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On the role of local depth and latitude on surface warming heterogeneity in the
Laurentian Great Lakes
Elisa Calamita ,a,b Sebastiano Piccolroaz ,a,c Bruno Majone ,a and Marco Toffolon a

aDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; bInstitute of Biogeochemistry and
Pollutant Dynamics, ETH Zürich, Zürich, Switzerland; cPhysics of Aquatic Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

ABSTRACT
Lake surface water temperature (LSWT) responds rapidly to changes in climatic variables. This
response is heterogeneous in space and its spatial distribution is primarily influenced by lake
bathymetry and latitude. Such heterogeneity is not captured by one-dimensional water
temperature models, which can accurately predict only the average LSWT. We performed a
spatially distributed application of the hybrid physically based/data-driven model air2water to
predict the LSWT variability in the 5 Laurentian Great Lakes and to deepen our understanding
of the role of local depth and latitude in shaping this heterogeneous response. Daily remotely
sensed LSWT data were used to calibrate and validate the model during 1995–2018, and
additional simulations considering a synthetic warmer climate scenario in which air temperature
was increased by 2 °C were run to assess the inter- and intra-lake differences in LSWT warming
rates. The model reproduces the observed spatial distribution of LSWT with an average root
mean squared error of 1.2 °C and suggests that, under the warmer scenario, the LSWT of the 5
lakes could increase heterogeneously, with the deepest zones showing the maximum warming
rates. Summer stratification lengthening is expected to increase with higher local depth; this
behaviour attenuates with increasing latitude, whereas the LSWT warming is essentially
dependent on the local depth, irrespective of latitude. We highlight the importance of
accounting for LSWT spatial heterogeneity to adequately assess the thermal response of the
Great Lakes to a warming climate.
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Introduction

By reflecting changes in the climate as well changes in
their drainage catchment, lakes are recognized as senti-
nels of climate change (Williamson et al. 2009a). In this
respect, lake surface water temperature (LSWT) is con-
sidered a highly informative indicator because of its
rapid and direct response to changes in climatic forcing
(Adrian et al. 2009, Williamson et al. 2009b). LSWT is
indeed rapidly warming worldwide, in some cases
reaching higher warming rates than the surrounding
air temperature (Austin and Colman 2007, Schneider
and Hook 2010). However, such warming has different
magnitudes at different latitudes and different geo-
graphical regions, with more thermally responsive
lakes generally located in the temperate region (Piccol-
roaz et al. 2020) and some hotspots for climate sensitiv-
ity identified in the Laurentian Great Lakes region and
in Northern Europe (O’Reilly et al. 2015). LSWT
response to external changes is also spatially variable
within a lake, with significant intra-lake variability

mainly dependent on lake bathymetry (Mason et al.
2016, Woolway and Merchant 2018, Matsumoto et al.
2019, Zhong et al. 2019, Toffolon et al. 2020).

During the last decades, satellite technology largely
contributed to the availability of spatially distributed
LSWT observations worldwide. Remotely sensed
multi-spectra images have been available since the
1980s with progressively higher spatial and temporal
resolution (Giardino et al. 2013, Pareeth et al. 2016,
Irani Rahaghi et al. 2019). Maps of LSWT provide
detailed information about the spatial heterogeneity of
the thermal dynamics in lakes and additional evidence
that many lakes are warming, including those located
in ungauged regions not previously monitored
(Schneider and Hook 2010). At the same time, the
increased availability of remotely sensed observations
fostered research on intra-lake and inter-lake LSWT
heterogeneity, aimed at improving the understanding
of the spatial and temporal patterns in lake warming
and identifying key drivers controlling the process

© 2021 International Society of Limnology (SIL)

CONTACT Elisa Calamita elisa.calamita@usys.ethz.ch Universitätstrasse 16, CHN F14, 8006 Zürich, Switzerland
Supplemental data for this article can be accessed here: https://doi.org/10.1080/20442041.2021.1873698.

INLAND WATERS
https://doi.org/10.1080/20442041.2021.1873698

http://crossmark.crossref.org/dialog/?doi=10.1080/20442041.2021.1873698&domain=pdf&date_stamp=2021-03-30
http://orcid.org/0000-0002-2614-2942
http://orcid.org/0000-0003-1796-7624
http://orcid.org/0000-0003-3471-7408
http://orcid.org/0000-0001-6825-7070
mailto:elisa.calamita@usys.ethz.ch
https://doi.org/10.1080/20442041.2021.1873698
https://limnology.org/
http://www.tandfonline.com


(Steissberg et al. 2005, Oesch et al. 2008, Schneider et al.
2009, Toffolon et al. 2014, Zhang et al. 2014, Piccolroaz
et al. 2015, Bouffard et al. 2018, Lieberherr and Wun-
derle 2018, Prats et al. 2018).

Some of these studies used the 5 Laurentian Great
Lakes (USA–Canada) as a case study (Trumpickas
et al. 2009, 2015, Piccolroaz et al. 2015, Mason et al.
2016, Zhong et al. 2016, Kravtsov et al. 2018, Zhong
et al. 2019, Toffolon et al. 2020) because of their wide
variation in bathymetry and latitude, and thus their
inter- and intra-lake surface water temperature variabil-
ity. In addition, a consistent historical observational
dataset of LSWT for the Laurentian Great Lakes is avail-
able for the past decades and is continuously updated
(Hunter et al. 2015). Although the Laurentian Great
Lakes have been identified as a world hotspot for
LSWT warming rates (O’Reilly et al. 2015), the leading
mechanisms controlling such warming are still under
debate (Kravtsov et al. 2018, Sugiyama et al. 2018).
For example, Austin and Colman (2007) claimed that
the ice–albedo feedback is one of the major causes of
accelerated lake warming, and recently Winslow et al.
(2017) suggested that this effect may only be important
for large lakes such as the Laurentian Great Lakes. How-
ever, other studies argued that the compensation
between ice–albedo feedback is counterbalanced by
the insulation due to the ice cover, limiting LSWT
warming (Vavrus et al. 1996, Gerbush et al. 2008,
Zhong et al. 2016, Ye et al. 2019).

The understanding of lake warming is complicated
because LSWT is predominantly controlled by thermal
stratification magnitude and timing (Piccolroaz et al.
2015), which in turn depend on basin morphometric
characteristics including the local depth of the water col-
umn (Gorham and Boyce 1989, Butcher et al. 2015,
Kraemer et al. 2015, Magee and Wu 2017). Thus, the
bathymetry of the lake exerts a strong control on the sur-
face heat balance, resulting in horizontally heterogeneous
LSWT values and contributing to the major differences
existing between pelagic and benthic ecosystems (Beau-
lieu et al. 2013, Vašek et al. 2016, Binding et al. 2018).

Together with bathymetry, latitude has also been
identified as a key factor for LSWT warming rates (Car-
mack et al. 2014, Zhong et al. 2016, 2019). In recent
global studies, the deepest lakes located at high latitudes
were found to be subjected to the highest warming rates
in summer (Woolway and Merchant 2017), and the
mean annual LSWT sensitivity to changes in air temper-
ature was found to be markedly different across climate
regions (Piccolroaz et al. 2020). However, the extent to
which the depth–latitude relationship is expected to
affect the inter-lake LSWT warming has received little
attention to date.

In this study we investigated the spatial dynamics of
LSWT and its feedback with stratification in the 5 Lau-
rentian Great Lakes, focusing on the effects of local
depth and latitude. The analysis was performed using a
lumped model applied in a spatially distributed manner.
We used the air2water model (Piccolroaz et al. 2013,
2016, Toffolon et al. 2014), which allows LSWT predic-
tions using air temperature (AT) as the sole input in
meteorological forcing and has been applied successfully
in many studies worldwide (Wilcox 2010, Piccolroaz
et al. 2013, Toffolon et al. 2014, Piccolroaz et al. 2015,
Javaheri et al. 2016, Piccolroaz 2016, Schmid and Köster
2016,Wood et al. 2016, Czernecki and Ptak 2018, Piccol-
roaz et al. 2018, Piccolroaz and Toffolon 2018, Prats and
Danis 2019, Flaim et al. 2020, Heddam et al. 2020, Piccol-
roaz et al. 2020, Zhu et al. 2020). However, while previ-
ous applications were aimed at reproducing lake-
averaged LSWT, here we applied for the first time the
model locally to capture LSWT spatial variability. In
this way, we also tested the possibility of using a simple
and parsimonious model to indirectly (i.e., by looking at
local model performance) identify where and to what
extent local LSWT is affected by processes other than
air–water heat exchange and stratification (e.g., lake-
wide circulation, coastal upwelling and downwelling,
river inflows), which would require solving a more com-
plex 3-dimensional model. In addition, to better under-
stand and quantify the heterogeneity in the LSWT
response to a warmer climate, we applied the air2water
model considering a synthetic, uniform scenario of
AT. In particular, we note how the analysis of the spatial
distribution of the model parameters together with the
evaluation of the response of different lake zones to a
constant AT warming could elucidate how different
regions within lakes are expected to respond to air tem-
perature changes throughout the 21st century. More-
over, the analysis of the results allowed us to detect the
role of depth and latitude in shaping the heterogeneity
in LSWT warming rates and stratification dynamics.

In summary, the objectives of this study are to (1) test
whether a simple model such as air2water, applied in a dis-
tributed manner, can reproduce the spatial variability of
LSWT; (2) investigate the spatial variability of the thermal
responseof theLaurentianGreat Lakes to awarmer synthetic
scenario; and (3) analyse how local depth and latitude affect
the duration of summer stratification and LSWT warming.

Materials and methods

The Laurentian Great Lakes

Located in North America, the Laurentian Great Lakes
are glacial lakes holding nearly 20% of the world supply
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of surface freshwater. Their drainage watershed covers
>777 000 km2 and lies mainly in a humid continental
climate undergoing large seasonal temperature varia-
tions. Each lake spreads over a different latitude range
(Fig. 1a), and therefore the AT seasonality changes
from lake to lake. Lake Superior is the northernmost
lake (40.4°–49.0°N) and thus experiences a colder AT
than the other lakes (based on lake-averaged AT taken
from ERA-Interim Reanalyses dataset; discussed later).
At this latitude, AT averages between −12 and 17 °C
during the year. Lake Michigan, Lake Huron, and
Lake Ontario are located at lower latitudes (41.6–
46.2°N, 43.0–46.3°N, and 43.1–44.3°N, respectively),
with an average annual AT range between −8 and
22 °C. Finally, Lake Erie is the southernmost (41.3–
43.0°N) of the Laurentian Great Lakes, and AT is typi-
cally warmer, ranging between −5 and 24 °C.

While the 5 lakes share a common glacial origin, their
morphology and bathymetry differ considerably (see
Fig. 1a). Lake Superior is largest in terms of volume
and surface area and also deepest, with a maximum
depth of ∼406 m and average depth of ∼147 m. Lake
Michigan is the second largest by volume, with an aver-
age depth of ∼85 m. Lake Michigan covers a wide range
of different latitudes because of its elongated shape and
north–south orientation, with the deepest part (282 m)
located in the middle of the lake. Lake Huron has an
average depth of 59 m, and its maximum depth is
228 m. Lake Ontario and Lake Erie have a comparable
surface area, which is smaller than the others, but
Ontario has an average depth of ∼86 m and a maximum
depth of 245 m while Erie is the shallowest of the 5 lakes,
with a maximum depth of 64 m and an average depth of
∼19 m. Lake Erie is also characterized by a relatively
narrow range of depth variability (additional character-
istics of the 5 lakes summarized in Table 1).

Available data

LSWT maps provided by the National Oceanic and
Atmospheric Administration (NOAA) Great Lakes
Coast Watch Program’s Great Lakes Surface Environ-
ment Analysis version 2 (GLSEA2; http://www.glerl.
noaa.gov) were used in this study to calibrate and validate
the air2watermodel. These satellite products are publicly
available and are calibratedwith in situ limnological buoy
observations. LSWTmaps are distributed with a 1.25 km
grid resolution over a domain covering thewhole Lauren-
tian Great Lakes region. GLSEA2 maps do not present
gaps in the time window considered in this study and
are in overall good agreement with LSWT measured by
offshore buoys managed by NDBC network (Leshkevich
et al. 1996, Schwab et al. 1999, Zhong et al. 2019).

In this study we used the satellite GLSEA2 maps from
January 1995 until December 2018 (24 yr) at a daily res-
olution. Spatial resolution of LSWT maps was reduced
by averaging 10 × 10 cells and thus obtaining upscale
maps at a spatial resolution of 12.5 km × 12.5 km (see
Fig. 1b). Upscaling was introduced to filter out local
small-scale variability in LSWT that could not be cap-
tured by the air2water conceptualization (discussed
later). Analogously, boundary cells (i.e., upscaled cells
containing <70% of the original high-resolution lake
cells) were removed to avoid possible errors in LSWT
estimates in the coastal regions due to the presence of
land portions. The bathymetric map for each of the 5
lakes was derived at the same spatial resolution as that
of the LSWT maps (Fig. 1a) by interpolating bathymet-
ric contour lines provided by NOAA (https://www.
ngdc.noaa.gov/mgg/greatlakes/).

Daily AT data covering the same time window
selected for LSWT satellite data were obtained from the
ERA-Interim Reanalyses dataset, provided by the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF: http://apps.ecmwf.int/datasets/data/interim-
full-daily/). The ERA-Interim AT maps have a spatial
resolution of 0.5 latitudinal and longitudinal degree, cor-
responding to about 55 km. To avoid possible spurious
effects on the spatial distribution of AT over the single
lakes generated by the coarse resolution of the reanalysis
data, we averaged the values of each lake map to obtain
one single dailyAT series for each lake (identified by rect-
angular areas in Supplemental Fig. S1). However, for the
sake of comparison, we also tested the methodology
using the original spatial distribution of AT, obtaining
fully coherent results with no substantial differences.

Water temperature modelling

Among the different versions of the air2water family of
models (Piccolroaz et al. 2013), we selected the version
with 4 parameters. The performances of different concep-
tualizations of themodel have been previously tested (Pic-
colroaz et al. 2013, Toffolon et al. 2014, Piccolroaz 2016),
andwe adopted the version presenting the lowest number
of parameters to keep the analysis as simple as possible.
This 4-parameter version of the model reads as follows:

dTw

dt
= 1

d
{a1 + a2Ta − a3Tw}, (1)

where Tw represents LSWT (°C), Ta is air temperature
(°C), t is time (d), dt is the time-step (chosen as 1 d), d
is the dimensionless volume of the lake surface layer par-
ticipating to the heat exchanges estimated as
d = exp [−(Tw − Tr)/a4] when Tw . Tr (where Tr is
the deep water reference temperature, which can be
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assumed equal to 4 °C for dimictic lakes; Hutchinson and
Loffler 1956, Boyce et al. 1989), otherwised = 1, including
periods of ice cover; and a1, a2, a3, a4, are the parameters
of the model to be calibrated. A lower bound of 0 °C is
imposed to Tw for physical reasons. Equation 1 was inte-
grated at a daily scale using theCrank-Nicolsonnumerical
method (Griffiths and Smith 2006). We calibrated the
model byusing the particle swarmoptimizationalgorithm
(Kennedy et al. 2010) and considering the root mean
square error (RMSE) between simulated and observed
daily LSWT as an objective function. Together with the
mean error (ME), these metrics are commonly used in
limnological studies because they provide a dimensional
estimate of the error, which is crucial to understand the
implications of introduced error (Stepanenko et al. 2010,
Thiery et al. 2014).

The 4 parameters a1–a4 encapsulate the main ther-
mophysical properties of the waterbody. Particularly,
a2 (d

−1) accounts for the processes that depend (directly
or indirectly) on AT; a3 (d

−1) describes the response of
LSWT, hence providing an estimate of the time scale of
its adaptation to changes in AT; a4 (°C) is the scale of
water temperature that controls thermal stratification;
and a1 (°C d−1) is a factor that includes all residual
effects (Toffolon et al. 2014).

The model was applied in each cell of the Laurentian
Great Lakes independently, thus obtaining different sets
of model parameters calibrated for each element. As
meteorological forcing input, each cell used the daily
lake-averaged AT time series (discussed in previous
section). The model was calibrated using 17 of the 24
years of available LSWT data; the remaining 7 years of
LSWT data were used to validate the model. We included
in the calibration period the 5 coldest and the 5 warmest
years of our data series to let themodel be informed by the
extreme conditions of AT. This classification was per-
formed by first calculating the lake-averaged LSWT
annual means and then aggregating the results over the
5 lakes to obtain a reference annual LSWT value for the
overall Laurentian Great Lakes system. From this spatially
and annually averaged data series, we extracted the 5

Figure 1. (a) Bathymetric map of the 5 Laurentian Great Lakes with a spatial resolution of 12.5 km × 12.5 km and (b) spatial variability
of the observed time averaged daily LSWT with the same spatial resolution.

Table 1. Main characteristics of the 5 Laurentian Great Lakes.
Surf.
area
(km2)

Volume
(km3)

Elevation
(m a.s.l.)

Average
depth (m)

Max
depth
(m)

N°
cells
(−)

Superior 82 000 12 000 183 147 406 576
Michigan 58 000 4900 176 85 282 361
Huron 60 000 3500 176 59 228 393
Erie 25 700 480 174 19 64 163
Ontario 19 000 1640 75 86 245 117
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coldest andwarmest years. Among the remaining 14 years
we selected the 7 years for the validation period by alter-
nating calibration and validation years (Fig. 2).

The air2water model was then used to assess how the
LaurentianGreat Lakes LSWTresponds to a synthetic sce-
nario of ATwarming to quantify the differences in LSWT
warming given the same AT increase for each cell of each
lake. To this end, we considered a synthetic scenario
where ATwas uniformly increased by 2 °C, a value coher-
entwith the rangeobserved in the last decades between the
coldest and warmest years (Toffolon et al. 2020). Simula-
tions were run for the same 24-year period but using the
modified (i.e., warmer) AT time series, keeping the
parameters obtained during calibration procedure.

Analysis and metrics

To assess the intra-lake LSWT heterogeneity, the lake
cells were divided into 3 bathymetric classes depending
on their local depth: shallow, deep, and very deep. We
classified lake cells by considering the statistical distribu-
tion of cells depth relative to each lake separately. The
10th percentile of the distribution was considered as
the threshold separating the shallow and the deep cells
classes while the 90th percentile was assumed as the
threshold separating the deep and very deep cells classes.

The characteristics of the 3 cell classes for the 5 lakes
were summarized (Table 2). We stress that, according
to the above definition, the bathymetric classes refer to
different depth ranges depending on the lake. This
approach allowed us to distinguish different lake zones
in all 5 lakes (also in the shallower Erie), contributing
to a richer description of intra-lake thermal variability.
The alternative approach of comparing cells considering
their absolute depth was also conducted, but the results
are not shown here because they added no additional
elements to the analyses presented in this work.

To study the effects of the warmer scenario on the
inter-lake heterogeneity, we evaluated the climatological
years for the actual and warmer scenario (by averaging
for each day of the year all LSWT values for that same
day; e.g., Toffolon et al. 2020) and then quantified the
LSWTresponse to changes inATby calculating the differ-
ence in temperature (DT) between the two on a daily basis
and for each cell of the 5 lakes. Then, we identified the
maximum DT (maxDT) for each cell of the lakes, along
with the day of the year (DOY) when it occurred. We
also calculated the monthly average of daily differences
to obtain themeanmonthlyDT for each cell. Themonthly
DT time series were then averaged within each depth class
(for each lake separately) to obtain onemeanmonthlyDT
value per depth class and per lake.

Finally, we estimated the duration of summer stratifi-
cation (DSS) for each lake cell. Specifically, we calcu-
lated the period in which the water column is
stratified in the current conditions and in the warming
scenario by using the corresponding climatological
years of LSWT. All 5 Laurentian Great Lakes are dimic-
tic; that is, LSWT crosses the temperature of maximum
density of 4 °C two times per year: in spring when lakes
stratify and in early fall when they start mixing before

Table 2. Threshold values for the identification of the depth
classes for the 5 Laurentian Great Lakes.

10th percentile of local depth
distribution (m)

90th percentile of local depth
distribution (m)

Superior 48 238
Michigan 17 162
Huron 12 118
Erie 7 25
Ontario 22 165

Figure 2. (a) Mean annual lake-averaged surface water temperature (LSWT) for all 5 Laurentian Great Lakes and (b) mean annual air
temperature (AT) over the 5 lakes during 1995–2018. Red and cyan dots represent the 5 coldest and warmest years respectively. Black
x = years used to validate the model in this study; other years were used for model calibration (filled black squares).
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the inverse stratification in winter. Hence, for sake of
simplicity, the summer stratification period was
defined as the period when LSWT is >4 °C (McCormick
1990). To assess the effect of a warming climate on strat-
ification, we calculated the difference in duration of
summer stratification (DDSS) between the DSS in the
warmer scenario and in the current conditions for
each cell of the lakes.

Results

Model performance and parameters distribution

As a first analysis of the air2water model performances,
we compared the simulated and observed LSWT time
series during 1995–2018. We report the spatial distribu-
tion of daily RMSE and mean error for the simulated
LSWT of the 5 lakes during calibration (Fig. 3a and c)
and validation (Fig. 3b and d). The spatial variability
of the daily RMSE for the calibration period ranged
between 0.8 and 2.1 °C, the mean RMSE across the
lakes’ cells being equal to 1.2 °C. In validation, the
mean RMSE had essentially the same value as in calibra-
tion, and the spatial pattern of the RMSE maps during
calibration and validation were similar. The daily ME
was always small (never above an absolute value of
0.15 °C), and its spatial variability ranged between
−0.15 and 0.13 °C (Fig. 3c and d). During the calibration
period, the ME was overall positive but had a negative
value along the western coast of almost all lakes.

Themonthly lake average RMSE (Supplemental Table
S1) ranged overall between 0.5 and 2.0 °C, with smaller
values in winter (when the variability of the LSWT was
reduced) and larger values at the beginning of the stra-
tified period (when the LSWT increased rapidly). By con-
trast,MEshowedno clear seasonal pattern (Supplemental
Table S1),with small positive andnegativebiases alternat-
ing for all lakes and investigated periods.

In both the calibration and validation periods, the
spatial distribution of the mean RMSE showed no
strong correlation with the bathymetry or with latitude
(see Fig. 4 for the calibration period, with Pearson cor-
relation coefficients 0.43 and 0.33, respectively; p-value

Figure 3. Spatial distribution of the root mean squared error (RMSE) and mean error (ME) between the daily simulated and observed
lake surface water temperature (LSWT). The RMSE and ME values are presented for both (a, c) calibration and (b, d) validation periods.

Figure 4. (a) Root mean squared error (RMSE) between the daily
simulated and observed LSWT relative to the calibration period
(time-averaged values) as a function of local water depth and
latitude, together with relative Pearson correlation coefficients
(R; p-values always < 0.05). (b) Probability distribution of RMSE.
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< 0.05 in both cases). This finding indicates that the
accuracy of air2water model is not strongly affected by
the geographical location and lake morphology, and
that the model is equally able to simulate reliably
LSWT for shallow, deep, and very deep cells. Note
that the accuracy does not significantly depend on
whether the AT forcing is lake-averaged or its intra-
lake spatial distribution is maintained (discussed earlier;
see Supplemental Fig. S2 and S3 for corresponding
figures for intra-lake distribution).

The distribution of the parameters a2, a3, and a4 of the
air2water model showed a clear dependency on depth
(Fig. 5), as suggested in Toffolon et al. (2014): the shal-
lower the lake cell, the higher the parameter value. More-
over, parameter a4 also had a clear latitudinal pattern:
given the same depth, a4 values decreasedwith higher lat-
itudes. Parameter a1 showed no clear dependency on
depth and latitude, being more scattered than the other
parameters, although its variability decreased with depth.

Warmer scenario and depth–latitude
dependency

The LSWT response to thewarmerAT synthetic scenario
showed significant intra- and inter-lake variability. We
report the monthly averaged temperature difference
(LSWT warming, DT) for cells belonging to the different
bathymetric classes (shallow, deep, and very deep) and
for each lake (Fig. 6), together with themonthly averaged
AT climatological year. For all lakes, the monthly LSWT
warming was not constant throughout the year, despite

the uniform increase of AT (2 °C) used to build the syn-
thetic warming scenario. Specifically, the LSWT warm-
ing was less than AT warming (DT < 2 °C) in cold
months and greater (DT > 2 °C) in warm months,
although with some differences among the 5 lakes. In
addition, the 3 different bathymetric classes responded
differently in both timing and magnitude to the same
increase in AT. The warming peak of shallow cells
occurred earlier (between May and June, depending on
the lake) than for the other 2 bathymetric classes in all
lakes, and in all cases the maximum LSWT warming
was observed for the very deep cells between June and
July. Additionally, Lake Superior had the highest maxi-
mum monthly anomaly among all the lakes.

The maximum daily LSWT warming (max DT) and
the DOY when this maximum occurred in the 5 lakes
were heterogeneous (Fig. 7a and b). The maximum
DT ranged between 2.2 and 5.9 °C, and its spatial vari-
ability showed a pattern similar to that of bathymetry
(Fig. 1): higher max DT in the deepest parts of the
lakes and lower max DT toward the coastal shallower
zones. The timing of the maximum warming was
affected by both depth and latitude, with a later occur-
rence observed for deep and higher latitude cells.

Finally, we analysed the difference of duration of sum-
mer stratification (ΔDSS; i.e., stratification lengthening)
and the maximum daily LSWT warming (max DT dis-
cussed earlier) between the warmer and the actual sce-
nario for each cell of all lakes, looking at their
dependence on local depth and latitude (Fig. 8). The
DSS lengthened in the warmer scenario for all cells in all

Figure 5. Dependence of air2water model parameters on latitude and depth.
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lakes, with a stronger effect for lower latitudes and deeper
zones (Fig. 8a and b). Similarly, max DT was always pos-
itive and essentially dependent on the depth, with no evi-
dent influence of latitude (Fig. 8c) or DSS (Fig. 8d).

Discussion

Insights from the spatial distribution of model
performance

The first research questions we raised concerned the
ability of a model like air2water to accurately reproduce
the intra-lake heterogeneity of LSWT. The results show
that the model performs well and is able to implicitly
“downscale” the uniform lake-averaged AT used as
input for each computational cell, with overall model
performance fully comparable to assuming a spatial
varying AT distribution (see Supplemental Fig. S2).
The overall pattern of the RMSE and ME is, indeed,

similar in the simulations using the uniform lake-
averaged AT and in those using the spatially varying
AT, meaning that any visible pattern cannot be consid-
ered an artefact of the use of the lake-averaged AT.

Note that although the overall accuracy of the model
is high, some cells of the lake present relatively higher
RMSE values (>2 °C). These few cells are located on
the western coast of Lake Superior and of Lake Ontario,
and, to a lesser extent, on the southwest of Lake Huron
(Fig. 3a and b). Here, the simulated LSWT is overall
cooler than the observed LSWT, especially during the
calibration period (ME < 0 in Fig. 3c and
Supplemental Fig. S2 in the case of spatially varying
AT). These zones correspond to regions where heat
transport processes are dominant, such as upwelling
of deep water (Bennington et al. 2010, Wells and Parker
2010, Wang et al. 2015), but are not included in the
model formulation we adopted. In fact, air2water is a
lumped model that, although applied in a spatially

Figure 6. Monthly warming (ΔT) of LSWT under the synthetic warmer scenario calculated as the difference between the monthly
averaged LSWT under the synthetic warmer scenario and under the actual scenario for 1995–2018. Shallow, deep, and very deep
classes are reported in different colours to better differentiate their warming. The solid red line shows the climatological year of
the actual air temperature over each lake. A dashed line is drawn at ΔT = 2 °C to indicate the uniform air temperature warming sce-
nario considered in the analysis.
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distributed manner, solves neither the lateral exchanges
between adjacent water columns nor the vertical fluxes
from/to the deep water. Therefore, in the regions
where horizontal and/or vertical transport processes
are important, the model is expected to be less accurate
in reproducing the observed LSWT. The localization of
the highest values of RMSE (Fig. 2) is coherent with the
results by Mason et al. (2016) who showed that consis-
tent patterns of upwelling of colder water, which in the
Laurentian Great Lakes are usually wind-driven phe-
nomena, occur along the western coasts because of pre-
vailing winds from southwest to northeast (Bennington
et al. 2010, Wang et al. 2015). Also, satellite thermal
images showed that the occurrence of wind-driven cur-
rents in the western coasts of the Laurentian Great Lakes
(Plattner et al. 2009) and other wave-like processes can
contribute to lateral or vertical hydrodynamic processes,
with potential effects on LSWT (Csanady 1981, Beletsky
et al. 1999).

Apart from such specific zones, the relatively homo-
geneous spatial distribution of RMSE indicates that
LSWT inter-lake and intra-lake variability depends
essentially on the 2 factors explicitly included in the
air2water model: the stratification dynamics and the
effect of AT, with the latter playing a role only for the

inter-lake variability because AT is assumed uniform
lakewide. The strong dependence of LSWT on AT was
highlighted by previous studies (e.g., Austin and Allen
2011), which also showed that AT is the leading driver
of summertime lake warming. We stress that, although
the role of stratification on LSWT was also discussed
previously (Imboden and Wüest 1995, Wetzel 2001),
its inclusion in a simple lumped model like air2water
is a necessary ingredient to obtain realistic results
(e.g., Piccolroaz et al. 2015).

Spatial and temporal variability of LSWT
response to a warming scenario

The second research question concerned the variability
of the response to a constant and uniform warming of
AT. Our results showed that the LSWT variations had
a similar warming cycle for all lakes and for all 3 bathy-
metric classes: an increasing phase in spring, a maxi-
mum in summer, and a decreasing phase in fall. This
seasonal variability resembles the warming pattern
observed in other lakes, from the largest one on Earth
(Lake Baikal; e.g., Piccolroaz and Toffolon 2018) to
medium-sized lakes (with varying lake area and depth;
e.g., Czernecki and Ptak 2018) and reinforces previous

Figure 7. Maximum daily LSWT increment (max ΔT) between the (a) actual and warmer AT scenarios and (b) day of the year (DOY)
when these increments occur.
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studies indicating that LSWT warming can be charac-
terized by significant seasonality (Winslow et al. 2017,
Woolway et al. 2017).

The intra-lake differences in warming response
strongly depend on the bathymetry of the lake and on
the stratification dynamics, with the latter factor
explaining the dependence on the period of the year
(Fig. 6). The peak of monthly DT was tightly connected
with the change (i.e., anticipation) in the timing of ther-
mal stratification resulting from considering a warmer
scenario. In fact, an increase in the external AT estab-
lished a positive feedback between LSWT warming
and earlier onset of thermal stratification, which in
turn was controlled by the local bathymetry (Piccolroaz
et al. 2015). We describe the dynamics in detail consid-
ering different periods.

When the lakes are ice-free and not stratified (e.g., in
spring), the water column is nearly well mixed and the
absorbed heat from the atmosphere is distributed over
the whole lake volume. Shallow cells, characterized by
a smaller water volume per unit of surface area, have
lower thermal inertia in responding to AT warming
and thus rapidly adapt to changes in AT. By contrast,
very deep cells are characterized by a much larger vol-
ume and thus larger thermal inertia, which makes
them less prone to change in AT during this phase. As

a consequence, shallow cells experience the maximum
LSWT warming in May–June, earlier than the other
cell classes. The maximum LSWT warming of very
deep cells instead occurs later in the year (Jun–Jul)
when they start to stratify. Recent studies observed
that the deep areas of larger lakes experience a later
onset of thermal stratification (Woolway and Merchant
2018, Fichot et al. 2019). Deep cells represent an inter-
mediate case between the examples described above.
The agreement of such dynamics with the results of
the recent data-driven analysis of Toffolon et al.
(2020) demonstrates the reliability of the distributed
application of air2water model.

The LSWT warming of very deep cells is significantly
amplified compared to the corresponding AT warming
(DT > 2 °C). This amplification effect observed in previ-
ous studies that focused on the summer period of July–
August–September (Austin and Colman 2007,
Schneider and Hook 2010, Piccolroaz et al. 2015, Wool-
way and Merchant 2017) is linked to a positive feedback
between surface warming and stratification. This effect
is particularly important for the deep zones, where in
stratified conditions the well-mixed surface layer is
much shallower than the whole water column. Under
these conditions, the water volume responding to AT
variations is relatively small, and an anticipation of

Figure 8. Relationships among stratification lengthening (ΔDSS) and maximum LSWT (max ΔT) between actual and warmer AT sce-
narios, depth, and latitude: (a) ΔDSS as a function of depth and of (b) max ΔT for different latitudes; (c) max ΔT as a function of depth
for different latitudes; (d) ΔDSS as a function of depth for different max ΔT. Different symbols represent cells belonging to different
lakes as specified in the legend. Top colour bar refers to panels (a), (b), and (c) and the bottom colour bar to panel (d).
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such stratification conditions under the warming sce-
nario results in a faster increase of LSWT, which further
increases thermal stratification, generating a positive
feedback loop (Piccolroaz et al. 2015, Zhong et al.
2016, Woolway and Merchant 2017).

The previously mentioned warming–stratification
feedback is also a key factor explaining the inter-lake
warming variability, in terms of both timing and inten-
sity. Our results show that the annual maxima of LSWT
warming (max DT) are not the same among the 5 lakes
(Fig. 6). Lake Superior is the deepest of the Laurentian
Great Lakes and hence has the highest LSWT warming
among all the lakes (up to 4.6 °C in July for very deep
cells, on the monthly time scale), while Lake Erie has
the smallest maximum warming (∼3.1 °C in June for
very deep cells). In addition, Lake Erie is characterized
by little variability in timing and magnitude of the
warming among the 3 bathymetric classes (Fig. 6)
because of the limited variability of its bathymetry
(Table 1). The other lakes, and particularly Lake Supe-
rior, are characterized by a wider range of depths and
hence larger variability in LSWT response among the
bathymetric classes. Indeed, the slower overturning pro-
gress occurring in larger and/or deeper lakes together
with the possible formation of thermal bars (slow-mov-
ing 4 °C thermal fronts that can occur in lakes with
higher bathymetric variability and especially in zones
with steep bottom slope) enhances the heterogeneity
in the lake thermal response (Fichot et al. 2019).

To summarize, the variability of LSWT response to
warming is clearly visible both for lakes with different
average depths (inter-lake variability) and for zones of
the same lake with different local depths (intra-lake var-
iability). In this respect, a simple synthetic warming sce-
nario can profitably be used to identify periods and
regions where an enhanced LSWT warming response
is expected.

The combined role of depth and latitude

Our third research question concerned examining the
combined effects of depth and latitude on the warming
dynamics. The higher maximum DT in the deepest
regions of the lakes and the lower maximum DT toward
the coastal shallower zones (Fig. 8c) support the crucial
role of bathymetry in controlling the warming dynam-
ics, discussed earlier. This warming pattern is consistent
with that observed in the last decades (Mason et al. 2016,
Woolway and Merchant 2018, Zhong et al. 2019), and
results are coherent with projections obtained with a
3-dimensional hydrodynamic model for Lake Superior
(Matsumoto et al. 2019). The timing of LSWT warming
is described by the DOY map (Fig. 7b). Overall, the max

DT occurs between May and July, but later for higher
than for lower latitudes. This delay can be explained
by 2 different factors. First, higher latitudes have a
shifted AT cycle, with AT peaking later than at lower
latitudes (Fig. 6), thus delaying the spring overturn
(Fichot et al. 2019) and stratified conditions; conse-
quently, the warming–stratification feedback occurs
later in the year. Second, Lake Superior is at high lati-
tudes and is much deeper than the other Laurentian
Great Lakes, thus further delaying stratification because
of the larger thermal inertia. These results demonstrate
that both bathymetry and latitude can exert a major
control on shaping LSWT dynamics because of their
strong control on lake overturning and stratification
timing (Fichot et al. 2019)

This dual dependency is also confirmed by the distri-
bution of the model parameters with depth and latitude
(Fig. 5). The smaller values of a2 and a3 in the deeper
zones indicate lower correlation and slow adaptation of
LSWT to AT changes because of the high thermal inertia
of the water column.Moreover, the smaller values of a4 in
the deeper zones indicate larger seasonal variability of the
thickness of the well-mixed surface layer participating in
the heat exchange with the atmosphere, and hence a
larger effect of thermal stratification on controlling
LSWT throughout the year (Toffolon et al. 2014, Piccol-
roaz 2016). A dependency of a4 on latitude can also be
appreciated, with the parameter assuming smaller values
and its variability decreasing (especially for shallower
zones) with increasing latitude (Supplemental Fig. S4),
suggesting that lake zoneswith the samedepthbut located
at higher latitudes behave like the deeper ones. Finally, the
parameter a1 shows a clear scatter for shallower zones
while its variability decreases for larger depths. Note
that although this parameter summarizes all residual
effects, its distribution suggests that while LSWT of
deep regions is essentially controlled by AT, lake thermal
inertia, and stratification, other processes in shallower
areas may become important, such as horizontal/vertical
transport of heat, larger scale circulation, and heat flux
from/to the bottom, among others. This hypothesis is
consistent with larger RMSE and ME observed in the
shallowwesternareas of some lakes (Fig. 3) that are attrib-
utable to the effect of water transport processes that redis-
tribute heat (as noted earlier).

For a deeper consideration of the factors affecting the
dual dependency of lake thermal response on depth and
latitude, refer to the scatter plot (Fig. 8a) illustrating how
ΔDSS depends on depth (horizontal axis) and latitude
(marker colour). ΔDSS is always positive and ranges
between 16 and 49 days, indicating that the stratification
period lengthens under a warmer AT scenario, but this
lengthening varies among and within lakes because of
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the control exerted by local depth and latitude. In gene-
ral, ΔDSS is longer at greater depths, an effect attenuated
by higher latitudes (lower AT). Thus, the warming of AT
has a greater effect on stratification of deeper lake zones,
but at higher latitudes the lengthening is less visible than
at lower latitudes. In addition, the maximum LSWT
warming (maxDT) is positively correlated with the strat-
ification lengthening (Fig. 8b). Particularly, max DT
seems to increasemore with the lengthening of stratifica-
tion at higher latitudes. However, this trend is only
apparent because of the dependence of ΔDSS on latitude
and the uneven distribution of depth with latitude,
whereby deeper zones are more abundant at higher lati-
tudes (Fig. 1a). Indeed, amore careful analysis shows that
max DT essentially depends on the local depth (Fig. 8c),
almost irrespective of the latitude. Such a relationship is
also confirmed by the absence of a clear pattern of max
DT on the relation between stratification lengthening
and depth (Fig. 8d: note the use of different symbols
for different lakes in subplots to dispel any doubt that
the patterns discussed above are lake specific).

As a whole, depth strongly regulates the timing and
magnitude of the accelerated warming for the Lauren-
tian Great Lakes, as also observed by Zhong et al.
(2016, 2019). Latitude is also a control on lake thermal
warming through its effect on the timing and duration
of thermal stratification; however, it does not have an
evident effect on the magnitude of max ΔT, only on
the period of the year when it occurs. In this regard,
our results help to disentangle the separate effects of lat-
itude and depth on both intra-lake and inter-lake LSWT
variability.

Approach limitations and outlook

We demonstrated that, despite its simplicity, the air2-
water model can reproduce the spatial distribution of
LSWT when applied in a distributed manner. However,
the limitations of this approach cannot be neglected.
First, because the hydrodynamics of the lakes are not
considered, the model is unable to reproduce the
LSWT when water transport processes of heat are the
main driver of the LSWT (see the large RMSE in some
coastal regions in Fig. 3). Second, because AT is the
only forcing in the model, the effect of other meteoro-
logical variables or water quality conditions is not
explicitly considered, including the role of wind speed
or light attenuation in affecting lake stratification. We
also acknowledge that a physically based ice module is
not included in the currently available version of the
air2water model. While this lack may possibly affect
the performance of the model in precisely simulating
the ice cover timing, the current version of the model

showed overall good performance when applied to
lakes that freeze in winter (e.g., Toffolon et al. 2014, Pic-
colroaz et al. 2015, Czernecki and Ptak 2018, Piccolroaz
and Toffolon 2018, Flaim et al. 2020). Finally, the results
from the synthetic warmer scenario should not be read
as future projections, but rather as a test to evaluate the
response of different lake zones to a warming climate.

Given the ability of the air2watermodel to reproduce
the intra-lake and inter-lake heterogeneity of LSWT,
further applications using more realistic scenarios
would be interesting. Indeed, with a small computa-
tional cost, even when applied in a distributed manner,
air2water could be applied with reference to an ensem-
ble of future climate scenarios and thus provide an eval-
uation of the uncertainty of the LSWT projections in the
lakes under investigation. Finally, the reasonable values
of LSWT reproduced using a lake-averaged AT time
series for each lake as input makes this methodology
suitable for data-scarce contexts where the application
of process-based models is prevented by the lack of
complete and accurate meteorological information.

Conclusions

Pronounced AT warming is projected for the rest of the
century across the Laurentian Great Lakes region
(Notaro et al. 2015); therefore, it is important to develop
tools that reliably predict the spatial and temporal vari-
ability of LSWT dynamics. In this study, we examined
the spatially distributed application of the hybrid air2-
water model in the 5 Laurentian Great Lakes, demon-
strating it was able to adequately simulate the intra-
and inter-lake heterogeneity of LSWT. Although such
a simple conceptualization cannot capture all the pro-
cesses governing the thermal dynamics in a large lake,
our results suggest that this simplified approach might
represent an alternative to process-based 3-dimensional
hydrodynamic models commonly used to predict the
spatial distribution of LSWT in lakes. Our finding is
particularly important in those contexts where lack of
data or large errors may jeopardize the accuracy of
more complex physically based models. Moreover, our
results show that using a simple model, which does
not solve the full lake hydrodynamics, could be useful
to identify regions where LSWT is driven not only by
the atmospheric heat exchange but also by the vertical
and lateral fluxes (e.g., heat transport processes such
as upwelling). Knowing where such processes occur is
extremely useful for lake managers.

The same model was applied to a simple synthetic
warmer scenario to identify regions of the Laurentian
Great Lakes that are more sensitive to LSWT variation
due climatic changes. The shallow zones of the 5 lakes
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responded earlier than other parts of the lake to the AT
warming and are expected to warm less compared to the
deep and very deep zones. Very deep cells experience
the greatest warming in all 5 lakes during the summer
months, which is related to the setup of stratification.
Moreover, based on our findings, even if the duration
of summer stratification increases significantly both in
the deep regions and in low latitudes zones, the warm-
ing effect is essentially correlated with the local depth.

Our study highlights the possibility to adopt an alter-
native approach to complex, fully deterministic lake
models to study and predict the heterogeneous response
of LSWT warming to changes in climatic conditions. At
the same time, it cautions using lake-averaged LSWT in
climate change impact studies, which could lead to an
oversimplification of the representation of the spatial
heterogeneity of lake thermal response, as noted by
Toffolon et al. (2020) by analysing the available data.
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