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a b s t r a c t

We perform a compare-and-contrast investigation between the equilibrium shapes of physical and
ideal trefoil knots, both in closed and open configurations. Ideal knots are purely geometric abstractions
for the tightest configuration tied in a perfectly flexible, self-avoiding tube with an inextensible
centerline and undeformable cross-sections. Here, we construct physical realizations of tight trefoil
knots tied in an elastomeric rod, and use X-ray tomography and 3D finite element simulation for
detailed characterization. Specifically, we evaluate the role of elasticity in dictating the physical knot’s
overall shape, self-contact regions, curvature profile, and cross-section deformation. We compare the
shape of our elastic knots to prior computations of the corresponding ideal configurations. Our results
on tight physical knots exhibit many similarities to their purely geometric counterparts, but also some
striking dissimilarities that we examine in detail. These observations raise the hypothesis that regions
of localized elastic deformation, not captured by the geometric models, could act as precursors for the
weak spots that compromise the strength of knotted filaments.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The open trefoil knot, commonly known as the overhand
not, is the most elemental open knot, forming the basis of
any, more complex, and more functional knots. The trefoil knot
an be regarded as a building block in bend knots (e.g., fisher-
man’s/English knot) [1], in binding knots (e.g., square or reef, and
ranny knots) [2–4], and in noose knots (e.g., lasso noose, honda
not, and lariat loop) [5]. The classic overhand knot is also key in
uturing procedures (e.g., surgeon’s knot) [6–11]. Overhand knots
an form spontaneously in various natural contexts, across a wide
ange of length scales, from polymers and DNA strands [12–14]
o the umbilical cord of human fetuses [15], and even in vortex
oops in plasma and fluid flows [16–18].

The classic mathematical theory of knots is largely concerned
with all possible topologies of knots tied in a closed loop. More
recently, a smaller mathematical literature of the geometry of so-
called ideal knot shapes has been developed [19]. For context,
in A.1, we provide a brief review of recent advances on the
theory of ideal knots that may be of interest to the Mechanics
community. In this purely geometric context, a knot is modeled as

∗ Corresponding author.
E-mail address: pedro.reis@epfl.ch (P.M. Reis).
ttps://doi.org/10.1016/j.eml.2021.101172
352-4316/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
being tied in a closed loop of idealized rope approximated as a fil-
ament with an undeformable circular cross-section, inextensible
centerline, and vanishing bending stiffness. The ideal, or tightest,
shape is then the centerline configuration of a closed tube with
the given knot type and diameter D0 that has the shortest possible
length L0. For example, an unknot is any configuration of a closed
oop that can be smoothly deformed to a circle without passing
hrough itself. Unsurprisingly, the ideal shape of the unknot is a
ircle of circumference L0 = πD0. Interestingly, the unknot is the
nly knot for which the ideal shape is known explicitly; all other
deal knot shapes have only been approximated numerically. The
refoil knot is the simplest nontrivial knot type, and numerical
pproximations are available, computed with a variety of algo-
ithms, with the most accurate shape obtained to date having
0/D0 = 16.371476 . . . [20]. Further geometric characteristics of
he ideal closed trefoil are given in Appendix A.2.

Ideal shapes of open knots can also be defined, for which
oth the diameter and a (long) arc length of the filament are
rescribed. The ideal shape for a given knot type arises for the
onfiguration with the maximal distance (in space, not arc length)
etween the two ends of the filament. This is a mathematically
ell-posed notion that was first simulated by Pierański et al. [21,
2]. These authors also sought to relate the equilibrium shape of
knotted filament to the decrease in its mechanical strength, as

nduced by the knot itself. They reported peaks in the curvature
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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rofile along the knot at both the entrance and exit points of the
not. Consequently, it was hypothesized that the weakening of
notted filaments, commonly confirmed by practical experience,
as rooted in these geometric features. This observation has also
een corroborated at the atomic scale by Saitta et al. [12], who
erformed molecular dynamic simulations on knotted polymer
trands and pointed to a strain–energy localization at the en-
rance and exit to the open trefoil knot. However, more recent
tudies by Uehara et al. [23] and Przybył et al. [24] suggest that
he ideal rope model may not be appropriate to describe the me-
hanical properties of tight physical knots. Whereas recent studies
ave addressed the mechanics of loose overhand knots [25–27],
he mechanics of the corresponding tight configurations remains
argely unexplored.

Here, we perform a compare-and-contrast investigation be-
ween the equilibrium shapes of physical realizations of tight
lastic trefoil knots and those of ideal knots based on exist-
ng purely geometric models [21,28], both in open and closed
onfigurations. We realize physical knots tied onto elastomeric
ods (which are straight in their unstressed configuration) in
xperiment complemented with fully 3D elastic simulation using
he finite element method (FEM); representative examples are
rovided in the experimental photographs and FEM-snapshots
f Fig. 1. Data from X-ray micro-computed tomography (µCT)
re used for a thorough quantitative validation of our FEM com-
utations. Firstly, we focus on the closed trefoil knot, given its
dvantage of having a closed centerline with periodic boundary
onditions; in particular, no external forces are required to attain
quilibria. In its tight equilibrium configuration, a 2D mapping of
he contact surface in the physical knot revealed that the double-
ontact lines first computed by Carlen et al. [28] within the purely
eometric model form an accurate outer skeleton for the contact
urface patch observed in the elastic case. Secondly, we study
ight configurations of the open trefoil knot, where different levels
f tightness can be systematically investigated by the application
f a range of external forces, thereby elucidating the effects of
lasticity. Our measured curvature profiles for knotted elastic
ilaments, both in the closed and open trefoils, are qualitatively
ifferent from those predicted by the ideal geometric models.
pecifically, physical open knots exhibit curvature peaks inside
he knot, instead of at their entrance/exit, contrary to previous
redictions for the tightest ideal knot [21]. The excellent FEM-
xperimental agreement confirms the observed curvature profiles
nd enables us to extract and map the contact pressure dis-
ribution, thereby revealing significant rod constrictions at the
ntrance and exit of the tight open knot. Finally, we characterize
hese regions of localized elastic deformation, which we speculate
ould act as precursors for the weak spots that compromise the
trength of knotted filaments.

. Physical realization of trefoil knots

We have devised an experimental framework and performed
EM simulations to realize tight physical knots tied on homo-
eneous, intrinsically straight, elastic rods. In this section, we
escribe the methodology that we followed on both fronts.

.1. Experimental protocols

.1.1. Fabrication of customized elastic rods
We fabricated composite elastomeric rods with the goal of

aking them compatible with µCT imaging and 3D image analy-
is to extract their centerline coordinates and self-contacting re-
ions. We used the same fabrication protocol introduced recently
o study the contact mechanics between two elastic rods [29],
2

Fig. 1. Elastic closed and open trefoil knots in experiment and FEM. a1, Ex-
perimental photograph of a closed trefoil knot tied on an elastomeric rod
with length-to-diameter ratio L0/D0 = 16.37 (L0 = 139.1mm and D0 =

8.5mm). a2, Numerical counterpart of a1 computed from FEM. b1, Experimental
photograph of a tight, open trefoil knot tied on an elastomeric rod. b2, Numerical
counterpart of b1 computed from FEM.

but with the additional feature described below. The method de-
scribed in [29] enabled the fabrication of composite elastomeric
rods made out of vinyl polysiloxane, VPS32 (Elite Double 32, Zher-
mack, Young’s modulus E = 1.25 MPa, density ρ = 1160 kg/m3),
decorated with an elastomeric concentric physical fiber (diameter
500 µm) and a 150 µm-thick elastomeric coating. The concentric
physical fiber and the coated layer were made of a different,
lighter, elastomer (Solaris, Smooth On, Esolaris = 320 kPa, ρsolaris =

1001 kg/m3). The 13% lower density of Solaris with respect to
VPS32 allows for the segmentation of the features of interest
(centerline and the self-contact regions) during post-processing
stages of the µCT tomographic images, as detailed in Ref. [29].
In the present work, we introduce an additional feature to our
composite rods by embedding a second, eccentric, physical fiber
made of Solaris and diameter 500 µm, parallel to the concentric
fiber, at a distance of 2 mm. This inset fiber allowed us to match
the twist of the glued extremities when fabricating the closed
trefoil knot. Finally, the elastomeric rods of total diameter D0 =

8.5mm were then cut to different values of their total length of
L0, depending on the system of interest.

2.1.2. Tying of open trefoil knots
We tied open trefoil knots on the fabricated rods. Any build-

up of excess twist at the free ends was avoided by carefully
aligning the eccentric fiber at the extremities during the manual
tying process. The knot was progressively tightened by increasing
the end-to-end distance while the sample was immersed in a
container of soapy water (Palmolive Original) to ensure vanishing
friction conditions. The limited size of the sample holders of the
µCT apparatus required rods of different undeformed lengths:
L0 = 185mm or 125mm, respectively, for the looser or tighter
open knot configurations detailed next. Pierański et al. [21] com-
puted the normalized knot length, ΛOC (the engaged knot length
divided by the tube diameter), corresponding to the normalized
difference between the arc lengths of the centerline associated
to the first (entrance) and last (exit) contact points, s1 and s2,
respectively. Both the µCT scanning and the FEM provide access
to ΛOC. We chose two elastic configurations, one looser (L0 =

185mm, ΛOC = 127.5/D0 = 15.0) and the other tighter (L0 =

125mm, ΛOC = 85.9/D0 = 10.1, see Fig. 1b1) than the tightest
ideal open trefoil knot (Λ = 12.4) [21].
OC
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.1.3. Tying of the closed trefoil knot
To compare the elastic closed trefoil knot and its ideal equiva-

ent (results in Section 3), we trimmed the elastic rod according to
he length-to-diameter ratio computed by e.g. Carlen et al. [28].
or these experiments, our undeformed elastic rod of diameter
0 = 8.5mm had a length of L0 = 16.37D0 ≈ 139.1mm dictated
rom the geometric model. The physical closed trefoil knot was
ied by first producing an open trefoil knot and then joining the
wo rod extremities using a silicone adhesive (Sil-Poxy, Smooth-
n). During this closure procedure the eccentric fibers at each end
ere aligned at the joint location, which appeared to closely cor-
espond to minimizing any additional, imposed, excess twist. The
losed knot was placed in an ultrasonic bath (VWR, USC1200TH)
ith a water–soap mixture (Palmolive Original, ≈20% in volume)

or five minutes (at frequency 45 kHz and temperature 22 ◦C). The
ombination of the ultrasonic vibrations and lubrication by the
oap minimized frictional effects in the regions of self-contact
ensuring the absence of tangential surface stresses there), in
greement with the assumption of frictionless self-contact of
dealized rods. Fig. 1a1 shows an optical photograph of the final
hysical closed trefoil knot.

.1.4. Post-processing of µCT images
We quantified the 3D geometry of the knotted rods using

CT imaging (µCT100, Scanco Medical), with spacial resolutions
voxel size) of 24.6 µm or 16.4 µm for the open or closed
not configurations, respectively. An adaptation of the algorithm
eveloped by Grandgeorge and Baek et al. [29] was used for
ubsequent post-processing of the tomographic images. In this
rocess, the segmentation of the images leveraged the density
ifference between the various rod features. The embedded con-
entric physical fiber allowed us to extract a discrete set of the
ocations of the centerline coordinates, r(si). The integer i corre-
ponds to the index of the centerline locations with 1 ≤ i ≤ N
where N is the total number of centerline points). The applica-
ion of a Gaussian-weighted moving average filter to r(si) was
ecessary (see Appendix B) to compute the discretized curvature
f the rod centerline, as described next. We first constructed the
iscrete set of tangent vectors e at s = si such that e(si) =

(si + δs) − r(si), with the increment δs ≡ ∥r(si+1) − r(si)∥. The
iscretization increment was fixed to δs = 150 µm and δs =

00 µm for the open and closed knot configurations, respectively.
e then computed the curvature profiles of the discrete framed

urves according to Bergou et al. [30]:

(si) =
|2e(si−1) × e(si)|

|e(si−1)||e(si)| + e(si−1) · e(si)
·

1
|D(si)|

, (1)

ith the length of the Voronoi region |D(si)| = (|e(si−1)| +

e(si)|)/2. Finally, the regions in the µCT images corresponding to
he thin uniform outer coating layer of Solaris were segmented to
eveal the regions of self-contact. The individual contact points on
he rod surface are shown in Fig. 2a1 and a2.

.2. Finite element simulations

We used the finite element method (FEM, ABAQUS STANDARD
.14-1, Simulia, Dassault Systems 2014) to simulate the tying of
he same knots realized in the experiments. These experimentally
alidated simulations yield information that cannot be accessed
irectly through experiment; e.g., the pressure field in the regions
f self-contact. Contrariwise, the close agreement between the
wo (see results in Figs. 3, 4, and 5) serves as a verification that the
xperimental configurations are, indeed, the equilibrium ones,
ith no additional significant experimental artifact.
The FEM computations were performed using the procedure

eported recently by Baek et al. [31], involving a dynamic-implicit
3

Fig. 2. Methods to realize and analyze the elastic open and closed trefoil
knots. a1, Rendering of the reconstructed µCT-data of an experimental open
trefoil knot with a normalized knot length ΛOC = 85.9/D0 = 10.1. a2, Rendering
of the reconstructed µCT-data of the elastic closed trefoil knot with a length-
to-diameter ratio of L0/D0 = 16.37. b1, FEM computed equilibrium shape of an
open trefoil knot. b2-b4, Successive rod-end displacements to obtain the FEM
closed configuration starting from a tight open trefoil knot.

analysis to capture the geometrically nonlinear deformation of
the closed trefoil knot. A rod of diameter D0 and length L0 (par-
alleling the rod dimensions in the experiments) was meshed
using 3D solid elements with reduced integration (C3D8RH). The
number of elements per cross-sectional area was 120 and 190 for
the open and closed knots, respectively. The mesh size along the
axial direction of the rod was chosen such that the aspect ratio of
the elements was close to unity. We modeled the elastomer as an
incompressible neo-Hookean material of Young’s modulus E =

1.25MPa. Self-contact of the rod was enforced using a penalty
normal force model combined with there being no tangential
force (frictionless contact).

Starting from the initially straight configuration of a rod, we
obtained a final knotted geometry by applying a sequence of
displacement steps at each extremity of the rod. Firstly, we es-
tablished a configuration of the open trefoil knot based on the
knot-tying procedure described in Baek et al. [31] (see Fig. 2b1).
Then, we gradually brought the extremities of the rods in contact
to establish the closed configuration (see Figs. 2b2-b3), with the
final equilibrium configuration of the closed trefoil knot pre-
sented in Fig. 2b4. The two extremities were constrained using
the ABAQUS command *COUPLING, which enables the extremi-
ties to be displaced while allowing their cross-section to deform.
Throughout, we ensured that the simulation was quasi-static.

3. Ideal versus elastic closed trefoil knots

Having described our experimental and numerical toolbox, we
proceed by quantifying the similarities and dissimilarities be-
tween physical and ideal closed trefoil knots, with the analogous
discussion of the open case appearing in the next section. A closed
knot offers the advantage of having a closed centerline curve with
matching periodic boundary conditions; its configuration is not



P. Johanns, P. Grandgeorge, C. Baek et al. Extreme Mechanics Letters 43 (2021) 101172

o
r
i
p

T
t
u
w
l
i

r
k
i
l
t
G
d
t
c
b
ρ

Fig. 3. Ideal versus elastic closed trefoil knots. a, b Top and side views of the 3D reconstruction of the experimental closed trefoil knot, including the barycenter
f the closed centerline curve, G, and the radial and vertical centerline coordinates, ρ and Z respectively. The normalized centerline curvature, κ(s) = KD0 , is
epresented by a color-map on the centerline curve. c, Comparison of the normalized radial centerline coordinate ρ/D0 ≡

√
X2 + Y 2/D0 . The three arc lengths S are

ndividually normalized and rescaled such that s = S/L × L0/D0 . The shaded areas indicate the inner segments. d, Comparison of the normalized vertical centerline
osition z = Z/D0 . e, Normalized curvature profile for the ideal and elastic case, including the active curvature limit at κ = KD0 = 2. The black solid line (ideal)

data are reproduced from Ref. [28,32]. f, Contact map showing the characteristic double contact in the ideal case, and the filled area of the equivalent elastic case
(experiment and FEM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
subject to external factors such as applied external forces. As
the experimental material is elastic, a trefoil knot can be tied in
tubes with a wide range of aspect ratios of L0/D0 of undeformed
centerline length to undeformed cross-section diameter. Cases
with L0/D0 large would correspond to loose knots as consid-
ered in [25–27]. Cases with L0/D0 small would require large
extension just to be able to close the centerline to form the
knot, with associated large tensions, and presumably associated
large cross-sectional deformation. A systematic study of depen-
dence on a range of chosen values for L0/D0 is beyond the scope
of the current work. Instead we chose the single critical value
L0/D0 = 16.37, which is a good approximation to the smallest
value known to be possible in the ideal geometric theory with an
inextensible centerline and undeformable cross-section (and no
bending stiffness). We would expect the resulting experimental
equilibrium configuration to be relatively tight, and with rela-
tively small centerline extension and cross-sectional deformation.
After a closed trefoil is tied on the physical elastic rod (with
undeformed rod length L0 = 139.1mm and cross-section di-
ameter D0 = 8.5mm), the observed stretch of its centerline is
1.070 in experiment and 1.082 in FEM-simulation. The overall
length-to-diameter ratio of the stretched rod, L/D, was measured
to be 18.12 and 18.53 in experiments and FEM-simulations, re-
spectively. Note that we define the average reduced diameter as
D = D0[1 − ν(L − L0)/L0], where the Poisson’s ratio is ν ≈ 0.5.
o further compare our results with those of the ideal geometric
heory, we take the observed small axial strain into account by
sing the normalized and rescaled arc length s = S/L × L0/D0,
ith the stretched rod length, L, and the ideal normalized rod

ength L0/D0 = 16.37, while also assuming that the axial strain
s constant along S.

To perform a comparison between the centerline coordinates
(s) = (X(s), Y (s), Z(s)) of the elastic and the ideal closed trefoil
nots, we introduce (following Ref. [28]) cylindrical coordinates
n the Cartesian basis {ex, ey, ez}, as shown in Fig. 3a,b. The knot
ies flat on the ex-ey-plane, and the origin is chosen by the condi-
ion that the center of mass, or barycenter, of the centerline curve
=

∑N
i=1 r(si)δsi/L lies on the ez-axis. (Here, N is the number of

iscretization points, L is the stretched rod arc length, and δsi is
he length of the ith segment between two successive discretized
enterline points.) In Fig. 3c, we compare the radial distance
etween the centerline and the barycenter axis, quantified as
(s) ≡

√
X2(s) + Y 2(s), for the experimental, FEM and ideal knot
4

cases (with three individually scaled arc lengths on ordinate, but
all plots with the same common length scale on abscissa). The
experimental and FEM data are in excellent agreement. Compared
to the ideal knot, the experimental and FEM closed knots exhibit a
radial inflation, presumably due to elasticity effects, as evidenced
by the horizontal offset of the ρ data. For example, ρ/D0 differs
by 0.20 and 0.16 in the inner segments (minima; shaded) and the
outer segments (maxima of ρ/D0 curves), respectively. Moreover,
the effect of the cross-sectional deformation is reflected in the
amplitude of ρ for the elastic knot which is 0.95D0 (D0 for
the ideal case). To complete the comparison of the cylindrical
coordinates, in Fig. 3d, we present the rescaled vertical center-
line coordinate, Z(s)/D0, for the three cases, which, interestingly,
shows an excellent match between the ideal and the elastic closed
knots, unlike the ρ data presented in Fig. 3c.

Based on the µCT and FEM data, we construct a
two-dimensional contact map; the projection of the contact sur-
face onto the arc length s vs. arc length σ plane. To assemble this
contact map, each point in the contact surface is assigned to the
two closest centerline positions of the knotted rod, at arc lengths
s and σ .

In Fig. 3f, we plot the contact map for the ideal case [33]
(black solid lines), together with the corresponding data extracted
from µCT and FEM. Note that by construction the arc length
contact map is point-symmetric with respect to s = σ = 0 [33].
Consequently, due to this symmetry, we only present one half
of the µCT and FEM contact data, respectively in the lower-
right and upper-left quadrants of the s − σ plot in Fig. 3e. We
observe that, whereas, for the ideal knot, there are precisely two
contact points σ1, σ2 for each s value, the physical knots exhibit
an extended contact region with a range of σ values for each s
value. Moreover, we find that the contact set for the physical knot
is a surface that lies fully inside the double contact lines (black
lines) of the ideal closed trefoil knot; the geometric model acts
as an outer skeleton for the elastic case. This filled (areal) contact
region for the physical case, replaces the double-line contact in
the ideal knot (see Section 1 and Appendix A.2) due to cross-
sectional deformation. The mismatch between the ideal and the
elastic cases is particularly evident in the inner segments; there,
the corners of the geometric contact set are not filled in the elastic
case.

In Fig. 3e, we plot the curvature profiles of the elastic and the

ideal trefoil knots. The curvature data are also presented in Fig. 3a
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see color-map), along the centerline of the experimental case.
he elastic knot exhibits plateaus in the three outer segments
ith average normalized curvatures of κ = KD0 ≈ 0.93 (whereas
≈ 1.00 for the ideal knot). Despite these close values in the

uter segments, the behavior in the inner segments is strikingly
ifferent between the elastic and ideal cases; the elastic knot ex-
ibits clear curvature minima, whereas the ideal model predicts
win curvature peaks approaching the active curvature limit κ =

, separated by a local minimum [28]. We hypothesize that this
ifference in curvature profiles between the two cases is rooted
n the cross-section deformations allowed in 3D elasticity, which
e address further in the next section, in the context of the open
refoil knot.

. Ideal versus elastic open trefoil knots

The open trefoil knot allows us to directly control the level
of tightness by applying forces to the rod extremities, to study
the role of elasticity more systematically. This feature is not
possible in the closed case since the extremities are, naturally,
‘glued’ together. We will employ the experimental and numerical
toolbox that we developed for the closed trefoil knot to explore
he similarities and dissimilarities between the elastic open trefoil
not and the corresponding ideal case [21,22].
In Fig. 4a, we present the 3D reconstruction of an experimental

pen trefoil knot (normalized knot length of ΛOC = 10.1), with
he measured normalized curvature profile, κ(s) = KD0 super-
osed onto the centerline. This curvature profile is qualitatively
imilar to what we observed in Section 3 for the physical, closed
refoils, with minima at the inner segments (region (2) in Fig. 4a).
n Fig. 4b, we plot the experimental and FEM-computed κ(s)
rofiles for the two elastic knots that we investigated, with nor-
alized knot lengths of ΛOC = 10.1 and 15.0. By way of example,
e describe the physical knot with ΛOC = 10.1, referring to the

eatures labeled in Fig. 4a and b while traveling along arc length
increasing s). Soon after the knot entrance (1), the vanishing cur-
ature of the almost straight elastic rod rises to a local maximum,
n the central region of the inner segment (2). The transition of
he rod from the inner to the outer segment has a curvature
rop, followed by an abrupt rise. The normalized curvature then
eaches its maximum value in the outer segment (3). In this high-
urvature region, we find that κ > 1 over a wide range of s due to
ross-sectional deformation of the elastic rod. Eventually, there is
local curvature minimum at the central part of the loop (4).
The curvature profile of the ideal open trefoil knot in its tight-

st configuration (ΛOC = 12.4) obtained by Pieranski et al. [21]
s also shown in Fig. 4b, superposed onto the elastic profiles for
omparison. There are important qualitative differences between
he ideal and elastic results. For example the prominent curvature
eaks occur at different locations and with different shapes be-
ween the two cases, a difference that can be attributed to elastic
eformation of the cross-sections and the centerline.
In Fig. 4c, we map the contact region for elastic knots with

OC = 10.1 and 15.0 (blue and green regions, respectively),
xtracted from the µCT and FEM data. For the experiments, the
ull contact region in the s − σ space is plotted, whereas, to
id comparison, only the outer boundaries of the contact regions
re shown for the FEM data (dashed lines). Again, FEM and
xperiments are in excellent agreement. Naturally, the contact
ap of a self-contacting rod is symmetric with respect to the
= σ axis. Indeed, if contact occurs at the centerline arc length
= a with the arc length σ = b, then it also occurs at s = b
ith σ = a. Moreover, the symmetric nature of the overhand
not about s = 0 introduces the axis of symmetry s = −σ on its
ontact map.
From the simulations, we extracted data for the contact pres-

ure (normal traction) at the regions of self-contact. In Fig. 5a, we
5

Fig. 4. Ideal versus elastic open trefoil knots. a, Reconstruction of an experi-
mental open trefoil knot with ΛOC = 10.1. The centerline of the knot is overlaid
y the color-map of the normalized curvature profile κ(s) = KD0 . The following
eatures are referred to in the text: (1) knot entrance, (2) inner segment,
3) outer segment, and (4) central loop. b, Normalized curvature profiles.
xperimental (solid colored lines) and numerical data (dashed colored lines)
or two normalized knot lengths ΛOC={15; 10.1} compared to the geometric
escription according to Pierański et al. [21] (thin black line). The arc length S is
ormalized such that s = S/D0 . c, Contact regions mapped into the s−σ space:
CT data (filled area) and FEM data (dashed lines, only the region boundaries
re shown). The normalization of the arc length S is s = S/D0 and σ = S/D0 .
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

resent a snapshot of the elastic knot with ΛOC = 10.1, including
he contact regions onto which we superpose the contact pres-
ure (normalized by the Young’s modulus E). The contact pressure
ap is shown in Fig. 5b, using a similar representation (in the
− σ space) used in Fig. 4c for the contact map. The highest
ontact pressure is found along the entire central region of the
ontact set, with maximum characteristic normalized values of
/E ≈ 0.44. Note that the knot entrance/exit (shaded regions
n Fig. 5b) correspond to regions of localized pressure, aligned
erpendicularly to the rod centerline. To further quantify the
ocalization of deformation along the knot, in Fig. 5c, we present
easurements of the circumferential contact set width profile

c(s), normalized by the total perimeter of a rod cross-section at
rc length s. We observe sharp peaks of Lc at the inner segments
−4.8 ≲ s ≲ −3.8 and 3.8 ≲ s ≲ 4.8), where up to 90% of the
ircumference of the cross-section is in self-contact. The regions
f pronounced contact pressure (Fig. 5b) in combination with the
harp circumferential contact width peaks (Fig. 5c) lead to local-
zation of high contact pressure in a narrow region with a small
ange of arc lengths. Consequently, as shown in Fig. 5d, where we
uantify the profile of deformed cross-sectional area as a function
long the centerline of the rod, the cross-section of the inner rod
egment is elastically constricted by up to ∼ 63% compared to its
est cross-section area; such localized constrictions in knots are
ypically referred to as nip regions [5].

. Discussion and conclusions

We have systematically quantified the shapes of physical tre-
oil knots, in both closed and open configurations. Excellent agree-
ent was found in all considered quantities between FEM and
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(

Fig. 5. Constriction at the entrance and exit of elastic tight open trefoil knots. a, Numerical FEM contact pressure on the 3D knot of the tight configuration
ΛOC = 10.1). The shaded regions indicate the inner segments at the knot entrance/exit. b, Numerical contact pressure map for tight configuration (ΛOC = 10.1).
The normalization of the arc length S is s = S/D0 and σ = S/D0 . c, Circumferential (µCT- and FEM-data) contact set width Lc along the arc length, showing clear
peaks at the entrance/exit of the knot. d, Cross-sectional area (µCT- and FEM-data) along the arc length, normalized by the cross-sectional area of the undeformed
rod. The quantities plotted both in c and d are also represented on the respective insets, using a color-coded centerline of the 3D reconstruction of the knot. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
experiment. For the latter, we made extensive use of X-ray micro-
computed tomography, gaining access to volumetric information,
including centerline curvature and cross-sectional deformation
profiles. In parallel, the experimentally validated FEM enabled us
to quantify the contact pressure field, which is not available in
experiment. Direct comparisons were also established between
the experimental and FEM data for elastic trefoil knots and prior
numerical computations of their (purely geometric) ideal shape
counterparts.

For both open and closed physical trefoil knots the contact sets
observed in both experiment and FEM were smooth surfaces, with
a positive contact set width Lc, i.e. finite strips. For the closed tre-
foil, the physical contact surface is actually a closed strip, which,
as an additional topological observation, we remark is a one and a
half turn Möbius band (the more common Möbius band has only
a single half turn) and so is non-orientable (it has only one face)
and only one edge. Moreover for such 1.5-turn Möbius bands
the single edge itself forms a trefoil knot (see Supplementary
Movie 1). This is perhaps at first sight surprising, but the topology
of the contact strip is inherited from the topology of the contact
line of the ideal closed trefoil configuration, where it is already
understood that the contact set in 3D is a closed curve that is itself
a trefoil knot [28]. Just as for the 2D arc length contact sets (cf.
Fig. 3), where the 2D contact region of the elastic configuration
fills the outer skeleton provided by the double-contact line of
the ideal geometric model when elastic deformation of the cross-
section is allowed, the 3D ideal contact set curve acts as skeleton,
which is fattened, or bridged, to arrive at a 3D physical contact
surface strip, whose topology is inherited from the ideal case.

In the comparison between the elastic and ideal cases of trefoil
knots, we found that their curvature profiles were not just quanti-
tatively different, but also qualitatively different. In both open and
closed cases, elasticity regularizes the curvature peaks within the
inner segment that are predicted by the purely geometric model.
To gain insight into the discrepancies between the elastic and the
ideal systems, we focused on the open configuration, allowing us
to systematically vary the knot tightness. The curvature peaks of
the elastic system occur in the outer segment, for both looser and
tight knots, contrary to the geometric counterpart, where they
appear at the knot’s entrance/exit regions. The contact pressure
distribution extracted from FEM exhibited localized regions at the
entrance of the knot (inner segments). This pressure localization
6

leads to a prominent cross-sectional deformation in the inner
segments, acting as local constrictions in these nip regions.

As reported by C.W. Ashley in his comprehensive reference
manual on knots [5], ‘‘a rope is weakest just outside of the entrance
of the knot ’’; a finding that is commonly confirmed by practical
experience in knotted filaments. The significant reduction in the
cross-sectional area reported in Fig. 5d at the entrance/exit of
tight elastic open knots could act as a precursor for weak spots
on knotted filaments. Our interpretation is different from that
of Pierański et al. [22], who attributed the onset of failure to
regions of high centerline curvature, computed using their purely
geometry model, which our results demonstrate to be in strong
disagreement with the curvature profile of physical knots. Our
investigation highlights that a mechanics-based approach, going
beyond pure geometry, will be necessary to rationalize knot
failure. Given the high level of tightening in functional knots tied
onto elasto-plastic material filaments, these constriction regions
are prone to local plastic deformation [23]. The effect of plasticity
on the equilibrium shape of physical knots remains an open
question, which we hope to untangle in future studies.
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Appendix A. A brief overview of ideal closed knots

In the Introduction section of the main text, we defined tight-
est or ideal knot shapes as the centerline configuration with
the shortest possible length amongst all those tied in a closed
loop of an idealized rope, which is taken to mean a filament
with an undeformable circular cross-section of prescribed diam-
eter, and inextensible centerline (and vanishing bending stiffness
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o the problem has no mechanics, only geometry). In this Ap-
endix, for completeness, we provide a brief overview of existing
iterature on ideal knots (primarily from the Mathematics com-
unity, but which we hope may be of some interest to the
echanics community). Specifically, we focus on a more technical
escription of the necessary conditions that must be satisfied
y ideal shape centerline curves, and the double-contact feature
hat is manifested in the ideal trefoil knot and other geometries
not-knots).

.1. Ideal shapes

Ideal shapes are known to exist for all standard knot types [34]
ith centerlines that are C1,1 curves, meaning that the centerline
as a continuously varying unit tangent at every point, and a
urvature that is defined almost everywhere, but not everywhere.
n particular the curvature can be discontinuous. For example, a
traight line segment joined to an arc of a circle with matching
angents, but a discontinuous curvature, can form part of an ideal
hape, and numerics strongly suggest that straight line segments
nd discontinuities in curvature do arise in ideal shapes, for ex-
mple on composite knots [35]. As a side note, we point out that
nowing the fine detail of the precise smoothness or regularity
f ideal knot shapes is important in designing good numerical
lgorithms to approximate them. In addition to the circular cen-
erline of the ideal shape of the unknot, the only other known
xplicit ideal shapes are comparatively simple, piece-wise planar,
deal shapes for certain links (i.e., knots with multi-component
enterlines) [29,36].
The first conditions that must be satisfied by ideal knot shapes

ere derived in Ref. [35], in terms of the global radius of curvature.
echnically, these results depended on the slightly too strong as-
umption of a C2 centerline. Extensions to the weaker and sharp
ypothesis of a C1,1 centerline were obtained in Ref. [37], where
he appropriate Euler–Lagrange equations were also related to
orce balance. The necessary conditions that must be satisfied
n an ideal shape include the three-way alternative that every
oint along an ideal centerline must be either (i) part of a straight
egment, or (ii) local curvature must achieve its maximal value
/D0 (as is the case everywhere for the circular ideal shape for
he unknot), or (iii) be at one end of a locally minimal distance,
r contact chord, of length D0 between two distinct points on the
enterline.

.2. The ideal closed trefoil knot

As mentioned in the main text, we believe that the most accu-
ate numerical approximation to the ideal closed trefoil currently
vailable is that provided by Przybyl et al. [20], with L0/D0 =

6.371476 . . . . This computed value of L0/D0 is a rigorous (to
achine arithmetic precision) upper bound to the actual ideal
alue, and very probably the upper bound is rather close to the
ctual, unknown ideal value. However, rather than comparing
any digits of accuracy in the ideal value of L0/D0, the present
tudy seeks to compare features of computed ideal closed trefoil
hapes with both experiment and FEM simulation, which include
combination of the elastic effects of bending and deformation of
ross-sections. The features that we compare were first described
or the ideal geometric trefoil by Carlen et al. [28], and subse-
uently confirmed and better visualized on improved simulation
ata, as fully described in [32,33], from where the images in
ig. A.6 are reproduced.
For the ideal closed trefoil, visualized as a solid tube in

ig. A.6a, each point along the tube centerline is in fact at the
nd of two distinct contact chords. This gives rise to the double
ontact lines in the (s, σ ) plane shown in Fig. 3f in the main text.
 b
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Fig. A.6. 3D Visualizations of the ideal closed trefoil knot. a, a solid tube
visualization, which obscures the inner structure of the one-parameter family
of contact chords shown as a translucent yellow surface in panel b (at a slightly
larger scale). The sharp edge of the surface is the centerline of the knot. The
red curve traced out by the center points of the contact chords is the contact
set where the tube of panel a touches itself. The contact curve can be seen to
itself be a trefoil knot by the smooth homotopy from the contact curve (red) to
knot centerline (green) illustrated in panel c, where each of the non-intersecting
ulti-colored closed curves lies on the yellow contact surface. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
ource: Adapted with permission from [32,33].

n addition the maximum local curvature of 2/D0 is very close
o being attained at six points, as shown in the spikes in Fig. 3e
n the main text. Furthermore, the curvature is nowhere close to
anishing, so that no straight segment arises in the ideal trefoil
not centerline. The double-contact feature is present along the
ull arc length of the trefoil knot, which means that there is a
ne-parameter family of double contact chords which trace out
surface in 3D, as shown in Fig. A.6b, where the sharp edge of

he translucent yellow surface is the centerline curve of the ideal
refoil shape. The 3D contact set for the ideal trefoil is a closed
urve lying on the surface of the tubes visualized in Fig. A.6a, but
s obscured. This contact line is also traced out by the mid-points
f the contact chords (red curve in Fig. A.6b). The contact curve
an be seen to itself be a trefoil knot by the homotopy illustrated
n Fig. A.6c, where there is a family of non-intersecting multi-
olored closed curves that deform along the contact surface from
he contact curve (red) to the knot centerline (green).

Analogous double-contact phenomena have previously been
eported for infinite double helices, depending on the pitch angle
38,39], and in an ideal orthogonal clasp problem [40]. Maritan
t al. [38,39,41] also showed that in an optimal packing problem,
ingle helices frequently arise with both double contact chords
nd maximal curvature, and that the associated critical aspect
atio of this special helix arises for the Cα carbons in α he-
ical segments of protein crystal structures. Thus the observed
henomena of double contact chords with additionally maximal
urvature, is perhaps not as exceptional as it might first appear.

ppendix B. Smoothing of the raw data to reduce ‘noise’ in the
urvature computation

As described in the main text (Section 2.1.4), we computed
he curvature profiles of the rod centerline by the numerical
ifferentiation of r(s). Prior to this differentiation, we applied
Gaussian-weighted moving average filter (command smooth-
ata in Matlab 2019) to r(s), with a window size defined by σ =

ound(Nb/Ngauss). To test the fidelity of the computed curvature
ata, given the discrete nature of the raw data, we performed
parametric test of the filter on the closed trefoil knot with

0/D0 = 16.37 (the same configuration studied experimentally
n the main text). In this test, we fixed the total number of
iscrete centerline points Nb = 984 for the closed trefoil knot,
nd systematically varied Ngauss = {15, 25, 50}. Without the
ilter (i.e., σ = 1, corresponding Ngauss = 984), the data would

e far too noisy for analysis. In Fig. B.7, we present profiles for
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Fig. B.7. Test for the smoothing of the curvature computed from the
centerline data for the experimental closed trefoil knot. A Gaussian-weighted
oving average filter with changing size of the smoothing window allowed to

ind the trade-off value between noisy and over-smoothed curves. The selected
alue for the window size used for the data presented in the main text is
gauss = 25 (i.e., σ = 39).

ormalized curvatures, κ(s), for decreasing values of Ngauss (the
ata is increasingly smoothed as Ngauss decreases). We selected
he window size of σ = 39 (i.e., Ngauss = 25), which reason-
ably suppresses noise while not over-smoothing the curvature
features.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml.2021.101172.
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