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Résumé

L’adaptation et la facilité de programmation sont des éléments nécessaires a une
utilisation plus répandue de la robotique dans les entreprises et 1’assistance aux per-
sonnes. L’apprentissage par démonstration est une des approches possibles pour
répondre a ce probleme. Le but de ce domaine est de développer des algorithmes et
des interfaces qui facilitent la programmation de robots et permettent a des utilisa-
teurs inexpérimentés de le faire.

Alors que la configuration d’un bras robotique est définie par les angles des ar-
ticulations, les postures et mouvements sont souvent plus facile a comprendre dans
différents espaces de travail. Ces espaces de travail sont exploités par la plupart des
approches d’apprentissage par démonstrations. Par contre, les différents modeles de
taches sont souvent appris indépendamment dans les différents espaces de travail et
seulement combinés plus tard, lors du controle du robot. Cette simplification im-
plique différentes limitations telles que de déterminer la précision et la hiérarchie
entre les différentes sous-taches considérées. De méme, cette simplification empéche
la compréhension des taches secondaires, dont la résolution est masquée par celle de
taches plus importantes.

Dans cette these, notre but est de surmonter ces limitations en proposant un
cadre de travail rigoureux pour 'apprentissage par démonstrations, fondé sur le pro-
duit d’experts. Dans ce modele, les données sont modélisées comme la combinai-
son de plusieurs sources, appelées experts. Chacune d’entre elles donne son opinion
sur un aspect différent des données, qui correspond aux différents espaces de tra-
vail. Mathématiquement, les experts sont des distributions de probabilité qui sont
multipliés entre eux et leur produit renormalisé. Des distributions de deux natures
différentes sont étudiées dans cette these.

Dans une premiere partie, les produits d’experts sont utilisés pour modéliser des
distributions de configuration de bras robotiques. Ces distributions sont des éléments
clés de plusieurs approches d’apprentissage. Ils sont souvent utilisés pour définir
des mouvement en considérant une dépendance supplémentaire a une variable de
phase. Au travers de multiples expériences, nous montrons les avantages apportés
par 'apprentissages dans plusieurs espaces de travail simultanément. Plusieurs com-
paraisons avec des modeles plus généraux de I'état de 'art sont exécutées. Toute-
fois, I'apprentissage simultané requiert des approximations cotiteuses. Une approche
d’entrainement alternative, reposant sur les techniques variationnelles, est développée.
Finalement, une extension du produit d’experts est proposée pour introduire une
hiérarchie entre les taches.

Dans la deuxieme partie de la these, les produits d’experts sont utilisés pour
I’apprentissage de controleurs stochastiques. Nous proposons I'apprentissage de prim-
itives de mouvements telles que des distributions de trajectoires. Ala place d’estimer
des constantes de normalisations complexes, ’approche antagoniste générative est
étudiée. Les controleurs sont paramétrés comme des produits de distributions Gaussi-
ennes de différentes natures (vitesse, accélération ou force), agissant dans différents es-
paces de travail. En fournissant un modele approximatif de la dynamique du systeme,
le controleur est entrainé par des algorithmes du gradient stochastique, pour que



la distribution de trajectoires exécutées sur le robot ressemble a la distribution de
démonstrations.

Mots-clés: modeles génératifs, apprentissage par démonstration, robotique, pro-
duits d’experts, apprentissage par imitation



Summary

Adaptability and ease of programming are key features necessary for a wider
spread of robotics in factories and everyday assistance. Learning from demonstration
(LfD) is an approach to address this problem. It aims to develop algorithms and
interfaces such that a non-expert user can teach the robot new tasks by showing
examples.

While the configuration of a manipulator is defined by its joint angles, postures and
movements are often best explained under several task spaces. These task spaces are
exploited by most of the existing LfD approaches. However, models are often learned
independently in the different task spaces and only combined later, at the controller
level. This simplification implies several limitations such as recovering the precision
and hierarchy of the different tasks. They are also unable to uncover secondary task
masked by the resolution of primary ones.

In this thesis, we aim to overcome these limitations by proposing a consistent
framework for LfD based on product of experts models (PoEs). In PoEs, data is
modelled as a fusion from multiple sources or "experts”. Each of them is giving an
“opinion” on a different view or transformation of the data, which corresponds to
different task spaces. Mathematically, the experts are probability density functions,
which are multiplied together and renormalized. Distributions of two different nature
are targeted in this thesis.

In the first part of the thesis, PoEs are proposed to model distributions of robot
configurations. These distributions are a key component of many LfD approaches.
They are commonly used to define motions by introducing a dependence to time, as
observation models in hidden-Markov models or transformed by a time-dependent
basis matrix. Through multiple experiments, we show the advantages of learning
models in several task spaces jointly in the PoE framework. We also compare PoE
against more general techniques like variational autoencoders and generative adver-
sarial nets. However, training a PoE requires costly approximations to which the
performance can be very sensitive. An alternative approach to contrastive divergence
is presented, by using variational inference and mixture model approximations. We
also propose an extension to PoE with a nullspace structure (PoENS). This model
can recover tasks that are masked by the resolution of higher-level objectives.

In the second part of the thesis, PoEs are used to learn stochastic policies. We
propose to learn motion primitives as distributions of trajectories. Instead of ap-
proximating complicated normalizing constants as in maximum entropy inverse op-
timal control, we propose to use a generative adversarial approach. The policy is
parametrized as a product of Gaussian distributions of velocities, accelerations or
forces, acting in different task spaces. Given an approximate and stochastic dynamic
model of the system, the policy is trained by stochastic gradient descent, such that
the distributions of rollouts match the distribution of demonstrations.

Keywords: generative models, learning from humans, learning from demonstration,
robotics, product of experts, imitation learning
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The fact is, that civilization requires slaves. The greeks were quite
right there. Unless there are slaves to do the ugly, horrible, unin-
teresting work, culture and contemplation become almost impos-
sible. Human slavery is wrong, insecure, and demoralizing. On
mechanical slavery, on the slavery of the machine, the future of
world depends. [...] Up to the present, man has been, to a certain
extent, the slave of machinery, and there is something tragic in the
fact that as soon as man had invented a machine to do his work
he began to starve. This, however, is, of course, the result of our
property system and our system of competition. One man owns a
machine which does the work of five hundred men. Five hundred
men are, in consequence, thrown out of employment, and, having
no work to do, become hungry and take to thieving. [...] Were
that machine the property of all, every one would benefit by it. It
would be an immense advantage to the community.

Oscar Wilde IntrOduCtlon

About one century and a half later, Oscar Wilde’s wise words [120] seem more
relevant than ever. These noble ideas of public ownership having only partially sur-
vived into the twentieth century [37], a solution to the referred problem still needs to
be found. Maybe, a better idea would be to give each one of those five hundred men
a machine and granting knowledge to use it.

Back in the fifteenth century, Johannes Gutenberg had already played an impor-
tant role in such a learning process, which earned him the honorific title of “Man of
the Millennium” [42]. His democratic innovation made possible the intellectual, polit-
ical or religious developments in the following centuries [38]. Nowadays, internet and
MOOQOC s are taking over the relay of sharing and dramatically accelerating its spread
[39]. Furthermore, at the material level, 3D printing recently offers a democratic
solution for production [109].

Regarding robotics, the democratization is still in its early stages [33, 89]. Tradi-
tional robots are expensive, hazardous to work with and difficult to program. Today,
their use is only beneficial in big factories, where they perform predefined tasks in a
highly controlled environment. The cost of setting up this technology is excessively
high for Small and Medium-sized Enterprises (SMEs), which creates unequal oppor-
tunities as compared to bigger corporations [36, 108]|. Besides cheaper platforms, the

emerging generation of robots targets multiple characteristics to be equally attractive
to SMEs:

e Easy and fast to program: a non-expert user should be able to quickly set the
robot (in few minutes or hours).

e Flexible to use: the platform and its programming interface should be flexible
to tackle a wide range of tasks.



CHAPTER 1. INTRODUCTION

e Adaptation capacity: the robot should be able to work in a less structured
environment in which the task execution might need to be adapted.

e Safe: it should be safe to interact with, and allow different people to work in
the same space.

These abilities are also key components for a wider spread of personalized assistive
robotics, or broadly assistive technologies. In the case of assisting a person to dress,
the robot should be able, for instance, to adapt to different morphologies, patholo-
gies or stages of recovery, which implies a wide range of requirements for movement
generation and physical interactions. This behavior is person-dependent, and cannot
be pre-engineered (not fixed in time). It must continuously adapt to the user by
considering acclimating or rehabilitation periods and aging.

Multiple learning paradigms can assist in meeting these requirements. Reinforce-
ment learning [114] is one of them, promising autonomous learning of skills with
minimal human intervention. Provided with rewards, the robot learns to behave
in a way to maximize them. As attractive as it may be, this strategy has several
drawbacks. It relies either on a long and possibly dangerous exploration phase in
the system or in simulation. In some of the latest work [46], robots can learn to
open a door with about 3 hours of physical interaction. Concerning simulation, its
setup requires dedicated knowledge and might be hard if not infeasible (for example
in the case of human-robot interaction). A better-suited paradigm for the targeted
applications (SMEs and assistive robotics) is learning from demonstration (LfD) or
imitation learning. Its purpose is to learn how to perform a task from demonstrations
of a human expert. These demonstrations can be collected by different means: for
example through kinesthetic teaching, where the data is acquired by hand guiding
the robot.

To achieve such a challenge, this thesis proposes to treat holistically the multi-
modal sensory information acquired by the robot (awareness of its environment) to-
gether with its physical actuation (capability to act in and modify its environment).
Concretely, we will build upon the popular notion of movement primitives widely
used as building blocks in robotics to create complex motor programs [57]. However,
instead of limiting it to motion trajectories, we will consider the sensory computation
and physical actuation altogether. To achieve this, we plan to enlarge the notion of
movement primitives to a richer set of behaviors by considering primitives as local
phenomena or responses including reaction, sensorimotor and impedance primitives.
The development of machine learning tools is aimed to treat the information sta-
tistically by focusing on high-dimension and multimodal coordination aspects, and
considering models encoding both time-dependent and time-independent behaviors.
The developed algorithms will specifically focus on exploiting robotic prior knowledge
such as to increase the efficiency of the learning procedure.
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1.1 I-DRESS project

This thesis is part of a CHIST-ERA project, - DRESS, which aims to develop a
robotic platform providing physical assistance for dressing tasks to disabled users.
Two scenarios were investigated: help putting on a shoe or a coat. For this project,
we collaborate with Bristol robotics laboratory and UPC Barcelona. Their roles are
complementary and focus on user studies, perception and higher-level planning.

This assistance is currently provided by healthcare workers, which is not always
convenient. From the workers perspective, there is a lack of employees dedicated to
this service, while the activity takes time and effort and is certainly not gratifying.
From the patients perspective, such an assistance is not fairly well received because it
significantly reduces their sense of independence (e.g., in order to go out, the patient
depends on someone else to get dressed). Providing robots with dressing assistance
capabilities would have benefits on both sides. However, it is still not possible to
pre-program all the dressing behaviors and requirements in advance. In this context,
the LfD paradigm provides a human-oriented solution to transfer such assistive skills
from a non-expert user to the robot. This can be achieved by means of kinesthetic
teaching or motion capture system, where several demonstrations of the task executed
in various situations can be used to let the robot rapidly acquire the person-specific
requirements and preferences.

Preliminary work The applications proposed in the I-DRESS project was the
topic of two publications [19, 94]. These works are only superficially presented in this
thesis, in the following paragraphs. The limitations of the techniques presented in
these works motivated a deep reassessment and the need for new approaches. The
limitations are discussed in Sec. 2.1.1.

In LD, skills are generally decomposed into elementary building blocks or move-
ment primitives (MPs) that can be recombined in parallel and in series to create
more complex motor programs. They are particularly suitable to generate motion
trajectories. However, in order to tackle the highly multimodal interaction involved
in assistive tasks, the notion of movement primitives should be enlarged to a richer
set of behaviors including reaction, sensorimotor and impedance primitives.

In particular, such a model should also be able to encode both time-independent
and time-dependent behaviors. A typical example of time-independence in this
human-centric context arises when holding a coat and waiting for someone to come;
the duration of the associated movement primitive to help the person should be
here triggered by the proximity and attention of the user, and, in this case, it is
time-independent. Other parts of the skill are in contrast time-dependent when a
movement needs to be completed after being initiated, which typically appears when
more dynamic features are required, such as slipping on pants. Often, a relative time
dependence is required to guarantee a cohesive evolution of the movement (i.e., with
a local time instead of an absolute time).

The above issue is closely related to the problem of organizing the movement
primitives in series and parallel, as well as for deciding which one to choose and
when to switch between them. In [94], the approach is based on a generative model,
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encoding sensorimotor time-series. Motions are generated by computing conditional
distributions in this model, allowing the robot to react to its perception, such as the
intentions of the user and his movements. In [19], the activation of low-level movement
primitives is decided by a high-level discrete planner. It imposes to model the problem
by hand at the discrete level by subdividing the task into elementary motions and
hard-coding transition rules between them. In these two works, we demonstrate the
capability of these approaches with a Baxter robot, by considering the task of helping
a user to put on the sleeve of a jacket and a shoe.

1.2 Thesis organization

Background This chapter gives an overview on the thesis research background.
The first section 2.1 focuses on relevant approaches in learning from demonstrations.
It is presented under the perspective of probability distributions. In the following
sections, more general knowledge about distributions and robotics is presented. In
Sec. 2.2.1, a link between distributions and cost functions is presented. Then, in the
following section 2.3, various methods to approximated unnormalized densities are
reviewed. Those techniques can be used to approximate product of experts, which
are presented in the next section 2.4. The chapter closes on with Sec. 2.5, which gives
basic knowledge about robotics.

Product of task-space experts This chapter addresses the first part of the re-
search question: how to preserve and exploit the information about the structure of
the kinematic chain when learning distributions in several task spaces? The solution
proposed in this thesis is to learn distributions of robot configurations p(q) as a com-
bination of distributions defined in several task spaces. To achieve that, product of
experts (PoE) are proposed as a consistent framework to learn p(q).

In Section 3.1.3, PoEs are formally presented and the practical implications of
properly normalizing the density for robotics are discussed. In the second part of the
section, a method to train PoEs using variational inference is proposed. In Section 3.2,
an extension of PoEs with nullspace filter (POENS) is proposed. This extension makes
it possible to learn multiple prioritized tasks and their hierarchy. Secondary tasks,
which are masked by the resolution of more important tasks, can also be recovered
with this approach. Several distributions and transformations are presented in Section
3.3. They help the practitioner to tackle a wide range of robotic problems. In Section
3.4, two different control strategies compatible with PoEs are presented. Finally, in
Section 3.5, several experiments are presented to compare the proposed models with
other density estimation techniques.

Product of policies This chapter addresses the second part of the research ques-
tion: how to preserve and exploit the information about the structure of the kinematic
chain and the dynamics when learning movement primitives in several task spaces?
The solution proposed in this chapter is to define a Gaussian controller in each task
space. The robot is controlled with the fusion of these controllers, as a product of
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Gaussians. These controllers are optimized such that the distribution of trajectories
executed on the robot is similar to the distribution of demonstrations, compared in
the different task spaces. To achieve that, we propose to use the generative adversarial
framework.

In Sec. 4.1, a method to train MPs in the generative adversarial framework is
presented. In Sec. 4.1.1, the structure of a trajectory is presented as a state space
model, which includes a policy, an observation and a dynamic model. A policy struc-
tured as a product of Gaussian policies defined in different task spaces is presented.
In Sec. 4.1.2, we propose a particular way to compare the distribution of trajecto-
ries executed on the robot and the distribution of demonstrations. The aim is to
increase the stability and reduce the need for demonstrations of the training process.
In Sec. 4.2, we propose a method to treat uncertainties in the dynamic models. Some
parametrization of the Gaussian policies are presented in Sec. 4.3. Finally, in Sec. 4.4,
several experiments are proposed.

Summary and recommendations In this chapter, the main results of this thesis
are summarized. We also propose several open research directions.



Background

This chapter gives an overview of the thesis research background. The first section
2.1 focuses on relevant approaches in learning from demonstrations, presented under
the perspective of probability distributions. In the following sections, more general
knowledge about distributions and robotics is presented. In Sec. 2.2.1, a link between
distributions and cost functions is presented. Then, in Sec. 2.3, various methods
to approximate unnormalized densities are reviewed. These techniques can be used
to approximate products of experts, which are presented in the next section. The
chapter closes on with Sec. 2.5, which gives basic knowledge about robotics.

2.1 Learning from demonstration

In this section, we will review some of the notable works in learning from demon-
strations (LfD) from a statistical perspective.

In LfD, the robot is expected to imitate the expert’s behavior. It is expected
to act similarly under the same conditions and ideally to generalize the behavior
to new situations. To model the problem more formally, the information about the
system (robot and environment) at time ¢ is summarized as the state variable &;.
It can include positions, velocities of some parts of the robot as well as positions
of external objects or users. Often, the state is not directly accessible but only
through a partial and noisy observation y;. The action of the robot u; is chosen
according to a policy function taking into account current and previous observations.
A sequence of actions and observations (or states) is often referred to as a trajectory
T ={y1, U1, ..., yr, ur}.

A natural cost function for LfD [32] should make the distribution of trajectories
p(7) from the robot and the expert match. Before reviewing the different approaches
to achieve this goal, the use of probability distributions needs to be motivated.
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Learning a distribution of trajectories or policies, as opposed to only the optimal
one, can be justified by multiple reasons. In reinforcement learning, it is important
that the agent explores sufficiently to avoid falling into poor local optima [74]. The
exploration can be led by a guiding distribution, which can be initialized by LfD
[74]. This initialization can overcome the typically very long exploration phase [82].
Exploration is also required when the robot has to learn to predict the effect of its
actions, namely a dynamic model. A challenging problem is to perform this task
safely, by avoiding damages. This can be done by imitating search patterns from
human [30] or setting up an optimal control problem to cover a distribution of states
[4]. A similar stochastic search can be found in surveillance and search applications
[8]. Similarly, some manipulation tasks like cleaning, mixing or polishing require
stochasticity.

Distributions are also fundamentals for intention recognition. For example, in
human-robot collaboration, the robot should make sure that its intentions are con-
veyed while performing the task [27]. A formal way to infer the intention given the
observation of trajectories is to apply Bayes rule. It requires to model multiple condi-
tional distributions of trajectories given different goals and their normalizing constant.
Variability in the execution also makes the motion look more human-like. An evident
example is the synthesis of handwriting which should exhibit some variability [25].

Keeping a distribution of solutions is also necessary for adaptation. Adaptation
might be required by the inclusion of new objectives to fulfill, such as impromptu
obstacles. Additional controllers, completing these new objectives, can be combined
with the current solution [17, 92, 101]. Adaptation might also be required by un-
foreseen perturbations, which can be provided by the use of trajectory planning or
optimal control. Those techniques benefit from a library of good and diversified initial
guesses [72]. This library can be stored as a conditional distribution of trajectories
or policies.

2.1.1 From static distributions to trajectories

In LfD, many methods model trajectories by using static probability distributions
of observations y; with an additional dependence to a phase variable. We critically
review these methods by outlining two problems which result in distortions at the
final level of the trajectories.

The first problem arises from the way the dynamic features or dependence to
time is introduced. In [17], a time-conditioned distribution of observations is learned
using Gaussian mixture regression (GMR). In order to treat unaligned, partial and
cyclic demonstrations, the use of hidden semi-Markov models (HSMM) was proposed
in [16, 18]. HSMM can encapsulate precisely position and timing information about
motions. In [92] motion is induced by a time-dependent basis matrix.

A common point of these techniques is that the true temporal dependencies (in-
duced by the dynamics of the system) are not taken into account at the learning phase,
but only introduced at the synthesis stage. For example, HSMM assumes that two
consecutive observations are independent given the discrete latent state. In [16], dy-
namic consistency is only re-introduced later using linear quadratic tracking (LQT).
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From a statistical point of view, this problem can be explained in several ways. It can
be interpreted as dropping important dependencies at learning and introducing them
back at synthesis. Alternatively, it can be interpreted as not considering a properly
normalized density on the space of trajectories 7.

This problem was already raised in the context of parametric speech synthesis
[126]. For hidden Markov models, the solution is given by explicitly imposing a
dynamic relation [125]. In robotic, the equivalent of this dynamic constraint is the
dynamic model, which is often not known and stochastic.

The second problem of these approaches is the handling of the multiple task
spaces in which the statistical models are learned. Because of redundancies and
non-linearities, movements are often difficult to understand directly in joint space.
LfD approaches often learn models in different tasks spaces, which are task-relevant
transformations of the joint space. Position and orientations of different parts of
the robot are typically used. Less common features like manipulability measures
[104] can also be considered as task spaces. Several approaches encode motions in
several coordinate systems attached to objects of interest [16, 81, 86]. The idea is
to provide an adaptation to the motions of these objects by adopting an object-
centric representation. The problem of these LfD approaches is that the different
task spaces are considered independently at the learning stage and their dependence
only restored when synthesizing trajectories, in the same way that it is done for the
dynamic consistency. Several works that encode motion in multiple task spaces and
joint spaces are reviewed here.

In [17], objectives from multiple task spaces and configuration space are consid-
ered. Multiple time-dependent Gaussian distributions of end-effector positions and
joint angles are learned separately, with an assumption of independence. These com-
peting objectives are only combined at the control stage, by exploiting a product
of Gaussians in the velocity space. In [16], multiple Gaussian models of motion are
learned independently in different task spaces. Using properties of linear transfor-
mations and product of Gaussians, the different models are combined in closed-form
before synthesizing sequences. In [124], this approach is extended to the encoding of
orientation in multiple coordinate systems. In [92], the authors propose a combination
of multiple Gaussian distributions of trajectories (ProMP). The different models are
also defined both in configuration space and in different task spaces but are learned
separately. They are then only combined at the controller level, as different acceler-
ation commands.

Similarly, in [111], the authors proposed to fuse multiple independent Gaussian
models in different task spaces and configuration space as a product of Gaussians.
The fusion is approximated locally using a linearization of the forward kinematics.
The authors also propose to learn a hierarchy of tasks using linear transformations
with nullspace filters. Their approach is however limited to velocity commands and
tasks where the target is known. The method that we present in Sec. 3.2 can cope
with samples of static configurations g, which requires more advanced tools to take
into account the non-linearities. The different tasks do not need to be known before
and our method can uncover auxiliary tasks that are masked by primary ones.

In [86], segments of trajectories are analyzed in different coordinate systems, simi-
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larly to [16]. A unique coordinate system is then selected for each segment, by looking
at the similarity between end-points. The idea of selecting relevant task spaces is ex-
plored in several other works. In [81], the demonstrations are projected in a set of
task spaces. Different criteria, such as the variance of the data and saliency, are used.

In [77], the variance of several distributions learned separately is mapped to
weights modulating the task prioritizations. The variances are learned from several
demonstrations as in [17].

A common point of these works is that the different models are learned indepen-
dently and their prioritization or importance is related to their variance. Indeed,
secondary tasks do exhibit a higher variance but the experiments confirm the neces-
sity to distinguish between the variance and the prioritization. In the experiments
in Sec. 3.5, we show that competing tasks can be understood only if the models are
trained jointly, especially to understand the characteristics of secondary tasks.

Distributions outside LfD Outside LfD, learning distributions of robot configu-
rations is also a topic of interest for sampling-based path planning [5]. Sampling-based
path planning methods require to sample valid configurations (e.g. collision-free) and
to connect them to create paths. Randomly sampling the configuration space and
keeping valid samples is not efficient because of a possible low acceptance rate. Some
works focus on learning the distribution to sample from. In [56], conditional distribu-
tions are learned using a conditional variational autoencoder [113]. The distribution
is conditioned on some external factors, such as an obstacle occupancy grid, to pro-
vide adaptation. In [71], the authors use a similar approach with a Gaussian mixture
model learned from previous collision-free configurations.

2.1.2 Conditional models

A very generic approach for LfD and more generally for imitation learning is
model-free behavioral cloning. In the statistical case, the training is reduced to learn
the conditional distribution p(wu,|y;) in a supervised manner given pairs of control
command and observations. This conditional distribution is called the policy and is
often denoted g (u|y;). It can be learned with several techniques, such as locally
weighted regression (LWR) [7], locally weighted projection regression (LWPR) [116],
neural networks [28] or GMR [63]. Despite its apparent simplicity and generality, this
method has one major drawback, which prevents its wider use in robotics: policies
trained by behavioral cloning are known to be very brittle. Due to modelling errors,
perturbations or different initial conditions, executing such a policy can quickly lead
the robot far from the distribution of states visited during the supervised learning
phase. This problem is often referred to as distributional shift [103]. When applied
in a real system, the actions can therefore be dangerous and lead to catastrophic
outcomes.

Several works have tackled the distributional shift problem in the general case. In
[103], the authors used a combination of an expert and a learner policy. In [69], per-
turbations are added in order to force the expert to demonstrate recovery strategies,
resulting in a more robust policy.
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A subset of these approaches focuses on learning manipulation tasks from a small
set of demonstrations [50, 63, 91]. In order to guarantee safe actions, these techniques
typically impose specific constraints on the policy, by introducing time-dependence
structures or by developing hybrid, less general approaches.

More closely related to the manipulation tasks considered in this thesis, Khansari-
Zadeh et al. have used GMR to learn a policy of the form & = f(x) [63]. They used
conditional distributions p(&|z) in a joint model of p(x, &) represented as a Gaussian
mixture model (GMM). A structure was imposed on the parameters to guarantee
asymptotic convergence but limits the variety of tasks that can be learned.

Dynamical movement primitives (DMP) is a popular approach that combines a
stable controller (spring-damper system) with non-linear forcing terms decaying over
time through the use of a phase variable, ensuring convergence at the end of the
motion [110]. A similar approach is used in [50] where the non-linear part is encoded
using conditional distributions in GMM. Due to their underlying time dependence,
these approaches are often limited to either point-to-point or cyclic motions of a
known period, with limited temporal and spatial robustness to perturbations.

If a reward function for the task is accessible, an interesting alternative is to
combine the proposed policy imitation strategy with reinforcement learning [82, 99],
where the imitation loss can reduce the exploration phase while the reinforcement
learning overcomes the limits of imitation.

In some classifications of techniques [88], methods encoding distribution of trajec-
tories like [17, 92] are seen as behavioral cloning. In their case, the mapping is from a
context variable to whole trajectories. The problem, which we have already pointed
out in the previous section, is that the resulting trajectories might not be feasible.
The system is referred to as being underactuated. Also, reintroducing dynamical
consistency before synthesis often introduces distortions.

Besides stability issues, two other problems limit the usage of supervised behav-
ioral cloning. First, the control command may not be observed. For example, for
kinesthetic teaching, where the human user demonstrates the tasks by directly ma-
nipulating the robot, the torques command of the robot cannot be measured. They
could be if teleoperation were used. Another example arises when a robot needs to
imitate by observing a human or another robot. In this case, internal actions like
forces are not accessible. A second problem, that arises also in the same context
is known as the correspondence problem [11]. The kinematics and dynamics of the
system on which the demonstrations are performed may not match those from the
learner.

2.1.3 Model-based behavioral cloning

Many of the problems of model-free behavioral cloning techniques are addressed
by their model-based alternatives. However, they are more complex to set up, because
of the need to learn a dynamics model and their computational complexity. In [45],
the dynamic model is learned with GMR. This model is used to match observation
sequences from a learner and a teacher with different dynamics. It allows learning
stable whole-body motions of a humanoid robot [44]. In [32], the dynamic model
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is learned using Gaussian processes (GP). Following [21], the distribution of states
is approximated as factorized Gaussians using moment matching. The policy is op-
timized to minimize the KL divergence between the distribution of demonstrations
and the predicted distribution of trajectories. This method offers a more rigorous ap-
proach to imitate distributions of trajectories as compared to hidden Markov models
or GMR models presented in the previous section. The cost of matching trajectories
also produces more robust policies than the model-free supervised learning cost. This
would be shown in an experiment in Sec. 4.4.2.

In [3], target trajectories from helicopter aerobatics maneuverers are inferred from
a set of demonstrations. They are then reproduced by iteratively running an LQR-
based controller and refining the dynamics model. A similar approach is used in [115]
to imitate surgical tasks. However, in both of these works, only an optimal policy
is retrieved and the variability of the demonstrated trajectories is lost. Also, the
system cannot generalize to new situations and only reproduce fixed trajectories. An
extension of this approach is proposed in [16] to reproduce trajectories in multiple
coordinate systems attached to objects of interests.

2.1.4 Inverse optimal control/inverse reinforcement learning

In inverse optimal control (IOC) or inverse reinforcement learning (IRL), the robot
is trying to infer the cost function minimized by the behavior of the demonstrator. The
cost function is known to be a more succinct, robust and transferable representation
of the task than the policy [2]. This has two major implications. First, it is easier to
transfer skills across systems, for example, if a robot should learn a task by observing
a human performing it. Secondly, it provides better generalization and adaptation
capabilities to varying situations. This approach has however several drawbacks. The
main one, pointed out in [85], is that the policy demonstrated can be optimal for many
cost functions, thus providing an ambiguity. Different approaches tackle this problem.
Maximum entropy inverse reinforcement learning is proposed in [128]. Tt frames the
problem as a maximum likelihood estimation of an intractable (unnormalized) density
over trajectories T

po(T) x exp(—ce(T)), (2.1)

where cg is the cost function. The normalizing constant is said to be intractable if
the integral has no known or easy form. This approach has been applied to robotics
where the cost is parametrized with a neural network [35]. These techniques are
computationally expensive. They rely on complex approximation methods to compute
an estimate of the gradient of the unnormalized density function. This approximation,
which has to be done at each step of gradient descent of the parameters of the cost,
corresponds to solving a maximum entropy (direct) reinforcement learning problem.
In the same way that the generative models presented in Sec. 2.1.1, maximum entropy
IOC learns a distribution over trajectories. However, the normalization is done on
the space of dynamically consistent trajectories (given the system dynamics), which
ensures that the true space is considered.
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In robotics, IOC was also applied in [61]. However, their approach is limited to
learning a weight vector of different cost features (joint limits, manipulability measure,
elbow position). In [59], the cost is also learned on a feature vector of the proposed
task spaces. Sparsity is ensured using L; regularization which allows retrieving and
selecting important task spaces. These two latter approaches formulate the problem
as inferring a cost that acts on different task spaces. The relation between the different
task spaces and the dependencies between the different tasks are thus better taken
into account than in the probabilistic models presented in Sec. 2.1.1.

2.2 Probability distributions

In this section, we first give an overview of different approaches to learn probability
distributions. Then, we discuss several techniques coming from Bayesian statistics to
approximate unnormalized densities.

2.2.1 Learning probability distributions

Estimating probability density functions have been for long a major field in statis-
tics and machine learning. Estimating complex densities using a sum of simpler den-
sities has been proposed with kernels in [93] or mixture models in [22]. Unfortunately,
these techniques can be very inefficient in high-dimensional spaces, such as the con-
figuration of a robot. With the rising popularity of neural networks, deep generative
models have been used to learn distributions of higher dimensions, such as images.
Restricted Boltzmann machine [53] and deep Boltzmann machine [105] are popular
models. Like products of experts (PoE), proposed in [52], these models are trained by
maximizing an intractable likelihood function. Several approximations are necessary
to compute the gradient of the log-likelihood.

These complex approximations motivated the development of various models that
do not represent the likelihood but allow sampling from the distribution like genera-
tive networks [9], generative adversarial nets (GAN) [41] and variational autoencoders
(VAE) [66]. Unlike previous techniques, they do not require approximations when
computing the gradient of the cost to optimize. However, once the model is trained,
computing the likelihood is either impossible or requires approximations. These gen-
erative machines have been very popular recently and are used to learn complex,
high-dimensional distributions from huge datasets.

2.2.2 Energy-based models

In energy-based models [70], the density is modeled with an energy value Ey(x)

po(x) = %exp(—Eg(w)). (2.2)

Training this model by maximizing the likelihood of the data is challenging [52] be-
cause of the intractable normalizing constant. This process is detailed in Sec. 3.1.3.
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Figure 2-1: Top: A 2-DoF planar robot constraint used as an illustrative energy
model in this section. The energy is defined on the joint angles and corresponds to the
quadratic distance between the end-effector and the orange horizontal line. Multiple
samples from this model are displayed. Bottom: On left, the samples are reported
in joint space. The density of the energy model is evaluated on a grid and displayed
as a colormap. The approximations discussed in this section and their corresponding
samples are displayed on the right.

Maximum likelihood estimation is normally done with gradient descent. Estimat-
ing the gradient of the normalizing constant requires to sample from py(a) which is
already a hard problem. Moreover, the sampling has to be done for each step of
gradient descent while the parameters 6 are continuously changing.

As presented above, maximum entropy inverse optimal control [128] is an energy-
based model, where the energy is given by the cost function.

2.3 Approximating distributions

Approximation methods are required to work with unnormalized densities. An
adequate approximation method should enable several elements: we should be able
to draw samples from it, estimate the normalizing constant and its gradient with re-
spect to the model parameters, and also identify the modes of the distribution. Such
methods are found in Bayesian statistics, where the same problem of approximat-
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ing an unnormalized density is faced. Indeed, in Bayesian statistics, the posterior
distribution of model parameters

p(8]z) o< p(x|0)p(0), (2.3)

is the unnormalized product of a prior distribution p(@) and a likelihood p(x|@). The
posterior has a closed-form expression only in the case where conjugate priors are
used. In this case, the posterior is of the same family as the prior. However, choosing
conjugate priors massively restrains modeling choices.

In the following section, we would refer to the unnormalized density as p(x). The
different approximation methods are illustrated in Fig. 2-1 on a robotic example.

2.3.1 Laplace approximation

One of the simplest method to approximate unnormalized density is the Laplace
approximation. It relies on Taylor’s theorem to perform a second-order expansion on
the mode of the unnormalized log-density. The procedure to compute this approxi-
mation is simple. First, the mode of the unnormalized density has to be found, for
example with gradient descent techniques. Then the curvature of the unnormalized
density has to be estimated at the mode. The gradient vanishing at the mode, the
unnormalized log-density is approximated as

~ _ 1
log p(x) =~ log p(xo) + §(ac —xo) H(x)(x — x0). (2.4)
The distribution is approximated as a Gaussian distribution with the same curvature
N(a}‘fl}o,H(wo)il). (25)

This approximation is only valid locally and is poor if the unnormalized density has
a complex shape or is multimodal, as shown in Fig. 2-1.

The Laplace approximation is used in robotics to approximate distributions of
optimal control trajectories [73, 74]. This distribution is used to guide a policy search
exploration or to approximate the gradient of the normalizing constant for IOC in

[35).

2.3.2 Makov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a class of methods to approximate p(x)
with samples. If MCMC methods can represent arbitrary complex distributions, they
suffer from some limitations.

For example, they are known not to scale well to high-dimensional spaces, which
is particularly constraining for our application. A lot of samples are required to cover
high-dimensional distributions.

The key component of many MCMC methods is the definition of a proposal move,
which makes the random walker (chain) more likely to visit areas of high probabili-
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ties. The design of this proposal move is algorithmically restrictive because it needs
to ensure that the distribution of samples at equilibrium is proportional to the unnor-
malized density. Furthermore, it is difficult to obtain good acceptance rates in high
dimension, especially with very correlated p(x), as shown in Fig. 2-1.

By representing the distribution only through samples, it is also difficult to assess
if this latter is well covered. A huge part of the space and distant modes might
remain undiscovered. It is also difficult to know the granularity of the approximated
distribution.

Except for some particular approaches, such as [20], MCMC methods require an
exact evaluation of p(x). On the contrary, stochastic variational inference (SVI),
presented in the next section, only requires a stochastic estimate of the gradient of
logp(x). There are many advantages to this unconstraining requirement. Experts
transformations that are too costly to compute exactly can be approximated. If the
PoE is conditional, batches of conditional values can be used. Also, the gradient can
be redefined such as a hierarchy between the task is set up, as presented in Sec. 3.2.

Finally, MCMC methods struggle with multimodal distributions. Chains are un-
likely to cross large regions of small density. If multiple chains are run in parallel,
the respective mass of each mode is difficult to estimate. A proper approach of this
problem is to design particular proposal steps to move between distant modes, as
proposed in [112], which is algorithmically restrictive.

2.3.3 Variational inference

Variational inference (VI) [118] is another popular class of methods that recasts the
approximation problem as an optimization. VI approximates the target density p(x)
with a tractable density ¢(x; A) called the variational density. X\ are the variational
parameters and are subject to optimization. A density is called tractable if drawing
samples from it is easy and that the density is properly normalized. VI tries to
minimize the intractable KL-divergence between the renormalized density p(x) and
the variational density G(x; A)

Draill) = [ i X tog q;w(;?)dw. (2.6)

Given that p(x) = p(a)/C where C is the normalizing constant, we can rewrite the
previous divergence as

Dra(illp) = [ dta: N tog @;‘f;? Iz + 10gC, 27)
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which can be evaluated up to a constant and minimized. The first term is the negative
evidence lower bound (ELBO). This term can be estimated by sampling as

Y N (C T, Y
ﬁ(/\)—/zq( ; A) log @) dz, (2.8)
=E~[logq~(w'>\)—1ogﬁ( ik (2.9)

—Z log §(®™); X) —log p(z™)), (2.10)

where N is the number of samples. The reparametrization trick proposed in [106] and
[100] allows a noisy estimate of the gradient £(A) to be computed. It is compatible
with stochastic gradient optimization like Adam [65]. For example, if ¢ is Gaussian,
this is done by sampling ™ ~ N(0, I) and applying the continuous transformation
™ = p+ Ln™, where ¥ = LL" is the covariance matrix. L and g are the
variational parameters A. More complex mappings as normalizing flows can be used
as in [102].

Zero forcing properties of minimizing Dk, (q||p)

It is important to note that due to the objective Dky(G||p), ¢ is said to be zero
forcing. If ¢ is not expressive enough to approximate p, it would miss some mass of
p rather than giving a high probability to locations where there is no mass.

Mixture model variational distribution

For computational efficiency, the variational density G(a; A) is often chosen as a
factorized distribution, using the mean-field approximation [118]. Correlated distri-
butions can be approximated by a Gaussian distribution with full covariance [87].
These approaches fail to capture the multimodality and arbitrary complexity of p(x).
The idea to use a mixture for greater expressiveness as approximate distribution was
initially proposed in [14], with a recent renewal of popularity [6, 47, 80].

A mixture model is built by summing the probability of K mixture components

where 7, is the total mass of component k. The components g, can be of any family
accepting a continuous and invertible mapping between A and the samples. The
discrete sampling of the mixture components according to m; has no such mapping.
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Figure 2-2: Variational approximation of an unnormalized density with mixture
models. The density shown in (a) results from an elongated Gaussian defined on the
end-effector of a 2-DoF planar robot. The density is approximated by a tractable
distribution, as a mixture of banana-shaped distributions (b) or Gaussians (b). On
purpose, only 5 mixture components were used in the illustrations to better highlight
the differences. A more precise approximation can be achieved with a higher number.

Instead, the variational objective can be rewritten as

L(A) = Egllog q(x; A) — log p()], (2.12)
=) mEg[logd(z; X) — logp(x)], (2.13)

meaning that we need to compute and get the derivatives of expectations only under
each component distribution gy (x|Ay).

Mixture components distributions

Gaussian components with full covariance matrix are a natural choice for robotics,
due to the quadratic form of its log-likelihood. It can be exploited in standard robotics
approaches like linear quadratic tracking (LQR) or inverse kinematics (IK). For some
situations, where p(x) is very correlated, we propose to use “banana-shaped” distribu-
tion [48], which is done by applying the following differentiable mapping to Gaussian
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samples n™ ~ N (0, I),
n n 2
A T
(n)
z
fr(pr + Ln(")) = fm<z(n)) = 1 : (2.14)
Na
This mapping can be applied along different parametrized directions. As illustrated
in Fig. 2-2 (b), we get a Gaussian with full covariance, where K is a supplementary
variational parameter encoding curvature.

2.4 Product of experts

Products of experts have been proposed in [51] as an alternative to mixture models
to compensate for their poor efficiency in high-dimensional space. The combination
of the distributions (called experts) is done by a product instead of a summation,
which provides much sharper distributions. If computing the normalizing constant
of a sum of distributions is straightforward, the major problem with PoEs, being
energy-based models, is to compute this quantity and its derivative, which requires
approximate methods. Sampling from a PoE is also much more difficult than from a
mixture model.

Many works have used the term ”product of experts” to express the fusion of
several models. Many of them are also not considering the joint training of the models
as originally proposed in [52]. For example, two long short-term memory (LSTM)
are combined in [60] to generate jazz melodies. In robotics, the fusion of multiple
sources of data (e.g. sensors) was expressed as a PoE in [97], for the localization
of mobile robots and obstacle avoidance. In [16], the fusion of trajectory models
learned independently in multiple coordinate systems is also referred to as a product
of Gaussians (PoG).

Jointly training the experts, as proposed in [52], has been used in several ap-
plications. In robotics, a product of contact models is proposed in [67] to predict
the motion of manipulated objects. In speech processing, PoEs have been used for
vowel classification in [24]. In [126], speech sequences are modeled using a product
of multiple acoustic models. These acoustic models consist of transformations, both
linear (discrete cosine transform, summation) and non-linear (quadratic), and vari-
ous distributions, such as Gaussian, Gamma or log-Gaussian. The authors claim that
distortions of the generated speech are often due to the different acoustic models be-
ing learned separately and only combined later, at the synthesis stage. The authors
proposed to use the PoE framework, enabling the training of multiple acoustic mod-
els cooperatively. Our claim is that, for robotics applications, learning the different
models separately and combining them later, also induce heavy distortions. Many
works learn different models (in configuration space, in task space, manipulability
measures, ...) separately and only combine them at the control stage. In Chapter 3,
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we show the advantages of learning these models collaboratively in a way that the
dependencies between the different features are kept and the kinematic structure of
the robot taken into account.

2.4.1 Product of Gaussians

In the general case, the renormalized product p(x) has no closed-form expression.
A notable exception is Gaussian experts with linear transformations. In this case, the
product p(x) is Gaussian. Many techniques such as Kalman filter or linear quadratic
tracker (LQT) [62] can be reformulated as a product of Gaussians (PoG) under linear
transformations [16]. Another application of PoGs is to fuse trajectories encoded in
several coordinate systems to provide adaptation to moving objects [16].

We recall here the main relations to compute the product of linearly transformed
Gaussians. These results will be useful in Chapter 4 to fuse multiple controllers
in an efficient and differentiable manner. The Gaussian distribution can also be
parametrized with 1 and A as

N(p, ) =N, (n,A) with A=%""n=Ap. (2.15)

This parametrization facilitates the notations and prevents the use of pseudo-inverse,
both in the equations and software implementations. A first well-known result, ob-
tained by the properties of expectation, is that linear transformation of Gaussian
random variable are Gaussian. If the variable x is Gaussian * ~ N(u,X) and
z = Cx + c, then z is Gaussian

z~N(Cp+¢,CECT). (2.16)

Depending on the rank of C| this distribution might be degenerated (the covariance
matrix has eigenvalues equals to zero).

We now consider the case where we observe & trough a linear transformation as
z = Cz+c. We know that z is distributed as a Gaussian z ~ N, (n, A) and we would
like to infer the distribution of . By explicitly inverting the linear transformation
we get

Cz +c~N,(n,A), (2.17)
x ~N(C'(A™'n—c),C'ECT), (2.18)

where - denotes the pseudo-inverse. In the case where C' is not invertible, the other
parametrization can be used to cancel out the pseudo-inverse

x ~ N, (CTACCH(A™'n —¢c),C"AC), (2.19)
x~ Ny (C'(n—Ac),CTAC). (2.20)
In this case, the Gaussian can also be degenerate with eigenvalues of the precision

matrix equals to zero. For example, if & are joint velocities of a redundant manip-
ulator, z linear and angular velocities of the end-effector and C' the Jacobian, the
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Figure 2-3: Example of task spaces. Left: Position and orientation of the end-
effector in the global coordinate system. Center: Position and orientation of the
end-effector in a coordinate system attached to an object of interest. Right: Distance
to an object.

distribution of joint velocities would have a free axis. This distribution will only be
valid if fused as a PoG with a regularizing distribution of joint velocities.

The fusion has a simple expression with the alternative parametrization [121]

P P P
Nﬂ<m‘ZnP’ZAP> X HNn(w“?vap)‘ (2.21)
p=1 p=1 p=1

However, the result is easier to interpret with the standard parametrization as the
mean of the product becomes a weighted sum of the means

P 1 P P 1 P
(ZE;1> Zzglﬂp = (ZAP> ZApra (2.22)
p=1 p=1 p=1 p=1

where the weights are given by the precision matrices.

2.5 Robot kinematics and dynamics

The dg-dimensional state of a fixed-base robotic manipulator is defined by its
joint angles gq. The poses and movements are often best explained in several task
spaces. In this thesis, task spaces are not limited to the position and orientation of
the end-effector; they are defined as a set of P non-linear functions 7, . Rde — R¥.
Accordingly, a set of linear functions maps control command u (Jomt velocities or
acceleration) to the different task spaces Tup R — R¥. In case of torques, the
inverse of this transformation is defined 7, ) : RFe — R% . These transformations
can be parametrized; for example, the pose of the end-effector is often computed in

multiple coordinate systems [16, 81, 86]. Various relevant task spaces are presented
in Sec. 3.3.1.
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We denote x,, the value in task space p with
x, = T,(q), (2.23)

and J, = 97,/0q its Jacobian. The velocity &, and acceleration &, in task space p
are given by the differential relationship as

&, = Jy(q)4, (2.24)
&, = Jp(q)q + jp(Q)q (2.25)

The relation between the joint torque 7 and the generalized force f), is given as
J,(q)f,=T. (2.26)

The desired control commands are often defined in the task spaces and the previous
relations inverted to get the corresponding joint angle commands. If the manipulator
is redundant, the solutions exist and are given as

q = Ji @)z, + (I - J}(a)J,(q)) &, (2.27)
G = Ji(a)(&, — Jp(a)d) + (I — T}(a)T,(q)) &5, (2.28)

where x; and &; are additional commands coming from the resolution of other ob-
jectives. The matrix (I — J}(q)J,(q)) projects the additional commands onto the
nullspace of J,, making sure that these commands do not interfere with the primary
one.

The equation of motions of a manipulator is given as

M(q)g¢ + C(q,q) +g(q) = T, (2.29)

where M(q) is the inertia matrix, C(q, q) the Coriolis vector and g(q) the gravity
vector. Using inverse dynamics equations, the torque vector achieving the desired
joint angle accelerations can be computed. To compensate for perturbations and
imperfect models, feedback controllers are commonly used [84].



Product of task-space experts

This chapter addresses the first part of the research question: how to preserve
and exploit the information about the structure of the kinematic chain when learning
distributions in several task spaces? The solution proposed in this thesis is to learn
distributions of robot configurations p(q) as a combination of distributions defined
in several task spaces. To achieve that, product of experts (PoE) are proposed as
a consistent framework to learn p(q). In order to provide adaptation to external
parameters s, such as position and orientation of objects, we also consider conditional
distributions p(q|s).

As acquiring data by manipulating the robot is often costly, we focus on problems
where only small datasets are provided and in which generalization capabilities with
respect to the external parameters s are important. In contrast, many of the current
works in machine learning rely on big datasets. It enables complex distributions to
be learned with little or no prior knowledge about the structure of the data. Our
approach aims to exploit at best the existing robotic knowledge, while keeping the
possibility to learn more complex distributions. Following Occam’s razor principle,
our approach aims to find simple explanations for complex distributions. We show
that simpler explanations not only lead to more interpretable models but also increase
the generalization capabilities and reduce the need for data.

In robotics, these explanations often correspond to task spaces providing distri-
butions of simpler shapes. For example, a Gaussian distribution of the end-effector
might result in a very complex distribution of joint angle configurations, as shown
in Fig. 3-2. The configuration q is often not of primary interest; poses in different
task spaces, distances to objects, pointing directions or bimanual correlations are
often more important. Hence, many approaches in LfD only learn distributions of
these transformed quantities. These distributions are often learned independently
and combined only at the control level. In this chapter, we show that this approach
has several drawbacks. First, it is unaware of the kinematic structure of the robot
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demonstrations interaction

Figure 3-1: Product of experts can be used to set up virtual guides on robotic
manipulators. A user demonstrates kinesthetically several configurations fulfilling
the task objectives (left). In this example, the end-effector of the robot should stay
close to a horizontal plane, while pointing to a desired target. The objectives are
then inferred by the robot as target distributions under several transformations (task
spaces). By exploiting the torque control capabilities of recent robots, the different
objectives are tracked. Using an optimal control strategy, feedback gains can be com-
puted according to the precision of the different objectives. As a resulting behavior,
the robot is free to move along directions that are not constrained by the objectives
(center), while preventing deviations from the objectives (right).

and of the limited range of values that can be reached within each task space. It re-
sults in a confusion between the characteristics of the task and the capabilities of the
robot. Secondly, when distributions under several task spaces are learned indepen-
dently, the relation between them is ignored. It then becomes impossible to properly
understand each task and the required precision. Moreover, when some tasks are
prioritized, secondary objectives can only be recovered if the dependencies between
the task spaces are considered. They are indeed masked by the resolution of the tasks
of higher importance.

The main contribution of this chapter is to apply the products of experts (PoE)
approach in [51] to robotics. This approach can combine the interpretability, com-
pactness and precision of task-space distributions with the kinematic awareness of
the configuration space. Particularly, the main detailed contributions are:

1. Training PoEs (Section 3.1) an approach to train PoEs using variational
inference, better suited to the targeted robotic applications than the original
approach from [52].

2. PoE with prioritizations (Section 3.2) a novel technique that leverages
the PoE formulation in combination with null space operators to learn task
priorities from demonstrations with minimal prior knowledge compared to the
state-of-the-art (e.g. no need to know task references a priori, recover secondary
masked tasks).

3. New perspectives for PoEs in robotics (Section 3.3, 3.4) an extensive
formulation of experts describing various relevant manipulation skills in robotics
(e.g. position/orientation/joint space/manipulability, movement primitives, er-
godic control, prioritization) whose fusion can be harmoniously learned using
our approach.
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4. Experiments (Section 3.5) a detailed analysis of the proposed approach,
highlighting the capabilities of learning from few data as well as the ability to
learn an arbitrary number of prioritized tasks.

Organization of the chapter In Sec. 3.1.3, PoEs are formally presented and the
practical implications of the normalization constant for robotics are discussed. In
the second part of the section, a method to train PoEs using variational inference is
proposed. In Sec. 3.2, we propose an extension of PoEs with nullspace filter (PoENS).
Classical nullspace approaches for inverse kinematic are first presented. Then, this
approach is used to redefine the derivative of the log-likelihood of the PoE such as to
induce a hierarchy. Several distributions and task spaces are presented in Sec. 3.3.
They help the practitioner to tackle a wide range of robotic problems. In Sec. 3.4,
two different control strategies compatible with PoEs are then presented (Fig. 3-1
illustrates one of them). Finally, in Sec. 3.5, several experiments are presented to
compare the proposed models with other density estimation techniques.

3.1 Product of task-space experts

Products of experts, proposed in [51], are models in which several densities p,,
(which are called experts) are multiplied together and the product renormalized. Each
expert can be defined on a different view or transformation of the data 7,,(q), and
the resulting density expressed as

I L.rn(T.(q) 16,)
R ACI) (3.1)

For compactness, we will later refer to the unnormalized product as

#(a) = [ [ pm(Tru(@) 16), (32)

p(qlO4,...,0\)

where we drop the parameters of the experts 01, ...,0,, in the notation. In robotics,
the transformations 7, (q) correspond to different task spaces. They can either be
given, such as the forward kinematics of a known manipulator, or parametrized (sub-
ject to estimation). Several task spaces that can be used in robotic problems are
presented in Sec. 3.3.1.

As an example, g can be the configuration of a humanoid (joint angles and a
floating base 6-DoF transformation). The different task spaces can consist of the
forward kinematics of several links, like the feet and the hands. The densities of
the corresponding experts can be multivariate Gaussian distributions, defining where
these links should be located.

This way of combining distributions is very different from more traditional mixture
models. In mixture models, each distribution is in configuration space, which can be
of high dimensions (> 30) for humanoids. Many components and a laborious tuning
are necessary to cover this space. Often, the distribution is also very sharp, creating
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Figure 3-2: Product of experts can learn complex distributions of joint angles as a
fusion of simple distributions within several task spaces. (a) 30 samples of the config-
uration of a 2-DoF planar robot are displayed. The end-effector follows an elongated
Gaussian distribution. The distribution in configuration space has a more complex
shape, which it is difficult to represent. (b) With our approach, we learn configuration-
space distributions as a product of simple densities in different task spaces. It is thus
possible to represent this sharp distribution easily with few parameters. (c¢) A stan-
dard approach like a Gaussian mixture model, directly applied in configuration space,
needs much more samples and parameters to represent this distribution. Following
Occam’s razor principle, finding simpler explanations (fewer parameters of the model)
to understand complex dataset leads to better generalization.



36

CHAPTER 3. PRODUCT OF TASK-SPACE EXPERTS

a low-dimensional manifold in a higher-dimensional space, as illustrated in Fig. 3-2.
These sharp distributions are hard to be represented with mixtures, even in low-
dimensional spaces. In PoEs, each expert can constrain a subset of the dimensions or
a particular transformation of the configuration space. The product is the intersection
of all these constraints, which can be very sharp. It has far fewer parameters to train
than a mixture. A PoE density is also smoother than a mixture, which is by definition
multimodal. This feature is particularly beneficial for applications in control, as it
will be presented in Sec. 3.4. Moreover, if the model needs to encode time-varying
configurations, it can easily be extended to a mixture of PoEs. Great flexibility is then
allowed to set up such model; some experts can be shared among mixture components
to encode global constraints (preferred posture, static equilibrium), while some others
can have different parameters for each mixture component.

3.1.1 Importance and implications of the normalization con-
stant

The renormalization is an important aspect that distinguishes this approach from
the ones in which the models are learned independently. In these approaches, the
recorded data is first transformed into the quantities of interest 7, (q), or directly
recorded in this form. Then, either the different quantities are stacked to learn one
model, or different models on the different quantities are trained separately. In the
latter case, the models are combined at the control level. This approach corresponds
to a PoE in which the normalization constant has been dropped. The renormaliza-
tion might seem to be a mathematical preoccupation, but it has several practical
implications.

e Renormalizing the product allows some experts to give constant probabilities
to all configurations. If the normalization was done experts-wise, this would
imply close to zero probability everywhere, and result in a very low likelihood.
Experts which do not influence the product can be dropped without penaliz-
ing the overall likelihood. Hence, explaining the data with sparse models (a
small number of experts) is possible. It often leads to better generalization. In
Sec. 3.5.1, an experiment is presented in which the model should distinguish
between a configuration-space or a task-space target distribution.

e When using a mixture of PoEs, as in [16], not considering the renormalization
further reduces generalizations capabilities. It prevents mixture components to
identify patterns appearing only in a subset of the task spaces, which would
have been sufficient to explain the full configuration. Instead, the mixture
components are allocated such that the representation is compact under each
transformation, preventing good generalization capability.

e The proper support (set of possible values that 7, (q) can take) of each expert
distribution is taken into account. Renormalizing on g makes sure that the
support considered by each expert is defined by the set of possible configurations
and its transformation in the different task spaces. For example, let us consider
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an expert as a non-degenerate multivariate Gaussian defining the position of
the end-effector of a fixed manipulator. The support of a Gaussian defining a
task-space objective is normally R®. By using a PoE, which takes into account
q and the forward kinematics transformation, the support turns into the actual
workspace of the robot.

When training the model, it means that the high probability regions of each
expert are not necessarily where the data is. With a proper support, the model
is trained such that the transformed data is in a region of higher probability
than the remaining values that it can take. Practically, it means that the
model can clearly distinguish between the targeted task, represented by the
PoE, and the kinematic capability of the robot. The importance of the support
is best noticed when transferring models between robots with different kinematic
chains, or when tasks should be uncovered and grasped even if their realization
is prevented by kinematic constraints.

e The realization of tasks is sometimes prevented by complementary or compet-
itive objectives. In Sec. 3.2, an extension to PoE is presented to admit strict
hierarchies between the tasks. As with kinematic constraints, considering the
proper support and renormalization allows recovering the masked tasks. This
possibility will be illustrated by several experiments in Sec. 3.5.2, also shown in
Fig. 3-11.

e The use of unnormalized expert densities is enabled. Especially for orientation
statistics, some interesting distributions have intractable normalizing constant,
which sometimes dissuade their use. In a PoE, these distributions can be used
with no overhead, as the normalization only occurs at the level of the product.
Also, the normalization constant is typically easier to compute on joint angles
than on orientation manifolds. An experiment is presented in Sec. 3.5.4 in which
a joint distribution of positions and rotation matrices is learned.

When the experts are learned independently, nothing ensures that the PoE matches
the data distribution. It only becomes similar in some particular cases. For example,
when the demonstrated data has an important variance under all-but-one task spaces.
Moreover, no kinematic constraint should prevent the resolution of the task (e.g., a
task-space target distribution with all its mass inside the robot workspace).

3.1.2 Estimating PoEs

In the general case, the renormalized product p(q) has no closed-form expression.
A notable exception is Gaussian experts with linear transformations. In our case, this
is of limited interest, due to the nonlinearities of the task spaces we are considering.

Approximation methods are required to work with PoEs. An adequate approxi-
mation method should enable several elements: we should be able to draw samples
from it, to estimate the normalizing constant, to estimate its gradient with respect to
the model parameters, and to identify the modes of the distribution. Such methods
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are found in Bayesian statistics and were reviewed in Sec. 2.3. In Bayesian statistics,
the same problem of approximating an unnormalized density occurs. Indeed, the pos-
terior distribution of model parameters @ can be viewed as a product of two experts:
a likelihood and a prior.

3.1.3 Training PoEs

From a given dataset of robot configurations @, maximum likelihood (or maximum
a posteriori) of the intractable distribution p(q|@1, ..., 0,) should be computed.

It can be done using gradient descent, as proposed in [51]. The derivative of the
log-likelihood of the PoE can be separated into the derivative of the unnormalized
expert and the normalizing constant

dlogp(q|6, ..., 0) _ 0logpm(q|0m)  OlogC(b:,...,0um)
06,, 06,1, 00y, '

(3.3)

The derivative of the normalizing constant is intractable and requires approximation
methods. It can be written as

1 0, ..,0 1 7]
a OgC( 1 ) M) :/p(c|91,,0M)8 ngm(C| m) dC,

00, 06, (3:4)

which is the expected derivative of the unnormalized expert log-likelihood under the
current PoE distribution. The averaged derivatives over the dataset Q and with

respect to the parameters of all experts 8 = [491T . ’91&] can be written as
dlogp(q)\ _ /0logp(q) dlog p(q)
< 00 >Q - < 00 >Q < 00 >p(q)’ (3.5)

where < - >,y denotes the expectation over the distribution p. Intuitively, it means
that we compare the expected gradient of the unnormalized density over the dataset
Q with the expected gradient over the current density p(q). At convergence, the
expected difference should be zero; it means that the distribution of the PoE p(q)
matches the data distribution . Maximizing the log-likelihood of the data is also
equivalent to minimizing the KL divergence between the data distribution and the
equilibrium distribution.

In all but a few cases, the expectation under the current PoE density has no
closed-form. Worse, estimating this integral with samples is not trivial since drawing
samples from the current PoE is difficult. In [52], it is proposed to use a few sam-
pling steps initialized at the data distribution Q. With only a few sampling steps,
these Markov chains cannot reached their equilibrium distribution (the PoE) but still
provide a biased estimation of the gradient. Unfortunately, this approach fails when
p(q|64, ..., 0)) has multiple modes. The few sampling steps never jump between
modes, resulting in the incapacity of estimating their relative mass. Wormholes have
been proposed as a solution in [119], but are algorithmically restrictive.

As an alternative, we propose to use VI with the proposed mixture distribution
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to approximate p(q). Throughout the training process, this approximation is kept
updated to be able to draw samples from the PoE. The process thus alternates between
minimizing Dk, (q||p) with current p and using current ¢ to compute the gradient
(3.3). The approximate distribution ¢ can either be used as an importance sampling
distribution or directly (if expressive enough to represent p). The expected gradient
over the current density p(q) becomes

Dlogi(a)\ <~ 0logp(g™) /o
< 00 >p<q) ~ D g / 2w (36)
n=1 n=1
wit q ~ q< . | ) an Wy = W, (37)

where w,, are the importance weights.

It is also possible to estimate this expectation by using a mixture of samples
from the variational distribution ¢ and from Markov chains initialized on the data.
It combines the advantages of the two methods. Samples from ¢ are necessary to
estimate the relative mass of distant modes, while the few steps of the Markov chain
reduce the variance of the derivative. Empirically, we noticed that they tend to
stabilize the learning procedure.

.
In the derivation, only the experts parameters 8 = [9; . 01&} were trained.

It is also possible to train the parameters of their associated transformation without
any modification to the procedure.

Initializing PoEs As the training procedure is iterative, a good initialization of
0., speeds up the learning process. For the experts with simple forms of maximum
likelihood estimation (MLE) and known transformation 7", we propose independent
initializations with maximum likelihood. As detailed in the related work in Sec. 2.1.1,
many works in robotics train the model independently. Thus, we propose to initialize
the PoE that way and improve it by considering the proper renormalization.

3.2 Product of experts with nullspace (PoENS)

We often encounter tasks where some objectives are more important than others.
The problem of controlling a robot when the different objectives and their hierarchy
are known has already been addressed in several works, see e.g. [83]. It is usually
done by filtering commands minimizing secondary objectives with nullspace projec-
tion operators. It ensures that these commands stay within the subspace of commands
minimizing higher level objectives.

In our work, considering a hierarchy has an additional interest. The realization
of some subtasks might be prevented and masked by the resolution of higher-level
subtasks. Thus, it is not trivial to identify secondary objectives in the dataset. Ig-
noring their lower priority when training the model will lead to problems (at best,
minimizing their importance, and at worst, completely missing them). These tasks
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can be understood only by considering their lower priority and their entanglement
with higher priority subtasks. The priority awareness was already considered in other
works, but focused on learning control policies [76, 78]. The task to consider the
priority at the level of distributions is computationally more complex and has not
been proposed before to our knowledge. In this section, we propose to extend the
PoE framework to the use of nullspace filters.

Mlustratively, the idea is to define a hierarchy between the experts such that
secondary experts can express their opinions only in subspaces that primary experts
do not care about. For example, let us consider that ¢ € R” are the joint angles
of a 7-DoF manipulator and p;(7;(q)) is a Gaussian distribution of the end-effector
position. The system has still 4 DoFs in which secondary experts can express their
opinion.

Our approach consists of redefining the derivative of the log-likelihood of the PoE
with a nullspace filter. This filter cancels the derivative of secondary experts in the
space of primary experts, making sure that secondary experts have no power in the
area of expertise of primary experts. Each expert acts on a transformation of the
configuration q

Ym = Tm(Q)> (38)

and have the differential relationship

Um = JIn(q) 4, (3.9)

where J,,(q) = 87'#(‘1) is the Jacobian matrix of the task space 7,,. When computing

inverse kinematics with a priority, as in [83], the general solution of (3.9) is

qd=J5(q) 9w+ (I — I} (@) Tn(q))z, (3.10)

where J is the pseudoinverse of J,, and z is an arbitrary vector. The nullspace filter
N,.(q) = I — J} (q)J,.(q) makes sure that the arbitrary vector has no effect in the
task space 7, as

In(@)(I = J}(@)T (@) 2 = (Jm(@) — Jm(q)) z = 0.

By applying the chain rule, the derivative of the log-likelihood with respect to the
configuration g becomes

dlogp(ql6y,...,00) dlogp(T..(q)|0m)
o - Emj e , (3.11)
~ — 9logp(yl6,n)
_ }m: ] (3.12)

The nullspace filter N,,(q) is used to filter the derivative coming from other experts
such that they do not affect the space where the expert m is acting. For example, if
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Figure 3-3: Densities and derivatives of a two-expert problem. A 2-DoF planar robot
is considered as in Fig. 3-2. The first expert is an elongated Gaussian distribution
on its end-effector. The second expert acts in joint angles and defines a preferred
configuration. (a) The density of the expert log p;(7;(q)|€1) is shown as a colormap.
The derivative dlogp(y|6,)/0y J1(q) is displayed as streamlines. (b) The same is
done with the second objective in configuration space. (c¢) The derivative of the
second experts is this time filtered as dlog p(y|602)/0y J2(q)N1(q).

we have two experts, with expert m = 1 the primary the derivative becomes

0logp(7,,()|61,6>) _ Ologp(y|61) 0logp(y|62)

0q oy Si(g) + oy

J2(q)Ni(q). (3.13)

Fig. 3-3 provides an example where the terms of this derivative are displayed
with and without the nullspace filter for the secondary objectives. We note that
when using automatic differentiation libraries such as TensorFlow [1], gradients can
be easily redefined with this filter.

While in standard PoEs, it was possible to evaluate the unnormalized log-likelihood,
the PoENS is defined only by the gradient of this quantity. It is thus not possible
to evaluate the unnormalized log-likelihood p. It constrains the class of methods to
approximate the density. Stochastic variational inference can be employed, as it only
requires stochastic evaluation of the gradient. This characteristic is shared with only
a very few Monte Carlo methods such as [20]. In this mini-batch variant of Hamil-
tonian Monte Carlo method [29], no corrective Metropolis-Hastings steps are used as
they are too costly.
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Figure 3-4: 5-DoF bimanual planar robot with two forward kinematics objectives.
Variational inference is used to generate the displayed samples. (a) The two tasks are
compatible and the distribution of solution is approximated. (b) No nullspace, the
two tasks are of the same importance. (¢) The gradient of the objective of the orange
arm is projected onto the nullspace of the Jacobian of the forward kinematics of the
blue arm. This is achieved with stochastic variational inference that only requires to
evaluate the gradient of the unnormalized density.

Fig. 3-4 shows a 5-DoF bimanual planar robot with two forward kinematics objec-
tives. When the tasks are compatible, the filtering does not affect the solutions. The
gradient of the objective of the orange arm can be projected onto the nullspace of the
Jacobian of the forward kinematics of the blue arm, resulting in a prioritization.

3.3 Useful distributions and task spaces for robotics

In this section, several task spaces 7™ and experts models p,, related to common
robotic problems are presented with a practitioner perspective. This can be used as
a toolkit to unify various problems into the PoE framework.

3.3.1 Task spaces

Several common task spaces are presented. These transformations can be known
and fixed, as the forward kinematics of the end-effector. They can also be partially
known, for example the position of an object held by the known end-effector, which
constitutes a new end-effector. Fully unknown transformations can also be learned
with neural networks.

Forward kinematics (FK) One of the most common transformations used in
robotics is forward kinematics, computing poses (position and orientation) of links
given the robot configuration q. Forward kinematics can be computed in several task
spaces associated with objects of interest, as in [16, 81, 86]. In these works, analyzing
movements from several coordinate systems allows for generalizations with respect to
movements of their associated objects. These works only consider cases where the
transformation is fully known. The approaches in these works, based on separately
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transforming the data and learning the models, are not compatible with partially
known transformations, as opposed to ours. In particular, two types of unknowns
can be considered with PoE: unknown coordinate systems or free parameters in the
kinematic chain. These two cases will be considered in the experiments of Sec. 3.5.3.

In the first case, the robot could, for example, have to track an object that can
move. We could have a dataset split into several subparts in which the pose of
this object is constant. The unknown displacement of the objects can be subject to
optimization, as well as the parameters of the distribution representing the target
within its associated coordinate system.

The second case can occur if a new end-effector is added. For example, it can be
a tool grasped by the robot, whose position is given by

Tn(@) = Fr(q)d + F.(q), (3.14)

where F,(q) and Fr(q) are respectively the position and rotation matrix of the known
end-effector, and d the displacement of the tool. The parameters d can be optimized
as well when training the PoE with maximum likelihood. The results is that a new
end-effector is found with which the distribution of configurations q is best explained
and compact.

Manipulability Measures of manipulability are other interesting transformations
in robotics. The most simple form is a scalar defined as

(@) = Vdet(J (@) I (q)7), (3.15)

which can be used to explain the avoidance of singular configurations in the dataset,
as in [61].

For a more precise description of the configuration, velocity and force ellipsoids
can be used [123]. The velocity ellipsoid is defined by the matrix

-1

Tol@) = (J(@)J(q@)") (3.16)

and the force by its inverse. If we consider a zero-centered and unit-covariance Gaus-
sian distribution of joint velocity, the velocity ellipsoid corresponds to the precision
matrix (inverse of the covariance) of the task-space velocities. It thus relates to the
feasible distribution of task-space velocities (respectively forces). For example, this
full matrix can be used to define the distribution of configurations in which the trans-
fer of velocities or forces along a direction should be maximized.

Such matrix is positive semi-definite, which should be taken into account for the
choice of the associated expert distribution. An option is to work with its Cholesky
decomposition. A Wishart distribution is not expressive enough to define variances
along different directions. In [58], it is proposed to use Gaussian distributions in the
tangent space of manifolds. This choice is motivated by the geometry of symmetric
positive definite matrices (SPD). However, this approach ignores the geometry of the
robot (the manipulability is a function of the joint angles and the kinematic struc-
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ture). This comes with two important limitations. First, the proper support of the
manipulability ellipsoid is ignored. By considering a distribution on the SPD mani-
fold, it is assumed that this space can be covered by the robot, while the robot might
only cover a subspace of it (which can also vary among robots). A second limitation
is that manipulability is often employed as secondary objective. For example, when
playing golf, hitting the ball at the right place is of higher importance than replicating
a desired manipulability ellipsoid. The subspace of SPD matrices is further limited
when it lies in the nullspace of more important tasks. A simple experiment with a
manipulability measure will be presented in Sec. 3.5.2 to show that this should be
considered to learn the targeted manipulability.

Similarly, such consideration is important to transfer manipulability objectives
between robots with different kinematic chains. In [58], manipulability ellipsoid dis-
tributions are expressed on the set of symmetric positive definite matrices. We will
show in the experiments of Sec. 3.5.2 that manipulability-related tasks would be bet-
ter transferred by considering that the distributions are expressed on subsets of these
matrices. These experiments will motivate that a better support of the distribu-
tions can be considered by taking into account the differences in the kinematic chain
configurations.

Relative distances A relative distance space is proposed in [122]. It computes
the distances from multiple virtual points on the robot to other objects of interest
(targets, obstacles). It can, for example, be used in environments with obstacles,
providing an alternative or complementing standard forward kinematics.

Center of Mass (CoM) From the forward kinematics of the center of mass of each
link and their mass, it is possible to compute the center of mass (CoM) of the robot.
When considering mobile or legged robots, the CoM should typically be located on
top of support polygons to satisfy static equilibrium on flat surfaces.

Jacobian pseudoinverse iterations The following transformation is more inter-
esting for the problem of sampling configurations from a given PoE than for the one
of maximum likelihood from a dataset. Precise kinematics constraints imply a very
correlated p(q), as shown in Fig. 3-2. In the extreme case of hard kinematics con-
straints, the solutions are on a low dimensional manifold embedded in configuration
space. With most of the existing methods, it is very difficult to sample from this
correlated PoE and to approximate it. Dedicated methods address the problem of
representing a manifold as [117] or sampling from it, as [127]. In [10], a projection
strategy is proposed. Configurations are sampled randomly and projected back using
an iterative process. We propose a similar approach where the projection operator
Py would be used as transformation 7™. Inverse kinematics problems are typically
solved iteratively with

Plq) = q+J(q)T(f)—F(q)>> (3.17)
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where p is the target and J(q)" is the Moore-Penrose pseudo-inverse of the Jacobian.
This relation is derivable and can be applied recursively with

Po(q)
7Dn-i-l (Q)

I
)

(@), (3.18)
P(Puila)). (3.19)

Then, the distribution

pm(@) < N (Px(q)

p,ol ) (3.20)

is the distribution of configurations which converges in N steps to N (p, oI). Thanks
to the very good convergence of the iterative process (3.17), o can be set very small.
However, this approach has a similar (but less critical) problem as in [10]. The
resulting distribution is slightly biased toward regions where the forward kinematics
is close to linear (constant Jacobian), which are those where more mass converges to
the manifold.

With high DoFs robots, it might be computationally expensive to run iteration
steps inside the stochastic gradient optimization and propagate the gradient. Another
approach would be to define heuristically (or learn) X, such that N (q|p,oI + 3)
is close to N (Py(q)| p, o).

Neural network When more data are available, more general and complex task
spaces can be considered, such as neural networks. For example, it can be used to
define a complex distribution in which the end-effector should be. Coupled with a
control strategy (see Sec.3.4), it can provide virtual guides as in [98] to constraint the
robot on a trajectory or within a shape, as illustrated in Fig. 3-5.

Particularly, we recommend using invertible neural networks for practical reasons
of initializing the training procedure and for its interesting properties of global maxi-
mum when controlling the robot. Training a PoE with contrastive divergence is not as
efficient as training models with tractable likelihood. Therefore, we propose to initial-
ize the PoE by training all the experts that have tractable likelihood independently.
Thus, we propose to treat an expert composed of a neural network transformation
as a distribution with a change of variable. This provides a tractable likelihood as
in [23], that can be used for initializing. Given that 7, is bijective, the tractable
likelihood is given by the change of variable

6’Tm(q)>

p(q) = pm(T,.(q)) ‘det ( Do

: (3.21)

where p,, is a simple distribution. p,, can be chosen as a zero-centered and unit
covariance Gaussian. Actually, a full covariance Gaussian can be described in this
framework with 7, being a linear transformation. If we were to train the neural
network without considering the renormalization, 7, will try to push all the config-
uration of the dataset to the mode of p,,. The term | det (97,,(q)/0q")| can be seen
as a cost preventing the contraction around the mode.
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1 - transformed dataset

Figure 3-5: For greater expressiveness, an invertible neural network can be used as
a task space 7,,. Instead of optimizing the parameters of the expert density p,,, which
can be set as a zero-centered and unit covariance Gaussian (right), the parameters
of the network can be trained. The neural network becomes a transformation under
which the dataset (N shape, left) becomes a simple distribution (Gaussian, right).
The densities are shown as a colormap with isolines. A grid that undergoes the inverse
transformation is also shown. This approach allows complex attractors or guiding
distributions to be learned, where it is easy to control the robot in the transformed
space.

To avoid overfitting, we propose a strategy to penalize abrupt change in the trans-
formation 7, !. We propose to minimize the expectation of a measure of local change
of the Jacobian of the inverse of the transformation 97, ! under a distribution p,

/

where w is a unit vector on ™, n,, being the dimensionality of y, and « a small
positive scalar. The distribution p, can be chosen as a p,, but with up to 3 to 10
times bigger standard deviations, which would make sure that the transformation is
smooth even further from the dataset. This cost can be optimized with stochastic
gradient descent by evaluating the derivative on samples of y™ ~ p,(-) and of unit
vectors w™.

E

pr(y)

(3.22)

oy" d(y + aw)”

OT,\(y) 9T, \(y + aw) ‘w]

Another interesting property of using an invertible network is that the density
under the transformation keeps a unique global maximum if the expert density p,,
has a single one. It is justified because invex functions (functions that have a single
global minimum and no local minimum) are still invex under a diffeomorphism [96].
It is especially advantageous when we want to control the robot to track the density
of the PoE, as explained in Sec. 3.4.
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3.3.2 Distributions

Several common distributions are now presented to handle the task spaces pre-
sented in the above.

Multivariate normal distribution (MVIN) An obvious choice for forward kine-
matics objectives is the Gaussian or multivariate normal distribution (MVN). Its
log-likelihood is quadratic, making it compatible with standard inverse kinematics
and optimal control techniques,

1 _
N(qlp, %) O<e><p(— sl@—p)'s l(q—u)>7 (3.23)
where p is the location parameter and X is the covariance matrix. This distribution
is standard in robotics to represent full trajectories [91], subparts of trajectories with
a hidden Markov model [16] or a joint distribution of a phase and robot variables

with a mixture [17].

Matrix Bingham—von Mises—Fisher distributions (BMF) To handle ori-
entations, for example, represented as a rotation matrix, Matrix Bingham—von
Mises—Fisher distribution (BMF) [64] can be used. Its normalizing constant is in-
tractable and requires approximation [68]. In our case, this is not a problem since we
integrate over robot configurations. Its density

peMr(Q|A, B, C) x exp (tr(CTQ +BQ'A Q)), (3.24)

has a linear and a quadratic term as a Gaussian. A and B are often chosen as
symmetric and diagonal matrices, respectively. By imposing additional constraints
on A and B, this density can be written as a Gaussian distribution on vectorized
rotation matrices. By setting to zero the derivative of the log-likelihood

ol(Q)
0Q
and exploiting several properties of the trace and the Kronecker product we can
rewrite the density as proportional to

=C" +2AQB =0, (3.25)

N (vec(Q)|vec(A™'CTB™), (A® B)™), (3.26)

A and B should be both invertible and (A ® B) positive definite.

In some tasks, it may be interesting to encode correlations between positions and
orientations. Rewritten as a Gaussian, it is possible to create a joint distribution of
position and rotation matrices

q Iz ! Yo S.x
N( {VGC(Q)] {Vec(AlCTBl)} ’L]Xw (A®B)1]>’ (3.27)
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where ¥,x € R3*Y is the covariance between positions and orientations. This joint
distribution can be ensured as valid by imposing a constraint on ¥,x with Schur
complement condition for positive definiteness

-0 <= X0 -0,(A®B) ! - Zx, 3 13, x = 0. (3.28)

This complex parametrization and constraints are not mandatory in the PoE
framework, as the experts do not need to be valid and properly normalized distribu-
tions themselves. However, it can help to reduce the number of parameters and to
stabilize the learning procedure. As an alternative approach, we present an experi-
ment in Sec. 3.5.4 in which a joint distribution of positions and orientations is learned
with a low-rank structure on the covariance.

Matrix normal distribution Matrix valued transformations can be encoded with
a matrix normal distribution

Pn(QM. U V) cexp (— S [VHQ - MU @~ M), (329

where M € R"*P and U are V n xn and p X p positive definite matrices, respectively.
It can also be written as a distribution of vectorized matrix as

vec(M) o N (vec(M),(V @ U)™1), (3.30)

where the covariance matrix has fewer parameters than in a Gaussian.

Probabilistic movement primitives So far, the considered distributions targeted
static configurations. Probabilistic movement primitives (ProMP) is a way to build
Gaussian distributions of trajectories [91].

An observation g; (position or joint angles) follows a Gaussian distribution

Prromp (G| P, w, X5) = N (g | P/ w, 3,), (3.31)

where w is a weight vector and ®; a time-dependent basis matrix. The weight vector
also follows a Gaussian distribution. The marginal distribution of the observation
given the parameters of the model becomes

Prrom (Gt @t Moo, Bw, Ber) = /N(qtl‘I’Zw, o )N (W], By dw, (3.32)
= N(q ¥ po, ¥/ Z0y ¥y + X). (3.33)

ProMPs are fully compatible with our framework. We can consider, for example, a
product of ProMPs in multiple task spaces and configuration space. For approxi-
mating the product of ProMPs, it is also possible to use variational inference with a
mixture of Gaussians, as proposed in Sec. 2.3.3. Instead of using full location and full
covariance, the mixture components can be a ProMP as well. In Fig. 3-6, a mixture
of ProMPs in configuration space is used to approximate a product of a ProMPs in
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Figure 3-6: To encode distributions of trajectories, probabilistic movement primi-
tives (ProMP) can be used as experts in a PoE. In this example, a product of two
ProMP experts is considered: one defines a joint angle trajectory, while the other de-
fines the trajectory of the end-effector. A 3-DoF planar robot is used in this example.
The product of ProMPs is approximated using variational inference as a mixture of
ProMPs in configuration space. Samples of trajectories of the end-effector are dis-
played, as well as a full sequence of configurations. Even if each expert is Gaussian,
the product of ProMPs is multimodal because of the planar robot kinematics.

task space and in configuration space. A 3-DoF planar robot is used, which induced
the multimodality of the product.

Approximate distributions in the tangent space of manifolds Another ap-
proach compatible with the PoE framework is to consider Gaussian distributions in
the tangent space of manifolds, as a way to encode orientations [124] or manipula-
bility ellipsoids [58]. It has the advantages of being generic to many different types
of data. Also, the distribution is approximately normalized in the tangent space. It
provides an easier way to initialize this expert individually (using MLE) than if it
was unnormalized. The only restriction is that the logarithmic map Log,(q), map-
ping elements from the manifold to the tangent space, should be differentiable. The
density is given by

1 _
pavn(qlp, X) o< exp ( — §Log“(q)T > Log“(q)>. (3.34)

Cumulative distribution functions (CDF) Inequality constraints, such as static
equilibrium, obstacles or joint limits can be learned using cumulative distribution
function

plz <b), with z~ N(T(q), 02>, (3.35)
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where 7 (q) is a scalar. For example, for half-plane constraints, 7 (g) could be w'q,
or for joint limits on first joint 7T (q) = qo.

The use of the CDF makes the objectives continuous and allows safety margin
determined by o to be considered.

Obstacles constraints might be impossible to compute exactly and require collision
checking techniques [31]. With stochastic optimization, our approach is compatible
with a stochastic approximation of the collision related cost, which might speed up
computation substantially.

Uni-Gauss distributions In Sec. 3.2, we showed how a PoE is compatible with
standard nullspace approaches to represent hierarchy between multiple tasks. Another
way to address this problem is to use uni-Gauss experts, as proposed in [51]. These
experts combine the distribution defining a non-primary objective p,, with a uniform
distribution

1—m,

pUG,m(‘]) = mem(q> + - , (336)

which means that each objective has a probability p,, to be fulfilled and 1 — 7, not
to be fulfilled.

Classical prioritized approaches exploit redundancies of the robot to achieve mul-
tiple tasks simultaneously [83]. A nullspace projection matrix is used such that com-
mands required to solve a secondary task do not influence the primary task. Using
uni-Gauss experts is a less strict approach that does not necessarily require redundan-
cies. Even if there is no redundancy to solve a secondary task without influencing the
first one, there may be some mass at the intersection between the different objectives.

There are two possible ways of estimating p(q) in the case of Uni-Gauss experts.
If the number of tasks is small, we can introduce, for each task m, a binary random
variable indicating if the task is fulfilled or not. For each combination of these vari-
ables, we can then compute p(q). The ELBO can be used to estimate the relative
mass of each of these combinations, as done in model selection. For example, if the
tasks are not compatible, their product would have a very small mass, as compared to
the primary task. In the case of numerous objectives, this approach becomes compu-
tationally expensive because of the growing number of combinations. We can instead
marginalize these variables and we fall back on (3.36). For practical reasons of flat
gradients, the uniform distribution can be implemented as a distribution of the same
family as p,,, but with a higher variance.

3.4 Control

In this section, we present two control strategies that can be used together with
PoEs. In this section, the controller are not learned, as it will be done in Chapter
4. They are derived in order to constraint the robot or make it cover the distribu-
tion defined by the PoE. In the first control strategy presented, the PoE defines the
preferred configurations of the robot. The robot should go to these configurations
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and stay there, facing perturbations. The negative log density —logp(q|61,...,0)
of the PoE is used as a cost function in an optimal control problem. This approach
is illustrated in Fig. 3-1. In the second scenario, the PoE defines a distribution of
configurations that the robot should actively visit.

3.4.1 Optimal control

In optimal control, control commands u are computed with the aim of minimizing
a cost based on the control commands and on the states of the system &. The discrete
time linear quadratic tracker (LQT) is a popular tractable subproblem of optimal
control, where the dynamics of the system are linear

&1 = A + Bouy, (3.37)

with A, and B; being the time-dependent parameters of the system. In LQT, the
cost is quadratic, given as

N—-1
T =53 (6 = 20 L(én — 20) + u] Ruy ), (3.38)
t=1
where z; is a desired state, L, is a matrix weighting! the deviation from the desired
state and R is a matrix weighting the penalization of the control commands. The
minimization of the control commands have multiple underlying goals, such as reduc-
ing energy consumption, producing smooth movements through small accelerations,
or ensuring safety through the use of small forces. The resulting optimal controller is
linear, taking the form

Uy = _Ktﬁt + Ktv’UH_l, (339)

where K&, is a feedback term and K} v, is a feedforward term. More details about
the derivations can be found in [15].

We can use this formulation to compute a controller that would stay in regions
of high density of the PoE. Let us consider that we have a linearized model of the

manipulator
(?t—i—l — A,
qi+1

where q is the configuration of the robot and u, can be joint accelerations or torques,
depending on the controller used on the robot. The state can be augmented with the

q:

q:

+ Btut, (340)

In control, @ is usually used as a notation for this matrix, but it is already used to denote a
dataset of configurations in this thesis.
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different experts transformations

7;(%) Y1t

&= |Tula)| = |yl - (3.41)
q; q;
| g | q; ]

The dynamics of the augmented system are linearized using the Jacobian J,,(q) =

a—q'l) of each task space m

Ymi+1 X Yme + Im(@) (@11 — q1). (3.42)
The complete system can then be written in matrix form as

&1 &t -

—_— A —_— O
yl’f“ I, - 00 AtJ, yil’t [0 jl] B,
| + h uy. (3.43)
Y+l 0 I, 0 Atdy | |24 0.4, B
di+1 q;
: 0---0 A, : B
| Gy | q; | L t

The system A, and B, should not depend on the state; for this reason, the Jacobians
should be evaluated as jm There could be evaluated either at the local maximum of
the PoE density where the robot would converge or at the current state of the robot.
The cost is defined as

2

-1

1 1
J = ( Z 10g Pr (Y t) + 2qt [Lq; + = 5 Ut Rut> (3.44)

t=1

where L penalizes the velocities. With the weight control matrix R, they can be
chosen as a diagonal matrix

IN-/ . .

I
&
I

, (3.45)
O e §;2 O e 7-;2
where ¢, and 7, are respectively the range of velocities and the forces (or accelerations)

allowed on joint p. They can be interpreted as defining a desired Gaussian distribution
of velocities and forces of standard deviation ¢, and 7, on joint p. If all the experts
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pm are Gaussian, this cost can be rewritten exactly as (3.38) with

= 0 0 M1

L=| " | zm= ], (3.46)
0o --- %, 0 I
0 0 L 0

since the log-likelihood is a quadratic function. In the other case, a quadratic ap-
proximation can be used as in iterative LQR, see [75]. The resulting controller is a
feedback controller as in (3.39), where the feedback is executed on the different expert
transformations

M
w =) K T (&) + K, v (3.47)
m=1

The gains K,,; obtained for each expert m depend on the required precision (the
higher the precision, the higher the gain).

If the robot is controlled by torque commands, the whole procedure of training
a PoE and controlling the robot can be used to set up automatic virtual guides,
as shown in Fig. 3-1. Multiple constraints, such as keeping an orientation, staying
on a plane, or pointing towards an object can be learned from demonstration, and
reproduced by the robot using the proposed feedback controller. The robot will then
be free to be manipulated along directions that are not encoded by the experts (or
that have a high variance).

Fig. 3-7 shows a simulation of 7-DoF manipulator controlled with this strategy,
with a perturbation occurring at t = 2.35s.

This controller can easily be implemented in a robotic manipulator with two sep-
arate loops. A high-level loop solves the LQT problem while a low-level control loop
executes the last computed controller until a new one is available. These two loops
are described in Alg. 1 and 2.

3.4.2 FErgodic control

In the second control strategy, a trajectory should be planned to visit the PoE
density. This problem is referred to as ergodic coverage [79] and has multiple applica-
tions, such as surveillance or target localization. Closer to the considered manipula-
tion tasks, it can be used to discover objects, learn dynamics or polish/paint surfaces.
In [8], the ergodic coverage objective is formulated as a KL divergence between the
density to visit p(q) and the time-average statistics of the trajectory I'(q)

Dyt (I [p) = / I'(q) log g((gdq (3.48)

The time-average statistics defines the density covered by the trajectory of the robot.
Using the formulation with a KL divergence, particular sensors or areas of influence
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Algorithm 1: High-level loop (coded in Python)

1 set R and Q as in (3.45)

2 compute @ and z, LQT cost from the expert distributions as in (3.46)
3 while controlling do
4
5

(loop duration : 2 — 10[ms])

compute A and B, linearized model of the manipulator around current
state

get g current configuration of the robot

foreach ezpert m do

A

compute J,,,(q)
end

© o =N o

10 compute A and B , augmented linear model as in (3.43)

11 solve finite or infinite horizon LQT with constant parameters over the
horizon

12 publish K, K7, vy, LQT controller parameters

13 end

Algorithm 2: Low-level control loop (coded in C++)

1 while controlling do
2 (loop duration : < 1[ms))

3 read K7, K7, vy, current LQT controller parameters

4 get q, q current configuration and velocity of the robot

5 foreach ezpert m do

6 | compute 7,,(q) (call Python functions)

7 end

8 compute & as in (3.41)

9 compute and apply torques or accelerations as u = —K;& + K] v,
10 end

can be taken into account. For example, a Gaussian can be used to model the area
around the robot perceived by its sensors. The time-average statistics become a
mixture of Gaussians

N-1

> N(gla., %), (3.49)

t=0

1
I'(g) = N
where g, is the configuration of the robot at time ¢ (for a trajectory of N —1 timesteps).
The covariance ¥ can model the coverage of the sensor. A small 3 means a short-
distance coverage and implies finer trajectories. The objective (3.48) is the same
as in variational inference and can be optimized with the ELBO objective in (2.9).
Thus, it is not required to have a properly normalized density to visit. Given that
the covered zone is modeled by a tractable density (from which we can sample, and
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Figure 3-7: Example of 7-DoF manipulator controlled with an LQT. To show the
time evolution, only the kinematic chain is displayed. The PoE is the intersection be-
tween a vertical plane (e; = 0) and a sphere. The two experts act on the end-effector.
They are defined by a Gaussian distribution on e; around 0 and by a Gaussian dis-
tribution on the log-distance to a target (black square). On the left, the evolution of
the values of the joint angles is displayed over time. At t = 2.35[s|, a perturbation in
configuration space occurs. The robot converges to a new local mode of the PoE.

properly normalized), the ergodic objective can be optimized easily with stochastic
gradient descent. Compared to the ELBO objective in (2.9), an additional constraint
has to be added for limiting velocities and accelerations so that {g;}2 ;" is a consistent
trajectory.

Fig. 3-8 shows a trajectory optimized to cover the PoE. The robot is assumed to
be controlled by velocity commands. Velocities and accelerations are minimized, and
the time-averaged statistics is a mixture of Gaussians in task space.

3.5 Experiments

3.5.1 Multimodal distributions

In a first experiment, we show the advantages of using variational inference to
approximate the derivative of the normalizing constant. We consider a 2-DoF planar
robot that should learn to distinguish between an operational-space or a configuration-
space objective. Three datasets are used and shown in Fig. 3-9. They correspond to
the following subtasks: (a) only configuration space target (b) only task space target,
involving a multimodal PoE (c) a task-space target with a joint angle preference,
involving two modes of unequal weights. The PoE model is defined by the following
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Figure 3-8: Time evolution of a robot covering a PoE distribution indicated with
a colormap. The trace of the end-effector is shown with a blue line. The trajectory
is optimized using ergodic control. The density is defined by a position constraint of
the end-effector (expert O-red disk) and a distance constraint (expert 1-red circle),
defining a virtual sphere.
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Figure 3-9: Samples of configurations for three tasks that illustrate the advantages
of using variational inference with a mixture model for training a PoE. A 2-DoF
planar robot is considered. (a) Joint angle target. (b) Operational space target (c)
Operational space target and joint angle target.
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task spaces and distributions:

state: q € Rz,
task spaces : T.(q) = Fx(q ) € R?,
Yo = 75((1) geR
experts :  y; ~ N (1, 01I)

Yo NN(H%UzI)

parameterstolearn :  pq, 01, po, 02,

where F,(q) is the position of the end-effector of the planar robot. The first and
second experts analyze task-space objectives and configuration-space objectives, re-
spectively. Given three datasets of N = 30 configurations, the corresponding models
are learned either with contrastive divergence (as proposed in [52]) or using varia-
tional inference (as proposed in Sec. 3.1.3). The process is repeated multiple times
with random initializations of the parameters.

Quantitative evaluations are performed by computing the alpha-divergence with
a = 1/2 between the ground-truth density from which the dataset was sampled and
the density learned with the different techniques. This divergence is also related to
the Bhattacharyya coefficient as

Do olpll) = —21og / Vr@d@)da. (3.50)

This integral was evaluated by discretizing the space. Results are reported in Table
3.1. In all cases, the variational approximation performs better. The performance
of contrastive divergence is especially poor in case (a), showing high variations. The
explanation comes from the incapability of standard sampling methods to jump across
distant modes. Only the existence of a second mode, as in case (b) and (c) can help
to distinguish between a configuration space and a task space target. A Markov
chain initialized on the data never discovers the second mode that would be implied
by a task space target. This potential waste of probability mass goes unnoticed by
contrastive divergence. In contrast, variational inference with a mixture of Gaussians
can localize this region of probability. The high variance of the contrastive divergence
is due to the nonexistent gradient between the relative standard deviations o; and
oy of the two experts. The final results are thus determined mostly by the random
initialization.

3.5.2 Hierarchical tasks

In this set of experiments, the robot has to learn two competitive objectives, where
one has a higher priority than the other. The secondary objective is masked by the
resolution of the first objective and has to be uncovered.

Planar robot We first evaluate our approach in simpler cases, with planar robots.
In the first task, we consider a 5-DoF planar robot with two dependent arms, as
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Task (a) (b) (c)
CD  0.837 + 0.597 0.039 £ 0.030 0.063 £+ 0.026

VI 0.067 £ 0.060 0.016 + 0.022 0.014 £+ 0.004

Table 3.1: Quantitative evaluations of the learned distribution using contrastive
divergence (CD) and our approach based on variational inference with a Gaussian
mixture model (VI). The table shows alpha-divergence D,—;/» measures between the
different approximations and the ground-truth distribution, computed for the three
tasks shown in Fig. 3-9.

0.6 -
0.4 -

0.2 -

. I | i, .

-08 -06 -04 -0.2 0.0 0.2 0.4 -06 -04 -0.2 0.0 0.2 04 0.6 -1.0 -08 -0.6 -04 -02 0.0 0.2

& € €

Figure 3-10: Dataset for the bimanual task with a hierarchy. Three situations are
given, where each end-effector should track the target of the same color (displayed as
a square).

illustrated in Fig. 3-10. Each end-effector should track its own target, which should
be recovered from demonstrations. The end-effector with the highest priority task
has three different targets {u?)}izo,,,.g and the other end-effector has a fixed target
po. For each of the three cases i = 0, ..., 2, N = 30 independent samples q,, are given.
The samples are generated by approximating a ground-truth product of experts with
a mixture of K = 50 Gaussian components. The end-effectors try to follow a normal
distribution with a standard deviation o1 = g5 = 0.02 around their respective targets.
In each situation, the secondary target is not reachable.

The PoE model is defined as:

state: q € R?,
task spaces : y; = T,(q) = Fra(q) € R?
=T,(q) = Fr.(q) € R?,
experts : 1y ~ N(ugi),alI) |i=0,...,2,
Yo ~ N (pa, 0o1),

parameters to learn : {ugi)}i:o,,,,,z, H2,01,09.

Fp, and F , denote respectively the forward kinematics (position only) of the right
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Figure 3-11: Samples from the different models learned for the bimanual task with a
hierarchy. Left: Using independent experts, the secondary task is not well understood
and its variance is over-estimated. Center: Using a PoE, the target of the primary
task is inferred to be further away. Right: Using a PoE with a nullspace structure,
the targets as well as the priorities are recovered.

(blue) and left (orange) arm. From the set of samples g, the position of the targets
{ ,u,gi)}izo,mg, o and their standard deviation o; and o5 should be retrieved.

We compare three approaches to learn the model. The first consists of maximum
likelihood estimation of each expert separately, after applying the transformations
to the dataset. With this approach, the main task is well understood. It is not the
case of the secondary task, which is masked. The left end-effector displays a large
variance, as shown in Fig. 3-11(a). This variance cannot be explained without taking
into account the dependence between the two tasks and their prioritization. The
second approach is to use a PoE with no prioritization between the objectives. The
dependence between the tasks is taken into account, which results in a better under-
standing of the secondary objective. The prioritization is still not taken into account,
which has two negative effects. As shown in Fig. 3-11(b), the targets of the right
arm { ,1,5“}1-:0,,,,,2 are inferred further than they are, and the standard deviation of the
secondary task o, is slightly exaggerated. These two misinterpretations compensate
the missing hierarchical structure by artificially increasing the importance of the pri-
mary task. In the third approach, the information of hierarchy is restored by using
a product of experts with the nullspace structure (PoENS) as presented in Sec. 3.2.
This time, the standard deviations of the two tasks as well as their respective targets
are well retrieved.

Quantitative results are produced in a slightly different manner than for the previ-
ous experiment. As only the gradient of the unnormalized log-likelihood of the POENS
is defined, they are first approximated using variational inference with a mixture of
K = 50 Gaussians. Results are reported in Table 3.2 under task (a). As noticed in
Fig. 3-11, the divergence is the smallest with the PoENS.

In the second task with planar robots, we are interested in the manipulability
measure presented in Sec. 3.3.1. The considered robot has three joints and its principal
task is to track a point with its end-effector. One degree of freedom remains, which
should be used to maximize the manipulability measure. This objective is set as a log-
normal distribution on the determinant of the manipulability matrix (i.e., Gaussian
distribution on the log). It defines which manipulability value uy to track, together



60

CHAPTER 3. PRODUCT OF TASK-SPACE EXPERTS

(a) (b) (c) (d)

0.6 -

0.4 -

0.0 -

-0.2 -
-04 02 0.0 0.2 0.4 -04 02 0.0 0.2 0.4 —-0.2 0.0 0.2 0.4 0.6 -04 -02 0.0 0.2 0.4

€ € € €

Figure 3-12: Dataset for the hierarchical task with a manipulability objective. The
robot should track the target (displayed as a blue square) and maximize a manipula-
bility measure. Four different targets are given.

with the allowed variation o,. In the same way as in the previous experiment, the
end-effector should track four different targets { ;1,51)}1-20,_”73. For each of the four cases
1=0,...,3, N =30 independent samples q,, are given, which are shown in Fig. 3-12.
The PoE model is defined as:

state : g € R?,
task spaces : y; = T,(q) = Fy(q) € R?,
v2 = To(q) = logdet (J(q)J(q)") € R,
experts : NN(,ugi),alI)\izo,...,B
Y2 ~ N (2, 02),

parameters to learn : {ugi) }i:O,...,Sv U2,01,02,

where F'(z) is the position of the final link.

As before, we compare three ways of learning the model. As a baseline, we follow
the approach of [58] by considering independent training of the experts. We employ a
less elaborated description of the manipulability task than in [58], by considering the
volume of the manipulability ellipsoid instead of the full ellipsoid. For our study, this
simplified scalar descriptor is sufficient to showcase the advantages of POENS over an
independent training of the experts.

Fig. 3-13 presents samples generated from the different models (for a target as in
Fig. 3-13-(b)). When the experts are learned independently (left), the manipulability
is not well understood. The samples are tracking a manipulability that is lower than
expected, and the variance is overestimated. When training the PoE without the
nullspace structure (center), the distribution of generated samples better matches
the dataset. However, the task-space target is not well estimated (it is inferred closer
to the base of the robot to counterbalance the manipulability objective). In contrast,
the samples retrieved from the POENS (right) show that the task-space target is well
understood.
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Figure 3-13: Samples from the different models learned for the task with a manip-
ulability objective. Left: Using independent experts, the secondary task is not well
understood (the manipulability measure has a big variance in the dataset). Center:
Using a PoE, the estimation of the principal objective is biased. Right: By providing
the hierarchical structure, the two objectives are well understood.

Quantitative evaluations for a bimanual robot are also reported in Table 3.2.

These results show that considering independent training of the experts has two
limitations: (1) it does not exploit the dependence between the task-space position
F(z) and the manipulability; and (2) it does not exploit the hierarchical structure
that often relegates the manipulability objective to a secondary objective. When
this structure is not exploited, the manipulability objective cannot be understood,
as it is not directly observed. By maximum likelihood estimation of the log-normal
distribution on the dataset, the variance is high and the mean value does not reflect
the fact that we were targeting the maximum of manipulability. For example, the
demonstration data in Fig. 3-12-(d) are characterized by very small manipulability
ellipsoids, which would be interpreted erroneously if modeled independently from the
tracking task.

7-DoF manipulator We conduct a similar experiment with a 7-DoF Panda robot.
The dataset mimics a welding task, in which the position of the end-effector is more
important than its orientation. The robot is supposed to track the position of the
component to weld while preferably keeping its orientation vertical. We give three
sets of N = 30 independent samples q,, for three different target positions {u;(f)}i:o,___yg
as shown in Fig. 3-14. The orientation should be kept fixed (the same in the three
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Task (a) (b)
Independent  1.814 4+ 0.055 0.812 £ 0.117
experts

PoE 0.258 £ 0.101 0.630 £ 0.086
PoENS 0.094 + 0.024 0.202 + 0.067

Table 3.2: Quantitative evaluations of the quality of the learned distribution for
the two planar tasks. The table shows alpha-divergence D,_;/; measures between
the different approximations and the ground-truth distribution are computed. (a)
Bimanual task (b) Manipulability objective.

cases). The PoE model is defined as:

state: g € R7,
task spaces : y, = T,(q) = F.(q) € R?,

experts 1 y; ~ N

Hq; UqI)J
parameters to learn : {ug)}izomg, Oz, UR, OR, Hq: Oq

where F(q) is the position of the end-effector and vec(Fr(q)) its vectorized rotation
matrix. We choose a Gaussian distribution for the vectorized rotation matrix with
an isotropic covariance matrix ogI. As the renormalization arises at the joint level in
a PoE, this choice is acceptable even if the rotation expert does not have the proper
support.

We compared the same three ways of training the model. As expected, with
independent experts, a mean orientation is computed, resulting in biased estimation
of this objective (see Fig. 3-14 second column). The PoE without hierarchy performs
a bit better, as it can understand the dependence between the position and the
orientation induced by the kinematics. The estimation of the orientation is still biased
(see Fig. 3-14 third column). As in previous experiments, the POENS performs the
best. The secondary objective of orientation is clearly understood.

For the quantitative experiments, we compare the dataset with the learned dis-
tributions. This comparison is done in each of the 3 situations and by using the
maximum mean discrepancy? MMD?, see [43]. The discrepancy is computed with

u?

500 samples and a RBF kernel with v = 0.1. The results are reported in Table 3.3

2with an unbiased estimate of the kernel mean, it is possible to get negative values. Negative
values indicates a close to zero discrepancy; their absolute value can be discarded.
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Case (0) (1) (2)
Independent  1.3e73 1.3e2 8.2¢73
experts

PoE 7.0e74 1.7¢73 1.4e73
PoENS —9.8¢ ¢ —8.5e7° 4.5

Table 3.3: Quantitative evaluations of the quality of the learned distribution for
the 7-DoF Panda robot (welding task). The table shows maximum mean discrepancy
MMD? measures between the dataset and different models for the 3 cases displayed
in Fig. 3-14.

and in Fig. 3-14, where PoENS shows much better results.

3.5.3 Learning transformations and conditional PoEs

In these experiments, we compare PoEs with less structured ways to learn dis-
tributions. We show that PoEs, by providing more structure, require fewer samples
to be trained. They also allow finding simple explanations for complex distribution,
leading to quicker generalization. Unlike the previous experiments, the experts trans-
formations are this time only partially known.

New end-effector We consider an experiment with the 7-DoF Panda robot in
which a new end-effector is defined. The new end-effector has a fixed position d in
the coordinate system of the known end-effector. We want to learn the distribution
of configurations where the new end-effector follows a Gaussian distribution around
., a given task-space position target. To compare the data-efficiency of the mod-
els, the datasets are composed of N € {3,10, 30, 100,3000} independent samples, as
illustrated in Fig. 3-15-left. The PoE model is defined as:

state: q € R7,

task spaces : T,(q) = Fr(q )d+F( ) = Fy(q) € R?,
T(q) =q€R
experts :  y; ~ ./\f(u oT),
Yo ~ N(Mq, Oq )

parameterstolearn : d, p,, 04, g, 0q,

where Fg(q) is the rotation matrix and F,(q) the position of the known end-effector.
The second expert learns a preferred joint configuration. We compare the PoE with
five other techniques to learn distributions. The first is a variational autoencoder [66].
As architecture for both the encoder and the decoder, we used 2 layers of 20 fully
connected hidden units and tanh activation. The latent space was of 4 dimensions,
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Figure 3-14: Dataset and samples from the different models for the hierarchical
task with the 7-DoF Panda robot (welding task). Only the kinematic chain of the
robot is displayed, such that multiple samples can be shown. The dataset provides
three different situations (displayed in blue, yellow and red) in which the robot should
track a different target with its end-effector. In each situation, the orientation should
be held vertical as a secondary task.
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Figure 3-15: Dataset and samples from the different models for a task involving
an unknown end-effector. In this illustration, the models were trained with 3000
samples.
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Figure 3-16: Quantitative results for a task involving an unknown end-effector. The
graphs show alpha-divergence measures (with o = 1/2) between the dataset and the
different models for the different sizes of the dataset.

which corresponds to the remaining DoF's of the robot, after constraining 3 DoF's with
the position of the new end-effector. The second technique considered is a Dirichlet
process Gaussian mixture model [13]. In this model, the number of Gaussian compo-
nents (with full covariances) is learned according to the number of datapoints and the
complexity of the distribution. Another model tested is a transformed distribution
using an invertible neural network (NVP) as in [23]. As architecture, four layers of
108 hidden units with relu activation were used. The two last models are GANs [41].
In these two cases, both the generator and discriminators are multilayer perceptrons
with 3 layers of 50 hidden units each and sigmoid activation. The latent space of
the generator is of 10 dimensions. In the second GAN, that we denote “GAN 7,7,
the discriminator is helped by accessing the samples and demonstrations through the
different task-space transformations.

For each of the six techniques, the model was learned with a different number
of samples. Samples from the PoE, the VAE and the GAN 7, are shown in Fig. 3-
15, where the whole dataset was used to train the models. For each model, 500
samples were generated, for which the position of the new end-effector was computed.
We compared the distribution of end-effector positions between each model and the
dataset using maximum mean discrepancy MMD?. The results are reported in Fig. 3-
16. The PoE performs better than the others for each number of datapoints. Its
performance is also less influenced by this number. Its advantage can be explained
by the difficulty to represent the distribution in configuration space, which has a
complex shape. Since the target is also very precise, this distribution is close to a 4
dimensional manifold embedded in a 7-dimensional space, which makes it particularly
difficult to be encoded as a mixture of Gaussians. A Gaussian approximating a part
of this manifold will have an important portion of its density outside of the manifold,
resulting in an imprecise tracking. Only a high number of Gaussian components can
approximate well this distribution. Moreover, training such a model requires huge
datasets to cover well the entire manifold.

It is interesting to notice that GAN 7, performs quite well. In Fig. 3-15, samples
from the new end-effector are tracking the target better with GAN 7, than with
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Figure 3-17: Dataset and samples from the different models for a task involving an
unknown end-effector. Three cases are reproduced. Left column: The distribution
is sampled on a known target. Middle column: The target is in-between two given
targets. Right column: The target is far from the given targets. The first and second
rows show results for a conditional variational autoencoder and a PoE, respectively.

VAE. The standard GAN was not displayed here but has very similar performance as
the VAE. Unlike VAEs, GANs are very appropriate to exploit the existence of task
spaces as hand-engineered features of the discriminator. To our knowledge, they are
the best alternative to PoEs if more data is available.

Conditional distributions This experiment is similar to the previous one, but
requires a generalization to different targets for the new end-effector. The dataset
is split into 3 cases with N = 1000 datapoints for each. Unlike in the previous
experiment, the targets {ug)}?:o are given. The PoE model is defined as before,
with:

state: q € R7,
task spaces : T.(q) = Fr(q)d + F,(q) = F,;(q) € R,
T(a) =g € R,
experts : 1~/\/'(p,x,az )|i=0,...,3,
Y2 ~ N(pg, 041),

parameterstolearn :  d, 0., g, 0q.

For the evaluations, we used a conditional variational autoencoder (VAE), where

the targets {p,(xi)}?zo are concatenated to the corresponding datapoints at the en-
trance of the encoder and also concatenated to the latent variables at the entrance
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Case (a) (b) (c)
VAE 8.8¢7% 2.2e71 1.0e2
GMR 2.7¢7%  5.1e7" 9.0e72
PoE 3.5e7? —2.2e77 3.4e77

Table 3.4: Quantitative results for the task with the new end-effector. The table
shows maximum mean discrepancy MMD? measures between the dataset and the
different models for the different cases. (a) The distribution is sampled on a known
target. (b) The target is in-between two given targets. (c) Generalization with respect
to a new target far from the given targets.

of the decoder. For the Gaussian mixture model, we encode the joint distribution of
configurations q and targets and used conditioning over new targets to retrieve the
corresponding distribution of states, similarly to Gaussian mixture regression (GMR).
We evaluate the quality of the distribution with MMD? in three cases. In case (a)
(Fig. 3-17-left), the target is one already given in the dataset. In case (b) (Fig. 3-
17-center), the target is between two given targets. In (a) and (b), VAE performs
quite well, with the same limitations as in the previous experiments. In the last
case (Fig. 3-17-right), the target is far outside and the performance of VAE further
reduced. The PoE performs very well in the three cases, as shown also in the quan-
titative evaluation reported in Table 3.4. The only drawback is that it requires some
time to approximate the distribution given the new target, as only the unnormalized
density of the PoE is directly accessible. Note that this is not a problem if the log-pdf
is used as a reward function in optimal control, as proposed in Sec. 3.4. Regarding
the computation time for training the three techniques, they are about one minute for
both the VAE and the PoE while below 0.1 second for GMR. The three techniques
being trained with an iterative procedure, their training time can be reduced at the
expense of the precision.

3.5.4 End-effector position and rotation correlations

In this last experiment, we show how our framework can help to cope with orien-
tation statistics. Typical distributions, such as matrix Bingham—von Mises—Fisher
distribution (BMF) are hard to use, because of their intractable normalizing constant.
In PoEs, the normalization happens in the configuration space, which makes the use
of intractable density possible. Another tempting approach is to use a multivariate
normal distribution of vectorized rotation matrices. When training with maximum
likelihood estimation, this leads to bad approximations. Indeed, the wrong normal-
izing constant is considered because the space of rotation matrices is discarded. We
show that using such vectorized distributions is fine with the PoE as the normalizing
constant is computed in the product space. Also, in some cases, the Bingham—von
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Figure 3-18: Samples where the height of the end-effector is correlated with its
rotation along the e;-axis. The transformation matrix of the end-effector is displayed.

Mises—Fisher distribution can be computed as a Gaussian on the vectorized matrix
(see Sec. 3.3.2).

We produced three datasets, composed each one of N = 3000 independent samples
from a ground-truth PoE model. The number of samples is much higher than required
to understand the task but reduces the variance of the estimation of the parameters to
provide precise comparisons. The PoE model used to sample has a correlation between
the height of the end-effector (e5) and the rotation along this axis. In the first case (a),
the correlation is induced by penalizing deviations from a linear relationship between
elements of the rotation matrix and the height of the end-effector. This dataset is
shown in Fig. 3-18. In the two other cases (b) and (c), the correlation is induced
with the z Euler angle instead of the rotation matrix. In (b) and (c), the standard
deviations of this angle is 0.2 and 1., respectively. The PoE model is defined as:

state : g € R,
task spaces : Y1 = T,(q) = Frvee(r)(q) € R!2,
experts :  y; ~ N (u,diag(o) + LLT),
parameterstolearn : w, o, L,

where y; is a concatenation of the position of the end-effector and its vectorized
rotation matrix. The expert is a Gaussian with a structured covariance matrix.
The covariance is composed of a diagonal component diag(o), whose diagonal is
the vector o and a low-rank component L € R!2Xmxis that encodes correlations.
In this experiment, n,s is chosen to be 1 because there is only a single axis of
covariance. The covariance matrix and the mean g can also be parametrized to have
a marginal distribution of rotations in the form of a matrix Bingham—von Mises—
Fisher distribution, a marginal distribution of position as a Gaussian and a covariance
between the two (see (3.27)).
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Figure 3-19: Scatter plot showing the correlation between the height of the end-
effector and the first element of the first row of the rotation matrix for case (a). The
dataset is shown in black and the samples from the different models in blue.

We compare our approach with two others, where only the concatenated position
and orientation y; is taken into account and without exploiting the kinematic struc-
ture of the robot. In the first alternative, we perform maximum likelihood estimation
of a Gaussian with y;. In the second, we use a Gaussian on a Riemannian manifold
as in [124]. The rotation matrices are converted to quaternions and the considered
manifold is the product between a Euclidean and spherical 3-manifold. For the quan-
titative evaluation, we sampled 500 points from each model and computed MMD?
with the dataset. Results are reported in Table 3.5. The vectorized Gaussian is the
worst-performing model. Its best performance is in case (b), when the standard de-
viation of the angle is small, making the Euclidean approximation more valid. The
PoE performs better in all cases. As expected, its advantage is the biggest in case
(a), where the data was actually generated with a correlation between elements of
the rotation matrix and height of the end-effector. Figure 3-19 shows the correlation
between the height of the end-effector and the first element of the first row of the
rotation matrix for case (a).

3.6 Conclusion

We proposed a framework based on products of experts to encode distributions
in robotics. We demonstrated the pertinence of the model in various applications,
and showed that this framework can be linked to many existing learning from demon-
stration representations and methods. By incorporating robot knowledge as task
spaces, we showed that such approach is more data-efficient than general approaches
like variational autoencoder. We also discussed the promises that such approach
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Case (a) (b) (c)
DPvalue MMD% ‘ DPvalue MMD% ‘ Dvalue MMD%

Vectorized Gaus- 0.0001 2.0e2 | 0.10 2.15¢* | 0.0011 1.0e2
sian

Riemannian mani- 0.10  1.03¢7% | 0.17 1.5e™* 029  2.03e™*
fold
PoE 0.44 1.5¢=%|0.38 —3.9¢=°|0.68 —1.04e73

Table 3.5: Quantitative results for the task with a correlation between position and
orientation. The table shows pyaie and maximum mean discrepancy MMDZ measures
between the dataset and the different models for the different cases.

hold to tackle wide-ranging data problems in robotics, by providing a framework
that can start learning from few trials or demonstrations, but that it rich enough
to progress once more data are available. Indeed, since PoEs offer the flexibility to
learn parametrized task spaces as neural networks, the approach can span a wide
range of problems, from small datasets with significant a priori knowledge to bigger
datasets with less structured models. In the experiments, we validated that PoEs of-
fer substantial improvements over approaches in which models are learned separately,
emphasizing the capability of the approach to uncover tasks masked by kinematic
limitations or by the resolutions of higher-level objectives.



Product of policies

This chapter addresses the second part of the research question: how to pre-
serve and exploit the information about the structure of the kinematic chain and the
dynamics when learning movement primitives in several task spaces? The solution
proposed in this chapter is to define a Gaussian controller in each task space. The
robot is controlled with the fusion of these controllers, as a product of Gaussians.
These controllers are optimized such that the distribution of trajectories executed on
the robot is similar to the distributions of demonstrations, compared in the different
task spaces.

In LfD, movements are commonly represented using movement primitives (MPs).
They are used as building blocks of more complete skills in which they can be com-
bined sequentially or simultaneously.

In LfD, the parameters of MPs are learned from a set of demonstrations. Ideally,
motions synthesized from the MPs should match the distribution of demonstrations
with the same variability [32, 91]. It can be later exploited for multiple usages, such as
including additional constraints or objectives. Furthermore, keeping the variability is
primordial when the demonstrations are used to initialize policy search [74]. Another
desired feature of MPs is their adaptation to new situations or targets, such as moving
objects. To that end, a common approach is to learn MPs in multiple parametric
task spaces [16, 17, 92]. For example, the task spaces can be attached to objects of
interest [16, 81, 86] such that the movements are analyzed under several coordinate
systems. However, for computational reasons, many of these approaches make an
assumption of independence between the MPs in the different spaces; those are learned
independently and only combined at the controller level, which results in distortions
in the synthesis.

A consistent framework for learning multiple models jointly is the product of
experts (PoE) [52, 126]. Models with unnormalized likelihood like PoEs are used in
robotics for inverse optimal control (IOC) [35, 61, 128]. However, they either rely on
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expensive approximations of the normalizing constant [35] or learn only weights of
predefined features [61]. Generative adversarial modelling [41] has been proposed as
a more efficient approach with improved stability of the training [34, 49, 54].

In this chapter, we propose to train MPs within the generative adversarial frame-
work which we call generative adversarial movement primitives (GAMP). We propose
several adaptations of the discriminator and a particular parametrization of the pol-
icy to meet the requirements of LfD; as performing demonstrations on the physical
systems is costly, we typically only have a few trajectories (from 5 to 20 depending
on the complexity). Also, the training process should be interactive and thus rela-
tively fast (from a few seconds to a few minutes). The proposed approach can be
classified as model-based imitation learning [32]. Given a prior knowledge about the
dynamics of the system, it uses model-based policy search to minimize an imitation
cost. As shown in the experiments on the real robot, rough dynamic models make
the process sample-efficient. We also propose a variant of the method to refine these
models through executions on the real system. Our approach treats both epistemic
uncertainty (coming from partial knowledge of the system) and aleatoric uncertainty
(coming from stochasticity of the system), resulting in robust controllers. Finally, our
framework aims to remain general and be compatible with multiple control strategies
such as velocity, acceleration or torque control. It can also be used to train both
time-dependent [17, 91] or time-independent policies [63].

Organization of the chapter In Sec. 4.1, the method to train MPs in the gener-
ative adversarial framework is described. In Sec. 4.1.1, the structure of a trajectory
is presented as a state-space model, which includes a policy, an observation and a
dynamic model. A policy structured as a product of Gaussian policies defined in
different task space is presented. In Sec. 4.1.2, the additional discriminators are pre-
sented. In Sec. 4.2, we propose a method to treat uncertainties in the dynamic models.
Some parametrization of the Gaussian policies are presented in Sec. 4.3. Finally, in
Sec. 4.4, several experiments are proposed.

4.1 Generative adversarial training for product of
policies

In the generative adversarial framework [41], a generator G(z;0) is trained to
transform input noise p.(z) into samples that look like the data distribution. To do
this, a discriminator is trained in parallel to output the probability that a sample
comes from the data rather than from the generator. On its side, the generator
has to maximize the probability to mislead the discriminator. The generator and
discriminator are typically neural networks trained with stochastic gradient descent
(SGD). At each step of the training, the discriminator is optimized for a few steps of
SGD and then one step is done for the generator.



4.1. GENERATIVE ADVERSARIAL TRAINING FOR PRODUCT OF POLICIES

73

- observatio
h'o‘ p(ye|&:) %

Figure 4-1: Dependencies in a trajectory model.

4.1.1 State-space generator

In order to generate trajectories, the considered generator is a state-space model
defined by several components. We assume that we have access to a stochastic dy-
namic model of the robot p(&§4+1|&:, u., @) where &, is the state at time t, u; the
control command and 6; the parameters of the dynamics model. If the robot is
controlled with inverse dynamics, this model can be a simple integrator, but more
complex models such as neural networks can be considered. If the dynamics model is
not known or is uncertain, a distribution of parameters p(6y) can be defined, under
which the expected objective will be optimized, as we will see Sec. 4.2. The state
of the system being sometimes not directly observed, an additional component that
needs to be defined is a stochastic observation model p(y;|&;) where y; is an observa-
tion. Control commands are computed given this observation by a stochastic policy
mo(us|y;) where 6 are the parameters of the policy. A distribution of trajectories

T = {y1, U1, ..., yr, ur} is then defined as a state-space model with
p(7165,0) = p(&1) [ [ p(&rs11&r, i, 07) o (welyr) p(wil&y)- (4.1)
t=1

The dependencies of this model are summarized in Fig. 4-1 as a graphical model.
An evident way to learn the MPs is to compute maximum likelihood estimation
of @ given a set of demonstrated trajectories. However, computing or maximizing
this likelihood requires approximations or restricting assumptions [21, 26, 32]. In
GANSs, the likelihood is not modelled explicitly. It is just required to be able to draw
samples from this density. Full sequences can be generated by forward sampling,
by sampling each model after the other according to (4.1). Thus, great flexibility is
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allowed for setting the dynamics, policy and observation models; they only have to
be simple to sample from. Additionally, this process should be differentiable with
respect to their respective parameters (e.g. 6 and y for the policy model) using the
reparametrization trick [66]. If the observation model is not bijective, it might be
impossible to retrieve the distribution of initial states of the demonstrations p(&;). In
this case, this distribution can be parametrized and optimized as well. For simplicity
of the notation, an observable system with & = y; will be used for the derivations in
the rest of the chapter, without loss of generality.

Adaptation with products of Gaussian policies (PoGP)

While the dg-dimensional state £ of a robotic manipulator is defined by its joint
angles (and possibly velocities), movements are often best explained under several
task spaces. FEach task space P is associated with a task map, which is a non-
linear function 7, : R — R¥. Accordingly, a set of linear functions maps control
commands u (joint velocities or acceleration) to their value in the different task spaces
Tup R — RFu. These transformations can be parametrized by the poses of an
external object (which we will drop in the notation for simplicity) or by time, which
we will denote with the superscript t. We propose to define a stochastic Gaussian
policy in each of these task spaces as

T pluw) ~ N (1 (T2, (60). 24 (T2, (60) ). (42)

In the most general case, p/(-) and 3 (-) can be neural networks. In simpler cases,
the policies can be proportional derivative controllers with a constant covariance. In
Sec. 4.3, different parameterizations of the policy are given. The proposed overall
policy is the fusion of the policies in the different task spaces, given as a product of
linearly transformed Gaussians

b (T2,(60), 34 (T, (€)) ) (4.3)

) ).

mo(uilé) oc [TV (7 (w)

This product has a closed form expression as a Gaussian and can be sampled directly.
Many works [17, 92, 95] have a final controller of this form, but it is computed by
using expert policies that have been learned independently. In [95], we additionally
proposed to exploit the uncertainty (coming from the lack of data) of each controller
by using Bayesian models.

The same parametrization is also proposed as a Riemannian Motion Policy in
[101]. They define a set of operators as addition, pullback and pushforward that
are strictly equivalent to the product, inverse and forward linear transformations
of Gaussian respectively, as presented in Sec. 2.4.1. However, their approach loses
the statistical interpretation that is useful for developing learning algorithms and
generating stochasticity.
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4.1.2 Including LfD generative models as close-to-optimal
discriminators

Besides training a discriminator as a neural network D(7), we propose to include
standard generative models used in LfD. They are usually trained in closed form or
with very efficient procedures like EM. This addition is motivated by a dramatically
increased stability and speed of the training procedure. We propose to include a
second discriminator D, (7) which is multiplied to the original one. This discriminator
consists of two approximate distributions gsamples and ggata learned with standard LfD
generative models as [16, 17, 91]. In this chapter, this discriminator is called a close-
to-optimal discriminator with

qdata(T)
D,(T)= )
q< ) Gdata (T) + qsamples<7->

(4.4)

In an optimal discriminator, ggata and gsamples Would be the exact distributions, not
the approximate ones which are improperly normalized. But if we were able to model
explicitly this likelihood, the generative adversarial approach would not be needed.
The class of distributions ¢ we propose to use typically drops some dependencies or do
not integrate to one on the space of trajectories. Another formulation of this problem
is that the system is underactuated® [88]. Directly used as generative models, where
the dropped dependencies are only restored at the synthesis phase [16, 90], these
models induce distortions, as discussed in [126]. These distortions are extensively
reduced if these models are used as classifiers in the context of generative adversarial
learning; both the samples from the generator and the dataset are compared under
the same approximations while the feasibility and dependencies are ensured by the
generator (4.1).

We propose to train the approximate distribution gq.i. once at the beginning of
the learning process. The approximate distribution of samples gsampies is updated with
maximum likelihood before each step of gradient descent of the policy parameters,
see Alg. 3. As it might be costly to generate many samples from the generator at each
iteration, gsamples can be learned incrementally with stochastic updates of maximum
likelihood. Such updates can be derived for expectation maximization (EM), closed-
form maximum likelihood (e.g. Gaussian distribution) or variational inference [55]
(in the case where qata and gsamples are Bayesian models whose posterior distribution
is estimated).

Many possibilities are offered for choosing the family of approximate distributions
q. A very simple choice, if the trajectories are all aligned in time, is to use a factorized
Gaussian distribution as

q(T) —f[/\f(

Matching factorized Gaussian distributions is also done in [32] in a similar context.

&
Uy

‘ Mt Et)- (4.6)

LAll the trajectories of the distribution are not feasible.



76

CHAPTER 4. PRODUCT OF POLICIES

Algorithm 3: Stochastic gradient descent generative adversarial training of
movement primitives

1 Compute maximum likelihood of ggat, on the N demonstrations {%(i)}i]\; 1
2 for number of training iterations do

3 Sample from (4.1) M trajectories {7®}M

4 | Apply (stochastic) maximum likelihood updates on ggamples given {70},
5

Update policy parameters 8 by descending the stochastic gradient :

M
Z ( lOg Qdata( G ))) + lOg (qdata(T(i)) + QSamples(T(i)» (45>

6 end

However, q is represented explicitly by using Gaussian process dynamics models and
moment matching approximations [21]. If the trajectories have particular correlations
across time (that are not due to the dynamics), probabilistic movements primitives
(ProMP)[91] can be used instead. In order to provide adaptation to parametrized
task spaces, the discriminator can additionally compare the trajectories in these task
spaces as

)= ﬂ (N( |l 2)) (4.7)

In this case, even if the approximate distributions ¢ are Gaussians, the discriminator
would be able to distinguish between more complex distributions, as the comparison
is done under non-linear transformations. In the case where the trajectories cannot
be time-aligned or that the targeted distribution is multimodal, more complex models
as hidden Markov models [16] or Gaussian mixture models [95] can be used, with the

density

They can be trained very efficiently with EM in a few milliseconds.

‘/—Lt,zt> HN( [T§p<

p=1

o) =TT 3o

t=0

By using Gaussian models, which have quadratic log-likelihood, the gradients are
well-behaved, leading to fast convergence. At initialization, our generator samples
trajectories 7 very far from gga. but close from Jsamples- 1'he term ﬁ Zi\il — log (
qdata(‘r(i))) in Alg. 4 would dominate the gradient of the cost, which would be close
to quadratic. For practical and stability reasons, we propose to train the policy first
by considering only the additional classifier using approximate distributions. Then,
the neural network classifier is only used for additional refinements and with smaller
learning rates. In this case, the neural network is just helping the additional classifier
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to distinguish features that are not encoded in the approximate distributions q.

4.2 Robustness and unknown dynamics

In this section, we propose a strategy to learn robust policies in case of changing or
unknown dynamics. This problem is not directly related to the main research question
of this thesis. However, providing an answer is necessary for the implementation of the
proposed method on real systems. So far, we have considered fixed parameters 6 of
the stochastic dynamic system, which is not realistic. It can result in a poor matching
of the trajectory distribution in the case where the model of dynamics 6 does not
match the real system. In the worst case, the distributions can completely diverge
and executing the policy can be dangerous. In other cases, the problems can be less
disastrous and more subtle. For example, if the model overestimates the stochasticity
of the system, the rollouts on the real system would have lower variance than the
demonstrations. In this case, the system will rely too much on the stochasticity of
the environment to create variability. A robust policy has to match the distribution
of trajectories for a distribution of parameters p(6). This distribution can be either
a hand-tuned prior distribution, a posterior distribution if the dynamics are learned
with Bayesian methods or a set of parameters {Of(j) I, if they are learned with
ensemble methods.

We propose to condition the discriminator on @y, which means that this value
should be fed to it together with the samples. As the true system is not known
when executing the policy, this latter should not depend on the parameters of the
dynamics. Giving access to the model parameters on which are generated the samples
to the discriminator only forces the policy to match the distribution of data under a
distribution of dynamic parameters, ensuring robustness.

In order to use the additional discriminators D,(7) proposed in Section 4.1.2, two
alternatives are possible. The choice mainly depends on the trade-off between robust-
ness and computation time. In both cases, multiple approximate models {gsamples Y ]Lzl
are learned on a batch of dynamic parameters {Gf(j)}le. In the case of privileging
robustness, the L dynamic parameters are drawn from their distribution before each
iteration of gradient descent. In this case, enough samples should be drawn from
(4.1) in order to compute the maximum likelihood of the approximate distribution
QSamples(j). The stochastic updates are not allowed as the L model from the previous
iterations do not correspond anymore. When it is too costly to sample enough tra-
jectories to perform complete maximum likelihood of ¢, the L models can be changed
only after a given number of iterations or even kept fixed throughout the learning
process. This solution is also natural if the parameters are learned by an ensemble
method. The procedure is more formally presented in Alg. 4.

The parameters of the system 6 can be also learned or refined. For model-based
policy search (from which our approach is a particular case), a key requirement of
the dynamic model is its ability to produce good long-term predictions. Many ap-
proaches optimize a one-step-ahead model, for example by maximizing the likelihood
of p(&+1|&:, uy). However, due to modelling errors, false assumptions on the model
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Algorithm 4: Robust generative adversarial training of movement primi-
tives

1 Compute maximum likelihood of gg.t» on the N demonstrations {%(i)}i]\il

2 for number of training iterations do

3 for L dynamic models {Of(j)}le do

4 Sample from (4.1) m trajectories {79} M,

5 Apply (stochastic) maximum likelihood update on qsamples(j ) given
{T(i’j)}z’]\il

end

Update global policy parameters 8 by descending the stochastic gradient :

N o

L M
vem Z Z ( — log (Qdata(T(w))) + log (Qdata(T(lJ)) + QSamples(])(T(Z’])))
j=11i=1

(4.9)

8 end

and noisy or partial observation model, this approach tends to produce brittle pre-
dictions which diverge quickly from the real system [12]. Robust approaches as [26]
optimize the likelihood of full sequences of observations p(yi, ..., yr) marginalized on
the sequence of latent states {£1, ..., &r}. Our approach optimizes the same objective
but in the generative adversarial framework, which does not require to model explic-
itly the marginal distribution of observation. It makes very little assumptions on the
dynamic, observation and policy models at the expense of a higher computational
cost.

The approach to refine the dynamic parameters is presented in the case of the
close-to-optimal discriminator D, (7). The proposed process alternates between learn-
ing parameters of the policy using Alg. 4 and executing this policy on the real system
to update the dynamic model. To do so, an additional approximate distribution
6.data 15 introduced. It models the distribution of trajectories executed on the real
system with the inferred policy parameters @ of the previous step. The distribution
of trajectories gsamples sampled with the inferred policy and model of the dynamics is
optimized to match this new distribution gg gata. This time, the gradient is computed
with respect to the parameters of the dynamic model 8. For increased robustness, it
is better to keep multiple dynamic parameters {Hf(j)}gzl and train them in parallel
as an ensemble method, see Alg. 5. For example, if the inertia of the robot is not
known, the multiple initial dynamic parameters could reflect this. The policy training
at the first iteration (before executing on the real system) would be more conservative
(high feedback terms) to accommodate this uncertainty. In the case where a single
dynamic parameter was used in the policy optimization, the execution on the robot
can be disastrous (for example if the inertia matrix was overestimated).

Our approach has the advantages to treat separately epistemic uncertainty (com-
ing from partial knowledge of the system) and aleatoric uncertainty (coming from
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Algorithm 5: Refining dynamic models with an ensemble method

1
2
3
4

)

© o N o

10

11

12

13
14
15

Compute maximum likelihood of ggat, on the N demonstrations {f'(i)}f\; 1

for number of real-system iterations do
Start with L initial guesses {6 f(j)}JL:1 of system dynamics
Update policy with Algorithm 4
Sample n trajectories {i'(el ) f\;l on the real system given current policy
parameters 6
Compute maximum likelihood of the distribution of new trajectories gg qata
for number of training iterations do
for L dynamic models {Of(j)}f:1 do
Sample from (4.1) M trajectories {7} M,
Apply (stochastic) maximum likelihood update on qsamples(j) given
{T(i’j)}i]\il
Update dynamic model parameters 6 f(j ) using the stochastic
gradient:
1 X o - N
vgf(j) M Z —log (qe,data(T(m)» + log (qe,data(T(m)) + QSamples(J)(T(m)))
i=1
(4.10)
end
end
end

stochasticity of the system). Also, by using neural networks to model the dynam-
ics, environment with heteroscedastic noise can be modeled, as opposed to standard
Gaussian process models.

4.3 Robotic policies

In this section, we propose several convenient parameterizations of policies that

can be used in our framework. As proposed in Sec. 4.1.1, the policies used in this
chapter are defined in P task spaces 7T, : R? — R*. We denote x, = 7,(q) the value
in task space p and J, = 97, /0q its Jacobian. The velocity &, and acceleration &,
in the task space are

&, = Jp(q)q, (4.11)
&, = Jp(q)g + jp(‘])‘i ~ J,(q)g. (4.12)

The relation between the joint torque 7 and the generalized force is

Tl (q)f, =T (4.13)
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Control strategy Velocity Acceleration — Torque
State & q [q] [q]
q q
Control command u g} (} T
Transform 7, , 7.(q) 7;,(q). 7;(‘1)'
Jy(q9)q Jy(9)q
Transform 7;’}7 Jp(q)c} Jp(q)& J;T(q)r

Table 4.1: Equivalences between abstract state €, control command u, task-spaces
transform and robotic variables.

These relations are used to define an equivalence between variables used in the above
and the different control strategies. The equivalences are reported in Table 4.1 for
different control strategies. For velocity and acceleration control, (} and (} are reference
values that are tracked by lower-level controller, as inverse dynamics [84].

These relations do not need to be exact. They are just parameterizations of
the policy which give a better structure to the problem to facilitate the training
phase and increase generalization capabilities. Simplifications, such as dropping jp(q)
for acceleration control, can be done to speed up the computation of the stochastic
gradient while training.

The policies can be parametrized in different ways. For time-dependent policies,

a solution is a feedback controller with time-varying gains and feed-forward terms.

These controllers are very usual in LfD [16, 91] and are also solutions of linear-
quadratic tracking problems [15]. They can be used both for velocity control

(T (€)) = — K, (1) T, (@) + dy (1), (4.14)

).

(T8, (€)) = £, (1), (4.15)

or acceleration and force with

1, (T, (8)) = =K, ()T, (q) — K (1) J,(q)q + dy (1) (4.16)

Continuous values for the parameters depending on time ¢ can be induced by linear
basis functions or simple multilayer perceptrons (MLP). Gains K can be parametrized
in several restrictive ways depending on the assumptions on the system. It can help
at stabilizing and speeding up the training phase as well as at providing more safety
on the robot.

Time-independent policy can be defined with MLPs that output the parameters
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of the Gaussian policy

1, (Te,(8)) = Fu(T (@), (76, (8)) = F=(T(q). (4.17)

Covariance matrices can be parametrized by their Cholesky decomposition or using
the matrix exponential of another symmetric matrix. Time-independent policies have
also been modeled by computing conditional distributions in Gaussian mixture models
(63, 95]. This latter approach is extremely fast to train from data but its gradient is
not well-behaved for optimization.

4.4 Experiments

4.4.1 Time-dependent policy

In this first experiment with synthetic systems, we consider a simulated 2D unit
mass system with a discretization of time dt = 0.01 s. The state £ € R* is composed
of its position and velocity, and the control command u € R? is the simulated force.
The dataset are letters from the alphabet [16]. For each letter, N = 13 time-aligned
demonstrations of T' = 200 timesteps are given. Demonstrations are shown in Fig. 4-
2-(left) for letter “N”. A time-dependent feedback Gaussian policy as (4.16) is used.
The gain matrices and feed-forward terms are parametrized with time-dependent
basis functions. Gains are parametrized in several ways, which has some influence on
training time but none on the final quantitative results. For the evaluations, K,(t)
and K (t) were chosen as diagonal matrices with positive elements. In this first
experiment, the policy is not a PoGP as it is defined only in the original state space.
The approximate distributions used for the discriminator are factorized Gaussians
as (4.6). Each letter was trained for 10 s. The approach presented in Sec. 4.2 was
used on a distribution of dynamic parameters p(6;) which include different values of
Gaussian perturbations acting on the control command and on the initial state.

We compare our approach with ProMP [91] and hybrid approaches that learn a
time-dependent distribution of states with either Gaussian mixture regression (GMR
+ LQT) [17] or hidden Markov models (HMM + LQT) [16] and use linear quadratic
tracker to regenerate continuous trajectories.

Given the controller computed for each model, we evaluated rollouts in 3 situa-
tions. In the first case, Of(l), the system is deterministic. In the second case, 0f(2),
uncorrelated Gaussian perturbations in force of standard deviation of 10 N are in-
jected. In the third case, Of(3) Gaussian noise on the initial position of standard
deviation of 0.035 m is applied. Two metrics are used to compare the demonstrations
with the synthesized samples. The first one evaluates if the mean motion is well
reproduced. For each letter, the mean squared error (MSE) is computed between the
mean trajectories (position and velocity only) over the N = 13 demonstrations and
the mean over 20 samples from the model. The second metric evaluates if the full
distribution is well reproduced. The Bhattacharyya distance (BD) is computed over
a Gaussian approximation of the distribution of demonstrations and samples.

The results are reported in Table 4.2 for each case of dynamics, each model and the
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Demonstrations 0}
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Figure 4-2: Demonstrations and reproductions using ProMP and GAMP for differ-
ent stochasticity of the environment, parametrized with Of('). The same controllers
are used in the 3 situations.

Metrics Mean squared error Bhattacharyya distance

Environment ¢ 0,1 04> 043 0t 04> 03

GAMP (ours) 0.184+0.06 0.19+0.08 0.23+0.11 0.13+0.04 0.13+£0.04 0.11+0.04
ProMP [91] 0.38 £0.27 1.15 £ 0.55 0.60 £ 0.42 0.24 £0.10 0.90 £ 0.30 0.29+0.10

GMR + LQT [17] 0.31+0.14 0.34 +£0.13 0.31+£0.13 0.40 +£0.07 0.30 £+ 0.06 0.40 +£0.07
HMM + LQT [16] 1.58+0.48 1.20 £ 0.47 1.20£0.48 0.76 £0.21 0.58 £0.21 0.75+0.21

Table 4.2: Mean squared error and Bhattacharyya distance between demonstrations
and samples of different models. The samples are generated with three different
dynamic parameters.

two metrics. The mean value and standard deviation of these metrics over the whole
alphabet is given. Demonstrations and synthesized samples from ProMP and GAMP
are shown in Fig. 4-2 for each stochasticity. ProMP and GAMP have similar results
in terms of MSE and BD in case of no stochasticity Of(l). The ProMP controller
derived in [91] assumes known dynamics and stochasticity in order to match the
distribution of demonstrations. Our approach can generate a controller that matches
the distribution, for a distribution of stochasticity of the environment. A more robust
controller for ProMP can be derived in our framework by using ¢qata and gsamples as
ProMP distributions. The approach using GMR + LQT is robust to perturbations
and performs well in terms of MSE. However, the distribution is not matched very
well. The velocity of the rollouts have the same variance as the demonstrations but
the positions tend to shrink on the mean trajectory. This is due to the assumption
of independence between two consecutive states that are ignored in GMR and HMM
and that are later restored with LQT. The proper way to generate the matching
distribution would be to use IOC with LQT [34] or trajectory HMM [125].

4.4.2 Time-independent policy in two task spaces

In the second experiment, we consider a time-independent policy that should adapt
to a moving object, as shown in Fig. 4-3b. The system considered is a simple integrator
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with possible perturbations. The dataset consists of a smooth blending between the
letters “S” and “J”. The letter “J” should move according to an object, displayed as a
coordinate system in Fig. 4-3b. Ten different positions and orientations of the object
are given, and for each of which N = 10 demonstrations of T" = 400 timesteps are
performed. The dataset was randomly split into 5 situations to train and 5 to test the
generalization. The policy is the product of two time-independent Gaussian policies
given by an MLP as (4.17). These two policies are defined in a different task space:
the first one in a fixed task space, and the second one, projected in the coordinate
system of the moving object. The MLPs have both 2 hidden layers of 150 units
with tanh activation and output a state-dependent Gaussian with a full covariance.
The covariance is parametrized by its matrix logarithm. Even if the demonstrations
are full and aligned, we discard this information for training, and randomly split
them in small chunks. The approximate distributions used for the discriminator are
Gaussian mixture models with K = 20 as (4.8) in each task space. Before each
update of policy parameters @, 10 steps of EM are performed with 1000 points each.
Every 50 steps of policy parameters update, the mixture models are reinitialized with
k-means to avoid local minima. The policy parameters are initialized by maximum
likelihood of the policy density on pairs of {&, u} for 5 s of stochastic gradient descent.
This initialization corresponds to a policy imitation objective, which is known to
produce brittle policy [103]. Fig. 4-3a-(left) shows the policy after initialization and
the dangers of drifting away from the training data. The models are further trained
for 15 s in the generative adversarial network. Two alternatives are considered. In
the first (GAMP), the system is assumed to be deterministic during training. In the
second (GAMP + noise), small perturbations in the initial state of the chunks are
simulated. The policy is then trained to look like the demonstrations, even with noise,
which results in more robustness. The differences between the policy learned in these
two cases are shown in Fig. 4-3a-(middle and right). We also consider another policy,
where the adaptation to the moving object is given by the neural network instead
of the usage of multiple task spaces. In this case, the MLP defining the Gaussian
policy has an additional input. It is the position and vectorized rotation matrix of
the object.

As an evaluation, we produce full rollouts from the initial states of the demon-
strations. We compute the mean absolute error (MAE) over the position of the whole
rollout and the closest demonstration. The mean value and its standard deviation
over the training and testing situations are given in Table 4.3. The adaptation with
the use of task spaces and MLP perform the same on the training set but the former
generalizes better. In robotics, many adaptations of movements can be understood
easily by projecting them into several coordinate systems. The two approaches can
also be combined in the case where the definition of multiple task spaces is not suffi-
cient. The addition of noise in the initial state makes the GAMP more robust. They
also generalize better to new situations. When using the imitation cost only, the tra-
jectories diverge, as shown in Fig. 4-3a-(left). In the case of MLP adaptation, they
diverge extremely fast, leading to an enormous cost. When using the imitation cost
only, the benefits of defining two policies on low-dimensional task space instead of a
unique policy with an additional vector of inputs are important. The fusion of two
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(a) Demonstrations and samples with several N
learning strategies. The area leading to di-
vergence are highlighted. (left) The policy
is trained only by maximizing its own like-
lihood, as in policy imitation. (middle) The
policy is trained with the method presented in
this chapter, to maximize the likelihood of the
trajectories. (right) Additional perturbations
are added in the initial state of each chunk,
leading to a more robust policy.

9, 9

(b) Demonstrations and samples in several sit-
uations. The transformation of the moving
object is indicated with a coordinate system.
The flow field displays only the mean value of
the policy.

Figure 4-3: Illustration of time-independent policies as flow fields.

Training Testing

Task spaces adaptation
GAMP + noise 0.016 £ 0.003 0.025 + 0.009
GAMP 0.019£0.008  0.075£0.13
Imitation 0.251 +0.346  1.629 £2.124

MLP adaptation
GAMP + noise 0.0174+0.002  0.078 £0.014
GAMP 0.025 +=0.008  0.086 £ 0.028
Imitation 3.2e6 + 8.7¢6 1.3e6 £ 6.4e6

Table 4.3: Mean absolute error (MAE) between the whole rollout and the closest
demonstrations for situations in the training and testing set. The red colour indicates
huge errors because of divergence.
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Figure 4-4: Evaluations of the robustness for different dimensionality of state d¢ €
{2,4,8,16,32}. (left) Log mean distance between the final state of the demonstrations
and of 10 rollouts. (right) Log mean standard deviation of the final state of the 10
rollouts.

robust policies will tend to be more robust than a policy that can change completely
for each new vector defining the situation.

The problem of learning robust policy is very difficult [103], [63]. Our approach
gives no guarantees that the system cannot diverge, but the cost of mimicking the
distribution of trajectories greatly increases the robustness. By injecting noise and
training with stochastic gradient descent for a sufficient amount of time, the system
is expected not to diverge. We performed an additional test for showing that this
also applies to higher-dimensional systems, given slightly longer optimization. We
created higher-dimensional dataset by randomly concatenating letters up to & € R32.
Two metrics were used to check the divergence. The first one is the mean distance
between the final state of the demonstrations and 10 rollouts. The second one is the
standard deviation of the final state for each rollout. The rollouts were executed for
twice the horizon of the demonstrations, to check if the system drifts further and
by adding perturbation on the initial state. These two metrics were evaluated for
5 random concatenations of letters for each dimension. The metrics were evaluated
just after initialization using the policy imitation cost and several times during 50 s
of training. Results are reported in Fig. 4-4. They show that, as expected, high-
dimensional systems tend to be more difficult to train. However, after a few seconds
of optimization, no more trajectories were diverging even for high-dimensional system.
They all converged within an area of at worse 0.05 m of standard deviation, while
the scale of the workspace is about 1 m.

4.4.3 Acceleration control with adaptation

In this experiment, the robot has to paint a box held by another robot. It needs
to dip the brush in a paint container that is always at the same place and then
wipe the box whose orientation and position can vary, see Fig. 4-5a. The dataset
consists of N = 7 time-aligned demonstrations of 4.5 s with a discretization of time
dt = 0.02 s. In each demonstration, the box has a different pose. We consider that the
control commands are the joint accelerations ¢ € R” and the state £ € R consists
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(a) Painting task with adaptation to varying (b) Drawing task in varying environ-
poses. ments.

Figure 4-5: Two illustrative tasks are performed on the robot to demonstrate the
adaptation and robustness of the approach. A 7-DoF Panda robot controlled with
acceleration (a) and torque (b) control is used.

Training Testing 0, =1 Testing 0. = /2 Testing o, = 2

ProMP conditioning [91] 0.35+0.13 1.724+2.29 8.18 £15.86 13.21 £ 22.66
GAMP 0.60£0.23 0.79+0.81 1.20 £ 0.84 7.02+17.78

Table 4.4: Bhattacharyya distance as quantitative evaluation for the painting task.

of joint angles and velocities of the robot holding the brush. In this configuration,
the dynamic model is thus given as a double integrator.

In order to provide adaptation, the policy and discriminator are defined in joint
space and two task spaces. The first task space is the position and orientation of the
end-effector in a fixed coordinate system and the second is in a coordinate system
attached to the box to paint. In each of these three spaces, a Gaussian feedback
controller with time-varying gains, feed-forward terms and covariances are defined.
More details are given in Section 4.3, see Equation (4.16). The discriminator consists
of a factorized Gaussian distribution in each task space as (4.7).

As evaluation, we compare the adaptation capabilities with a ProMP conditioned
on the 6-DoF pose of the box. As metric, we compute the Bhattacharyya distance?
(BD) for the distribution of final position and orientation in the coordinate system
of the box between the demonstrations and the reproductions. These final poses are
shown in Fig. 4-5a. Results are reported in Table 4.4. They first are performed on
the 7 different contexts of the demonstrations. In this case, ProMP conditioning
gives better results. Generalization is then tested by sampling 20 contexts from the
Gaussian distribution of poses in the demonstrations. To analyze the extrapolation
capabilities, the standard deviation is multiplied by o, € {1, V2, 2}. In every case
unseen in the demonstrations, the product of policies generalizes better.

2This distance is computed by approximating the final distribution with a Gaussian on 10 tra-
jectory samples.
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Figure 4-6: Learning to reproduce the distribution of “G” letter on a 7-DoF Panda
robot.

4.4.4 Force control and dynamic model learning

In this experiment, we reproduce 2D handwritten letters from [16] in different
environments. For each letter, N = 13 time-aligned demonstrations of T" = 200
timesteps are given. With a discretization of time dt = 0.01 s, the trajectories last
2 s. The policy learned is then run at 1000 hz on the robot. A third dimension is
added to the letters as a fixed height. We alternate between optimizing the policy and
refining the model of the system, as proposed in Alg. 5. We consider that the control
commands are the forces f € R? applied at the end-effector as 7 = J7f. The state
¢ € RS is the position and velocity of the end-effector. In this experimental setup,
the configuration of the robot is considered as a hidden variable that influences the
dynamics. This uncertainty has to be learned by the identification of the dynamic
parameters and the policy robust to the unknown configuration.

A time-dependent feedback controller is used as in the first experiment. The
dynamics are learned by an ensemble method. We consider that the system is a mass
of 3 kg on which a non-linear state-dependent perturbation is added. This non-linear
term is modeled as a MLP with two hidden layers of 20 units, tanh activation and
the last layer linear. At initialization, the neural networks generate perturbations of
a standard deviation of 5 N. This initialization is important: if the true system is
in the distribution of systems defined by the initialization of the L models, then the
first policy executed on the robot will be already quite good. We demonstrate this
by performing the same task with a unique neural network instead of an ensemble.

After initialization of the dynamic parameters, a robust policy is learned for 10 s.
This policy is run on the robot for M = 10 times, by starting at a random ini-
tial state of the demonstrations, and with a random configuration. With the initial
guesses about the system, the first computed policy already leads to a very similar
distribution, see Fig. 4-6a (second column). The L dynamic parameters are optimized
in parallel for 10 s given these new trajectories. The trajectories of the generator now
match the trajectories on the true system (third column). The whole process can
be repeated until convergence. In this experiment, the policy has been updated only
once more for 10s and tested on the robot with good results (fourth column).

As a comparison, Fig. 4-6b shows the execution of the first policy on the system
when no ensemble method are used. Several sets of trajectories are displayed corre-
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Figure 4-7: Increase of the feedback gains resulting from the identification of ex-
ternal perturbations. Left: Diagonal values of the time-dependent proportional gains
K (t) € R3*3. Right: Diagonal values of the derivative gains K"(t) € R3*3.

sponding to different initializations of 6. In this case, the trajectories are worse than
the ensemble method because the epistemic uncertainty is not taken into account,
which results in an overconfidence on the dynamic model. As a comparison, the first
policy computed using the ensemble method (Fig. 4-6a) has higher feedback gains,
resulting in a lower sensitivity to uncertainties.

These first sets of trajectories were produced without any other perturbations than
the unknown configuration. To assess for the generality of the method, we tested the
process in three different environments. In the first, a user applies short (around
0.2 s) perturbations of around 10 N all along the trajectories and in every direction.
After an update of the dynamic model, a higher stochasticity of the environment is
inferred. The following update of the policy results in higher feedback terms (see
Fig. 4-7).

In a second environment, we tested if the approach is able to learn that an obstacle
is on its path, which should be pushed. This time, the letter “U” was chosen and
a moving plastic block of around 1 kg put on the table to block the lower part of
the letter. Iterations of Alg. 5 are shown for this environment in Fig. 4-8. The
first trajectories executed on the robot are truncated (second column). The friction
between the end-effector of the robot and the obstacle also prevents motion along
&o. After updating the dynamics model with M = 10 rollouts, the prediction of the
generator matches the real system (third column). The following update of the policy
leads to a much better reproduction of the distribution (fourth column).

In the third case, the robot needs to draw the letter on a paper. A pen was
placed in the gripper of the robot and the end-effector redefined as the tip of the pen.
The policy was constrained to apply a constant force of 8 N on the paper, as this
information was not in the dataset. The contact of the table was explicitly modeled
in the dynamics model as a spring-damper system with high gains. The ensemble
method still had to learn the additional friction induced by the tip of the pen on the
paper. This dynamics was harder to train and the system needed three iterations
of the whole process instead of one in the previous experiments. The trajectories of
these iterations are shown in Fig. 4-5b.
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Figure 4-8: Iterations of Alg. 5 for reproducing a distribution of “U” shaped tra-
jectories with an obstacle that should be pushed.

4.5 Conclusion

The generative adversarial framework is promising for learning movement primi-
tives. It can bring together numerous classical techniques from LfD with the computa-
tion power and flexibility of modern machine learning architecture [1]. The approach
is easy to be adapted to a wide range of problems. The practitioner, vaguely familiar
with machine learning, is only required to define a function for the dynamic system,
one for the policy and possibly multiple relevant task spaces. Future work will focus
on learning more complex policies and dynamics models, also from raw pixel observa-
tions. More efficient model-based policy search methods should also be incorporated
in the framework, to cope with longer horizon problems.



summary and recommendations

Inferring intentions from demonstrations is quite a challenge. Having prior knowl-
edge about the system, the environment and the task can significantly increase the
efficiency of the process. In robotics however, this knowledge can often be reduced to
the use of multiple task spaces in which the configurations or motions are meaningful.

Two approaches to reintroduce mathematical consistency and coherence in mod-
els learning distributions in different task spaces have been developed in this thesis.
The core idea is to treat the data in their original space - the configuration space
for Chapter 3 and the space of trajectories for Chapter 4 - and consider distributions
with these proper supports. In Chapter 3, this has been done by using complex ap-
proximations of the normalizing constant. This normalizing constant ensures that the
multiplication of distributions defined in different task spaces is a proper distribution
in the configuration space. When computing normalizing constant of trajectories,
the computational complexity becomes of high importance. In Chapter 4, the consis-
tency is ensured through a structured sampling of trajectories. The task spaces are
used to define a controller in each of them, and also to compare demonstrations with
reproductions.

These two theoretical contributions provide the foundation for many other robotic
applications and extensions. In Sec. 3.2, we propose a novel technique that leverages
the PoE formulation combined with null space operators to learn task priorities from
demonstrations with minimal prior knowledge compared to the state of the art. Our
technique is particularly adapted at recovering masked secondary constraints. The
objective of manipulability is one of those; it is often of lower importance than task-
space objectives. We proposed also an alternative approach to represent tasks with
hierarchy, by using uni-Gauss distributions. Thanks to this formulation, each sec-
ondary task has a probability to be completely abandoned. Therefore, if the tasks
are incompatible, the robot would not any longer try to fulfil secondary tasks by
aiming in the direction to minimize their cost, as it is done with the nullspace formu-
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lation.

In Sec. 3.4, we proposed an approach to compute torque controllers in different
task spaces by using optimal control. By separating the low-level control loop and the
updates of the impedance controllers, this technique is seen to be effective with small
computation power. This approach is useful to set up virtual guides and assistance
in a shared control strategy. We also proposed to use invertible neural networks to
learn more complex virtual guides of arbitrary shapes. Another control strategy was
suggested by drawing a link between ergodic control and variational inference. This
strategy is therefore applicable when the robot needs to generate random motions
while satisfying some constraints learned from demonstrations. Alternatively, motion
can also be learned and synthesized in the PoE framework by using ProMP experts,
which are fully compatible. By mixing ProMP experts with the previous experts
specified, our approach offers the opportunity to encode both time-dependent and
time-independent objectives.

Additionally, the product of experts allows more flexibility in choosing experts
distributions, as a proper normalization is not required any longer. The use of in-
tractable orientation statistics distributions, and the definition of new ones (to encode
correlation between positions and orientations, for instance) is then possible.

In Sec. 4.1.2, the approach to stabilize the training of generative adversarial models
for motion primitives has been illustrated. It reduces the need for data, and learning
dexterous motion with only few examples is then possible. The technique provides
also a theoretically grounded way to adapt the movement to objects position and
orientation.

In Sec. 4.2, we proposed to treat differently the stochasticity of the environment
and the uncertainty coming from our partial knowledge of it. Tested on a real robot,
the approach effectively allows the control gains to be adapted according to the ex-
ternal perturbations and the partial knowledge, resulting in very robust and safe
controllers. Applied to the learning of time-independent policy as an autonomous
dynamic system, this approach provides robust policies. Their stability is highly in-
creased without imposing any further constraints. The approach also scales well to
high-dimensional spaces.

In Sec. 4.2, another data-efficient, robust and safe approach was developed, in
order to iteratively optimize an imitation policy and refine dynamic models. This
technique leverages prior knowledge about the system and the flexibility to learn
non-linear perturbation models. The approach was validated on dynamic drawing
and pushing tasks, while facing external perturbations produced by a user.

5.1 Suggestions for future research

We conclude by providing suggestions for open research directions. The frame-
works we developed in this thesis is particularly flexible and is undeniably of help for
robotic practitioners to tackle a wide range of problems. By defining relevant task
spaces, intelligent policy parameterizations and prior knowledge about the system
dynamic, roboticists can focus on modelling the learning problem adequately. The
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inference is then performed in a unified manner, without requiring more assump-
tions than the differentiability of the different components. The inference exploits
the power of modern machine learning ecosystems with automatic differentiation [1],
similarly as automatic statistic inference libraries as [107].

5.1.1 Selection of task spaces

Nevertheless, the selection of relevant task spaces is still an open question. One
perspective is that this selection can be framed as a Bayesian inference problem where
each task space is associated with a binary random variable indicating its usage. A
prior distribution on these variables could indicate to how common they are; for ex-
ample, the position of the end-effector is more likely to be important than the elbow.
However, inference on these discrete variables is hard and computation time increases
linearly according to the number of experts. Multiple alternative sources of informa-
tion other than the samples recorded by manipulating the robot can be exploited;
the task spaces are indeed easily interpretable by human users. For example, in an
industrial application, an interface could offer the opportunity to the demonstrator
to select a set of task spaces represented visually.

For an interface-free application, the robot could exploit user intention hints like
gaze or speech interaction. Finally, the task spaces could be selected in an active
learning scenario; the robot could propose postures or interactively apply perturba-
tions during the demonstrations to know if a task space is relevant. For instance, if
the demonstrator is holding the end-effector, a redundant manipulator could move
its elbow to see if the latter would try to prevent its motion. In this case, a higher
likelihood would be assigned to the task space related to the elbow. An active learn-
ing scenario would need to provide a systematic way to produce these perturbations.
The same principle could also be used to learn the hierarchy between the tasks.

5.1.2 Active learning

Besides the selection of task spaces, using active learning could be investigated
to reduce uncertainties of the policy and the dynamic models. Instead of training
a single policy, as proposed in Sec. 4.1, multiple policies could be optimized in par-
allel as an ensemble method. A measure of divergence between the distribution of
control command given by each of these policies provides a significant estimation of
the uncertainty. This uncertainty empowers the robot with the ability to request
demonstrations either in a particular state or context (external task parameters).
This process is assumed to greatly increase the stability of global time-independent
policies as discussed in the experiment in Sec. 4.4.2. We already investigated the use
of active learning for policies in [40] but using a product of independent policies as
proposed in [95].

In Sec. 4.2, we proposed an approach to iteratively optimize the policy and refine
the dynamic models. In our experiments, dynamics models are learned robustly by
repeating approximately 10 times the same trajectories with variations generated
by the stochastic policy. These variations are extremely important to learn robust



5.1. SUGGESTIONS FOR FUTURE RESEARCH

93

dynamic models. As efficient as the system could be, this iterative process is however
not completely optimal; the policy is optimized to imitate the demonstrations the
best way possible given the actual knowledge about the dynamics. Therefore, it acts
as if it would be judged on the next execution, without a possibility to improve. A
more optimal process should consider its iterative nature and would produce a policy
that does not only try to imitate better but that also collect useful information about
the dynamic models.

5.1.3 Rhythmic patterns

Many tasks include rhythmic patterns, like music playing, cleaning, cutting or
shaking. An open research direction is the encoding of these tasks, which are often
the combination of a discrete motion with a rhythmic component. Such movements
could be well represented in the framework designed in Chapter 4; the frequencies
analysis could be included as an additional task space, looking at the trajectories as a
whole. The discriminator could, for example, compare the discrete cosine components
of the demonstrations and the reproductions.

The controller should also be adapted to generate rhythmic patterns. For exam-
ple, time-correlated noise with parametric frequency filters could be used instead of
sampling control commands independently.
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