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1 Description of deliverable and goals

1.1 Executive summary

The mismatch between household electricity consumption and solar energy production is a
key issue for the fast deployment of this technology in a low-voltage grid. Namely, as high
photovoltaic generation occurs during the day while the load remains low, the power flow can
be reversed from the low-voltage grid to the medium voltage grid. This is a key parameter in
the limitation of the photovoltaic hosting capacity.

In order to increase the penetration of solar energy in a low-voltage network, demand-side
management is a promising solution. The principle is to encourage customers to shift their
load toward high photovoltaic generation periods in exchange for a financial reward. Namely,
time-of-use tariffs can be used as an incentive.

This report presents a field experiment, in which the flexibility potential of household
electricity consumption is assessed. Additionally, the impact of this behavioural flexibility is
evaluated on the extension of a low-voltage grid photovoltaic hosting capacity. The electricity
consumption of about 600 households was analyzed over a period of more than 3 years. The
load curves are coming from smart meter data at a 15 min resolution allowing to study the
intraday consumption patterns.

The theoretical potential for flexible consumption is evaluated through a dedicated method-
ology based on non-intrusive load monitoring. It is estimated to be as high as 24% of the
total energy consumption. The practical flexibility is evaluated by studying the households
reaction to two different financial incentives. A first treatment group was facing a reduction
of the electricity price of 15 cts/kWh between 11 am and 3 pm compared to the normal
price, while the price was increased by 4 cts/kWh during the remaining of the day. A second
treatment group was facing alternative pricing in a form of time-of-use pricing. Every night
households received a short-text message (SMS) informing them of the time of the low rate
period for the next day, that could potentially range from 10 am to 7 pm. Both treatment
groups reaction are compared to a reference control group which receive no information about
the experiment. The results showed a moderated reaction of the households. The increase in
consumption during low rate period is marginal and doesn’t necessarily involve a reduction
in consumption during the rest of the day. Additionally, there are significant differences in
reaction between the households. Although the financial incentive is significant, the potential
gain is rather small and there was no possibility for loss as the households were guaranteed
to pay at most the monthly bill calculated with their reference electricity price.

The gain in photovoltaic hosting capacity and penetration rate thanks to the theoretical
demand flexibility was assessed to reach 20% while keeping the same total cost of energy with
respect to the reference case without flexibility. In this case, it means that the flexibility does
not bring any additional revenue. However, as the levelized cost of electricity decreases with
respect to the feed-in tariff, the potential revenue generated by the flexibility increases. As
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an alternative solution, curtailing the exceeding photovoltaic generation always comes with
a cost and thus cannot compete with the flexibility to increase the solar energy penetration
rate.

1.2 Research question

Flexibility is the key component that every power systems will require in a near future. The
willingness to set low carbon objectives in order to keep the global temperature rise below
2 degrees Celsius push for the development of renewable energy production such as wind
and solar. Their share of the global electricity generation is expected to reach 36% and 22%
respectively by 2050, according to the 2◦C scenario (figure 1). Such high share of Variable
Renewable Energy (VRE) will enforce the need for flexibility in order to match generation and
demand. In other words, according to the latest IRENA report, flexibility in power systems
can be defined as :

“Flexibility is the capability of a power system to cope with the variability and uncer-
tainty that VRE generation introduces into the system in different time scales, from
the very short to the long term, avoiding curtailment of VRE and reliably supplying all
the demanded energy to customers”. IRENA : Power system flexibility for the energy
transition [1]
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Figure 2: A 2-degree Celsius scenario for electricity generation, REmap Case, 2015–2050

Note: Based on REmap analysis the share of renewables in the power sector would increase from 24 % in 2015 to 

85 % by 2050. Around 60 % would be VRE.

Source: IRENA, 2018a

Figure 1: A 2-degree Celsius scenario for electricity generation, REmap Case, 2015–2050 [1]

Switzerland is following the global trend. The annual photovoltaic (PV) generation has
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been multiplied by a factor 15 between 2010 and 2017 as represented in figure 2. Moreover, to
meet the objective for 2050, the annual PV generation should be increased from 1.7 TWh to
11 TWh. This would represent 18% percent of the current electricity consumption (61.5 TWh).
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Figure 2: PV capacity and annual generation in Switzerland (data from [2])

In this context, the aim of this deliverable is to quantify the flexibility potential given
by behavioural changes, both from a theoretical and practical point of view. The secondary
objective is to study the impact of this additional flexibility at the scale of a distribution grid.

1.3 Novelty of the proposed solutions compared to the state-of-art

The approach of the flexi project is at the intersection of two fields. The first consists of tech-
nical studies, many of whom described in the review from Kondziella and Bruckner [3]. In this
field, technical solutions are proposed to integrate large shares of renewable distributed gen-
eration using storage or grid reinforcement. For instance, assuming that washing machines,
dryers would be controllable and programmed to be used during periods of high renewable
generation, Pina [4] found in some scenarios that 40% of these activities would be shiftable.

In the second field, researchers study the effect of the information on residential electricity
consumption, which presents also some sociological approaches. Among the recent contribu-
tion, we can cite the work of Buchanan and al. [5], Faruqui et al. [6], Vine et al. [7], and
some meta-analysis by Delmas et al. [8] and Ehrhardt et al. [9]. High-frequency data are
more and more used in recent work such as in [10, 11, 12, 13, 14, 15, 16] in which the main

4



objective is to promote energy savings, whereas our goal is to induce an intraday shift of the
electricity consumption without necessarily encouraging any reduction.

1.4 Description

This deliverable presents the methodology and results of the evaluation of the electricity de-
mand flexibility potential and its impact on the photovoltaic hosting capacity of a distribution
grid.

This research methodology is presented in section 4. The flexi experiment is introduced in
more details in section 4.1 which also presents the performance metrics. Section 4.2 presents
the algorithm used to evaluate the theoretical flexibility potential. Then the approach used to
quantify the flexibility contribution to the integration of distributed generation is presented in
section 4.3. Finally, section 4.4 introduces the main scores used to evaluate the PV integration.

The results can be found in section 5, where 5.1 focus on theoretical flexibility and 5.2 on
the practical flexibility. The section 5.3 proposes an analysis of the impact of the flexibility
on the PV hosting capacity. The last section 5.4 presents a brief comparison between the
demand behavioural flexibility and the one from domestic hot water heating.

2 Achievement of Deliverable

2.1 Date

This deliverable was handed in December 2018.

2.2 Demonstration of the Deliverable

This deliverable capitalizes on the results of the flexi project demonstrating the electricity
demand flexibility potential of residential households.

2.3 Added value of SCCER-FURIES: REeL

The outcomes of the flexi project are the results of a long-term collaboration between the
EPFL-PVlab involved in the SCCER-FURIES and the UniNE involved in the SCCER-
CREST.

3 Impact

This report is a preliminary study in the context of the work package 4 Planning and operation
of Distributed generation and MW-class distributed storage systems. It will serve as a basis for
the upcoming deliverables, namely (WP4) Deployment recommendation for large penetration
of PV and distributed storage and (WP5) Best investment strategies when prosumer capacities
are increased in the grid both due in December 2019.
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4 Research methodology

4.1 Introduction to the flexi project

The flexi experiment consists in proposing an alternative energy tariff to a representative panel
of households in order to evaluate their ability to change their energy consumption behaviour.
In this field experiment, the load curves of over 600 households, customers from the Société
des Forces Electriques de La Goule in the Jura region, were analyzed. All of these customers
are equipped with smart meters, allowing to study their intraday consumption patterns.

The household panel was divided into two treatment groups. The first treatment group
(T1) received, as an incentive to shift their energy consumption toward high PV generation
time period, a reduction on the energy tariff of 15 cts/kWh (bonus) between 11 am and 3 pm
while outside of this window, the energy tariff was increased by 4 cts/kWh (penalty). This
time window corresponds to the period of potentially high PV injection. The aim is here
to motivate the households to consume more energy during these time wndows in order to
absorb the surplus of PV production. This tariff scheme is applied every day during the whole
experiment. The bonus-penalty tariff was designed such that an average household that does
not shift its energy makes no loss or gain.

The second treatment group (T2) received a similar incentive in terms of tariff, but the
reduced tariff time was correlated with the weather forecasts. Three different time windows
for a reduction of the energy tariff were defined:

• Between 10 am and 1 pm

• Between 1 pm and 4 pm

• Between 4 pm and 7 pm (only during summer months).

Each day a SMS were sent to the households mentioning when would the energy tariff
be reduced (each window could be activated independently). The forecast of the low rate
time window was based on local weather forecasts and precisely on insolation time and cloud
coverage.

To motivate the households and prevent any financial risk to participate in this experi-
ment, two bills were sent to the households. The first one contained the energy bill with the
new tariff schemes, the second one contained the energy bill with their standard energy rate.
The households had to pay the least expensive one. The evolution of the consumption be-
haviour of the two treatment groups was also compared with a reference group (called control
group).

In order to recruit the participant to this experiment, a letter and a survey were sent to
the customers of La Goule benefiting of a flat tariff scheme. This condition was set so that
only customers without any electrical heating system were eligible in order to keep the focus
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on the behavioural contribution to the flexibility rather than using any technical artifact (such
that central heating scheduling). The objectives of the survey were to gain socio-demographic
information about the households, informations on the household composition and equipment
and to get the cell-phone number to sent the SMS for the households participating to the sec-
ond treatment. After the first recruitment wave the quota of participants wasn’t high enough,
thus a second recruitment was set up. To increase the number of participants, a third recruit-
ment wave enrolled many participants by simply informing them of their participation in this
experiment. This was possible thanks to the fact that the experiment is financially risk-less.

Table 1: # of participants per groups and waves

Wave Launch date Groups Total
C T1 T2

1 01.07.2016 14 (9) 15 (10) 15 (10) 44 (29)
2 01.10.2016 16 (14) 16 (12) 16 (4) 48 (30)
3 01.01.2017 253 (192) 252 (197) - 505 (389)

Total 283 (215) 283 (217) 31 (14) 597 (446)

4.1.1 Assessing the performance of the households

In order to assess the performance of the households with respect to their treatment, two
specific metrics are used. The first considers a flexibility score and assess the relative amount
of energy consumed in the desired time window. However, if a household makes the choice
to consume more during a specific time period, it is not clear whether the energy has been
moved in this specific time period or if additional energy has been consumed due to the fact
that the electricity rate is reduced in this time period. Alternatively, as the electricity rate
is higher than the standard rate outside of the reduced tariff period, the energy consumption
outside of this specific period could also be reduced. Hence the second metric is the daily
energy consumption.

Definition of a flexibility score The flexibility score is defined for each household and
each day according to equation 1. This score can be seen as the ratio between the energy
consumed during the low rate period and the total energy consumed during the day. To take
into account the fact that the low rate period can be different from day to day (for the second
treatment group), the score is normalized by the relative duration of this low rate period.

S =

Eflexi
Eday

dflexi
24h

(1)

Where:

• Eflexi is the amount of energy consumed during a reduced tariff period, also called a
flexi period in the following.
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• Eday is the amount consumed during the considered day.

• dflexi is the duration of a flexi period (always 4 hours for treatment 1 group but can vary
between 3 and 9 hour for T2. In the case where no flexi period is scheduled for a day,
the flexi score is obviously not defined.

These two metrics can be calculated for each treatment group for every day of the ex-
periment. To assess the households’ change in behaviour, the relative variations of these
metrics between the period of experiment and a corresponding period before the experiment
are evaluated.

Evaluation periods As depicted in table 1, the experiments started at three different dates
for each recruitment waves. In order to cope with this issue, three different evaluation periods
— each is one year long — have been defined and are summarized in table 2. The period
before the experiment is exactly one year before the experiment period so that any seasonality
effect can be accounted for.

Table 2: Evaluation periods of the flexi experiment

Wave Period before the experiment Period after the experiment start
Start End Start End

1 01.07.2015 30.06.2016 01.07.2016 30.06.2016
2 01.10.2015 30.09.2016 01.10.2016 30.09.2016
3 01.01.2016 31.12.2016 01.01.2017 31.12.2017

4.2 Theoretical flexibility

In addition to the field experiment, the theoretical flexibility potential is evaluated. The un-
derlying hypothesis is that it is possible to infer what composes the load curves, in term of
appliances, without having to measure each of them individually. A suitable approach to per-
form this kind of exercise is called Non-Intrusive Appliance Load Monitoring (NIALM) [17].
According to the review of Esa et al. [18], one can classify the various techniques according to
their supervised or unsupervised nature. A supervised method learns from a labelled dataset
how to predict which appliance is on or off from the whole house power measurement. An
unsupervised method doesn’t require this step but obviously comes with greater uncertain-
ties. Another way to categorize NIALM techniques is based on the measurement sampling
frequency. High sampling frequency, typically in the range of 1 kHz or 0.5 MHz, enables
to explore more electrical features and power signatures, namely active and reactive power
measurements, or individual appliance signature as suggested by Liang et al. [19]. However
such a high-frequency measurement requires more sensing capabilities than the smart meters
and are currently not economically feasible [20]. In the context of the flexi experiment, the
load profiles come from smart meters which sample the energy consumption every 15 min.
Hence we developed a dedicated unsupervised methodology to disaggregate the households’
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load profiles with the help of informations collected from the household survey. The princi-
ple of this methodology and the derivation to extract the theoretical flexibility potential is
described in this section.

4.2.1 An unsupervised disaggregation method

The primary goal of this method is to extract the share of the energy consumption that
could be shifted in time to match with high PV generation time range. Contrary to many
NIALM algorithms, this methodology doesn’t aim to extract precisely when each appliance
is on or off, but rather to have an estimation of the power consumption signal of categories of
appliances. Indeed as depicted in figure 3, the algorithm disaggregated the main power signal
into 8 sub-signals corresponding to eight pre-defined categories.
The methodology to disaggregate the whole-house energy consumption is based on a statistical
approach. The basic principle is displayed in figure 3. From the survey, the employment state
and age-group for each person living in the households are extracted. Additionally, a list of
appliances owned by the household is collected. From this information, the algorithm acts as
a hybrid between a load profile simulator and a standard NIALM algorithm. For each person
of the household, an activity chain is generated as a Markov process (as illustrated in figure
4. From this activity chain, it is possible to infer the power demand required by each activity
using the relation between the activity and the probable list of appliances that can be used
during this activity (see table 3). The coefficients of the initial probability matrix and the
transition matrix for Markov activity chain are derived from a Time-of-Use Survey conducted
in the Netherlands [21]. These coefficients are adjusted in order to exclude activities that are
consuming too much energy with respect with the available power budget derived from the
measured load curve. Similarly, the list of appliances is restricted to keep for each activity
only the appliances that have a nominal power smaller — in a given tolerance — than the
power budget. At the end, the simulated power signal of each appliance is aggregated to the
8 categories according to table 4.
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Figure 3: Basic principle of the developed disaggregation methodology

Table 3: List of possible activities and related appliances.

Activities Appliances

Cleaning vacuum, TV, stereo, lights
Using a computer TV, stereo, PC, laptop, printer, lights
Cooking stove, oven, microwave, kettle, TV, stereo, lights
Washing dishes dishwasher, TV, stereo, light
Eating coffee maker, microwave, kettle, TV, stereo, lights
Do the homework TV, stereo, PC, printer, laptop, lights
Playing a game TV, stereo, gaming console, lights
Laundry washing machine, tumble dryer, TV, stereo, lights
Music stereo, PC, tablet, laptop, lights
Outdoor ∅
Sleeping ∅
Watching TV TV, DVD player, PC, tablet, laptop, lights
Showering hairdryer, TV, stereo, lights
Working ∅
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Figure 4: Illustration of a Markov chain
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Table 4: Appliances and corresponding nominal power grouped per category

Category Appliance PNominal (W)

Cooking

coffee maker 800
microwave 1250
kettle 1800
oven 2400
stove 500

Entertainment

TV 124
TV box 20
DVD player 80
PC 110
laptop 55
tablet 7
stereo 100
gaming console 180

Fridge
fridge (with a freezer) 94
fridge (without a freezer) 66
freezer alone 62

Heating
hairdryer 600
boiler 2000
heat-pump 1000

Housekeeping

washing machine 406
tumble dryer 2500
dishwasher 1131
vacuum 2000

ICT1 printer 23

Light lighting 137

Standby modem (and similar) 8

As an illustration, the figure 5 presents an example of a household’s load curve disaggre-
gated with this methodology for a single day. One may note that sometimes the sum of the
categories is smaller than the original load profile. This is due to the fact that at some times
the algorithm cannot find any possible activity/appliance to fill the energy budget. On the
opposite, it can happen that the total generated power signal is greater than the measured
power profile, this is due to a small tolerance introduced in the energy budget allowing the
algorithm to assign an appliance with high nominal power to prevent the phenomena just
previously mentioned.
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Figure 5: Example of disaggregated load curve for a single day

4.2.2 Load profile disaggregation as a tool to estimate flexibility potential

The methodology described before is hence used on all load profiles from the households that
have answered the survey (84 in total). In order to determine the theoretical potential for
flexibility, each category is judged according to its potential for load shifting. This potential
is summarized in table 5.

Table 5: Potential for load shifting per category

Categories Potential

Standby not shiftable
Heating hardly shiftable
Fridge not shiftable
Light not shiftable
Entertainment hardly shiftable
Cooking not shiftable
Housekeeping easy shiftable
ICT hardly shiftable

Figure 6 gives a representative idea of what share of energy is consumed in each cate-
gory. The Heating category accounts for only 0.2% of the total energy consumption of the 84
households. This is because, as explained before, the households selected for the flexi experi-
ment are not equipped with any electrical heating system thus this category only contains a
marginal fraction of energy consumed by heating devices such as hair-dryer.
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Standby 31.3%

Heating 0.2%

Fridge 15.4%

Light 12.4%

Entertainment 13.6%

Cooking 17.3%

Housekeeping 6.6%
ICT 3.3%

Figure 6: Share of energy consumed per category

From this analysis, it is possible to define a theoretical flexibility score similar to the
one from equation 1 but using here the information gained with the disaggregation. The
theoretical flexi score is hence calculated according to equation 2

Sth =

E0
flexi+Eeasy shiftable

outflexi +Ehardly shiftable
outflexi

Eday

dflexi
24h

(2)

Where:

• E0
flexi is the energy already consumed during the flexi period (low rate period).

• Eeasy shiftable
outFlexi is the energy easily shiftable consumed outside the flexi period.

• Ehardly shiftable
outFlexi is the energy hardly shiftable consumed outside of the flexi period.

• Eday and dflexi are the total energy consumption of the day and the duration of the flexi
period in hour respectively.

One has to note that this theoretical flexi score is based on the hypothesis that the energy is
purely shifted, i.e. that the total daily energy consumption remains constant. This hypothesis
will be discussed in the results section.
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4.3 flexibility contribution to the integration of distributed generation

This section presents an approach to evaluate how much the theoretical demand flexibility
bring as additional photovoltaic (PV) hosting capacity to a distribution grid. This approach
is based on the following assumptions :

• The flexible demand can be freely shifted along the day.

• The PV hosting capacity is limited only by the power flow at the transformer.

• Line resistances, ampacity, and voltages constraints are neglected.

With these assumptions, a fraction of the energy demand can be shifted towards periods
with high PV injection, thus increasing the PV hosting capacity of the distribution grid. To
evaluate this potential for a real distribution grid, the load profiles from the flexi project
have been allocated in the TR3716 low voltage grid of the Romande Energie in Rolle. This
allocation is done using a two-stage optimization that takes care of minimizing the difference
between the annual consumption of the allocated demand profile and the annual consumption
measured by the meter. Moreover, the building category of the originated load profile has to
match with the one of the meters. The aggregation of all the load profiles gives the total load
profile of the distribution grid L computed for one year.

The total PV generation profile G for the distribution grid is computed as the aggregation
of the PV profiles simulated for every roofs. This profile corresponds to a PV penetration well
above the real hosting capacity of the grid. The power profile at the transformer P is defined
as the difference between the total load and PV generation multiplied by a normalization
factor n.

P (t) = L(t)− n ·G(t) (3)

Without any flexibility the maximum normalization ratio n0 that complies with power
flow limit Plim < 0 at the transformer is given by :

n0 = min
t

L(t)− Plim

G(t)
(4)

To find out what would be the PV hosting capacity using all the available demand flexi-
bility, the share of easily shiftable energy is evaluated for each allocated load profile at each
time step using the disaggregation. Then for each day d, the highest daily normalization ratio
n that complies with the constraint at the transformer can be determined using the following
the relation :

nd = min
t∈d

Lflex(t, nd)− Plim

G(t)
(5)

Where Lflex(t, n) is the aggregated load profile in which the flexible demand has been
shifted in order to minimize the injection peak (ndG− L). This flexible load depends on the
normalization ratio n because the period of time during which the power at the transformer

15



is below the limit Plim depends on nd and only the flexible energy outside this period can be
shifted in it.

Finally, the maximum normalization ratio is given by the minimum over all the day of the
daily nd.

n = min
d

nd (6)

4.4 General score for the integration of PV

Here are a few basic definitions about the integration of PV at the household and grid level.

• Self-consumption (SC): is the ratio between the PV generated energy that is directly
consumed locally and the total PV generated energy.

SC = C/(B + C)

• Self-sufficiency (SS): is the proportion of the demand covered by the local PV gen-
eration.

SS = C/(A + C)

• PV penetration (PVP): is the ratio between the PV generation and electricity con-
sumption.

PVP = (B + C)/(A + C)

All these scores are usually computed on a full-year basis in order to get rid of the seasonal
effects.
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self-consumption from PV systems are discussed in Section 4
together with an overview of papers using the different methods.
A comprehensive overview of papers presenting explicit results
of how much the self-consumption can be increased with the dif-
ferent methods is included in Section 5. In Section 6, a discussion
of the findings and suggestions for further research can be found,
together with other important aspects of self-consumption. Finally,
conclusions from the review are compiled in Section 7.

2. Self-consumption definition and metrics

In this section, self-consumption is more formally defined and
some relevant metric types are reviewed and discussed. An over-
view of the most important factors affecting the metrics and the
interpretation of them is also included.

2.1. Basic definitions

Fig. 1 shows a schematic outline of the power profiles of on-site
PV generation and power consumption. The areas A and B are the
total net electricity demand and generation, respectively. The over-
lapping part in area C is the PV power that is utilized directly
within the building. This is sometimes referred to as the absolute
self-consumption (as in [19]). What is most commonly meant by
self-consumption, however, is the self-consumed part relative to
the total production, which in the simplified nomenclature of
Fig. 1 would be:

Self-consumption ¼ C
Bþ C

ð1Þ

The self-consumed part relative to the total load is also a com-
monly used metric. As shown below, many denominations have
been proposed for it, and there is no consensus on a common
nomenclature. In the following we will refer to it as the self-
sufficiency (as in [20]) both because this clearly expresses what
the metric shows – the degree to which the on-site generation is
sufficient to fill the energy needs of the building – and because
of its linguistic symmetry to the word self-consumption:

Self-sufficiency ¼ C
Aþ C

ð2Þ

To define self-consumption more formally, we denote the instanta-
neous building power consumption L(t) and the instantaneous on-
site PV power generation P(t). The power generation utilized on-site

is limited by whichever of the load and the generation profiles is the
smallest, which can be expressed as:

MðtÞ ¼minfLðtÞ; PðtÞg ð3Þ

where M(t) is the instantaneously overlapping part of the genera-
tion and load profiles. In the case of energy storage (battery or heat
storage) in the building this can be extended to

MðtÞ ¼minfLðtÞ; PðtÞ þ SðtÞg ð4Þ

where S(t) is the power to and from the storage unit, with S(t) < 0
when charging and S(t) > 0 when discharging. This takes the losses
due to charging, storing and discharging of the energy storage into
account. Self-consumption and self-sufficiency can now be defined
as:

usc ¼
R t2

t¼t1
MðtÞdt

R t2
t¼t1

PðtÞdt
ð5Þ

uss ¼
R t2

t¼t1
MðtÞdt

R t2
t¼t1

LðtÞdt
ð6Þ

The relationship between self-consumption and self-sufficiency
is therefore:

usc

uss
¼
R t2

t¼t1
LðtÞdt

R t2
t¼t1

PðtÞdt
ð7Þ

This equation allows, among other things, for a conversion
between self-consumption and self-sufficiency, if the total load
and production, or at least the ratio between them, are given.
The typical integration period is one year, which is sufficiently long
to take seasonal variations into account and to minimize the influ-
ence of short-term random fluctuations in generation and demand.

2.2. Metrics for self-consumption and grid interaction

The basic self-consumption and self-sufficiency metrics defined
above are part of a wider range of metrics describing different
aspects of the interplay between on-site power generation and
demand. It would lead to far to go into details on all metrics previ-
ously described in the literature, but Table 1 shows a classification
scheme proposed in [21], where a large set of so-called load match-
ing and grid interaction indicators have been reviewed. Load match-
ing metrics quantify, in different ways, the overlap between the
load and generation, which makes self-consumption as defined
above a load matching metric. Grid-interaction metrics quantify
the net power generation and demand, i.e. the non-overlapping
parts. Different metrics have also been reviewed with a focus on
load matching metrics in [22], on grid interaction metrics in [23],
and on both categories in [24]. Some of these have also been
evaluated and compared for simulated and monitored buildings
[24–26]. Many of the metrics have been defined to analyze Net
Zero Energy Buildings (Net ZEBs), but are equally valid for any
building with on-site generation.

The metrics that we focus on in this review, self-consumption
and self-sufficiency, belong to category I, being based solely on
the on-site profiles. Many metrics in the literature that belong to
category I in Table 1 differ mainly by the name. For example, load
match index, solar fraction and cover factor mentioned in [21] and
self-consumption factor, self-sustenance index and renewable energy
fraction mentioned in [22] are all used to describe basically the
same thing as the self-sufficiency metric defined above. A more
ambitious, generalized definition scheme for self-consumption
and self-sufficiency in buildings connected to heating, cooling
and power grids and having on-site generation of all three energy
forms is presented in a series of studies by Cao et al. [27–30].

Fig. 1. Schematic outline of daily net load (A + C), net generation (B + C) and
absolute self-consumption (C) in a building with on-site PV. It also indicates the
function of the two main options (load shifting and energy storage) for increasing
the self-consumption.

82 R. Luthander et al. / Applied Energy 142 (2015) 80–94

Figure 7: Schema of load (A + C) and a PV generation (B + C) [22]
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5 Results

5.1 Theoretical flexibility

Figures 5 and 6 have already introduced an overview of the output of the disaggregation.
The flexibilisation potential, for the 84 households is assessed in terms of share of energy,
split by their shiftability potential. The resulting energy share per potential for demand-side
management is presented in table 6 and split between weekend and weekday.

Table 6: Share of energy according to their shiftability potential

Share of energy. . . Weekday Weekend

Easily shiftable 6.45% 6.87%
Hardly shiftable 16.75% 18.05%
Not shiftable 76.80% 75.08%

The flexibility score is evaluated for each household, for each day and each treatment for
both a period before the experiment and the period during the experiment. As the experiment
launch dates are different for the first and second wave, a common period, between October
1st and the 30th of June, was defined in order to evaluate the flexi score for both waves. The
potential flexibility scores are represented in figure 8. The potential is slightly higher for the
treatment 1 group than for treatment 2 group. For both the control and treatment groups,
the potential decreases between the period before the experiment and after the start of the
experiment. Similarly, both treatment groups have a potential flexi score smaller than the
one of the control group.
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Figure 8: Theoretical flexi score

Now that an upper bound for the theoretical flexibility score has been evaluated, it’s
possible to assess the practical flexibility and compare it to the theoretical one.
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5.2 Practical flexibility

5.2.1 Treatment 1 (fixed low rate period)

The practical flexibility is evaluated with the help of the flexi score defined above. The
households in the first treatment were encouraged to shift their consumption to a period
between 11 am and 3 pm every day. In order to illustrate the impact of the experiment on
the way the households are using their energy along the day, we define the normalized hourly
power profile for a day as follows.

P ∗(t) =
P (t)

E(P )
(7)

Where: P (t) is the mean power during time t−1 and ∀t = 1, . . . , 24 and E(P ) is the mean
power during the day defined as :

E(P ) =
1

24

∑
t

P (t) (8)

As each wave started the experiment at a different date, it is not possible to compare
them together. Hence figures 9, 10 and 11 show the median normalized power profile for each
wave. When comparing the profiles before and during the experiment with respect to the
control group, it is not clear whether the households have moved their consumption in the
low rate window. Only the second wave shows a little trend in this direction. Similarly, the
consumption during the evening and the night seems to follow a similar trend for both the
control group and treatment group.
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Figure 9: Normalized power profile group T1 wave 1
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Figure 10: Normalized power profile group T1 wave 2
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Figure 11: Normalized power profile group T1 wave 3

These results do not show a clear reaction of the households to the provided incentive.
However, this has to be confirmed by the analysis of the two metrics defined in section 4.1.1,
namely the flexi score and the average daily energy consumption. The figure 12 shows a map
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of the performance of each individual household of the first treatment group (first wave). The
blue squares represent the metrics evaluated during the year before the experiment starts
while the linked red cross display the same metrics evaluated during the experiment. It is
clear that some households have clearly increased their flexi score while some other didn’t.
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Figure 12: Performance of treatment group 1 wave 1

This progression in both the flexi score and the average daily consumption is reported
in figures 13, 14 and 15 for the wave 1, 2 and 3 respectively. The vertical axis represents
the variations of the flexi score with respect with the period before the experiment. The
horizontal axis represents the variations of the average daily consumption. A household who
reacted perfectly to the financial incentive would have at least increased its flexi score and
eventually reduced its daily energy consumption, thus it would be placed in the top left
quadrant of the figure. On the opposite, a household that has both reduced its flexi score and
increased its energy consumption is placed in the bottom right quadrant. In each of the four
quadrants of each figure is stated the fraction of households contained in the quadrant. The
relatively low reaction of the household is pictured by the fact that between 50 and 53% of
the households have increased their flexi score while this fraction lays in the range 44 to 46%
for the control group.
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Figure 14: Performance variations of treatment group 1 wave 2
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Figure 15: Performance variations of treatment group 1 wave 3

5.2.2 Treatment 2 (variable low rate periods)

The second treatment consisted in sending each day a SMS mentioning when the low rate
period for the next day would occur. As three different flexi periods are possible, 8 different
types of day can be distinguished as depicted in figure 16a. The distribution of the day type
for the period between October 1st 2016 and the 30th of June 2017 (period after) is presented
in figure 16b. As the forecast of the flexi period only started on July 1st 2016, the flexi
period for the time range before had to be estimated for this analysis based on historical
weather data. This is why the distribution for the flexi day type is labelled with the mention
”estimation” for the period before the experiment.
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Figure 16: Flexi day types and their distribution

Similarly to the first treatment, the effect of the incentives can be illustrated by the change
in the normalized power profile. Because each day is significantly different and for readability,
only the type of day 4 is pictured in figure 17. As the number of households is very low
to allow each wave to be treated separately, both waves have been grouped on a common
period between October 1st 2016 and the 30th of June 2017 as for the figure 16. Apparently,
these households have increased the fraction of energy consumed during the low rate period
compared to the control group. However, the analysis of the power profile for all other types
of days does not show the same trend. Sometimes, the fraction of energy is reduced during
the low rate period and increased during high rate period. As the reactions of the households
are very dissimilar, the following part will focus on the variations of the flexi score and daily
energy consumption.
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Figure 17: Normalized power profile group T2 wave 1 & 2

The performance of the group T2 wave 1 with respect to both flexi score and daily energy
consumption is displayed in figure 18. The considered period corresponds to the full year
from 1st of July 2016 to 30th of June 2017 (as reported in table 2). It is clear here again that
some households reacted very positively by increasing their mean flexi score and reducing
their energy consumption while other households behaved exactly oppositely. The variations
of these performance scores are the main point of interest and are reported in figures 19 and
20.
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Figure 20: Performance variations of treatment group 2 wave 2

Similarly to the first treatment group, these results do not show a clear reaction of the
households to the financial incentives, although the fraction of households that have both
increase their flexi score and reduced their mean energy consumption is always higher in the
treatment group compared to the control group.

5.2.3 Achieved flexibility

In order to put these results in perspective with the theoretical potential for flexibility (defined
as the theoretical flexi score Sth), the level of achievement of the flexi score is calculated for
each day and for each score as the ratio S/Sth. This level of achievement is displayed for each
treatment and both wave 1 and 2 in figure 21 and 22.
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Figure 21: Level of achieved flexibility for treatment 1

The median level of the flexibility achievement is reported in table 7. In general, all
households have decreased the ratio S/Sth including the control group who didn’t receive
any incentive to change its consumption habit. However, the decrease is less pronounced for
the treatment groups (1 and 2 and both waves). The exception is the second wave of the
group T2 who even increased its flexibility achievement. In general, the variations between
of performance are smaller in magnitude for the variations for the treatment groups than the
variations of the control group with can be considered as noise.
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Figure 22: Level of achieved flexibility for treatment 2

Table 7: Median level of flexibility achievement for all groups and waves (%)

Treatment 1 Treatment 2
before after delta before after delta

wave 1
Control group 58.8 56.9 -1.9 59.2 52.9 -6.3
Treatment group 63 61.4 -1.6 58.9 57.4 -1.5

wave 2
Control group 72.7 70.1 -2.6 70.8 69 -1.8
Treatment group 74.9 74.2 -0.7 68.4 68.7 0.3
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5.3 Impact of the flexibility on the PV hosting capacity

This section discuss the increase of PV hosting capacity enabled by the theoretical flexibility
for the TR3716low voltage grid. The theoretical flexibility of the demand is based on the
approach described in section 4.3. The annual electricity demand of the grid resulting from
the load profiles allocation reached 721 MWh. The total PV potential considering all rooftops
with an area above 10 m2 and for which the annual irradiance is higher than 1000 kWh/m2,
is about 1484 MWh. This gives a maximum PV penetration of 2.1. However, such high PV
capacity would violate the power flow constraint at the transformer limited in this case to
Plim = −400 kW. Here negative to express the limit on the power flow from the LV to MV
grid. Equation 4 gives for this grid a PV normalization ratio n0 = 0.353, which corresponds
to a PV penetration of 0.73.

The day with highest reverse power flow at the transformer is illustrated in figure 23. The
load minus the generation L− n0 ·G just reaches the transformer limit after noon.
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Figure 23: Load L and generation G during the day with the highest injection

The theoretical demand flexibility allows decreasing the peaks of the reverse power flow,
in this way increasing the PV hosting capacity of the grid. The new normalization ratio
thus obtained is n = 0.424 corresponding to a PV penetration of 0.87. Figure 24 shows
the power flows for the day with the resulting highest injection. The energy shift around
noon of the demand is just enough to keep power flow at the transformer above the limit
Lflex − n ·G > Plim.
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Figure 24: Load L and generation G during the day with the highest injection

We define here an electricity cost C [CHF/kWh] for the distribution grid defined as the
energy import Eimp multiplied by the import tariff cimp minus the export Eexp multiplied by
the export tariff cexp and plus the cost for the PV generation which is given by the produced
energy EPV times the levelized cost of electricity for the PV LCOE, the whole divided by
the total energy consumed EL.

C =
(
Eimp · cimp − Eexp · cexp + EPV · LCOE

)
/EL (9)

Where the tariffs are set to :

• cimp = 20 cts/kWh

• cexp = 8 cts/kWh

• LCOE = 15 cts/kWh

Table 8 shows the main results without and with the flexible demand. The PV penetration
could be increased by 20% with the flexibility and this without decreasing the share of the
generation locally consumed (SC). The self-sufficiency also increases by 20% (relative) to reach
43.1%. With the tariffs set above, the electricity cost for the grid is not cheaper. However in
the case of a PV penetration of 0.87, if the extra energy had been curtailed instead of using
flexibility, the electricity cost would have reached 21.6 cts/kWh.
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Table 8: Scores without and with the flexibility

PVP SC [%] SS [%] C [cts/kWh]

Without flex 0.73 49.8 36.1 20.7
With flex 0.87 (+20%) 49.6 (-0.4%) 43.1 (+20%) 20.9 (+0.9%)

Figure 25 shows the electricity cost evolution normalized by the import tariff cimp in
function of the LCOE normalized by the export tariff cexp. It should be noted that flexibility
becomes economically interesting if the LCOE goes below 1.75 · cexp. With the tariffs defined
above, the ratio LCOE/cexp is equal to 1.875 which is just higher than the profitability limit.
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Figure 25: Electricity cost evolution normalized by the import tariff cimp in function of the
LCOE normalized by the export tariff cexp
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5.4 Demand behavioural theoretical and hot water flexibility

To give a reference to appreciate the theoretical behavioral flexibility of the demand, we
propose to compare it to the theoretical flexibility that could be gather using domestic hot
water heating (DHW). The daily mean of the theoretical demand flexibility (from behavioural
change) over one year is about 150 kWh for the whole TR3716 grid.

Considering only the building Belecheat with an electrical heating system for DHW, the
total energy can be evaluated with the following equation.

EDHW =
∑

b∈Belecheat

np(b) · vdhw · cp ·∆T ' 152 kWh (10)

Where np is the number of person in the building b, vdhw the daily DHW consumption
per person estimated at 50 l, cp the specific heat of liquid water (4186 J/kg/◦C) and ∆T the
temperature difference estimated at 25 ◦C. So it is interesting to remark that both flexibility
from potential behavioural change and flexibility from DHW heating have the same order of
magnitude. The DHW one could be strongly increased in the future with a higher penetration
of heat pumps, whereas the behavioural one is currently available with appropriated incentives.
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6 Conclusions

A high level of penetration of distributed photovoltaic generation requires flexibility from the
demand side in order to prevent high reverse power flow issues. First, this work showed a
methodology to investigate the potential flexibility from behavioural change, i.e the flexibility
in the energy consumption brought by a change in the behaviour of the people rather than
any technical artefact. Second, the practical response of a panel of households was evaluated
in the context of a demand-side management field experiment in the Jura area. Finally, the
impact of the theoretical potential for a flexible demand is assessed on a use case network.

To evaluate the theoretical potential for flexibility, this work presents a methodology,
based on a statistical approach to address the Non Intrusive Load Monitoring problem, to
quantify the fraction of the consumed energy that could be shifted toward periods of high PV
generation. Additionally, a score to evaluate the performance of the households to respond to
demand-side management incentive is proposed. The results show that no significant differ-
ence is noticed between weekday and weekend as the fraction of potentially shiftable energy
lays around 23 to 25% of the total energy consumption.

In order to practically assess the potential of households for demand-side management,
a field experiment, the flexi project, has been conducted. Two different treatments were
attempted: one double tariff at a fixed daily low rate period (1 am to 3 pm); the second
treatment consisted in variable periods of low rate tariff either between 10am to 1pm, 1 pm
to 4 pm or 4pm to 7pm, according to the insulation forecast. Both treatments had the same
financial incentive, namely a bonus of 15 cts/kWh for the low rate period and a penalty of 4
cts/kWh during the remaining of the day, with respect to the standard 27.45 cts/kWh flat
tariff. The results of the field experiment showed for both treatment a moderate response
from the households. The variability of the individual households’ response showed that some
reacted very well to the incentives while others reacted at the opposite of what was expected.
One reason to explain this is the voluntary nature of the experiment and the rather low fi-
nancial incentive (possible monthly gains. Indeed, as the households had to pay at most the
bill with the reference flat rate, some of them probably didn’t feel any particular pressure to
change their behaviour and didn’t take the opportunity to achieve energy savings.
The moderate response of the households is put in perspective with the evolution of the the-
oretical potential for flexibility as the latter was decreasing between the period before the
experiment and the period after the start of the experiment.

Finally, the effect of the theoretical potential of behavioural flexibility on the hosting ca-
pacity of a Rolle district is assessed. The low-voltage grid TR3716 is used as a test case for
this assessment. As the annual energy consumption of each meter in the grid is known, the
load profiles from the flexi field experiment are allocated to each meter in order to have the
power measurement at this node. The disaggregation of the load profiles was used to assess
the theoretical flexibility and a strategy was developed to efficiently reduce the exceeding
PV generation. The main assumption here is the possibility to shift freely the energy. This
approach allows to give an upper-bound of the effect of theoretical behavioural flexibility on
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the PV hosting capacity of a low voltage grid. The results show that PV penetration could
be increased from 73% to 87% while the total cost of energy used only increases by 0.9%. A
sensibility analysis on the levelized cost of the PV energy showed that flexibility is always a
better solution than curtailing the excess PV generation. However, flexibility becomes prof-
itable only if the levelized cost of PV is smaller than 175% of the cost at which the distribution
grid operator buy the exceeding PV generation. For this same district, it has been estimated
that the demand behavioural flexibility is currently of the same order of magnitude compared
to the flexibility that could be gather from the domestic hot water heating

These results showed that flexibility is difficult to obtain from the households simply by
providing financial incentives which are remaining small (due to the price of energy) compared
to the effort to provide it. However, the impact on the PV hosting capacity, if the full poten-
tial was achieved is high enough to pursue investigation on this topic. Further studies will aim
at evaluating the effect of the practical flexibility obtained with this experiment on the PV
hosting capacity. Additionally, the combination of technical solutions with the behavioural
incentives should be further studied.
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