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SYNOPSIS

In this paper, it is shown that dynamic optimization problems of first-order systems can be
transformed into a static parametric programming problem, where the state plays the role of
the parameter. Thus, an optimal feedback law is obtained. This concept is applied to the die-
sinking Electrical Discharge Machining, a highly time varying industrial process which
necessitates adaptation of machining settings during operation. It is shown that the minimum-
time operation of this process is equivalent to choosing the manipulated variables that
maximizes the speed of machining at every position.

1 INTRODUCTION

Optimization has gained interest in the industrial community, since it provides an appropriate
framework for improving efficiency and cutting production costs. The main bottleneck is that
most real-life systems are dynamic, time varying, and uncertain and dynamic optimization of
uncertain systems is not straightforward. So, the use of measurements in the optimization
framework need to envisaged (1,2).

For first-order systems, this paper exploits the one-dimensional nature of the problem to
transform the dynamic optimization problem into a static parametric programming problem.
Parametric programming is a concept recently introduced (3,4). The idea is to obtain the
optimal solution for different values of the parameters. An interesting twist occurs when the
state variables are used as parameters (5). A similar idea, where the state takes the role of the
parameter, will be used here.



The methodology is applied to die-sinking Electrical Discharge Machining (EDM) (6,7). The
EDM process consists in eroding hard metals by applying high frequency sparks between an
electrode and the workpiece, both immersed in dielectric fluid. When machining progresses, it
is more difficult for the dielectric to enter the machined cavity to clean it. This leads to debris
accumulation which modifies the dielectric properties. Thus, EDM is a highly time varying
industrial process and so, the machining settings have to be adapted along the machining
operation.

Applying the theoretical developments to EDM indicates that minimum-time operation can be
achieved by maximizing the machining speed. The parametric programming approach is used
to maximize the speed, with the electrode position acting as the parameter. Thus, a static
feedback law, i.e. a relationship between position and the manipulated variables, is obtained.
Also, issues regarding performing local or global optimization on-line are discussed.

The paper is organized as follows. In Section 2, certain preliminaries concerning constrained
dynamic optimization and parametric programming are presented. The main result of
transforming a dynamic optimization problem of first-order systems into a static parametric
programming problem is discussed in Section 3. Finally, application of the proposed
methodology to the EDM process and experimental results are presented in Section 4.

2 PRELIMINARIES

2.1 Constrained Dynamic Optimization
The dynamic optimization problem under constraints can be formulated as follows (1,2,3) :

min ¢(x(;).1,) M
s.t. x=f(x,u), x(0)=x, 2)
S(x,u)<0, T(x(t,)) <0 (3)

where ¢(x(z,),t,) is the objective function to be minimized, x €  the state, u€ " (m=1)
the input, S(x,u)E ° contains the path constraints, and T(x(t,;)) € Tthe terminal
constraints. The final time 7, may be specified of free. If 7, is free, it acts as an additional

decision variable of the optimization, as is the case in (1). All developments will be done for
free terminal time.

Here, a special case of the objective function that depends only on the final state x(z,) is

considered. The more general case with an integral term is not addressed here. Equation (2)
describes the system dynamics, f(x,u) starting at the state value x(0) = x,. f(x,u) is a scalar
function at least once continuously differentiable ( f(x,u) € C') which can be linear or
nonlinear. Note that only first-order systems are treated here.

By means of the Pontryagin's Minimum Principle (PMP), optimization of a scalar objective
function (1)—~(3) can be transformed into the optimization of the Hamiltonian function H(t)

(8):
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where A(t) € is the adjoint variable (Lagrange multiplier for the dynamic equation), u the
vector of Lagrange multipliers for path constraints and v the vector of Lagrange multipliers
for terminal constraints. Equation (7), termed the transversality condition, is needed only
when the terminal time is a decision variable. The necessary conditions of optimality are
given by:
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The problem represented by Equations (4) to (7) can be solved by classical dynamic
optimization techniques. But, as will be discussed later, the above mentioned problem can be
solved using the Static Parametric Programming methodology.

2.2 Static Parametric Programming

Parametric programming is a way of including variations in the optimization scheme. In the
context of parametric programming, a parameter is an abstract variable, and the optimal
solution needs to be calculated for various values of this abstract variable. In the case of static
nonlinear programming, the parametric optimization problem can be formulated as follows

4 :

7t *(0) = arg min O(s,0)

s.t. h(,0)=0 9
2(1,6) <0

where ®(s,0) is the cost function whose value depends on the manipulated variable s and
on the vector of parameters 0. h(sm,0) is a set of equality constraints and g(s,0) is a set of
inequality contraints (including bounds on the parameters). The functions ®, g and A are
nonlinear.

Parametric programming can be better understood by contrasting it with other optimization
approaches:
- Standard nominal optimization — no variation in parameters. The parameters 6* are
known and the optimal solution s * is sought.
— Robust optimization — parameters vary but the variations cannot be measured or
estimated. The parameters are known to lie in a region of the parameters space. Then,
a solution 7 that does not violate the constraints even in the worst case and minimizes
the expected cost is sought.



— Parametric programming — parameters vary and their variations can be measured or
estimated. Then, an optimal solution as a function of the parameter value is sought, i.e.
7 *(0). In other words a law linking the optimal solution and parameters needs to be
computed.

In parametric programming, the law s *(0) is based on the knowledge of the system's
dynamics and the constraints. For most systems, but the simplest ones, getting a general
control law turns out to be very difficult. So, typically, the optimal solutions are computed
off-line for various values of the parameters and stocked in a look-up table. Then, the on-line
implementation only requires table readings of the precomputed solution of the optimization
problem (5). Thus, parametric programming can be considered as an indirect adaptive
technique similar to gain scheduling.

In the above development, the parameter was left as an abstract variable. An interesting case
arises when the state of the system takes the role of the parameter. Such is the case with
predictive control (5) and a similar idea will be used here.

3 TRANSFORMATION OF THE DYNAMIC OPTIMIZATION PROBLEM

In this section, the two concepts presented in the preceding section will be used to reformulate
the dynamic optimization of first-order systems.

Theorem 1 The dynamic optimization problem (1)—(3) for first-order dynamic systems can be
reformulated into the following static parametric programming problem with the state acting
as the parameter:

u*(x)=arg min sign()u(tf))f(x,u) (10)
s.t. S(x,u)=<0

Proof

First, it will be shown that the adjoint variable A(f) does not change sign. Let the input u; be
determined by the constraint §;. Then, from the necessary condition of optimality (8), the

Lagrange multiplier u; is given by,
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So, each one of the Lagrange multipliers u; are (i) either zero if the constraint is not active, or
(i) proportional to A as in (11) if the constraint is active. This means that
as

T

s,
u —= E u;,—L =k(x,u) A, where k(x,u) is an appropriate function.
dx it ox

This leads to the following dynamic equation for the adjoint variable:



A=-A (i + k(x, u)) (12)
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For A(?) to change sign, A(¢) should be zero at some time instant. However, equation (12)
shows that if A(7) is zero at some time instant, A is zero as well. Then Mt)=0 V1t implying
that (4) is not a meaningful problem. Therefore A(¢) cannot change sign and has to remain
positive or negative for all ¢. This leads to:

sign(A(1)) = sign(A(z,)), Vi (13)

Since sign(A(7)) is determined by sign(A(z,)), there is no need to integrate the adjoint
equations.

The second point to note is that, since A(t) is scalar, minimizing the Hamiltonian
H(t)=A(t)f(x,u) under the constraints S(x,u)<0 is equivalent to minimizing
sign(A(?)) f (x,u) under the same constraints. Since it has been proved in the earlier part that
the sign(A(z)) does not change, the optimization of the scalar function (1)—(3), which is
equivalent to (4)—(7), can now be written as:

. arg min f(x,u) if sign()u(tf)) >0
4= are max F(ou) if sign(A(t,)) <0 (14)
s.t. S(x,u)<0

where the state x takes the role of the parameter. Equation (14) is just a more explicit form of
Equation (10), stressing the two possible values for sign(A(z,)). [

The crucial point of the result is that A is a scalar and does not change sign in the considered
time interval. So, the dynamic optimization is being converted into a static optimization and
the control variable u(x) is a function of the state x only (no switching times are expected).
For the same reason it is possible to get rid of the Lagrange multipliers in the optimization
formulation and to simply choose the relevant scenario according to sign()u(tf)).

It follows, for the transformed problem (4)—(7), that the objective function is f(x,u) and not
¢(x(2,),7,). In accordance to Equation (6), the sign of A(tf) depends on ¢(x(#;),t;), the
objective function of the original problem and the terminal constraints 7(x(#,),t;). Another
interesting aspect is that even if the terminal time is free, it is no longer a decision variable of

the transformed problem (4)—(7). The terminal time is either determined by the terminal
constraint or through the optimization criterion.

The solution of the static optimization problem (14), has the form of a static feedback law that
expresses the control variables as functions of the state, this is what was searched for (9). This
methodology relies on the fact that measurement or estimation of the state has to be available.



4 APPLICATION TO DIE-SINKING ELECTRICAL DISCHARGE MACHINING

4.1 System description

Die-sinking Electrical Discharge Machining consists in generating electrical erosive sparks
between an electrode and a workpiece in order to shape a well-defined cavity. The space
between the electrode and the workpiece, refered to as the gap, is about a few micrometers in
average. The current and voltage profiles are controlled by dedicated spark generators.

The EDM process runs on two time scales (Figure 1). The first time scale has order of
magnitude of microseconds and deals with single erosive sparks (Figure 1a). A spark contains
three phases, the gap ionization phase (¢,); the discharge phase (¢,), where current flows
through the gap and, finally, the off-time phase (¢,) to let the gap recover its dielectric
properties. The second time scale (Figure 1b) is much slower since its typical order of
magnitude is the second. It is composed of two phases, the active machining time ¢,, where a
train of sparks is generated as described earlier, and the cleaning phase lasting 2¢, where the
electrode is lifted up — ¢, seconds — and brought back down for an other ¢ . The latter phase
is meant to clean the gap by flushing through a large vertical displacement. This cleaning
phase is necessary to get rid of the machining debris that accumulated during machining
phases. This debris accumulation phenomenon is called contamination (6).

Among all those time parameters, only 7, and ¢, are considered to be manipulated.
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Figure 1 (a) Sketch of a typical spark voltage profile in the fast time scale, with the delay
time ¢, the discharge time 7, and the off-time 7, (7). (b) graphical representation, in the
slow time scale, of the electrode movements during the active machining phase 7, and
the cleaning phase 27,.

The state-space representation of the EDM process can be written as:
p=V(pt,t,), p(0)=0 a5)

where p(t) is the position of the electrode and V(p,¢,,t,) the machining speed, can be given
by:

V(p3 ZLa ’ tu ) = vref t—" (1 - exp(_to / [u )) tu a(p’ Z‘u ) (1 6)

t,+t,+1, t, +2t
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where v, . is a normalizing constant with dimension m/s. The first ratio represents the

ref
efficiency in the fast time scale. It is balanced by an exponential-like function governed by a
relaxation time constant #,. The second ratio represents the efficiency in the slow time-scale.
a(p,t,) is a nonlinear function of the position p and the machining time ¢,. The shape and
value of this function are obtained using a nonlinear mean square regression of the data on a
function of the form:

a(p,t,) = (a, + a,t)tanh(a,p + a,) + (as + agt); a,=a/t,), i=1,2,...,6 a7

The a,(z)), i=12,...,6, in Equation (17) are interpolated. The regression is performed on the
data collected from machining operation of a 2.5 mm deep hole. The electrode position is
recorded every 10 seconds and the machining speed obtained through numerical
differentiation.

4.2 Optimization problem
With the state-space definition of EDM presented in Equation (15) and Equations (1)—(3)
where ¢)(x(tf),t. )=t, as well as f(x,u)=V(p,z,t,), the mathematical description of the

general optimization problem for the EDM process can be stated as follows:

in t 18
tﬂg},lt?m ! (18)
s.t. p=V(p,t,.t,), p(0)=0 (19)

p(t;)=p;>0 (20)

Note that p is the only state variable in the model. It is defined positive in the downward
direction and it evolves from O at surface to the positive final position p, fixed a priori. With
this sign convention, the machining speed V(p,t ,¢,) is always positive since the material
removed from the workpiece is taken away forever.

The optimization searches for 7, and ¢, as a function of time.

4.3 Transformation of the optimization problem
In the case of EDM, the changing parameter is the electrode position p. To choose between
the two scenarios of Equation (14), it is necessary to find sign()u(tf)), i.e. the sign of the

Lagrange multiplier at final time. Equation (7) is used for this purpose. Since ¢(x(z,),t;) =1,

AV(p.t,.t,) +1=0 1)

A v,
ot
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Due to the definition of the machining coordinate, V(p,z,.z,) >0 for all p. So A(z,) <0.

Finally, from Equation (14), the optimization problem applied to EDM reads:
t,(p).t,(p)=argmaxV(p,t,,t,) (22)

0°*u

p(t=0)=0 (23)
p(t=t;)=p;>0 (24)



This demonstrates two things. First, that it is not necessary to choose local suboptimal settings
at some places in order to get the overall global optimum (minimum time) and, second, that
the minimum time problem leads to a maximum effort solution where the speed has to be
maximized everywhere along the trajectory. Note that with this transformation, 7, and ¢, as
functions of p are searched for.

4.4 Results
The problem of maximizing V(p,¢,,t,) is now considered.

Figure 2 shows the speed at beginning and at end of machining. It is seen that the speed drops
down as the hole gets deeper. This behaviour is due to contamination.

The optimal feedback law, (¢,(p),z,(p)), which maximizes machining speed at every point
along the machining operation is searched for. The coordinates of the highest point of the
speed, as p evolves from zero toward final position p,, are shown if Figure 3.

The large abrupt change in ¢, values, around position 0.8 mm, is particularly worth noticing
in Figure 3. Such a behaviour is due to the presence of two local maxima easily
distinguishable in Figure 2. The global optimum switches from one local optimum to another.
It is obvious in Figure 3 that optimal ¢, remains approximately constant for all machining
positions.

Since local maxima are present, a question worth asking is: «OVhat happens if one stays near
one of those local maxima, rather than switching from one optimum to the other as machining
position increases?

The answer to this question is found by investigating the three following strategies:
t, €[1,3]s (global optimization), ¢, €[2,3]s (stay close to local optimum 1) and ¢, €[1,2]s
(stay close to local optimum 2). Running the simulation for the three cases yields the results
shown in Table 1.

A few comments about those results are to be made. Comparing strategies 1 and 3 in Table 1
makes it clear that the overall machining time for these two cases are almost identical.
However, the philosophies behind them are very different.

Strategy 1 needs a global optimizer which is difficult to implement in practice. Such an
optimizer has to recognize that optimum 2 it started with is no longer the global optimum, but
has been overtaken by another maximum which lies in a different area of the parameter space.
So, the optimizer has to move, as fast as possible, toward the new global optimum what can
take time and lead to hazardous machining conditions.

In other words, even if a bit faster in theory, the global optimizing policy has to be avoided in
practice and replaced by a local optimization strategy over a reduced set of possible
machining settings. This reduced set is to be chosen in the neighborhood of the most effective
local optimum, even if, in theory, this does not lead to the minimum time realizable strategy.



The results, in terms of machining time for optimal and nonoptimal settings law, are very
close to the experimental measurements realized on the EDM machine.
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Table 1 Global or local minimum tracking, overall machining time comparison.

Strategy Range 7, [s] Resulting ¢, [min] Localisation
1 [1,3] 24.5 Global
2 [2,3] 38.3 Large ¢, area
3 [1,2] 24.7 Small ¢, area
4 CONCLUSIONS

In this paper, the dynamic optimization problem of a first-order dynamical system subject to
variations has been addressed. Using the fact that the adjoint variable does not change sign,
the dynamic optimization problem has been transformed into a static parameter programming
problem. For the EDM process, it has been shown that a static control law can achieve the
minimum time realization by searching for the maximum machining speed at every point of
the trajectory.

Remarks have been made to compare the theoretical approach with the experimental one and
potential problems arising when switching between local optima have been pointed out. The
practical advantages of restraining the search domain of the optimizer to the neighborhood of
a good local maximum have been studied. This kind of policy leads to a solution very close to
the optimal solution in a much safer way than trying to implement a global optimizer to deal
with two very different local optima.
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