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Abstract
We consider the SQG equation with dissipation given by a fractional Laplacian of
order α < 1

2 . We introduce a notion of suitable weak solution, which exists for every
L2 initial datum, and we prove that for such solution the singular set is contained in a
compact set in spacetime of Hausdorff dimension at most 1

2α

( 1+α
α

(1 − 2α) + 2
)
.
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1 Introduction

For α ∈ (0, 1
2

]
we consider the following fractional drift-diffusion equation

{
∂tθ + u · ∇θ = −(−�)αθ

div u = 0,
(1)

where θ : R2 ×[0,∞) → R is an active scalar, u : R2 ×[0,∞) → R
2 is the velocity

field and (−�)α corresponds to the Fourier multiplier with symbol |ξ |2α . The system
is usually complemented with the initial condition

θ( · , 0) = θ0. (2)

We will be particularly interested in the surface quasigeostrophic (SQG) equation
where the velocity field u is determined from θ by the Riesz-transform R on R

2.
More precisely, we require

u = ∇⊥(−�)−
1
2 θ = R⊥θ. (3)

There is a natural scaling invariance associated to the system: whenever (θ, u) solves
(1), then so does the pair

θr (x, t) := r2α−1θ(r x, r2αt) ur (x, t) = r2α−1u(r x, r2αt). (4)

1.1 Main Result

Our main result shows that for every L2 initial datum and every α ∈ [ 920 , 1
2

)
, there

exists an almost everywhere smooth solution of the SQG equation and, more precisely,
it provides a bound on the box-counting and Hausdorff dimension of the closed set of
its singular points.

Theorem 1.1 Let α0 := 1+√
33

16 . For any α ∈ (α0,
1
2

)
and any initial datum θ0 ∈

L2(R2) there is a Leray–Hopf weak solution (θ, u) of (1)–(3) (see Definition 3.1) and
a relatively closed set Sing θ ⊂ R

2 × (0,∞) such that

• θ ∈ C∞([R2 × (0,∞)] \ Sing θ
)
,

• Sing θ ∩ [R2 × [t,∞)] is compact with box-counting dimension at most
1
2α

( 1+α
α

(1 − 2α) + 2
)

for any t > 0,
• the Hausdorff dimension of Sing θ does not exceed 1

2α

( 1+α
α

(1 − 2α) + 2
)
.

Remark 1.2 Wewill in fact prove a slightly stronger statement, namely that all suitable
weak solutions θ of (1)–(3) on R

2 × (0,∞) (see Definition 3.4) satisfy the estimate
on the dimension of the spacetime singular set Sing θ ; in particular, they are smooth
almost everywhere in spacetime. Moreover, the set Sing θ is compact as soon as the
initial datum is regular enough to guarantee local smooth existence.
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The regularity issue for the equation (1)–(3) is fully understood only in the subcrit-
ical and critical regime, namely for α ≥ 1

2 . The critical case (without boundaries) is
now well-understood thanks to Kiselev, Nazarov and Volberg [21] and Caffarelli and
Vasseur [3] (see also [11]) and one even has a description of the long time behaviour of
the system [12,13]. On bounded domains, the critical case has been well-studied in a
series of works initiated by [8]. In the supercritical range α < 1

2 , the global regularity
of Leray–Hopf weak solutions to the SQG equation is an open problem related to
the problem of global existence of classical solutions: in fact, it is well-known that
Leray–Hopf weak solutions coincide with classical solutions as long as the latter exist.
Constantin andWu [9,10] obtained partial results by extending the programof [3] to the
supercritical regime. In [3] the technique of De Giorgi for uniformly elliptic equations
with measurable coefficients is adapted to prove the smoothness of Leray–Hopf weak
solutions in three steps: the local boundedness of L2 solutions, the Hölder continuity
of L∞ solutions, and the smoothness of Hölder solutions. While the L∞-bound for
Leray–Hopf weak solutions still works in the supercritical case [9], only conditional
regularity results are known regarding the second and third step of the scheme. For
instance, Hölder solutions in Cδ are smooth for δ > 1− 2α, while for δ < 1− 2α this
is left open [10]. On the negative side, [1] established non-uniqueness of a class of
(very) weak-solution for the system (1)–(3), even for subcritical dissipations. In this
context Theorem 1.1 is, to our knowledge, the first a.e. smoothness / partial regularity
result.

1.2 An "-Regularity Theorem

The estimate on the dimension of the singular set in Theorem 1.1 follows from a simple
covering argument and a so-called ε-regularity result: in order to fix the main ideas,
we present the latter in a simplified version in Theorem 1.3 below. In what follows we
denote by θ∗ the Caffarelli–Silvestre extension of θ and by M the maximal function
with respect to the space variable (see Sects. 2.4 and 2.6); Kq , as defined in (51),
is a constant depending on the local-in-time L∞

t Lq
x (R

2) estimate of θ (recalled in
Sect. 3.1).

Theorem 1.3 Let α ∈ [α0,
1
2

)
, q ≥ 8 and p := 1+α

α
+ 1

q . There exists a universal
ε = ε(α) > 0 such that the following holds: Let (θ, u) be a suitable weak solution of
(1)–(3) on R

2 × (0, T ) (see Definition 3.4) satisfying

‖θ‖p−2
L∞(R2×[t−r2α,t+r2α])

r p(1−2α)+2
(ˆ

C∗(x,t;r)

yb|∇θ∗|2 dz ds dy +
ˆ
C(x,t;r)

M
(
(Dα,2 θ)2

)
dz ds

)
≤ ε, (5)
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where C(x, t; r) := BKqr2α−2/q (x)×(t−r2α, t+r2α), C∗(x, t; r) := [0, r)×C(x, t; r)

and

(Dα,2 θ)(z, s) :=
(ˆ

R2

|θ(z, s) − θ(z′, s)|2
|z − z′|2+2α dz′

) 1
2

. (6)

Then θ is smooth on Br/8(x) × (t − r2α/16, t + r2α/16).

The integral quantities present in (5) are two non-equivalent localized versions of
the dissipative part of the energy, i.e. the L2((0, T ), W α,2(R2))-norm of θ , and are
globally controlled through the latter. At this point, the careful reader will object that
Theorem 1.3 cannot be used in a covering argument since the maximal function is not
bounded on L1. This issue represents a mere technical difficulty though: it is resolved
by introducing a suitable variant of the sharp maximal function which leads to the
more involved ε-regularity criterion of Corollary 6.6. Theorem 1.3 is a consequence
of the ε-regularity Theorem 5.3 (which holds for every α ∈ ( 14 ,

1
2 )) whose smallness

requirement features an L p-based excess quantity and can be met at some small scale
by requiring (5). Theorem 5.3 on the other hand is obtained via an excess decay result
and a linearization argument, in analogy with [24] for the classical Navier–Stokes
equations and with [7] for the hyperdissipative Navier-Stokes equations. Nevertheless
there are some novelties in our approach with respect to the corresponding results for
Navier-Stokes:

• Our ε-regularity result relies on the crucial observation (previously used in [3,10])
that the equation (1) is invariant under a change of variables which sets the space
average of u to zero. Indeed, the scaling (4), in contrast to the analogous situation
for the Navier-Stokes equations, does not guarantee any control on the average of
u on Br in terms of the average of the rescaled solution ur on B1 as r → 0. The
lack of control on the averages introduces a challenge to iterate the excess decay,
since at each step we need to correct for this change of variable, in a similar spirit
to [10].

• As a second ingredient, we introduce a new notion of suitable weak solution which
enables us to perform energy estimates of nonlinear type controlling a potentially
large power of θ . Such nonlinear energy estimates exploit the boundedness of
Leray–Hopfweak solutions in an essentialway and are not available for theNavier-
Stokes equations. The freedom of choosing a suitable nonlinear power on the other
hand is crucial in the context of the SQG equation: Indeed, the classical (local)
energy controls naturally θ ∈ L∞((0, T ), L2(R2)) ∩ L2((0, T ), W α,2(R2)) and
hence, by interpolation, θ ∈ L2(1+α)(R2 × (0, T )). Yet, since 2(1 + α) < 3 for
α < 1

2 , this is not enough to conclude a strong enough Caccioppoli-type inequality
which accounts for the cubic nonlinearity in the local energy.

• On one side, Theorem 1.3 may be seen as an analogue of Scheffer’s result [27] for
Navier-Stokes, providing ε-regularity criterion at a fixed scale. On the other side,
in order to give an estimate on the dimension of the singular set, the smallness
(5) must be required in terms of differential quantities of θ , as it happens in the
more refined result by Caffarelli, Kohn and Nirenberg for Navier-Stokes [4]. In
the context of the SQG equation, the easier Corollary 6.1 below may be seen as
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the full analogue of Scheffer’s result. Although Corollary 6.1 still establishes the
compactness of the singular set, it does, in contrast to Navier-Stokes, not yield any
estimate on the dimension of the singular set.

Using the “continuity” of the aforementioned ε-regularityTheorem5.3 under strong
convergence in L p, an immediate consequence is the stability of the singular set in
the fractional order α ∈ ( 14 ,

1
2 ] which in particular recovers the following theorem of

[35] (see also [5,6] for related results in other contexts).

Corollary 1.4 (Global regularity for slightly supercritical SQG) Let θ0 ∈ H2(R2)

with ‖θ0‖H2 ≤ R. Then there exists ε = ε(R) > 0 such that (1)–(3) has a unique
smooth solution θ ∈ L∞

loc([0,∞), H2(R2)) ∩ L2
loc((0,∞), H2+α(R2)) for all frac-

tional orders α ∈ [ 12 − ε, 1
2

]
.

Remark 1.5 The corollary could be set in any H1+δ(R2) for δ > 0 which is subcritical
for orders α close to 1

2 and there admits a (quantified) short-time existence of smooth
solutions. In [35] the assumption ‖θ0‖H2 ≤ R is replaced by the scaling invariant
assumption ‖θ0‖α

L2‖θ0‖1−α

Ḣ2 ≤ R. The latter statement can be reduced to ours by

applying a first rescaling which renormalizes the L2-norm of the initial datum to 1.

Moreover, by the decay of the L∞-normof solutions (seeTheorem3.2 below), the ε-
regularity criterion is verified for large times andwe recover the eventual regularization
of suitable weak solutions from L2-initial data for α ∈ ( 14 ,

1
2 ) previously established

for Leray–Hopf solutions in [30] for α close to 1
2 and in [14,20] for any α ∈ (0, 1

2 ).

1.3 A Conjecture on the Optimal Dimension Estimate

Theorem 1.1 leaves open the question of whether or not the estimate on the dimension
of the singular set, as well as the range of α for which it is valid, is optimal. We believe
that a natural conjecture for an optimal estimate of the dimension of the spacetime
singular set is

dimP (Sing θ) ≤ 1

2α
(4 − 4α), (7)

and

dimH(Sing θ) ≤ 1

2α

(
4 − 4α

)
. (8)

In (7),P is the parabolic Hausdorff measure that is, for α < 1
2 , the Hausdorff measure

resulting from restricting the class F of admissible covering sets to the spacetime
cylinders Q̃r (x, t) = Br1/(2α) (x) × (t − r , t]. We refer for instance to [7] for its con-
struction for α > 1

2 . The cylinders Q̃r (x, t) are the natural choice for α < 1
2 because

their diameter is less than 4r , at difference from the classical parabolic cylinders
Br (x) × (t − r2α, t] whose diameter is of the order of r2α .

The conjecture (7) is based on a dimensional analysis of the equation : We may
assign a “dimension” to any function f (θ) of θ via the exponent β of the rescaling
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factor 1/rβ which makes the spacetime integral of f (θ) on Q̃r dimensionless, i.e.
scaling-invariant with respect to (4). The number appearing on the right-hand side of
(7) corresponds then to dimension of the energy, whose dissipative part is the globally
controlled quantity in the form of a spacetime integral which scales best. This would
correspond to the result of Caffarelli, Kohn and Nirenberg [4] ) for the Navier-Stokes
system (see [7,22,33] for fractional dissipations of order α ∈ [ 34 , 5

4 )) who proved that
suitable weak solutions of the latter are smooth outside a closed set of dimension 1.
In fact, for the Navier-Stokes system this bound on the dimension of the singular set
is what the scaling of the equations and boundedness of the energy suggest.

Notice that the right-hand side of both (7) and (8) does not converge to 0 as α → 1
2 :

this is due to the fact that the quantity that dictates the scaling-criticality of the equation,
namely the L∞-normof θ , is not of integral type and hence cannot be used in a covering
argument of the type that we do in the proof of Theorem 1.1. In turn, this covering
argument finds his pivotal quantity in the dissipative part of the energy, which has a
worse scaling than the L∞-norm of θ .

In the proof of Theorem 1.1, it is natural to consider the classical Hausdorff mea-
sure, since the tilting effect of the change of variables, which sets the space average
of u to zero, forces us to work on balls in spacetime (rather than parabolic cylinders,
see Sect. 6.4 and in particular Step 3 of the proof of Corollary 6.6). This effect of the
change of variables constitutes a serious obstacle for any parabolic Hausdorff dimen-
sion estimate. However, our estimate is nonoptimal: to obtain the optimal estimate,
one should replace 1+α

α
by 2 in the estimate of the dimension of the singular set in

Theorem 1.1; however, the integrability exponent 1+α
α

represents the least possible
exponent for which we are able to use a “nonlinear” localized energy inequality in
an excess decay argument (cf. Lemma 3.8). An analogous difficulty appears for the
ipodissipative Navier-Stokes equations for low fractional orders α < 3

4 where the
Caccioppoli-type inequality as described before fails to be strong enough to control
the cubic nonlinearity and indeed no estimate of the dimension of the singular set is
known.

1.4 Structure of the Paper

The paper is structured as follows. After recalling some technical preliminaries in
Sect. 2, we discuss in Sect 3 the global and local energy inequalities of the SQG equa-
tion andwe define the notion of suitableweak solutions. The key compactness property
of the latter is proven in Sect. 3.5 and leads to an excess decay result established in
Sect. 4. The iteration of the excess decay on all scales is performed in Sect. 5 and
requires to introduce a change of variables which sets to 0 the average of the velocity
u on suitable balls. This excess decay yields the basis for several ε-regularity results,
in particular Theorem 1.3, which are deduced in Sect. 6. The proof of Theorem 1.1 is
given in Sect. 7. In Sect. 8, we discuss the stability of the singular set with respect to
variations of the fractional order of dissipation.
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2 Preliminaries

2.1 Notation

We use the following notation for space(time) averages of functions or vector fields f
defined on R2 × [0,∞): For bounded sets E ⊆ R

2 × [0,∞) and F ⊆ R
2, we define

( f )E := −
ˆ

E
f (x, t) dx dt and [ f (t)]F := −

ˆ
F

f (x, t) dx .

Weintroduce the spacetimecylinder adapted to theparabolic scaling (4) of the equation

Qr (x, t) := Br (x) × (t − r2α, t].

In the upper half-space R
3+ we define B∗

r (x) := Br (x) × [0, r) and we define the
extended cylinder

Q∗
r (x, t) := B∗

r (x) × (t − r2α, t].

We will omit the center of the cylinders whenever (x, t) = (0, 0). Moreover, we
use the following convention to describe spacetime Hölder spaces: For α, β ∈ (0, 1)
and Q ⊂ R

2 × R we denote by Cα,β(Q) the functions which are α- and β-Hölder
continuous in space and time respectively, namely such that the following semi-norm
is finite

‖θ‖Cα,β (Q) = sup

{ |θ(x, t) − θ(y, s)|
|x − y|α + |s − t |β : (x, t), (y, s) ∈ Q with (x, t) �= (y, s)

}
.

Whenever α = β, we denote the above space just by Cα(Q). Furthermore, we will
also work with spatial Sobolev spaces of fractional order: For 
 ⊆ R

n , s ∈ (0, 1) and
1 ≤ p < ∞, we denote by

W s,p(
) :=
{

f ∈ L p(
) : | f (x) − f (y)|
|x − y| n

p +s
∈ L p(
 × 
)

}

.

Correspondingly, we define for f ∈ W s,p(
) the Gagliardo semi-norm by

[ f ]W s,p(
) :=
(ˆ




ˆ



| f (x) − f (y)|p

|x − y|n+sp
dx dy

) 1
p

.

In the special p = 2, we will sometimes denote W α,2 by Hα and we recall that for

 = R

n the Gagliardo semi-norm coïncides, up to a universal constant, with the semi-
norms (9). Finally, we will consider the Bochner spaces Lq((0, T ), X) for 1 ≤ q ≤ ∞
and for some Banach space X (here: X = L p(R2) or X = W α,2(R2)). Whenever we
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work on a parabolic cube Qr (x, t), we will use the short-hand notation

L2W α,2(Qr ) := Lq((t − r2α, t), W α,2(Br (x))).

2.2 Singular Points

Wecall a point (x, t) ∈ R
2×(0,∞) a regular point of a Leray–Hopfweak solution θ of

(1)–(3) (see Definition 3.1) if there exists a neighbourhood of (x, t)where θ is smooth.
We denote by Reg θ the open set of regular points in spacetime. Correspondingly, we
define the spacetime singular set Sing θ := [R2 × (0,∞)] \ Reg θ.

2.3 Riesz-Transform

We recall that the Riesz-transforms admit a singular integral representation. Indeed,
for f : R2 → [0,∞) and i = 1, 2

Ri f (x) = c p.v.
ˆ
R2

xi − zi

|x − z|3 f (z) dz.

By Calderon–Zygmund they are bounded operators on L p for 1 < p < ∞ and from
L∞ to B M O.

2.4 Caffarelli–Silvestre Extension

We recall the following extension problem. We use the notation ∇, � for differential
operators defined on the upper half-space Rn+1+ .

Theorem 2.1 (Caffarelli–Silvestre [2]) Let θ ∈ Hα(Rn) with α ∈ (0, 1) and set
b := 1 − 2α. Then there is a unique “extension” θ∗ of θ in the weighted space
H1(Rn+1+ , yb) which satisfies

�bθ
∗(x, y) := �θ∗ + b

y
∂yθ

∗ = 1

yb
div
(
yb∇θ∗) = 0

and the boundary condition

θ∗(x, 0) = θ(x).

Moreover, there exists a constant cn,α , depending only on n and α, with the following
properties:

(a) The fractional Laplacian (−�)αθ is given by the formula

(−�)αθ(x) = −cn,α lim
y→0

yb∂yθ
∗(x, y).
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(b) The following energy identity holds

ˆ
Rn

|(−�)
α
2 θ |2 dx=

ˆ
Rn

|ξ |2α|θ̂ (ξ )|2 dξ=cn,α

ˆ
R

n+1+
yb|∇θ∗|2 dx dy. (9)

(c) The following inequality holds for every extension η ∈ H1(Rn+1+ , yb) of θ :

ˆ
R

n+1+
yb|∇θ∗|2 dx dy ≤

ˆ
R

n+1+
yb|∇η|2 dx dy.

2.5 Poincaré Inequalities

Let α ∈ (0, 1), 1 ≤ p < n
α
and p∗ := pn

n−pα
. There exists a universal constant

C = C(α, n, p) such that for every f ∈ W α,p(Rn), q ∈ [p, p∗], x ∈ R
n and r > 0

(ˆ
Br (x)

| f (z) − [ f ]Br (x)|q dz

) 1
q ≤ Crα−n( 1

p − 1
q )[ f ]Wα,p(Br (x)). (10)

We will also need a weighted Poincaré inequality in the spirit of the classical work
[17] for α = 1 (where on the other side much more general weights are admissible).
Let ω ∈ C∞

c (Rn) be a radial, non-increasing weight such that ω ≡ 1 on Br/2(x),
ω ≡ 0 outside Br (x) and |∇ω| ≤ C

r pointwise. We introduce the weighted average

[ f ]ω,Br (x) :=
( ˆ

Br (x)

ω(z) dz

)−1 ˆ
Br (x)

f (z)ω(z) dz.

The following weighted Poincaré inequality is classical for α = 1 (see [23, Lemma
6.12]) and it is established for q = p in [16, Proposition 4]: Their proof extends to
the other endpoint q = p∗ and hence to the range q ∈ [p, p∗] by interpolation.

Lemma 2.2 Under the above assumptions, we have the weighted Poincaré inequality

(ˆ
Br (x)

| f (z) − [ f ]ω,Br (x)|qω(z) dz

) 1
q ≤ C̃rα−n( 1

p − 1
q )[ f ]Wα,p(Br (x)) (11)

where C̃ = 22−α+n/pC .

In the case p = 2, we can rewrite the right-hand side of (10) and (11) in terms of the
extension as follows.

Lemma 2.3 Let n ≥ 2, α ∈ (0, 1) , 0 < r < s, f ∈ W α,2(Rn) and g ∈ C1(R). Then
there exists C = C(n, α) such that

[g ◦ f ]Wα,2(Br )
≤ C

( ˆ
B∗

s

yb|∇[g( f ∗)]|2 dx dy
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+(s − r)−2
ˆ

B∗
s \B∗

r

yb(g( f ∗))2 dx dy

) 1
2

(12)

and for any 2 ≤ q ≤ 2n
n−2α

‖g ◦ f ‖Lq (Br ) ≤ Cr−n
(
1
2− 1

q

)(
r2a

ˆ
B∗

s

yb|∇[g( f ∗)]|2 dx dy

+r2α(s − r)−2
ˆ

B∗
s \B∗

r

yb(g( f ∗))2 dx dy +
ˆ

Br

(g( f ))2 dx

) 1
2

. (13)

In particular, for any x ∈ R
n

[ f ]Wα,2(Br (x)) ≤ C

( ˆ 4
3 r

0

ˆ
B 4
3 r

(x)

yb|∇ f ∗|2(z, y) dz dy

) 1
2

. (14)

Proof Let n ≥ 2, α ∈ (0, 1), 0 < r < s and g ∈ C1(R). By approximation we may
assume that f is Schwartz. Fix a smooth cut-off function ϕ ∈ C∞

c (Rn+1+ ) such that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B∗

r , suppϕ ⊆ B∗
s and |∇ϕ| ≤ C(s − r)−1. For α ∈ (0, 1) we

use the minimizing property of the extension to write

[g ◦ f ]2Wα,2(Br )
=

ˆ
Br

ˆ
Br

|g( f (x)) − g( f (z))|2
|x − z|n+2α dx dz

≤
ˆ
Rn

ˆ
Rn

|((g ◦ f )ϕ|y=0)(x) − ((g ◦ f )ϕ|y=0)(z)|2
|x − z|n+2α dx dz

= cn,α

ˆ
R

n+1+
yb|∇((g ◦ f )ϕ|y=0)

∗|2 dx dy

≤ cn,α

ˆ
R

n+1+
yb|∇(g( f ∗)ϕ)|2 dx dy

≤ 2cn,α

ˆ
R

n+1+
yb|∇[g( f ∗)]|2ϕ2 dx dy

+ 2cn,α

ˆ
R

n+1+
yb(g( f ∗))2|∇ϕ|2 dx dy

and thus (12) follows. The estimate (13) follows from (12) via Sobolev embedding
and interpolation. As for (14), we may assume x = 0 and denoting by c the weighted
average of f ∗ with respect to the weight yb on B4r/3 × [0, 4r/3], we have by the
weighted Poincaré inequality of [17] (with the Muckenhoupt weight ω(x, y) = yb ∈
A2 on R

3+)

r−2
ˆ 4

3 r

0

ˆ
B 4
3 r

yb| f ∗ − c|2 dx dy �
ˆ 4

3 r

0

ˆ
B 4
3 r

yb|∇ f ∗|2 dx dy. (15)
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The estimate (14) follows then from (12) (applied to f − c and s = 4r/3) and (15). ��

2.6 (Sharp) Maximal Function

For a function f : R2 × [0,∞) → R we introduce the maximal function (in space)

M f (x, t) := sup
r>0

−
ˆ

Br (x)

| f (z, t)| dz

as well as the sharp fractional maximal function (in space)

f #α (x, t) := sup
r>0

r−α−
ˆ

Br (x)

| f (z, t) − [ f (t)]Br (x)| dz

and for q >
√
2 the following variant

f #α,q(x, t) := sup
r>0

r−2α(1−1/q2)−
ˆ

Br (x)

| f (z, t) − [ f (t)]Br (x)|2(1−1/q2) dz. (16)

In order to use a spacetime integral of θ#α,q in a covering argument, we need to know
that it is globally controlled; to guarantee the latter, we are forced to choose q < ∞.

Lemma 2.4 Let α ∈ (0, 1), f ∈ W α,2(Rn) and q ∈ (
√
2,∞). Then there exists a

constant C = C(n, q) ≥ 1 (which is uniformly bounded for q bounded away from ∞)
such that

‖ f #α ‖2L2(Rn)
+ ‖ f #α,q‖1+1/(q2−1)

L1+1/(q2−1)(Rn)
≤ C[ f ]2Wα,2(Rn)

.

For α = 1, the equivalent of Lemma 2.4 is a simple consequence of the Poincaré
inequality and the maximal function estimate. Indeed, by Poincaré we have almost
everywhere the pointwise estimate

f #1 (x) � M(|∇ f |)(x) f #1,q(x) � M(|∇ f |2(1−1/q2)
)
(x)

for f ∈ W 1,1
loc and f ∈ W 1,2(1−1/q2)

loc respectively. Integrating in x and using the

boundedness of themaximal function on L2 and L1+1/(q2−1),we obtain the equivalent
of Lemma 2.4.
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Proof We give the proof for f #α,q . We estimate the quantity in the supremum in (16)

−
ˆ

Br (x)

∣
∣∣∣−
ˆ

Br (x)

f (z) − f (y)

rα
dy

∣
∣∣∣

2(1−1/q2)

dz ≤ −
ˆ

Br (x)

(
−
ˆ

Br (x)

| f (z) − f (y)|2
r2α

dy

)1−1/q2

dz

≤ C−
ˆ

Br (x)

( ˆ
Br (x)

| f (z) − f (y)|2
|z − y|n+2α dy

)1−1/q2

dz

≤ C −
ˆ

Br (x)

(
Dα,2 f (z)

)2(1−1/q2)
dz, (17)

where Dα,2 f is the n-dimensional version of (6), i.e. for z ∈ R
n

(Dα,2 f )(z) :=
(ˆ

Rn

| f (z) − f (z′)|2
|z − z′|n+2α dz′

) 1
2

.

By taking the supremum over r > 0, we deduce from (17) that for almost every x

f #α,q(x) ≤ CM((Dα,2 f )2(1−1/q2)
)
(x) (18)

and hence by the maximal function estimate on L1+1/(q2−1)

‖ f #α,q‖1+1/(q2−1)

L1+1/(q2−1)(Rn)
≤ C‖(Dα,2 f )2(1−1/q2)‖1+1/(q2−1)

L1+1/(q2−1)(Rn)

= C‖Dα,2 f ‖2L2(Rn)
= C[ f ]2Wα,2(Rn)

.

��

3 The Local Energy Inequalities

3.1 Leray–HopfWeak Solutions

We recall the notion of Leray–Hopf weak solutions.

Definition 3.1 Let θ0 ∈ L2(R2). A pair (θ, u) is a Leray–Hopfweak solution of (1)–(2)
on R2 × (0, T ) if:

(a) θ ∈ L∞((0, T ), L2(R2)) ∩ L2((0, T ), W α,2(R2));
(b) θ solves (1)–(2) in the sense of distributions, namely div u = 0 and

ˆ (
∂tϕθ + uθ · ∇φ − (−�)αϕθ

)
dx dt = −

ˆ
θ0(x) · ϕ(0, x) dx (19)

for any ϕ ∈ C∞
c (R2 × R).
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(c) The following inequalities hold for every t ∈ (0, T ) and for almost every s ∈ (0, T )

and every t ∈ (s, T ) respectively:

1

2

ˆ
θ2(x, t) dx +

ˆ t

0

ˆ
|(−�)

α
2 θ |2(x, τ ) dx dτ ≤ 1

2

ˆ
|θ0|2(x) dx (20)

1

2

ˆ
|θ |2(x, t) dx +

ˆ t

s

ˆ
|(−�)

α
2 θ |2(x, τ ) dx dτ ≤ 1

2

ˆ
|θ |2(x, s) dx (21)

Correspondingly,we say that θ is a Leray–Hopfweak solution of (1)–(3) if additionally
(3) holds.

Observe that from the weak formulation (19) it follows that for all ϕ ∈ C∞
c (R3+ ×

[0, T ))

ˆ
θ(x, t)ϕ(x, 0, t) dx −

ˆ
θ(x, s)ϕ(x, 0, s) dx

=
ˆ t

s

ˆ (
θ∂τϕ|y=0 + (uθ) · ∇ϕ|y=0 − θ(−�)αϕ|y=0

)
dx dτ

=
ˆ t

s

ˆ (
θ∂τϕ|y=0 + (uθ) · ∇ϕ|y=0

)
dx dτ − cα

ˆ t

s

ˆ
R
3+

yb∇θ∗ · ∇ϕ dx dy dτ

(22)

for s = 0 and almost every t ∈ (0, T ) and for almost every 0 < s < t < T (with cα

given by Theorem 2.1). Indeed, the equality between the last term of the second line
and the last term of (22) holds for every θ ∈ L2((0, T ), W α,2(R2)); in the smooth
case this equality is a consequence of Theorem 2.1 which one recovers for general θ
through regularization.

We recall that any Leray–Hopf weak solution is actually in L∞ for t > 0.

Theorem 3.2 ([10] Theorem 2.1) Let θ0 ∈ L2(R2) and let (θ, u) be a Leray–Hopf
weak solution of (1)–(2). Then there exist a universal constant, independent on u,
such that for any t > 0

sup
x∈R2

|θ(x, t)| ≤ C‖θ0‖L2 t−
1
2α . (23)

In the particular case (3), where u = R⊥θ , we obtain as a consequence that for any
t > 0

‖u(·, t)‖B M O(R2) ≤ C‖θ0‖L2 t−
1
2α . (24)

Remark 3.3 In [10] Theorem 3.2 is proven for Leray–Hopf weak solutions of the
coupled system (1)–(3). However, in the proof of (23) only the energy inequality on
level sets together with the assumption div u = 0 is used; the structure (3) is only used
to deduce (24) from (23).
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3.2 SuitableWeak Solutions

We are now ready to give our definition of suitable weak solution. Both this notion and
the one of Leray–Hopf solution are given without requiring the coupling (3), since, in
the proof of Theorem 1.3, we will need to work on a larger class of equations, where
u is obtained from θ by means of the Riesz transform and a temporal translation.

Definition 3.4 A Leray–Hopf weak solution (θ, u) of (1)–(2) on R
2 × (0, T ) is a

suitable weak solution if the following two inequalities hold for almost every t ∈
(0, T ), all nonnegative test functions1 ϕ ∈ C∞

c (R3+ × (0, T )) with ∂yϕ(·, 0, ·) = 0 in
R
2×(0, T ), for all q ≥ 2 and every linear transformation of the form η := (θ − M)/L

with scalar L > 0 and shift M ∈ R:

ˆ
R2

ϕ(x, 0, t)η2(x, t) dx + 2cα

ˆ t

0

ˆ
R
3+

yb|∇η∗|2ϕ dx dy ds

≤
ˆ t

0

ˆ
R2

(η2∂tϕ|y=0 + uη2 · ∇ϕ|y=0) dx ds + cα

ˆ t

0

ˆ
R
3+

yb(η∗)2�bϕ dx dy ds, (25)

ˆ
R2

ϕ(x, 0, t)|η|q (x, t) dx + 4
(
1 − 1

q

)
cα

ˆ t

0

ˆ
R
3+

yb|∇|η∗| q
2 |2ϕ dx dy ds

≤
ˆ t

0

ˆ
R2

(|η|q∂tϕ|y=0 + u|η|q · ∇ϕ|y=0) dx ds + cα

ˆ t

0

ˆ
R
3+

yb|η∗|q�bϕ dx dy ds, (26)

where the constant cα depends only on α and comes from Theorem 2.1.
Correspondingly, we say that θ is a suitable weak solution of (1)–(3) if additionally

(3) holds.

Remark 3.5 In the classical notion of suitable weak solutions for the (hyperdissipative)
Navier-Stokes equations, the local energy inequality (25) is asked to hold only for θ

and not for every linear transformation η := (θ − M)/L . However, it can be proved
(see for instance [7]) that the class of suitable weak solutions is stable under this
transformation. Here on the other hand, since we use a “nonlinear” energy inequality
(26), it is no longer obvious that the class of suitable weak solutions is stable under
linear transformations; hence we require it already in the definition. The class of
suitable weak solutions contains smooth solutions (see Sect. 3.3) and is non-empty
(see Sect. 3.4) for any L2 initial datum.

3.3 Local Energy Equality for Smooth Solutions

It is not difficult to see that (25) and (26) holdwith an equality for every smooth solution
of (1)–(2). Indeed, let f ∈ C2(R). We multiply (1) by f ′(θ)ϕ|y=0 and integrate in

1 That is, the function ϕ vanishes when |x | + y + |t | is large enough and if t is sufficiently close to 0, but
it can be nonzero on some regions of {(x, y, t) : y = 0}.
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space to obtain for t ∈ [0, T ]
ˆ
R2

f (θ)(x, t)ϕ|y=0(x, t) dx −
ˆ t

0

ˆ
R2

[ f (θ)∂tϕ|y=0 + u f (θ) · ∇ϕ|y=0] dx ds

= −
ˆ t

0

ˆ
R2

(−�)αθ f ′(θ)ϕ|y=0 dx ds.

By means of the divergence theorem, we compute for fixed time t

ˆ
R2

(−�)αθ(x, t) f ′(θ)(x, t)ϕ|y=0(x, t) dx

= −cα lim
y→0+

ˆ
R2

yb∂yθ
∗(x, y, t)

(
f ′(θ∗)ϕ

)
(x, y, t) dx

= cα

ˆ
R
3+
div(yb∇θ∗ f ′(θ∗)ϕ) dx dy

= cα

ˆ
R
3+

yb|∇θ∗|2 f ′′(θ∗)ϕ dx dy − cα

ˆ
R
3+

yb f (θ∗)�bϕ dx dy,

where we integrated by parts in the third equality and used that the boundary terms
vanish due to the hypothesis ∂yϕ(·, 0, ·) = 0. We obtain that for f ∈ C2(R)

ˆ
R2

f (θ)(x, t)ϕ|y=0(x, t) dx + cα

ˆ t

0

ˆ
R
3+

yb|∇θ∗|2 f ′′(θ∗)ϕ dx dy ds

=
ˆ t

0

ˆ
R2

[
f (θ)∂tϕ|y=0 + u f (θ) · ∇ϕy=0

]
dx ds + cα

ˆ t

0

ˆ
R
3+

yb f (θ∗)�bϕ dx dy ds.

Observe that if f is moreover convex and nonnegative, both the left- and the right-
hand side of the above equality have a sign. In particular, we obtain (25) with an
equality when choosing f (x) = ( x−M

L

)2 (since f ′′ ≡ 2L−2) and (26) when choosing
f (x) = ∣∣ x−M

L

∣∣q for q ≥ 2.

3.4 Existence of SuitableWeak Solutions

For any α ∈ (0, 1
2 ) the existence of suitable weak solutions can be established from

any initial datum θ0 ∈ L2(R2) by adding a vanishing viscosity term ε�θ on the
right-hand side and letting ε → 0. The key argument is a classical Aubin-Lions type
compactness argument that we sketch in Appendix C.

Theorem 3.6 For any θ0 ∈ L2(R2) there is a suitable weak solution of (1)–(3) on
R
2 × (0,∞).
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3.5 Compactness

We establish the compactness of a sequence of suitable weak solutions with vanishing
excess. Let (θ, u) be a solution of (1)–(2) on R

2 × (0, T ). For r > 0 and Qr (x, t) ⊆
R
2 × (0, T ), we define the excess as

E(θ, u; x, t, r) := E S(θ; x, t, r) + E V (u; x, t, r) + E N L(θ; x, t, r)

where

E S(θ; x, t, r) :=
(

−
ˆ

Qr (x,t)
|θ(z, s) − (θ)Qr (x,t)|p dz ds

) 1
p

E V (u; x, t, r) :=
(

−
ˆ

Qr (x,t)
|u(z, s) − [u(s)]Br (x)|p dz ds

) 1
p

E N L (θ; x, t, r) :=
(

−
ˆ t

t−r2α
sup
R≥ r

4

( r

R

)σ p
(

−
ˆ

BR (x)

|θ(z, s) − [θ(s)]Br (x)| 32 dz

) 2p
3

ds

) 1
p

,

for p ∈ (3,∞) and σ ∈ (0, 2α) yet to be chosen. Observe that both parameters serve
as (hidden) parameter for now and will be chosen in the very end to close the main
ε-regularity Theorem (see also Remark 5.4).Whenever (x, t) = (0, 0), we will denote
the excess simply by E(θ, u; r).

Remark 3.7 (Rescaling of the excess) The excess behaves nicely under the natural
rescaling (4). Indeed, for r > 0 we have

E(θ, u; x, t, r) = r1−2α E(θr , ur ; x, t, 1).

Lemma 3.8 (Compactness) Let α ∈ (0, 1
2 ] , σ ∈ (0, 2α) and p > 1+α

α
. Let (θk, uk)

be a sequence of suitable weak solutions of (1)–(2) on R
2 × [−1, 0] with

• limk→∞ E(θk, uk; 1) = 0
• and [uk(s)]B1 = 0 for all s ∈ [−1, 0].

Set Ek := E(θk, uk; 1) and define ηk := (θk − (θk)Q1)/Ek .

Then there exists η ∈ L3/2
loc (R2 × [−1, 0]) such that, up to subsequences, ηk⇀η

weakly in L3/2
loc (R2 × [−1, 0]). Moreover,

ηk → η strongly in L p(Q3/4)

and η solves

∂tη + (−�)αη = 0 on Q3/4

with E S(η; 1) + E N L(η; 1) ≤ 1.
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We will need the following auxiliary Lemma.

Lemma 3.9 (Tail estimate) Let α ∈ (0, 1
2 ] , σ ∈ (0, 2α) and 1 < p < ∞ . Then there

exists a universal constant C = C(α, σ, p) ≥ 1 such that for every θ ∈ L p(B2) with

sup
R≥1

1

Rσ p

(
−
ˆ

BR

|θ(x)| dx

)p

< +∞,

we have the estimate

ˆ
B∗
1

yb|θ∗(x, y)|p dx dy ≤ C

( ˆ
B2

|θ(x)|p dx + sup
R≥1

1

Rσ p

(
−
ˆ

BR

|θ(x)| dx

)p)
.

Proof We set θ1 := θ1B2 and θi+1 := θ(1B2i+1 − 1B2i ) for i ≥ 1 . Recall that for
y > 0 the extension is, up to a normalizing dimensional constant, given by θ∗(x, y) =
(P(·, y) ∗ θ)(x) for P(x, y) = y2α/(|x |2 + y2)1+α. We estimate

ˆ
B∗
1

yb|θ∗|p dx dy �
ˆ

B∗
1

yb|θ∗
1 |p dx dy +

ˆ 1

0
yb
(∑

i>1

‖θ∗
i (·, y)‖L∞(B1)

)p
dy.

The first term is estimated using Young and the fact that ‖P(·, y)‖L1(R2) =
‖P(·, 1)‖L1(R2) = Cα is a universal constant (see for instance the appendix of [7]).
Indeed,

ˆ
B∗
1

yb|θ∗
1 |p dx dy =

ˆ 1

0
yb‖θ1 ∗ P(·, y)‖p

L p(B1)
dy

≤
ˆ 1

0
yb‖P(·, y)‖p

L1(R2)
‖θ1‖p

L p(R2)
dy ≤ C p

α

ˆ
B2

|θ |p dx .

For i ≥ 1, we estimate, using the fact that for x ∈ B1 and z ∈ B2i+1 \ B2i we have
|x − z| ≥ 2i−1 and thus P(x − z, y) ≤ P(2i−1, y) uniformly in z,

‖θ∗
i+1(·, y)‖L∞(B1) ≤ P(2i−1, y)

ˆ
B2i+1\B2i

|θ | dx ≤
ˆ

B2i+1\B2i

y2α|θ |
22(1+α)(i−1)

dx,

so that

∑

i>1

‖θ∗
i (·, y)‖L∞(B1) ≤

∑

i≥1

y2α

2(2α−σ)(i−1)

ˆ
B2i+1\B2i

|θ |
2(2+σ)(i−1)

dx

≤ Cy2α
(∑

i≥1

1

2(2α−σ)(i−1)

)
sup
R≥1

1

Rσ
−
ˆ

BR

|θ | dx .

We obtain the claim by raising the previous inequality to the power p. ��
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Proof of Lemma 3.8 Observe that uk → 0 in L p(Q1) and thus, we may assume that

sup
k≥1

‖uk‖L p(Q1) ≤ 1.

Moreover, by construction the pair (ηk, uk) is a distributional solution to

∂tηk + uk · ∇ηk + (−�)αηk = 0

with E(ηk,
uk
Ek

; 1) = 1.

Step 1: We prove the uniform boundedness of ηk in
(
L∞L2 ∩ L2W α,2 ∩

L(p−1)(1+α)
)
(Q3/4).

Fix a test function ϕ ∈ C∞
c (R3+ × (0,∞)) such that 0 ≤ ϕ ≤ 1, suppϕ ⊂ Q∗

7/8
and ϕ ≡ 1 on Q∗

27/32. Moreover, we assume that ϕ is constant in y for small y, that

is ∂yϕ = 0 for {y < 1
2 }. From the local energy inequality (25) we deduce that for

t ∈ [−(13/16)2α, 0]

ˆ
B27/32

η2k (x, t) dx + 2cα

ˆ t

−
(
13
16

)2α

ˆ
B∗
27/32

yb|∇η∗
k |2(x, y, s) dx dy ds

≤
ˆ

B7/8

η2k (x, t)ϕ(x, 0, t) dx + 2cα

ˆ t

−
(
7
8

)2α

ˆ
B∗
7/8

yb|∇η∗
k |2(x, y, s)ϕ(x, y, s) dx dy ds

≤
ˆ t

−
(
7
8

)2α

ˆ
B7/8

(η2k∂tϕ|y=0 + ukη
2
k · ∇ϕ|y=0) dx ds

+ cα

ˆ t

−
(
7
8

)2α

ˆ
B∗
7/8

yb(η∗
k )2�bϕ dx dy ds

�
ˆ

Q7/8

(η2k + |ηk |
2p

p−1 + |uk |p) dx ds +
ˆ

Q∗
7/8

yb(η∗
k )2 dx dy ds.

Using Lemma 2.3, the previous inequality and Lemma 3.9, we deduce that for t ∈
[−(13/16)2α, 0]

ˆ
B13/16

η2k (x, t) dx +
ˆ t

−
(
13
16

)2α [ηk(s)]2Wα,2(B13/16)
ds

�
ˆ

B27/32

η2k (x, t) dx + 2cα

ˆ t

−
(
13
16

)2α

ˆ
B∗
27/32

yb(|∇η∗
k |2 + (η∗

k )2
)

dx dy ds

�
ˆ

Q1

(η2k + |ηk |
2p

p−1 + |uk |p) dx ds

+
ˆ 0

−1
sup
R≥1

1

R2σ

(
−
ˆ

BR

|ηk(x, s) − [ηk(s)]B1 | dx

)2
ds

� 1,
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where we used in the last inequality that 2p
p−1 ≤ p together with the fact

E(ηk,
uk
Ek

; 1) = 1. Taking the supremum over t ∈ [−(13/16)2α, 0] , we deduce that
uniformly in k ≥ 1

sup
t∈[−(13/16)2α,0]

ˆ
B13/16

η2k (x, t) dx +
ˆ 0

−
(
13
16

)2α [ηk(s)]2Wα,2(B13/16)
ds ≤ C .

We now consider ψk := |ηk | p−1
2 . Using Lemma 2.3 applied with r = 13

16 , s = 27
32 ,

g(x) = |x | p−1
2 , the local energy inequality (26) forψk and proceeding as before, using

also that p > 3, we thus have for any t ∈ [−(13/16)2α, 0] that
ˆ

B13/16

ψ2
k (x, t) dx +

ˆ t

−
(
13
16

)2α [ψk(s)]Wα,2(B13/16)
ds

�
ˆ

B27/32

|ηk |p−1(x, t) dx +
ˆ t

−
(
27
32

)2α

ˆ
B∗
27/32

yb|∇|η∗
k | p−1

2 |2 dx dy ds

+
ˆ

Q∗
27/32

yb|η∗
k |p−1 dx dy ds

�
ˆ

Q7/8

(|ηk |p−1 + |ηk |p + |uk |p) dx ds

+
ˆ

Q∗
7/8

yb|η∗
k |p−1 dx dy ds

�
ˆ

Q1

(|ηk |p−1 + |ηk |p + |uk |p) dx ds

+
ˆ 0

−1
sup
R≥1

1

R(p−1)σ

(
−
ˆ

BR

|ηk(x, s) − [ηk(s)]| dx

)p−1

ds

� 1.

Taking the supremum over t ∈ [−(13/16)2α, 0], we obtain as before the uniform-in-k
bound

sup
t∈[−(13/16)2α,0]

ˆ
B13/16

ψ2
k (x, t) dx +

ˆ 0

−
(
13
16

)2α [ψk(s)]2Wα,2(B13/16)
ds ≤ C .

From Sobolev embedding Ẇ α,2 ↪→ L
2

1−α , we obtain by interpolation that
‖ψk‖L2(1+α)(Q13/16)

≤ C uniformly in k ≥ 1 and hence in particular
supk≥1‖ηk‖L(p−1)(1+α)(Q13/16)

≤ C .

Step 2: We use an Aubin-Lions type compactness argument to deduce strong conver-
gence of ηk in Lq(Q3/4) for every 1 ≤ q < (p −1)(1+α). Since (p −1)(1+α) > p
by hypothesis, we deduce in particular that ηk → η strongly in L p(Q3/4).
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We may assume q ∈ [2, (p − 1)(1 + α)). Since the excess uniformly bounds the
L3/2

loc -norm of ηk , there exists by Banach-Alaoglu a limit η ∈ L3/2
loc (R2 × [−1, 0])

such that ηk⇀η weakly in L3/2
loc (R2 × [−1, 0]), up to extracting a subsequence. By

the uniform boundedness established in Step 1, we may assume, up to extracting a
further subsequence, that ηk⇀η weakly in Lq(Q13/16). We now claim that the latter
convergence is in fact strong on the slightly smaller cube Q3/4. Indeed, fix ε > 0 and
a family {φδ}δ>0 of mollifiers in the space variable. For k, j ≥ 1 we estimate

‖ηk − η j‖Lq (Q3/4) ≤ ‖ηk − ηk ∗ φδ‖Lq (Q3/4)

+‖η j − η j ∗ φδ‖Lq (Q3/4) + ‖(ηk − η j ) ∗ φδ‖Lq (Q3/4).

We claim that the first two contributions converge to 0 as δ → 0, uniformly in k and
j . Indeed, we compute for δ small enough by Hölder and the uniform boundedness of
ηk in L2W α,2(Q13/16)

‖ηk − ηk ∗ φδ‖2L2(Q3/4)
=

ˆ 0

−
(
3
4

)2α

ˆ
B3/4

∣
∣∣∣

ˆ
(ηk(x) − ηk(y))φδ(x − y) dy

∣
∣∣∣

2

dx dt

≤
ˆ 0

−
(
3
4

)2α

ˆ
B3/4

(ˆ |ηk(x) − ηk(y)|2
|x − y|2+2α 1|x−y|≤δ dy

)

( ˆ
φ2

δ (x − y)|x − y|2+2α dy

)
dx dt

≤ πδ2α‖φ‖2L∞

ˆ 0

−
(
3
4

)2α

ˆ
B3/4+δ

ˆ
B3/4+δ

|ηk(x) − ηk(y)|2
|x − y|2+2α dy dx dt

≤ πδ2α‖φ‖2L∞

ˆ 0

−
(
13
16

)2α [ηk(t)]2Wα,2(B13/16)
dt ≤ Cδ2α, (27)

where C does not depend on k ≥ 1 by Step 1. Since ηk is uniformly bounded in
L(1+α)(p−1)(Q13/16), we have by interpolation for some ϑ ∈ (0, 1] and C ≥ 1 that

‖ηk − ηk ∗ φδ‖Lq (Q3/4) ≤ Cδαϑ .

We now fix δ small enough, independently of k, such that this contribution does not
exceed ε

3 .As for the third term, we consider for fixed δ > 0 small, the family of curves
{t �→ ηk ∗ φδ}k≥1. From the equation, we have the identity

∂t (ηk ∗ φδ) = −(uk · ∇ηk) ∗ φδ − (−�)αηk ∗ φδ.

Observe that uk · ∇ηk = div(ukηk) so that

‖(uk · ∇ηk) ∗ φδ‖
L

pq
p+q ([−(3/4)2α,0],W 1,∞(B3/4))

≤ ‖uk‖L p(Q3/4)‖ηk‖Lq (Q3/4)‖φδ‖
W

2, pq
pq−p−q (B3/4)

.
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As for the last term, we have that for x ∈ B3/4

|(−�)αφδ(x)| = cα

∣∣∣
∣

ˆ
φδ(x) − φδ(y)

|x − y|2+2α dy

∣∣∣
∣

� ‖φδ‖C2

ˆ
B1

dy

|y|2α + ‖φδ‖L∞
ˆ

Bc
1

dy

|x − y|2+2α

≤ C(δ)

1 + |x |2+2α .

Analogously, |(−�)α∇φδ(x)| ≤ C(δ)

1+|x |2+2α . We estimate the convolution on dyadic
balls for fixed time. We set ηk,i := ηk(1B2i+1 − 1B2i ) for i ≥ 0 and estimate

‖(−�)αφδ ∗ ηk‖W 1,∞(B3/4)
≤ C(δ)

( ˆ
B1

|ηk | +
∑

i≥0

‖(−�)αφδ ∗ ηk,i‖W 1,∞(B3/4)

)
.

For i ≥ 0 we observe that for x ∈ B3/4 and z ∈ B2i+1 \ B2i we have |x − z| ≥ 2i−2 ,

so that

∑

i≥0

‖(−�)αφδ ∗ ηk,i‖W 1,∞(B3/4)
≤ C(δ)

∑

i≥0

1

2(i−2)(2+2α)

ˆ
B2i+1\B2i

|ηk | dy

≤ C(δ)
∑

i≥0

1

2(i−2)(2α−σ)

ˆ
B2i+1\B2i

|ηk |
2(2+σ)(i−2)

dy

≤ C(δ)

(
sup
R≥1

1

Rσ
−
ˆ

BR

|ηk − [ηk]1| dy +
ˆ

B1

|ηk | dy

)
.

We conclude by integrating in time that

‖(−�)αφδ ∗ ηk‖L p([−(3/4)2α,0],W 1,∞(B3/4))
≤ C(δ)

(
E S(ηk; 1) + E N L(ηk; 1)

)
.

Summarizing, we have shown that

‖∂t (ηk ∗ φδ)‖
L

pq
p+q ([−(3/4)2α,0],W 1,∞(B3/4))

≤ C(δ)

uniformly in k ≥ 1. Hence the family of curves {t �→ ηk ∗φδ}k≥1 is an equicontinuous
sequence with values in a bounded subset of W 1,∞(B3/4). By Arzela-Ascoli there
exists a uniformly convergent subsequence (which we don’t relabel), and in particular,
there exists N = N (δ) > 0 such that for any k, j ≥ N we have

‖(ηk − η j ) ∗ φδ‖Lq (Q3/4) ≤ ε

3
,

hence ‖ηk − η j‖Lq (Q3/4) ≤ ε for all k, j ≥ N which proves the claim.
Step 3: Conclusion.
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ByStep 2we can pass to the limit in the equation in Q3/4 and deduce thatη ∈ L p(Q3/4)

is a distributional solution of ∂tη + (−�)αη = 0 in Q3/4. Moreover, by weak lower
semicontinuity E S(η; 1) + E N L(η; 1) ≤ 1. ��

4 Decay of the Excess

In this section, we prove the self-improving property of the excess, namely that if
the excess is small at any given Qr , there exists a small, fixed scale μ0 ∈ (0, 1

2 ),
independent of r , at which the excess decays between Qr and Qμ0r - provided that
the velocity field has zero average on Br . This requirement is crucial to guarantee the
decay of the excess related to the non-local part of the velocity (see E V (v2k ;μ) in the
proof of Proposition 4.1). More generally, one could prove this excess decay at scale
μ0 under the weaker assumption that the average of the rescaled velocity ur on B1 is
bounded uniformly in r for r ∈ (0, 1). However, since all L p-norms are supercritical
with respect to the scaling (4) of the equation, we will not be able to guarantee such an
assumption. In this section, we will also for the first time make use of the structure of
the velocity field (3). Similar arguments should apply for velocity fields determined
from θ by other singular integral operators.

Proposition 4.1 (Excess decay)
Let α ∈ (0, 1

2 ), σ ∈ (0, 2α) and p > max
{ 1+α

α
, 2α

σ

}
. For any c > 0 and any

γ ∈ (0, σ − 2α
p ) there exist universal ε0 = ε0(α, σ, p, c, γ ) ∈ (0, 1

2 ) and μ0 =
μ0(α, σ, p, c, γ ) ∈ (0, 1

2

)
such that the following holds: Let Qr (x, t) ⊆ R

2 × (0,∞)

and let (θ, u) be a suitable weak solution to (1)–(2). We assume that the velocity field
satisfies [u(s)]Br (x) = 0 for all s ∈ [t − r2α, t] and is obtained from θ by

u(y, s) = R⊥θ(y, s) + f (s) (28)

for some f ∈ L1([t − r2α, t]). Then, if E(θ, u; x, t, r) ≤ r1−2αε0 , the excess decays
at scale μ0, that is

E(θ, u; x, t, μ0r) ≤ cμ0
γ E(θ, u; x, t, r).

Remark 4.2 If in (28) f = 0 we recover simply the SQG equation. We will need the
freedom to subtract a function of time f from the velocity field u in order to satisfy
the zero-average assumption (see Lemma 5.1).

We will need the following auxiliary Lemma.

Lemma 4.3 Assume θ ∈ L2
loc(R

2) with supp θ ⊆ (B3/8
)c

and that for some σ ∈ (0, 1)
we have

sup
R≥1

1

Rσ
−
ˆ

BR

|θ(x)| dx < +∞.
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Then R⊥θ ∈ C∞(B3/8) and there exists a universal C = C(σ ) > 0 such that

‖DR⊥θ‖L∞(B1/4) ≤ C sup
R≥1

1

Rσ
−
ˆ

BR

|θ(x)| dx .

Proof of Lemma 4.3 Observe that from (−�)
1
2R⊥θ = 0 on B3/8, we infer that

R⊥θ ∈ C∞(B3/8). Moreover for i, j = 1, 2 and x ∈ B1/4, we notice that the integral
representation is no longer singular and we can compute by integration by parts

∂ jRiθ(x) =
ˆ

|z|≥ 3
8

xi − zi

|x − z|∂ jθ(z) dz = −
ˆ

|z|≥ 3
8

∂ j

(
xi − zi

|x − z|3
)

θ(z) dz,

where we used that the boundary terms at {|z| = 3
8 } and at infinity vanish. Observe

that for x ∈ B1/4 and z ∈ B2i+1 \ B2i we have |x − z| ≥ 2i − 1
4 ≥ 2i−1 for i ≥ −1.

Thus

|∂ jRiθ(x)| ≤
ˆ

3
8≤|z|≤ 1

2

∣∣
∣∂ j

( xi − zi

|x − z|3
)
θ(z)
∣∣
∣ dz +

∑

i≥−1

ˆ
B2i+1 \B2i

∣∣
∣∂ j

( xi − zi

|x − z|3
)
θ(z)
∣∣
∣ dz

≤ C

( ˆ
B1

|θ(z)| dz +
∑

i≥−1

ˆ
B2i+1 \B2i

|θ(z)|
23(i−1)

dz

)

≤ C
( ∑

i≥−1

1

2(i−1)(1−σ)

)(
sup
R≥1

1

Rσ
−
ˆ

BR

|θ(z)| dz

)
.

��
Proof of Proposition 4.1 By translation and scaling invariance, wemay assumew.l.o.g.
(x, t) = (0, 0) and r = 1. We argue by contradiction. Then there exists a sequence
(θk, uk) of suitable weak solutions to (1)–(2) such that

• E(θk, uk;μ) > cμγ E(θk, uk; 1) for all μ ∈ (0, 1
2 ) ,

• limk→∞ E(θk, uk; 1) = 0 ,

• [uk(s)]B1 = 0 for all s ∈ [−1, 0] and for all k ≥ 1,
• uk(y, s) = R⊥θ(y, s) + fk(s) for some fk ∈ L1([−1, 0]).

We set Ek := E(θk, uk; 1) and Mk := (θk)Q1 . We will consider the rescaled and
shifted sequence

ηk := θk − Mk

Ek
and vk := uk

Ek
.

By construction, (ηk)Q1 = 0 and E(ηk, vk; 1) = 1. In particular, we have for all
μ ∈ (0, 1

2 ) that

E(ηk, vk;μ) > cμγ . (29)
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We will now take the limit k → ∞ and argue that (29) contradicts the excess decay
dictated by the linear limit equation. Indeed, by Lemma 3.8, the sequence ηk converges
weakly to η in L3/2

loc (R2×[−1, 0]) andmoreover, ηk → η strongly in L p(Q3/4).Hence
we have for μ ∈ (0, 1

2 )

E S(η;μ) = lim
k→∞ E S(ηk;μ).

We also know from Lemma 3.8 that η ∈ L p(Q3/4) solves the fractional heat equation
∂tη+(−�)αη = 0 on Q3/4 with E S(η; 1)+ E N L(η; 1) ≤ 1. In particular, we deduce
from Lemma A.1 that η is smooth (in space) on Q1/2 and that η ∈ C1−1/p(Q1/2)with
the estimate

‖η‖L∞([−(1/2)2α,0],C1(B1/2))
+ ‖η‖

C
1− 1

p (Q1/2)
≤ C̄(E S(η; 1) + E N L(η; 1)) ≤ C̄ .

(30)

In particular, we infer that for μ ∈ (0, 1
2 )

lim
k→∞ E S(ηk;μ) = E S(η;μ) ≤ C̄μ

2α(1− 1
p )

. (31)

Let us now consider the non-local part of the excess. We split

E N L(ηk;μ) ≤
(

−
ˆ 0

−μ2α
sup

μ
4 ≤R< 1

4

(μ

R

)σ p
(

−
ˆ

BR

|ηk(x, t) − [ηk(t)]Bμ | 32 dx

) 2p
3

dt

) 1
p

+
(

−
ˆ 0

−μ2α
sup
R≥ 1

4

(μ

R

)σ p
(

−
ˆ

BR

|ηk(x, t) − [ηk(t)]Bμ | 32 dx

) 2p
3

dt

) 1
p

.

We estimate the second term by adding and subtracting [ηk(t)]B1 for fixed time t . In
the sequel C ′ = C ′(α, σ ) will denote a universal constant which may change line by
line. Using that E N L(ηk; 1) + E S(ηk; 1) ≤ 1 for all k ≥ 1, we obtain that

(
−
ˆ 0

−μ2α
sup
R≥ 1

4

( μ

R

)σ p
(

−
ˆ

BR

|ηk(x, t) − [ηk(t)]Bμ | 32 dx

) 2p
3

dt

) 1
p

≤ μ
σ− 2α

p E(ηk; 1) + (4μ)σ
(

−
ˆ 0

−μ2α
|[ηk(t)]B1 − [ηk(t)]Bμ |p dt

) 1
p

≤ μ
σ− 2α

p + (4μ)σ
((

−
ˆ 0

−μ2α
|[ηk(t)]B1 − [ηk(t)]B1/2 |p dt

) 1
p

+
(

−
ˆ 0

−μ2α
|[ηk(t)]B1/2 − [ηk(t)]Bμ |p dt

) 1
p
)
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≤ μ
σ− 2α

p + C ′μσ− 2α
p E S(ηk; 1) + (4μ)σ

(
−
ˆ 0

−μ2α
|[ηk(t)]B1/2 − [ηk(t)]Bμ |p dt

) 1
p

≤ C ′μσ− 2α
p + (4μ)σ

(
−
ˆ 0

−μ2α
|[ηk(t)]B1/2 − [ηk(t)]Bμ |p dt

) 1
p

.

We infer, using the strong converge of ηk → η in L p(Q3/4), that

lim inf
k→∞ E N L(ηk;μ) ≤ C ′μσ− 2α

p + (4μ)σ
(

−
ˆ 0

−μ2α
|[η(t)]B1/2 − [η(t)]Bμ |p dt

) 1
p

+
(

−
ˆ 0

−μ2α
sup

μ
4 ≤R< 1

4

(μ

R

)σ p
(

−
ˆ

BR

|η(x, t) − [η(t)]Bμ | 32 dx

) 2p
3

dt

) 1
p

.

Using (30) again, we obtain that |[η(t)]Bμ −[η(t)]B1/2 | ≤ C̄ uniformly in time as well
as

(
−
ˆ 0

−μ2α
sup

μ
4 ≤R< 1

4

(μ

R

)σ p
(

−
ˆ

BR

|η(x, t) − [η(t)]Bμ | 32
) 2p

3
) 1

p

≤ C̄

(
−
ˆ 0

−μ2α
sup

μ
4 ≤R< 1

4

(μ

R

)σ p
R p
) 1

p ≤ C̄μσ .

We conclude that

lim inf
k→∞ E N L(ηk;μ) ≤ C ′μσ− 2α

p . (32)

Finally, let us consider the part of the excess which is related to the velocity vk . We
observe that, using the structure of the velocity (28),

E V (vk;μ) =
(

−
ˆ

Qμ

∣
∣R⊥(E−1

k θk
)
(x, t) − [R⊥(E−1

k θk
)
(t)
]

Bμ

∣
∣p dx dt

) 1
p

.

We write R⊥(E−1
k θk) = v1k + v2k where we introduce

v1k := R⊥ (ηkχ)

for some cut-off χ between B3/8 and B1/2 . Correspondingly, we write

E V (vk;μ) ≤
(

−
ˆ

Qμ

|v1k − [v1k (t)]Bμ |p dx dt

) 1
p +
(

−
ˆ

Qμ

|v2k − [v2k (t)]Bμ |p dx dt

) 1
p

.
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By Calderon–Zygmund estimates, we infer that v1k → R⊥(ηχ) =: v1 strongly in
L p(Q3/4). Moreover by Schauder estimates [29, Proposition 2.8], we have for fixed
time

[v1(t)]
C
1− 1

p (R2)
≤ C ′‖η(t)χ‖

C
1− 1

p (R2)
≤ C ′‖η(t)‖

C
1− 1

p (Q 1
2
)
≤ C ′C̄

uniformly in t ∈ [−(1/2)2α, 0] by (30). We conclude that

lim
k→∞

(
−
ˆ

Qμ

|v1k − [v1k (t)]Bμ |p dx dt

) 1
p =
(

−
ˆ

Qμ

|v1 − [v1(t)]Bμ |p dx dt

) 1
p ≤ C ′μ1− 1

p .

We now come to the excess related to v2k . By construction,

v2k = R⊥
(

θk

Ek
− ηkχ

)
= R⊥

(
ηk(1 − χ) + Mk

Ek

)
.

Correspondingly, we define w1
k,ρ := R⊥(ηk(1−χ)χρ) and w2

k,ρ := R⊥
(

Mk
Ek

χρ

)
for

some radially symmetric cut-off χρ between Bρ and Bρ+1. By Calderon–Zygmund,
we have for fixed time t that w1

k,ρ(t) + w2
k,ρ(t) → v2k (t) as ρ → ∞ strongly in

L p(R2). In particular,

(
−
ˆ

Qμ

|v2k − [v2k (t)]Bμ |p dx dt

) 1
p

= lim
ρ→∞

(
−
ˆ

Qμ

|w1
k,ρ + w2

k,ρ − [(w1
k,ρ + w2

k,ρ)(t)]Bμ |p dx dt

) 1
p

≤ lim sup
ρ→∞

(
−
ˆ

Qμ

|w1
k,ρ − [w1

k,ρ(t)]Bμ |p dx dt

) 1
p

+ lim sup
ρ→∞

(
−
ˆ

Bμ

|w2
k,ρ − [w2

k,ρ(t)]Bμ |p dx dt

) 1
p

.

Let us consider first w1
k,ρ . We apply Lemma 4.3 to w1

k,ρ to deduce that for fixed time t

[w1
k,ρ(t)]Lip(B1/4) ≤ C ′ sup

R≥1

1

Rσ
−
ˆ

BR

|ηk |(x, t) dx

≤ C ′
(
sup
R≥1

1

Rσ
−
ˆ

BR

|ηk(x, t) − [ηk(t)]B1 | dx +
ˆ

B1

|ηk |(x, t) dx

)
.

Integrating in time, we infer that uniformly in ρ ≥ 1

‖w1
k,ρ‖L p([−1,0],Lip(B1/4)) ≤ C ′ (E S(ηk; 1) + E N L(ηk; 1)

)
.
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We deduce that for μ ∈ (0, 1
4 ) we have

lim
ρ→∞

(
−
ˆ

Qμ

|w1
k,ρ(x, t) − [w1

k,ρ(t)]Bμ |p dx dt

) 1
p ≤ C ′μ. (33)

We now come to the contribution of w2
k,ρ . Observe that (−�)1/2 w2

k,ρ = 0 in B1 for

ρ ≥ 1 such that w2
k,ρ is smooth in the inside of B1. Recall moreover, that we have the

integral representation (in the principal value sense)

(
w2

k,ρ

)⊥
(x) = − c

Mk

Ek

ˆ
x − y

|x − y|3χρ(y) dy

so that, by spherical symmetry of χρ , we immediately infer w2
k,ρ(0) = 0. Moreover,

for x ∈ B1/2 we have

|w2
k,ρ(x)| = c

|Mk |
Ek

∣∣∣∣

ˆ
ρ<|x−y|<ρ+1

y

|y|3χρ(x − y) dy

∣∣∣∣

≤ c
|Mk |
Ek

π((ρ + 1)2 − ρ2)
(ρ

2

)−2 = C ′ |Mk |
Ek

ρ−1.

Thus for fixed k ≥ 1, we have

lim
ρ→0

‖w2
k,ρ‖L∞(B1/2) = 0 ,

so that excess associated to vk,2 is controlled by (33). Collecting the terms (31) and
(32) and taking the limes inferior k → ∞ in (29) we have obtained, for a universal
constant C ′ = C ′(α, σ ) > 0 , that

cμγ ≤ C ′μσ− 2α
p = μγ C ′μσ− 2α

p −γ
.

for all μ ∈ (0, 1
4 ). We reach the desired contradiction for

μ ≤
( c

C ′
) 1

σ− 2α
p −γ

. ��

5 Iteration of the Excess Decay

In this section, we prove the decay of the excess on all scales. We iteratively define
shifted rescalings of (θ, u) verifying the zero average assumption of Proposition 4.1
as well as (28) and therefore allowing the decay of the excess when passing at scale
μ0. From the decay of the excess on all scales, we deduce Hölder continuity by
means of Campanato’s Theorem. In contrast to Navier-Stokes, we need our estimates
to be quantitative, since it is not known whether local smoothness for SQG follows
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from a mere L∞-bound; instead we need to prove spatial Cδ-Hölder continuity of the
velocity for a δ > 1 − 2α (see Lemma B.1). The main mechanism of the iteration is
the invariance of the equation under the following change of variables realizing the
zero average assumption on B1/4. The latter has been exploited previously in [3,10].

Lemma 5.1 (Change of variables at unit scale)
Let α ∈ ( 14 ,

1
2 ) and σ ∈ (0, 2α). Let (θ, u) be a suitable weak solution of (1) on

R
2 × [−42α, 0]. Fix (x, t) ∈ Q1. Define θ0(y, s) := θ(y + x + x0(s), s + t) and

u0(y, s) := u(y + x + x0(s), s + t) − ẋ0(s) , where

⎧
⎪⎨

⎪⎩

ẋ0(s) = −
ˆ

B 1
4

u(y + x0(s) + x, s + t) dy

x0(0) = 0.

(34)

Then (θ0, u0) is a suitable weak solution of (1) on R
2 × [−1, 0] with [u0(s)]B1/4 = 0

for s ∈ [−1, 0]. Moreover, there exists universal ε1 = ε1(p, α) ∈ (0, 1
2 ) and C1 ≥ 1

such that if

(
−
ˆ

Q1(x,t)
|u|p dy ds

) 1
p ≤ ε1, (35)

then

E

(
θ0, u0; 1

4

)
≤ C1E(θ, u; x, t, 1).

Remark 5.2 (Change of variables at scale r )
Under the hypothesis of Lemma 5.1, the rescaled pair (θr , ur ) is still a suitable

weak solution for r ∈ (0, 1) (see (4)) and we can apply the change of variables of
Lemma 5.1 to it. More precisely, we define for (x, t) ∈ Q1

θr ,0(y, s) := r2α−1θ(r(y + x0(s) + x), r2α(s + t))

and

ur ,0(y, s) = r2α−1u(r(y + x0(s) + x), r2α(s + t)) − ẋ0(s) ,

where ẋ0(s) = r2α−1−́B1/4
u(r(y + x0(s) + x), r2α(s + t)) with x0(0) = 0. Observe

that equivalently, by considering x̃0(s) := r1−2αx0(s), we can write

θr ,0(y, s) := r2α−1θ(r y + r2α x̃0(s) + r x, r2α(s + t))

and

ur ,0(y, s) = r2α−1
(

u(r y + r2α x̃0(s) + r x, r2α(s + t)) − ˙̃x0(s)
)

.
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Proof By Peano, the ODE (34) admits a solution and we claim it is unique since the
vectorfield generating the flow is log-Lipschitz and hence satisifies theOsgood unique-
ness criterion [34, Chapter II.7 and III.12.7-8]. Indeed, we know from Theorem 3.2
that θ ∈ L∞(R2 × [−2, 0]) and u ∈ L∞([−2, 0], B M O(R2)). We estimate for fixed
time τ as long as |ξ − ζ | ≤ 1

4 , using also the bound |B 1
4
(ξ)�B 1

4
(ζ )| � |ξ − ζ | on the

volume of the symmetric difference,

∣∣
∣∣−
ˆ

B 1
4
(ξ)

u(y + x, τ ) dy − −
ˆ

B 1
4
(ζ )

u(y + x, τ ) dy

∣∣
∣∣

� |ξ − ζ |
∣∣
∣∣−
ˆ

B 1
4
(ξ)\B 1

4
(ζ )

u(y + x, τ ) dy − −
ˆ

B 1
4
(ζ )\B 1

4
(ξ)

u(y + x, τ ) dy

∣∣
∣∣

� |ξ − ζ |
(

−
ˆ

B 1
4
(ξ)\B 1

4
(ζ )

∣∣u(y + x, τ ) − [u(· + x, τ )]B3/8(
1
2 (ξ+ζ ))

∣∣ dy

+ −
ˆ

B 1
4
(ζ )\B 1

4
(ξ)

∣∣u(y + x, τ ) − [u(· + x, τ )]B3/8(
1
2 (ξ+ζ ))

∣∣ dy

)
.

Recall from the John-Nirenberg inequality [19] that BMO functions are exponentially
integrable, that is for every f ∈ B M O(R2) there exist constants c1, c2 > 0 such that
for any ball B in R2

|{x ∈ B : | f − [ f ]B | > λ}| ≤ c1 exp(−c2λ‖ f ‖−1
B M O)|B|.

As an immediate consequence, we observe that for A ≥ C‖ f ‖B M O and any ball B
in R2

sup
B

−
ˆ

B
e

| f −[ f ]B |
A dx < +∞.

We now estimate the last two contributions, setting z := x + 1
2 (ξ + ζ ) and using

Jensen

−
ˆ

B 1
4
(ξ)\B 1

4
(ζ )

∣∣u(y + x, τ ) − [u(· + x, τ )]B3/8(
1
2 (ξ+ζ ))

∣∣ dy

� ‖u(τ )‖B M O log

(
|B 1

4
(ξ) \ B 1

4
(ζ )|−1 −

ˆ
B 3
8
(z)

e
1
A |u(y,τ )−[u(τ )]B3/8(z)| dy

)

� ‖u(τ )‖B M O log(C |ξ − ζ |−1).

We infer that the function ξ �→ −́B1/4(ξ)
u(y, s + t) is log-Lipschitz in space for

s ∈ [−1, 0], uniformly in time, and there is a unique solution to (34). Observe also that
the dependence with respect to the point (x, t) ∈ Q1 is log-Lipschitz. The functions
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θ0 and u0 as in the statement are now well-defined. We remark first that, in the sense
of distributions, div u0 = 0 and

∂sθ0 + u0 · ∇yθ0 = (∂tθ + ẋ0(s) · ∇θ)
∣∣
(y+x+x0(s),s+t)

+ (u · ∇θ − ẋ0(s) · ∇θ)
∣∣
(y+x+x0(s),s+t)

= −(−�)αθ(y + x + x0(s), s + t)

= −(−�)αθ0,

so that (θ0, u0) is a distributional solution of (1). It is straightforward to check that
(θ0, u0) is in fact a suitable weak solution. Moreover, u0(y, s) = R⊥θ0(y, s) − ẋ0(s)
and

[u0(s)]B 1
4

= −
ˆ

B 1
4

u(y + x + x0(s), s + t) dy − ẋ0(s) = 0

by construction. Assume now that (35) holds for an ε1 ∈ (0, 1
2 ) yet to be chosen small

enough. As long as x0(s) ∈ B3/4 we estimate

|ẋ0(s)| ≤
(

−
ˆ

B 1
4
+x0(s)

|u|p(x + y, s + t) dy

) 1
p ≤ 4

2
p

(
−
ˆ

B1

|u|p(x + y, s + t) dy

) 1
p

,

so that for s ∈ (−1, 0]

|x0(s)| ≤ ‖ẋ0‖L p((−1,0))|s|1−
1
p ≤ 4

2
p

(
−
ˆ

Q1(x,t)
|u|p dy dτ

) 1
p |s|1− 1

p .

Choosing ε1 ≤ 3
164

− 2
p the assumption (35) guarantees that x0(s) ∈ B3/16 ⊂ B3/4 for

s ∈ [−1, 0]. We then estimate, using again that B1/4 + x0(s) ⊆ B1 for s ∈ [−1, 0],

E S
(

θ0; 1
4

)
≤
(

−
ˆ

Q 1
4

|θ(y + x + x0(s), s + t) − (θ)Q1(x,t)|p dy ds

) 1
p + |(θ0)Q 1

4
− (θ)Q1(x,t)|

≤ 2

(
−
ˆ 0

−(1/4)2α
−
ˆ

B 1
4
+x0(s)

|θ(x + y, s + t) − (θ)Q1(x,t)|p dy ds

) 1
p

≤ 2 4(2+2α) 1
p

(
−
ˆ

Q1(x,t)
|θ − (θ)Q1(x,t)|p dy ds

) 1
p

≤ 8 E S(θ; x, t, 1).

Proceeding analogously, we have that E V (u0; 1
4 ) ≤ 16 E V (u; x, t, 1).As for the non-

local part of the excess, we observe that for R ≥ 1
16 we have BR(x0(s)) ⊆ BR+3/16 ⊆
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B4R and hence

E N L
(

θ0; 1
4

)
≤
(

−
ˆ 0

−(1/4)2α
sup

R≥ 1
16

{( 1

4R

)σ p
(

−
ˆ

BR

|θ0 − [θ ]B1(x)| 32 dy

) 2p
3

+ |[θ0]B 1
4

− [θ ]B1(x)|p
}

ds

) 1
p

≤ 8

(
−
ˆ 0

−(1/4)2α
sup

R≥ 1
16

( 1

4R

)σ p
(

−
ˆ

B4R

|θ(y + x, s + t) − [θ ]B1(x)| 32 dy

) 2p
3

ds

) 1
p

+ 4σ+1E S(θ; x, t, 1)

≤ 16
(

E N L(θ; x, t, 1) + E S(θ; x, t, 1)
)

.

��
Theorem 5.3 Let α ∈ ( 14 ,

1
2 ), σ ∈ (0, 2α), p > max

{ 1+α
α

, 2α
σ

}
and γ ∈ [1−2α, σ −

2α
p ). There exists ε2 ∈ (0, 1

2

)
(depending only on α, σ, p and γ ) such that the following

holds: Let (θ, u) be a suitable weak solution to (1)–(3) on R
2 × (−42α, 0]. Assume

that for any (x, t) ∈ Q1 it holds that

E

(
θ0, u0; 1

4

)
≤ ε2, (36)

where (θ0, u0) is obtained from θ through the change of variables of Lemma 5.1. Then

θ ∈ Cδ,
p−1

p δ
(Q1) where δ := γ − 1

p − 1

[
1 − 2α + 2α

p

]
. (37)

Remark 5.4 (Role of the parameters) The parameter p is crucial since it determines
the dimension of the singular set (see proof of Theorem 1.1): the lower the power p,

the better the dimension estimate. All the other parameters are of technical nature;
yet, the range of admissible parameters is sufficiently large to allow us to conclude the
desired estimate on the size of the singular set for all fractional orders for which the
latter is meaningful (i.e. for α > α0, see Remark 6.7). We deliberately choose to leave
all the parameters free to increase the readability of the paper; but one could also read
the paper fixing the parameters as in the proof of Theorem 1.3. Let us now comment
on the role of the single parameters in more detail:

• p cannot go below the threshold 1+α
α

: This corresponds to spacetime integrability
that guarantees the compactness of the (p −1)-energy inequality (see Lemma 3.8)
which in turn is the crucial ingredient of the excess decay. The requirement p > 2α

σ
on the other hand is purely technical and harmless for σ close to 2α.

• σ captures the decay at infinity of the non-local part of both the fractional Laplacian
and the velocity and should be thought arbitrarily close to 2α.
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• γ describes the decay of the excess when passing to the smaller scale μ0. In
order to apply the excess decay of Proposition 4.1 iteratively, we have to verify its
smallness requirement along a sequence of by μ := μ0

4 rescaled solutions which
is possible only if the decay rate beats the supercritical scaling of the excess (see
Remark 3.7), i.e. γ ≥ 1 − 2α.

• The exponent of the local Hölder continuity in space, δ , is obtained from γ , but
considerably worsened. This stems form the fact that in order to use the decay of
the excess on all scales to deduce Hölder continuity via Campanato’s Theorem,
we have to control the effect of the flow of Lemma 5.1. This loss in the Hölder
continuity exponent is peculiar to SQG and is not observed in the similar results
for Navier-Stokes.

Proof Let ε1 > 0, C1 ≥ 1 be the universal constants from Lemma 5.1.
The proof relies on an iterative construction. We fix (x, t) ∈ Q1. We obtain the

suitable weak solution (θ0, u0) by applying Lemma 5.1 to (θ, u) at the point (x, t).
This first change of variables does two things: It translates (x, t) to the origin (0, 0)
and it produces a new suitable weak solution whose velocity u0 has zero average on
B1/4. Hereafter, the excess will always be centered in (0, 0).

Let μ := μ0
4 ∈ (0, 1

8 ) where μ0, ε0 ∈ (0, 1
2 ) are given by Proposition 4.1 with

c = (16C1)
−1. For k ≥ 1 we iteratively define a new suitable weak solution (θk, uk)

which we obtain from (θk−1, uk−1) by first rescaling it at scale μ according to (4), i.e.
we set

θk−1,μ(y, s) := μ2α−1θk−1(μy, μ2αs) uk−1,μ(y, s) := μ2α−1uk−1(μy, μ2αs) ,

and second, by applying the change of variables of Lemma 5.1 to (θk−1,μ, uk−1,μ) at
the point (0, 0).This change of variables produces a new suitableweak solution, which
we call (θk, uk) , that evolves along the flow xk and whose velocity uk has zero average
on B1/4. Indeed, setting x̃k(s) := μ1−2αxk(s) (compare also with Remark 5.2), we
define iteratively for k ≥ 1

θk(y, s) := θk−1,μ(y + xk(s), s) = μ2α−1θk−1(μy + μ2α x̃k(s), μ
2αs) (38)

and

uk(y, s) := uk−1,μ(y + xk(s), s) − ẋk(s)

= μ2α−1(uk−1(μy + μ2α x̃k(s), μ
2αs) − ˙̃xk(s)), (39)

where
⎧
⎪⎨

⎪⎩

˙̃xk(s) = −
ˆ

μ2α−1 x̃k (s)+B 1
4

uk−1(μy, μ2αs) dy

x̃k(0) = 0.

Observe that by Lemma 5.1 and scaling invariance, (θk , uk) are suitableweak solutions
of (1) for all k ≥ 0 and [uk(s)]B1/4 = 0 for all s ∈ [−1, 0].
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Next, we want to deduce the Hölder continuity of θ assuming (36) is enforced. To
this end, we break the parabolic scaling and we consider in Step 3 a new excess of θ0
made on modified cylinders. This in turn is helpful to get sharper estimates at the level
of the change of variable, performed in Step 2, since the translation has less time to
act. Finally, we rewrite this decay in Step 4 in terms of θ rather than θ0, and we apply
Campanato’s Theorem to deduce the Hölder continuity of θ in Step 5.

Step 1: excess decay on the sequence of solutions after the change of variable.
Let α, σ , p and γ as in the statement. There exists a universal constant ε̄2 ∈ (0, 1

2 )

(depending only on α, σ , γ and p) such that if ε2 ∈ (0, ε̄2] and if (θ, u) is a suitable
weak solution to (1) on R

2 × (−22α, 0] with (36), then for every k ≥ 0 the excess of
(θk, uk) (see (38)– (39)), decays at scale μ:

E(θk, uk;μ) ≤ C−1
1 μγ(k+1)μ(2α−1)kε2 (40)

E(θk, uk; 1
4
) ≤ μ(γ−(1−2α))kε2, (41)

where C1 is the universal constant from Lemma 5.1.
We proceed by induction on k ≥ 0.

The case k = 0. Let ε2 ∈ (0, ε̄2] for some ε̄2 ∈ (0, 1
2 ) to be chosen later and assume

that (36) holds. We only need to show (40). If

ε̄2 ≤ 42α−1ε0 ,

then by Proposition 4.1 and (36)

E(θ0, u0;μ) = E(θ0, u0; μ0

4
) ≤ C−1

1

(μ0

4

)γ
E

(
θ0, u0; 1

4

)
≤ C−1

1 μγ ε2.

The inductive step. By the inductive hypothesis, we can assume that

• E(θk−1, uk−1;μ) ≤ C−1
1 μkγ μ(k−1)(2α−1)ε2,

• E(θk−1, uk−1; 1
4 ) ≤ μ(k−1)(γ−(1−2α))ε2.

We recall that (θk, uk) is obtained by applying the change of variables of Lemma 5.1
to (θk−1,μ, uk−1,μ) at the point (0, 0). Using the inductive assumption and that
[uk−1(s)]B1/4 = 0 for s ∈ [−1, 0], we can verify the smallness assumption of
Lemma 5.1. Indeed,

(
−
ˆ

Q1

|uk−1,μ|p dy ds

) 1
p = μ2α−1

(
−
ˆ

Qμ

|uk−1|p dy ds

) 1
p

≤ μ2α−1 (4μ)
−(2+2α) 1

p

(
−
ˆ

Q 1
4

|uk−1|p dy ds

) 1
p

= μ2α−1 (4μ)
−(2+2α) 1

p

(
−
ˆ

Q 1
4

|uk−1(y, s) − [uk−1(s)]B 1
4
|p dy ds

) 1
p
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= μ2α−1 (4μ)
−(2+2α) 1

p E V
(

uk−1; 1
4

)

≤ μ2α−1 (4μ)
−(2+2α) 1

p ε2.

Choosing ε̄2 even smaller, namely,

ε̄2 := min
{
(42α−1ε0, μ

1−2α (4μ)
(2+2α) 1

p ε1
}

we have

(
−
ˆ

Q1

|uk−1,μ|p dy ds

) 1
p ≤ ε1.

By Lemma 5.1, Remark 3.7 and the inductive hypothesis, we deduce that

E

(
θk , uk; 1

4

)
≤ C1E(θk−1,μ, uk−1,μ; 1) = C1μ

2α−1E(θk−1, uk−1; μ) ≤ μk(γ−(1−2α))ε2,

showing the second inequality and, recalling the choice of ε2 ∈ (0, ε̄2), showing in
particular that

E

(
θk, uk; 1

4

)
≤ 42α−1ε0.

Since by construction [uk(s)]B1/4 = 0 for s ∈ [−1, 0], we infer from Proposition 4.1
and the inductive assumption that

E(θk , uk;μ) ≤ C−1
1 μγ E

(
θk , uk; 1

4

)
≤ C−1

1 μγ μk(γ−(1−2α))ε2 = C−1
1 μ(k+1)γ μk(2α−1)ε2.

Step 2: bound on the translation in the change of variables. We observe that θk is
just a shifted and rescaled (by μk , according to the natural scaling (4)) version of θ0.
Indeed, notice that by construction, one can verify inductively for k ≥ 1

θk(y, s) = θ0,μk (y + μ−krk(s), s), (42)

where θ0,μk (y, s) := μk(2α−1)θ0(μ
k y, μ2αks) and

rk(s) := μ2α−1
k∑

j=1

μ j x̃ j (μ
2α(k− j)s).

We claim that the center of the cylinders don’t move toomuch, namely for s ∈ [−1, 0]

|rk(s)| ≤ Cε2|s|1−
1
p μ

2αk(1− 1
p )−(1−2α+ 2

p )
.
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Indeed, for j ≥ 1 we estimate as long as x j (s) ∈ B1/4

| ˙̃x j (s)| ≤
(

−
ˆ

μ2α x̃ j (s)+B μ
4

|u j−1(y, μ2αs)|p dy

) 1
p

≤ μ
− 2

p

(
−
ˆ

B 1
4

|u j−1(y, μ2αs) − [u j−1(μ
2αs)]B 1

4
|p dy

) 1
p

,

where we used that [u j−1(μ
2αs)]B1/4 = 0 uniformly in time. In particular,

‖ ˙̃x j‖L p((−1,0)) ≤ μ
− 2

p 4− 2α
p E V

(
u j−1; 1

4

)
≤ μ

− 2
p E

(
θ j−1, u j−1; 1

4

)

and hence for s ∈ [−1, 0] we have, using (41),

|x̃ j (s)| ≤ μ
− 2

p E

(
θ j−1, u j−1; 1

4

)
|s|1− 1

p ≤ ε2|s|1−
1
p μ

− 2
p .

Collecting terms, we have

|rk(s)| ≤ ε2|s|1−
1
p μ

2αk(1− 1
p )

μ2α−1μ
− 2

p

k∑

j=1

μ
(1−2α(1− 1

p )) j

≤ Cε2|s|1−
1
p μ

2αk(1− 1
p )−(1−2α+ 2

p )
.

Step 3: Decay of a modified excess of θ0. We claim that for every r ∈ (0, μ2)

(
−
ˆ 0

−r
p

p−1
−
ˆ

B r
4

|θ0 − (θ0)
B r
4
×(−r

p
p−1 ,0]

|p dy ds

) 1
p ≤ 8C−1

1 μ−2r
γ−
[
1−2α
p−1 + 2α

p(p−1)

]

ε2.

(43)

Observe that by the scaling of the excess μ2α−1E S(θk;μ) = E S(θk,μ; 1) and by (42)

θk,μ(y, s) = θ0,μk+1(y + μ−(k+1)rk(μ
2αs), s).

We introduce the set

Ik+1 :=
(

− μ
(k+1)((1−2α)

p
p−1+ 2α

p−1 )
, 0
]
.

If s ∈ Ik+1 we can ensure, by an appropriate choice of ε2, that rk(μ
2αs) ∈ B3μk+1/4.

Indeed

|rk(μ
2αs)| ≤ Cε2μ

2α(k+1)(1− 1
p )−(1−2α+ 2

p )
μ(k+1)(1−2α)μ

(k+1) 2αp = Cε2μ
k+1μ

−(1−2α+ 2
p )

,
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for s ∈ Ik+1 by Step 2. It is thus enough to choose ε2 (if necessary) even smaller, or
more precisely, we set

ε2 := min

{
ε̄2,

3

4
C−1μ

(1−2α+ 2
p )

}
.

We now estimate, by adding and substracting (θk,μ)Q1 and Hölder

(
−
ˆ

Ik+1

−
ˆ

B 1
4

|θ0,μk+1(y, s) − (θ0,μk+1)B 1
4
×Ik+1 |p

) 1
p

≤ 2

(
−
ˆ

Ik+1

−
ˆ

B 1
4

|θ0,μk+1(y, s) − (θk,μ)Q1 |p dy ds

) 1
p

.

Since μ−(k+1)rk(μ
2αs) ∈ B3/4 we have B1/4 ⊆ μ−(k+1)rk(μ

2αs) + B1 as long as
s ∈ Ik+1, so that

(
−
ˆ

Ik+1

−
ˆ

B 1
4

|θ0,μk+1(y, s) − (θk,μ)Q1 |p
) 1

p

≤ 4
2
p

(
−
ˆ

Ik+1

−
ˆ

μ−(k+1)rk (μ
2αs)+B1

|θ0,μk+1(y, s) − (θk,μ)Q1 |p dy ds

) 1
p

= 4
2
p

(
−
ˆ

Ik+1

−
ˆ

B1

|θ0,μk+1(y + μ−(k+1)rk(μ
2αs), s) − (θk,μ)Q1 |p dy ds

) 1
p

≤ 4
2
p |Ik+1|−

1
p

(
−
ˆ

Q1

|θk,μ(y, s) − (θk,μ)Q1 |p dy ds

) 1
p

= 4
2
p |Ik+1|−

1
p E S(θk,μ; 1) = 4

2
p |Ik+1|−

1
p μ2α−1E S(θk;μ).

Combining the previous inequality with Step 1 and observing that μ(k+1)2α Ik+1 =
(− μ

(k+1) p
p−1 , 0

]
, we deduce that for k ≥ 1

(
−
ˆ

μ(k+1)2α Ik+1

−
ˆ

B 1
4μk+1

|θ0(y, s) − (θ0)B 1
4μk+1×μ(k+1)2α Ik+1

|p dy ds

) 1
p

= μ(k+1)(1−2α)

(
−
ˆ

Ik+1

−
ˆ

B 1
4

|θ0,μk+1(y, s) − (θ0,μk+1)B 1
4
×Ik+1 |p

) 1
p

≤ 4C−1
1 |Ik+1|−

1
p μ(k+1)γ ε2 = 4C−1

1 μ
(k+1)

(
γ−
[
1−2α
p−1 + 2α

p(p−1)

])

ε2.

This gives (43) for r = μk+1 for some k ≥ 1. For r ∈ (μk+2, μk+1) instead, we
observe that
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(
−
ˆ 0

−r
p

p−1
−
ˆ

B r
4

|θ0 − (θ0)
B r
4
×(−r

p
p−1 ,0]

|p dy ds

) 1
p

≤ 2

(
μk+1

r

) 1
p (2+ p

p−1 ) (
−
ˆ 0

−μ
(k+1) p

p−1
−
ˆ

B 1
4 μk+1

|θ0 − (θ0)
B 1
4 μk+1×(−μ

(k+1) p
p−1 ,0]

|p dy ds

) 1
p

≤ 8C−1
1

(
μk+1

r

) 1
p (2+ p

p−1 )

μ
(k+1)

(
γ−
[
1−2α
p−1 + 2α

p(p−1)

])

ε2

≤ 8C−1
1 μ−2r

(
γ−
[
1−2α
p−1 + 2α

p(p−1)

])

ε2.

Step 4: Decay of a modified excess of θ . There exists a r0 = r0(‖u‖L p+1(Q3/2)
) > 0

such that for every r ∈ (0, r0) and for every (x, t) ∈ Q1

(
−
ˆ t

t−r
p

p−1
−
ˆ

B r
8
(x)

|θ − (θ)
B r
8
(x)×(t−r

p
p−1 ,t]

|p dy ds

) 1
p ≤ 32μ−2r

γ−
[
1−2α
p−1 + 2α

p(p−1)

]

ε2.

Since by Theorem 3.2 u ∈ L∞([−(3/2)2α, 0], B M O(R2)) , we have u ∈ Lq
loc(R

2 ×
[−(3/2)2α, 0]) for any q ∈ [1,∞). Fix (x, t) ∈ Q1. As long as x0(s) ∈ B1/4 and
|s| < 1

5 , we have the estimate

|x0(s)| ≤ |s|1− 1
p+1 ‖u‖L p+1(Q3/2)

. (44)

In particular for 0 ≤ |s| p
p+1 ≤ min

{
1
4‖u‖−1

L p+1(Q3/2)
, 5− p

p+1

}
the estimate (44) holds.

Let now

r0 := min

{
μ2,

(
1

4
‖u‖−1

L p+1(Q3/2)

)1− 1
p2

,

(
1

8
‖u‖−1

L p+1(Q3/2)

)p2−1}
.

Recalling that μ2 ≤ 1
64 , we observe that for all r ∈ (0, r0), (x, t) ∈ Q1 and s ∈

(−r
p

p−1 , 0] (44) holds and we have

|x0(s)| ≤ ‖u‖L p+1(Q3/2)
r

p2

p2−1 ≤ r

(

‖u‖L p+1(Q3/2)
r

1
p2−1
0

)

≤ r

8
. (45)

Hence we can estimate by the triangular inequality and Hölder, by (45) and by Step 3

(
−
ˆ t

t−r
p

p−1
−
ˆ

B r
8
(x)

|θ − (θ)
B r
8
(x)×(t−r

p
p−1 ,t]

|p dy ds

) 1
p

≤ 2

(
−
ˆ 0

−r
p

p−1
−
ˆ

B r
8
(x)

|θ(y, s + t) − (θ0)
B r
4
×(r

p
p−1 ,0]

|p dy ds

) 1
p
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≤ 4

(
−
ˆ 0

−r
p

p−1
−
ˆ

B r
4
(x+x0(s))

|θ(y, s + t) − (θ0)
B r
4
×(r

p
p−1 ,0]

|p dy ds

) 1
p

≤ 32μ−2r
γ−
[
1−2α
p−1 + 2α

p(p−1)

]

ε2.

Step 5: By Campanato’s Theorem, we deduce that θ is Hölder continuous in Q1.
By a variant of Campanato’s Theorem [18, Theorem 2.9.], we deduce from Step 4 that
(37) holds. Indeed, observe that the sets Br (x)× (t − r p/(p−1), t] are nothing else but
balls with respect to the metric d((x, t), (y, s)) := max{|x − y|, |t − s|(p−1)/p} on
spacetime where in time, as usual for parabolic equations, we only look at backward-
in-time intervals. The proof of this version of Campanato’s Theorem follows, for
instance, line by line [28, Theorem 1] when replacing the parabolic metric by d.

��

6 "-Regularity Results and Proof of Theorem 1.3

In this section we prove some ε-regularity results, including Theorem 1.3 and its more
precise version inCorollary 6.6, bymeeting the smallness requirement of Theorem5.3.
As a first result, we deduce in Corollary 6.1 an ε-regularity criterion in terms of a
spacetime integral of θ and u that constitutes an analogue of Scheffer’s Theorem [27]
for the Navier-Stokes system. As in the case of Navier-Stokes, it implies that the
singular set of suitable weak solutions is compact in spacetime (see Step 1 in the proof
of Theorem 1.1). In the context of the SQG equation though, in contrast to Navier-
Stokes, Corollary 6.1 cannot be used to obtain their almost everywhere smoothness
(or any estimate on the dimension of the singular set): The fact that the L∞-norm is
a controlled quantity necessitates to rely on spacetime integrals of derivatives of θ to
show local smoothness. In order to pass from Theorem 5.3 to an ε-regularity criterion
involving only fractional space derivatives of θ ,which are globally controlled through
the energy, we need to overcome the following difficulties:

• The excess E S related to θ involves the spacetime average of θ. In particular, in
order to use a standard Poincaré inequality (10) to pass to a differential quantity,
we would need some fractional differentiability in time too. Using the parabolic
structure of the equation, we will be able to circumvent this and to establish in
Lemma 6.2 a Poincaré inequality which is nonlinear but involves only fractional
space derivatives.

• The ε-regularity criterion of Theorem 5.3 features the composition of θ with the
flow x0 , so that we need some control on the tilting effect of the flow. We will
see that at scale r , the flow shifts the center of the excess in space by at most
r2α−2/q‖u‖L∞Lq (see (55)). As a consequence, at scale r , all quantities related to
the excess of θ will no longer live on parabolic cylinders but rather on modified
cylindersQ(x, t; r) in spacetime, approximately of radius r2α in time and r2α−2/q

in space. Morally q = ∞; however, since the Riesz-transform is bounded from
L∞ → B M O and not from L∞ → L∞, we introduce the parameter q which
should be thought to be arbitrarily large.
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• We set the excess in L p for p > 1+α
α

in order to gain the compactness of the
(p − 1)-energy inequality. In order to exploit the L2W α,2-control given by the
energy via the nonlinear Poincaré inequality described in the first point, we are
lacking some higher integrability in time. We bypass this issue by factoring out
p − 2 powers of θ in L∞.

6.1 An Analogue of Scheffer’s Theorem

We provide a first ε-regularity result featuring spacetime integrals of θ and u.Observe
that in agreement with the previous discussion, smooth solutions of (1)–(3) do, in
general, not verify the ε-regularity criterion (46) at any small scale.

Corollary 6.1 Given α ∈ ( 14 ,
1
2 ) there exists ε = ε(α) > 0 such that if p = p(α) :=

6
4α−1 and θ is a suitable weak solution of (1)–(3) on R

2 × (t − (4r)2α, t + r2α/4]
satisfying

1

r (1−2α)p+2+2α

ˆ
Q4r (x,t+r2α/4)

(
Mθ2

) p
2

(z, s) + |u|p(z, s) dz ds < ε , (46)

then θ ∈ C
1
2
(
Qr (x, t + r2α/4)

)
. In particular, θ is smooth in the interior of

Qr/2(x, t + r2α/4) ⊇ Br/2(x) × (t − r2α/4, t + r2α/4) and hence (x, t) is a regular
point.

Proof of Corollary 6.1 Letα and p as in the statement. By translation and scaling invari-
ance, we can assumew.l.o.g. that (x, t +r2α/4) = (0, 0) and r = 1 , so that we assume
that

ˆ
Q4

(Mθ2)
p
2 (x, t) + |u|p(x, t) dx dt ≤ ε.

for an ε yet to be chosen small enough. We observe that p > max{ 1+α
α

, 2α
σ

} for any
σ > 1

6 . We define accordingly σ := 4α
3 + 1

6 and γ := 2α
3 + 1

3 . Since σ ∈ ( 16 , 2α) and
γ ∈ [1− 2α, 2α − 2α

p ), this is an admissible choice of the parameters of Theorem 5.3

and we infer from the latter that θ ∈ Cδ,
p−1

p δ
(Q1) , with δ given by (37), provided the

smallness requirement (36) holds for any (x, t) ∈ Q1. Since for α ∈ ( 14 ,
1
2 )

δ = 1 − 2α + (4α − 1)

(
2

3
− 4α2 − 7α + 3

3(7α − 1)

)
> 1 − 2α,

we deduce from Lemma B.1 that θ is smooth in the interior of Q1/2. We observe that
for any (x, t) ∈ Q1 we have Q1(x, t) ⊆ Q4 and hence

(
−
ˆ

Q1(x,t)
|u|p dz ds

) 1
p ≤ |Q1|−

1
p

(ˆ
Q4

|u|p dz ds

) 1
p ≤ ε

1
p .
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Requiring ε ≤ ε
p
1 , we thus deduce from Lemma 5.1 that E(θ0, u0; 1

4 ) ≤
C1E(θ, u; x, t, 1) and hence (36) is enforced for any (x, t) ∈ Q1 if

sup
(x,t)∈Q1

E(θ, u; x, t, 1) ≤ C−1
1 ε2 , (47)

where ε2 > 0 is given by Theorem 5.3. Using θ2 ≤ Mθ2 pointwise almost every-
where, we have

E S(θ; x, t, 1) + E V (u; x, t, 1) ≤ 2

(ˆ
Q4

|θ |p dz ds

) 1
p + 2

(ˆ
Q4

|u|p dz ds

) 1
p ≤ 4ε

1
p .

As for the non-local part of the excess, we estimate, using again θ2 ≤ Mθ2 almost
everywhere,

E N L (θ; x, t, 1) ≤
(

−
ˆ t

t−1
sup
R≥ 1

4

1

Rσ p

(
−
ˆ

BR (x)

θ2 dz

) p
2

ds

) 1
p

+ C |(θ)Q1(x,t)|

≤ C

(
−
ˆ t

t−1
sup
R≥ 1

4

1

Rσ p

(ˆ
B 1
4
(x)

−
ˆ

B2R (z′)
θ2(z, s) dz dz′

) p
2

ds

) 1
p

+ C

(ˆ
Q4

|θ |p dz ds

) 1
p

≤ C

(
−
ˆ t

t−1
sup
R≥ 1

4

1

Rσ p

(ˆ
B 1
4
(x)

Mθ2(z′, s) dz′
) p

2

ds

) 1
p

+ Cε
1
p ≤ C N Lε

1
p .

Hence we reach (47) by choosing ε ≤ min
{
(ε1)

p, (4 + C N L)−1C−1
1 ε2)

p
}

. ��

6.2 Nonlinear Poincaré Inequality of Parabolic Type

We introduce the following scaling-invariant quantity which should be understood as
a localized version of the dissipative part of the energy:

E(θ; x, t, r) := 1

r2(1−2α)+2

ˆ
Q∗

r (x,t)
yb|∇θ∗|2(z, y, s) dz dy ds.

The following Lemma and its proof is inspired by [32], where a parabolic Poincaré
inequality is obtained for the classical, linear heat equation, and by [26], where a
nonlinear Poincaré inequality of similar nature is also crucially used in a ε-regularity
result.

Lemma 6.2 (Nonlinear Poincaré inequality of parabolic type)
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Let α ∈ (0, 1). There exists a constant C = C(α) ≥ 1 such that the following
holds: Let Qr (x, t) ⊆ R

2 × (0,∞) and let (θ, u) be a Leray–Hopf weak solution of
(1)–(2). We assume that the velocity field is obtained by

u(z, s) = R⊥θ(z, s) + f (s)

for some f ∈ L1
loc(R) and that it satisfies [u(s)]Br (x) = 0 for all s ∈ [t − (2r)2α, t].

Then we have for any q ∈ [2, 2
1−α

]
that

1

r (1−2α)+ 2
q +α

( ˆ t

t−r2α

( ˆ
Br (x)

|θ(z, s) − (θ)Qr (x,t)|q dz

) 2
q

ds

) 1
2

≤ C
(E(θ; x, t, 3r)

1
2

+
(

1

r2(1−2α)+2+2α

ˆ
Q2r (x,t)

|u(z, s) − [u(s)]B2r (x)|2 dz ds

) 1
2

E(θ; x, t, 3r)
1
2
)
.

Proof By translation and scaling invariance (with respect to (4)), we may assume
(x, t) = (0, 0) and r = 1.

Step 1: By means of the weighted Poincaré inequality (11), we reduce the Lemma to
an estimate on weighted space averages computed at two different times. To this aim,
let ω ∈ C∞

c (R3+) be a weight such that ω|y=0 is a radial non-increasing function,
0 ≤ ω ≤ 1 and ω ≡ 1 on B1 × [0, 1] and ω ≡ 0 outside B2 × [0, 2).
We estimate for fixed time

(ˆ
B1

|θ(x, t) − (θ)Q1 |q dx

) 1
q

≤
(ˆ

B2
|θ(x, t) − [θ(t)]ω|y=0,B2 |qω(x, 0) dx

) 1
q

+ π
1
q
(∣
∣[θ(t)]ω|y=0,B2 − (θ)ω|y=0,Q2

∣
∣+ ∣∣(θ)ω|y=0,Q2 − (θ)Q1

∣
∣
)

,

where we used ω(·, 0) ≡ 1 on B1. Reusing this fact and Hölder, we bound the last
term by

∣∣(θ)ω|y=0,Q2 − (θ)Q1

∣∣ ≤
(ˆ 0

−1

(
−
ˆ

B1

|θ − (θ)ω|y=0,Q2 |q dx

) 2
q

dt

) 1
2

≤ π
− 1

q

(ˆ 0

−1

(ˆ
B2

|θ − [θ(t)]ω|y=0,B2 |qω(x, 0) dx

) 2
q

dt

) 1
2

+
(ˆ 0

−1
|[θ(t)]ω|y=0,B2 − (θ)ω|y=0,Q2 |2 dt

) 1
2

,
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so that we deduce by the weighted Poincaré inequality (11)

(ˆ 0

−1

(ˆ
B1

|θ(x, t) − (θ)Q1 |q dx

) 2
q

dt

) 1
2

≤ C

[(ˆ 0

−1
[θ(t)]2Wα,2(B2)

dt

) 1
2

+
(ˆ 0

−1
|[θ(t)]ω|y=0,B2 − (θ)ω|y=0,Q2 |2 dt

) 1
2
]
.

The first term on the right-hand side can be expressed in terms of the extension by
(14). Since the weight ω is independent of time, the second term can be estimated by

(ˆ 0

−1
|[θ(t)]ω|y=0,B2 − (θ)ω|y=0,Q2 |2 dt

) 1
2

≤
(ˆ 0

−22α

ˆ 0

−22α
|[θ(t)]ω|y=0,B2 − [θ(s)]ω|y=0,B2 |2 ds dt

) 1
2

.

Step 2: We use the equation to estimate the difference of two weighted space averages
computed at different times.
We use the weak formulation (22) of the equation with time-independent test function
ϕ(x, y) := sgn([θ(t)]ω|y=0,B2 − [θ(s)]ω|y=0,B2)ω(x, y). We estimate the right-hand
side of (22) from below and the left-hand side from above for s, t ∈ [−22α, 0]. As for
the lower bound, we have
ˆ

(θ(x, t) − θ(x, s))ϕ(x, 0) dx = ∣∣[θ(t)]ω|y=0,B2 − [θ(s)]ω|y=0,B2

∣∣
ˆ

B2

ω(x, 0) dx

≥ π
∣∣[θ(t)]ω|y=0,B2 − [θ(s)]ω|y=0,B2

∣∣

since ω(·, 0) ≡ 1 on B1. As for the right-hand side, we estimate by Hölder

∣
∣∣∣

ˆ t

s

ˆ
R
3+

yb∇θ∗ · ∇ϕ dx dy dτ

∣
∣∣∣ ≤ 21−α‖ω‖C1 |Q2| 12

(ˆ
Q∗
2

yb|∇θ∗|2 dx dy dτ

) 1
2

.

Since u is divergence-free and [u(τ )]B1 = 0 for τ ∈ [−22α, 0] by assumption, we
can estimate the nonlinear term by Hölder and the Poincaré inequality (10) combined
with (14)

∣∣∣
∣

ˆ t

s

ˆ
uθ · ∇ϕ|y=0 dx dτ

∣∣∣
∣ =
∣∣∣
∣

ˆ t

s

ˆ
(u − [u(τ )]B1)(θ − [θ(τ )]B2) · ∇ϕ|y=0 dx dτ

∣∣∣
∣

≤ ‖ω‖C1

(ˆ
Q2

|u − [u(τ )]B1 |2 dx dτ

) 1
2

(ˆ
Q2

|θ − [θ(τ )]B2 |2 dx dτ

) 1
2
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≤ C

(ˆ
Q2

|u − [u(τ )]B2 |2 dx dτ

) 1
2

(ˆ
Q∗
3

yb|∇θ∗|2 dx dy dτ

) 1
2

.

Collecting terms, we have for almost every s, t ∈ [−22α, 0] that

∣∣[θ(t)]ω|y=0,B2 − [θ(s)]ω|y=0,B2

∣∣ �
(ˆ

Q∗
3

yb|∇θ∗|2 dx dy dτ

) 1
2

(
1 +
(ˆ

Q2

|u − [u(τ )]B2 |2 dx dτ

) 1
2
)

.

Combining this estimate with Step 1, we conclude. ��

6.3 The Non-local Part of Excess

We recall from the proof of Proposition 4.1 that the excess related to the velocity can
be estimated in terms of θ. More precisely, we have the following:

Lemma 6.3 Let α ∈ ( 14 ,
1
2 ), Qr (x, t) ⊆ R

2 × (0,∞) and θ ∈ L p(R2 × [t −
(3r/2)2α, t]). Consider a velocity field of the form u(z, s) = R⊥θ(z, s) + f (s) for
some f ∈ L1

loc(R). There exists C = C(p) ≥ 1 such that

E V (u; x, t, r) ≤ C

((
−
ˆ

Q 3r
2

(x,t)
|θ(z, s)−[θ(s)]B 3r

2
(x)|p dz ds

) 1
p +E N L(θ; x, t,

3

2
r)

)
.

After reducing the Lemma to r = 1 and (x, t) = (0, 0), the proof follows line-by-line
the estimate of E V in the proof of Proposition 4.1. We now bound the quantity E N L

in terms of a variant of the sharp maximal function introduced in Sect. 2.6.

Lemma 6.4 Let α ∈ ( 14 ,
1
2 ) , Qr (x, t) ⊆ R

2×(0,∞) and θ ∈ L∞(R2×[t −r2α, t])∩
L2([t − r2α, t], W α,2(R2)). If (p, q, σ ) ∈ ( 1+α

α
,∞) × [2,∞) × (0, 2α) satisfy the

admissibility criterion

σ p − (2 + 2α) − 2

q2 − 1
≥ 0, (48)
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then there exists a constant C = C(p) ≥ 1 such that

1

r p(1−2α)
E N L(θ; x, t, r)p

≤ C
‖θ‖p−2

L∞([t−r2α,t]×R2)

r p(1−2α)+2

ˆ t

t−r2α

ˆ
B r
4
(x)

|θ#α,q(z, s)|1+
1

q2−1 dz ds.

Proof By translation and scaling invariance, wemay assume (x, t) = (0, 0) and r = 1.
By factoring out p − 2 powers in L∞ , by adding and subtracting [θ(s)]B1/4 for fixed
time s and radius R, and by reabsorbing |[θ(s)]B1 − [θ(s)]B1/4 | in the supremum, we
have

E N L (θ; 1)p ≤ (2‖θ‖L∞(R2×[−1,0]))p−2

ˆ 0

−1
sup
R≥ 1

4

(
1

R

)σ p (
−
ˆ

BR

|θ(x, s) − [θ(s)]B1 |
3
2 dx

) 4
3

ds

� ‖θ‖p−2
L∞(R2×[−1,0])

ˆ 0

−1
sup
R≥ 1

4

(
1

R

)σ p (
−
ˆ

BR

|θ(x, s) − [θ(s)]B 1
4
| 32 dx

) 4
3

ds.

We estimate the argument of the supremum for fixed time s and radius R ≥ 1
4 by the

triangular inequality and Hölder

(
−
ˆ

BR

|θ − [θ(s)]B 1
4
| 32 dx

) 4
3 ≤ 2

((
−
ˆ

BR

|θ − [θ(s)]BR |2(1−1/q2) dx

)1+ 1
q2−1

+ |[θ(s)]B 1
4

− [θ(s)]BR |2
)

≤ 4

(
(4R)2−

ˆ
BR

|θ − [θ(s)]BR |2(1−1/q2) dx

)1+ 1
q2−1

.

(49)

For z ∈ B1/4 it holds BR ⊆ B2R(z), so that by the triangular inequality and by
averaging over z ∈ B1/4 , we have

−
ˆ

BR

|θ(x, s) − [θ(s)]BR |2(1−1/q2) dx ≤ 4 −
ˆ

B 1
4

−
ˆ

B2R (z)
|θ(x, s) − [θ(s)]B2R (z)|2(1−1/q2) dx dz

≤ 32 R2α(1−1/q2) −
ˆ

B 1
4

θ#α,q (z, s) dz. (50)
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We combine (49)–(50) and use Hölder to bring the power 1+ 1
q2−1

inside the integral.
We obtain

E N L(θ; 1) ≤ C‖θ‖p−2
L∞(R2×[−1,0])

ˆ 0

−1

ˆ
B 1
4

|θ#α,q(z, s)|1+
1

q2−1 dz ds ,

provided

sup
R≥ 1

4

(
1

R

)σ p−(2+2α)− 2
q2−1

< +∞.

Observe that this is ensured through (48) and that the supremum can be estimated
from above by 4p such that the constant of the Lemma depends only on p. ��

6.4 Proof of the Theorem 1.3

The following Corollary of Theorem 5.3 gives a different version of the ε-regularity
criterion in terms of θ rather than its composition with the flow θ0. Theorem 1.3 will
be an immediate consequence. To this aim, we introduce the following modified balls
and cylinders (backwards and centered in time respectively) which are enlarged in
space in accordance with the “intrinsic effect” of the flow (see (55)):

B(x; r) := BKq r2α−2/q (x) and B∗(x; r) := B(x; r) × [0, r),

Q(x, t; r) := B(x; r) × (t − r2α, t] and Q∗(x, t; r) := B∗(x; r) × (t − r2α, t] ,
C(x, t; r) := B(x; r) × (t − r2α, t + r2α) and C∗(x, t; r) := B∗(x; r) × (t − r2α, t + r2α),

where

Kq = Kq(u; x, t, r) := 2max
{
‖u‖L∞([t−r2α,t+r2α],Lq (R2)), r1−2α+2/q

}
. (51)

To shorten notation,wewill often omit the dependence of Kq on u and r , andwhenever
(x, t) = (0, 0) , we will omit to specify the center of the balls and cylinders. The
following remark justifies that one should really think of B(x; r) as a enlarged balls
of radius r2α−2/q .

Remark 6.5 (Upper bound on Kq ) For 0 < r ≤ (t/2)
1
2α by Calderon–Zygmund,

Theorem 3.2 and the energy inequality (20) of Leray–Hopf weak solutions

‖u‖L∞([t−r2α,t+r2α],Lq (R2)) ≤ C‖θ‖L∞([t−r2α,t+r2α],Lq (R2)) ≤ C2‖θ0‖L2 t−
1
2α (1−2/q)
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such that for 0 < r ≤ r0 := min

{
(t/2)

1
2α ,
(

C2‖θ0‖L2 t− 1
2α (1−2/q)

)1/(1−2α+2/q)
}
and

any x ∈ R
2

Kq(u; x, t, r) ≤ 2C2‖θ0‖L2 t−
1
2α (1−2/q).

Corollary 6.6 Let α0 := 1+√
33

16 , α ∈ [α0,
1
2 ) , q ≥ 8 and p = p(q) := 1+α

α
+ 1

q .

There exists a universal ε = ε(α) ∈ (0, 1) such that the following holds: If (θ, u) is a
suitable weak solution to (1)–(3) on R

2 × [t − (4r)2α, t] satisfying

‖θ‖p−2
L∞(R2×[t−(4r)2α,t])
(4r)p(1−2α)+2

(ˆ
Q∗(x,t;4r)

yb|∇θ∗|2 dz dy ds +
ˆ
Q(x,t;4r)

|θ#α,q |1+
1

q2−1 dz ds

)
≤ ε ,

(52)

then θ is smooth in the interior of Qr/2(x, t).

Remark 6.7 (Justification of α0) α0 is the threshold until which both the smallness
hypothesis of Corollary 6.6 is verified, at sufficiently small scale, for smooth solutions
at any point (x, t) in spacetime and the dimension estimate of Theorem 1.1 is non-
trivial. Indeed, for α > α0 it holds

1

2α

(1 + α

α
(1 − 2α) + 2

)
< 3.

Before proceeding with the proof, let us show that Theorem 1.3 is an immediate
consequence of Corollary 6.6.

Proof of Theorem 1.3 Let α , p and q as in the statement and assume that (5) holds.
Observe that C(x, t; r) ⊇ Q(x, t + r2α/16; r). By (18) and Hölder we deduce the
pointwise estimate

θ#α,q(z, s) ≤ M( (Dα,2 θ
)2(1−1/q2) )

(z, s) ≤ [M( (Dα,2 θ
)2 )]1−1/q2

(z, s).

We infer that θ satisfies (52) at the radius r/4 and the point (x, t + r2α/16). We
deduce from Corollary 6.6 that θ is smooth in the interior of Qr/8(x, t + r2α/16)
which contains the open ball Br/8(x) × (t − r2α/16, t + r2α/16). ��

Proof of Corollary 6.6 By translation and scaling invariance, we assume (x, t) = (0, 0)
and r = 1.

Step 1: We tune the free parameters σ and γ .
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We define σ := 2α − 1
q2 . Observe that with this choice the triple (σ, p, q) satisfies

the hypothesis of Lemma 6.4. Indeed, recalling that by assumption α ≥ α0 > 2
5 , we

have for q ≥ 8 that

σ p − (2 + 2α) − 2

q2 − 1
= 1

q

(
2α − 1

q

(
1 + α

α
+ 1

q
+ 2q2

q2 − 1

))
>

1

q

(
2α − 5

4

)
> 0.

We introduce also γ := 2α − 4α2

1+α
∈ [1 − 2α, σ − 2α/p), so that the triple

(σ, p, γ ) satisfies the hypothesis of Theorem 5.3. We conclude from the latter that
θ ∈ Cδ,(1−1/p)δ(Qr ) ⊆ L∞((−1, 0); Cδ(B1)) , with δ given by (37), provided

sup
(x,t)∈Q1

E

(
θ0, u0; 1

4

)
≤ ε2 , (53)

where for (x, t) ∈ Q1 fixed, we define θ0(z, s) = θ(z + x0(s) + x, s + t) , u0(z, s) =
u(z + x0(s) + x, s + t) − ẋ0(s) and x0 is the flow given by Lemma 5.1. We have

δ = γ − 1

p − 1

[
1 − 2α + 2α

p

]
> 2α − 4α2

1 + α
− α

[
1 − 2α + 2α2

1 + α

]
,

where the right-hand side exceeds 1−2α for α ≥ √
2−1, so in particular for α ≥ α0.

We deduce from Lemma B.1 that θ is smooth in the interior of Q1/2. We are thus left
to verify that (53) can be enforced by requiring (52).

Step 2: We bound the full excess sup(x,t)∈Q1
E(θ0, u0; 1

4 ).

For (x, t) ∈ Q1 fixed,we estimate by factoring out p−2 powers in L∞, byLemma6.2,
by Hölder and Young

E S
(

θ0; 1
4

)p

� ‖θ0‖p−2

L∞
(

Q 1
4

)E(θ0; 3
4
) + ‖θ0‖p−2

L∞
(

Q 1
4

)E(θ0; 3
4
)E V (u0; 1

2
)2

� ‖θ0‖p−2
L∞(R2×[−1,0])E(θ0; 1) +

(
‖θ0‖p−2

L∞(R2×[−1,0])E(θ0; 1)
)1+ 2

p−2

+ E V (u0; 1
2
)p.

Moreover, by Lemma 6.3 and (10) combined with (14), recalling that u0 = R⊥θ0 −
ẋ0(s), we have

E V (u0; 1
2
)p �

ˆ
Q 3

4

|θ0 − [θ0(s)]B 3
4
|p dz ds + E N L(θ0; 3

4
)p

� ‖θ0‖p−2
L∞(Q 3

4
)E(θ0; 1) + E N L(θ0; 3

4
)p .
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Collecting terms and applying Lemma 6.4, we deduce that for every (x, t) ∈ Q1 with
a constant C = C(α) ≥ 1 ( observe that p cannot exceed 1+α

α
+ 1)

E(θ0, u0; 1
4
)p ≤ C

(
‖θ0‖p−2

L∞(R2×[−1,0])E(θ0; 1) +
(
‖θ0‖p−2

L∞(R2×[−1,0])E(θ0; 1)
)1+ 2

p−2

+ ‖θ0‖p−2
L∞(R2×[−1,0])

ˆ 0

−1

ˆ
B 1
4

|(θ0)#α,q |1+
1

q2−1 dz ds

)
.

(54)

Step 3: We estimate the tilting effect of the flow. To this aim, introduce a parameter
q ≥ 8 (to ensure that 2α − 2/q ≥ 1/4 > 0).
For (x, t) ∈ Q1 and s ∈ [−1, 0] we have by the definition of the flow (34)

|ẋ0(s)| ≤ |B 1
4
|− 1

q ‖u‖L∞([t−1,t],Lq (R2)) ≤ 2‖u‖L∞([−42α,0],Lq (R2)) ≤ Kq(u; 4).

Hence the center of the excess in space can be shifted by at most

sup
(x,t)∈Q1

sup
s∈[−1,0]

|x0(s)| ≤ Kq(u; 4). (55)

Since θ0 is just a spatial translation of θ , we estimate ‖θ0‖L∞(R2×[−1,0]) ≤
‖θ‖L∞(R2×[−42α,0]) for (x, t) ∈ Q1. Recall that the extension is obtained by con-
volution with a Poisson kernel. Since translation and convolution commute, we have
(θ0)

∗(z, y, s) = θ∗(z + x0(s) + x, y, s + t) and hence

E(θ0; 1) =
ˆ

Q∗
1

yb|∇θ∗|2(z + x0(s) + x, y, s + t) dz dy ds

≤
ˆ
Q∗(4)

yb|∇θ∗|2(z, y, s) dz dy ds. (56)

We used in the last inequality that for (x, t) ∈ Q1 it holds t − 1 ≥ −42α and

B1(x) + x0(s) ⊆ B2 + BKq (u;4) ⊆ 1

4
B(4) + 1

42α−2/q
B(4) ⊆ B(4) (57)

for any s ∈ [−1, 0] by (55). As for the remaining term in (54), we observe that
(θ0)

#
α,q(z, s) = θ#α,q(z + x0(s) + x, s + t) and we reuse (57) to estimate

ˆ 0

−1

ˆ
B 1
4

|(θ0)#α,q |1+
1

q2−1 dz ds ≤
ˆ
Q(4)

|θ#α,q |1+
1

q2−1 dz ds. (58)

Combining (54), (56) and (58), we reach (53) by requiring (52). ��
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7 The Singular Set and Proof of Theorem 1.1

Werecall the box-counting dimension of a (compact) setS ⊆ R
3 :For every δ ∈ (0, 1)

we denote by N (δ) the minimal number of sets of diameter δ needed to cover S. We
then define

dimb(S) := lim sup
δ→0

− logδ(N (δ)).

It is well-known that the box-counting dimension controls the Hausdorff dimension
dimH , i.e. dimH S ≤ dimb S.

Proof of Theorem 1.1 Step 1: Fix t > 0 and define S := Sing θ ∩ [R2 × [t,∞)
]
. We

claim that S is a compact set in spacetime.
From the definition it is clear that S is closed and we claim that it is also bounded.
Indeed, let p be as in Corollary 6.1 and let p′ ≥ p. From themaximal function estimate
and Calderon–Zygmund

ˆ ∞

t

ˆ
(Mθ2)

p′
2 + |u|p′

dx ds �
ˆ ∞

t

ˆ
|θ |p′

dx ds � ‖θ‖p′−2(1+α)

L∞(R2×[t,∞))
‖θ‖2(1+α)

L2(1+α)(R2×[t,∞))

≤ C(‖θ0‖L2 )t−
p′−2(1+α)

2α ,

by Theorem 3.2 and the global energy inequality (20) of Leray–Hopf weak solutions.
By the absolute continuity of the integral we deduce that for every ε > 0 there exists
M = M(θ, ε) > 0 and T ∗ = T ∗(‖θ0‖L2 , ε) > 0 such that

ˆ ∞

t

ˆ
R2\BM

(Mθ2)
p
2 + |u|p dx ds +

ˆ ∞

T ∗

ˆ
R2

(Mθ2)
p
2 + |u|p dx ds < ε,

which, by choosing ε as in Corollary 6.1, means that S ⊂ BM+4(0) × [0, T ∗ + 42α].
Step 2: Let α ∈ (α0,

1
2 ) (otherwise the dimension estimate is trivial by Remark 6.7).

We show that for every q ≥ 8 we have

dimb S ≤ 1

2α − 2
q

((
1 + α

α
+ 1

q

)
(1 − 2α) + 2

)
=: β(q).

Indeed, fix q ≥ 8 and define pq := 1+α
α

+ 1
q . From Corollary 6.6, we know that if

(x, s) ∈ S , then for every r ∈ (0, (t/2)
1
2α ) it holds

1

r pq (1−2α)+2

ˆ
C∗(x,s;r)

yb|∇θ∗|2 dz dy dτ

+
ˆ
C(x,s;r)

|θ#α,q |1+
1

q2−1 dz dτ > ε‖θ‖−(p−2)
L∞(R2×[t/2,∞))

=: 2ε3 ,
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where ε = ε(α) > 0 is universal and in particular independent of r . By Theorem 3.2,
the threshold ε3 depends on t > 0 and ‖θ0‖L2 only. Following Remark 6.5, we observe
that with the notation of Remark 6.5

Kq(u; x, s, r) ≤ max
{
2C2‖θ0‖L2 t−

1
2α (1−2/q), 1

}
=: Lq

for r ∈ (0, δ0], where

δ0 := min
{
(t/2)

1
2α , (Lq/2)1/(1−2α+2/q), 1

}
.

Observe that Lq depends only on ‖θ0‖L2 and t > 0. For δ ∈ (0, δ0) , we define
the collection �δ containing balls B√

2Lqδ2α−2/q (x, s) centered at some point (x, s) ∈
R
2 × [t,∞) satisfying

ˆ
C∗(x,s;δ)

yb|∇θ∗|2 dz dy dτ +
ˆ
C(x,s;δ)

|θ#α,q |1+
1

q2−1 dz dτ ≥ ε3 δ pq (1−2α)+2.

Observe that {�δ}δ is a family of coverings of S consisting of Euclidean balls in
spacetime. By the Vitali covering Lemma, there exists for every δ a countable, disjoint
family {Bi }i∈I such that

S ⊆
⋃

i∈I

5Bi

and Bi ∈ �δ , in particular Bi = B√
2Lqδ2α−2/q (xi , si ) for some (xi , si ) ∈ R

2×[t,∞).

Observe that by Lemma 2.4, Theorem 2.1 and the global energy inequality (20) for
Leray–Hopf weak solutions, we have the global control

ˆ ∞

0

ˆ
R
3+

yb|∇θ∗|2 dz dy ds +
ˆ ∞

0

ˆ
R2

|θ#α,q |1+
1

q2−1 dz ds

≤ C
ˆ ∞

0
[θ(s)]2Wα,2(R2)

ds ≤ C‖θ0‖2L2 .

Therefore, setting η := 2
√
2Lqδ2α−2/q and using the disjointness of {Bi }i∈I , we can

estimate the minimal number N (η) of sets of diameter η needed to cover S by

N (η) ≤ H0(I ) ≤ C‖θ0‖2L2

ε3δ
pq (1−2α)+2

= C‖θ0‖2L2(
√
2Lq)

pq (1−2α)+2
2α−2/q

ε3η
pq (1−2α)+2

2α−2/q

.

We conclude that

dimb S = lim sup
η→0

− logη N (η) ≤ pq(1 − 2α) + 2

2α − 2/q
.
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Step 3: Conclusion.
By taking the limit q → ∞ in Step 2, we conclude that

dimb(Sing θ ∩ [t,∞)) ≤ 1

2α

(
1 + α

α
(1 − 2α) + 2

)

for every t > 0. Writing Sing θ =⋃n≥1 Sing θ ∩ [R2 × [ 1n ,∞)] , we deduce that

dimH(Sing θ) ≤ sup
n≥1

dimH
(
Sing θ ∩ [R2 × [ 1n ,∞)]

)

≤ 1

2α

(
1 + α

α
(1 − 2α) + 2

)
. �

8 Stability of the Singular Set

This section is devoted to the proof of Corollary 1.4. We observe that the ε-regularity
criterion is “continuous” under strong L p-convergence. This convergence result
together with the observation that smooth solutions satisfy the ε-regularity criterion
of Theorem 5.3 will allow to deduce the required stability.

Lemma 8.1 Let αn ∈ ( 14 ,
1
2 ) be such that αn → α ∈ ( 14 ,

1
2 ] and consider a sequence

of suitable weak solutions θn to (1)–(3) with α = αn on R
2×[−2, 0] such that θn → θ

strongly in L p(R2 × [−2, 0]) and assume that θ is a classical solution to (1)–(3) on
R
2 × [−2, 0]. Then, there exists a universal constant C > 0 such that uniformly for

any (x, t) ∈ Q1

lim
n→∞ E(θn,0, un,0; 1

4
) ≤ C E

(
θ0, u0; 1

4

)

where we denote by θn,0 and un,0 (and θ0 and u0 respectively) the change of variables
of Lemma 5.1 as applied to θn (and θ respectively).

Proof We fix (x, t) ∈ Q1 and apply the change of variables of Lemma 5.1 to θn and θ

respectively. We denote the corresponding flow by xn,0 and x0. Moreover, we estimate
for s ∈ [−1, 0]

|xn,0(s) − x0(s)| ≤ |s|1− 1
p

⎛

⎝
ˆ 0

s
−
ˆ

B 1
4
(x+xn,0(σ ))

|un(y, σ + t) − u(y, σ + t)|p dy dσ

⎞

⎠

1
p

+
ˆ 0

s
−
ˆ

B 1
4
(x)

|u(y + xn,0(σ ), σ + t) − u(y + x0(σ ), σ + t)| dy dσ
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≤ 4
2
p |s|1− 1

p

(ˆ t

t−1

ˆ
|un − u|p dy dσ

) 1
p + sup

σ∈[t−1,t]
[u(σ )]Lip(R2)

ˆ 0

s
|xn,0(σ ) − x0(σ )| dσ.

By Calderon–Zygmund, the strong convergence of θn implies that un → u strongly
L p. Calling C = supσ∈[t−1,t][u(σ )]Lip(R2) we deduce by Grönwall’s inequality that
uniformly in s ∈ [−1, 0]

lim
n→∞|xn,0(s) − x0(s)| ≤ lim

n→∞ 4
2
p (1+CeC )

(ˆ t

t−1

ˆ
|un − u|p dy dσ

) 1
p = 0.

(59)

We now claim that θn,0 → θ0 strongly in L p(R2 × [−(1/4)2α, 0]). Fix ε > 0 . We
split as before

ˆ 0

−
(
1
4

)2α

ˆ
|θn,0 − θ0|p(y, s) dy ds

≤
ˆ 0

−
(
1
4

)2α

ˆ
|θn(xn,0(s) + y, s + t) − θ(xn,0(s) + y, s + t)|p dy ds

+
ˆ 0

−
(
1
4

)2α

ˆ
|θ(xn,0(s) + y, s + t) − θ(x0(s) + y, s + t)|p dy ds.

Using the strong convergence of θn in L p(R2 × [−2, 0]), the first term on the right-
hand side doesn’t exceed ε

3 for n big enough. Using (59) and absolute continuity, there
exists R ≥ 1 such that for all n big enough

ˆ 0

−
(
1
4

)2α

ˆ
|y|≥R

|θ(xn,0(s) + y, s + t) − θ(x0(s) + y, s + t)|p dy ds ≤ ε

3
.

By the regularity of θ and (59), we estimate the remaining contribution of the integral
over the set {|y| ≤ R} by [θ ]p

Lip(R2×[t−(1/4)2α),t])‖un − u‖p
L p(R2×[t−1,t]) R p , which by

the strong L p-convergence does not exceed ε
3 forn big enough.The strong convergence

of θn,0 → θ0 in L p(R2 × [−(1/4)2α, 0]) implies also that un,0 → u0 strongly in
L p(R2 × [−(1/4)2α, 0]). As an immediate consequence we obtain

lim
n→∞ E S

(
θn,0; 1

4

)
+ lim

n→∞ E V
(

un,0; 1
4

)
= E S

(
θ0; 1

4
) + E V (u0; 1

4

)
.
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and

lim
n→∞ E N L

(
θn,0; 1

4

)
� lim

n→∞

{
E N L

(
θ0; 1

4

)
+
⎛

⎝−
ˆ 0

−(1/4)2α
sup
R≥ 1

4

1

(4R)σ p
−
ˆ

BR

|θn,0 − θ0|p

⎞

⎠

1
p

+
(

−
ˆ 0

−(1/4)2α
|[θ0]B 1

4
− [θn,0]B 1

4
|p
) 1

p
}

= E N L
(

θ0; 1
4

)
.

��
Proof of Corollary 1.4 Wearguebycontradiction andwe let p := 6

4α−1 andσ := 4α
3 + 1

6
as in the proof of Corollary 6.1. We may assume that there is a sequence of orders
αn ∈ ( 14 ,

1
2 ) and initial data θ̄n,0 ∈ H2 such that

• limn→∞ αn = 1
2 ,

• ‖θ̄n,0‖H2(R2) ≤ R for all n ≥ 1 ,

• the local smooth solutions θn to (1)–(3) with α = αn and initial data θ̄n,0, which
exist on an interval [0, T1], with T1 = C‖θ̄n,0‖−2

H2 ≥ C R−2 bounded from below
uniformly in n (see [35]), blow-up in finite time.

Since θn ∈ L∞([0, T1], H2) implies, for instance, that ∇θn ∈ L2([0, T1], L4/α) ,

θn satisifes the weak-strong uniqueness criterion of [15]2 and hence θn coincides on
[0, T1] with the unique suitable weak solution to (1)–(3) with α = αn and initial data
θ̄n,0. We have the uniform bound

sup
n≥1

‖θn‖L∞(R2×[T1/2,∞)) + sup
n≥1

‖θn‖L∞([T1/2,∞),L2(R2)) ≤ C (60)

given by (20) and Theorem 3.2. Up to subsequence, we have that θ̄n,0 → θ̄0 strongly in
L2(R2).Fix T > 0.By (60), θn is uniformly bounded in L2(R2×[T1/2, T ]) and hence
θn⇀θ weakly in L2. The strong convergence in L p(R2 × [T1/2, T ]) is established as
in the proof of Lemma 3.8, Step 2, using an Aubin-Lions type argument. The strong
convergence for any T > 0 is enough to pass to the limit the equation as well as the
global energy inequalities (20)–(21) and hence θ is a Leray–Hopf solution to (1)–(3)
with α = 1

2 and initial datum θ̄0. This Leray–Hopf solution is smooth by [3]. The
blow-up of the strong solutions means that there exists (xn, tn) ∈ Sing θn for n ≥ 1.
By Theorem 1.1 (and more precisely, noticing that Step 1 in its proof can be made
uniform in n), there exists M > 0 such that for all n ≥ 1

(xn, tn) ∈ B M × [T1, M].
2 The authors of [15] state their result in the form of an asymptotic stability result with respect to pertur-
bations of the initial datum and the right-hand side; however, in absence of any perturbation their energy
yield the corresponding weak-strong uniqueness statement, as previously observed for instance in [25].
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Up to subsequence, wemay assume that (xn, tn) → (x̄, t̄) ∈ B M ×[T1, M].Rescaling
the sequence of solutions by one single factor (related to T1) and translating them, we
may assume that T1 = −2 and that (x̄, t̄) = (0, 0) ∈ Q1. By a further n-dependent
temporal translation (by 2tn → 0), we may assume that tn < 0. By the continuity of
translations in L p, we still have in this way that θn → θ strongly in L p(R2×[−2, 0]).
We claim that there exists r ∈ (0, 1] such that for any (x, t) ∈ Q1

E

(
θr ,0, ur ,0; 1

4

)
<

ε2

2
, (61)

where we denote by θr ,0 and ur ,0 the change of variables of Lemma 5.1 applied to
(θr , ur ) (see Remark 5.2) and by ε2 the constant from Theorem 5.3. This now gives
rise to a contradiction: Indeed, by Lemma 8.1, uniformly for every (x, t) ∈ Q1, we
have the lower semicontinuity limn→∞ E((θn)r ,0, (un)r ,0; 1

4 ) ≤ C E(θr ,0, ur ,0; 1
4 )

such that for every n big enough, the smallness requirement of Theorem 5.3 holds and
we deduce that θn,r is smooth in Q1/2, namely θn is smooth in Qr/2. This contradicts
the fact that the singular points (xn, tn) ∈ Qr/2 for n big enough. We are thus left to
prove (61). Indeed,

E S
(

θr ,0; 1
4

)
= r2α−1

⎛

⎝−
ˆ r2α t

r2α t−( r
4 )

2α
−
ˆ

B r
4
(r x+r x0(r2α(s−t))

|θ(y, s) − r1−2α(θr ,0)Q 1
4
|p dy ds

⎞

⎠

1
p

≤ r4α−1[θ]Lip(R2×[−(2r)2,0]) ,

wherewe used again, as in the proof of Lemma 8.1, the fact that the flow x0 is Lipschitz
for a regular solution θ . Similarly, E V (ur ,0; 1

4 ) ≤ r2α[u]L∞([−(2r)2α,0];Lip(R2)).Finally
for the non-local part of the excess, we rewrite

E N L
(

θr ,0; 1
4

)
=r2α−1

(

−
ˆ 0

−( r
4 )

2α
sup

R≥ r
16

( r

4R

)σ p
(

−
ˆ

BR (x)

|θ(y + x0(r
2αs), s + r2α t)

−r1−2α[θr ,0]B 1
4
| 32 dy

) 2p
3

ds

⎞

⎠

1
p

.

For fixed time s ∈ [−(r/4)2α, 0] , we estimate the supremum splitting it on the two
sets { 14 ≥ R ≥ r

16 } and {R ≥ 1
4 }. We get that

E N L
(

θ0,r ; 1
4

)
≤ Crσ p([θ ]Lip(R2×[−(2r)2α,0]) + ‖θ‖L∞(R2×[−(2r)2α,0])).�

Acknowledgements The authors thank the anonymous referee for pointing out a mistake in a previous
version of the manuscript, which led to a substantial improvement in the paper. The authors have been
supported by the SNF Grant 182565 “Regularity issues for the Navier-Stokes equations and for other
variational problems”. MC has been supported by the NSF under Grant No. DMS-1638352. Both authors

123



Estimate on the Dimension of the Singular Set Page 55 of 62     6 

acknowledge gratefully the hospitality of the Institute for Advanced Studies, where part of this work was
done.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

AppendixA. Local spacetime regularity of the fractional heat equation

Lemma A.1 Let α ∈ (0, 1) and p ≥ 2. Consider η ∈ L3/2
loc (R2 × [−1, 0]) with

(η)Q1 = 0 and E S(η; 1) + E N L(η; 1) < +∞ which solves ∂tη + (−�)αη = 0 in
Q3/4. Then η is smooth with respect to the space variable and η ∈ C1−1/p(Q1/2) in
spacetime. Moreover, there exists C̄ > 1 such that

‖η‖L∞([−(1/2)2α,0],C1(B 1
2
)) + ‖η‖

C
1− 1

p (Q 1
2
)
≤ C̄(E S(η; 1) + E N L(η; 1)).

The constant C̄ can be chosen uniform in α as long as α is bounded away from 0.

Proof Using the linearity of the equation, we can assume by a standard regularization
argument that η ∈ C∞(R2×(−1, 0)). Wemultiply the equation by ηϕ|y=0 where ϕ is
a smooth cut-off between Q∗

11/16 and Q∗
3/4 with ∂yϕ(·, 0, ·) = 0 and obtain, arguing

as in Lemma 3.6,

ˆ
η2(x, t)ϕ(x, 0, t) dx + 2cα

ˆ t

0

ˆ
yb|∇η∗|2ϕ dx dy ds

=
ˆ t

0

ˆ
η2(x, s)∂tϕ(x, 0, s) dx ds

+ cα

ˆ t

0

ˆ
yb(η∗)2�bϕ dx dy ds.

Taking the supremum over t ∈ [−(11/16)2α, 0] and recalling the support of ϕ, we
obtain by Lemma 3.9 that

sup
t∈[−(11/16)2α,0]

ˆ
B 11
16

η2(x, t) dx ≤ C

⎛

⎝
ˆ

Q 3
4

η2 dx ds +
ˆ

Q∗
3
4

yb|η∗|2 dx dy ds

⎞

⎠

≤ C
(

E S(η; 1)2 + E N L(η; 1)2
)

. (62)

Let now p(x, t) be the fractional heat kernel on R
2 × (0,∞) with explicit form

e−|ξ |2α t in Fourier space. By scaling invariance, p(x, t) = t−1/α p(t−1/(2α)x, 1) and
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p is C∞ and bounded for t > 0. Let now P∗(x, y) := [p(·, 1)]∗(x, y) be the
Caffarelli–Silvestre extension to R

3+ of x �→ p(x, 1) and observe that from scaling,
p∗(x, y, t) = t−1/α P∗(t−1/(2α)x, t−1/(2α)y). Fix a cut-off ϕ between B∗

1/16 and B∗
1/8

which is radially symmetric in x and y. We define p̃(x, y, t) := p∗(x, y, t)ϕ(x, y) .

We proceed as in [31, Proposition 4.1] to obtain for (x, t) ∈ B5/8

η(x, t) =
ˆ

B 3
4

η(z,−(3/4)2α)p(x − z, t + (3/4)2α)ϕ(x − z, 0) dz

+
ˆ t

−(3/4)2α

ˆ
B∗
3
4

ybη∗(x, y, τ )�b p̃(x − z, y, t − τ) dz dy dτ.

We argue as in [31, Proposition 4.1] that yb�b p̃(x, y, t) = div(yb∇ p̃(x, y, t)) is a
smooth function in x and y supported in B∗

1/8 \ B1/16∗ which remains bounded as
t → 0. We conclude that for any multi-index β with |β| ≥ 0 we have, using (62) and
Lemma 3.9, that

‖∂β
x η‖L∞(Q 5

8
) � ‖η‖L∞L2(Q 3

4
) +
⎛

⎝
ˆ

Q∗
3
4

yb(η∗)2 dx dy dt

⎞

⎠

1
2

� E S(η; 1) + E N L(η; 1).

(63)

To get the spacetime regularity, we observe that for x ∈ B1/2 we can write (for fixed
time)

|(−�)αη(x, t)| =
ˆ

|y|≤ 5
8

|η(x, t) − η(y, t)|
|x − y|n+2α dy +

ˆ
|y|> 5

8

|η(x, t) − η(y, t)|
|x − y|n+2α dy

� [η(t)]Lip(B5
8
) +
∑

i≥0

1

2(i−1)(2α−σ)

ˆ
B2i+1\B2i

|η(x, t) − η(y, t)|
2(i−1)(n+σ)

dy

+
ˆ

B1\B 5
8

|η(x, t) − η(y, t)| dy � [η(t)]Lip(B5
8
)

+ sup
R≥1

1

Rσ
−
ˆ

BR

|η(x, t) − [η(t)]1| dx +
ˆ

B1

|η(x, t)| dx .

Using (63) and the equation, we conclude

‖∂tη‖L p L∞(Q 1
2
) � E S(η; 1) + E N L(η; 1) ,

which proves that η ∈ C1− 1
p ([−(1/2)2α, 0], L∞(B 1

2
)) recalling that W 1,p(R) ↪→

C1− 1
p (R). ��

123



Estimate on the Dimension of the Singular Set Page 57 of 62     6 

AppendixB.Cı-Hölder continuous solutionsare classical forı > 1−2˛

In [9] it is proved that solutions of (1)–(3) with u ∈ L∞([0, T ], Cδ(R2)), δ > 1− 2α,
are smooth. The following Lemma provides a localized version of this result.

Lemma B.1 Let θ : R
2 × (−1, 0] → R be a bounded solution of (1)–(3). If θ ∈

L∞((−1, 0], Cδ(B2)) for some δ > 1− 2α, then θ ∈ C1,δ−(1−2α)(B1/2 × (−1/2, 0])
in spacetime and in particular, is a classical solution.

Proof Step 1: We show that θ ∈ L∞([−1/2, 0], C1,δ−(1−2α)(B1/2)).

This follows from showing that u ∈ L∞((−1, 0], Cδ(B1)) and the general result on
fractional advection-diffusion equations [31, Theorem 1.1]. Let us write u = u1 + u2,
where u1 = R⊥(θχ) and u2 = R⊥(θ(1−χ)) for χ a smooth cut-off in space between
B3/2 and B2. We estimate by Schauder estimates [29, Proposition 2.8]

‖u1‖L∞((−1,0],Cδ) ≤ C‖θχ‖L∞((−1,0],Cδ) ≤ C‖θ‖L∞((−1,0],Cδ(B2))
.

Regarding u2, we observe that [u2(t)]Ck is bounded, uniformly in t ∈ (−1, 0], for all
k ≥ 1. Indeed, consider for instance k = 1: For x ∈ B1 and fixed time, by integration
by parts (the boundary term at infinity vanishes using the uniform boundedness of θ )

∂ jRi u2(x) = c
ˆ

xi − zi

|x − z|3 ∂ j ((1 − χ(z))θ(z) dz

= −c
ˆ

|z|≥ 3
2

∂z j

(
xi − zi

|x − z|3
)

(1 − χ(z))θ(z) dz ,

so that, using that for x ∈ B1 and z ∈ Bc
3/2 we have |x − z| ≥ 1

2 , we have

|∂ jRi u2(x)| ≤ C‖θ‖L∞
ˆ

|x−z|≥ 1
2

1

|x − z|3 dz < +∞.

We have obtained that

‖u‖L∞((−1,0],Cδ(B1))
≤ C(‖θ‖L∞((−1,0],Cδ(B2))

+ ‖θ‖L∞(R2×(−1,0])).

Step 2: We show that θ ∈ C1,δ−(1−2α)((−1/2, 0], L∞(B1/2)).

Observe that θ solves a heat equation with right-hand side
u · ∇θ ∈ L∞((−1/2, 0], Cδ−(1−2α)(B1/2)), so that

∂tθ ∈ L∞((−1/2, 0], Cδ−(1−2α)(B1/2)).

In particular, θ ∈ Lip((−1/2, 0], Cδ−(1−2α)(B1/2)). Repeating the argument, we
obtain that θ ∈ C1,δ−(1−2α)(B1/2 × (−1/2, 0]). Higher regularity then follows from
energy estimates. ��
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Existence of SuitableWeak Solutions

Proof of Theorem 3.6 Fix θ0 ∈ L2(R2). For ε > 0, we consider the system with added
vanishing viscosity term

{
∂tθ + u · ∇θ + (−�)αθ = ε�θ

u = ∇⊥(−�)− 1
2 θ ,

(64)

complemented with the initial datum θ(·, 0) = θ0 . For any ε > 0, the system (64)
admits a global smooth solution θε : R2 × (0,∞) → R. Moreover, for any t > 0,
θε(·, t) ∈ L2(R2) and for any 0 ≤ s < t , we have the energy equality

ˆ
θ2ε (x, t) dx + 2

ˆ t

s

ˆ [
|(−�)

α
2 θε |2(x, τ ) + ε|∇θε |2(x, τ )

]
dx dτ =

ˆ
θ2ε (x, s) dx .

(65)

Theorem 3.2 also applies to (64), so that θε is in L∞ for t > 0 with the uniform-in-ε
bound

‖θε(t)‖L∞ ≤ Ct−
1
2α ‖θ0‖L2 . (66)

Finally, with the obvious modifications of the computation in Section 3.3, we have for
any nonnegative test function ϕ ∈ C∞

c (R3+), locally constant in y in a neighbourhood
of y = 0, any nonnegative and convex f ∈ C2(R) and any t > 0 that

ˆ
R2

ϕ(x, 0, t) f (θε)(x, t) dx + cα

ˆ t

0

ˆ
R
3+

yb|∇θ∗
ε |2 f ′′(θ∗

ε )ϕ dx dy ds

≤
ˆ t

0

ˆ
R2

[
f (θε)(∂tϕ|y=0 + ε�ϕ|y=0) + uε f (θε) · ∇ϕ|y=0

]
dx ds

+ cα

ˆ t

0

ˆ
R
3+

yb f (θ∗
ε )�bϕ dx dy ds

=: C(ε) + D(ε).

We want to pass to the limit ε → 0. From (65) with s = 0 and the Sobolev embed-

ding of Ẇ α,2(R2) ↪→ L
2

1−α (R2), we infer by interpolation that the family {θε}ε>0 is
uniformly bounded in

L∞([0,∞), L2) ∩ L2([0,∞), Ẇ α,2) ↪→ L2(1+α)(R2 × [0,∞)).

By Banach-Anaoglu, for any fixed time T > 0, there exists θ ∈ L2(R2 × [0, T ])
and a subsequence εk → 0 such that θεk ⇀θ weakly in L2(R2 × [0, T ]). We now
claim that this convergence is in fact strong via an Aubin-Lions type argument in the
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same spirit as Step 2 of the proof of Lemma 3.8. Fix η > 0 and a family of mollifiers
{φδ}δ≥0 ⊆ C∞

c (R2) in space. For k, j ≥ 1 we estimate

‖θε j − θεk ‖L2(R2×[0,T ]) ≤ ‖θε j − θε j ∗ φδ‖L2 + ‖θεk − θεk ∗ φδ‖L2 + ‖(θε j − θεk ) ∗ φδ‖L2 .

The first two contributions converge to 0 independently of k and j due to a bound of the
form ‖θεk − θεk ∗φδ‖2L2(R2×[0,T ]) ≤ Cδ2α obtained as in (27) with ηk replaced by θεk .

We now choose δ small enough such that this contribution does not exceed η
3 . Having

δ fixed, we claim that the family of curves {t �→ θεk (·, t)}k≥1 is equicontinuous and
equibounded with values in W 1,∞. Indeed, by the energy equality (65) with s = 0
and the Calderon–Zygmund estimate ‖uεk ‖L2(R2×[0,T ]) ≤ C‖θεk ‖L2(R2×[0,T ]), we
estimate

‖∂tθεk ∗ φδ‖L2([0,T ],W 1,∞) ≤ ‖div(uεk θεk ) ∗ φδ‖L2W 1,∞ + ‖θεk ∗ (−�)αφδ‖L2W 1,∞

+ εk‖θεk ∗ �φδ‖L2W 1,∞

≤ (‖uεk ‖L2(R2×[0,T ])‖θ0‖L2 + 2‖θεk ‖L2(R2×[0,T ])
) ‖φδ‖W 3,∞

≤ C(δ).

By Ascoli-Arzela the sequence {θk ∗ φδ}k≥1 converges uniformly on R
2 × [0, T ]

and by uniqueness of limits, we infer that this limit must coincide with θ ∗ φδ.

We can therefore choose N ≥ 1 big enough such that for any k, j ≥ N we have
‖(θε j − θεk ) ∗ φδ‖L2(R2×[0,T ]) ≤ η

3 . We conclude that for k, j ≥ N there holds
‖θεk − θε j ‖L2(R2×[0,T ]) ≤ η. Since η was arbitrary, we conclude by uniqueness
of limits that θεk → θ strongly in L2(R2 × [0, T ]). By the uniform boundedness
in L2(1+α)(R2 × [0,∞)) and by (66) we also deduce that θk → θ strongly in
Lr (R2 × [0, T ]) for any 2 ≤ r < 2(1 + α) and strongly in Lr (R2 × [τ, T ]) for any
τ > 0 and any 2 ≤ r < ∞. By Calderon–Zygmund, we infer that uε → u := R⊥θ

strongly in L2(R2 × [0, T ]) (and Lr respectively). Passing to the limit k → ∞ in the
equation (64), we infer that θ is a distributional solution to (1)–(3). We are left to pass
to the limit in the global and local energy (in-)equality. Consider first (65). By Banach
Anaoglu and uniqueness of limit (−�)

α
2 θεk ⇀(−�)

α
2 θ weakly in L2(R2 × [0, T ])

and by weak lower semicontinuity

ˆ t

s

ˆ
|(−�)

α
2 θ |2(x, τ ) dx dτ ≤ lim inf

k→∞

ˆ t

s

ˆ
|(−�)

α
2 θεk |2(x, τ ) dx dτ

for any 0 ≤ s < t . For almost every t ∈ [0, T ] we can extract a further subsequence
such that θεk (·, t) → θ(·, t) strongly in L2(R2). By passing to the limit in (65), we
thereby obtain (20) and (21) for almost every 0 < s < t . We obtain it for every t > 0
(and almost every 0 < s < t) by observing that up to changing θ on a set of measure
0, we may assume that θ is continuous with respect to the weak topology on L2(R2).

We are left to pass to the limit in the localized energy inequality for f (x) = (x−M)2

L2

and f (x) = | x−M
L |q for q > 2 respectively, with some L > 0 and M ∈ R. Let
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us denote ηk := (θεk − M)/L , η := (θ − M)/L and let us fix τ, R > 0 such that
suppϕ ⊆ BR(0) × [0, R] × [τ, T ]. From the strong convergence established before,
we infer that ηk → η strongly in Lr

loc(R
2 × [τ, T ]) for 2 ≤ r < ∞. Up to extracting

a further subsequence and a diagonal argument, we obtain that ηk(t) → η(t) strongly
in Lr

loc(R
2) for almost every t > 0 and any r ∈ N≥2. By interpolation, the former

statement holds in fact for every 2 ≤ r < ∞. We deduce that for almost every t > 0 ,

for q = 2 and any q ≥ 4

lim
k→∞

ˆ
R2

ϕ(x, 0, t) f (θεk )
2(x, t) dx = lim

k→∞

ˆ
R2

ϕ(x, 0, t)|ηk |q(x, t) dx

=
ˆ
R2

ϕ(x, 0, t)|η|q(x, t) dx ,

lim
k→∞ C(εk) =

ˆ t

0

ˆ
R2

[|η|q∂tϕ|y=0 + u|η|q · ∇ϕ|y=0
]

dx ds.

We recall that from the Poisson formula θ∗
εk

(x, y, t) = (P(·, y) ∗ θεk (·, t))(x) and
Young’s convolution inequality

‖θ∗
εk

‖Lq (R2×[0,R]×[τ,T ], yb) ≤ C(R)‖P(1, ·)‖L1‖θεk ‖Lq (R2×[τ,T ]) = C(R, α)‖θεk ‖Lq (R2×[τ,T ]) ,

where we used that ‖P(·, y)‖L1 = ‖P(·, 1)‖L1 for y > 0. We deduce that θ∗
εk

→ θ∗

strongly in Lq(R2 × [0, R] × [τ, T ], yb). By linearity, η∗
k = θ∗

εk
−M

L so that η∗
k → η∗

strongly in Lq(BR × [0, R] × [τ, T ], yb). Hence

lim
k→∞ D(εk) =

ˆ t

0

ˆ
R
3+

yb|η∗|q�bϕ dx dy ds.

Moreover, we also deduce ∇η∗
k⇀∇η∗ and∇|η∗

k | q
2 ⇀∇|η∗| q

2 weakly in L2(BR(0) ×
[0, R] × [τ, T ], yb) and we infer by weak lower semicontinuity and the positivity of
ϕ that

ˆ t

0

ˆ
R
3+

yb|∇η∗|2ϕ dx dy ds ≤ lim inf
k→∞

ˆ t

0

ˆ
R
3+

yb|∇η∗
k |2ϕ dx dy ds

ˆ t

0

ˆ
R
3+

yb|∇|η∗| q
2 |2ϕ dx dy ds ≤ lim inf

k→∞

ˆ t

0

ˆ
R
3+

yb|∇|η∗
k | q

2 |2ϕ dx dy ds

for any t > 0. Passing to the limit k → ∞, we obtain (25) and (26) for almost every
t > 0. ��
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