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ABSTRACT

We investigate the problem of classifying – from a single image –
the level of content in a cup or a drinking glass. This problem is
made challenging by several ambiguities caused by transparencies,
shape variations and partial occlusions, and by the availability of
only small training datasets. In this paper, we tackle this problem
with an appropriate strategy for transfer learning. Specifically, we
use adversarial training in a generic source dataset and then refine
the training with a task-specific dataset. We also discuss and exper-
imentally evaluate several training strategies and their combination
on a range of container types of the CORSMAL Containers Ma-
nipulation dataset. We show that transfer learning with adversarial
training in the source domain consistently improves the classifica-
tion accuracy on the test set and limits the overfitting of the classifier
to specific features of the training data.

Index Terms— Adversarial training, Transfer learning, Classi-
fication

1. INTRODUCTION

The estimation of the filling level of a container is made challeng-
ing by differences in the shape of containers, by occlusions caused
by the hand holding the container and by transparencies of both the
container and the filling (e.g., depth estimation may be highly inac-
curate for transparent objects [1]). The few approaches designed to
tackle this problem use RGB [2], thermal [3], or a combination of
RGB and depth data [4, 5], and usually observe the action of pour-
ing content in a container over multiple frames [3–6]. Using only
one RGB image, Mottaghi et al. [2] showed that a Convolutional
Neural Network (CNN) classifier outperforms a regression model in
estimating the filling level. The best performance was achieved with
transfer learning [7], where self-collected data were used as task-
specific dataset, the target domain, to fine-tune the parameters of
selected layers of the CNN that was previously trained on the much
larger ImageNet dataset [8], the source domain. Transfer learning is
suitable for image recognition tasks with only small datasets avail-
able for training. Examples of these tasks include fine-grained ob-
ject classification and scene classification [9, 10], and the recogni-
tion of object properties such as volume, texture, shape and mate-
rial [1, 2, 11–13].

In this paper, we go beyond current approaches that use transfer
learning to classify the filling level of a container [2], and evaluate
transfer learning combined with adversarial training in the source
domain [14, 15] on the small-scale CORSMAL Containers Manipu-
lation (CCM) [16] dataset (Fig. 1). We thoroughly analyze the per-
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Fig. 1. An illustrative 4-layer CNN trained via transfer learning us-
ing adversarial training on the source domain (adversarial perturba-
tions are added to the original images), followed by fine-tuning some
of the layers with images from the target domain. This training strat-
egy achieves the best accuracy in the test set of the experiments. The
color of each layer corresponds to the domains used to optimize the
classifier parameters using the loss L.

formance of standard training, adversarial training, transfer learn-
ing, and their combinations, under different setups, which include
the number of fixed layers during fine-tuning, and the norm of the
perturbation in adversarial training both on the source and the target
domain. We show that the generalization of a ResNet-18 [17] classi-
fier on the test set of CCM can be limited by its bias towards specific
features of the CCM training data. However, adversarially training
the classifier on ImageNet, followed by fine-tuning on the train set
of CCM, mitigates these biases and consistently produces classifiers
with better generalization performance.

2. TARGET TASK AND TRAINING STRATEGIES

We approach the problem of estimating the filling level, y, of a con-
tainer captured in an image x ∈ [0, 1]H×W×C , as a classification
task, where H,W,C are the height, width, and number of chan-
nels respectively. We express the filling level as a percentage of
the container’s capacity: y ∈ {0%, 50%, 90%, unknown}, where the
unknown class helps handling cases with opaque or translucent con-
tainers for which the filling level cannot be estimated through direct
vision. Let fθ be a CNN classifier, parameterized by a set of pa-
rameters θ, that maps an image x – drawn from a distribution D –
to a label y, such that fθ(x) = y. Given a train set of image-label
pairs T = {(xi, yi)}Ni=1, the goal is to find a set of parameters that
minimizes a suitable loss function L(x, y|θ) such that fθ correctly
predicts y for x ∼ D but x /∈ T (generalization).

We refer to the common strategy for training a classifier on a
train set, T , as Standard Training (ST). A good generalization may
be achieved if the number of image-label pairs in T is very large,
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e.g., N ≈ 1.2 millions in ImageNet. However, for the target task
of classifying the filling level such amount of data is not available.
Transfer learning helps to overcome this limitation by using an addi-
tional training set S, with |S| =M � N , that may not be related to
the target task. Transfer learning pre-trains the parameters of fθ on
S (source domain) and then refines them on T (target domain) via
fine-tuning (FT). We refer to this strategy as ST→FT. With ST→FT,
the parameters of some layers in the pre-trained model are fixed and
FT only refines those of the remaining layers. We will denote with
L the number of layers whose parameters are fixed.

Instead of using the original set of images, Adversarial Train-
ing (AT) [18–20] uses images modified with carefully crafted noise,
known as adversarial perturbation. This noise is specifically de-
signed to change the decision of a classifier [18–22]. Formally, a
perturbation δ is added to an image x in order to maximize the loss
functionL(x+δ, y|θ) in a given `p-ball of radius ε aroundx [18,20]

max
δ

L(x+ δ, y|θ)

s.t. ‖δ‖p ≤ ε

x+ δ ∈ [0, 1]H×W×C ,

(1)

and the objective of AT is to minimize the adversarial loss L(x +
δ, y|θ). The resulting adversarially trained models learn features
that correlate better with features of the classes of interest and are
thus more robust [23–26]. Hence, fθ is expected to learn more
task-relevant features with AT. While AT was originally designed
to increase the robustness of deep networks to adversarial perturba-
tions [19, 20], it has also contributed to other tasks [27]. Recently, it
was shown that AT in the source domain can improve transfer learn-
ing [14, 15]: adversarially trained models from a source domain can
help improving the accuracy on the target task after fine-tuning, de-
spite performing worse, in terms of task accuracy, on the source do-
main.

We aim to evaluate this training strategy on the filling-level clas-
sification task and to compare it against five other strategies. As
training strategies we consider ST→FT [2]; ST on the target domain;
AT on the target domain; and three combinations of AT with trans-
fer learning, namely AT on the source domain (AT→FT), AT on the
target domain (ST→AFT), and AT on both domains (AT→AFT).

AT→FT adversarially pre-trains the parameters of fθ on the
source domain S and then fine-tunes them on the target domain
T [14, 15]. Similarly to what was observed in [14, 15], we expect
that the performance of fine-tuning on T will further improve if we
use a model trained on S with AT instead of a model trained with
ST, even if the classification performance of the robust model on S
is worse than the performance of the model trained with ST. The ex-
act reason behind this improvement is still an open question, but it
is related to the differences in the learned features between standard
and robust models. Also, this improvement depends on the ε used
in Eq. 1 during AT, and the value that leads to better accuracy may
differ across tasks and domains. Smaller values for ε generally lead
to better performance [15], but its value will be selected empirically.

Finally, the last two training combinations apply AT either on the
target domain (ST→AFT) via FT or on both domains (AT→AFT).
Considering the effect of AT on the features learned by a classifier,
we will investigate how fθ is affected when the transferred learned
features from S are further filtered by AT on T . Fig. 2 summarizes
the training strategies under analysis, which will be compared in the
next section.

Fig. 2. The six training strategies analyzed in our experiments: inde-
pendent standard training (ST) and adversarial training (AT) on the
target domain, and four transfer learning strategies from source to
target domain via fine-tuning (FT).

3. EXPERIMENTAL VALIDATION

3.1. Dataset

The task is to classify the filling level from a single RGB image. The
CCM dataset [16] comprises of three views capturing under different
backgrounds and illumination conditions cups and drinking glasses.
The containers are transparent, translucent or opaque. The content
is transparent (water) or opaque (pasta, rice). Each container stands
upright on a surface or is being manipulated by a person. We only
consider data of the public CCM repository, namely 4 cups and 4
drinking glasses.

From the CCM video data, we automatically sampled and then
visually verified 10,269 frames of containers for which a pouring
action was completed. To increase the variability in the sampled
data, we selected frames considering that the container is completely
visible or occluded by the person’s hand, and under different back-
grounds. For each frame, the final image is extracted by cropping
only the region with the container using Mask R-CNN [28], followed
by visual verification. Each crop is associated to an annotation of
filling type and filling level (empty or filled at 50% or 90% of the
capacity of the container), hand occlusion, and transparency of the
container. We call this image dataset Crop-CCM or C-CCM. Sample
C-CCM images1 are shown in Fig. 3.

To investigate the impact of the shape of a container on this task,
we split C-CCM into train and test sets under three configurations,
based on the container type. The first configuration (S1) considers
a champagne flute in the test set to further increase the shape vari-
ability of containers not previously seen in the train set. The second
configuration (S2) swaps a beer cup with a wine glass to analyze the
influence of the stem of the wine glass. The last configuration (S3)
places all the containers with a stem in the train set, and the test set
contains only cups without stem. Fig. 4 shows the three configura-
tions and the number of samples for each container type.

3.2. Classifier and implementation choices

We use as classifier a ResNet-18 [17]. With ST we train the classi-
fier on C-CCM, whereas with AT we train the classifier on images
modified with `2 adversarial perturbations (p = 2 in Eq. (1)) crafted
with the 10-iteration PGD [20]. With the transfer learning strate-
gies we fine-tune the available pre-trained models on C-CCM: for
ST→FT and ST→AFT we use the pre-trained model provided by

1Sampled images can be found at https://corsmal.eecs.qmul.
ac.uk/filling.html

https://corsmal.eecs.qmul.ac.uk/filling.html
https://corsmal.eecs.qmul.ac.uk/filling.html


Fig. 3. Sample images (resized crops) from the CORSMAL Con-
tainers Manipulation dataset [16]. Each column shows different fill-
ing types and levels, and each row shows different backgrounds and
hand occlusions.

Train set

Test set

S1
S2
S3

S1
S2
S3

(1,623) (1,639) (1,290) (1,566) (1,550) (1,059) (787) (702)

Fig. 4. Comparison of three train and test splits (S1, S2, S3) of the
public containers from CCM for the shape analysis in the experi-
ments. Black lines mean that the set of images belonging to that
container are part of the train (test) set in the data split. The number
of images for each container are shown in parentheses. Note the di-
versity in shape, color, texture, and transparency, as well as the size
compared to the 1-pound coin (GBP) used as reference size.

PyTorch [29], whereas for AT→FT and AT→AFT we use the robust
models provided by [14].

For each strategy, we train or fine-tune the classifier for 30
epochs, using a cross-entropy loss [30] and stochastic gradient de-
scent. The learning rate for updating the weights is set to 0.1 when
training directly on C-CCM, and 0.005 when performing transfer
learning. The learning rate decays linearly during training. Note
that the models we evaluate are the ones obtained at the end of the
training epochs (no early-stopping), while for dealing with class
imbalances, the training images in a batch are randomly sampled
with probabilities that are inversely proportional to the number of
images of each class.
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Fig. 5. Sensitivity analysis for the number of fixed layers L with
ST→FT (left) and for the maximum amount of perturbation bound,
εs, with AT→FT on test set of the three dataset splits: first split S1

( ), second split S2 ( ), third split S3 ( ). Red indicates the highest
achieved accuracy. Note the different scale of the y-axis, and the
logarithmic scale for the x-axis (right).

3.3. Sensitivity analysis

We perform a sensitivity analysis on the number of fixed layers (L) in
fine-tuning with ST→FT, ST→AFT, AT→FT and AT→AFT; and to
select the size of the bound for crafting the adversarial perturbation
for AT, ST→AFT, AT→FT and AT→AFT. Note that we differentiate
the bound ε for the source, εs, and target, εt, domain. Specifically,
we perform the sensitivity analysis only for εs with AT→FT, and
for each data split configuration we select the εs for which AT→FT
achieves the highest accuracy. Then, based on these values of εs, for
each data configuration we set εt = εs: since we use 10-iteration
`2-PGD [20], performing a sensitivity analysis or a grid search on εt

is computationally inefficient, as it is analogous to increasing almost
10× the training epochs.

We first analyze the classification accuracy on the test sets of
the three dataset splits when varying the number of fixed layers for
ST→FT as L = {0, 1, 2, 3, 4}. Note that for a ResNet-18 classifier,
a layer is a ResNet block of convolutions and batch normalization
(see the original ResNet paper [17]). Since the target dataset is small,
it is reasonable to fix the first layer (L = 1) in order to prevent the
classifier from a possible overfitting [31]. Indeed, Fig. 5 (left) shows
that the accuracy on the test set of all configurations (S1, S2, S3) is
consistently higher for L = 1 (78.34%, 65.63%, 82.32%), while it
gradually decays as L grows. This is also expected [31], since we
allow fewer layers to be fine-tuned on the target datasets, and the
classifiers then mostly use fixed features from ImageNet. Therefore,
we set L = 1 for ST→FT as well as for ST→AFT, AT→FT, and
AT→AFT.

By fixing L = 1, we analyze the classification accuracy of
AT→FT when varying the size of the adversarial perturbation on
the source domain, εs. Fig. 5 (right) shows that the highest achieved
accuracy is different for each dataset configuration: 80.97% for S1

with εs = 0.05, 73.27% for S2 with εs = 1, and 88.23% for S3 with
εs = 0.5. As mentioned in Sec. 3.3, we use these values εs also for
εt when performing AT, ST→AFT, and AT→AFT. However, we ob-
served that the model trained with ST→AFT is unable to converge
(train accuracy around 45%) on S2 for εt = 1 and on S3 for εt = 0.5,
while it successfully converges on S1 for the smaller εt = 0.05. We
believe that this might be caused by the fact that AT with larger εt

values eliminates many non-robust, yet useful, features transferred
from ImageNet, and prevents the model from fitting the remaining
features. Hence, we set εt = 0.05 for ST→AFT across all dataset
configurations for the rest of the experiments.
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Fig. 6. Comparison of the per-container filling level classification accuracy (%) for the six training strategies. Note the different containers
in the test set for each dataset split (see Fig. 4 for the train set of each split). Legend: ST, AT, ST→FT, ST→AFT, AT→FT,

AT→AFT.

3.4. Results

Fig. 6 shows the filling level classification performance on the three
configurations, S1, S2 and S3, for all the training strategies. Con-
strained by the amount, and hence by the diversity, of training im-
ages, the differently trained classifiers are expected to develop bi-
ases or overfit to some features, such as the shape of a container.
AT→FT achieved superior performance most of the times. With
transfer learning, the features introduced from ImageNet (source do-
main) appear to decrease such biases, and enable the classifiers to
identify features in the train set that are more generalizable. When
combining transfer learning with AT at the source domain, the biases
are modulated with the transferred features that are also filtered by
AT, and the generalization of the classifier further increases. These
results confirm that adversarial training improves transfer learning,
even in the context of the challenging filling level classification task.

Overall, whenever the performance of ST is low, all transfer
learning strategies lead to a significant improvement. On the con-
trary, whenever ST performs well, the contribution of transfer learn-
ing is insignificant, and sometimes it even decreases the final per-
formance. Furthermore, applying AT on the target domain, either
alone or combined with transfer learning, may even be harmful for
the classifier.

For S1, the accuracy of ST on the beer cup (middle) is already
very high, and the other training strategies do not further improve it.
This might be explained by the small transparent cup in the training
set, which has similar shape. On the other hand, the accuracy on the
cocktail glass (right) is similar for all strategies, but lower than the
one of the beer cup, with AT→FT being slightly better than the rest
strategies. Although there is another container with a stem in the
training set (wine glass), these accuracy levels might be due to the
different shape above the stem that the cocktail glass has, compared
to the wine glass. As for the champagne flute (left), the performance
of ST and AT is quite low (∼ 46%), which might be caused by the
unique shape of the flute (narrowing towards the bottom) with re-
spect to the shapes in the training set. However, the accuracy signifi-
cantly improves with transfer learning. Especially AT→FT (∼ 30%)
outperforms all the other strategies.

For S2, the accuracy of all strategies on the champagne flute
(left) is similar to the one achieved on S1, whereas the accuracy on
the cocktail glass (right) is much lower for most strategies (∼ 10%
less compared to the performance on S1), except AT→FT, which
drops only 3%, and again outperforms the rest of the strategies. The

drop of the other strategies could be caused by the lack of a con-
tainer with a stem in the training set. Finally, the performance on the
wine glass (middle) is similar for most strategies, with AT→FT be-
ing again slightly better than the rest. Compared to the cocktail glass,
although there is no container with a stem in the training set, the
higher accuracy of all strategies on the wine glass could be caused
by the similarity of its shape above the stem with the other transpar-
ent cups in the training set.

For S3, the accuracy of ST on the beer cup (right) is high and the
other training strategies do not improve it. Instead, the accuracy of
ST on the green glass (middle), which has a different shape, is lower
(66%). However, although ST→FT does not improve the accuracy,
AT→FT significantly increases it (almost 10%). The red cup (left)
though obtains the most interesting improvement compared to the
0.005% accuracy of ST. All transfer learning techniques increase the
accuracy above 83%, with AT→FT achieving 99.5% classification
accuracy. By inspecting the predictions of ST and AT, the classi-
fier assigned the label full (filling level: 90%) almost 99% of the
times. In fact, predicting the unknown class is conceptually different
from estimating the filling level, and it is more related to classify-
ing non-transparent containers. In this sense, the features learned for
transparent objects that are full with rice or pasta might be correlated
with the features of the red cup.

4. CONCLUSION

We investigated how different training strategies impact the classifi-
cation of the filling level of a container. Using adversarial training
on the source dataset, ImageNet, followed by transfer learning on
the target dataset, selected from the CORSMAL Containers Manip-
ulations dataset, permits to consistently improve generalization to
unseen containers. Our analysis demonstrates the possibilities of ex-
ploiting adversarial training for tasks that extend beyond classical
image classification settings. As future work, we will explore other
sources of biases that might be related to transparencies, occlusions,
or the content, we will investigate alternative ways to avoid overfit-
ting to features of the training data, and we will extend our analysis
to other datasets and settings.
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