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A B S T R A C T

Strengthening by needle-shaped 𝛽′′ precipitates is critical in Al–Mg–Si alloys. Here, the strength-
ening is studied computationally at the peak-aged condition where precipitate shearing and
Orowan looping are usually considered to have equal strengths. Pseudo-random precipitate
microstructures are constructed based on experimental precipitate dimensions and volume
fractions at peak aging. A Discrete Dislocation Dynamics method is then adapted to compute the
Critical Resolved Shear Stress (CRSS) for Orowan looping of dislocations moving through the
non-shearable precipitate field. The CRSS for Orowan looping is determined by a typical in-situ
precipitate spacing that is smaller than the average spacing and by the dislocation core energy
within a radius of ≈5b, a factor rarely considered. The matrix misfit stresses, volume fraction,
and precipitate shape have small effects on the CRSS. With microstructure and property details
introduced as faithfully as possible, the CRSS for Orowan looping using atomistically-calibrated
core energies at room temperature is nonetheless ≈33% higher than experiments. This suggests
that precipitate shearing controls strength, and analyses of (i) forces acting on the precipitates,
(ii) misfit stresses inside the precipitates, (iii) first-principles results for the relevant precipitate
fault energies, and (iv) simulations that mimic precipitate shearing indicate a shearing CRSS
closer to experiments. Thus, Orowan looping only sets an upper bound for the CRSS even at
peak aging, and further quantitative progress requires detailed modeling of precipitate shearing.

. Introduction

Aluminum alloys are attractive structural metals due to their light weight, high strength, corrosion resistance, and ductility. In
articular, the Al 6xxx (Al–Mg–Si) alloys are used extensively in automobiles while also finding other applications. The strength
f Al–Mg–Si alloys is mainly attributed to precipitation strengthening. Alloy performance also varies with composition, and so the
lloy design space is large and many different alloys have been studied carefully. Experimental studies probe the alloy strength
s a function of processing conditions (aging time and temperature) to identify peak-aged conditions at which the strength is a
aximum. The precipitation process in Al–Mg–Si under the T6 heat treatment sequence is (i) annealing at a high temperature to

reate a solid solution state, (ii) quenching to room temperature, (iii) heat treatment at about 180 ◦C for 2 h, and (iv) cooling to
oom temperature (Nie, 2014). If the aging treatment in step (iii) is shorter or longer, the material is under- or over-aged. The overall
recipitation process from under-aged to over-aged condition is understood to be GP zones (clusters) → 𝛽′′ → 𝛽′ → 𝛽 (Andersen
t al., 2018). Peak strengthening is obtained when the 𝛽′′ precipitates dominate in a fine-scale microstructure (Marioara et al., 2006,
005).

Precipitate strengthening is understood theoretically in terms of two basic mechanisms (Nembach, 1997): (i) dislocation shearing
f the precipitates and (ii) Orowan looping where the dislocations bow around the precipitates and leave Orowan loops. The
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Critical Resolved Shear Stress (CRSS) is evaluated for both mechanisms and the smaller of the two is the operative CRSS for the
system (Nembach, 1997). At a fixed volume fraction 𝑓 , basic models predict that the CRSS for the Orowan process decreases with
precipitate size 𝑟 as 1∕𝑟 while the CRSS for shearing increases as

√

𝑟. Thus, there is an optimal precipitate size at which the two
processes are equal and the strength is a maximum. Quantitatively, the strength should also depend on volume fraction, precipitate
microstructure, misfit stresses caused by the lattice and elastic mismatch between coherent precipitates and the matrix, elastic
mismatch effects on the dislocation motion, and any residual solute strengthening in the matrix. All of these processes are, in
principle, thermally-activated (and thus temperature- and strain-rate-dependent). Therefore, all these effects need to be considered
carefully in any attempt to understand or model experiments.

Because of its technological importance, the key phases in Al–Mg–Si alloys are well-studied (Andersen et al., 1998) including
composition dependence (Marioara et al., 2005) and the effects of processing on the precipitate microstructure (Wenner et al.,
2012). Complementary simulation studies have computed precipitate properties and precipitates embedded in the Al matrix using
first-principles methods (Ninive et al., 2014; Giofré et al., 2017). Without accurate interatomic potentials (but see Kobayashi
et al., 2017 and Jain et al., 2021), atomistic simulations of dislocation/precipitate interactions in Al–Mg–Si alloys have not been
reported, although similar studies exist using approximate potentials for Al–Cu (Singh and Warner, 2013) and Mg–Al alloys (Esteban-
Manzanares et al., 2019; Vaid et al., 2019). It has been more common to use mesoscale Discrete Dislocation Dynamics (DDD) to
examine Orowan looping, but usually focused on idealized microstructures with spherical (Mohles and Nembach, 2001; Monnet
et al., 2011) or ellipsoidal inclusions (Aagesen et al., 2018), often without misfit stresses or elastic mismatch effects. In parallel,
analytical models based on basic mechanisms have been used to fit the strength of Al–Mg–Si alloys (Myhr et al., 2018; Bardel et al.,
2014) but involve empirical parameters that limit predictive capability.

The general issues for computations in Al–Mg–Si are (1) can the peak-aged strength be predicted accurately without fitting and
(2) if so, can computations provide some guidance for alloy development? Here, we address the first question using state-of-the-art
methods. Specifically, we take advantage of the peak aging condition and study the Orowan mechanism in realistic peak-aged
microstructures of 𝛽′′ precipitates. We incorporate accurate misfit strains, neglect the (small) elastic mismatch effects, and neglect
solute strengthening since nearly all the Mg and Si additions are in the precipitates. We find that misfit stress effects on Orowan
looping are small but that the dislocation core energy is very important for quantitative results. With atomistically-calibrated core
energies, which are much lower than the default core energy in the widely used DDD code ParaDiS, we find that the CRSS for
Orowan looping is ≈50% above experiments using T = 0 K core energies and 33% above experiments using a T = 300 K core
energy. This suggests that precipitate shearing at a lower CRSS controls the peak-aged strength. A preliminary analysis of shearing
is made and the estimated CRSS is in better agreement with experiments, motivating future work on detailed modeling of precipitate
shearing even at peak-aging.

We conclude that quantitative simulations of the CRSS in alloys with nanoscale precipitate microstructures require accurate
(i) statistical microstructures, (ii) dislocation core energies (with long-range elastic effects being negligible), (iii) precipitate fault
energies, and (iv) internal precipitate misfit stresses. Incorporating the first two using DDD simulations provides a ‘‘best’’ upper-limit
to the CRSS via the Orowan mechanism but also shows that shearing and accurate internal misfit stresses cannot be neglected; this
requires further analysis and extensions of DDD simulations to incorporate shearing. The case study here on Al–Mg–Si provides a
clear framework for connecting precipitate microstructures and fault energies to macroscopic strength, which can aid in guiding
experimental development and assessment of new alloys.

The current paper is organized as follows. In Section 2, we describe our method for creating realistic pseudo-random precipitate
microstructures for peak-aged Al–Mg–Si. Section 3 presents the calculation of the misfit stresses in these microstructures. In
Section 4, we discuss the design and execution of mescoscale simulation of dislocation motion through the precipitate microstructures
using Discrete Dislocation Dynamics simulations. Section 5 presents simulation results, analysis of the features controlling the
strengthening, and comparisons with experiments. Section 6 presents initial analyses of the shearing mechanism and the associated
CRSS. The final section summarizes our main findings.

2. Pseudo-random precipitate microstructures of peak-aged Al–Mg–Si

Existing TEM studies reveal that the 𝛽′′ precipitates have a monoclinic crystal structure (Andersen et al., 1998). They form as
needle-like precipitates aligned with the fcc Al cubic axes, with the orientation relationship

𝐚 = [100]𝛽′′ ∥ [203]Al, 𝐛 = [010]𝛽′′ ∥ [010]Al, 𝐜 = [001]𝛽′′ ∥ [3̄01]Al

There are three possible precipitate orientations corresponding to the precipitate 𝐛 aligned along the matrix [100], [010], and [001]
directions, respectively. There are also three main precipitate compositions (Mg5Si6, Mg5Al2Si4, Mg4Al3Si4) with slightly different
crystal dimensions and elastic constants; these differences are negligible within the study performed here. Experiments at peak
aging (Wenner et al., 2012) provide information on the precipitate dimensions (cross-sectional area 𝐴 and length 𝑙) and volume
fraction 𝑓 . Table 1 shows relevant experimental data on the precipitates and microstructures. The precipitates form by a process of
nucleation and growth, as solutes in the matrix diffuse to the precipitates, and then grow further by Ostwald ripening. This formation
process suggests that the microstructure is not random but instead has precipitate spacings that are more narrowly distributed around
the mean value. These considerations motivate our creation of pseudo-random microstructures as follows.

Our initial building block for a realistic microstructure is a cubic cell based on the experimental precipitate dimensions and
volume fraction. Three precipitates, one for each orientation, are placed in a cubic cell such that periodic replication of the cell in
all three cubic directions gives equal spacings among all precipitates and their periodic images. At precipitate volume fraction 𝑓
2
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Table 1
List of experimental characterization of 𝛽′′ phases in Wenner et al. (2012) and Maisonnette et al. (2011), and the corresponding simulated precipitate dimensions
and building block sizes. The length for each lattice vector of precipitate is from Mg5Si6 for reference.
𝑓 Precipitate type Experiment Simulated precipitate in lattice unit 𝑙c (nm)

A (nm2) l (nm) a [203]Al (15.14 Å) b [010]Al (4.08 Å) c [3̄01]Al (6.93 Å)

0.66% Mg5Si6 7.5 22.5 2 55 4 41.9
1.10% Mg4Al3Si4 8.1 37.8 3 93 3 43.8
1.10% Mg4Al3Si4 8.1 37.8 2 93 4 42.1
1.60% Mg5Si6 21.2 25 3 61 8 46.5

ig. 1. (a) Building block of the micro(100) pseudo-random structure with three equi-spaced precipitates aligned in three axis directions, with 𝐴 the precipitate
ross sectional area, 𝑙 the precipitate length, and 𝑙c the edge length of the cubic cell. (b) The 8 equivalent variants of the fundamental building block. (c) In-plane
rojection of the building block for micro(100) showing the range of random perturbations 𝑤1, 𝑤2 and 𝑤3 added to each precipitate position. (d) Precipitate
tructure of an ideal single-variant unperturbed micro(100) structure on a (111) slip plane, showing two different precipitate spacings.

nd number of density 𝜌 (Wenner et al., 2012), the edge length of the cubic cell is 𝑙c = 3
√

3𝐴𝑙∕𝑓 or 𝑙c = 3
√

3∕𝜌. There are 8 variants
f this fundamental building block, as shown in Fig. 1(b), created by rotations and/or reflections of the basic cell.

Pseudo-random microstructures labeled as micro(100) are then created as 3 × 3 × 3 assemblies containing 27 of the initial
uilding blocks with variants randomly chosen from the 8 possibilities shown in Fig. 1(b). Further, we perturb the center position
f each precipitate in each building block in the [100], [010] and [001] directions as indicated by the 𝑤𝑖 and their ranges shown in
ig. 1(c). These perturbations are limited only by the restrictions that each precipitate remains in its original cubic cell and that the
recipitates do not overlap. In an infinite non-periodic microstructure, the average precipitate area fraction on (111) slip planes is
xactly equal to the volume fraction 𝑓 . The perturbations imposed here generate microstructures having precipitate area fractions
n the (111) slip planes very near 𝑓 (e.g. between 1.0% and 1.2% for a microstructure with average 𝑓 = 1.10%. Furthermore, for
imulations below, we then study slip only on (111) planes having the correct average precipitate area fraction.

Fig. 2 shows one example of a pseudo-random microstructure created in this manner, corresponding to the volume fraction and
imensions from experiment (Wenner et al., 2012) with a micrograph from the experiment also shown. The visual correspondence
s good. However, when the precipitates are not permitted to extend outside the individual building block, there are regions of zero
recipitate along the building block boundaries. These create similar regions on the (111) slip planes of the microstructure. Fig. 1(d)
urther shows that the equal spacing of the periodic precipitates in the cubic directions leads to two different length scales on the
111) planes where the dislocations glide. This might affect dislocation behavior as well.
3
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Fig. 2. (a) 3 × 3 × 3 pseudo-random precipitate model with micro(100) corresponding to the alloy denoted A2 (NA+AA) in Wenner et al. (2012). (b)
Corresponding experimental micrograph in Wenner et al. (2012). The scale bars in (a) and (b) are the same.

Fig. 3. (a) Precipitate structure of an ideal single-variant unperturbed micro(111) showing two different precipitate spacings in the (100) projection. (b) The
same microstructure but on the (111) plane, showing equal precipitate spacing on the (111) plane. (c) Projection of a full 3 × 3 × 3 micro(111) microstructure
generated with large perturbations of the individual precipitates.

To rectify possible issues with the above micro(100) structures, we have created a second family of microstructures denoted
as micro(111). As shown in Fig. 3, the precipitate spacings in the cubic direction of micro(111) are unequal but the precipitate
spacings on the (111) planes are equal. Furthermore, we consider perturbations in which the precipitates can extend outside of
their individual blocks, eliminating the precipitate-free regions along the block boundaries (Fig. 3(c)). The micro(111) structures
again have nearly-average precipitate area fractions on all (111) planes, and simulations are performed on (111) planes very near
the average area fraction.

Finally, while we report below only small sample-to-sample variations in the strength at size 3 × 3 × 3, indicating sufficient
sampling, we also created several micro(100) structures of size 5 × 5 × 5 to examine convergence. We also studied several
microstructures with random placement of precipitate cross-sections on the (111) plane.

Using the above general procedure, specific microstructures based on experimental studies were created as shown in Table 1. The
primary microstructure has 𝑓 = 1.10% with Mg4Al3Si4 precipitates corresponding to the alloy denoted A2(NA+AA) in Ref. Wenner
et al. (2012). For the low Mg concentration (0.443 at.%) in this alloy, Mg4Al3Si4 is the only possible composition at 𝑓 = 1.10% and
the residual solute concentration are 𝑐solMg = 𝑐Mg − 4𝑓∕11 = 0.043 at.% and 𝑐solSi = 0.402 at.% so that residual solute strengthening
is negligible. For this system, we consider two different precipitate shapes (2𝐚 × 4𝐜 and 3𝐚 × 3𝐜) having similar cross-sectional area
but different shape. To evaluate the effect of volume fraction, we created microstructures with 𝑓 = 0.66% and 𝑓 = 1.60% using the
properties of Mg5Si6. The first case is similar to the A3 alloy (particularly, A3_36h_175 ◦C) in Marioara et al. (2007) but with a
slightly larger cross sectional area. The second case is similar to the alloy in Ref. Maisonnette et al. (2011) with a shorter length
and larger cross-section area. While we use different precipitate compositions for different cases, the differences among them are
negligible for our determination of the CRSS for Orowan looping.

3. Misfit stresses in the pseudo-random microstructures

The nanoscale 𝛽′′ precipitates remain coherent with the Al matrix. The mismatch in size and shape of the precipitates relative
to the closest corresponding region of Al atoms leads to the creation of misfit stresses in the matrix and the precipitates. This is
observed in both previous experiments and DFT calculations (Wenner and Holmestad, 2016). It is thus necessary to determine the
4
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Table 2
Elastic constants obtained by first principle calculation in Giofré et al. (2017). These elastic constants are used in eigenstress calculation.

[GPa] 𝐶11 𝐶22 𝐶33 𝐶44 𝐶55 𝐶66

Al 106.1 31.9
Mg5Si6 98.4 84.6 88.0 21.9 29.1 51.2
Mg5Al2Si4 107.1 94.7 99.1 26.9 36.3 49.4
Mg4Al3Si4 106.7 96.5 97.1 25.9 35.6 46.3

𝐶12 𝐶13 𝐶23 𝐶15 𝐶25 𝐶35 𝐶46

55.9 0.
50.0 47.7 45.7 8.2 5.8 5.4 −10.1
40.3 45.6 43.0 −13.1 4.3 11.9 5.4
46.5 48.0 48.8 9.3 5.7 9.3 6.3

misfit strains throughout the microstructure and then incorporate those misfit stresses into simulations of dislocation motion through
the microstructure.

The misfit stress field 𝝈 throughout a specified microstructure is calculated using a fast-fourier transform (FFT) method as follows.
irst, the precipitate misfit strain �̄� is computed relative to the underlying Al lattice. In general, the precipitate lattice vectors 𝐚p

are related to the matrix lattice vectors 𝐚m by 𝐚m = �̄�𝐚p, where �̄� is the transformation deformation gradient. The precipitate misfit
train is then �̄� = 1

2 [�̄�
𝑇 + �̄�] − 𝐈. The linear-elastic stress–strain relationships for the matrix and precipitates are

{

𝝈 = 𝐂m𝜺 in 𝛺m
𝝈 = 𝐂p (𝜺 − �̄�) in 𝛺p

(1)

where 𝐂p and 𝐂m are the elastic constants of the precipitates and the Al matrix, respectively. We use the first-principles-computed
values of Giofré et al. (2017) as shown in Table 2. The misfit stresses are obtained by solving the equilibrium equation ∇ ⋅ 𝝈 = 𝟎
within the entire periodic pseudo-random microstructural simulation cell.

Taking advantage of the periodicity, we use a new fast-fourier transform (FFT) spectral solver (Junge et al., 2020) (see the
Appendix) that discretizes the full structure into 𝑁 pixels with each pixel assigned the appropriate elastic constants. The discrete

FFT stress field has oscillations at the scale of the pixels. These are first reduced in size scale by using a fairly high resolution of
𝑁 = 301 corresponding to a pixel size of 2.3b where b = 2.851 Å is the Al Burgers vector. We then apply a smoothing filter to
reduce the remaining oscillations to a level that should have no effect on subsequent dislocation simulations.

The misfit stresses create Peach–Koehler forces 𝐅 = (𝝈𝐛)×𝐭 acting on a dislocation with line direction 𝐭. Glide of dislocations with
Burgers vector 𝐛 = [1̄10] a/2 on the (111) plane with normal vector 𝐧 leads to a Peach–Koehler glide force 𝐅g = (𝐧 ⋅ (𝝈𝐛))(𝐧×𝐭). Thus,

e compute the resolved shear stress (RSS) field 𝐧 ⋅ (𝝈 𝐛)∕|𝐛| that exerts forces in the glide plane acting normal to the dislocation
ine direction. Examples of the RSS field are presented in Fig. 4 for several microstructures. The RSS values in the matrix can be
arge – reaching +∕− 600 MPa – but only very locally around the precipitates. Each precipitate has little interaction with other
recipitates, and so all precipitates with the same orientation have nearly the same RSS. The sign of the RSS depends on the chosen
and 𝐛, which are a matter of convention and are shown in each figure. These features will rationalize our conclusion that the role

f misfit stresses on Orowan strengthening is quite small.
Inside the precipitates, the magnitude and sign vary significantly with both orientation and shape, as seen in detailed views

n Fig. 4. These fields, while not important for Orowan looping, can thus assist or impede precipitate shearing as discussed in
ection 6. Experimental measurements show large internal strains in the precipitates (Wenner and Holmestad, 2016), consistent
ith our results.

. DDD simulations of dislocation-precipitate interactions

The motion of a dislocation through the precipitate field of the pseudo-random microstructures is modeling using the non-singular
heory (Cai et al., 2006) for Discrete Dislocation Dynamics (DDD) as implemented in the open-source code ParaDiS (Arsenlis

et al., 2007). Generically, DDD methods discretize continuum dislocation lines into linear segments, compute the long-range elastic
interactions among all segments, and evolve the discretized dislocations according to the total driving force on each segment. The
total driving force includes contributions from (i) an applied stress, (ii) the elastic interactions among segments, (iii) the self forces
due to elasticity and dislocation core energy of individual segments, (iv) the image forces due to interactions with elastically-
mismatched precipitates (Hirth and Lothe, 1982), and (v) the misfit stresses (RSS) created by the combination of lattice and elastic
mismatch of the precipitates. Implementation requires careful attention to a range of details, as discussed below.

For a DDD simulation in ParaDiS, we first select a (111) glide plane from the 3d microstructure. Noting that the microstructure
periodicity is different on a (111) plane, we replicate the full 3d precipitate microstructure to obtain a periodic microstructure on
the chosen (111) plane, as indicated in Fig. 5(a). ParaDiS simulations are then performed within some even-larger periodic cubic
cell. We insert our periodic (111) glide plane microstructure into such a cubic cell with the glide plane and desired dislocation line
direction aligned with the cubic axes of the ParaDiS cell. A single dislocation is then introduced along the desired line direction,
and sufficient periodic images along the line direction are added. Note that the absence of precipitate microstructure outside the
5

actual (111) domain along the dislocation glide direction is unimportant. This outer region is simply a large surrounding elastic
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Fig. 4. Normalized Resolved Shear Stresses (RSS) due to precipitate misfit strains acting on a screw dislocation, as computed for two different microstructures
(precipitate dimensions 3𝐚×3𝐜 at 𝑓 = 1.10%, and 3𝐚×8𝐜 at 𝑓 = 1.60%). The RSS are large very near the precipitates but decay rapidly with distance, as expected.
The sign of the RSS varies with precipitate orientation, dislocation type, and chosen (111) slip plane. The average and standard deviation of the RSS inside the
different precipitates are indicated, and play a role in precipitate shearing.

domain that prevents undesired image effects in ParaDiS while having no effect at all on the motion of the dislocation through the
microstructured region. Examples of the (111) plane models within the larger ParaDiS cell, for both screw and edge dislocations,
6
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Fig. 5. (a) Periodicity of a (111) simulation plane as created from replication of an underlying 3× 3×3 microstructure, with precipitates intersecting the chosen
glide plane shown. (b) Microstructure on the (111) plane for a DDD simulation for screw dislocation. The Burgers vector, line direction, and initial straight
screw dislocation are shown. Red polygons show the boundaries of the cut precipitates in this glide plane. (c) as in (b) but for an edge dislocation.

are shown in Fig. 5(b) and (c). With periodic boundary conditions imposed in all directions within ParaDiS, we verify that the
image forces on an infinite straight dislocation line are less than 3 MPa for the ParaDiS cell dimensions of over 1200b used here.

With a primary focus on Orowan looping on the glide plane, we treat the precipitates as impenetrable obstacles. Because the
elastic moduli of the precipitates are generally close to those of the Al matrix, and because the cost of computing image forces due to
the difference in elastic moduli is extremely high (Fivel, 2008), we neglect this effect. Then, the effect of the precipitates is entirely
constrained to the glide plane of the dislocation. A precipitate is a region where the dislocation cannot be present while creating a
spatially-varying misfit RSS outside the precipitate. We represent the precipitates by using prismatic loops along the exact boundary
of the precipitates in the glide plane. The stress field created by a prismatic loop in the glide plane of the dislocation generates
exactly zero driving force for the mobile dislocation on the same glide plane. Nonetheless, we explicitly set the forces to zero in
ParaDiS by labeling nodes of the prismatic loops as ‘‘precipitate’’ and setting any interaction forces involving ‘‘precipitate’’ nodes
to zero. The prismatic loop is thus fully fixed during the simulation. As a discretized lattice dislocation approaches a discretized
prismatic loop (a precipitate), any node that comes within a pre-defined collision distance of 0.2b of the precipitate loop is assigned
essentially zero velocity. The lattice dislocation thus conforms to the precise shape of the precipitate as it attempts to glide around
it, with no spurious interactions and no numerical instabilities (see Fig. 6).

Most previous modeling of precipitates imposes some high artificial stress on the dislocations in the region occupied by
precipitates (Queyreau and Devincre, 2009; Fivel, 2008; Mohles and Nembach, 2001; Lehtinen et al., 2016). This avoids the need
to determine when the dislocation reaches the precipitate boundary. However, as mentioned in Mohles and Nembach (2001), this
method can cause numerical problems at the precipitate boundary. Aagesen et al. (2018) use the exact geometry with dislocation
nodes pinned at the precipitate interface, most similar to our approach. Work by Al-Cu (Santos-Güemes et al., 2018, 2020) used a
very different method wherein the precipitate is fully modeled and the entire glide dislocation loop is represented by a discretized
eigenstrain, enabling a full 3d FFT model. However, this treatment of the dislocation is more approximate and we prefer to use
7
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Fig. 6. Snapshot of the discretized dislocation interactions with precipitates in the DDD simulation. Dislocation nodes are pinned when they are within a distance
0.2b of the prismatic segments that define the precipitate. The nodes shown in the inset are those pinned at the precipitate in this configuration.

actual dislocation lines gliding in a 2d plane, with variable resolution and with control of the dislocation core energy, at the cost
of neglecting the small dislocation/precipitate image interactions.

In addition to treatment of the dislocation-precipitate interactions, the simulations require material parameters such as the
Burgers vector, elastic constants, dislocation core energy, non-singular regularization parameter ‘‘a’’, and dislocation mobility. We
are examining only stable quasistatic solutions and so the mobility parameter is not important aside from being small enough to
ensure numerical stability; we use the small value of 0.05b/s. ParaDiS performs automatic re-meshing and refinements of the time
steps. The baseline elastic properties are taken from an EAM potential for Al (Ercolessi and Adams, 1994) with Bacon–Scattergood
effective isotropic material moduli (Scattergood and Bacon, 1975) 𝜇 = 32.0 GPa, 𝜈 = 0.34.

The term core energy is imprecise. A dislocation only has a total self-energy but it is convenient to conceptually partition that
energy into an ‘‘elastic’’ contribution and an ‘‘inelastic’’ or core contribution at the arbitrary but convenient reference length 𝑏 as Hu
et al. (2019), for dislocation character 𝜃,

𝐸(𝜃) = 𝐾(𝜃) ln
(𝑅
𝑏

)

+ 𝐸c(𝜃)||𝑏 (2)

where 𝐾(𝜃) is an elastic parameter; for an isotropic material, 𝐾(𝜃) = 𝜇𝑏2

4𝜋 (cos2 𝜃 + 1
1−𝜈 sin

2 𝜃). The above total energy can also be
determined at any other reference length 𝑎 as

𝐸(𝜃) = 𝐾(𝜃) ln
(𝑅
𝑎

)

+𝐾(𝜃) ln
(𝑎
𝑏

)

+ 𝐸c(𝜃)||𝑏 (3a)

= 𝐾(𝜃) ln
(𝑅
𝑎

)

+ 𝐸c(𝜃)||𝑎 (3b)

thereby defining a core energy quantity at scale 𝑎. In non-singular dislocation theory, 𝑎 is the non-singular regularization parameter.
To calibrate non-singular theory to an atomistic calculation of the total energy within a radius 𝑅 ≫ 𝑎 requires subtracting an
additional constant self-energy term that appears in non-singular theory and then adding an energy such that the total energy
within radius 𝑅 ≫ 𝑎 exactly matches the atomistic total energy (Hu et al., 2019) . The total self-energy is then independent of the
choice of regularization parameter 𝑎. Nonetheless, comparisons of ParaDiS and atomistic simulations of dislocation bow-out show
that some values of 𝑎 are slightly better than others. Here, we use the calibration of Hu et al. (2019) to atomistic Al as described
by the Ercollessi–Adams EAM potential, for which 𝑎 = 5.4𝑏 was found optimal; other calibrations are considered in Section 5.3.

We load the system with a resolved shear stress 𝜏 on the glide plane to move screw dislocations in the positive y direction and
edge dislocations in the positive x direction. The critical resolved shear stress (CRSS) for Orowan looping is obtained by incrementing
the applied stress. If the change in maximum advance of the dislocation in the glide direction is less than 0.1b for 300 time steps,
we increment the load by 5 MPa. When a stress increment exceeds the CRSS, the dislocation moves forward through the remaining
sections of the microstructure. The CRSS 𝜏c is then in between two load increments differing by 5 MPa, and is quoted as the mean
value with an uncertainty of 𝜏c ±2.5 MPa. Fig. 7 shows examples of the edge and screw dislocations just below and just above 𝜏c in
one typical microstructure.
8
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Fig. 7. DDD configurations for screw (top) and edge (bottom) simulations at stresses just before and just after Orowan looping for one particular 𝑓 = 1.10%
microstructure and glide plane, and for simulations with and without misfit stresses. The misfit stresses have minimal effect on the critical dislocation configuration.

5. CRSS for Orowan looping

5.1. CRSS versus volume fraction and misfit stress

Simulations of Orowan looping in our realistic micro(100) microstructures were performed at volume fractions 0.66%, 1.10%
and 1.60% using 𝜇 = 32.0 GPa, 𝜈 = 0.34 and the Ercolessi–Adams core energy at cut-off 5.4𝑏 (Hu et al., 2019). For each volume
fraction, two micro(100) pseudo-random structures were created (Section 2) using precipitate dimensions in Table 1. In particular,
we use a more-rectangular cross section 3𝐚 × 3𝐜 for 𝑓 = 1.10% to mimic experiments (see Fig. 4 in Wenner et al., 2012) while for
volume fractions 𝑓 = 0.66% and 𝑓 = 1.10% we use an equiaxed more-diamond-like shape; we address any shape effects subsequently.
Four different (111) glide planes were studied for each microstructure. The averaged CRSS values for edge and screw dislocations
over all simulations are shown in Table 3 along with the standard deviations.

Comparing the screw and edge simulations, the CRSS for the screw dislocation is only slightly higher (20 MPa) than the CRSS for
the edge dislocation across all cases. A much higher strength for the screw is expected based on standard elasticity models (Bacon
et al., 1973) where the screw line tension is much larger than that of the edge. However, for precipitates at the nanoscale, the
CRSS is controlled mainly by the core energy contribution to the line tension, which is only slightly larger for the screw than for
the edge (Hu et al., 2019). Thus, the typical conclusion drawn from standard models can be misleading when applied to nanoscale
precipitate structures. Also, as shown below, the typical precipitate edge–edge spacing at the CRSS is also slightly larger for the
screw as compared to the edge, further reducing the differences in strength.
9
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Table 3
Simulated CRSS values for various microstructures and volume fractions 𝑓 as indicated. The first three rows are simulated using 4 different glide planes in each
f 2 different 3 × 3 × 3 pseudo-random microstructures while the last 4 rows are calculated using 4 different glide planes in 1 pseudo-random microstructure.
𝑓 Microstructure Precipitate dimension a × c CRSS (MPa)

With misfit stress Without misfit stress

Screw Edge Screw Edge

0.66% micro(100) 2 × 4 123 ± 10 109 ± 14 113 ± 13 103 ± 13
1.10% micro(100) 3 × 3 164 ± 25 140 ± 8 158 ± 21 139 ± 7
1.60% micro(100) 3 × 8 161 ± 22 147 ± 14 147 ± 13 120 ± 11

1.10% micro(100) 2 × 4 – – 151 ± 19 135 ± 16
1.10% micro(111) 3 × 3 – – 143 ± 10 128 ± 5
1.10% micro(111) (large perturb) 3 × 3 – – 165 ± 14 141 ± 9
1.10% (5 × 5 × 5) micro(100) 3 × 3 – – 160 ± 14 136 ± 6

Examining the effects of misfit stresses, Table 3 shows that the matrix misfit stresses have almost no effect on the averaged
RSS for both edge and screw, especially for 𝑓= 0.66% and 1.10%. Visualization of the critical configurations in typical cases for
dge and screw are shown in Fig. 7 and are essentially identical with and without misfit stresses. This is consistent with the very
ocal misfit stress fields shown in Fig. 4. For 𝑓 = 1.60%, the misfit stresses increase the CRSS slightly (≈14 MPa for the screw and
27 MPa for the edge) due to the larger size and more-equiaxed shape that lead to larger misfit stresses in the matrix extending over a
slightly longer range. Reversing the line direction to change the sign of the PK force due to RSS field leads to no statistically-different
results. Overall, the effects of the matrix misfit stresses are small relative to the total CRSS and so are not crucial for reasonable
determination of the CRSS in the typical peak-aged alloy (𝑓 = 1.10%). This also implies that a loss of such misfit (or coherency)
stresses that may arise for larger precipitates in the overaged regime may not be a significant contribution to any decrease in strength
for Orowan looping.

With costly-to-compute misfit stresses of little importance, we now focus on results computed without misfit stress in Table 3
and examine the role of geometry. The strength increases significantly from 𝑓 = 0.66% to 1.10% but decreases upon a further
increase in 𝑓 to 1.60%. The latter effect is unexpected in traditional models. However, as known from classic analyses of Orowan
strengthening (Bacon et al., 1973), the CRSS should scale as 𝜏c ∝ 1∕𝐿 where 𝐿 is the edge-to-edge spacing of precipitates. We have
performed a Voronoi tesselation of our microstructures to extract the average center-to-center precipitate spacing �̄� in the entire
microstructure and the average edge-to-edge precipitate spacing 𝐿 along the actual dislocation at the CRSS. We also measure the
dge-to-edge distance 𝐷 across the precipitates pinning the dislocation at the CRSS. Examples of these geometric measurements are
hown in Fig. 8. The microstructure with 𝑓 = 1.10% has the smallest 𝐿 while the microstructures with 𝑓 = 0.66% and 𝑓 = 1.60%

have larger and comparable 𝐿. This is due to the fact that the 𝑓 = 1.60% microstructure consists of precipitates with a larger area
and shorter length, as compared to 𝑓 = 1.10%. The strength is controlled by 𝐿. Analysis shows that, across all microstructures, the
dislocation is pinned in a configuration that has a 𝐿 < �̄� with, typically, 𝐿 = (0.79 ± 0.18)�̄� (screw) and 𝐿 = (0.67 ± 0.08)�̄� (edge).
The strength of the 𝑓 = 1.10% microstructure is thus higher than that of both 𝑓 = 0.66% and 𝑓 = 1.60% mainly because it has a
smaller 𝐿. The difference in strength between 𝑓 = 0.66% and 𝑓 = 1.60% is then mainly due to the (smaller) effect of the precipitate
size 𝐷 at comparable 𝐿. These results demonstrate that volume fraction is not an appropriate measure for estimating strength. The
size and shape of the precipitates, and the effects of that geometry on the precipitate microstructure on the relevant dislocation
glide planes, are the main microstructural determinants of the strength.

The emergence of an operative edge-to-edge spacing 𝐿 = (0.73 ± 0.15)�̄� (average of screw and edge) across many simulations is
interesting, but as yet not quantitatively explained. It seems, however, natural that the dislocation will be pinned in the strongest
possible configurations, corresponding to some 𝐿 < �̄�. This finding is in contradiction to the analysis of Friedel (1967) for weak
point-pinning obstacles, invoked also in the BKS theory (Bacon et al., 1973). Friedel found that the dislocation will find paths with
𝑙𝑜𝑛𝑔𝑒𝑟 average segments (𝐿 > �̄�) in a random microstructure. However, this result in the weak-pinning limit does not apply for
Orowan looping.

5.2. Role of microstructure

Here we examine the CRSS for Orowan looping across a wider range of microstructures. Due to the high cost of computing the
misfit stresses, their minimal effect on the CRSS, and our interest in comparisons among structures, we consider only systems with
zero misfit stresses and focus on 𝑓 = 1.10%.

To assess any size dependence of our finite-size simulations, we simulated Orowan looping in a larger 5 × 5 × 5 pseudo-random
micro(100) microstructure (see Table 3). The CRSS is statistically identical to the results for the 3 × 3 × 3 microstructure. This, as
well as the small sample-to-sample strength variations among the 3 × 3 × 3 microstructures, indicates that this size is sufficiently
representative. The slow convergence with increasing size found for weak point-pinning obstacles (Nogaret and Rodney, 2006) does
not apply to the present strong-obstacle problem.

We next compare results using the equiaxed diamond-like 2𝐚 × 4𝐜 cross-section to the previous rectangle-like 3𝐚 × 3𝐜 cross-section.
Results in Table 3 show that the difference is minimal, verifying that the effect of the average precipitate cross-section size is small.
The microstructures have the same average spacing �̄� and, more importantly, the same average critical edge-to-edge spacing 𝐿 at
10
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Fig. 8. Dual lattice of the Voronoi tesselation of three typical microstructures at 𝑓 = 0.66%, 1.10%, and 1.60%, with the average center-to-center precipitate
spacing �̄� and average edge-to-edge precipitate distance 𝐿 at the CRSS indicated. The dislocation configuration at the simulated CRSS is shown by the green
line for screw (upper) and edge (lower) simulations.

Turning to the micro(111) microstructures, the CRSS for the case where precipitates do not extend outside the building block
shows strengths very slightly lower than the micro(100) (see Table 3). The dislocation configuration at the CRSS for a typical case
is shown in Fig. 9 along with the Voronoi tesselation. For this geometry, we find �̄� = 125𝑏 and 𝐿 = 89𝑏, the latter just slightly larger
than for the micro(100) cases and hence consistent with a slightly smaller CRSS. With larger perturbations enabling precipitates to
cross building block boundaries, and thus partially eliminating precipitate-free channels, the CRSS is statistically identical to that
for micro(100) (see Table 3). The dislocation configuration at the CRSS for a typical case is shown in Fig. 9. For this geometry, the
�̄� and 𝐿 are 128𝑏 and 84𝑏, essentially identical to those found for micro(100), rationalizing the similar strengths.

Finally, we also created several random microstructures in which precipitate cross-sectional shapes were placed randomly, but
without overlaps, within the domain at area fraction 𝑓 = 1.10%. We do not believe the purely random microstructure is appropriate
for these materials, but a comparison remains interesting. The CRSS for Orowan looping in these random microstructures are
statistically identical to those obtained for our pseudo-random microstructures.

From all of these studies, we conclude that the simulated CRSS for Orowan looping is quite robust across variations in the
microstructure. The CRSS is thus controlled by a combination of precipitate size, shape, and volume fraction that determines �̄�
11
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Fig. 9. Dual lattice of the Voronoi tesselation of typical micro(111) structures at 𝑓 = 1.10% without (left) and with (right) large perturbations. The average
center-to-center precipitate spacing �̄� and average edge-to-edge precipitate distance 𝐿 at the CRSS for an edge dislocation are shown. The dislocation configuration
at the simulated CRSS is shown by the green line.

and 𝐿, with minimal secondary effects of (i) 𝐷 and (ii) larger-scale differences between micro(100) and micro(111). The relative
insensitivity to these microstructural aspects is important for enabling comparisons with experiment below.

5.3. Role of dislocation core energy

The classic BKS analysis of Orowan looping was based on an elasticity analysis, imposing an arbitrary cut-off length 𝑟0 in the
calculation of self-energies (Bacon et al., 1973). The total dislocation energy was then implicitly embedded in the choice of 𝑟0 but its
effects were not directly investigated. In ParaDiS and other DDD codes, the inelastic contributions to the total dislocation energy
are either neglected or introduced as an additional core energy in an ad-hoc manner, and again the effects of the choice of this core
energy on phenomena are rarely examined. Here, we demonstrate the role of a chosen core energy on the CRSS for Orowan looping
and, moreover, the importance of retaining an accurate (i.e. atomistic) total dislocation energy for the nanoscale strengthening in
Al-6xxx.

Specifically, in addition to the Ercolessi-Adams atomistic energy, we study several other core energy choices. Atomistically, we
consider the core energy derived from the Mishin EAM potential (Mishin et al., 1999) at T = 0 K (Hu et al., 2019) and, using an
entirely different analysis, at T = 300 K by Geslin and Rodney (2018) who found 𝑎 = 1.2𝑏 as optimal in calibrating to ParaDiS. We
then also consider the ParaDiS default core model 𝐸c(𝜃) =

𝜇𝑏2

4𝜋 ln( 𝑎
0.1𝑏 )(cos

2 𝜃 + 1
1−𝜈 sin

2 𝜃), while noting that there is an additional
contribution to the total energy in the non-singular theory that is also automatically included (Hu et al., 2019). Finally, we examine
a hybrid model as follows. We use the Ercolessi–Adams atomistic core energy measured at 𝑎 = 5.4𝑏 but then compute all segment–
segment elastic interactions in ParaDiS using a much lower shear modulus 𝜇 = 10 GPa. This hybrid model thus suppresses the
effects of long-range elastic interactions beyond 𝑎 = 5.4𝑏. The material parameters for all of these test cases are shown in Table 4.
The screw and edge core energies are all quoted at the common value of 𝑎 = 𝑏 for comparison purposes. The full character-dependent
core energies 𝐸c(𝜃) that dictate the core contributions to the dislocation line tension 𝛤c = 𝐸c(𝜃) + 𝜕2𝐸c(𝜃)∕𝜕𝜃2 are used in the DDD
simulations. DDD results that preserve the total atomistic energy are essentially independent of 𝑎. For instance, we have verified,
using simple periodic geometries, that using the Ercolessi-Adams potential at T = 0 K calibrated with 𝑎 = 1.2𝑏 gives results identical
to those calibrated at 𝑎 = 5.4𝑏.

Results for the CRSS of the 𝑓 = 1.10% micro(100) case averaged over 4 different glide planes are shown in Table 4 for the
different core models. Use of the T = 0 K core energy from the Mishin potential yields statistically identical results to those using
12
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Table 4
Material parameters and dislocation core energies used in parametric studies of the CRSS for Orowan looping. Shear modulus and Poisson ratio are obtained
by Bacon–Scattergood effective properties. Dislocation core energies are quoted at 𝑎 = 𝑏. The core energy for Geslin and Rodney (2018) is recovered from their
line tension calibration, and the NS additional term is added back for consistent comparison (Hu et al., 2019). The value of 𝑎 used in ParaDiS for each case
s shown. The CRSS for the 𝑓 = 1.10%3 × 3 × 3 micro(100) structure is then shown for each case.
Core model 𝜇 (GPa) 𝜈 𝐸c, a = 𝑏 (eV/nm) a CRSS (MPa)

Screw Edge Screw Edge

Ercolessi-Adams, T = 0 K (Hu et al., 2019) 32.0 0.34 0.810 0.463 5.4b 158 ± 21 139 ± 7
Mishin, T = 0 K (Hu et al., 2019) 28.7 0.35 1.262 1.198 1.2b 157 ± 24 140 ± 14
Mishin, T = 300 K (Geslin and Rodney, 2018) 28.7 0.35 0.939 0.732 1.2b 138 ± 23 124 ± 13
ParaDiS (Arsenlis et al., 2007) 32.0 0.34 2.972 4.504 1b 289 ± 26 254 ± 18
Hybrid 10.0 0.33 0.810 0.463 5.4b 135 ± 12 133 ± 8

the Ercolessi-Adams potential. The core energies for edge and screw do differ slightly (see Table 4), but Orowan looping involves the
full line tension 𝛤 and so differences between edge and screw are not sufficient for a quantitative comparison. The use of the Geslin
t al. calibration to the Mishin potential at 300 K (Geslin and Rodney, 2018) leads to a modest decrease in the CRSS of 16–21 MPa.
ll the atomistically-calibrated results are thus quite comparable. In contrast, use of the default ParaDiS core energy model leads

to a huge increase, nearly doubling the CRSS for Orowan looping while still using the Ercolessi-Adams elastic constants.
Finally, the limited role of the long-range elastic energies is demonstrated by the hybrid model (reduced-modulus simulation

that retains the Ercolessi–Adams core energy at 𝑎 = 5.4𝑏). The CRSS for this hybrid model is reduced by only 23 MPa (15%) for
the screw and only 6 MPa (5%) for the edge. Standard elasticity-based models and simulations would show that all strengths scale
directly with 𝜇. While the core energy has some interplay with 𝜇 and 𝑎, results of Hu et al. (2019) for Al, Cu, and Ni show that the
core energies at a fixed 𝑎 are not directly proportional to the corresponding shear moduli. Accurate modeling, relative to atomistic
models, thus requires a proper calibration of a core energy contribution to the total dislocation energy versus character for a chosen
scale 𝑎. Accurate results for the CRSS of Orowan looping here requires an accurate representation of the energy within 𝑎 = 5.4𝑏
(independent of its partitioning between elastic and core contributions), with long-range elastic interactions having a very small
effect.

5.4. Comparison with experiments

In commercial Al-6061, Ozturk et al. examined both the yield strength and the hardness as a function of aging time (Ozturk
et al., 2010). When the precipitate microstructure is well-formed (around peak aging), they showed that the tensile yield stress (in
MPa) was quantitatively equal to 3 times the Vickers Hardness, 𝜎𝑦 = 3HV. This is essentially the relationship between yield and
hardness derived by Taylor for an elastic/perfectly-plastic material. This relationship presumably applies well to this system because
the work-hardening rate is quite low around the peak aged condition. Using this validated relationship, the measured hardness of
97 kg/mm2 in the A2(NA+AA) alloy studied by Wenner et al. (2012) corresponds to a tensile yield stress of 291 MPa. The peak-aged
strength in Al-6061 measured by Ozturk et al. but without any microstructural information, was comparable at 275 MPa. For an
alloy denoted as A12 having a microstructure with 𝑓 = 1.2% containing longer (69 nm) and larger-area (12.2 nm2) precipitates,
Marioara et al. (2007) report a peak-aged hardness of 104 kg/mm−2 corresponding to a yield stress of 312 MPa. Thus, all results
n peak-aged materials are fairly similar.

The Orowan looping strengths for screw and edge dislocations in the representative 𝑓 = 1.10% 3 × 3 × 3 pseudo-random
microstructures using the Ercolessi-Adams EAM Al T = 0 K elastic constants, core energy (Ercolessi and Adams, 1994; Hu et al.,
2019), and misfit stresses are 164 MPa and 140 MPa, with an average of 152 MPa. Using a Taylor factor of 3.06 for an untextured
large-grain polycrystal, we thus estimate the tensile strength as 465 MPa. We have shown that this strength is robust against a range
of microstructural differences and atomistically-calibrated core energies at T = 0 K, and is much smaller than the CRSS coming from
a default ParaDiS simulation. Nonetheless, this result is significantly higher (≈ 50%) than the experimental strengths of ≈300 MPa.

The experiments are at room temperature. Using the average reduction in CRSS of 17.5 MPa found when using the room
temperature core energy of Geslin and Rodney (2018) for the Mishin potential (Mishin et al., 1999), the predicted strength is
reduced to 411 MPa. This improves the agreement with experiment but remains roughly 33% higher than experiments. Thermal
activation of precipitate strengthening at finite T and experimental strain rates is usually quite small, as revealed by standard Haasen
plots (Argon, 2008), and so is unlikely to explain this remaining difference.

Overall, we conclude that the modeling of Orowan looping using realistic precipitate microstructures, state-of-the-art compu-
tational methods, and atomistically-calibrated dislocation core energies, results in a non-negligible over-prediction of the room-
temperature strength of peak-aged Al–Mg–Si alloys. Our findings indicate that, while Orowan looping may provide an upper bound
for the yield stress, the yield stress at peak aging is not quantitatively determined by Orowan looping. This finding is in contrast to
standard metallurgical wisdom. However, it is only by the full quantitative study here that such a conclusion can be made.

6. Precipitate shearing

In the previous sections, we have modeled Orowan looping with what we believe is the highest degree of realism at above-
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elastic mismatch effects, both of which are computationally demanding and not likely to bridge the gap between experiments and
simulations. As a result, we deduce that precipitate shearing is most likely occurring and is the controlling mechanism even at peak
aging. This deduction is actually consistent with very recent experimental TEM observations of multiply-sheared precipitates in this
alloy (Christiansen et al., 2019), but is not consistent with the traditional textbook view of the strengthening at peak aging. Here,
we therefore make a preliminary examination of precipitate shearing.

The critical material parameter for precipitate shearing is the generalized fault energy corresponding to shearing of the precipitate
y Al [110]a/2-type dislocations gliding on (111)-type planes. This information has heretofore been unknown, making assessment
f shearing impossible in this alloy. These generalized fault energies were recently computed, however, for the three 𝛽′′ precipitates
sing first-principles Density-Functional Theory (Jain et al., 2021). Across all the [110]a/2 Al Burgers vectors projected onto the
511̄) and (112) planes in 𝛽′′ that align nearly perfectly with the Al (111) slip planes, a typical accessible shearing fault energy can
e estimated as 𝛾𝑓 = 450 mJ/m2.

We first consider the shearing in terms of forces. For a dislocation shearing into a rectangular precipitate along an edge of
ength 𝐷, the force required to overcome the fault energy is 𝐹 = 𝛾𝑓𝐷. For the precipitates here with typical precipitate dimension
=

√

𝐴 = 3 nm and 𝛾𝑓 = 450 mJ/m2, the typical necessary force is 𝐹 = 1.35 nN. Fig. 10 shows the total forces acting on the
precipitates at the critical stress for Orowan looping as computed by DDD. The individual nodal forces are concentrated at the
precipitate corners (not shown), with the forces along the straight pinned regions comparatively small. This is expected since these
(configurational) forces are dominated by the core energy and line tension concentrated in regions of high curvature or high angle
change. The total force exceeds the estimated shearing force of 𝐹 = 1.35 nN in 10 of 17 precipitates for the edge and 4 of 12
precipitates for the screw. Thus, the DDD results indicate that significant precipitate shearing could occur prior to Orowan looping.
However, the forces acting on the precipitates do not significantly exceed the shearing force, and so the onset of shearing using this
estimate would occur at stresses only somewhat lower than the Orowan stresses.

The above analysis does not include the effects of the misfit stresses inside the precipitate. We thus now examine an overall
energy balance for the shearing of an average precipitate that accounts for the applied stress, the internal precipitate misfit stress,
and the shearing energy cost as follows. For simplicity, we consider the cutting of a square 𝐷 × 𝐷 precipitate parallel to the edge
of the precipitate. A single precipitate is cut with the dislocation pinned at the neighboring precipitates as shown schematically in
Fig. 11. An analysis of cutting diagonally starting at the apex of the square leads to a more-complex result where thermal activation
must be considered but final quantitative results at experimental temperatures and strain rates are quite similar to those of the
analysis we show now.

As shown in Fig. 11, when the dislocation cuts the precipitate over an incremental distance d𝑥 the two adjacent dislocation
segments of length 𝐿𝑠 in the matrix bowout such that the applied stress 𝜏 does work on the system of 𝜏𝑏𝐿𝑠 d𝑥. Work of 𝜏misfit𝑏𝐷 d𝑥
is also done by the 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 precipitate misfit stress 𝜏misfit. We consider those precipitates where the sign of the misfit stress assists the
cutting. Finally, the energetic cost of creating the additional area of faulted precipitate is 𝛾𝑓𝐷 d𝑥. Precipitate shearing is achieved
at the stress for which the net incremental energy cost is zero, 𝜏𝑏𝐿𝑠 d𝑥 + 𝜏misfit𝑏𝐷 d𝑥 − 𝛾𝑓𝐷 d𝑥 = 0. This leads to the critical stress
(strength for precipitate shearing) of

𝜏c =
𝛾𝑓𝐷 − 𝜏misfit𝑏𝐷

𝑏𝐿𝑠
(4)

In appropriately-oriented precipitates, the internal precipitate misfit stress can act as an effective reduction of the fault energy,
lowering the strength for shearing. Once these precipitates shear and the dislocation advances, the remaining precipitates will either
shear or be by-passed by Orowan looping at this stress; this will be examined by DDD below.

We apply the above analysis using values for alloy A2(NA+AA) of 𝐷 = 3 nm, precipitate center-to-center distance �̄� =
√

6𝑙c∕3 =
35.8 nm, and hence 𝐿𝑠 = �̄� − 𝐷, 𝑏 = 2.851 Å, and 𝛾𝑓 = 450 mJ/m2. The sign of the misfit RSS depends on Burgers vector and
ine direction, and so only some of the precipitates will assist shearing but the absolute magnitude of the shearing is clear, with an
verage of 347 MPa for screw dislocations and 266 MPa edge dislocations. The predicted CRSS values for shearing are 113 MPa
or the screw and 120 MPa for the edge. Taking the average of 116.5 MPa corresponds to a tensile yield stress of 𝜎𝑦 = 356 MPa,

which is much closer to experiments. Local statistical fluctuations or a reduction of the GSFE energies with temperature (Warner
and Curtin, 2009) would reduce the CRSS, while dislocation pinning at smaller values of 𝐿𝑠 would increase the CRSS; these are
beyond the scope of the present analysis.

We can then use DDD to verify that the CRSS due to shearing of favorable precipitates would allow subsequent Orowan looping
and/or shearing of any remaining precipitates. This is done by approximately mimicking the consequences of precipitate shearing as
follows. We perform a DDD simulation in which all precipitates that would be cut with the assistance of the internal precipitate misfit
stresses are removed at the start of the simulation. This leaves a microstructure with 1/3 fewer precipitates for the edge and 2/3 fewer
precipitates for the screw. In such a modified 𝑓 = 1.10% micro(100) microstructure, the average CRSS values for the residual Orowan
looping are 105 MPa and 103 MPa for screw and edge dislocations. These reductions are consistent with larger precipitate spacing
�̄� due to fewer precipitates, and we find the corresponding critical 𝐿 values to have a ratio 𝐿∕�̄� similar to those in the original
microstructures. Most importantly, these values for looping are lower than the estimated CRSS values for the initial shearing so that
the initial shearing that would control the CRSS. Finally, at the CRSS for looping in these modified microstructures, the forces acting
on the unsheared precipitates are shown in Fig. 12 and some of them can again exceed the shearing resistance 𝛾𝑓𝐷+ |𝜏misfit|𝑏𝐷 even
hough the remaining misfit stresses now inhibit shearing. Thus, after shearing of the initial shearable precipitates, both shearing
nd looping are estimated to enable dislocation motion through the remainder of the precipitates in the microstructure.

Overall, this preliminary theoretical and simulation study of shearing indicates that the CRSS in peak-aged Al-6xxx should be
ontrolled by precipitate shearing rather than Orowan looping, and that the estimated CRSS values are closer to experimental
14

trengths.
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Fig. 10. Forces 𝐹p exerted by the dislocation on each precipitate as computed in DDD, for edge (top) and screw (bottom) dislocations at the CRSS for Orowan
looping. These forces are to be compared with the critical value for shearing of 𝛾𝑓𝐷 =1.35 nN, with values shown in boxes exceeding this value.

Fig. 11. Shearing of a precipitate by a dislocation, showing the incremental areas swept by the dislocation for an advance by distance d𝑥 inside the precipitate.
15



Journal of the Mechanics and Physics of Solids 151 (2021) 104378Y. Hu and W.A. Curtin

a

a
m
h
m
a
i
a
t
u

e
t
W
p
f
e

f
c
a
a
f
p

C

S

D

t

A

a

A

e

7. Conclusions

We have presented a detailed analysis of dislocation motion through realistic precipitate microstructures in Al-6xxx (Al–Mg–Si)
lloys at the peak-aging condition with the goal of making quantitative connection with experiments.

We first examined Orowan looping as the controlling strengthening mechanism, since Orowan looping and precipitate shearing
re believe to give the same strength at peak-aging. We created realistic pseudo-random precipitate microstructures, calculated the
isfit stress fields, and examined dislocation motion using Discrete Dislocation Dynamics. We found that (i) matrix misfit stresses
ave little influence on the CRSS for looping, (ii) the CRSS for screw and edge are quite similar, in contrast to classic elasticity
odels (Bacon et al., 1973), (iii) the CRSS is controlled by a critical edge-to-edge precipitate spacing 𝐿 that is smaller than the

verage spacing �̄� with 𝐿∕�̄� ≈ 0.73, in contrast to the weak-pinning Friedel model, with other microstructural features of less
mportance, and (iv) dislocation core energies dominate over longer-range elastic energies so that calibrated atomistic core energies
re essential for quantitative results. All of these findings are new. With a room temperature atomistic core energy, we predict a
ensile yield strength that remains 33% above the experimental value. The Orowan looping mechanism is thus only an approximate
pper bound for the tensile yield strength in this peak-aged alloy.

Analysis of the DDD-computed forces on precipitates and the resisting forces derived from precipitate generalized stacking fault
nergy shows that many precipitates could be sheared prior to Orowan looping. An energy-based prediction of precipitate shearing
hat includes the effects of the internal precipitate misfit stresses then leads to an estimated CRSS that is closer to experiments.

e see two paths for future research to examine shearing. The first path remains at the DDD level but follows shearing processes
recipitate-by-precipitate. The second path is atomistic simulations in simple periodic microstructures to extract critical conditions
or shearing; this path is becoming feasible due to the emergence of new machine-learning interatomic potentials for Al–Mg–Si (Jain
t al., 2021).

Overall, this study demonstrates a number of new findings that indicate that classical and continuum analyses quantitatively
ail when applied to nanoscale microstructures such as peak-aged Al-6xxx. Accurate modeling requires detailed microstructures,
alibrated dislocation energies, relevant misfit stresses, and realistic precipitate shearing energies. Fortunately, all of these new
spects are computationally accessible, so that the general methodology introduced here can be widely applied to Al and other
lloys that rely on nanoscale precipitation to achieve strengths that make them technologically valuable. The present approach can
urther be used to understand how strength can be optimized by modifications to microstructure or chemistry of precipitates, thus
roviding guidance to future alloy development.
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ppendix. Introduction of FFT method

For the elastic misfit stress calculations, we use a variational FFT-based method to approximate the solution to the equilibrium
quations on a regular periodic pixel or voxel grid (Zeman et al., 2017) as in the open source package 𝜇 Spectre (Junge et al., 2020).

The basic idea of the method is to use the discrete Fourier transform basis functions 𝜑𝐪𝑚 (𝐱) as shape functions for a Galerkin
discretization of the periodic domain,

𝜑𝐪𝑚 (𝐱) = exp
(

2𝜋 𝑖𝐪𝑚 ⋅ 𝐱
)

, (A.1)

where 𝐪𝑚 is the normalized wave vector of the 𝑚th Fourier space grid point. These basis functions are interpolatory and constitute
a partition of unity.

Standard Galerkin discretization then allows for a determination of the stiffness matrix 𝐂 of the discretized problem and for the
solution of the linear elasticity problem as

𝐂𝐮 = −𝐂𝐮ref , (A.2)

where 𝐮 is the vector of nodal displacements and 𝐮ref is a uniform displacement due to applied strain boundary conditions. One can
also express the stiffness matrix 𝐂ref of a replacement problem with the same discretization grid, but uniform material properties.
16

This reference stiffness matrix 𝐂ref corresponds a convolution and can therefore be expressed and inverted in Fourier space at low
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Fig. 12. DDD simulations of dislocation motion through microstructures where the shearable precipitates have been removed, for edge (above) and screw (below)
cases. Left figures show the critical configuration and relevant spacings. Right figures show the forces acting on the precipitates at the critical configuration,
with boxed values above the critical resisting force 𝛾𝑓𝐷 + |𝜏misfit|𝑏𝐷 (1.65 nN for edge and 1.58 nN for screw, respectively).
17
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computational cost. The inverse Γ = 𝐂−1
ref corresponds to the discretized Greens function of the problem and happens to be a

preconditioner to the problem (A.2) with excellent spectral properties.
The preconditioned problem

Γ𝐂𝐮 = −Γ𝐂𝐮ref , (A.3)

can be solved very efficiently using projection-based solvers such as the conjugate gradient method.
Note that the formulation in Zeman et al. (2017) makes a modification to the stiffness matrix such that the unknowns are strains

𝜺 instead of 𝐮, leading to the main equation

𝐆𝐊𝜺 = −𝐆𝝈, (A.4)

where 𝐆 and 𝐊 correspond to the modified Greens function matrix Γ and the modified stiffness matrix 𝐂, and 𝝈 corresponds Cauchy
stress. The modifications are straight-forward and omitted here for brevity. The interested reader will find them well explained
in Zeman et al. (2017).
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