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Abstract

Process measurements can be used in an optimization
framework to compensate the effects of run-time un-
certainty. Among the various options for input adap-
tion, a promising approach consists of directly enforc-
ing the Necessary Conditions of Optimality (NCO) that
include two parts: the active constraints and the sen-
sitivities. In this paper, the variations of the NCO un-
der parametric uncertainty are studied and used to de-
sign appropriate adaptation laws. The inputs are sep-
arated into constraint-seeking and sensitivity-seeking
directions depending on which part of the NCO they
enforce. In addition, the directional influence of un-
certainty is used to reduce the number of variables to
be adapted. The theoretical concepts are illustrated in
simulation on the run-to-run optimization of a batch
emulsion polymerization reactor.

Keywords Dynamic optimization, Run-to-run opti-
mization, Necessary Conditions of Optimality, NCO
tracking, Batch reactor, Emulsion polymerization.

1 Introduction

Optimization has received growing attention in the past
years since it represents the natural choice for reducing
production costs while guaranteeing quality and safety
specifications. However, the main limitation of stan-
dard model-based optimization is the difficulty of de-
veloping reliable models [21]. Also, there are many pro-
cess variations in run time that need to be accounted
for. Industry typically copes with these uncertainties
by adopting a conservative strategy that guarantees
constraint satisfaction even in the worst case [21, 14, 3].
However, introducing conservatism is detrimental to
the optimization objective. This conservatism can be
reduced, and the objective improved, when measure-
ments are used in the optimization framework. This
idea has led to a paradigm shift from model-based [10]
to measurement-based optimization [18, 16].

In measurement-based optimization, two major ap-
proaches can be distinguished:

• Measurement-based optimization based on model
refinement: Here, measurements are used to re-
fine the available model, and the updated model
is used for optimization [5, 15].

• Measurement-based optimization with direct in-
put update: Here, the measurements are used
to directly update the inputs. One of the ideas
herein deals with the tracking of the Necessary
Conditions of Optimality (NCO) [20, 18], which
will be elaborated in this work.

NCO-tracking methods are based on the following idea:
Optimal inputs must satisfy the NCO. Due to uncer-
tainty (model mismatch and process disturbances), the
inputs computed using a process model may not meet
the NCO for the real process. Hence, in this class of
methods, the measurements are directly used to correct
for uncertainty and enforce the necessary conditions of
optimality.

Enforcing NCO is a relatively old idea [4, 13] that has
been revisited recently [12]. The main contribution of
the present work is to give importance to constraints
and perform a parametric sensitivity analysis. There
are different types of sensitivity studies depending on
what is varied. The classical type considers the first-
or second-order variations of the cost and constraints
resulting from variations of the manipulated variables
[1]. Also, the effect of constraints variations on the
cost has been studied [6]. In this work, the variational
study will be twofold: (i) With regard to the uncer-
tain parameters as in [2], and (ii) from a measurement
perspective in order to be able to implement the neces-
sary input adjustments. Note that the term “measure-
ments” normally represents only what comes directly
from a sensor. However in this work, for the sake of
simplicity, both measured and the estimated quantities
will be referred to as “measurements”.

The variational analysis of the NCO provides analyti-



cal expression for input adaptation laws. Two different
ways of expressing the adaptation laws are obtained
- one as a function of the uncertain parameters, and
another as a function of measurements of either the
constrained quantities or the sensitivities. The latter
is given more emphasis here since the uncertain param-
eters need not to be either known or estimated.

Since the NCO have two parts that are related to the
constraints and the sensitivities, two types of input di-
rections will be distinguished. The constraint-seeking
input directions are used to enforce the constraints,
while the sensitivity-seeking input directions can be
adapted to push the sensitivities to zero. The directions
are computed using singular value decomposition of ap-
propriate sensitivity matrices. Also, a two time-scale
adaptation strategy is proposed, where the constraint-
seeking directions are adapted at a much faster rate
than the sensitivity-seeking directions since there is of-
ten much more to gain along the constraint-seeking di-
rections than the sensitivity-seeking ones.

In addition, the directional effect of uncertainty is con-
sidered. When a parameter is uncertain or varies with
time, there could be directions in input space that are
not affected by this uncertainty. Thus, these directions
need not be adapted at all. If directional information
regarding the influence of uncertainty is available, it
can be used to reduce the number of directions that
need to be updated.

In dynamic optimization, on-line optimization can also
be performed [15]. However if the problem is trans-
formed into a static optimization problem, as shown
in Appendix, only the run-to-run aspect can be stud-
ied. Hence, the methodology is developed for static
optimization problem. This way, the repetitive nature
of batch processes can be exploited for the purpose of
optimization. The measurements from previous runs
are used to improve the current run, the objective be-
ing to get to the optimum over a few runs. Hence,
the run-to-run optimization of repetitive process can
be treated similarly to the iterative improvement in
static optimization problems [7].

The paper is organized as follows. Section 2 presents
the NCO for a static optimization problem. In Sec-
tion 3, the variations of the NCO due to parametric
uncertainty are studied. The inputs are separated into
constraint- and sensitivity-seeking directions that are
adapted independently. In Section 4, the directional
influence of uncertainty on the optimal inputs is in-
vestigated. Section 5 proposes an optimization scheme
that implements the proposed directional adaptations.
The methodology is illustrated in Section 6 through the
run-to-run optimization of a batch emulsion polymer-
ization reactor, while Section 7 concludes the paper.

2 Static Optimization Problem

2.1 Problem Formulation
Consider the following static optimization problem:

min
π

J = φ(θ, π) (1)

s.t. T (θ, π) ≤ 0

where J is the scalar cost function to be minimized,
π the nπ-dimensional vector of inputs, θ the the nθ-
dimensional vector of uncertain parameters, and T the
τ -dimensional vector of constraints. This formulation
is quite general since both static optimization with
equality constraints and dynamic optimization prob-
lems can be brought to this form (see Appendix).

By removing the dependent and/or inactive con-
straints, the problem can be reformulated such that
(i) the constraints are linearly independent, and (ii) all
constraints are active at the optimum. Such a refor-
mulated problem will be considered in the sequel. This
implies that, for feasibility, the number of inputs must
be greater than or equal to the number of constraints,
i.e. nπ ≥ τ .

In addition, it will be assumed in this paper that the
active set of constraints does not change with the un-
certain parameters θ, i.e. for all values of θ the same
constraints are active at the optimum.

2.2 Necessary Conditions of Optimality
With the aforementioned assumptions, the NCO for
Problem (1) are:

T (θ, π) = 0 (2)
∂φ(θ, π)

∂π
+ νT (θ)

∂T (θ, π)
∂π

= 0 (3)

where ν are the τ -dimensional Lagrange multipliers for
the constraints. The NCO have two parts: (i) the
constraint part (2), and (ii) the sensitivity part (3).
The NCO are verified at the optimum corresponding
to π∗ (θ).

3 Input Adaptation to Meet Constraints and
Sensitivities

3.1 Variations of the NCO with Parametric Un-
certainty
Let θ̄ be the nominal value of the parameter vector θ.
Consider the variation ∆θ = θ− θ̄ in the neighborhood
of θ̄. This variation causes a corresponding variation
in the optimal inputs π∗, i.e. ∆π∗ = π∗ (θ̄ + ∆θ

) −
π∗ (θ̄), and in the Lagrange multipliers ν, i.e. ∆ν =
ν
(
θ̄ + ∆θ

) − ν
(
θ̄
)
. For simplicity of notations, the

distinction between π and π∗ is dropped in the sequel.



The variation of the two parts of the NCO (2)-(3) re-
sulting from changes in θ, π and ν can be written as:

∆T =
∂T

∂π
∆π +

∂T

∂θ
∆θ = 0 (4)

∆
(

∂φ

∂π
+ νT ∂T

∂π

)
= ∆πT

⎛
⎝∂2φ

∂π2
+ νT

τ∑
j

νj
∂2Tj

∂π2

⎞
⎠

+ (∆ν)T ∂T

∂π
+ ∆θT

(
∂2φ

∂π∂θ
+ νT ∂2T

∂π∂θ

)
= 0 (5)

When the nominal inputs are applied to the perturbed
system, i.e. ∆θ �= 0, and the inputs are not adapted
∆π = 0, the equations (4)-(5) will not be verified.
Hence, the idea of adjusting the inputs π to satisfy
the NCO.

3.2 Constraint- and Sensitivity-seeking Input
Directions
Since the NCO have two parts, adaptation of certain
input directions, π̄, can be used to satisfy the constraint
part (4), while other directions, π̃, can be used for
the sensitivity part (5). Consider the (τ × nπ) matrix
G = ∂T/∂π. This matrix represents the effect of the
inputs on the active constraints in the neighborhood
of the value of π for which the matrix is computed.
From nπ ≥ τ , the maximal rank of G is τ , if nπ > τ ,
then there exist some linear combinations π̃ of the in-
puts that do not have any influence, at least locally, on
the constraints and some linear combinations π̄ of the
inputs that have an influence on the constraints.

With these definitions, π̄ are such that ∂T/∂π̄ is a full-
rank square matrix and π̃ are such that ∂T/∂π̃ = 0. It
follows that π̄ is the τ -dimensional vector of constraint-
seeking input directions and π̃ the (nπ−τ)-dimensional
vector of sensitivity-seeking input directions. If nπ = τ ,
there will only be constraint-seeking input directions.

The separation πT → [π̄T π̃T ] is performed using SVD
of the (τ × nπ) matrix G = ∂T/∂π. The matrices
involved in the decomposition, G = UG SG V T

G , can be
partitioned as:

SG = [S̄G 0], VG = [V̄G ṼG] (6)

with the constraint- and sensitivity-seeking input di-
rections defined as follows:

π̄ = V̄ T
G π, π̃ = Ṽ T

G π (7)

Thus, ∂T/∂π̄ = UG S̄G is invertible, and ∂T/∂π̃ = 0.
Note that π = V̄Gπ̄ + ṼGπ̃. With respect to π̄ and π̃,
the NCO (2)-(3) become:

T (θ, π̄) = 0 (8)
∂φ(θ, π̄, π̃)

∂π̄
+ νT ∂T (θ, π̄, π̃)

∂π̄
= 0 (9)

∂φ(θ, π̄, π̃)
∂π̃

= 0 (10)

3.3 Adaptation of Input Directions
The adaptation laws for the constraint- and sensitivity-
seeking input directions are obtained directly from the
variations of the NCO. The results are summarized in
the following theorem.

Theorem 1 For the static optimization problem (1),
the adaptation of the constraint-seeking input directions
needed to meet the NCO in the presence of parametric
uncertainty is given by:

∆π̄ = −
(

∂T

∂π̄

)−1
∂T

∂θ
∆θ = −

(
∂T

∂π̄

)−1

Tm (11)

where Tm is the measured value of the constrained
quantities T before input adaptation. Similarly, the
adaptation of the sensitivity-seeking input directions is
given by:

∆π̃ = −
(

∂2φ

∂π̃2

)−1
[
− ∂2φ

∂π̃∂π̄

(
∂T

∂π̄

)−1
∂T

∂θ
+

∂2φ

∂π̃∂θ

]
∆θ = −

(
∂2φ

∂π̃2

)−1(
∂φ

∂π̃

)
m

(12)

where
(

∂φ
∂π̃

)
m

is the measured or estimated value of(
∂φ
∂π̃

)
before the adaptation of π̃, but after the adapta-

tion of π̄ to meet the constraints.

Proof: The variation of (8) can be rewritten as :

∂T

∂π̄
∆π̄ +

∂T

∂π̃
∆π̃ +

∂T

∂θ
∆θ = 0 (13)

Since ∂T/∂π̃ = 0 and ∂T/∂π̄ is invertible, the first
equality of (11) follows. From (4), the term ∂T

∂θ ∆θ can
be interpreted as the value of T , with no input adap-
tation (∆π = 0), i.e. Tm. Using Tm = ∂T

∂θ ∆θ gives the
second equality of (11).

Similarly, the variation of (10) becomes:

∂2φ

∂π̃∂π̄
∆π̄ +

∂2φ

∂π̃2
∆π̃ +

∂2φ

∂π̃∂θ
∆θ = 0 (14)

Assuming ∂2φ
∂π̃2 to be invertible, which is the case for

non-singular problems, and replacing ∆π̄ by its expres-
sion from (11) gives the first equality in (12). The term
in rectangular brackets in (12) indicates the sensitivity
of ∂φ/∂π̃ due to the direct effect of ∆θ and the effect
of ∆θ over ∆π̄. In other words, upon multiplication
by ∆θ, it corresponds to (∂φ/∂π̃)m as described in the
theorem statement. This interpretation gives the sec-
ond equality in (12).

The reason for labeling the constraint-seeking input di-
rection π̄ and the sensitivity-seeking input direction π̃ is



evident from Theorem 1. The constraints T (θ, π̄) = 0
and the sensitivities ∂φ(θ, π̄, π̃)/∂π̃ = 0 are enforced
using π̄ and π̃, respectively.

Note that equation (9) is only there to compute the
Lagrange multipliers ν, and does not indulge directly
in the adaptation. In fact, making the adaptation in-
dependent of the Lagrange multipliers and their varia-
tions is the main reason for introducing the separation
between constraint- and sensitivity-seeking input direc-
tions.

It is interesting to note the two different ways of ex-
pressing the adaptation laws (11) and (12). The first
expression indicates how π should be changed when ∆θ
is known, while the second expression does the adapta-
tion from measurements of either the constrained quan-
tities or the sensitivities. Thus, in a measurement-
based optimization framework, the optimal solution in
the presence of uncertainty can be implemented from
measurements of Tm and (∂φ/∂π̃)m, i.e. without hav-
ing to know the model parameter variation ∆θ.

4 Input Adaptation with Directional
Information on the Influence of Uncertainty

In this section, the effect of uncertainty is supposed to
be known, i.e. it is possible to compute off-line the opti-
mal inputs for different values of the uncertain param-
eters around the nominal parameter vector θ̄. Thus, it
is assumed that the (nπ × nθ)-dimensional sensitivity
matrix D = ∂π/∂θ is known. If D and ∆θ are known,
the input update is given by:

∆π = D∆θ (15)

It follows from (7) and (15) that ∆π̄ = D̄∆θ and ∆π̃ =
D̃∆θ, with D̄ = V̄ T

G D, D̃ = Ṽ T
G D. Comparing these

expressions for ∆π̄ and ∆π̃ to (11) and (12) gives:

D̄ = − (∂T
∂π̄

)−1 ∂T
∂θ (16)

D̃ = −
(

∂2φ
∂π̃2

)−1 [
∂2φ

∂π̃∂θ − ∂2φ
∂π̃∂π̄

(
∂T
∂π̄

)−1 ∂T
∂θ

]
(17)

4.1 Separation of Constraints
In order to write the adaptation laws, it is important to
know which constraints are affected by the uncertainty
and which are not. This can be obtained from the D
matrix as described below.

It is seen from (4) that the sensitivity of T with respect
to the uncertain parameters contains two effects, i.e.
the effect of ∆θ over ∆π and the direct effect of ∆θ:

∂T

∂π

∂π

∂θ
+

∂T

∂θ
= GD + E = 0 (18)

where G = ∂T/∂π, D = ∂π/∂θ and E = ∂T/∂θ. This
equation allows computing E from G and D, where E
contains the information of how the constraints vary
with uncertainty.

If τ ≤ nθ, all constraints are affected by the uncer-
tainty. However, if τ > nθ, there exist some combina-
tions of constraints that are not affected by uncertainty.
The separation between uncertainty-dependent and
uncertainty-independent constraints is done via SVD
of the (τ × nθ)-dimensional matrix E = UE SE V T

E .
Assuming E to be of full rank, the matrices UE and
SE can be partitioned as:

UE = [ÙE ÚE ], SE =
[

S̀E

0

]
(19)

The uncertainty-dependent and uncertainty-
independent constraints can be defined as:

T̀ = ÙT
E T T́ = ÚT

E T (20)

Using these definitions results in ∂T̀
∂θ = ÙT

E
∂T
∂θ =

ÙT
E ÙES̀EV T

E = S̀EV T
E and ∂T́

∂θ = ÚT
E

∂T
∂θ = ÚT

E E =
ÚT

E ÙES̀EV T
E . Hence, ∂T̀

∂θ is invertible from the non
singularity of S̀E and VE (properties of SVD), and
∂T́/∂θ = 0 since ÚE and ÙE are orthogonal. Note that
T̀ and T́ are of dimension nθ and (τ −nθ), respectively.

4.2 Separation of the Input Directions
Using the directional information on uncertainty, an
additional separation can be done that leads to the
definition of four classes of input directions. The in-
terest of this separation is obvious since uncertainty-
independent input directions will not be affected by
uncertainty and thus need not be adapted.

The separation is similar to that proposed in Section
4.1. It is based on the matrices ÙD̄, ÚD̄, ÙD̃ and ÚD̃

which are defined from D̄ and D̃ the same way that ÙE

and ÚE are defined from E in (19).

π
(nπ)

V̄ T
G

Ṽ T
G

ÚT
D̄

ÙT
D̄

ÙT

D̃

ÚT

D̃

π̄
(τ)

π̃
(nπ − τ)

´̄π
(τ − nθ)

`̄π
(nθ)

`̃π
(nθ)

´̃π
(nπ − τ − nθ)

update

needed

no

update

update

needed

no

update

∆`̄π �= 0

∆´̄π = 0

∆`̃π �= 0

∆´̃π = 0

Figure 1: Input directions (with corresponding dimen-
sions) that accommodate constraints and sen-
sitivities together in the presence of uncertainty

Figure 1 indicates the various directions in input space
and the adaptations that are needed for meeting the



NCO in the presence of parametric uncertainty. It will
be seen that an update is necessary only for `̄π and `̃π.
The former is adapted using information on the con-
straints T̀ , while the latter uses sensitivity information
on ∂φ/∂ `̃π for adaptation.

Thus, the number of directions that are adapted is
dim(`̄π) + dim(`̃π) = 2nθ. Note that, if the adapta-
tion were not via the measurements but directly from
knowledge of ∆θ, it would be sufficient to adapt only
nθ directions. Thus, using the measurements for adap-
tation increases the number of directions to be adapted
by a factor 2. Furthermore, directional information is
useful only when nθ < max(τ, nπ − τ), i.e. a no-update
generation can be generated.

4.3 Adaptation of Input Directions
When information on ∆θ is available, the adaptation
along the four directions is given by:

∆`̄π = ÙT
D̄D̄∆θ �= 0, ∆´̄π = ÚT

D̄D̄∆θ = 0 (21)

∆`̃π = ÙT
D̃

D̃∆θ �= 0, ∆´̃π = ÚT
D̃

D̃∆θ = 0 (22)

However, the goal here is to express the adaptation laws
in terms of constraints and sensitivities rather than ∆θ,
which is given in the following theorem.

Theorem 2 For the static optimization problem (1),
the adaptation of the uncertainty-dependent input di-
rections are given by:

∆`̄π = −
(

∂T̀

∂ `̄π

)−1
∂T̀

∂θ
∆θ = −

(
∂T̀

∂ `̄π

)−1

T̀m (23)

∆`̃π = −
(

∂2φ

∂ `̃π
2

)−1
⎡
⎣− ∂2φ

∂ `̃π∂ `̄π

(
∂T̀

∂ `̄π

)−1
∂T̀

∂θ
+

∂2φ

∂ `̃π∂θ

]
∆θ = −

(
∂2φ

∂ `̃π
2

)−1(
∂φ

∂ `̃π

)
m

(24)

where T̀m is the value of T̀ before input adaptation, and(
∂φ

∂ `̃π

)
m

is the value of
(

∂φ

∂ `̃π

)
with `̄π adapted to meet T̀ .

No adaptation is needed for uncertainty-independent
input directions:

∆´̄π = 0 (25)
∆´̃π = 0 (26)

Proof: Equations (25)-(26) are taken directly from
(21)-(22).

Equation (4) can be written with respect to T̀ as:

∂T̀

∂ `̄π
∆`̄π +

∂T̀

∂ ´̄π
∆´̄π +

∂T̀

∂π̃
∆π̃ +

∂T̀

∂θ
∆θ = 0 (27)

or, with ∆´̄π = 0 and ∂T̀
∂π̃ = 0:

∂T̀

∂ `̄π
∆`̄π +

∂T̀

∂θ
∆θ = 0 (28)

Also, it follows from (28):

∂T̀

∂ `̄π
∂ `̄π
∂θ

+
∂T̀

∂θ
= 0 (29)

Since ∂T̀ /∂θ and ∂ `̄π/∂θ are invertible (the proof of the
latter being rigorously similar to the one for ∂T̀/∂θ in
Section 4.1, replacing E by D̄, T by π̄ and T̀ by `̄π), so
is ∂T̀ /∂ `̄π. Due to the invertibility of ∂T̀ /∂ `̄π, the first
equality in (23) follows directly from (28). The second
equality in (23) can be obtained by interpreting ∂T̀

∂θ ∆θ

as the value of T̀ in the absence of input adaptation,
i.e. T̀m.

For proving (24), (14) can be rewritten with respect `̃π:

∂2φ

∂ `̃π∂ `̄π
∆`̄π+

∂2φ

∂ `̃π∂ ´̄π
∆´̄π+

∂2φ

∂ `̃π∂ ´̃π
∆´̃π+

∂2φ

∂ `̃π
2 ∆`̃π+

∂2φ

∂ `̃π∂θ
∆θ = 0

(30)

Since ∆´̄π = 0 and ∆´̃π = 0, (30) becomes:

∂2φ

∂ `̃π∂ `̄π
∆`̄π +

∂2φ

∂ `̃π
2 ∆`̃π +

∂2φ

∂ `̃π∂θ
∆θ = 0 (31)

Using (23) for ∆`̄π leads to the first equality in (24).
Using the same argument as in the proof of Theorem 1
for interpreting the sensitivity

(
∂φ

∂ `̃π

)
m

gives the second

equality in (24).

5 Run-to-run Optimization Scheme

The previous section has shown that the optimal oper-
ation can be reached by adapting `̄π and `̃π to enforce
T̀ = 0 and ∂φ/∂ `̃π = 0, respectively. The use of inte-
gral control laws for this adaptation will be discussed
in this section.

Introducing the diagonal gain matrices K1 and K2 of
dimension nθ × nθ, with 0 < K1, K2 < I, the integral
adaptation laws for constraint-seeking and sensitivity-
seeking uncertainty-dependent input parameters can
be written for the kth iteration as:

`̄π(k) = `̄π(k − 1) − K1

(
∂T̀

∂ `̄π

)−1

T̀m(k − 1) (32)

`̃π(k) = `̃π(k − 1) − K2

(
∂φ

∂ `̃π

)
m

(k − 1) (33)

Equations (32)-(33) are in fact (23)-(24) written in in-
tegral form. The diagonal matrices K1 and K2 are
introduced to make the step cautious.



Noting that ∂T̀m

∂ `̄π
= ÙT

E GV̄GÙD̄, T̀m = ÙT
E Tm, ´̄π(k) =

´̄π(k−1), ´̃π(k) = ´̃π(k−1), π(k) = V̄GÙD̄
`̄π(k)+V̄GÚD̄

´̄π+
ṼGÙD̃

`̃π(k) + ṼGÚD̃
´̃π, it can be shown that,

π(k) = π(k − 1) − P2G
+P1K1Tm(k − 1)

−QK2

(
∂φ

∂ `̃π

)
m

(k − 1) (34)

where P1 = ÙEÙT
E and P2 = V̄GÙD̄ÙT

D̄
V̄ T

G are pro-
jection matrices, Q = ṼGÙD̃, and G+ = V̄GS̄−1

G UT
G ,

the pseudo-inverse of G. The adaptation is represented
schematically in Figure 2.

K2

K1 Plant

Delay

Delay

Delay

0

0

+

-

+
-

+
P1 G+

Q

P2 +

π(k) diff

(
∂φ

∂ `̃π

)
m
(k)

Tm(k)

Figure 2: Block diagram of the full adaptation scheme,
where ”diff” provides the gradient information

Several remarks are in order:

1. P1 transforms T to T̀ and P2 transforms `̄π to π.

2. If the directional effect of uncertainty is unknown
the projections based on D̄ or E have no effect.
So, ÙEÙT

E = Iτ and ÙD̄ÙT
D̄

= Iτ . This leads to
P1 = Iτ , P2 = V̄GV̄ T

G , and P2G
+ = G+. Thus, in

this case, P1 and P2 could be removed from the
scheme.

3. Though the linearization of the system is only
locally valid, the scheme has been shown to con-
verge for a class of nonlinear systems [8].

4. The gradient is computed experimentally using
finite differences, by perturbing `̃π with a square
wave.

5. As pointed out in Theorems,
(
∂φ/∂ `̃π

)
m

needs
to be evaluated under the condition Tm = 0 and
after the adaptation of `̄π has converged. This
means that a time-scale separation is needed.
Hence, T̀m is enforced (and so is Tm since T́m is
uncertainty-independent and so is equal to zero)
at a faster rate than

(
∂φ/∂ `̃π

)
m

= 0.

6. This time-scale separation is realized by trying to
enforce the constraints every run and sensitivities
only every (say) ten runs (represented in dotted
lines in Figure 2).

6 Run-to-run Optimization of a Batch
Polymerization Process

The case study presented in this paper concerns the
emulsion copolymerization of styrene/α-methylstyrene
in a batch reactor. The optimization objective is to
minimize the batch time necessary to meet the perfor-
mance specifications by manipulating the reactor tem-
perature. The optimization strategy presented in the
previous sections is implemented to handle parametric
uncertainties.

6.1 Tendency Model for an Emulsion Copoly-
merization Process
A tendency model that describes the main phenomena
of the process is used in this study in order to determine
the qualitative structure of the optimal solution. The
assumptions made are the same as in [9]. The following
equations are used:

Ṁ = −Rp = −kpMp
Np

Na
n̄, M(0) = M0

Ṅp = RiNa

1+(
εNp
SNa

)
, Np(0) = Np0

Q̇0 = Rin̄Np

Np+( S
ε )

+ ktrMMp
Np

Na
, Q0(0) = Q0

Ṫ = −V ∆H
mrC Rp + UA(Tj−T )

mrC , T (0) = T0

Ṫj = Fj(Tjin−Tj)
Vj

− UA(Tj−T )
ρjVjCj

, Tj(0) = Tj0

(35)
where M , M0, Mp are respectively the overall
monomer concentration, the initial monomer concen-
tration (styrene and 10 % in mass of α-methylstyrene)
and the concentration of monomer in the particles. Np,
Q0, Na, ε, and n̄ are the number of particles, the zeroth-
order moment of the molecular weight distribution, the
Avogadro number, the capturing efficiency of the parti-
cles with respect to micelles [11], and the average num-
ber of radicals per particle. T , Tj and Tjin are the
reactor, the jacket and the jacket inlet temperatures.
V and Vj the reactor contents and the jacket volumes,
∆H the polymerization reaction enthalpy. mrC and
Cj the reactor and the cooling fluid heat capacities, ρj

and Fj the cooling fluid density and the flowrate, U the
heat transfer coefficient, and A the heat exchange sur-
face . Rp and Ri represent the monomer consumption
and the initiator decompositions rates. Ri = 2fikdI0,
where fi is the efficiency factor of initiator decomposi-
tion and I0 the initiator concentration. kp, ktrM and
kd are the propagation, transfer to monomer, and ini-
tiation rate constants and are assumed to follow Ar-
rhenius law. The concentration of the emulsifier is
S = S0 − kv(XM0)

2
3 N

1
3
p where S0 is the initial emul-

sifier concentration and kv a constant. Mp has an ex-
pression that depends on conversion:

Mp =

{
Mpc if X ≤ Xc

(1−X)ρm

[(1−X)+Xρm/ρp]MM
if X > Xc

(36)

where X(t) = 1− M(t)
M(0) is the conversion, ρm and ρp are

the monomer and polymer densities, MM the monomer



fi 0.5 n̄ 0.5
ε 10−16 Na 6.02 1023

kv 10−7 g/(mol.l)
2
3 Ed 140.2 kJ/mol

kd0 4.5 106 s−1 Ep 29 kJ/mol
kp0 5.7 106 l/(mol.s) EtrM 85 kJ/mol

ktrM0 1.5 1011 l/(mol.s) mrCp 4.151 kJ/K
UA 6.4 J/(K.s) Fj/Vj 0.817 s−1

V ∆H −66.9 kJ.l/mol ρjVjCj 1.946 J/K
ρm 0.91 kg/l ρp 1.1 kg/l
MM 105.41 g/mol Mpc 5.38 mol/l
Xc 0.422 M0 2.16 mol/l
I0 3.7 10−3 mol/l S0 4.432 g/l

Np0 1 Q0 0 mol/l
T0 343 K Tj0 343 K

Table 1: Model parameters

molecular weight, and Xc the critical conversion. The
number average molecular weight Mn(t) can be defined
as Mn(t) = MM

M(0)−M(t)
Q0(t) . The values of the parame-

ters are given in Table 6.1.

6.2 Nominal Optimization
6.2.1 Problem formulation: The optimiza-

tion problem consists of determining the reactor tem-
perature policy that minimizes the batch time subject
to bounds on the reactor temperature and the jacket
inlet temperature, and terminal constraints on conver-
sion and the number average molecular weight. The
batch time represents another decision variable. The
problem can be expressed mathematically as follows:

min
T (t), tf

J = tf (37)

subject to dynamic system (35)
Tmin ≤ T (t) ≤ Tmax

Tjinmin ≤ Tjin(t)
X(tf) ≥ Xfd

Mn(tf ) ≥ Mnfd

where Tmin and Tmax are the bounds on the reactor
temperature, Tjinmin a lower bound on the jacket inlet
temperature, Xfd

and Mnfd
minimal desired values at

final time for the conversion and the number average
molecular weight, respectively. Table 2 gives the values
of the constraints.

Constraint Value Constraint Value
Tmin 313 K Xfd

60%
Tmax 343 K Mnfd

2 × 106 g/mol
Tjinmin 293 K

Table 2: Values of constraints

This dynamic optimization problem can be trans-

formed into a static one (1). The details of this trans-
formation are given in the Appendix.

6.2.2 Sequence of arcs and input parame-
terization: The reactor temperature has two effects
on the process. Increasing the reactor temperature
accelerates the reaction but leads to shorter polymer
chains and lower molecular weights. Since terminal
constraints on both conversion and molecular weight
are imposed, the optimal temperature profile represents
an intrinsic compromise between these two effects.

Tmax

Tmin

t t tsw1 sw2 fsw3t

α

Arc 1

Arc 2

Arc 3

Arc 4

Figure 3: Nominal optimal temperature profile

It is important to note that the mechanism of emul-
sion polymerization can be divided into three steps [17]:
Particle nucleation, particle growth with monomer sat-
uration and particle growth without monomer supply.
These will be reflected in the optimal solution discussed
below. The optimal solution obtained numerically and
shown in Figure 3 consists of four arcs that can be in-
terpreted as follows:

Arc 1 : Since polymer particles do not grow during
the nucleation step, it is possible to accelerate the
nucleation without affecting the molecular weight
by increasing the temperature. As a result, the
optimal reactor temperature is at Tmax.

Arc 2 : As soon as the particles start to grow, the op-
timal reactor temperature is somewhere between
Tmin and Tmax due to the intrinsic compromise.
Arc 2 implements the transition between Arc 1
and this intrinsic compromise in minimum time,
by imposing Tjinmin , the lowest Tjin possible.

Arc 3 : During particle growth with monomer satura-
tion, the reaction rate is nearly constant. Any in-
crease in temperature will favor conversion at the
expense of a smaller average molecular weight,
and vice versa. It is thus best to keep the tem-
perature constant at some optimal value.

Arc 4 : During particle growth without monomer sup-
ply, the reaction rate decreases with Mp. Hence,



optimal operation consists of increasing the reac-
tor temperature to compensate for the decrease
in reaction rate. Using tools from differential ge-
ometry, it was shown that in this arc Ṫ ∝ T 2.
However, for the range of conversions considered,
a linear temperature profile is sufficient, with its
initial temperature fixed at the temperature of
Arc 3 and its slope, α, considered as an opti-
mization variable.

In addition, the two terminal constraints regarding con-
version and molecular weight must be active for the
batch to be optimal. Thus, the optimal temperature
profile can be parameterized using the five parameters
tsw1 , tsw2 , tsw3 , tf and α shown in Figure 3 and the
two active terminal constraints.

6.3 Optimization in the Presence of Uncer-
tainty

6.3.1 Optimization without directional in-
formation regarding the uncertainty: Paramet-
ric uncertainty on the rate constants for both propa-
gation and transfer to monomer is considered (± 15%
variation in kp0 and ± 10% variation in ktrM0). Also,
5% zero-mean gaussian measurement noise is added.
As a result, a backoff (i.e. conservatism) is introduced
in order not to violate the terminal constraints. This
conservatism is introduced via the set points X∗

fd
=

63% and M∗
nfd

= 2.1× 106 g/mol provided to the con-
trollers.

Adaptation starts from the conservative worst-case
strategy, which will serve as the reference for compar-
ison. The worst case occurs when kp0 is at −15% and
ktrM0 at +10% of their nominal values. Among the five
parameters, the slope α is kept at its conservative value
because of its low sensitivity. The other four parame-
ters are adjusted on a run-to-run basis using batch-end
measurements in order to satisfy the two active ter-
minal constraints on conversion and number average
molecular weight.

Note that, for this example, τ = 2, nπ = 4, and nθ = 2.
In this case, the D matrix does not help reduce the
number of variables to adapt. With the approach pro-
posed in Section 3, two constraint-seeking input di-
rections can be defined. Only the adaptation of the
constraint-seeking directions is investigated in simula-
tion. The sensitivity-seeking directions are not adapted
since the associated benefit is small and thus buried
into the measurement noise.

Three uncertain cases and the corresponding
measurement-based optimization results are pre-
sented in Table 3. In Case (a), the uncertainty is
relatively large and the improvement through adap-
tation is over 30%. In Cases (b) and (c), though

the uncertainty is smaller, the improvement is still
significant.

Case kp0 ktrM0 5th batch 30th batch
(a) +15% −10% 1.32 (28.9) 1.12 (39.6)
(b) +5% −5% 1.48 (20.5) 1.30 (30.0)
(c) −5% +5% 1.66 (10.5) 1.53 (17.5)

Table 3: Values of the uncertain parameters and cost tf

in hours (with improvement in % from the con-
servative solution) after 5 and 30 batches

The run-to-run evolution of the cost function is shown
in Figure 4. Though the scheme takes about 12 runs to
converge to the optimal values, the major part of the
improvement is done in the first few batches. With the
backoff used, the controller gains are tuned such that
no constraint violation occurs, as shown in Figure 4.
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t
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Figure 4: Evolution of the cost, the average molecular
weight and the conversion: Case (a) (o, solid),
Case (b) (+, dotted), Case (c) (�, dashed)

6.3.2 Optimization with directional infor-
mation regarding the uncertainty: In this sec-
tion, unidimensional parametric uncertainty (± 15%
variation in kp0) is considered. With nθ = 1, τ = 2
and (nπ − τ) = 2, it is possible to illustrate how the
directional information regarding the uncertainty can
be used in the adaptation framework. Also, no mea-
surement noise is considered since, with measurement
noise, the adaptation of the sensitivity-seeking input
parameters does not lead to distinguishable improve-
ment.

Adaptation starts from the conservative worst-case



strategy, which will serve as the reference for compar-
ison. The worst case occurs for kp0 − 15%. As before,
the slope α is kept at its conservative value and is not
adapted.

In this case, G is of dimension 2× 4, D is of dimension
4 × 1, τ = 2, nπ = 4 and nθ = 1. So, the approach
proposed in Section 4 leads to the definition of one
direction of each type in Figure 1. For the simulation,
+ 15% variation in kp0 and three adaptation scenarios
are considered: (i) Adaptation of `̄π (ii) Adaptation of `̄π
and ´̄π and (iii) Adaptation of `̄π, ´̄π and `̃π. The set points
for the various scenarios are so chosen that the results
are comparable with those in the previous section, in
the sense that the convergence is to a point around
X∗

fd
= 63% and M∗

nfd
= 2.1 × 106 g/mol.

The optimization results are presented in Figure 5 and
tabulated in Table 4. Several remarks are in order:

• As expected, most of the optimization is done
through `̄π adaptation.

• Due to the only local nature of the decoupling
between `̄π and ´̄π, full constraint satisfaction re-
quires adaptation of ´̄π as well. Improvement of
the objective function through ´̄π adaptation is
negligible compared to what can be done via `̄π
adaptation alone.

• Adaptation of `̃π is slow and leads to only very
marginal cost improvement.

• Adaptation of ´̃π is even slower and leads to even
smaller cost improvement (the results are not pre-
sented in this paper).

• Though true convergence (in the average) re-
quires a large number of batches, the approach
of the optimum is fast, and most of the gain is
achieved in just a few runs.

• Though the technique can be used in a noisy sit-
uation as well, it will no longer be possible to
distinguish between 1.173h and 1.172h!

Case Adaptation Batches tf
(i) `̄π 20 1.197 (32.24)
(ii) `̄π, ´̄π 20 1.173 (33.62)
(iii) `̄π, ´̄π, `̃π 300 1.172 (33.68)

Table 4: Adaptation strategies and cost tf [hours] (im-
provement in % from the conservative solution)

In Case (iii), the two-time-scale adaptation is used,
with the adaptation of the sensitivities starting only
after the constraints have converged. The first batch
where the sensitivities are adapted is the 10th one. It
is interesting to note in Figure 5 the change away from
the constraints caused by the perturbation of `̃π, which
illustrates that the decoupling is not perfect and the
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Figure 5: Evolution of the cost function, the average
molecular weight and the conversion, Case (i)
(o, solid), Case (ii) (+, dotted), Case (iii) (�,
dashed)

two-time-scale strategy is indeed necessary for conver-
gence. Though, in Case (iii), the algorithm takes about
300 batches to converge, only the first 20 batches are
represented in the corresponding figures.

7 Conclusions

The variations of the NCO to parametric uncertainty
have been investigated. This analysis, along with the
directional influence of uncertainty, leads to the defi-
nition of four types of input directions. A methodol-
ogy based on singular value decomposition has been
proposed to generate these directions. The applicabil-
ity and performance of the proposed optimization ap-
proach are illustrated through the dynamic optimiza-
tion of a batch emulsion polymerization process.

The use of directional information regarding uncer-
tainty to perform input separation looks appealing.
However, it can only be used when the number of un-
certain parameters is small relative to the number of
input parameters. Furthermore, it is important to no-
tice that the methodology proposed to generate the
input directions is only locally valid. A perspective for
future research would be to use the directional infor-
mation differently, for instance by defining nonlinear
transformations so as to extend the applicability do-
main. Another interesting extension would be to inves-
tigate the variations of the NCO to parametric uncer-
tainty for the case of dynamic optimization problems
with infinite-dimensional inputs, i.e. without imposing
a parameterization.



Appendix - Transformation of a Dynamic
Optimization Problem to a Static

Optimization Problem in Reduced Form

Consider the following free-terminal time dynamic op-
timization problem with terminal cost and path and
terminal inequality constraints:

min
tf ,u(t)

J = φ(x(θ), tf ) (38)

s.t. ẋ = F (x, θ, u), x(0) = xo

S(x, θ, u) ≤ 0 (39)
T (x(θ, tf )) ≤ 0

where J is the performance index, x the n-dimensional
state vector, u the m-dimensional input vector, F the
system equations, xo the initial conditions, θ the nθ-
dimensional vector of uncertain parameters, φ the ter-
minal cost function, S the ζ-dimensional vector of path
constraints, and T the τ -dimensional vector of terminal
constraints.

The terminal-cost dynamic optimization problem (38)
can be transformed into a static one that reads as in
(1) upon:

• assuming that the path constraints are satisfied
using on-line control [19]

• considering the input parameterization u(t) =
U(x(t), π),

• noting that the states dynamics can be seen
as an equality constraint: x(θ, tf ) = xo +∫ tf

0
F (x, θ, U(x, π))dt (which is always satisfied,

and then can be removed from the optimization
problem)

• noting that tf can be included in the vector of
parameters.
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