 (c)).

A visual comparison for the weight ratios 1:1, 1:19, and 19:1 at the highest bitrate under

consideration is shown in Figure 10.7 for the content longdress. It can be observed that the

geometry distortion introduced by changing λg from 2500 to 250, is not heavily influencing

the visual perception of the content, despite the reported loss of 2.5 dB. However, in the case of

distortion allocation of 19:1, the artifacts in the color domain heavily degrade its appearance,

effectively masking any improvements brought in the geometry domain.
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Figure 10.8 shows a visual comparison for the same allocation ratios, for content guanyin, at

the second lowest bitrate under exam. It can be seen that for a weight ratio of 1:19, geometric

artifacts in the form of holes appear (see Figure 10.8 (c)), whereas assigning larger weight

to geometry distortion term brings a very poor performance in color compression. The 1:1

allocation, in this case, represents a compromise between geometry and color distortions.

Results show that, while performance gains can be achieved in either geometry or color

domain by assigning larger weight to the corresponding type of distortion, they come at the

cost of a loss in the other domain. Moreover, losses are generally more pronounced, whereas

gains remain modest even when remarkably imbalanced allocation schemes are employed.

The selection of the best allocation scheme must be conducted by examining which domain

leads to perceptually more pleasant results, and by carefully considering whether the gains in

one domain outweigh the costs in the other.

10.3.2 Unified network against separately trained networks

For the separately trained networks architecture, two models are employed, each dedicated

to compress a particular type of attribute. In our context, we train a model on geometry-

only compression and a second model on color-only compression. The testing point clouds

are compressed by initially feeding the geometric information of the point cloud data into

the geometry-only encoding network, in the form of individual blocks, as described in sec-

tion 10.1.1 using C = 1. The de-compressed blocks are reassembled to restore the encoded

point cloud topology. Then, a re-coloring step is applied by associating the original color

values to the de-compressed coordinates using the nearest neighbor algorithm. The resulting

point cloud is partitioned again into blocks (input channels C = 4) and fed to the color-only en-

coding network. The output blocks are eventually stitched together, forming the final decoded

point cloud.

This implementation results in two bitstreams, each corresponding to a different type of

attribute, which are both required at the received side in order to restore the encoded model.

It should be noted that for the training of both networks, the same data and the same hyper-

parameters adopted for the unified version and described in section 10.1.2 were applied.

Moreover, a training and a testing block size of 32 and 128 were used, respectively.

Figures 10.9 and 10.10 report the performance evaluation results obtained with the unified

network, with 1:1 allocation among geometry and color distortion terms, together with the

results obtained from the separately trained networks on geometry and color. Performance

is shown using the geometry metric D2-PSNR and the color metric YUV-PSNR, respectively.

For the unified network, the parameters for distortion allocation 1:1 were used, according

to Table 10.1. For the separately trained networks, parameter λ was set independently for

geometry and color; curves are obtained by using (from smallest to highest bitrate), λg =λc =
20,100,500,2500. Note that, to avoid redundancies, we only report the results for test contents

bumbameuboi, guanyin, longdress, and phil, since for the rest of the models, very similar
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Figure 10.9 – Rate-distortion performance of the unified model and the separately trained
networks, according to geometry metric D2-PSNR.
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Figure 10.10 – Rate-distortion performance of the unified model and the separately trained
networks, according to color metric YUV-PSNR.

behavior was observed.

Based on our results illustrated in Figure 10.9, similar performance is obtained when using

the unified model to compress geometry information, with respect to employing an ad-hoc

network which is trained on geometry-only data. The two solutions are interchangeable in

terms of geometric distortions. In the color domain, however, a difference in performance

can be observed between the two solutions, as shown in Figure 10.10. In particular, for three

out of the four contents, i.e., guanyin, longdress, and phil, the two networks have similar

performance for high bitrates, whereas for low bitrates, the unified model provides better

performance. For bumbameuboi, though, notable gains can be observed for high bitrates,

when a separate network is used to compress the color information. This might be due to

the complexity of the model, both in the geometric and color domain, which might lead to

diminished performance when the two types of information are considered simultaneously.

Note that this constitutes a particularly sparse point cloud, which in general behaves as an

outlier.

10.3.3 Benchmarking of unified network

In this section, we examine the performance of the unified network, which is selected as a

superior approach based on the results of the previous section, against the anchor codec that

was used in the MPEG point cloud compression-related activities. In Figure 10.11 and 10.12,
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Figure 10.11 – Rate-distortion performance of the of the unified model, trained with block
resolution of 32 and 64, against the MPEG anchor, according to geometry metric D2-PSNR.
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Figure 10.12 – Rate-distortion performance of the unified model, trained with block resolution
of 32 and 64, against the MPEG anchor, according to color metric YUV-PSNR.

rate-distortion curves indicate the performance of the network using a training block size

of 32 and 64, which is found to better exploit spatial redundancies (Wang et al., 2019) (see

also section 10.4.1) and, thus, leading to lower bit rates for the same visual quality. For block

resolution of 32, the λ values for geometry and color distortion were chosen according to the

1:1 ratio in Table 10.1, whereas for block resolution of 64, λg =λc = {80,400,2000,10000}.

For the MPEG anchor, namely, CWI-PCL (Mekuria et al., 2017a), we opt for geometry com-

pression octree bit-depths of 7, 8, 9 and 10 and for color compression JPEG Quality Parameter

(QP) of 10, 50, 80 and 100, respectively, to obtain scalable visual quality levels by degrading

both attributes simultaneously. Note that when the octree bit-depth is equal or higher than

the corresponding voxel resolution of a content, lossless geometry compression is essentially

applied; thus, leading to a PSNR value of infinity for geometric distortion. These cases are

noted with simple markers on the figures to allow indicating the corresponding achieved

bit-rates (see Figure 10.11, black squares).

It can be observed that for low bit-rates, the network achieves comparable or higher perfor-

mance with respect to the CWI-PCL in terms of geometric distortions. Similar performance

can be observed when considering color distortions, as depicted in Figure 10.12. In particular,

training the network with blocks of resolution 64 leads to better performance with respect

to resolution 32, and achieves comparable performance with respect to the CWI-PCL for

low bit-rates. A quality saturation is shown for the network performance as the bit-rate is
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(a) Reference (b) HiResGC(32,128),
λg =λc = 500

(c) HiResGC(64,128),
λg =λc = 2000

(d) CWI-PLC, bit depth 9,
QP 80

Figure 10.13 – Visual comparison for longdress, compressed using the proposed network and
the MPEG anchor.

(a) Reference (b) HiResGC(32,128),
λg =λc = 500

(c) HiResGC(64,128),
λg =λc = 2000

(d) CWI-PLC, bit depth 9,
QP 80

Figure 10.14 – Visual comparison for guanyin, compressed using the proposed network and
the MPEG anchor.

increasing, indicating the need for more efficient architectures for compression at high fidelity.

Despite the similar quality values that are observed when considering the quality metric

YUV-PSNR, visual comparison between the results obtained with the proposed model and

the CWI-PCL show that markedly different distortions are introduced by the two compression

solutions. Figure 10.13 shows a zoomed-in region of the content longdress, for the second-

highest bit-rate. It can be observed that, whereas the CWI-PCL codec contains artifacts in

the form of high frequency noise in the color domain, the network tends to have a smoother

appearance, at the cost of a loss of detail. It can also be observed that increasing the block

resolution from 32 to 64 leads to sharper results and more preserved details. A similar behavior

can be seen for the content guanyin, as depicted in Figure 10.14. In particular, smoother

texture is obtained when encoding with the network architecture with respect to CWI-PCL,

as the former introduces artifacts in form of low-pass filtering, whereas false contours are

present using the latter.
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10.4 Meta-analysis

Neural networks represent a powerful tool to learn a compact representation of given data.

As such, they have been largely employed to tackle compression for 2D visual data represen-

tations, and have recently been extended in point cloud data formats. However, a number

of issues remains to be faced when considering compression of point clouds through neural

network architectures, both when considering the distribution of the points in 3D space, and

when trying to encode the accompanying attributes. In this section, we aim to shed some light

regarding the influence and the selection for a number of hyper-parameters that affect the

learning efficiency of a given network architecture. Note that the same network parameters

and configurations specified in section 10.2.3.

10.4.1 Selection of training data for geometry compression

Inspired from the different approaches (Quach et al., 2019; Guarda et al., 2019b) in the gen-

eration of training data for point cloud geometry compression, in this experiment, we aim

to evaluate the impact of using different data sets and grid resolutions. In general, there

are two main lines that have been reported in the literature for the generation of relevant

training data. In the first approach (Quach et al., 2019), a mesh repository is employed and

point cloud models are generated through sampling, and potentially voxelizing at a desirable

grid resolution. Typically, the original mesh models are artificially generated, and represent

full-shaped colorless objects. In the second approach (Guarda et al., 2019b), which is adopted

in our experimental set-up, high-resolution point cloud contents are collected from available

repositories. Such contents typically consist of either real-life acquired and synthetic point

clouds that span across a variety of categories.

Provided that point clouds are generally comprised of a considerable amount of points, whose

sheer size and irregular structure make them unsuitable for being directly handled by neural

networks, a common choice is to apply voxelization and block partitioning at a low resolution.

Nonetheless, setting a specific block size against another influences the performance of the

network, as has been shown in previous studies (Wang et al., 2019). Adding attribute encoding

increases the complexity, as they will necessarily depend on the underlying 3D structure to be

encoded.

In this experiment, to account for the first approach, we use point clouds extracted from the

ModelNet data set, as described in (Quach et al., 2019). The models are scaled and regularly

sampled, before being voxelized at a specific geometric resolution. To analyse the impact

of the geometric resolution on the performance efficiency, voxel grid resolutions of 32 and

64 are employed for every model. To account for the second approach, we use the HiResGC

data set that has been defined for our experimental set-up (see section 10.2), using block

resolutions of 32 and 64. In both cases, point cloud units that contain less than 500 occupied

voxels are discarded, and from the remaining data, a number of 10,000 is randomly sampled.

In summary, we use four different training sets of 10,000 colorless samples: two are extracted

257



Chapter 10. Learning-based encoding

0 2 4 6 8 10 12

Bits-per-input-point (bpp)

52

54

56

58

60

62

64

66

68

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(a) bumbameuboi

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

58

60

62

64

66

68

70

72

74

D
2
-P

S
N

R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(b) guanyin

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

58

60

62

64

66

68

70

72

74

76

D
2
-P

S
N

R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(c) longdress

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

52

54

56

58

60

62

64

66

68

D
2
-P

S
N

R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(d) phil

Figure 10.15 – Rate-distortion performance of the geometry-only network, using different data
sets and training data resolutions, according to geometry metric D2-PSNR.

from the ModelNet data set and the other two from our generated data set, with grid resolution

of 32 and 64 each. In this experiment, the testing models are partitioned in blocks of the same

resolution as the one that was used for the training data (32 and 64).

In Figure 10.15, performance evaluation for 4 out of the 6 testing models is illustrated, using

both data sets for learning, at both grid resolutions. It can be observed that better compression

efficiency is achieved by the network when trained with the HiResGC, when compared to the

ModelNet counterpart. Moreover, there is a clear trend of reaching higher performance when

using a block resolution of 64, under both training sets. It is worth noting that the gains in

compression efficiency come at the cost of higher demands in terms of resources and time, as

blocks of resolution 64 require more computational power.

10.4.2 Resolution of testing data

The choice of a given block resolution for training data does not imply that the same grid

size must be selected for the testing data. In fact, larger testing blocks can be chosen for

compression, denoting another parameter that can potentially affect the reconstruction

quality of point clouds. In this experiment, as a first step, we quantify the performance of

our network in geometry compression by using different grid resolutions for the testing data.

For this purpose, we use 4 different variations of the network, trained with the HiResGC and

the ModelNet data sets and training blocks of size 32 and 64. The selected resolutions for

the testing blocks under evaluation were set to: 32, 64, 128, and 256. In a second step, the

HiResGC data set and a training block size of 32 is employed to examine the quality levels of

the reconstructed color using testing block sizes of 64, 128, and 256.

In Figure 10.16, performance evaluation results for the geometry-only network are illustrated,

showing rate-distortion curves for 4 out of the 6 testing models; very similar results are

obtained for the rest of the contents. First row represents results obtained with networks

trained with a block resolution of 32, whereas the second row depicts results with training

block resolution of 64. As can be observed, in both cases testing grid resolutions of 64 and 128

achieve the best results. Similar conclusions are obtained when using the ModelNet data set

to train the networks, at a generally more modest overall performance.
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Figure 10.16 – Rate-distortion performance of the geometry-only network, for different testing
grid resolutions, according to geometry metric D2-PSNR. First row represents results obtained
with a training block resolution of 32, whereas the second row depicts results with training
block resolution of 64.
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Figure 10.17 – Rate-distortion performance of the color-only network, for different testing grid
resolutions, according to color metric YUV-PSNR. In parenthesis, the training data resolution
that was used for the learned model.

In Figure 10.17, we present the performance evaluation results for the color-only network, for

the same 4 contents. As can be seen, increasing the testing resolution leads to performance

saturation, as equivalent quality the influence of border artifacts, which appear due to the

block partitioning step, is not necessarily captured by the objective quality metrics. Moreover,

the independent encoding/decoding of blocks might lead to different color distributions ex-

hibiting among neighboring regions, which is a quite visible and annoying visual degradation

for colored point clouds. Naturally, smaller block resolutions would lead to a more evident

appearance of this effect, despite the fact that identical quality scores are obtained at the

different testing resolutions.
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10.4.3 Color space
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Figure 10.18 – Rate-distortion performance of the color-only network, for different input color
spaces, according to color metric YUV-PSNR.

Another parameter that could potentially affect the results of color learning is the type of rep-

resentation the textural information is provided to the network. Convolution neural networks

typically learn local features and optimize filter weights in order to achieve data-driven com-

pact representations. However, it is unclear whether using different bases in the network can

effectively influence the results. In this experiment, we opt to examine the performance of the

network when using the RGB and the YCbCr/YUV color spaces. The latter has effectively been

used in classical image and video compression, while the first depicts the most widely-used

color format that has been used in machine learning applications.

For this experiment, we used the ITU-Recommendation BT.709-6 (ITU-R BT.709-6, 2015)

for conversion between RGB and YUV. The RGB color values for both training and testing

data sets were converted to YUV, and then normalized between 0 and 1. Note that no color

conversion is applied at any layer of the network. Thus, the loss function is always computed

in the corresponding input color space. Results of the comparison between RGB and YUV

are depicted, for 4 out of the 6 contents, in Figure 10.18. It can be observed that in general,

both color spaces have similar performance. Slight gains can be observed at high bitrates

when the RGB color space is employed, for the contents guanyun and, more remarkably, phil.

Thus, it appears that color space selection does not have a large impact on the compression

performance of color attributes.

10.4.4 Loss function

The performance of neural network architectures is affected by the choice of the loss function

that is used to train a model. In order to assess whether performance gains could be obtained

by using a different loss function for computing distortions in the color domain, we tested three

different objective quality metrics, namely, l1, l2, and SSIM, with the former two denoting

the most popular approaches that are used in similar network tasks. To obtain the loss

value, the corresponding distance (l1, or l2) is computed between the color channels of the

original point cloud and the recovered point cloud across the input point coordinates. For

the computation of the SSIM, which denotes a more perceptually-relevant metric, the same
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Figure 10.19 – Rate-distortion performance of the color-only network, for different loss func-
tions, according to color metric YUV-PSNR.

equation as in (Wang et al., 2004) is used. However, instead of computing the metric on the Y

channel, we decided to use it for all RGB channels. In (Zhao et al., 2016), it was shown that

using SSIM on RGB channels could reflect the quality of the recovered images. Moreover,

a filter size of 6, instead of the default 11, to reduce computational costs. To be consistent

with the other losses, we applied some simple manipulations to make the range of the loss be

within 0, indicating no error, and 1, indicating the largest possible error. As a result, the SSIM

loss is defined as follows:

LSSI M = 1−SSI M

2
(10.5)

For all loss functions under exam, the logarithm function is applied at the output value.

Results of the evaluation of different loss functions for color attributes are depicted in Fig-

ure 10.19, for 4 out of 6 contents in exam. It can be observed that all loss functions show

similar performances. Slight gains can be observed when using l2 at high bitrates. Thus, it

can be concluded that in our set-up, the choice of the loss function does not seem to have

a significant impact on the performance of the network under exam. However, the l1 or l2

would be the most compelling choices, considering the reduced costs with respect to SSIM.

10.5 Conclusions

In this study, we present a proposed neural network architecture to simultaneously handle the

encoding of geometry and color attributes of point cloud contents. In principle, our efforts

can be interpreted as a first attempt to compress both geometry and texture of point clouds

using convolutional neural networks. Several parameters are examined, and conclusions are

drawn regarding their efficiency, paving the way for next attempts. Our network competes

with the anchor encoder that was employed in the MPEG activities; however, there is a large,

unexplored space that can lead to further improvements. For instance, provided that a point

cloud model is split into a series of blocks that is handled independently, due to memory and

computational limitations, there is no effort in learning redundancies between neighboring

blocks, by enabling for instance intra or inter prediction techniques. Moreover, it has been

seen that variational auto-encoders applied on the feature space can remarkably assist by
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improving the learning efficiency for the entropy model; such an addition is not tested in

our network. Finally, it is well-known that high-quality training data are required for better

performance; the availability of well-established training data sets with a representative range

of geometric and textural complexities are of crucial importance, and would facilitate future

efforts.
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11 Conclusions

In this dissertation we address challenges in perceptual quality assessment and compression

of point cloud imaging. Our focus lies in how people perceive distortions that commonly

exhibit in this type of content representation. Starting from geometry-only models and

approximations of degradations from acquisition and compression artifacts, we proceed to

richer, colored models of higher practical use subject to distortions introduced from state-

of-the-art codecs. Subjective and objective quality assessment methodologies are proposed

and underlying influencing factors are examined and discussed. Finally, after reviewing and

evaluating the state-of-the-art in point cloud compression, we propose our solution based on

a deep-learning approach suitable to encode both geometry and color information.

Below is a summary of contributions that is accompanied by respective conclusions and po-

tential limitations in the corresponding experimental set-ups that were employed. Following

the manuscript partitions, they are clustered in three main parts.

Measuring perceptual quality: In this part we focus on subjective quality evaluation method-

ologies for geometry-only and geometry-plus-color point cloud data.

• We propose the use of interactive subjective evaluation methodologies, extending corre-

sponding test methods to accommodate the richer nature of 3D models. This approach

leads to different visual experiences among users, provided that each subject was free

to interact at will. To compensate this uncertainty, we allowed interactions without

imposing any time limitation before users submitting their judgement. Despite this

uncontrolled factor that is introduced in our tests, we advocate that such methodologies

are better adjusted to the interactive nature that comes with such richer contents. For

example, by fixing the distance by which a model is inspected, artifacts that appear in

closer views are not evaluated. By allowing the users to choose their preferred viewpoint,

such views are not excluded, but neither imposed. Thus, the final judgement will be an

overall score that inherently contains the preferred type of navigation. In all cases, the

level of uncertainty can be estimated by the CIs, which in our tests never extended to
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unreasonable ranges.

• The impact of different test methods in subjective quality assessment of point cloud

topology in a desktop set-up was examined. Results suggest good correlation between

two of the most widely employed protocols, namely ACR and DSIS. This comes despite

the challenging nature of the set-up in terms of perceiving the underlying shape of

the models using raw points for rendering purposes. In the latter case, subjects were

found to base their opinions in differences between the number of points that exhibit

between the two stimuli that were displayed simultaneously. In the former case, the

impairments introduced in the model approximation were solely assessed, however,

common cross-content biases were identified, leading to less consistency and higher

uncertainty in the obtained quality scores. Our observations lead to the conclusion that

both test methods can be employed for testing purposes, each having its own practical

use. Yet, as in other imaging modalities, it is confirmed that the DSIS provides a more

consistent approach to identify impairments.

• The impact of different display equipment was evaluated in subjective quality assess-

ment of point cloud topology. In particular, noise and compression artifacts were

assessed in a desktop set-up and in AR with 6DoF, using point primitives of minimum

size and always showing the reference content. Results suggest that different types

of degradation might be rated differently when consumed by different devices. For

instance, strong correlation was observed in the case of noise, whereas in the presence

of structural loss, the correlation worsened. This can be explained by the fact that

certain types of degradations are easier to perceive when compared to others. In this

case, there is higher tolerance for making predictions about the perceptual quality in

different inspection scenarios. However, to ensure applicability of the results, subjective

evaluation should be performed on the targeted equipment.

• Experimentation with surface reconstruction as a rendering mechanism for point cloud

data shows different rating trends when compared to the usage of point primitives for

display purposes. Considering that reconstruction steps are commonly lossy, while

the final visual outcome depends on the selected algorithm and the configuration

that is employed, uncertainty is introduced. Our results show low correlation when

comparing scores obtained from evaluation of the same stimuli under point cloud

degradations with point-based and mesh-based rendering. Converting point clouds

to mesh representations denotes a viable approach that could be incorporated in the

rendering pipeline. However, this approach could be simply translated to a problem of

identifying optimal solutions for reconstruction, and applying corresponding quality

assessment methodologies on the obtained mesh. This would mean to transfer the

problem from the point cloud domain to the mesh domain, which is a well-studied field

by the computer graphics community. However, this is out of our scope for our thesis,

which is focused on explicit point cloud data representations.

• Simple implementations of point-based rendering solutions making use of geometrical
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shapes that replace point samples were examined for colored models. The size of the

shapes was adjusted dynamically based on local densities, thus, leading to perception of

watertight models. Results show that solutions leading to perception of sharper details

are preferred. In particular, spherical primitives were identified as a versatile solution

that outperforms disks and cubes. This comes as a result of being efficient in filling

holes due to their volumetric size, with reduced visual artifacts when compared to the

alternatives, due to their geometric nature. Moreover, their usage doesn’t require the

presence of normal vectors. However, it denotes an expensive solution in terms of

computational costs. Based on human opinions, sharper details are clearly preferred to

more refined curves when displaying human figures. For objects, the advantages are

mitigated making less expensive solutions, such as disks, plausible alternatives. On this

matter, however, it should be noted that the topology and the texture of the selected

models might have assisted in obtaining these results. Finally, it was concluded that the

resolution of the contents did not affect the splat shape preferences.

• Statistically equivalent results were obtained from the usage of two different point-based

rendering schemes that were employed to display point clouds under compression ar-

tifacts in the context of subjective quality assessment. The two rendering methods,

namely, splat-based and voxel-based lead to very different visual artifacts. In particu-

lar, using cubic rendering primitives of adaptive size in the former, results in rougher

surface approximations for sparser contents. In the latter, the mapping between voxels

and image pixels that are displayed onto the screen, leads to the perception of holes.

The experiment was conducted using a single codec, however, a combination of ge-

ometry and color distortions were selected to encode the models. Results show strong

correlation between the subjective scores that were collected from both experiments.

This suggests that human opinions on the level of impairment introduced from this

particular encoder are not be substantially affected by the selected point-based ren-

dering schemes. It should be noted, though, that the types of artifacts occurring in the

point cloud topology from the selected codec (octree decomposition), denote a simple,

less-demanding set-up to draw safe conclusions. Evidently, further experimentation is

required using more encoding engines that lead to different visual distortions to evaluate

the generalizability of these conclusions. Nonetheless, octree decomposition denotes

one of the most popular baselines for state-of-the-art point cloud compression.

• We experimented with VR to enable reproducible and fully-controlled environments that

can record unconstrained interactions of users in 6DoF with 3D models. In particular, we

designed virtual scenes that served the purpose of the experiment, enabling high sense

of realism (i.e., illumination, shadows, appearance of point cloud model) and intuitive

controls. Rendering tools to adjust the appearance of point cloud models through a

set of configurable parameters were developed and released. The developed software

was employed in proof-of-concept subjective quality experiments for the evaluation of

the color encoding modules that are integrated in G-PCC. Two subjective evaluation

protocols were adjusted in the nature of the experiments, and compared. Based on our
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results, the two encoding modules were found to be statistically equivalent. Moreover,

a proposed variation of the sequential DSIS test method that allows re-visiting the

reference and the distorted model at will, was found to be more reliable, faster and it

was generally preferred by subjects. Finally, analysis of the users behavior showed that

subjects tend to prefer close-range, frontal views of the models.

• An earlier version of the same VR framework was employed to conduct an eye-tracking

experiment where human subjects were able to inspect point cloud models in a task-

dependent protocol with 6DoF interactions. This is the first study on the field that

considers point cloud models, addressing several unforeseen challenges. The exper-

imental set-up consisted of a VR headset which was equipped with an eye-tracking

device. The users were asked to inspect the models and order them in a criterion of their

preference, thus promoting engagement with the content. The head and gaze data were

recorded in real time, as users were navigating in the virtual scene. A main drawback

of our set-up was the inability of the eye-tracking device to adjust to headset slippage

caused by head movements. Thus, one of the main contributions lies in a methodology

that was developed based on error profiling, which was effectively applied to improve

the accuracy of our results by exploiting high-quality gaze measurements. Moreover,

to overcome the limitations of using point samples for rendering, which do not allow

colliding in the 3D space, a method was devised to decide frontal regions and exclude

occluded parts, provided the position and orientation of the camera, and the position

of the model. Taking under consideration the error of the gaze measurements, fixation

density maps were generated in the form of importance weights. Results confirm trends

that have been observed in other imaging modalities; that is, users are attracted by edges,

contrast, regions that pop-up and, in the case of human figures, faces. As a limitation

of this approach is noted the absence of evaluation of the heuristic algorithm that was

developed in order to decide on the angular error of each gaze measurement, based

on the error profiling results. Relevant tools were later developed along with further

improvements that were integrated in an application paradigm for inspection of point

cloud models in a VR museum.

Predicting perceptual quality: In this part we focus on objective quality evaluation method-

ologies for geometry-only and geometry-plus-color point cloud data.

• A new objective quality metric that operates on the point cloud domain was proposed

based on the angular similarity of unoriented normal vectors between points that be-

long to a reference and model under evaluation. The metric, namely plane-to-plane,

essentially measures the angular distance between local linear approximations of corre-

sponding underlying surfaces. By pooling across individual similarity values from each

pair of associated points that belong to the two models, a total quality score is predicted,

capturing geometric degradations that exhibit in the distorted model. The limitation of

the metric lies in its dependence on normal vectors that should be associated with the
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coordinates of the point cloud models. Considering the ill-posed nature of this problem,

the method was found sensitive to the selection and configuration of the normal esti-

mation algorithm. To better understand the effect, we chose 3 widely-used algorithms,

which were evaluated in terms of angular error against ground-truth normals. The same

algorithms were additionally employed in our benchmarking analysis, in order to esti-

mate normals based on which the metric was computed. Results show that the metric

performs better when the normals are estimated at larger neighborhoods with respect

to the ones that lead to low normal estimation errors. In fact, by enlarging the neighbor-

hood sizes, smoother surface approximations are obtained, which can be interpreted

as a low-pass filtering operation that removes high-frequency geometric components

that may not be perceptually relevant. Moreover, it was found critical for the normals

under comparison to reflect the same region of the content, hence, the range search

variants were identified as a suitable solution for neighborhood formulation. Finally,

adjustments of the neighborhood size per content appear to be beneficial in order to

improve generalization capabilities. That is, larger regions should be used with higher

resolution contents, and models with more irregular topology; from this point of view,

the neighborhood size can be interpreted as a regularizer. Our results show that the

performance of the proposed metric competes or outperforms current geometry-only

algorithms in several data sets that were recruited, under proper configuration of the

selected normal estimation algorithm.

• A second point-based metric was introduced, namely PointSSIM. It is based on statistical

dispersion estimation of the distribution of quantities that are defined per point cloud

attribute and reflect corresponding local properties. Specifically, the metric relies on

the extraction of local features that capture structural similarity of location, normals,

curvatures, and color attributes. This way, the operational logic of the well-known

SSIM is extended to a higher dimensional, irregular space of a volumetric content,

incorporating not only color, but also topological coherence. As part of the metric, a

voxelization step is proposed that precedes feature extraction and simulates distant

inspection. Our results show that depending on the data set, the application of the

metric on certain attributes might be more efficient than others. The color-based

features, which essentially consist of luminance-based local statistics, were found to

be the most consistent across the examined data sets, achieving high performance. To

our view, the main reason for this result is twofold: (a) luminance-based measurements

are well-correlated with degradations that appear in color information, and (b) the

formulation of local neighborhoods for feature extraction enables an implicit integration

of the model’s topology and corresponding geometric impairments in the obtained

values. Moreover, the activation of the voxelization module can eliminate cross-content

density variations, denoting a powerful tool. Combinations of the target voxel resolution

and the neighborhood size can be exploited in order to obtain measurements that

capture distortions of the model at different scales. Our benchmarking results using

several subjectively annotated data sets show that PointSSIM achieves state-of-the-art

performance, under proper configurations.
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• Image-based metrics allow to capture both topology and texture distortions, as re-

flected by the corresponding rendering application in a holistic way. Making use of

highly-sophisticated conventional 2D metrics, they denote a candidate solution that

can provide quality predictions on model views that are experienced by users. To assess

the performance of image-based metrics, an objective quality evaluation framework

was defined and two subjectively annotated data sets that contained the same stimuli

under both geometry and color degradations were recruited to assess generalization

capabilities. The impact of removing the background information from the captured

model views and the effect of enabling additional viewpoints for the computation of a

predicted quality score was also examined. Our results show that image-based metrics

achieve good correlation in both data sets under examination. Moreover, it was found

that applying the computations on the foreground improves the performance, while

also, we concluded that image-based metrics may attain accurate predictions even

when employing a single view.

• We experimented with the integration of interactivity information recorded from users

during subjective quality assessment in the computation of image-based quality pre-

dictions. In a first attempt, we simply pooled individual objective scores across all

frames that were inspected by subjects. The large fluctuations that were observed in the

objective scores between close and further views within the same session, though, led to

high uncertainty and sub-optimal performance. Thus, we devised a strategy to translate

the interactivity information as importance weights assigned to model views from a

given camera layout, associating higher weights to viewpoints that were more frequently

visited by users. This way, we fixate the distance between the camera and the model,

which regularizes the scale of the objective quality scores, and the number of model

views over which a total degradation score is obtained for the model under evaluation.

The latter approach was found to bring substantial gains in terms of performance and

computational resources.

• As a last contribution, in this category falls a benchmarking study that was carried out

to evaluate the performance of the state-of-the-art objective quality metrics. For this

purpose, the subjectively annotated M-PCCD data set was recruited, which consists of a

rich set of diverse models subject to MPEG compression distortions. The analysis was

issued over the entire data set, and repeated after clustering the stimuli per codec, per

type of content, and per content, in order to obtain further insights. Our results show

that, in every testing case, the newly introduced PointSSIM and the PCQM achieve highly

accurate predictions with marginal differences, outperforming the other algorithms

under examination. The local pooling in the luminance component that both make use,

is assumed to be the main reasoning behind this result. The majority of the alternative

metrics was found to be limited by their generalization capabilities across different

contents, and across different codecs. In the latter case, it is evident the weakness

to capture artifacts introduced by V-PCC. Regarding the former case, point-to-point

attribute comparisons and image-based approaches were the most vulnerable. In
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less challenging set-ups that consider variations of the same content, or stimuli that

fall in the same type of content, remarkable improvements were observed across all

metrics. Noteworthy are the performance gains of PSNR_Y, which achieves the best

results when the stimuli are clustered per content, implying the efficiency of luminance-

based measurements, while emphasizing the inability of point-to-point associations to

generalize to different topologies.

Towards efficient compression: In this part we focus on compression of point cloud data.

• A large-scale quality evaluation study was carried out in two inter-continental labora-

tories to benchmark the state-of-the-art MPEG test models. A wide set of point cloud

contents with diverse characteristics was recruited. The V-PCC and all variants of G-PCC

were employed and configured based on the Common Test Conditions specified by

the MPEG experts. A web-based interactive rendering solution was developed for the

purposes of the experiment, which was released. The models were displayed using

screen-faced points of adaptive size, ensuring the perception of watertight models.

Results show the superiority of the V-PCC at low bit-rates. It is also remarked that

using this codec, transparency is not achieved. To further analyse the performance

of the G-PCC geometry modules, a second experiment is conducted using pairwise

comparison. Results show that the Octree encoding module is preferred to TriSoup

configurations at both low and high quality levels. Finally, to address rate-allocation

aspects between geometry and color information, a third experiment with a similar

set-up was conducted. Results show that for high bit-rates, geometry is considered more

important, whereas at low bit-rates, color enhancements are preferred.

• A deep learning-based convolutional neural network is proposed to encode geometry

and/or color of point cloud data. The architecture is rather generic and essentially

extends current developments on the field. The encoder operates on the 3D domain

making use of 3D convolutions to extract features from point clouds in a block-by-block

basis. The contribution lies on the ability of the proposed scheme to incorporate color

information, which leads to generation of feature maps that express a point cloud in a

more holistic way. The latter denotes the so-called unified network that is trained on

colored models, and can be adjusted to better preserve geometry or color attributes.

The unified network is compared to two separately trained networks, one dedicated to

geometry and the other to color, to understand if one architecture brings more benefits

with respect to the other. Results show that the unified architecture achieves better

results in color information, mainly, at low bit-rates. The latter is then compared to the

MPEG anchor, showing competitive results, with better performance at low bit-rates.

The use of convolutional layers for color encoding limits the performance at higher

bit-rates by the presence of bluriness artifacts. A number of parameters that affect the

network performance are also examined as part of the study. The most noteworthy

results indicate that, as expected, the training data set affects the performance of the
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network, better performance is observed as the block size is increasing, whereas adopt-

ing a different color space, or the SSIM over a simple l2 norm in the loss function does

not bring any advantage.

Future aspects: Point cloud quality assessment can still be considered at its infancy. The

same is true for network architectures dedicated in point cloud compression. Despite recent

developments, there are several aspects on how research that was conducted can be extended

in the future.

One future objective is to involve more sophisticated point-based rendering schemes for

subjective quality assessment of point clouds, that allow more realistic content representations.

It is in our aims to experiment with visual attention in VR in order to better understand

how people consume 3D models in more interactive scenes. The developed VR museum,

could offer a starting point. In the same line, it would be valuable to experiment with the

design of more complex virtual scenes. For instance, quantifying and predicting differences in

subjective behavior (i.e., quality assessment or other tasks in VR) in the presence of distractions

from a high-quality scenery, could be envisioned. Moreover, the performance of objective

quality metrics can be further improved by incorporating more sophisticated multi-scale

approaches that better combine geometry and color. The PointSSIM offers a good basis.

Further developments can be finally viewed for our baseline compression scheme with more

sophisticated components for a high-performing auto-encoding architecture.
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A Statistical analysis tools

Measurements of perceived quality are fundamental in the context of multimedia services and

applications. Quality scores can be obtained by either subjective or objective means. The first

provide ground truth information, whereas the latter provide predictions regarding the visual

quality of the multimedia content. Regarding subjective data, they are typically collected in

experiments with the participation of human observers. Rating distributions are formed and

need to be analysed in order to decide on the quality level of each stimulus. Moreover, the

same testing material might be assessed in different sessions, or experiments, thus, making

it valuable to understand whether the obtained results agree. Finally, objective algorithms

need to be benchmarked against ground truth subjective scores, in order to decide on their

prediction accuracy and robustness.

The aforementioned reasons make clear the necessity for tools that allow rigorous scrutiny

of quality assessment results. In this chapter, we describe methodologies and performance

indexes inspired by (ITU-T P.1401, 2012; ITU-T J.149, 2004; Hanhart, 2016), and employed

for analysis purposes in the context of this thesis. In particular, we initially detail the metrics

that are used to characterize visual quality based on human ratings. Then, we describe the

methodology that is followed to compare the results of two experiments, completing with the

procedure adopted to benchmark objective quality metrics.

A.1 Processing of subjective scores

Human scores from subjective testing need to be analysed in order to draw conclusions re-

garding the validity of the experiment and the quality of the multimedia content. For instance,

provided that a limited number of people usually participates in subjective experiments, sta-

tistical analysis tools can be employed in order to identify whether the conclusions that are

drawn can be generalized. Moreover, we can understand the impact of the degradations on the

perceived quality, as well as how two stimuli are compared to each other. In this section, we

describe the procedures and the metrics that are employed to process and analyse subjective

scores.
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A.1.1 Category rating

The methodology detailed below is adopted in experiments where a single or a double stimulus

category rating test method is adopted. This is, when one, or two stimuli are presented to the

subjects, which are asked to provide a score based on a selected rating scale. As an outcome

of such experiments, a set of subjective scores is obtained, which are statistically analysed to

characterize the quality of the testing material.

Outlier detection

For every experiment, outlier detection and removal is initially performed based on the

subjective scores in order to exclude observers whose ratings deviate substantially from

the rest of the participants. In our analysis, we follow the procedure that is described in

Recommendation (ITU-R BT.500-13, 2012).

Based on this methodology, it is firstly determined whether the distribution of scores for a

particular content is normal or not. Specifically, for each test content, if the kurtosis coefficient

of the scores is between 2 and 4, the distribution can be considered as normal. Then, a

confidence interval is defined and based on the number of occurrences of scores being outside

of this range, a subject is rejected or not. In particular, if the scores are distributed normally, for

each score larger than 2 ·σ from the mean of the scores (upper limit) of a stimulus i , a counter

Ui is incremented. For each score smaller than 2 ·σ from the mean of the scores (lower limit)

of a stimulus i , a counter Li is incremented. In case of non-normal distributions, the upper

and lower limits are set as
p

20 ·σ from the mean of the scores of a stimulus. Assuming a total

of K number of stimuli, the scores of a subject are removed if the conditions of Equation A.1

are met.

∑K
i=1

(
Ui +Li

)
K

> 0.05 and

∣∣∣∣∣
∑K

i=1

(
Ui −Li

)∑K
i=1

(
Ui +Li

) ∣∣∣∣∣< 0.3. (A.1)

Mean opinion scores and confidence intervals

After outlier removal, the remaining ratings are employed to compute the mean opinion score

(MOS) for a testing stimulus, based on Equation A.2

MOSi =
∑K

i=1 mi j

N
(A.2)

where mi j denotes the score given to stimulus i from a subject j , and N indicates the number

of subjects.

For every stimulus, the 95% confidence interval (CI) of the estimated mean is also computed
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assuming a Student’s t-distribution, based on Equation A.3

CIi = t
(
1−α/2, N −1

) · σip
N

(A.3)

where t
(
1−α/2, N−1

)
is the t-value corresponding to a two-tailed Student’s t-distribution with

N −1 degrees of freedom, and σi denotes the standard deviation of the scores for stimulus i .

The variableα indicates the significance level, which is typically set equal to 0.05 for subjective

evaluations. The interpretation for the CI measurement is that if the same experiment is

repeated a large number of times in the future using a random sample of the population, there

is 95% probability that the CI that will be computed will contain the true value.

In principle, the MOS describes the total quality of a testing stimulus, whereas the CI describes

the level of uncertainty of the corresponding MOS value.

A.1.2 Pair comparison

The methodology detailed below is adopted in experiments where a pair comparison test

method is adopted. This is, when two stimuli are presented to the subjects, which are asked to

provide their preference. As an outcome of such experiments, a preference matrix is obtained,

which are statistically analysed to characterize the quality of the testing material.

For a comparison set containing n different types of classes under comparison, C1, C2, ..., Cn ,

there are
(n

2

)
pairs to be compared. The comparison results for the set can be summarized

by a matrix of winning frequencies {wi j }. By equally splitting a tie in half between the two

preference options, {wi j } is computed based on Equation A.4

wi j = pi j + ti j /2 (A.4)

where pi j is the number of subjects who preferred Ci over C j and ti j is the number of subjects

who rated them the same.

In order to obtain continuous scale quality score values for Ci ’s from the matrix of winning

frequencies, we use the Bradley-Terry-Luce (BTL) model that is frequently applied for analysis

of pair comparison data. In this model, the probability of choosing Ci against C j , is expressed

by Pi j and is represented as:

Pi j =
wi j

wi j +w j i
= πi

πi +π j
(A.5)

where πi is the quality score of Ci , which is referred to as the true rating in the literature, and

provides an estimation for the MOS. Every πi ≥ 0 and
∑

i πi = 1. The πi ’s can be estimated

by the maximum likelihood estimation based on the empirical probability values Pi j . As CIs,

we use the standard deviations from the covariance matrix of the parameter estimates, and

assume a Gaussian distribution at the 95% confidence level.
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For analysis purposes, we normalize the quality scores of the instances in a comparison set so

that the maximum MOS value becomes 100.

A.2 Comparison of subjective scores from different experiments

It is frequently required to compare the results derived from two individual experiments in

order to draw conclusions regarding their statistical equivalence. There are several sources of

bias that can affect the scoring distributions, even when the same set of stimuli is evaluated.

For instance, different test methods, experimental set-ups, or viewing conditions, might lead

to different conclusions regarding the visual quality of the testing material. Thus, it is essential

to examine the influence of such factors and quantify the statistical relevance of the tests.

In this section, the procedures and the performance indexes that are adopted to compare

subjective scores from two experiments are described.

A.2.1 Data mapping

A regression model is suggested to be used before comparing quality scores between two

experiments, in order to account for different rating behaviors that might be observed. In

particular, according to Recommendation (ITU-T P.1401, 2012), even in the case of repeating

the same experiment with the same observers and identical testing material, the results are

expected to be slightly different. These deviations can be considered as noise that is associated

with the obtained scores. Moreover, the subjective ratings are additionally affected by a series

of contextual effects. The short-term contextual effect reflects the tendency of a human subject

rating higher or lower the current stimulus, if the previous samples were of lower or higher

quality, respectively. The so-called medium and long-term contextual effect, arises from the

average quality of the entire sets of stimuli that are evaluated in two experiments. This can

lead to different rating distributions and, specifically, to different quality scores for the same

stimulus that might be assessed in both tests. For instance, in experiments that mainly contain

testing material of poor quality, observers tend to score them higher, and vice versa. Finally,

rating deviations can occur from long-term dependencies that account for different cultural

behavior and multimedia exposure background. Despite the adoption of best-practices in

experimental designs to avoid the influence of such effects (e.g., randomized presentation

order, stimuli of quality that spans from lowest to highest quality, etc.), they can only be

minimized to a certain extend without being entirely eliminated.

It is clear that the aforementioned issues lead to some degree of uncertainty regarding hu-

man ratings. Moreover, it is frequent to observe additional discrepancies between the score

distributions from two experiments, which can be classified as:

• Bias or offset: is observed when a constant offset exists between the MOS values. This

can occur when the overall quality of the stimuli under evaluation is rather high, or low,

which might lead observers to rate more pessimistically or more optimistically.
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• Gradient difference: is observed when the scores tend to become more pessimistic faster

in one experiment than in an other. This effect is usually caused when the test does not

have quality samples that cover the entire quality range.

• Ranking difference: is observed when the ranking of the scores for the same set of stimuli

is different from one experiment to the other, which denotes the most serious problem.

The impact of the aforementioned effects on the score distributions can be identified through

scatter plots that depict the MOS values from one experiment against the MOS values from the

second. Substantial discrepancies will lead to a large spread between the data points, while a

narrow monotonic relationship shows strong correlation. Several performance indexes are

additionally employed in order to quantify the observed disagreements. Yet, in order to reduce

their influence, without altering the ranking order which is considered the most important

property, it is suggested to apply fitting functions before computing the statistics. For instance,

in order to remove the bias and the gradient difference, a linear mapping can be applied

in order to align the scores of one experiment to that of an other. A monotonic third order

polynomial mapping can be used to additionally linearize a “banana shape” that might be

observed in the relationship between the MOS values from the scatter plots.

In our analysis, to map subjective scores before comparing two experiments, we use both linear

and cubic fitting functions, according to (ITU-T P.1401, 2012) and based on the Equations A.6

and A.7

P
(
MOS

)= a ·MOS+b (A.6)

P
(
MOS

)= a ·MOS3 +b ·MOS2 + c ·MOS+d (A.7)

where P(•) symbolizes prediction, while a, b, c, and d denote the parameters of the functions

that are determined using a least squares method and are constraint to ensure monotonicity.

Moreover, we set the subjective scores from both experiments as ground truth.

To facilitate clarity, let us define the sets A and B to refer to the ratings collected from the

corresponding experiments under comparison. Let us assume that the scores from set A are

set as the ground truth, with the MOS of the stimulus i being denoted as MOSA
i , while MOSB

i is

used to indicate the MOS of the same stimulus in set B . A predicted MOS for stimulus i , indi-

cated as P
(
MOSB

i

)
, is estimated after issuing a regression model to each pair

[
MOSA

i ,MOSB
i

]
,

∀ j ∈ {1,2, ...,K }, where K denotes the number of stimuli. Then, the performance indexes are

computed using MOSA and P
(
MOSB

)
in order to examine the statistical relevance of the two

sets.
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A.2.2 Statistical evaluation metrics

Relevant properties characterizing the relationship between the distributions of the two

rating sets are investigated in order to draw conclusions regarding the outcomes of two

experiments. In particular, we examine the linearity, monotonicity, accuracy and consistency

of the results, using the Pearson linear correlation coefficient, the Spearman rank order

correlation coefficient, the root-mean-square error and the outlier ratio, respectively. Note

that these indexes employ the MOS values from the two experiments, and a mapping might

precede the computations, as mentioned earlier. Hereafter, we refer to the potentially mapped

MOS as predicted MOS.

Pearson linear correlation coefficient

The Pearson linear correlation coefficient (PLCC) quantifies linear relationships between two

variables X and Y . The PLCC ranges in the interval [−1,1], where a value of 1 (-1) indicates

the strongest positive (negative) correlation, whilst a value of 0 indicates no correlation. The

formula to compute PLCC index is given in Equation A.8,

PLCC =
K ·∑K

i=1 xi · yi −
∑K

i=1 xi ·
∑K

i=1 yi√
K ·∑K

i=1 x2
i −

(∑K
i=1 xi

)2 ·
√

K ·∑K
i=1 y2

i −
(∑K

i=1 yi
)2

(A.8)

where xi and yi denote the MOS and the predicted MOS values for stimulus i from the two

experiments, while K indicates the number of stimuli.

The PLCC is a measure of linearity between the MOS values obtained from the two experi-

ments.

Spearman rank order correlation coefficient

The Spearman’s rank order correlation coefficient (SROCC) quantifies monotonic relationships

between two variables X and Y . Monotonicity measures if an increase (decrease) in one

variable is associated with an increase (decrease) in the other variable, independently of the

magnitude. Intuitively, the SROCC between two variables equals the PLCC between the ranking

order of those two variables. The SROCC ranges in the interval [−1,1], with ±1 indicating

absolute monotonicity. The formula to compute the SROCC index is given in Equation A.9,

SROCC = 1−
6 ·∑K

i=1

(
R(xi )−R(yi )

)2

K · (K 2 −1
) , (A.9)

where xi and yi denote the MOS and the predicted MOS values for stimulus i from the two

experiments, K indicates the number of stimuli, and R(•) is a ranking relation (sorting) that is

applied to the argument.
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The SROCC is a measure of monotonicity between the MOS values obtained from the two

experiments.

Root-mean-square error

The root-mean-square error (RMSE) quantifies the difference between two variables X and Y .

The formula to compute the RMSE index is given in Equation A.10,

RMSE =

√∑K
i=1

(
xi − yi

)2

K −1
(A.10)

where xi and yi denote the MOS and the predicted MOS values for stimulus i from the two

experiments, and K indicates the number of stimuli. The absolute difference between MOS

and predicted MOS is also referred to as absolute prediction error.

The RMSE is a measure of accuracy between the MOS values obtained from the two experi-

ments.

Outlier ratio

The outlier ratio (OR) quantifies the consistency between two variables X and Y , as the ratio

between the number of outliers divided by the number of stimuli. An outlier is identified when

the absolute prediction error
∣∣MOSA

i −P
(
MOSB

i

)∣∣ exceeds the 95% CI for stimulus i from the

scores of experiment A. The formula to compute the OR index is given in Equation A.11,

OR = L

K
(A.11)

where L is the number of outliers and K is the total number of stimuli evaluated in each

experiment.

The OR is a measure of consistency between the MOS values obtained from the two experi-

ments.

A.2.3 Estimation errors

To decide whether statistically distinguishable scores are obtained for the stimuli under

assessment from two experiments, the correct estimation, the under-estimation, and the

over-estimation errors can be computed. In particular, let us assume that the scores of set A

are the ground truth. For every stimulus, the difference P
(
MOSB

i

)−MOSA
i for every stimulus i

is estimated with a 95% CI, after a multiple comparison test at a 5% significance level. There

are 3 possibilities:
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• If the CI contains 0, correct estimation is observed, indicating that the visual quality of

stimulus i is rated statistically equivalently from both populations.

• If the CI is above 0, over-estimation is observed, indicating that the visual quality of

stimulus i is rated higher in set B .

• If the CI is below 0, under-estimation is observed, indicating that the visual quality of

stimulus i is rated lower in set B .

These computations are repeated for every stimulus. The results are aggregated and divided

by the total number of stimuli, to account for the correct estimation (CE), under-estimation

(UE), and over-estimation (OE) percentages.

A.2.4 Classification errors

To examine whether the ratings obtained from two experiments lead to different conclusions

regarding the visual quality of a pair of samples, the correct decision, the false tie, the false

differentiation, and the false ranking errors are computed. In particular, let us assume that the

scores of set A are the ground truth. The true difference between the scores of stimuli i and j

from set A is calculated as MOSA
i −MOSA

j with a 95% CI. Depending on whether 0 lies below,

in-between, or above the CI, there are three possibilities: (a) i is better than j , (b) i is the same

as j , and (c) i is worse than j . This is repeated ∀i , j ∈ {1,2, ...,K } with i 6= j , and K the number

of stimuli. Similarly, the quantity P
(
MOSB

i

)−P
(
MOSB

j

)
is computed with a 95% CI, using the

predicted scores from set B .

• When the outcome of the three-way classification from sets A and B agree for a pair of

stimuli i and j , a correct decision is observed.

• When the outcome of the three-way classification from set A (i.e., ground truth) say that

i is better than j , or i is worse than j , and the result from set B advise that i is the same

as j , a false tie occurs. This is the least offensive error.

• When the outcome of the three-way classification from set A indicate that i is the same

as j , whereas the result from set B dictate that i is better than j , or i is worse than j , a

false differentiation occurs. This is a more offensive error.

• When the outcome of the three-way classification from set A suggest that i is better

than j , or i is worse than j and the result from set B state the opposite, a false ranking

occurs. This is the most offensive error.

These computations are repeated for every combination of pairs of stimuli (i , j ), with i 6= j .

The results are aggregated and divided by the total number of combinations to account for the

the correct decision (CD), the false tie (FT), the false differentiation (FD), and the false ranking

(FR) percentages.
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A.2.5 Standard deviation of Opinion Score

The Standard deviation of Opinion Score (SOS) coefficient a parametrizes the relationship

between MOS and the standard deviation associated with it. It is derived by considering how

the standard deviation of subjective scores varies in relation to the given MOS. Assuming a

MOS range of [1,5], the minimum SOS coefficient will be found at the extremes of the scales,

whereas the maximum variation will be observed for a MOS score of 3. From that, a a square

relationship can be assumed between the SOS and the MOS, as given in Equation A.12

SOS(x)2 = a · (−x2 +6x −5) (A.12)

The parameter a indicates the level of dispersion of MOS scores, or, alternatively, to the

amount of user diversity in the rating. Consequently, close values of a obtained in separate

tests denote similarity among the distribution of the scores.

A.2.6 Inferential statistical methods

One of the main objectives of polling users in order to gather subjective scores is to gain

insights on how the general population would rate the contents under exam. Inferential

statistical methods are commonly used to analyse the data, serving the purpose of deducing

properties of the underlying distributions of probability. As such, statistical models describing

the data, and the population it is drawn from, are needed.

One main distinction can be asserted depending on whether the data distribution can be

considered normal or not; in the former case, parametric tests (which use concepts such as

comparison of means) are employed, whereas in the latter case, non-parametric tests are used.

Commonly used tests to assess the normality of a distribution include Kolmogorov-Smirnov,

Anderson-Darling, and Shapiro-Wilk.

Inferential statistical methods can be particularly useful to test the effect of one or more groups

on the dependent variable, through hypothesis testing. In the case of MOS scores, for example,

they can be used to determine whether one condition under test had a significant effect on

the final score distribution. A null hypothesis and an alternative hypothesis are formulated,

and a significance level α is defined. The result of the test is commonly expressed through

a p-value, which indicates how likely the observed data is, according to the null hypothesis.

If the p-values falls under the significance level, then the null hypothesis is rejected at α

significance level; otherwise, the null hypothesis cannot be rejected. The effect size is usually

reported as well, to give an idea of the magnitude of the effect on the scores. Larger effect

sizes correspond to a greater impact on the distribution of the data, whereas small effect sizes

indicate that the effect, if present, might not be considerable.

In case of comparisons among groups, one important distinction has to be made in terms of

281



Annex A. Statistical analysis tools

hypothesis testing, depending on how the scores were collected:

• If the same participants assigned the scores to all the groups under consideration, the

groups are considered paired. In this case, the analysis must take into consideration

the fact that an implicit relationship exists between the groups, because the same

participants contributed the data points. This is the case when examining factors

in a subjective quality assessment campaign in which all users scored all stimuli, for

example.

• If different participants assigned the scores to the groups under consideration, then

the groups are deemed unpaired. In this case, it cannot be assumed that differences

in scores among groups are directly due to the influence of the factor under test. A

common consequence of this is the need of more users in order to draw meaningful

results. This is the case when comparing subjective scores obtained in two different

laboratories, for example.

In this manuscript we are mainly interested in comparing two groups, either paired or un-

paired. When group means are compared, which is more suitable for normal distributed

populations, paired or unpaired Student’s t-tests are used. On the other hand, when group

medians are being compared, which is more suitable for ordinal data, we use Wilcoxon signed-

rank and rank-sum (also called Mann-Whitney’s U) tests for paired and unpaired groups,

respectively.

Student’s t-test

The student’s t-test is a statistical hypothesis test aiming at understanding whether there is a

difference in the distribution model of the two groups. The data is assumed to be drawn from

a normally distributed population.

If an unpaired t-test is performed, models are built for each group, and they are then compared

to assess their difference. In this case, and considering a two-tailed test, the null hypothesis

that is being tested is that the two models come from distribution with equal means, whereas

the alternative hypothesis states that the two means are different.

In the occasion of a paired t-test, the difference among the two groups is first computed, and

then a one-sample t-test is performed. In this circumstance, the null hypothesis assumes

that the difference has a mean of 0, whereas the alternative hypothesis states that the mean is

different from 0.

Wilcoxon rank test

The Wilcoxon family of tests include the rank sum and the signed rank tests, depending on

whether the groups are paired or unpaired. They both compare the medians of the groups; as
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such, they are suitable for ordinal data and for small sample sizes, for which the normality of

the population cannot be assumed.

Similarly to what has been described for the Student’s t test, the rank sum test ranks the data

from each group, and then performs a comparison of rank means, whereas the signed rank

test first computes the difference among the two groups, and then calculates the ranks for the

differences. In the first case, the null hypothesis states that the distributions of both groups

are equal, while the alternative hypothesis states that they are not equal. In the second case,

the null hypothesis assumes that the difference among the ranks has a mean of 0, whereas the

alternative hypothesis states that it is different from 0.

A.3 Comparison of objective against subjective scores

Objective quality metrics are essential for providing predictions of visual quality for content

representations in several applications related to information and communication systems.

The performance of a metric is characterized from its prediction power. That is, how accurate

are the output scores with respect to subjective opinions for the quality of multimedia content.

To be able to decide on the accuracy and reliability of an objective algorithm, benchmark-

ing is required against ground truth subjective data. This evaluation procedure also allows

performance comparisons between different objective quality metrics. In this section, the

procedures and the performance indexes that are adopted to benchmark objective quality

metrics are described.

A.3.1 Data mapping

To evaluate how well an objective metric is able to estimate perceptual quality, MOS computed

from ratings of subjects that participate in an experiment are required and serve as ground

truth. The metrics are typically benchmarked after applying a regression model in order to

map the objective scores to the subjective quality range, while also to account for biases,

non-linearities and saturations that might appear in subjective testing. In particular, let us

define the result of execution of a particular objective metric indicates a Predicted Quality

Score (PQS). A predicted MOS, denoted as P
(
MOS

)
, is estimated by applying a fitting function

on the
[
PQS,MOS

]
data-set. In our analysis, we use the linear and the monotonic cubic fitting

functions given in Equations A.6 and A.7, according to Recommendation (ITU-T P.1401, 2012),

and the logistic fitting function given in Equation A.13, following Recommendation (ITU-T

J.149, 2004)

P
(
MOS

)= a + b

1+exp
[− c · (MOS−d

)] (A.13)

where a, b, c, and d denote parameters of the function that are determined using a least

squares method, after ensuring monotonicity in order to maintain the ranking order.
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A.3.2 Performance indexes

To investigate the linearity, monotonicity, accuracy and consistency of an objective quality

metric, the PLCC, SROCC, RMSE and OR performance indexes are computed, respectively. As

described in A.2.2 and briefly recapped below:

• The PLCC is a measure of linearity between the MOS and the predicted MOS. The PLCC

ranges in the interval [−1,1], where a value of 1 (-1) indicates the strongest positive

(negative) correlation, whilst a value of 0 indicates no correlation. The formula to

compute PLCC index is given in Equation A.8.

• The SROCC is a measure of monotonicity between the MOS and the predicted MOS.

The SROCC ranges in the interval [−1,1], with ±1 indicating absolute monotonicity. The

formula to compute the SROCC index is given in Equation A.9.

• The RMSE is a measure of accuracy between the MOS and the predicted MOS. The

formula to compute the RMSE index is given in Equation A.10.

• The outlier ratio (OR) is a measure of consistency between the MOS and the predicted

MOS. The formula to compute the OR index is given in Equation A.11.

A.4 Comparison of rate-distortion curves

Objective quality metrics provide, for each stimulus under evaluation, an estimation of its

impairment. In the case of compression (or other generic rate-optimization solutions), the

stimuli are traditionally engineered to cover a sufficient range in terms of bit-rate, in order

to assess a variety of corresponding distortions. Rate-distortion curves provide a useful

interpolation of discrete tuples of distortion for a given bit-stream size, and allow to generalize

the behavior observed on the single stimuli.

In such cases, it is desirable to obtain, from the curves under exam, a numerical value that

quantifies the difference between the curves. In particular, we want to ascertain the bit-rate

savings or the quality gains that we observe when we select one rate-optimization solution

with respect to another. For the former case, this corresponds to quantifying, for a predefined

level of distortion, the amount of rate that can be saved by using one solution; in the latter case,

it provides the distortion decrease (or quality gain) that can be observed at a given bit-rate,

when using one algorithm or the other. The procedure was formally defined in 2001 by Gisle

Bjontegaard for PSNR values (Bjontegaard, 2001).
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B Point cloud data structures

A point cloud can be defined as a set of points aiming to represent a 3D model. Each point is

defined by coordinate positions in 3D space. Additional attributes, such as color, normal vec-

tors, curvature and reflectivity can be associated, among others, to reflect measured properties

of the underlying 3D surface.

Point clouds denote a visual modality that can efficiently acquire, encode and render advanced

content representations. Thus, it has recently drawn a significant amount of interest by the

scientific community and industrial market. There are several different ways to acquire point

cloud data, such as depth sensors and photogrammetry. Independently of the acquisition

technique that is employed, though, the geometric structure of a captured or extracted point

cloud is, in principle, irregular. This means that the coordinates of a point cloud are real

numbers of any precision that can span any range, depending on the acquisition technology

and the size of the scene. This creates difficulties in the manipulation of the data, given that

a point cloud usually consists of a vast amount of points with coordinates in floating-point

format, which results in excessive storage requirements.

A simple, yet efficient way to reduce the size and ease the manipulation processes, is to

convert the original model to a regular data structure. Obviously, such an operation leads to

information loss in the general case; however, the error is bounded and the effects can be

mitigated by increasing the resolution of the regular representation.

B.1 Octree structure

Octree data structures are extensively employed in point cloud compression, as they enable an

efficient way for a regular representation of the model’s geometry. To generate an octree, the

minimum bounding cube enclosing the point cloud is initially computed. A recursive partition

is applied on the 3D space defined by the bounding cube until a desired level-of-detail (LoD),

or a tree-depth is achieved. The former specifies the size of the leaf nodes, whereas the latter

defines the number of partitions that are recursively applied on the octree data structure. At
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(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure B.1 – Octree data structure decomposition.

Figure B.2 – Octree-based compression. Illustration from (Kammerl et al., 2012).

each level, every bounding cube is sub-divided into 8 smaller and equally sized sub-cubes as

illustrated in Figure B.1. This procedure is repeated until the specified LoD or tree-depth is

reached. Then, all the points that are enclosed in a leaf node are collectively represented by

the center of that node.

Octree decomposition can be used to efficiently encode point cloud data. In the simplest case

of octree-based compression, a byte can be used to represent the occupancy of a branch node,

provided a fixed ordering for its eight children. Then, by traversing the tree and storing the

occupancy maps of the children at each level, the topology of a point cloud is encoded, as

depicted in Figure B.2.

B.2 Voxel grids

Voxelization is a commonly used approach to convert irregular point clouds to regular data

structures. A voxel, v , can be defined as a sample in a regularly spaced 3D grid. It consists of a

volumetric element of size 1, [−0.5+ i ,0.5+ i )× [−0.5+ j ,0.5+ j )× [−0.5+k,0.5+k), which

is represented by the center of the voxel with coordinates (i , j ,k) ∈ [
0,2N−1

]3, where N is the

voxel bit depth. Voxelization can be defined as the process of mapping the coordinates of each
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Figure B.3 – Quantization steps.

point spanning in a continuous space, p ∈R3, to a discrete set of values, v ∈Z3
>=0. This is very

similar to quantization; however, in the case of voxelization the reconstruction step is typically

skipped. Moreover, duplicated entries of voxel centers are typically discarded. Information

from additional attributes (e.g. color) present in the original model is associated to the voxels.

This information is obtained after attribute-dependent processing.

Provided that the geometry of a point cloud can have an arbitrary span, it is rather common

to apply normalization prior to voxelization. Let us assume that the coordinates of a point

p in the original point cloud are expressed as (x̂, ŷ , ẑ), while after normalization are denoted

as (x, y, z), with the model placed in a bounding box of range
[
0,1

]3. This can be performed

through the following homogeneous transformation:




x

y

z

1



=




s 0 0 tx

0 s 0 ty

0 0 s tz

0 0 0 1







x̂

ŷ

ẑ

1




(B.1)

where s = (
max[x̂, ŷ , ẑ]–min[x̂, ŷ , ẑ]

)−1, and tx = −min x̂, ty = −min ŷ , tz = −min ẑ. The nor-

malized geometry is then quantized. Considering the simplest case, a value in is obtained

from forward quantization of the coordinate xn , as: in = �xn/∆�

The value in is an index to the interval that xn is falling across the corresponding axis x. The

boundaries of an interval are called decision levels. Every xn that is falling within the same

boundaries is represented by the same index (quantization level). The length of the interval

equals the quantization step, ∆, which depends on the number of quantization levels that

are required. Assuming a number of 2N quantization levels, as shown in Figure B.3, then

∆= 2−N , with N indicating the number of bits that are required to represent the entire set of
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� 1

v

Figure B.4 – Voxelization.

quantization levels i .

Note that the voxel vn corresponds to a cubic sub-space contained in the original point cloud

with length of edge equal to the quantization step ∆. See Figure B.4.

Naturally, a voxel exists or not, depending on whether a point lies in the corresponding sub-

space of the original model or not. It is possible that several points are falling in the same

sub-space, thus, the same voxel is registered several times. Considering the geometry of a

model, registering the same entry of the voxel grid multiple times is redundant. However,

this is not the case when it comes to other attributes. In particular for color, in case a given

voxel represents a single point, the color of the latter is assigned to the former. In case a given

voxel represents more than one points, color blending (i.e. averaging), or sampling can be

employed, to obtain the color of the voxel.

Summarizing, voxelization results in a lattice grid of volumetric elements of size 1 represented

by their centers, and approximates a regularly spaced sub-sampled version of the original point

cloud. The positions of the voxels are typically obtained through quantization of geometry

and after duplication removal, while different attribute-dependent approaches can be used to

assign attribute information to the voxels that is present in the original model.

Finally, it is noteworthy that an octree structure can be employed in order to represent, or

encode a voxel grid. Provided a proper LoD, or tree-depth for the former, the voxel grid can be

represented without any loss.

B.2.1 Implementations

For purposes of experimentation, different approaches for point cloud voxelization have been

implemented. For geometry, two different alternatives have been realized: (a) a mid-treat,
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and (b) a mid-riser quantizer. Note that this naming is used by convention as it resembles,

but doesn’t accurately reflect the implementation of the corresponding quantization schemes.

The mid-treat quantizer, is implemented through Equation B.2, while the mid-riser quantizer

is given by Equation B.3:

i = bx/∆+1/2c (B.2)

i = bx/∆c (B.3)

If the original point cloud contains color information, and each voxel corresponds to a single

point, the color value of the latter is attributed to the former. In case a voxel corresponds

to more than one points, three different alternatives have been examined: (a) random color

sampling, by randomly picking a color value from the points that correspond to the same

voxel, (b) first-sorted color sampling, by selecting the color value of the first among the sorted

points that correspond to the same voxel, and (c) color blending, by averaging the color values

of the points that corresponds to the same voxel. The latter approach can be viewed as a

low-pass filtering and leads to color smoothing with visually more pleasing results, as can be

seen in Figure B.5. Note that the original model was represented by 106,199,111 whereas the

voxelized point cloud (at 10-bit resolution) is comprised of 1,081,025 points.
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(a) Original model (b) First-sorted

(c) Randomly-picked (d) Blended

Figure B.5 – Illustration of visual effects for different color mapping techniques in voxelization.
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C Accuracy of normal estimation algo-
rithms

Normal vectors in point cloud imaging are crucial for a number of use-cases including render-

ing, surface reconstruction, segmentation, and feature extraction, among others. In essence,

these attributes indicate the shape of the 3D model, which is represented through point sam-

ples. Normal vectors are not natively exported during point cloud acquisition in most cases,

and when this happens, it is not necessary that they accurately reflect the underlying surfaces.

Thus, it is rather common to (re-)estimate them from a point cloud model in an off-line,

post-processing stage, where various normal estimation algorithms and configurations might

be tested.

In principle, the problem of normal estimation on point clouds has been extensively studied

from different communities, such as computer graphics, signal processing and mathematics,

while lately, deep-learning solutions have been also proposed. In this context, a point cloud

is interpreted as a collection of discrete samples that are drawn from continuous surfaces,

and the objective is to infer the underlying shape from this set of unorganized points. Normal

estimation can be considered as an ill-posed problem, in the sense that there is no unique

solution for a given topology. Moreover, the performance of normal estimation algorithms is

highly affected by the density of samples and surface curvature irregularities across a model, as

well as the presence of noise that might be introduced during acquisition, or other processing

stages (e.g., compression) (Mitra and Nguyen, 2003). The accuracy, robustness and efficiency

of widely-used normal estimation algorithms has been evaluated and reported by a series of

studies in the literature (Klasing et al., 2009; Jordan and Mordohai, 2014).

In this study, the objective is to evaluate the accuracy of normal estimation schemes that

are extensively exploited in our work, in order to obtain insights regarding their operating

point. In particular, we choose 3 widely-used algorithms as implemented by well-established

software and we test several neighborhood sizes to estimate the normal vector of a queried

point: (a) plane fitting using k-nearest neighbors, (b) plane fitting using range search, and

(c) quadric fitting using range search. The ground-truth normal vectors are generated by

sub-sampling a set of reference mesh models. Then, normal estimation is applied on the

sampled geometry for a given algorithm and configuration. Lastly, the average angular error
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(a) guanyin (201,796) (b) rhetorician (500,000) (c) roy (1,057,554) (d) vase (64,000)

Figure C.1 – Reference mesh contents (in parenthesis the number of faces).

is computed between the estimated and the ground-truth vectors, in order to quantify the

performance of the corresponding testing condition.

C.1 Data set

We pick 4 mesh models with different shapes and curvature distributions from the references

of the PointXR dataset (Alexiou and Ebrahimi, 2020). The models can be seen in Figure C.1,

namely, guanyin, roy, rhetorician, and vase, from left to right.

C.2 Computation of normal vectors

C.2.1 Ground-truth normal vectors

For every content we repeat the following procedure:

1. Load the mesh in CloudCompare and use a build-in functionality to estimate the normal

vectors per vertex i.e., the normal at a vertex is obtained as the mean normal vector

across all the triangles (i.e., faces) connected to this vertex.

2. Generate a point cloud by sub-sampling at different sparsity levels, using a target num-

ber of output points; in this study, we use 250K, 500K, 1M and 2M. Each point cloud

is obtained by drawing a constant number of samples at random positions, from each

triangle of the original mesh. The normal vector of a point sample is computed via

spatial interpolation applied on the normal vectors of the vertices that surround it in

the original mesh.

3. Remove neighboring coordinates of the sampled geometry with identical normal vec-

tors.

4. Scale geometry in the range [0, 1].
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The point cloud models carrying the ground-truth normal vectors are obtained from the last

step.

C.2.2 Estimated normal vectors

Normal vectors are estimated based on the point coordinates of the models that carry the

ground-truth normals, which were generated previously. The algorithms and configurations

that were selected for evaluation purposes, are summarized below.

Normal estimation methods are typically split in two steps: (a) identification of a neighbor-

hood, and (b) fitting of a curve. For the former, there are two main approaches, namely, the

k-nearest neighbors and the range search using a fixed radius R. For the latter, different order

polynomials are employed with linear and quadratic being the most common. Notice that

there are no indications in the literature which algorithm provides more accurate results. In

previous studies, one method is typically selected, and different configurations are evalu-

ated (Klasing et al., 2009; Jordan and Mordohai, 2014). In this analysis, we recruit several

algorithms as implemented from different software.

Plane fitting using k-nearest neighbors For this algorithm, the classic approach described

in (Hoppe et al., 1992) is employed. In particular, the k-nearest neighbors (k-nn) are

used to identify a local region around a queried point, and in every neighborhood a

planar surface is fitted. In this experiment, we set k = {8,16,32,64,128,256,512}, and the

Meshlab (Cignoni et al., 2008) built-in implementation is used.

Plane fitting using range search This algorithm is identical to the one described earlier, with

the only difference that range search using a radius R is employed for neighborhood

identification. In this experiment, we use R from 0.001 to 0.01 with a step of 0.001 (each

model’s geometry is limited to a bounding box of size 1). Moreover, the CloudCompare

built-in function is used. This implementation is fast, while also it tackles a typical

bottleneck of this algorithm arising when no neighboring points are identified at a

specific radius. In the latter case, the search range progressively increases up until a

minimum number of neighbors is reached; thus, normal vectors are estimated for all

point samples.

Quadric fitting using range search This algorithm is based on fitting a quadratic polynomial

in a neighborhood defined by range search. Again, the radius R is spanning from 0.001 to

0.01 with a step of 0.001, and the CloudCompare built-in function is used. As mentioned

earlier, there are several advantages that are offered from this implementation.

C.3 Performance evaluation

After obtaining both the ground-truth and the estimated normal attributes, the average angular

error (per point) is computed across a model. The angular error is measured in degrees. Note
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that in our computations we do not consider the orientation of the vectors. This is due to the

fact that wrongly oriented normal vectors (flipped) are rather common after normal estimation.

To address this issue, several algorithms have been proposed (e.g., Minimum Spanning Tree),

however, their performance and impact is outside of our scope.
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(a) k-nn with plane fitting
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(b) Range search with plane fitting
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(c) Range search with quadric fitting

Figure C.2 – Average normal estimation error in degrees. A different normal estimation
algorithm is displayed in each row, while the same model is presented across a column.

C.4 Results

In Figure C.2, the average angular error per point is presented and expressed in degrees, in

order to indicate the error between the estimated and ground-truth unoriented normals. Note

that all the models are displayed excluding rhetorician, which was found to undergo a very

similar behavior to guanyin. In each column a different model is depicted, while in each row a
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Figure C.3 – Average number of points per neighborhood, for guanyin, roy and vase.

different normal estimation algorithm is arranged. In every figure, each curve corresponds

to a certain variation of a model (i.e., sparsity level) and reports the angular error at different

neighborhood sizes.

As could be expected, the normal estimation error depends on the algorithm as well as the

model’s topology and sparsity. A general observation is that the normal estimation error is

constantly lower at denser models. Moreover, it is evident that the performance of the plane

and quadric fitting using range search is similar, with the latter showing improvements at

low-radii, especially for sparser versions and more complex geometries (e.g., guanyin at 250K).

Moreover, it seems that the error trends for the plane fitting using k-nn behave differently with

respect to range search-based variants.

Using the k-nn approach, the minimum error is achieved at larger k’s for denser models,

whereas for sparser models, the minimum is achieved at smaller neighborhoods; this is clearer

for point clouds with more complex topology (i.e., guanyin and rhetorician). Notice that

approximately the same angular error is obtained when simultaneously doubling the target

number of points of a model (i.e., sparsity level) and the number of neighbors over which a

neighborhood is identified. This is reasonable if we consider that in both cases, the region

over which the plane is fitted covers approximately the same volume. On the contrary, using

the same k as the sparsity level is increasing, indicates that larger volumes are employed.

When using range search, the error is generally decreasing as the radius is increasing up to a

threshold. Moreover, the minimum error is achieved at adjacent low- to mid-range R values

for all versions of a content, while at high-radii the error convergences and increases at the

same pace independently of the sparsity level. These phenomena are related to the fact that

using the same radius, the same space is employed to fit a curve.

An interesting outcome is that approximately the same minimum angular error is achieved per

model, across all tested algorithms. To obtain a better view, in Figure C.3 the average number

of points of a neighborhood for the selected radii in range search is reported. Combining

this plot with the results shown in Figure C.2, we can extract that this minimum angular

error is achieved over a similar neighborhood population, when compared to the number of

neighbors of the k-nn approach for which the minimum error is reported. In general, it can be
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seen that using an R that leads to an average number of points that approximates the number

of neighbors in k-nn, a similar error is obtained.

These results indicate that the normal estimation error is not substantially affected by the

fitted curve or the working principle of the neighborhood identification approach (i.e., k-nn,

or range search). Rather, it is the configuration of the algorithm that is critical; that is, the

volumes over which the surfaces are approximated. These configurations should be adjusted

considering the intrinsic characteristics of a model, in order to grant high accuracy.

Finally, it needs to be emphasized that these conclusions reflect the outcome of our experi-

mentation using a limited set of models; thus, although indicate reasonable trends, further

investigation is needed to draw safe conclusions. It should be clear that the scope of this study

is not to benchmark the selected algorithms, rather to understand whether they are able to

accurately estimate the normal vectors from a set of points, and to identify their operating

point.
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Nowadays, point clouds are most commonly consumed through devices with conventional,

flat screens (i.e., phones, laptops, desktops) or through HMDs (i.e., HTC VIVE, Faro, Bridge)

by means of software for 3D computer graphics (i.e., OpenGL, Direct3D, WebGL). Some of

the most popular libraries for point cloud processing and rendering are Point Cloud Library

(PCL) (Rusu and Cousins, 2011)1, CloudCompare (CloudCompare, 2020)2, MeshLab (Cignoni

et al., 2008)3. These frameworks are able to handle and render a vast amount of data, providing

robust and high-performance solutions. However, they support only fixed point size rendering,

while the point sizes don’t adjust with virtual camera distance changes, which is more evident

at closer views (zoom in). CGAL4 denotes a classical suite for computational geometry algo-

rithms. Recent libraries such as Open3D5, polyscope6 and the “Point cloud visualizer” add-on

in Blender7, have also received attention. Among the web-based alternatives is Potree8, which

is suitable for large point clouds, offering a wide range of features and fast interactivity and

Meshlab JS9. Finally, Unity10 and Unreal11, denote popular game-engines for XR experiences.

The above solutions indicate the large pool of options that are available today. In this section

we report custom rendering implementations that were developed for our experimentation

purposes, making use some of these frameworks.

1http://pointclouds.org/
2https://www.cloudcompare.org/
3http://www.meshlab.net/
4https://www.cgal.org/
5https://github.com/intel-isl/Open3D
6https://github.com/nmwsharp/polyscope
7https://github.com/uhlik/bpy
8https://github.com/potree/potree
9http://www.meshlabjs.net/

10https://unity3d.com/
11https://www.unrealengine.com/
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Annex D. Renderers

D.1 Voxel-based renderer

The voxel-based rendering software is developed in C++ in the context of (Torlig et al., 2018a).

In this implementation, the rendering-related computations are performed in run-time. Ini-

tially, each point cloud is read point by point. The range across each axis is recorded and the

average position of all the points (i.e., the centroid) is kept. By subtracting the centroid from

the coordinate data, the 3D model is effectively centered in the viewing volume.

In the next step, a point cloud is scaled by multiplying the coordinates of each point by the

largest power of two that would still let the model fit in a cubic volume of side 1024. In other

terms, the spatial coordinates are multiplied by a scaling component, s, given by Equation D.1

s = z f ×2(10−dlog2(wmax−wmi n )e) (D.1)

where z f is a zoom factor that is inversely proportional to the virtual distance between the user

and the content, and is updated based on the user’s scrolling of the mouse wheel. The terms

wmax and wmi n correspond to the largest and smallest coordinate values of the point cloud.

Essentially, this procedure scales the content appropriately as a function of the current virtual

distance, and prepares the content to be projected in a pixel grid of a selected resolution.

Subsequently, the points go through a rigid rotation, as a function of the viewing angle. This

is done by multiplying the spatial coordinates with a rotation matrix. This rotation matrix is

calculated using angles in two axes, which are determined dynamically by the user through

clicking and dragging using the right mouse button across the screen in the X and Y directions.

Rotations in these angles are equivalent to incremental changes to the yaw and pitch of the

rendered model, respectively. Note that each stimulus is rotated identically in order to attain

in-sync visualization from the same viewpoint, in case more than one models are displayed

simultaneously.

In a following step, the spatial coordinates of the points obtained from the aforementioned

transformations are traversed and quantized to integer values. During this iteration, the

spatial position of each point might be modified by updating the x and y coordinates, in

case translation has been issues by the user’s commands. In particular, this translation, or

panning is determined through dragging the mouse while holding the left mouse button.

Again, identical panning is applied on the views of each displayed model.

The color value of every point with spatial coordinates (x, y, z), as resulted from the procedure

described above, is associated with a single image pixel (x̂, ŷ) in the respective projected image.

During the iteration, if another point with identical (x, y) coordinates and a smaller distance

from the projection plane is identified, the first point is ignored, and the color value of the pixel

(x̂, ŷ) is given by the second point. In the special case where multiple points have coinciding

coordinates after rotation, quantization and panning, the associated pixel value is derived as

the average of the color values of the points. This procedure is repeated for every point of both

the reference and the distorted point clouds, providing content projections that are finally
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rendered to the viewer. Unoccupied pixels in the rendered images are given a default value of

(127, 127, 127) in the RGB color space, which corresponds to neutral gray.

A screen-shot of the renderer as part of the subjective evaluation testbed is illustrated in Fig-

ure 4.12. Visual examples of models under compression artifacts are provided in Figures 4.14

and 4.15.

D.2 Splat-based renderer in VTK

In this renderer, each point is replaced by a splat, which is represented by a primitive geomet-

rical 2D or 3D object from the built-in options provided in the VTK12 library. A geometrical

object is defined by a set of vertices and corresponding connectivity information. Thus, in this

implementation, a point cloud is essentially converted to a format with mesh-like properties,

in a pre-processing stage. During run-time, the latter is loaded into the visualizer to represent

the point cloud content.

At the pre-processing stage, we first define and construct the primitive geometrical objects.

The source elements that are natively integrated in our solution are disks, cubes and spheres;

however, extensions to other objects are straightforward. Implementation-wise, for cubes and

spheres, the vtkGlyph3D filter with the vtkCubeSource and the vtkSphereSource are employed,

respectively. The latter demands a number of vertices across the spherical coordinates φ and

θ, which are both set equal to 7 in our case. For disks, the vtkTensorGlyph filter is employed

using the vtkRegularPolygonSource with 16 sides in order to obtain a good approximation of

a disk. The default radius (i.e., size) of every source element is adjusted at will.

After establishing the geometrical shape, the position and the color of the splats are determined

by the corresponding points’ coordinates and color values. Regarding the splat orientation

when using disks, it is defined as perpendicular to the direction of the normal vector associated

with the corresponding point sample. Thus, in this case, the latter attributes should be

associated with the coordinate data. Note that visible artifacts might be observed in the

form of holes, when the normal vectors do not accurately reflect the underlying surface (i.e.,

mis-oriented). For cubes and spheres, the orientation is fixed across the z-axis. Each splat

is oriented towards this particular direction in the world coordinate system the model is

lying. In particular, when manipulating a displayed model (e.g., rotation, translation, etc.),

the camera position and direction is correspondingly adjusted, while the splat orientation

remains identical within the coordinate space. This approach may lead to the perception of

different splat sizes, as the camera is rotating. For instance, when the camera is perpendicular

to the frontal face of a cube, the same point will be projected on a smaller area onto the screen

with respect to the case the camera is aligned with the space diagonal of the cube. This is true

for disks and cubes, whereas such effects are not observed for spheres, due to the nature of

this geometrical shape.

12https://vtk.org/
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The renderer supports both fixed and adaptive splat sizes. In the first case, the region over

which every splat of a model is extended is constant, and can be manually specified by the

user. In the latter case, the size of the splats is adaptively scaled based on the sparsity of

local neighborhoods across a model. The first approach eliminates magnification of sparser

regions and is better suited for point clouds with regular geometry and uniform point density

distribution. Yet, in the second approach, the visual quality is assumed to be better for

models with fluctuating sparsity levels, as the splat sizes can be correspondingly adjusted.

To enable the latter option in our software, during pre-processing, all points of a model are

traversed and the distances to their k nearest neighbors are identified. Then, for every point

p, the corresponding splat size sp is set equal the local mean distance µp that is computed

considering its k nearest neighbors. To avoid amplification of the splat size of isolated points

that deviate from surfaces (e.g., acquisition errors), we assume that µp is a random variable

that follows a Gaussian distribution N (µ,σ), and every point p with local mean outside of a

specified range, is classified as an outlier. In our case, this range is defined by the global mean

µ= µ̄p and standard deviation σ= σ̄p . For every point p, if µp ≥µ+3 ·σ, or µp ≤µ−3 ·σ, then

p is considered an outlier, and sp is set equal to the global mean µ. Otherwise, the splat size sp

is set equal to the local mean µp .

A screen-shot of the renderer as part of the subjective evaluation testbed is illustrated in

Figure 4.11. Visual examples of models under different splat shapes, are provided in Figure 4.6.

Visual examples of models under compression artifacts using cubic splats are provided in

Figures 4.14 and 4.15.

D.3 Splat-based renderer in JS

An interactive renderer has been developed in a web application on top of the Three.js13

library. The software supports point cloud data stored in both PLY and PCD formats, which are

displayed using square primitive elements (splats) of either fixed or adaptive sizes. The primi-

tives are always perpendicular to the camera view direction by default, thus, the rendering

scheme is independent of any information other than the coordinates, the color and the size

of the points. Note that the latter type of information is not always provided by popular point

cloud formats, thus, there is a necessity for additional metadata for our renderer (see below).

To develop an interactive 3D rendering platform in Three.js, the following components are

essential: a camera with trackball control, a virtual scene, and a renderer with an associated

canvas. A virtual scene is initialized and a point cloud model is placed in the middle. The

color of the scene can be adjusted to serve the purpose of a user. To capture the scene, an

orthographic camera is employed, whose field of view is defined by setting the camera frustum.

The users are able to control the camera position and zoom through mouse movements,

handling their viewpoint; thus, interactivity is enabled. A WebGLRenderer object is used to

draw the current view from the current camera position onto a canvas. The dimensions of the

13https://threejs.org/
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canvas can be manually specified. It is worth mentioning that the update rate of the trackball

control and the canvas is handled by the requestAnimationFrame() method, ensuring fast

response (i.e., 60 fps) in high-end devices.

After a point cloud has been loaded into the scene, its shape is scaled according to the camera’s

frustum dimensions to be visualized in its entirety. The selected view of the model is projected

onto the canvas, with each point being mapped to a single pixel. To enable visualization of

watertight surfaces from different viewpoints, each point is represented by a square splat

mapped to a corresponding number of pixels on the canvas. The size of the splat is adjusted

according to the model’s intrinsic resolution and camera’s position. For the latter, given the

orthographic camera, the splat size is adjusted based on the camera zoom parameter; thus, the

size is increasing or decreasing, depending on whether the model is visualized from a close or

a far distance. For the former, metadata is loaded by the application, carrying the information

for the size of each point, or the entire model, depending on whether an adaptive or a fixed

rendering approach is adopted. Besides the point size, an additional factor is provided that

might be used to scale the splats of a model. This constant may be interpreted as a global

compensating quantity that can be adjusted depending on the sparsity of the model, for

visually pleasing results. Although such calculations can be performed in real-time, using

off-line generated metadata has the advantage of reducing the computational overhead of the

rendering software.

To enable fixed point size rendering, a single value is used to scale the splats of a model.

This is achieved by multiplying the default value of the size in the class material, which is

responsible for the appearance of a point. For adaptive splat rendering, a custom WebGL

shader/fragment program was developed, allowing access to the attributes and adjustments

of the size of each point individually. In particular, a new BufferGeometry object is initialized

adding as attributes the points’ position, color and size; the former two can be directly retrieved

from the content. A new Points object is then instantiated using the object’s structure, as

defined in BufferGeometry, and the object’s material, as defined using the shader function.

The information about the size of the entire set of points, or each point individually, is stored

in form of metadata in a JSON file, for fixed or adaptive rendering respectively. In the first case,

a single value is required, whereas in the second case, a value per point is stored following the

same order as the points that belong to the model.

Auxiliary functionalities and tools that were integrated in the developed software and can be

optionally enabled, consist of recording user’s interactivity information and allowing taking

screen-shots of the rendered models.

A screen-shot of the renderer as part of the subjective evaluation testbed is illustrated in

Figure 9.6. Visual examples of models under compression artifacts are provided in Figure 9.5.

The software has been uploaded and released on GitHub (see annex E).
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Figure D.1 – Illustration of shader interpolation. Figure from (Schütz and Wimmer, 2015).

D.4 Splat-based renderer in Unity: PointXR toolbox

The Unity platform is used to develop our toolbox. The Pcx Point Cloud Importer14 is a

software dependency responsible for loading the point clouds and converting them to objects

with mesh-like properties. By default, a point cloud is rendered either by using raw points,

or by associating disks of fixed size across an entire model through a dedicated shader script.

The size of the disks can be manually configured at per user’s preferences and is automatically

adjusted to the virtual camera distance.

Implementation-wise, our application enhances the natively supported rendering capabilities

by integrating the following features: (a) Quad shader, which is less computationally expensive

as it requires a smaller number of vertices to represent a point. At the same time, no added

visual distortions are noticeable, especially when is combined with the shader interpolation

rendering mode (see further). (b) Adaptive point size, which can be beneficial with models

of irregular structure and varying point density, as it allows the regulation of the size of each

point individually. The deployed algorithm is inspired by (Javaheri et al., 2017b; Alexiou and

Ebrahimi, 2019), with the size of each point depending on the k-nearest neighbors’ distances as

implemented by the KDTree15 into Unity. In fact, the same approach described in section D.3

is employed, assuming that the average distance of a point from its neighbors is a random

variable that follows a Gaussian distribution. If the this distance exceeds a threshold, then

the global mean is employed, thus, magnification of outlier points is avoided. The number

k can be manually specified. (c) Shader interpolation (Schütz and Wimmer, 2015), which is

integrated into the rendering pipeline (i.e., shader scripts) for higher visual quality. In this

mode, surface discontinuities are reduced, and flickering artifacts perceived due to changes

of viewing position are decreased. In particular, a depth offset is added on the view space to

each pixel of the primitive element that represents a point, and pixels with lower depth values

(i.e., frontal parts of the primitives) are shown on the screen. This essentially leads to a screen

faced paraboloid, as illustrated in Figure D.1. Thus, larger point sizes can be used to avoid

14https://github.com/keijiro/Pcx
15https://github.com/viliwonka/KDTree
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Figure D.2 – Color coded block diagram with scene dependencies to enable corresponding
evaluation protocols.

hollows, leading to the perception of higher quality and smoother surfaces.

Our toolbox consists of four Unity scenes, namely, Rendering, Inspection, Rating, and Cap-

turing. In Figure D.2, a block diagram is provided illustrating their main functionalities and

dependencies. The Rendering scene can be used to configure the visual appearance of a model.

Through a GUI, fixed or adaptive point size can be set and related parameters (i.e., point size

in the former and number of nearest neighbors in the latter) can be specified, the shader

interpolation mode can be enabled or disabled, and a shader of preference can be submitted.

Moreover, a point scaling factor that is globally applied on the entire model can be manually

adjusted for higher fidelity. Furthermore, the position, the rotation, and the size of a model

can be specified at will. The user can apply the selected rendering features and visualize the

resulting model in real-time either in a typical monitor, or through a headset in VR mode.

Upon saving, a pre-fabricated (prefab) object, corresponding assets, and a configuration file

with the selected rendering options are generated. The latter file can be optionally used as an

input to the scene, in order to automatically apply the corresponding rendering configurations.

An example of the Rendering scene is illustrated in Figure D.3.

The Inspection scene, when used as a standalone application, consists of the default Unity

viewer where point clouds and prefabs can be loaded. Yet, when used in combination with

the Rating scene, they establish the interactive quality assessment testbed. In particular,

in the Inspection scene the experimenter can specify whether to use a single-stimulus or a

double-stimulus visualization protocol. The latter option currently provides three variants: (a)

simultaneous, where the models are presented side-by-side, (b) sequential, where one model

is presented after the other, and (c) alternating, where the subject is able to switch between

the two models at will. Moreover, the experimenter can choose to log interactivity information
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Figure D.3 – Example of the PointXR toolbox scene for adjusting the rendering configurations
of a model.

of a subject during evaluation. On the other hand, the Rating scene is responsible to capture

the scores of a subject. In particular, a grading panel with a question and a list of scores in

the form of buttons appears in front of the observer, upon request (see Figure 5.3c). Note

that the question and the answers can be manually specified, thus covering a wide range of

subjective evaluation methodologies when combined with the visualization protocols from

the Inspection scene.

Finally, the Capturing scene is part of our toolbox to carry passive evaluation experiments. The

user can define a set of camera parameters (i.e., position, rotation) and corresponding time

intervals that will be used to capture views of a model as rendered in our virtual environment.

Simple camera paths can be enabled through a GUI, such as circular or spiral rotations with

adjustable angular speed. The manual selection of camera settings (i.e., position, rotation,

time interval) is another option. For higher precision and control, though, a configuration

file can be loaded to explicitly specify the camera settings at every time instance. To produce

video sequences from the selected viewpoints, our scene makes use of the Unity Recorder tool.

A screen-shot indicating a model rendered in the virtual world is illustrated in Figure 5.2.

Visual examples of a user interacting in the Inspection and the Rating scene are provided in

Figure 5.3. The software has been uploaded and released on GitHub (see annex E).
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Below is a list of open access contributions to to facilitate and promote research on the field.

Data sets

• G-PCD: Data set that contains reference point cloud models, degraded stimuli, and sub-

jective quality scores. The generation of the degraded stimuli is described in section 3.1.

The subjective scores are obtained from the experiments described in sections 3.2 and

3.3. This work has been published in (Alexiou and Ebrahimi, 2017b) and (Alexiou et al.,

2017). The URL link is:

https://www.epfl.ch/labs/mmspg/geometry-point-cloud-dataset/.

• RG-PCD: Data set that contains reference point cloud models, degraded stimuli, corre-

sponding reconstructed meshes, and subjective quality scores. The generation of the

degraded stimuli is described in section 3.1. The subjective scores are obtained from

the experiment described in section 3.4, where the reconstruction methodology is also

described. This work has been published in (Alexiou et al., 2018). The URL link is:

https://www.epfl.ch/labs/mmspg/reconstructed-point-clouds-results/.

• ViAtPCVR: Data set that contains tracked behavioral data, post-processing results,

saliency maps in form of importance weights, re-distribution of a sub-set of contents

and scripts to prepare the stimuli of the study. The experiment and the data processing

is described in section 5.2. This work has been published in (Alexiou et al., 2019b). The

URL link is:

https://www.epfl.ch/labs/mmspg/visual-attention-point-clouds/.

• M-PCCD: Data set that contains subjective scores, instructions to retrieve models and

scripts to prepare the stimuli of the study. The generation of the point cloud stimuli

is described in section 9.1. The subjective scores are obtained from the experiment

described in section 9.2. This work has been published in (Alexiou et al., 2019a). The
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URL link is:

https://www.epfl.ch/labs/mmspg/quality-assessment-for-point-cloud-compression/.

• PointXR: The material is organized as follows:

– PointXR dataset: Repository consisting of 20 high-quality point clouds representing

cultural heritage, generated from publicly available mesh models. The point clouds

were generated after texel sampling applied on the mesh models in Meshlab using

a texture resolution of 4096x4096 (WxH).

– PointXR experimental data: Data set that contains reference point cloud models,

degraded stimuli, and subjective quality scores. The subjective scores are obtained

from the experiment described in section 5.1, where the generation of the degraded

stimuli is described.

This work has been published in (Alexiou et al., 2020b). The URL link is:

https://www.epfl.ch/labs/mmspg/downloads/pointxr/.

Software

• Point cloud angular similarity (plane-to-plane): Prototype MATLAB implementation

of the angular similarity metric (also called as plane-to-plane). The quality metric is

described in section 6.1. This work has been published in (Alexiou and Ebrahimi, 2018c).

The URL link is:

https://github.com/mmspg/point-cloud-angular-similarity-metric.

• Point cloud structural similarity (PointSSIM): Prototype MATLAB implementation

for the computation of structural similarity scores. The quality metric is described in

section 6.2. This work has been published in (Alexiou and Ebrahimi, 2020). The URL

link is:

https://github.com/mmspg/pointssim.

• Point cloud web renderer: Open source web-based point cloud renderer in Three.js

library. Implementation details are provided in section D.3. The renderer is used in

the context of the experiments described in chapter 9. This work has been published

in (Alexiou et al., 2019a). The URL link is:

https://github.com/mmspg/point-cloud-web-renderer.

• PointXR toolbox: Unity implementation for rendering and visualization of 3D point

clouds in virtual environments. Implementation details are provided in section D.4. The

software is used in the context of the experiment described in section 5.1. This work has

been published in (Alexiou et al., 2020b). The URL link is:

https://github.com/mmspg/point-cloud-web-renderer.
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Technical reports

• Benchmarking of plane-to-plane: Performance evaluation analysis of the plane-to-

plane metric. This work has served as an input document to the JPEG committee. The

URL link is:

https://infoscience.epfl.ch/record/278961.
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Krivokuća, M., Chou, P. A., and Koroteev, M. (2020). A volumetric approach to point cloud

compression–part ii: Geometry compression. IEEE Transactions on Image Processing,

29:2217–2229.

Lavoué, G. (2009). A local roughness measure for 3d meshes and its application to visual

masking. ACM Trans. Appl. Percept., 5(4).

Lavoué, G. (2011). A multiscale metric for 3d mesh visual quality assessment. Computer

Graphics Forum, 30(5):1427–1437.

Lavoué, G., Cordier, F., Seo, H., and Larabi, M.-C. (2018). Visual attention for rendered 3D

shapes. Comput. Graph. Forum, 37:191–203.

Lavoué, G., Gelasca, E. D., Dupont, F., Baskurt, A., and Ebrahimi, T. (2006). Perceptually driven

3D distance metrics with application to watermarking. In Tescher, A. G., editor, Applications

of Digital Image Processing XXIX, volume 6312, pages 150 – 161. International Society for

Optics and Photonics, SPIE.

Lavoué, G., Larabi, M. C., and Váša, L. (2016). On the efficiency of image metrics for evaluating

the visual quality of 3d models. IEEE Transactions on Visualization and Computer Graphics,

22(8):1987–1999.

Lavoué, G. and Mantiuk, R. (2015). Quality Assessment in Computer Graphics. In Visual Signal

Quality Assessment – Quality of Experience (QoE), pages 243–286. Springer.

Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh saliency. In ACM SIGGRAPH 2005

Papers, SIGGRAPH ’05, pages 659–666, New York, NY, USA. ACM.

Lee, J.-S., Goldmann, L., and Ebrahimi, T. (2013). Paired comparison-based subjective quality

assessment of stereoscopic images. Multimedia tools and applications, 67(1):31–48.

318



Bibliography

Leifman, G., Shtrom, E., and Tal, A. (2012). Surface regions of interest for viewpoint selection.

In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 414–421.

Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Ander-

son, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. (2000). The digital michelangelo

project: 3d scanning of large statues. In Proceedings of the 27th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages 131–144, USA. ACM

Press/Addison-Wesley Publishing Co.

Levoy, M. and Whitted, T. (1985). The use of points as a display primitive. Technical report,

University of North Carolina, Department of Computer Science, Chapel Hill.

Li, L., Li, Z., Liu, S., and Li, H. (2020a). Efficient projected frame padding for video-based point

cloud compression. IEEE Transactions on Multimedia, pages 1–1.

Li, L., Li, Z., Zakharchenko, V., Chen, J., and Li, H. (2020b). Advanced 3d motion prediction

for video-based dynamic point cloud compression. IEEE Transactions on Image Processing,

29:289–302.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object

detection. In Proceedings of the IEEE international conference on computer vision, pages

2980–2988.

Lindstrom, P. and Turk, G. (2000). Image-driven simplification. ACM Trans. Graph., 19(3):204–

241.

Liu, X., Liu, L., Song, W., Liu, Y., and Ma, L. (2016). Shape context based mesh saliency detection

and its applications. Comput. Graph., 57(C):12–30.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface con-

struction algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’87, pages 163–169, New York, NY, USA. Association

for Computing Machinery.

Luebke, D. and Hallen, B. (2001). Perceptually Driven Simplification for Interactive Rendering.

In Gortle, S. J. and Myszkowski, K., editors, Eurographics Workshop on Rendering. The

Eurographics Association.

Mada, S. K., Smith, M. L., Smith, L. N., and Midha, P. S. (2003). Overview of passive and active

vision techniques for hand-held 3D data acquisition. In Shearer, A., Murtagh, F. D., Mahon,

J., and Whelan, P. F., editors, Opto-Ireland 2002: Optical Metrology, Imaging, and Machine

Vision, volume 4877, pages 16 – 27. International Society for Optics and Photonics, SPIE.

Mammou, K. (2017). PCC Test Model Category 2 v0. ISO/IEC JTC1/SC29/WG11 Doc. N17248.

Mammou, K., Chou, P. A., Flynn, D., and Krivokuća, M. (2019). G-PCC codec description v2.
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