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We investigate the propagation and arrest of a radial hydraulic fracture upon the end of the injection.
Depending on the regime of propagation at the time of shut-in of the injection, excess elastic energy
may be stored in the surrounding medium. Once the injection has stopped, the hydraulic fracture will
arrest when the energy release rate falls under the material fracture energy. Fluid leaking-off to the sur-
rounding medium acts as an energy sink such that the available excess energy for fracture growth
decreases faster and as a result impacts the arrest (actually controls it in the zero toughness limit).
Under the assumption of a homogeneous elastic medium and the Carter’s leak-off model, we show that
the post shut-in propagation of the hydraulic fracture depends on the dimensionless toughness Ks and
leak-off Cs coefficient at the time of shut-in. Our investigation highlights that for an impermeable rock,
the arrest radius is independent of the dimensionless toughness at shut-in. In the limit of a permeable
rock with zero fracture toughness, the arrest radius is independent of the dimensionless leak-off coeffi-
cient only for Cs < 0:25. For larger values of Cs, the radius of arrest reduces with increasing Cs. We delin-
eate the limit above which the arrest is immediate upon shut-in. This limit is given by a critical leak-off
coefficient at shut-in Cs;c � 0:53 for the large leak-off/small toughness cases and by the relation
Cs;c Ks;cð Þ � 0:78� 0:313 �Ks;c for small leak-off/large toughness (where Ks;c is equivalently the critical
dimensionless toughness at shut-in). Immediate arrest in the impermeable limit is observed for
Ks;c � 2:5. If both (Ks and Cs) are smaller than their critical value for immediate arrest, post shut-in
propagation occurs and a self-similar pulse viscosity storage solution emerges. Scaling arguments com-
bined with numerical simulations, show that the propagation post shut-in scales as 1:23K�2=5

s in the
impermeable and small leak-off cases, and as 0:75C�2=13

s in the zero toughness limit. The growth post
shut-in can be significant in impermeable rocks - with a final radius up to twice larger than the radius
at shut-in for realistic material and injection parameters.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydraulic fractures (HF) are tensile fractures created by the
injection of a fluid at pressure larger than the minimum in situ
compressive stress (Detournay, 2016). The hydraulic fracturing
technique is used in a broad range of engineering applications,
from block caving mining (Jeffrey et al., 2013) to soil remediation
(Germanovich and Murdoch, 2010), and is a cornerstone of hydro-
carbon production from low permeability shales (Smith and
Montgomery, 2015). Such tensile fluid-driven fractures also propa-
gate naturally in the form of magmatic intrusion in the upper earth
crust, forming volcanic dikes and sills (Rivalta et al., 2015; Spence
et al., 1987; Lister and Kerr, 1991). The growth of HF’s is governed
by a strong coupling between linear elastic fracture mechanics
(LEFM), lubrication flow in the propagating fracture, and leak-off
of the fluid into the surrounding medium. The competition
between these different physical processes is now well understood
for a growing fracture under a constant injection rate and results in
various growth regimes (Detournay, 2004, 2016). The propagation
of an HF is dependent on the relative importance of two storage
and two dissipative mechanisms. The bulk of the injected fluid
either remains in the propagating fracture or leaked-off in the sur-
rounding medium (storage vs. leak-off dominated regimes) while
the energy is either dissipated in the creation of new fracture sur-
faces or the viscous flow within the fracture (toughness vs. viscos-
ity dominated regimes). For simple geometries (plane-strain and
radial), solutions for hydraulic fracture growth have been obtained
in these limiting regimes, leveraging the multiscale asymptotic
solution of a steadily moving semi-infinite hydraulic fracture
(Garagash et al., 2011). These theoretical predictions compare well
with experiments performed in impermeable materials, notably
for radial fractures (Bunger and Detournay, 2008; Lecampion
et al., 2017). The evolution of a radial hydraulic fracture after the
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end of the injection (often referred to as shut-in in industrial appli-
cations) is the topic of this paper. In particular, we aim at quanti-
tatively answering two important questions: under what
conditions does the fracture immediately arrest? and if it does
not arrest immediately, how far does it propagate before finally
arresting?

Interestingly, these questions have been seldomly looked at in
detail despite the importance of fracture closure in industrial
applications. A large body of work has indeed investigated the clo-
sure problem but generally treated the arrest in an ad hoc manner
and/or did not quantitatively investigate the parameters control-
ling post-shut-in propagation and arrest. Modeling fracture closure
aims to better interpret the pressure decline curve measured after
shut-in. These measurements are used to estimate relevant param-
eters (in situ stress, pore-pressure among others) for the design of
well stimulation treatments by hydraulic fracturing (Economides
and Nolte, 2000). One of the first models of fracture closure
(Nolte, 1979) assumed a constant area upon the end of the injec-
tion (and as such an immediate arrest) for a fracture of constant
height (Perkins-Kern-Nordgren (PKN) geometry). Settari and
Cleary (1984) implemented a pseudo-3D model to address the
problem in a more general way and additionally allowed for
post-injection propagation. They observed a slight post-shut-in
propagation in some of their investigated cases without going into
details. Gu and Leung (1993) extended the analysis to three-
dimensional planar fractures accounting for non-uniform in situ
stresses and leak-off parameters but did not account for any
post-injection growth. Desroches and Thiercelin (1993) model
fracture growth and closure for simple geometries (plane-strain
and axisymmetric fractures) in a fully coupled manner based on
the now classical hypothesis of LEFM, lubrication flow, and Carter’s
leak-off. They observe a small amount of propagation after shut-in
in some of the cases investigated: the complete analysis of this
post-shut-in propagation is, however, not treated. Papanastasiou
(2000) investigated numerically propagation and closure (account-
ing also for bulk plasticity). The effect of poroelasticity on fracture
closure is mentioned in the work of Boone and Ingraffea (1990) and
Detournay et al. (1989) on the modeling of small hydraulic fractur-
ing tests. Recently, the 2D plane-strain problem has been revisited
numerically using an extended finite element method
(Mohammadnejad and Andrade, 2016). These different modeling
works, as well as experimental observations (De Pater et al.,
1996; van Dam et al., 2000; Zanganeh et al., 2017), agree on the
conclusion that propagation after shut-in can occur in some cases.
The problem of fracture arrest was quantified in detail only in the
large toughness limit for a plane strain hydraulic fracture propa-
gating in an impermeable medium by Garagash (2006a). In that
large toughness limit (limit of small dimensionless viscosity M),
the additional propagation post-shut-in (with respect to the length
at shut-in) scales as 2:9M for M � 1 (Garagash, 2006a).

We focus here in detail on the case of a radial fracture and quan-
tify the final HF’s arrest radius as a function of rock, fluid proper-
ties, and injection duration, accounting for both fluid leak-off and
fracture toughness. We combine scaling analysis and numerical
simulations to do so. One can easily anticipate a series of different
behavior as a function of the amount of elastic energy stored in the
medium still available upon shut-in (see Appendix A for the com-
plete energy budget). When viscous flow dissipation dominates at
shut-in, and thus some excess elastic energy is still available, the
fracture will keep growing for a while. On the other hand, it will
likely immediately arrest if fracture energy dominates the overall
energy dissipation at shut-in. Similarly, a larger leak-off intensity
acts as an energy sink reducing the energy available for growth
and thus will lead to an earlier arrest after the end of the injection.

We first present the mathematical formulation of the prob-
lem, its scaling, and outline the numerical solver used. We then
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treat first the impermeable case before moving to the case of a
permeable medium with zero and finally finite fracture
toughness.

2. Problem formulation

We focus on a radial hydraulic fracture propagating in a linear
isotropic homogeneous elastic medium driven by a Newtonian
fluid. Similarly to previous contributions (Savitski and Detournay,
2002; Madyarova, 2003), we neglect the size of the injected well-
bore compared to the fracture size and model the injection as a
point source. The fluid leak-off in the surrounding medium is mod-
eled using Carter’s leak-off model which amounts to an early time
1D approximation of fluid diffusion valid when the net pressure is
small compared to the far-field in situ effective stress (see for
example Lecampion et al., 2018; Kanin et al., 2020 for further dis-
cussion). We also neglect the presence of a fluid lag – an assump-
tion which is valid as soon as the shut-in time is larger than the

characteristic time-scale tom ¼ l0E02

r3
o

controlling the coalescence of

the fluid and fracture fronts (Garagash, 2006b; Lecampion and
Detournay, 2007; Bunger and Detournay, 2007). We briefly recall
the governing equations of the coupled moving boundary hydro-
mechanical fracture problem. In line with previous contributions,
we use the following material constants for clarity

E0 ¼ E
1� m2

; K 0 ¼ 4

ffiffiffiffi
2
p

r
KIc; l0 ¼ 12l; C 0 ¼ 2CL ð1Þ

where CL is the Carter leak-off coefficient, KIc the fracture tough-
ness, l the fluid viscosity, E and m the material elastic Young’s mod-
ulus and Poisson’s ratio respectively.

Quasi-static elasticity relates the fracture width w to the net
pressure loading at the fracture faces p ¼ pf � ro (the fluid pres-
sure in excess of the in situ compressive stress). For such a purely
tensile axisymmetric fracture, the elastic problem reduces to the
following integral representation (Sneddon, 1951)

w q; tð Þ ¼ 8
p

R tð Þ
E0

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xp xnR; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð2Þ

or alternatively its inverse (Gordeliy and Detournay, 2011). Under
the assumption of quasi-static linear elastic fracture mechanics,
the fracture propagation conditions for fracturing under pure mode
I read:

KI � KIcð ÞdR tð Þ
dt

¼ 0
dR tð Þ
dt

� 0 ð3Þ

where the stress intensity factor KI can be estimated via the
Bueckner-Rice integral (Rice, 1972)

KI ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
pR tð Þp Z R tð Þ

0

p t; rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p rdr ð4Þ

Fluid flow in the fracture is modeled under the lubrication approx-
imation (Batchelor, 1967). The fluid continuity equation combined
with Poiseuille’s law for a Newtonian fluid yields the following Rey-
nolds equation

@w t; rð Þ
@t

� 1
l0

1
r

@

@r
rw t; rð Þ3 @p t; rð Þ

@r

� �
þ C 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � to rð Þp ¼ 0 ð5Þ

which states that the change of fracture aperture (first term) is bal-
anced by the in/out fluid fluxes (second term) and the rate of fluid
leaking out of the fracture into the rock following Carter’s law (third
term). Integration in space and time gives the global fluid volume
balance which relates the injected volume V tð Þ to the fracture and
fluid leak-off volumes:
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V tð Þ ¼ 2p
Z R

0
w t; rð Þrdr þ 2p

Z t

0

Z R

0

2CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� so rð Þp rdrds ð6Þ

where the boundary condition of zero fracture width and zero fluid
flux at the fracture tip have been used. We assume a simple history
for the injection: a constant injection at a rate Qo up to a time ts
when the pump is ‘‘shut-in” such that

V tð Þ ¼ Qot; for : t < tsV tð Þ ¼ Qots ¼ Vo; for : t P ts ð7Þ
2.1. Growth during constant injection t < tsð Þ

Hydraulic fracture growth during the injection period t < tsð Þ is
well understood for such a radial geometry (Savitski and
Detournay, 2002; Detournay, 2004, 2016) and can be summarized
in a rectangular propagation diagram (see Fig. 1b following
Detournay (2016)). Notably, the HF growth evolves from a regime
initially dominated by viscous dissipation and fluid storage inside
the fracture (M-vertex in Fig. 1b) to a regime dominated by fracture

toughness and fluid leak-off at large-time (K
�
-vertex in Fig. 1b). The

complete evolution of the fracture is governed by a time-
dependent dimensionless fracture toughness Km (or alternatively
dimensionless viscosity Mk) and a time-dependent dimensionless
leak-off coefficient C (or alternatively dimensionless storage S).
The dimensionless parameters Km and Cm can be expressed as a
function of two time-scales tmk and tm ~m governing the transition
from the viscous/storage dominated regime to respectively the
toughness/storage and viscous/leak-off regimes:

Km ¼ t=tmkð Þ1=9 Cm ¼ t=tm ~mð Þ7=18 tmk

¼ E013=2l05=2Q3=2
o

K 09 tm ~m ¼ l04=7Q6=7
o

C018=7E04=7 ð8Þ

The complete evolution of the solution from the viscosity/storage
dominated to the toughness/leak-off regime within the propagation
diagram of Fig. 1b can be grasped by a trajectory parameter

/ ¼ tmk

tm ~m

� �14=9

¼ C 04E011l03Qo

K 014 ¼ C4
m=K

14
m ð9Þ

and the dimensionless time t=tmk. The growth solution can be ade-
quately expressed using specific scalings for different propagation
regimes, writing the fracture radius, width, and net pressure as

R tð Þ ¼ L tð Þc P1;P2ð Þ w r; tð Þ ¼ W tð ÞX r=R;P1;P2ð Þ
p r; tð Þ ¼ P tð ÞP r=R;P1;P2ð Þ
Fig. 1. a) Sketch of a radial hydraulic fracture with a zoom on the HF tip viewed as a stea
radial fracture in a linear elastic permeable medium with Carter’s leak-off - following D
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where P tð Þ ¼ E0W tð Þ=L tð Þ is the characteristic pressure scale, L tð Þ
and W tð Þ the characteristic fracture length and width scales while
P1; P2 denote the corresponding two dimensionless parameters
(e.g. dimensionless toughness and leak-off in the viscosity scaling).
We refer to Detournay (2016) for the details of the constant injec-
tion case (ts ! 1Þ.
2.2. Evolution post-shut-in (t > ts)

For the case of a finite injection/pulse injection, after the shut-in
time (t > ts), the growth of the hydraulic fracture can be grasped
using similar scaling arguments by substituting the finite injected
volume Vo ¼ Qots in place of the rate-dependent volume Qot. In
other words, by replacing Qo with Vo=t in the constant injection
scalings. The scales and evolution parameters for the four different
regimes (viscosity/toughness, leak-off/storage) in this case are pre-
sented in Table 1. Whenever we refer to the constant injection scal-
ing, the superscript will be omitted (for example, Lm denotes the
characteristic length scale of the viscosity storage constant injec-
tion scaling). On the other hand, the constant volume/pulse injec-
tion scaling is indicated by the superscript V½ � (for example, L V½ �

m

denotes the characteristic length scale of the viscosity storage
pulse injection scaling).

It is interesting to note that the lengthscales L V½ � in both leak-off

dominated scalings (M
�

V½ � and K
�

V½ �) listed in Table 1 are decaying
with time. This indicates that for a finite volume injection if dom-
inated by leak-off, the fracture recesses. This hints toward an
immediate arrest after shut-in in those cases. Similarly, we observe
that the fracture lengthscale is time-independent in the toughness/
storage scaling (K V½ � in Table 1). The fracture lengthscale increases
with time only in the viscosity/storage dominated regime (M V½ � in
Table 1). We already get a grasp at the structure of the solution
after shut-in from those observations and anticipate that if the
shut-in occurs when the fracture is already propagating in the
leak-off dominated regime, it will immediately arrest and actually
recess. If leak-off is negligible at shut-in, the fracture will continue
to grow if dominated by viscosity while it will tend to a constant
size if dominated by fracture toughness, and as such arrest in a
finite time.

Our aim in what follows is to investigate the post-shut-in stages
thoroughly and delineate when and how further growth after shut-
in occurs. To do so, we will combine scaling arguments and semi-
analytical solutions in some limiting regimes with full numerical
solutions. This evolution post-shut-in will be dependent on the
dily moving plane-strain case. b) Evolution of the fracture propagation regime for a
etournay (2016).



Table 1
Characteristic scales and evolution parameters in the four propagation regimes for post-shut-in evolution (pulse injection case).

Scaling M V½ � K V½ �
M
�

V½ � K
�

V½ �

L V½ � E01=9t1=9V1=3
o

l01=9
E02=5V2=5

o

K 02=5
V1=2

o

C01=2t1=4
V1=2
o

C01=2t1=4

P V½ � E02=3l01=3

t1=3
K 06=5

E01=5V1=5
o

l01=4C03=8E03=4

V1=8
o t1=16

K 0C01=4t1=8

V1=4
o

W V½ � V1=3
o l02=9

E02=9t2=9
V1=5
o K 04=5

E04=5
l01=4V3=8

o

E01=4C01=8t5=16
K 0V1=4

o

E0C01=4t1=8

K V½ �
K 0 t5=18

E013=18l05=18V3=18
o

1
K 0 t3=16

l01=4C01=8E03=4V1=8
o

1

M V½ � 1
l0 E

013=5V3=5
o

K 018=5t

1
l0 V

1=2
o E03C01=2

K 04t3=4

C V½ �
C0 E

02=9t13=18

V1=3
o l02=9 C0 E

04=5t1=2

V1=5
o K 04=5

1 1

S V½ � 1 1 E01=4C09=8t13=16

l01=4V3=8
o

E0C05=4t5=8

K 0V1=4
o
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dimensionless toughness and dimensionless leak-off coefficients at
shut-in

Ks ¼ Km t ¼ tsð Þ ¼ K V½ �
m t ¼ tsð Þ ¼ K 0 t1=9s

E013=18l05=18Q1=6
o

Cs ¼ Cm t ¼ tsð Þ ¼ C V½ �
m t ¼ tsð Þ ¼ C0 E

02=9t7=18s

Q1=3
o l02=9

: ð10Þ

where Vo ¼ Qots has been used. Alternatively, the evolution can be
grasped as a function of one of the two shut-in parameters (Ks or

Cs) and the trajectory parameter / ¼ tmk=tm ~mð Þ14=9
¼ C4

m=K
14
m ¼ C4

s =K
14
s .
2.3. Numerical solver used

We will use extensively the open source-planar 3D hydraulic
fracture simulator PyFrac (Zia and Lecampion, 2020). The code is
a python implementation of the implicit level set algorithm (ILSA)
(Peirce and Detournay, 2008) for three-dimensional planar HF. The
scheme notably combines a finite discretization of the fracture
with the use of the near tip HF asymptotic solution (see for exam-
ple Garagash et al. (2011)), valid close to the moving boundary of
the HF (at the tip, see Fig. 1a). We briefly outline the numerical
techniques used to solve the governing equations presented in Sec-
tion 2 and refer to Zia and Lecampion (2020) for more details.

The fracture propagation plane is discretized using a rectangu-
lar Cartesian mesh with constant cell size. The fracture front is
defined via a level-set evaluated at the center of each cell. The algo-
rithm marches in time such that the solution at time tnþ1 is
obtained from the known solution at tn. The solution at a given
time consists of the level set field (closest distance to the front
from a cell center), the fracture front (location of intersections with
cell edges), fracture opening, and fluid pressure inside the fracture
(defined at the center of the cells). Quasi-static elasticity is dis-
cretized using a displacement discontinuity method with piece-
wise constant rectangular elements, while the Reynolds Eq. (5) is
discretized spatially via a finite volume method. The fluid fluxes
are notably obtained at the cell edges via a central finite difference
scheme. After accounting for the injected volume during
Dtnþ1 ¼ tnþ1 � tn, using a fully implicit time-integration scheme,
one obtains a non-linear (elastohydrodynamic) system of equa-
tions for a given trial fracture front position. This non-linear sys-
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tem is solved via Anderson acceleration of fixed-point iterations
(Anderson, 1965; Walker and Ni, 2011). Once the elastohydrody-
namic system is solved, a new fracture front position is found using
the ILSA scheme. This scheme updates the values of the level set
function according to the widths in the ribbon elements close to
the tip, obtained from the elastohydrodynamic system. An itera-
tion procedure between the front-location and the resolution of
the elastohydrodynamic system (for a given fracture front posi-
tion) is performed until the fracture front converges between sub-
sequent iterations. We use the approximation of the universal tip
asymptote provided by Dontsov and Peirce (2017). For computa-
tional efficiency and robustness, we use a predictor–corrector
scheme for the fracture front advancing scheme where the starting
point of the iteration on the fracture front is obtained with an
explicit time step using the velocity obtained in the previous time
step (see Zia and Lecampion, 2019 for more details). The scheme
has been extensively tested against known solutions and proved
to be robust and accurate (Peirce, 2015, 2016; Zia et al., 2018;
Zia and Lecampion, 2020; Moukhtari et al., 2020). In what follows,
all the reported simulations use a grid size of 61 	 61 elements,
and a re-meshing (coarsening of the element size by a factor 2)
is performed when the fracture reaches the end of the grid, such
that at most the fracture contains approximately 61 	 61 elements
and at minimum30 	 30 elements (for details on numerical accu-
racy see Appendix B).

3. Impermeable medium

For the case of an impermeable medium, the fracture will arrest
when the excess elastic energy present at shut-in falls below the
energy required for subsequent fracture growth.

3.1. Arrest radius in the finite toughness case

If the fracture toughness is finite, the arrest will occur when the
stored elastic energy present at shut-in has been entirely con-
sumed by viscous flow. When the fluid velocity vanishes, the fluid
pressure is uniform inside the fracture (as per Poiseuille law’s
v ¼ �w2=l0@p=@z ¼ 0 ! @p=@z ¼ 0). The radius of arrest is simply
obtained as the solution of the quasi-static equilibrium of a crack
under uniform net loading pwith a prescribed volume Vo for which
the stress intensity factor is strictly equal to KIc . For a uniform net
pressure p, the elasticity (2) reduces to (Sneddon, 1946)



Fig. 2. Normalized fracture radius as function of the dimensionless shut-in time
t=ts . Numerical (and semi-analytical) predictions of fracture radius scaled by the
arrest radius Rk;a (14a) for various values of shut-in toughnessKs (10) (from 10�4 to
102).
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w rð Þ ¼ 8
p

p
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
ð11Þ

and the fracture volume Vf and mode I stress intensity factor are
given as

Vf ¼ 16
3

pR3

E0 ð12Þ

KI ¼ 2ffiffiffiffi
p

p pR1=2 ð13Þ

In the absence of leak-off (impermeable case), imposing that the
fracture volume equals the injected volume Vo and that the stress
intensity factor KI equals the fracture toughness, one can easily
solve for the corresponding radius, net pressure, and width:

Rk;a ¼ 3
p
ffiffiffi
2

p
� �2=5 E0Vo

K 0

� �2=5

; ð14aÞ

pk;a ¼
p6

3	 217

� �1=5 K 06

E0Vo

 !1=5

; ð14bÞ

wk;a rð Þ ¼ 3
8p

� �1=5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

Rk;a

� �s
VoK

04

E04

 !1=5

: ð14cÞ

We shall denote this solution as the toughness arrest solution (with
subscript k; a). It only depends on the rock properties (elasticity and
toughness) and the total volume injected. This solution (Eqs. (14a)–
(14c)) corresponds to the K V½ �-Vertex characteristic scales multi-
plied by prefactors of order one. It is also worth noting that the
solution for a toughness dominated growth under constant injec-
tion rate (see Abé et al. (1976, 2002)) is merely obtained by replac-
ing Vo by Qot in this solution.

3.2. Viscosity-storage pulse solution in the zero toughness limit - case
of no arrest

In the limit of zero toughness (for example when re-opening a
pre-existing fracture), we see from (14a) that the arrest radius
becomes infinite. In other words, in that limit, the hydraulic frac-
ture will continue to grow ad vitam æternam. Given the scaling
of Table (1) in this regime of zero toughness and zero leak-off,
the growth of an HF with a finite volume Vo does not depend on
any dimensionless parameter (K V½ �

m ¼ C V½ �
m ¼ 0). As a result, the

growth is self-similar, and a solution can be derived using the vis-
cosity/storageM V½ � scaling. Eqs. (2)–(6) in theM V½ � scaling can be re-
written as:

�X V½ �
m0 qð Þ ¼ 8

p

Z 1

q

n

n2 � q2

Z 1

0

xP V½ �
m0 qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð15aÞ

1
9
qþ �X V½ �

m0 qð Þ
� �2 dP V½ �

m0 qð Þ
dq

¼ 0 ð15bÞ

Z 1

0

P V½ �
m0 qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ¼ 0 ð15cÞ

c V½ �
m0 ¼ 2p

Z 1

0

�X V½ �
m0 qð Þqdq

� ��1=3

ð15dÞ

subjected to the boundary conditions of zero dimensionless open-

ing and fluid flux at the tip. The dimensionless solution F
V½ �
m0 (where

the subscript m0 refer to the zero toughness/leak-off limit) consists
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of the dimensionless fracture radius c V½ �
m0, net pressure P V½ �

m0, and

reduced opening �X V½ �
m0 qð Þ ¼ X V½ �

m0 qð Þ=c V½ �
m0.

This set of equations can be solved numerically using Gauss–
Chebyshev quadrature and barycentric Lagrange differentiation
and interpolation. Such a numerical method follows previous work
(Viesca and Garagash, 2018; Liu et al., 2019) and is described in
Appendix B. The dimensionless opening and pressure profiles are
shown in Fig. 10 of Appendix B. The dimensionless fracture length

obtained numerically is c V½ �
m0 � 0:8360. We also note that the

numerical results obtained using PyFrac matches very well the
one obtained via this Gauss–Chebyshev based scheme (see Table 6
in Appendix B).

3.3. Propagation and arrest post-shut-in

We now turn to investigate the propagation after shut-in in the
impermeable case and the subsequent arrest due to a finite tough-
ness numerically.

In the case of growth after shut-in (pulse injection) for a finite
toughness in an impermeable medium, the final radius of arrest
is given by Eq. (14a), and the growth solution toward this arrest
only depends on a dimensionless toughness K V½ �

m tð Þ (see Table 1)
which can be expressed as a function of the dimensionless tough-
ness at shut-in Ks ¼ Km tsð Þ:

K V½ �
m tð Þ ¼ t

ts

� �5=18

Ks: ð16Þ

The evolution of the fracture radius as a function of t=ts for a
series of simulations with different values of Ks (equivalent to dif-
ferent shut-in time) is displayed in Fig. 2. The radius is scaled by
the final arrest radius Rk;a (14a). We note that during the injection
phase (t=ts < 1), we retrieve the semi-analytical solutions of
growth under a constant injection rate derived in Savitski and
Detournay (2002) (red (toughness dominated) and blue (viscosity
dominated) dashed lines in Fig. 2). Upon shut-in, the behavior of
the fracture changes depending on the dimensionless toughness
at shut-in Ks. However, the arrest radius is uniquely defined (it
does not depend on Ks) and equals, up to numerical precision (be-
tween 1 to 3.5% relative error), to the theoretical value given by Eq.
(14a). For small values ofKs (where the shut-in happens when the
HF is in the viscosity dominated regime), one observes the transi-
tion from the constant injection rate viscosity solution (Savitski
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and Detournay, 2002) to the pulse viscosity dominated solution
discussed in Section 3.2 (dashed magenta line on Fig. (2)). This
self-similar propagation appears at intermediate times before the
fracture finally arrests at a radius equal to Rk;a (14a). Larger values
of KsJ3 result in an immediate arrest as the stored elastic energy
is already balanced by fracture energy at shut-in: the radius at
shut-in is equal to the arrest radius.

We post-process these results in order to estimate the limiting
value of Ks;c (c for critical) above which immediate arrest occurs
after shut-in. We define immediate arrest at shut-in when the
radius at shut-in Rs ¼ R t ¼ tsð Þ is equal or larger to 97:5% of the
final arrest radius Rs=Rk;a P 0:975

� �
. In other words, when the

radius at shut-in is within 2:5% of the toughness/arrest dominated
solution (14a). We obtain Ks;c � 2:75
 0:2 from our series of
numerical simulations. Such an estimate is in line with the one that
can be derived from the first-order propagation solution for large
toughness (dimensionless radius cm � 0:8546K�2=5 � 0:7349K�4

expressed in the viscosity scaling – see Savitski and Detournay
(2002)). Savitski and Detournay (2002) estimateK � 3:5 for a fully
toughness dominated growth assuming a 1% relative difference
between the zero 0:8546K�2=5 and first-order
(0:8546K�2=5 � 0:7349K�4) solutions. One obtains K � 2:67,
respectively K � 2:5 when taking 2:5% respectively 3% relative
difference. These values are consistent with the estimate directly
derived from our numerical simulations. We take Ks;c � 2:5 for
simplicity in the following - in line with the upper bound of the rel-
ative error of our numerical solution (between 1 to 3.5% relative
accuracy with respect to self-similar growth solutions for the mesh
resolution used here, see Appendix B).

For the case of dimensionless shut-in toughness lower than
Ks;c , the fracture continues to grow after shut-in up to the arrest
radius Rk;a. When the fracture propagates in the viscosity domi-
nated regime at shut-in (Ks � 1 cases), the distance propagated
after shut-in can be estimated by simply comparing the final arrest
radius Rk;a (see Eq. (14a)) with the radius of the fracture at shut-in
(t ¼ ts) from the constant injection viscosity dominated solution
(Savitski and Detournay, 2002):

Rm t ¼ tsð Þ ¼ Rs ¼ 0:6978
E01=9Q1=3

o t4=9s

l01=9 ð17Þ

We thus obtain the following relation between the arrest and shut-
in radius and the dimensionless toughness at shut-in:

Rk;a

Rs
¼

3
p
ffiffi
2

p
� �2=5

E0Vo
K 0

� �2=5
0:6978 E01=9Q1=3

o t4=9s
l01=9

� � � 1:23K�2=5
s ð18Þ
Fig. 3. Characteristical values of post-injection propagation in function of the dimensionl
radius for a radial fracture in an impermeable medium. b) Time of arrest over shut-in tim
purple line).

156
Fig. 3 shows that this semi-analytical approximation falls
exactly on our numerical results for values of Ks below 1. It
slightly underestimates the ratio Ra=Rs for values of the dimension-
less shut-in toughness between 1 and the value for immediate
arrest Ks;c � 2:5. This is simply because, for values of Ks larger
than one, the estimate of the radius at shut-in provided by the con-
stant injection viscosity dominated (zero toughness) solution is no
longer a valid approximation as the fracture toughness impacts the
solution.

From Eq. (16), we can similarly estimate the following relation
between the shut-in time (t ¼ ts) and the time of arrest (t ¼ ta):

ta
ts

/ K�18=5
s : ð19Þ

We use our numerical simulations to capture the corresponding
prefactor leading to the relation ta=ts � 5:0K�18=5

s , again valid for
Ks smaller than 1. Fig. 3 illustrates that the time of arrest can be
significantly larger than the shut-in time for values of Ks smaller
than the critical value for immediate arrest Ks;c � 2:5.

4. Permeable medium

We now switch to the case of a permeable medium. The loss of
fluid in the surrounding rock is an additional arresting mechanism
after shut-in as it acts as an energy sink for the excess of elastic
energy available for subsequent growth. We, therefore, anticipate
that the arrest radius may significantly differ from the imperme-
able estimate given by Eq. (14a).

4.1. Zero toughness case

In the zero toughness case, the arrest is solely governed by the
loss of fluid and no analytical or semi-analytical expressions are
currently available for the post-shut-in phase. As mentioned previ-
ously, the scaling for a pulse HF indicates an immediate recession

in the viscosity/leak-off regime (M
�

V½ �). We can thus anticipate an
immediate arrest if the shut-in occurs when the HF already prop-

agates in the so-called viscosity/leak-off dominated regime (M
�
).

In the constant injection case (prior to shut-in), the transition from

the viscosity/storage (M) to the viscosity/leak-off (M
�
) regime is

governed by a dimensionless leak-off coefficient

Cm tð Þ ¼ t=tm ~mð Þ7=18 (see Eq. (8)). The leak-off/ viscosity dominated
solution is fully reached within 1% for Cm � 13, and within 3%
for Cm � 4 (Madyarova, 2003; Dontsov, 2016).

In the zero toughness case, the growth after shut-in is governed
solely by the dimensionless leak-off coefficient
ess toughness at shut-inKs (impermeable case). a) Ratio between arrest and shut-in
e. Numerical simulations (Black dots) and analytical estimate for small Ks (dashed
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C V½ �
m tð Þ ¼ t

ts

� �13=18

Cs:

Similarly to the impermeable case, the dimensionless leak-off coef-
ficient at shut-in Cs (10) will govern the arrest of the fracture. We
can hypothesize that fracture arrest will occur when the HF enters

the viscosity/leak-off regime (M
�

V½ �). This is equivalent to stating that
C V½ �

m � 1 such that we can estimate the time of arrest as

t ~m;a � tsC�18=13
s : ð20Þ

The estimation of the arrest radius then emerges from the scaling
(Table 1) as

R ~m;a ¼ c ~m;aL
V½ �
m t ¼ t ~m;a
� � ¼ c ~m;a 	

E01=13V5=13
o

C 02=13l01=13
ð21Þ

where c ~m;a is an unknown constant of order 1.
We perform a series of simulations for different values of Cs

ranging from 10�15 to 102. The arrest radius as a function of Cs is
displayed in Fig. 4. We confirm that indeed the arrest radius scales
with L V½ �

m t ¼ t ~m;a
� �

. In addition, two regimes can be observed. For

CsK0:25, the arrest radius scaled by L V½ �
m t ¼ t ~m;a

� �
is indeed strictly

constant, while for large values of Cs the arrest is immediate such
that the arrest radius corresponds to the radius at shut-in given by

the large leak-off propagation solution (M
�
-solution).

More precisely, for CsK0:25, we can estimate the pre-factor of
the exact arrest radius which scales with L V½ �

m t ¼ t ~m;a
� �

. We obtain
c ~m;a � 0:5218 from a linear regression of our numerical results,
such that the arrest radius can be approximated as

R ~m;a � 0:5218
E01=13V5=13

o

C 02=13l01=13
for CsK0:25: ð22Þ

We will refer to this estimate of the arrest radius as the ‘‘early shut-
in” approximation (where early refers to small Cs). On the other
hand, for values of Cs larger than 2:5, the arrest radius is the radius

at shut-in which follows the viscosity/leak-off regime (M
�
) constant

injection solution (Madyarova, 2003; Detournay, 2016; Dontsov,
2016), as can be seen in Fig. 4. We refer to this limit as the ‘‘late
shut-in” (large Cs) solution hereafter. We can infer that the fracture
will immediately stop its propagation somewhat for Cs between
0:25 and 2:5. We estimate the critical dimensionless leak-off coeffi-
Fig. 4. Numerical evaluation of the arrest radius for different values of Cs in the
zero toughness case. The early shut-in approximation is given in Eq. (21) with its
prefactor obtained by regression of these numerical results. The late shut-in
solution corresponds to the radius at shut-in given by the viscosity/leak-off
propagation solution of Madyarova (2003).
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cient at shut-in Cs;c for immediate arrest from our simulations as
Cs;c � 0:53
 0:05 by again using the criterion Rs=Ra Csð Þ P 0:975
for immediate arrest (red dashed line in Fig. 4). It is important to
note that contrary to the impermeable case, the arrest radius is
not uniquely defined for all Cs. For small Cs (below 0:25), the arrest
radius is constant but not for larger values. Immediate arrest occurs
for Cs;c � 0:53 and the arrest radius for Cs larger than Cs;c coincides
with the shut-in radius which can be well approximated by the
viscosity/leak-off dominated injection solution (within a few per-
cent for Cs > 4).

We now turn to quantify the amount of propagation after the
end of the injection. As expected, the propagation in the zero
toughness case follows the known solutions during injection
(Savitski and Detournay, 2002; Madyarova, 2003; Dontsov, 2016)
(t=ts < 1 in Fig. 5 left, blue (storage), and light blue (leak-off)
dashed lines). One can observe from Fig. 5a that the propagation
after shut-in (t=ts > 1) for the ‘‘early shut-in” cases (CsK0:25) fol-
lows the viscosity/storage pulse solution (developed in section 3.2)
at intermediate times before the final arrest. We can thus estimate
the amount of propagation after shut-in for values of CsK0:25 by
comparing the radius at shut-in (evaluated from the viscosity stor-
age injection solution Madyarova, 2003; Dontsov, 2016) with the
‘‘early shut-in” arrest radius (22):

R ~m;a

Rs
�

0:5218 E01=13V5=13
o

C02=13l01=13

� �
0:6978 E01=9Q1=3

o t4=9s
l01=9

� � � 0:75C�2=13
s : ð23Þ

We recall that the prefactor of 0:5218 is obtained by fitting our
numerical results such that Eq. (23) is also an approximation. Such
an approximation compares very well with our numerical results
up to CsK0:25 as can be seen in Fig. 6a. The power-law dependence
of the ratio between the time of arrest and the shut-in time can be
similarly derived from (20) as ta=ts / C�18=13

s . Such a dependence
captures well our numerical results as displayed in Fig. 6b where
a linear regression was performed to obtain a prefactor of 0:044
(Fig. 6b). The time of arrest can thus be estimated for small Cs as:

ta
ts

� 0:044C�18=13
s for CsK0:25:

The effect of leak-off on the arrest can also be grasped by look-
ing at the evolution of fracturing efficiency g, defined as the ratio
between the fracture volume Vf and the injected volume Vinj:

g ¼ Vf

Vinj
; with : Vinj ¼

Qot for t < ts
Vo for t P ts

	
ð24Þ

For example, an efficiency of g ¼ 0:5 indicates that half of the fluid
injected remains inside the fracture, while the rest has leaked to the
surrounding rock. The dimensionless leak-off coefficient is linked in
a non-linear way to fracturing efficiency, and both help to charac-
terize the propagation and arrest of the fracture after shut-in. From
Fig. 5b, we can relate the critical value of dimensionless leak-off
coefficient at shut-in Cs;c � 0:53, to a unique critical value of frac-
turing efficiency of gc ¼ g Cm tsð Þ ¼ Cs;cð Þ � 0:44. This allows us to
estimate the loss of fluid necessary to stop instantaneously the frac-
ture from propagating at shut-in. In other words, from the moment
on that a bit more than half of the total amount of fluid injected is
lost due to leak-off, the fracture will stop immediately upon shut-in.
Finally, we are able to assess the possibility of post-injection prop-
agation via the fracturing efficiency g, by observing Fig. 5b. One can
see that for Cs smaller than 0:25 (for which the ‘‘early shut-in”
approximation is valid), the arrest seems to occur when the fractur-
ing efficiency falls to a common value of 0:68 irrespective of Cs.
From this, we infer that the fracturing efficiency at shut-in
gs ¼ g Csð Þ indicates the potential of post-injection propagation, as
follow:



Fig. 5. a) Normalized fracture radius in function of characteristic shut-in time t=ts . Numerical (and semi-analytical) predictions of fracture radius scaled by the arrest radius
Ra Csð Þ for various values of shut-in leak-off coefficient Cs (from 10�6 to 102). b) Fracturing efficiency as a function of dimensionless leak-off coefficient Cm tð Þ ¼ Cs 	 t=tsð Þ7=18.
Black dashed lines correspond to numerical simulations with different values of shut-in leak-off coefficient Cs . Blue dots mark the moment of shut-in, and red dots mark the
moment of fracture arrest.

Fig. 6. Characteristical values of post-injection propagation in function of shut-in leak-off coefficient Cs . a) Overshoot of a radial fracture in the case of zero toughness. b) Time
of persistent propagation of a radial fracture in the case of zero toughness.
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gs > ga ¼ 0:68 post-shut-in propagation;
gc 6 gs < ga negligible post-shut-in propagation;
gs < gc ¼ 0:44 immediate arrest:

ð25Þ
Fig. 7. Normalized arrest radius Ra=Rk;a in function of the dimensionless leak-off
coefficient at shut-in Cs for different values of the trajectory parameter / ¼ C4

s =K
14
s .

Black dots are simulations results, red dots correspond to the critical value above
which the arrest is immediate upon shut-in. The red dashed line is the zero leak-off
arrest radius, green dashed lines are the ‘‘early shut-in” arrest radius approxima-
tion, and light blue lines the late shut-in solution.
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4.2. General case

When accounting for both finite toughness and leak-off, the
solution now depends on the corresponding dimensionless
parameters at shut-in (Ks and Cs). The two are directly related
by the trajectory parameter / ¼ C4

s =K
14
s . We alternatively use

Ks (or Cs) and / to characterize the arrest radius and
post-shut-in propagation.

We numerically evaluate the radius of arrest by performing a
large number of simulations (� 450 simulations) for various values
of the trajectory parameter / ¼ C4

s =K
14
s ranging from 10�12 to 1020.

The results are displayed in Fig. 7 together with limiting solutions
in the impermeable and zero toughness cases. First of all, we
observe that for Cs > 2:5, the arrest radius is immediate indepen-
dent of the value of Ks (i.e. independent of /): one retrieves the
‘‘late shut-in” arrest radius (viscosity/leak-off regime injection
solution Madyarova, 2003; Dontsov, 2016). For / > 1, the arrest
radius follows the early shut-in approximation (Eq. (22)) for inter-
mediate values of Cs. For a given value of /, the arrest radius tends
to the impermeable arrest radius Rk;a (Eq. (14a)) when Cs vanishes.
Finally, the impermeable arrest radius Rk;a (Eq. (14a)) is already a

good estimate for values of Cs � 10�2 when KsK0:8 (i.e when
/ � 10�6).

From this series of simulations as well as the limits for arrest
obtained in the impermeable (Ks;c � 2:5) and zero-toughness case
(Cs;c � 0:53), we can delineate in the Ks;Csð Þ phase space, the
regions where post-shut-in growth does or does not occur.



Fig. 8. a) Contour plot of propagation after shut-in. Red dots are the numerically evaluated values of immediate arrest at shut-in, the light blue dashed line gives the critical
dimensionless leak-off coefficient in the zero-toughness case (Cs;c � 0:53
 0:05) and the black dashed line is a numerical fit for intermediate values. b) Critical fracturing
efficiency in function of the critical dimensionless toughness at shut-in.
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Fig. 8a displays the ratio between the final arrest radius and the
shut-in radius, and red dots correspond to the boundary for imme-
diate arrest (estimated numerically following the same threshold
of 2:5% then in the limiting zero-toughness and impermeable
cases). From these results, we can further provide the following
approximation for this boundary for immediate arrest:

Cs;c � 0:53 Ks;c < 0:8
Cs;c Ks;cð Þ � 0:78� 0:313 �Ks;c for Ks;c 2 0:8;2:5½ �: ð26Þ

where the limit of Ks;c ¼ 2:5 is retrieved for Cs ¼ 0. Such a bound-
ary is approximate with a resolution of about 3 to 5 percent
accounting for our numerical errors and our sampling of the
Ks;Csð Þ phase space.

Using Fig. 5b the value of Ks;c can be used to get an equivalent
value of the fracturing efficiency gc ¼ gs Ks;cð Þ. As expected, the
critical efficiency tends towards the zero toughness limit of
gc ¼ 0:44 when Ks;c gets below 0:8. A critical fracturing efficiency
of 1 is reached for Ks;c ¼ 2:5 which corresponds to the critical
shut-in toughness in the impermeable case. The evolution of the
critical fracturing efficiency (upon which arrest is immediate at
shut-in) as a function of Ks;c can be approximated in a piece-
wise linear manner as follow:

gc � 0:44 Ks;c < 0:8
gc � 0:190þ 0:317 �Ks;c for Ks;c 2 0:8;2:5½ Þ

gc ¼ 1:00 Ks;c ¼ 2:5:
ð27Þ
Fig. 9. Propagation post-shut-in (final arrest radius divided by the radius at shut-in) in
different values of the trajectory parameter / ¼ C4

s =K
14
s . The red dashed line corresponds

shut-in leak-off approximation. Red dots indicate the limit of immediate arrest, and bla
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Similarly than for the limiting impermeable and zero-toughness
cases, we quantify the post-shut-in propagation in terms of propa-
gated distance and time of arrest. Fig. 9a and b display respectively
the ratio of the final arrest radius over the shut-in radius and the
time of final arrest over the shut-in time. We observe that as the
trajectory parameter / / leak-off increases (Cs increases at constant
Ks), the arrest time and corresponding radius decrease. They depart
from the impermeable solution (14a) and switch to the early shut-
in approximation (22) for intermediate values of Ks. The limit of
immediate arrest is clearly visible in those plots: it corresponds to
the lowest value of Ks for which Ra=Rs ¼ ta=ts ¼ 1 and is high-
lighted by a red dot for a given /. From Fig. 9a and b, we can see that
the impermeable solution provide a good estimate of the post-
injection propagation and time of arrest for values of / � 10�6 for
all Ks. For values of / > 10�6, the impermeable solution is valid
up to a given value of Ks, which decreases as / increases. For a
given /, the zero-toughness estimate is valid in the intermediate
range of Ks, nearly up to Ks;c Cs;cð Þ. These plots provide a simple
and efficient way to quickly estimate the amount of propagation
post-shut-in as a function of Ks and Cs (/ ¼ C4

s =K
14
s ).
5. Discussions

5.1. Orders of magnitude for industrial applications

The results of the previous sections are notably applicable to
industrial applications related to well stimulation (Economides
the general case as a function of the dimensionless toughness at shut-in Ks for
to the impermeable medium case, while the green dashed lines represent the early

ck dots are numerical simulations.



Table 2
Characteristic values of industrial HF applications for a so-called single entry treatment (propagation of a single hydraulic fracture).

Cases l Pa � s½ � Qo m3=s

 �

ts s½ � Vo m3

 �

E GPa½ � m �½ � KIc MPa � ffiffiffiffiffi
m

p
 �
(1) Gel injection into a sandstone 5 � 10�3 0:05 20700 135 20 0:25 1:5

(2) Slickwater injection into a mudstone 1 0:01 20700 27 30 0:25 1:0

A. Möri and B. Lecampion International Journal of Solids and Structures 219–220 (2021) 151–165
and Nolte, 2000; Detournay, 2016). Hydraulic fracturing treat-
ments normally consist of a series of injections under a constant
rate propagating fluid-driven fractures in a rock formation. These
fractures are then filled by a proppant bearing fluid (keeping the
fracture open/propped) to enhance the permeability of such
sand- and mudstone reservoirs. We focus on the case of a single
entry treatment where a single hydraulic fracture is propagated.
A broad range of fluids have been designed for these treatments,
linear or cross-linked gels as well as slickwater are commonly used
(Barbati et al., 2016; Lecampion and Zia, 2019). To assess the order
of magnitude of post-injection propagation, we illustrate our find-
ings with the two examples listed in Table 2.

We assume two values for the leak-off parameter, C0 ¼ 10�6 and
C0 ¼ 10�10 (see discussion in Lecampion et al. (2018) for an estima-
tion of the range of leak-off properties). The large leak-off param-
eter is likely to occur in porous sandstones, whereas the small
value is more likely for tight mudstones (although the coefficient
is also dependent on fracturing fluid type). We will, however, apply
both coefficients to case (1) and (2) as to assess the entire range of
possible propagation after shut-in.

The four possible combinations (cases (1) and (2) of Table 2
with the two values of C0) result in a large range of trajectory

parameters / 2 10�25;5 � 101
h i

. The value of the dimensionless

shut-in toughness in these cases varies within one order of magni-
tude (K 1ð Þ

s ¼ 1:44 and K 2ð Þ
s ¼ 0:21) and the dimensionless shut-in

leak-off coefficient from Cs ¼ 10�6 to Cs ¼ 0:022. We discuss case
(1) combined with the higher leak-off parameter (minimum prop-
agation after shut-in) and case (2) with the low leak-off coefficient
(maximum propagation after shut-in). The results of all four com-
binations are listed in Table 3.

The slickwater injection into sandstone with a large leak-off
coefficient (C0 ¼ 10�6) results in a dimensionless shut-in toughness
of Ks ¼ 1:44, a shut-in leak-off parameter of Cs ¼ 0:022 and a tra-
jectory parameter / ¼ 1:5 � 10�9. Following Fig. 7, we estimate the
radius of arrest as approximately 0:95 � Rk;a � 166 m½ � (where Rk;a is
given by Eq. (14a)). We derive the ratio between arrest and shut-in
radius from Fig. 9a as Ra=Rs � 1:10 corresponding to a propagation
after shut-in of about 10%. From Fig. 7, we estimate that ta=ts � 2:5
leading to an elapsed time between shut-in and arrest of about
ta � ts � 1:5 ts � 40050 s½ �.

For the second case with a small leak-off coefficient
(C0 ¼ 10�10), the dimensionless parameters at shut-in are now
Ks ¼ 0:21; Cs ¼ 1:2 � 10�6; corresponding to / ¼ 5:5 � 10�15. This
allows us to estimate the arrest radius using Eq. (14a) yielding a
value of Ra ¼ 127 m½ �. It is further possible to estimate the radius
at shut-in with the viscous propagation solution of Savitski and
Table 3
Resulting dimensionless parameters, arrest and shut-in radius as well as post-injection pr

Cases / �½ � Cs

(1) Gel injection into a sandstone with C0 ¼ 10�6
O 10�9
� �

0:0

(1) Gel injection into a sandstone with C0 ¼ 10�10
O 10�25
� �

O
�

(2) Slickwater injection into a mudstone with C0 ¼ 10�6 54:7 0:0

(2) Slickwater injection into a mudstone with C0 ¼ 10�10
O 10�15
� �

O
�
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Detournay (2002) Rs ¼ 56 m½ � giving us a precise estimation of
the propagation after shut-in of Ra=Rs � 2:27. The arrest radius is
thus more than twice the radius at shut-in and growth after
shut-in accounts for another 127% of the growth during the injec-
tion (Ra � Rs � 1:27Rs). The ratio between the arrest and the shut-
in time is very large and estimated as ta=ts � 5:0K�18=5

s � 1272,

leading to an arrest time of ta � 3:43 � 106 s½ � � 40 d½ �.
5.2. Orders of magnitude for a magmatic pulse release

Natural hydraulic fractures can occur via magmatic intrusion
through the lithosphere. We illustrate the impact of the post-
injection propagation of a dike assuming a strictly impermeable
medium. We neglect buoyant forces for simplicity and assume a
Newtonian rheology for the magma. We use the material parame-
ters specified in Table 4, where we estimate the volume Vo as a
mean volume for dike intrusions at the Piton de la Fournaise vol-
cano on La Réunion between 1998 and 2016 (Froger et al., 2004;
Fukushima et al., 2010; Smittarello et al., 2019). Estimation of
the injection time is difficult, but measurements of mean magma
flow rates and injection durations allow to define a range from
0:1 to 10 m3s�1


 �
(Fukushima et al., 2005, 2010), which allows us

to approximate the injection duration. The viscosity of the basaltic
magma at Piton de la Fournaise is evaluated by Villeneuve et al.
(2008) and expected to range between 300 Pa � s½ � and 100 Pa � s½ �
at around 1100� 1150 �½ � Celsius (temperature observed by
Fukushima et al. (2010)). We use an average value of 200 Pa � s½ �
here. This leads to values of the shut-in toughness of
K 3ð Þ

s � 0:044, and K 4ð Þ
s � 0:16 allowing to estimate the shut-in

radius via the storage/viscosity dominated M-solution (Savitski
and Detournay, 2002) and the arrest radius from Eq. (14a). The
results are summarized in Table 5 and indicate a significant prop-
agation after shut-in ranging from 156% to 327% of the shut-in
radius. We observe that the propagation time post-shut-in is very
long such that cooling of the magma will likely reduce the post-
release propagation significantly. Such an effect of cooling could
be at first order modeled in a similar manner than fluid-leak-off
as it is dominated by thermal conduction between the dike and
the surrounding rock. Another very important point is that buoy-
ant forces can not be neglected in this case, such that the fracture
will likely deviate from the radial shape and elongate to form a
three-dimensional buoyancy-driven dike (Rivalta et al., 2015).
The characteristic lengthscale for buoyancy-driven propagation is

given as Lb ¼ K 0=Dqg
� �2=3 (Lister and Kerr, 1991). Taking an average

rock density of qs ¼ 20900 kg=m3

 �

and the density of the basaltic
magma at Piton de la Fournaise from Villeneuve et al. (2008) as
opagation and elapsed time between shut-in and arrest.

�½ � Ks �½ � Ra m½ � Rs m½ � Ra=Rs ta=ts

22 1:44 � 166 � 151 � 1:10 � 2:5

10�6
�

1:44 175 � 159 � 1:10 � 2:5

12 0:21 � 82 56 � 1:47 � 50

10�6
�

0:21 127 56 2:27 � 1272



Table 4
Estimated values for the injection of magma neglecting buoyant forces.

Cases l Pa � s½ � Vo m3

 �

Q m3=s

 �

ts E GPa½ � m �½ � KIc MPa � ffiffiffiffiffi
m

p
 �
(3) Short injection with high rate 200 5 � 105 10 � 14 h½ � 20 0:2 1:5

(4) Long injection with low rate 200 5 � 105 0:1 � 60 d½ � 20 0:2 1:5

Table 5
Resulting fracture dimensions and propagation post-injection for a magmatic release (not accounting for buoyancy forces).

Cases Rk;a km½ � Rs km½ � Ra=Rs ta=ts

(3) Short injection with high rate 4:64 1:09 � 4:27 � 3:8106

(4) Longer injection with low rate 4:64 1:81 � 2:56 � 3:8103
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qf � 20800 kg=m3

 �

, the characteristic lengthscale for buoyant
propagation is Lb � 288 m½ �, which is significantly smaller than
the arrest radius Rk;a ¼ 4:64 km½ �. This clearly indicates that buoy-
ancy forces are of first-order in that particular case such that most
likely they take over and elongate the fracture before it reaches the
radial arrest radius. The further investigation of the conditions for
the transition from a radial to a buoyant dike after a given volume
release is out of the scope of this contribution, one can neverthe-
less anticipate that such a transition will be grasped by the ratio
between the arrest radius and the buoyancy lengthscale.

5.3. Importance of subcritical crack growth

Stable crack propagation can occur even when KI;min < KI < KIc

(where KI;min is a material-dependent limit below which no growth
is observed), albeit at small velocities (Atkinson, 1984, 1987). An
empirical relation between fracture velocity dR=dt and the ratio
KI=KIc is known to reproduce well experimental observations in
this sub-critical regime (Charles, 1958a,b)

dR
dt

¼ A
KI

KIc

� �n

ð28Þ

where A and n are experimentally determined parameters. Subcrit-
ical crack growth has been observed in laboratory HF experiments
(Lu et al., 2017; Winner et al., 2018) when a constant fluid pressure
below the critical value required for toughness dominated crack
growth is applied. We briefly discuss the implications of additional
sub-critical growth even after the arrest radius estimated from lin-
ear elastic fracture mechanics has been reached. We restrict our-
selves to the impermeable case for simplicity. The effect will be
maximal for that case as toughness is the sole arresting mechanism.

For a toughness dominated case, the fluid pressure is spatially
uniform in the fracture, fracture width is given by (12), the mode
I stress intensity factor KI remains given by (13) while the fracture
volume is equal to Vo. Replacing the classical LEFM propagation
condition KI ¼ KIc by the sub-critical crack law (28) in this set of
equations, one obtains the following differential equation for the
radius evolution

dR
dt

¼ A0 E0Vo

KIc

� �n

R�5n=2 ð29Þ

with A0 ¼ A	 3=8
ffiffiffiffi
p

p� �n. We are interested to gauge sub-critical
crack growth beyond the arrest provided by linear elastic fracture
mechanics. We thus use the LEFM radius of arrest given by Eq.
(14a) as the initial condition to solve (29). We obtain the following
crack radius evolution

R t � tk;a
� � ¼ AR5n=2

k;a 	 1þ 5n
2

� �
	 t � tk;a
� �� � 2

2þ5n

ð30Þ
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Eq. (30) is valid when t � tk;a > 2Rk;a= 2Aþ 5Anð Þ. Assuming common

orders of magnitudes for Rk;a ¼ O 101 � 103
� �

m½ �;A ¼ O 103
� �

m=s½ �,
and n ¼ O 101 � 102

� �
(Lu et al., 2017), this temporal limit is of

the order t � tk;a >¼ O 10�4 � 10�1
� �

s½ �.
The criterion for complete fracture arrest is reached when KI

drops below the minimum value KI;min wich is in the order of
KI;min ¼ KIc=10 (Lu et al., 2017). This lower limit allows us to esti-
mate the time when the stress intensity factor drops below KI;min

and sub-critical propagation comes to a halt:

tsc;a � tk;a ¼
2Rk;a 10

2
5þn � 1

� �
A 2þ 5nð Þ ð31Þ

where tsc;a is the arrest time of sub-critical propagation. The radius
(30) at that time corresponds to the final arresting radius including
sub-critical growth:

Rsc;a ¼ 10
2
5þn � 1

� � 2
2þ5n

Rk;a � 102=5Rk;a � 2:51Rk;a ð32Þ

For the range of n typical for rocks (n 2 10;200½ �, Lu et al. (2017)),
this subcritical arrest radius is interestingly reduced to a constant
amount of the arrest radius Rk;a. We thus see that sub-critical crack
growth adds a significant amount of propagation, about 2.5 times
the LEFM arrest radius. Subcritical fracture propagation is thus
likely an important mechanism in the impermeable case. It needs
to be pointed out that the time during which the fracture grows
subcritical is very large (the minimum arrest time is

min tsc;a � tk;a
� � ¼ O 107

� �
s½ � for common values of Rk;a; n and A).

The influence of leak-off will, of course, decrease the impact of
sub-critical crack growth as arrest will likely occur first due to
leak-off. The case of an impermeable medium corresponds thus to
the maximum upper bound for the post shut-in sub-critical growth.
We leave the quantitative details of the competition between a
small amount of leak-off and sub-critical crack growth to additional
studies.
6. Conclusions

We have quantified numerically the propagation of a hydraulic
fracture after the end of the injection in an isotropic, homogeneous,
elastic medium driven by a Newtonian fluid under the assumption
of Carter leak-off.

For an impermeable medium, the arrest radius Ra corresponds
to the solution of a quasi-static crack at equilibrium (KI ¼ KIc)
under a uniform net loading with a volume equal to the injected
one. The arrest radius does not depend on any dimensionless num-
ber and is independent of the injection history in that case. For a



A. Möri and B. Lecampion International Journal of Solids and Structures 219–220 (2021) 151–165
permeable medium, the arrest radius is independent of the injec-
tion history only for small values of the dimensionless leak-off
coefficient at shut-in CsK0:25 and reduces for increasing values
of Cs. Based on scaling arguments and numerical simulations, we
obtain an approximation (22) of the arrest radius in the zero-
toughness case valid for CsK0:25. The arrest radius for Cs > 2:5
and Ks ¼ 0 (‘‘late shut-in” solution) corresponds to the viscosity/
leak-off dominated solution for a constant injection rate
(Madyarova, 2003). In the general case of finite toughness and
leak-off, the solution of the arrest radius for an impermeable rock
is a good estimate for small / ¼ C4

s =K
14
s / leak-off, while the ‘‘early

shut-in” approximation is valid for large //leak-off. In any case, for
Cs > 2:5, the arrest radius follows the ‘‘late shut-in” solution.

The arrest is immediate upon shut-in if the dimensionless
toughness Ks at shut-in is larger than a critical value Ks;c ¼ 2:5
in the impermeable case. Leak-off reduces the value of this critical
dimensionless toughness for immediate arrest. In the zero-
toughness case, the arrest is immediate for Cs P Cs;c � 0:53, where
Cs;c is the critical value of a dimensionless coefficient at shut-in.
The immediate arrest for finite toughness and leak-off can be
approximated as Cs;c � 0:53 for Ks;c < 0:8 and
Cs;c Ks;cð Þ � 0:78� 0:313 �Ks;c for Ks;c > 0:8.

When Ks < Ks;c and Cs < Cs;c Ks;cð Þ, post-injection propagation

does occur. For / < 10�2 and Ks < 1, the ratio between the arrest
and shut-in radius is given by Ra=Rs � 1:23K�2=5

s (Eq. (18)) which
corresponds to the impermeable limit. For / > 1, we still observe
Ra=Rs � 1:23K�2=5

s for small values of Ks while the early shut-in
approximation Ra=Rs � 0:75K�7=13

s /�1=26 is valid for intermediate
values ofKs smaller than the critical valueKs;c Cs;cð Þ. For small val-
ues of dimensionless toughness and leak-off coefficient at shut-in
(Ks � 0:1 and Cs < 10�2), the post-shut-in growth is well captured
by an intermediate self-similar viscosity-storage pulse solution.
This self-similar solution can be accurately obtained numerically
using a collocation method based on Gauss–Chebyshev quadrature
and barycentric differentiation and interpolation (see Appendix B

for details). The fracture radius evolves as R tð Þ � 0:836 E01=9V1=3
o t1=9

l01=9

in that viscosity-storage pulse regime where the fracture velocity
decreases much faster (dRdt / t�8=9) than during continuous injection

(dRdt / t�5=9).
For realistic parameters, fracture propagation after shut-in may

be of the same order as the propagation during the injection. Sub-
critical crack growth can further extend this post-injection propa-
gation (we provide an upper limit for this mechanism). The time of
arrest can be orders of magnitude larger than the shut-in time. As
shown, post-shut-in growth is very sensitive to the amount of leak-
off. It is clear that the estimate obtained here under the assumption
of Carter leak-off has to be taken with caution. Indeed, Carter’s
leak-off is by essence pressure independent: it assumes a constant
over-pressure in the fracture which results in the 1=

ffiffi
t

p
behavior.

This assumption is clearly questionable at large time after the
end of the injection. Accounting for pressure-dependent leak-off
(Kanin et al., 2020) would certainly modify the estimation of arrest
in the large leak-off cases. Similarly, poroelastic effects will pro-
mote an earlier arrest due to the back-stress associated with the
increased pore-pressure around the fracture (Detournay and
Cheng, 1991). Another factor possibly reducing the fracture extent
in industrial applications is the presence of proppant. The fracture
may close on the proppant thus modifying the arrest. We thus see
that the estimates we have derived here provide an upper bound
for the post-injection growth of hydraulic fractures. The impact
of the previously mentioned effects (pressure dependent leak-off,
poroelasticity, proppant) favoring an earlier fracture arrest after
the end of the injection remains to be quantified in detail.
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Appendix A. Energy budget of a radial hydraulic fracture

We briefly recall the energy budget of a radial hydraulic fracture to
highlight the energy split after shut-in. The energy balance for the
elastic material under the assumption of linear elastic fracture
mechanics and a propagating radial fracture reads (Rice, 1968):

2pRGc
dR
dt

¼
Z R

0

1
2

p r; tð Þ @w r; tð Þ
@t

�w r; tð Þ @p r; tð Þ
@t

� �
2prdr ð33Þ

while the energy budget of the lubrication flow in a radial hydraulic
fracture is given by (Lecampion and Detournay, 2007):Z R

0
p r; tð Þ @w r; tð Þ

@t
2prdr þ

Z R

0

l0

w r; tð ÞV
2
f r; tð Þ2prdr

þ
Z R

0
tL r; tð Þp r; tð Þ2prdr

¼ Qo tð Þp 0; tð Þ: ð34Þ
where Vf ¼ q=w is the width-average fluid velocity inside the frac-

ture and vL is the leak off rate tL ¼ C0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � to rð Þp

. Summing up the
two previous equations, and integrating in time from the shut-in
time ts to the current time t P ts, one obtains the following global
energy balance after shut-in (where Qo ¼ 0 and such is the input
energy):

Gcp R2 tð Þ � R2 tsð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
creation of new surfaces

þ
Z t

ts

Z R

0

1
2

p r; tð Þ @w r; tð Þ
@t

þw r; tð Þ @p r; tð Þ
@t

� �
2prdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

stored elastic energy

þ
Z t

ts

Z R

0

l0

w r; tð ÞV
2
f r; tð Þ2prdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

viscous flow

þ
Z t

ts

Z R

0
tL r; tð Þp r; tð Þ2prdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

leak-off

¼ 0: ð35Þ
We clearly see that the terms associated with viscous flow inside
the fracture and leak-off (under the assumption of Carter’s leak-
off) are always positive. Similarly, the energy spent in the creation
of new fracture surface is always positive as R tð Þ P R tsð Þ. On the
contrary, after shut-in, the width and pressure decreases:
@w r; tð Þ=@t < 0 and @p r; tð Þ=@t < 0. The available elastic stored
energy term decreases with time thus ultimately leading to arrest.
The fracture arrests when an equilibrium is reached between frac-
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ture energy, leak-off and viscous flow, when the available stored
energy goes to zero as @w r; tð Þ=@t ¼ @p r; tð Þ=@t ¼ 0.

Appendix B. Viscous pulse solution

The self-similar solution of a viscosity-dominated radial
hydraulic fracture after shut-in (after a pulse injection) is solved
numerically. Following the techniques described in Liu et al.
(2019) and Viesca and Garagash (2018), we combined Gauss–Che-
byshev quadrature with Barycentric Lagrange interpolation and
differentiation. The problem is thus reduced to a system of non-
linear equations which can be solved by root finding. We recall
here the most important points and refer to Viesca and Garagash
(2018) for a detailed description of this spatial discretization
method and to Liu et al. (2019) for its application to finite hydraulic
fractures under constant injection.

B.1. Gauss–Chebyshev quadrature

Gauss–Chebyshev quadrature is a well-known technique for the
solution of elastic boundary integral equations arising in fracture
problems (Erdogan et al., 1973). The quadrature uses two sets of
nodes, a primary one s ¼ sj


 �
with j ¼ 1; . . . ;n and a complemen-

tary set z ¼ zif g with i ¼ 1; . . . ;m. These nodes are used to dis-
cretize the normalized fracture within the interval �1;1ð Þ. The
Chebyshev polynomials (/ sð Þ and w zð Þ) have their roots at these
same points. It is due to the density dislocation singularity appear-
ing at the tips, that the choice of the Chebyshev polynomials has
been made. It is easy to include the singularity known from linear
elastic fracture mechanics (LEFM) within these polynomials by the
weight functions. Expressing the singularity with the weight func-
tion x sð Þ gives

dsw ¼ x sð ÞF sð Þ; x sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ð36Þ

where F sð Þ is an unknown, non-singular function. For such a square-
root singularity, as observed in Eq. (36), the corresponding polyno-
mials are the first /n sð Þ ¼ Tn sð Þ and second wm zð Þ ¼ Um zð Þ kind of
Chebyshev polynomials (with m ¼ n� 1). For optimal distribution
of nodes, their set is given by (following Viesca and Garagash
(2018))

sj ¼ cos
p j� 1=2ð Þ

n

� �
; j ¼ 1; . . . ;n; zi ¼ cos

pi
n

� �
; i

¼ 1; . . . ;n� 1 ð37Þ
B.2. Elasticity for an axi-symmetric fracture

The elastic boundary integral Eq. (2) can be inverted to work
with the following integral equation relating net pressure and
the dislocation density

p xð Þ ¼
Z R

0
G x; nð Þ @w

@n
dn

where the kernel G is obtained from the ring dislocation solution
(Hills et al., 1996):

G n; n0ð Þ ¼ sign nn0ð Þ 1
n�n0 E kð Þ � 1

nK kð Þ
h i

; jn0j < jnj
1

n�n0 E 1=kð Þ; jn0j > jnj

8<
:

For an axisymmetric fracture, the kernel is to the leading order of
the Cauchy type like for plane-strain fracture, but it also contains
a weaker logarithm singularity. Similarly to Liu et al. (2019), we
write it as:
163
G z; sð Þ ¼ 1
z� s

þ ln z� sj j
2z

þ DG z; sð Þ ð38Þ

where DG z; sð Þ corresponds to the non-singular part of G z; sð Þ. In
order to maintain the accuracy of the quadrature in this case, we
represent the logarithm-term as an integral of the Cauchy-like term,
ln jz� sj ¼ R z

0
dz
z�s þ ln s, where the latter term is inconsequential (it

gives zero contribution to the elasticity integral). Using integration
on the z-grid for the logarithm-term, the final elasticity matrix for
axisymmetric fracture can be written as:

G ¼ Hþ 1
2z

T �Hþ DG ð39Þ

where T ¼ Tii0f g is the z-grid integration matrix and
DG ¼ 1

nDG zi; sj
� �
 �

, and H is the discretized form of the Hilbert
transform

Hij ¼ 1
n

1
zi � sj

ð40Þ
B.3. Discretized form of the set of equations

The dimensionless form of the system of equations for this zero-
toughness solution given by Eqs. (15b)–(15d) can be discretized
using a collocation method on the z-points of the chosen Gauss–
Chebyshev quadrature. The primary unknowns are the value of F

at the n s-points and the dimensionless fracture length c V½ �
m0.


 Using the discretized Hilbert transformation on Eq. (15b), one
obtains after integration from zi to the tip, the following system
of n� 1 equations
1
9
zþ 1

4
S � Fð Þ2D �G � F ¼ 0 ð41Þ

where z ¼ z1; . . . ; zi; . . . zn�1ð Þ is the vector of the coordinates of
the z-points, and F ¼ F1; . . . Fi; . . . ; Fnð Þ the vector of unknown
values of F at the s-points. D represents the Barycentric differen-
tiation matrix on the z-grid and S the integration matrix from z
to the fracture tip (see Viesca and Garagash (2018) for details).


 The propagation criterion (zero stress intensity factor) reduces
to the following scalar equation
Q � F ¼ 0 ð42Þ
where Q is the Barycentric interpolation vector allowing to
obtain the value of F at the fracture tip (and thus the stress
intensity factor).


 The global volume balance (15d) becomes after discretization:
SH � s2F
� �þ 1

p c V½ �
m0

� �3 ¼ 0 ð43Þ

where SH is the integration matrix (from 0 to 1).

These nþ 1 discretized non-linear equations allow solving for the n
unknown values of F on the s-grid and the dimensionless fracture

length c V½ �
m0 .

B.4. Results

We use the built-in Newton scheme of Mathematica (version
12) to solve the non-linear system (41)-(43) using n ¼ 500 points.
We notably obtain the following value for the dimensionless frac-

ture length: c V½ �
m0 � 0:8360.

The obtained solution has been verified against the numerical
3D planar HF simulator PyFrac (Zia and Lecampion, 2019) and
the 1D HF simulator developed in Lecampion and Desroches



Fig. 10. Dimensionless opening (a) and dimensionless pressure (b). Black dashed lines correspond to the semi-analytical viscosity solution (i.e. M V½ �-solution) obtained by the
use of Gauss–Chebyshev polynomials (n ¼ 500). Black markers show numerical solutions of simulations with PyFrac, and the gray line is the solution of the 1D planar HF
Mathematica code described in Lecampion and Desroches (2015).

Table 6
Relative difference between solutions obtained numerically and the results from the self-similar Gauss–Chebyshev collocation scheme. PyFrac simulations (PVP_003 and

PVP_005) and a simulation of the code described in Lecampion and Desroches (2015). E ¼
R 1

0
f N qð Þdq�

R 1

0
f GC qð ÞdqR 1

0
f GC qð Þdq

where f N is an interpolation function of the numerical results and f GC

the solution obtained via the Gauss–Chebyshev collocation scheme. The L2 and L1 norms follow their usual definition.

Simulation t=ts Ep [%] L2;p [–] Ew [%] L2;w [–] L1 p 0; tð Þð Þ [%] L1 w 0; tð Þð Þ [%] L2 R tð Þð Þ ¼ L1 R tð Þð Þ [%]

PVP_003 103 5:13 2:22 2:67 2:98 3:90 4:85 2:75

104 6:59 2:88 3:42 11:32 5:76 6:20 3:46

PVP_005 103 2:29 1:15 1:12 1:76 3:24 2:00 1:16

104 3:53 1:05 1:47 1:78 0:01 2:64 1:57

[LeDe, 2015] 103 1:27 1:50 0:69 2:47 1:13 1:27 0:66

104 1:13 1:55 0:60 2:34 1:36 1:09 0:59
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(2015). Fig. 10 shows the opening (a) and pressure profiles (b) from
the numerical simulations compared to the semi-analytical Gauss–
Chebyshev solution obtained in B.4. We evaluate the relative dif-
ference of the numerical solutions with the Gauss–Chebyshev col-
location scheme for the dimensionless radius, dimensionless inlet
opening, and net pressure. All these relative differences are
reported in Table 6, for two PyFrac simulations with two different
grid (61 	 61, respectively 121 	 121, elements for PVP_003,
respectively PVP_005) and a simulation (using a grid with 80 ele-
ments) with the 1D code of Lecampion and Desroches (2015).

The relative difference of the PyFrac simulation reduces with
finer mesh. For the coarse mesh used, the relative difference in
fracture radius is at most 3.5 percent. We use such a mesh resolu-
tion for all the � 450 simulations reported in the main text. We use
thresholds of 2:5% throughout the paper and then adapt the
obtained values to account for the slightly larger uncertainty
induced by the numerical error. The 1D numerical results (using
a grid with 80 elements) are closer to the one obtained with
Gauss–Chebyshev quadrature which is consistent with the fact
that the axisymmetric geometry is built-in. The geometrical error
on the fracture circular shape is null like for the Gauss–Chebyshev
quadrature, contrary to a planar 3D scheme.
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