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Structural, electronic, elastic, power, and transport properties of β-Ga2O3 from first principles

Samuel Poncé 1,2,* and Feliciano Giustino3,4,2,†

1Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

3Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
4Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 5 May 2020; accepted 24 June 2020; published 20 July 2020)

We investigate the structural, electronic, vibrational, power, and transport properties of the β allotrope of
Ga2O3 from first principles. We find phonon frequencies and elastic constants that reproduce the correct band
ordering, in agreement with experiment. We use the Boltzmann transport equation to compute the intrinsic
electron and hole drift mobility and obtain room-temperature values of 258 and 1.2 cm2/Vs, respectively, as
well as 6300 and 13 cm2/Vs at 100 K. Through a spectral decomposition of the scattering contribution to the
inverse mobility, we find that multiple longitudinal-optical modes of Bu symmetry are responsible for the electron
mobility of β-Ga2O3 but that many acoustic modes also contribute, making it essential to include all scattering
processes in the calculations. Using the von Hippel low-energy criterion, we computed the breakdown field to
be 5.8 MV/cm at room temperature, yielding a Baliga figure of merit of 1250 with respect to silicon, ideal for
high-power electronics. This work presents a general framework to predictively investigate novel high-power
electronic materials.
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I. INTRODUCTION

The β allotrope of Ga2O3 has attracted some attention as
an ultrawide-band-gap transparent semiconducting oxide [1].
As a consequence of its large band gap, β-Ga2O3 possesses
a very high breakdown electric field of 8 MV/cm [2] and
a large Baliga figure of merit (BFOM) [3], which makes
it a promising alternative to GaN and SiC for high-power
electronics [4,5]. In addition, it can be synthesized by the
melt-growth method, which allows for low-cost and large-
scale production [6,7]. Its electronic and optical properties
also make it a good candidate for UV transparent conducting
oxide (TCO) [8,9].

One property of β-Ga2O3 that makes it so attractive is its
high carrier mobility for a material with such a wide band
gap. The electron mobility of β-Ga2O3 has been studied more
extensively than the hole mobility due to experimental interest
and the fact the hole mobility is two orders of magnitude
smaller. Given the promise offered by β-Ga2O3, it is surpris-
ing that many basic properties have not been investigated in
detail. From a theoretical perspective, this might be due to the
fact that β-Ga2O3 has a 10-atom primitive cell, which makes
first-principles calculations in this material more challenging
than for standard tetrahedral semiconductors. In particular,
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the shape of the conduction band was not well understood
until recently. Indeed, Ueda et al. [10] measured a strong
anisotropy of the conduction-band effective mass. However,
since then many experiments and theoretical studies indicated
that the conduction band is nearly isotropic [6,11–17]. An-
other question relates to the relative importance of nonpolar
optical-phonon, polar optical-phonon, and ionized-impurity
scattering at room temperature. Initially it was thought that
the dominant scattering mechanism in β-Ga2O3 was due to
nonpolar optical phonons with a large deformation potential
of 4 × 109 eV/cm [18]. However, Ghosh and Singisetti [19]
identified a longitudinal-optical phonon mode with energy
around 21 meV as the dominant mechanism in the mobility
of β-Ga2O3, and this finding was later confirmed by multiple
authors [20–22]. Finally, there is some debate about the order-
ing of the zone-centered phonons, namely, the Raman-active
Ag mode and the infrared-active Bu TO mode [22–25].

One crucial material property for high-power electronics is
the breakdown field, i.e., the magnitude of the external electric
field that a material can sustain before incurring permanent
damage. The breakdown field can be computed from first
principles using the von Hippel low-energy criterion [26–28]
and was recently computed ab initio by Mengle and Kioupakis
[22] to be 5.4 MV/cm in β-Ga2O3 considering only the
dominant longitudinal optic (LO) phonon mode. They further
estimated that considering all modes would increase the theo-
retical intrinsic breakdown field by 20% to 6.8 MV/cm. Such
calculation assumes total impact ionization for all electrons
with energies above the band gap and should therefore be seen
as a lower bound; it can also be improved by computing the
impact ionization coefficient from first principles [29].

The BFOM [3] describes the current handling capability of
a material and is often given relative to silicon. In addition to
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the breakdown field, the second material’s parameter entering
into the BFOM is the intrinsic carrier mobility. The electron
room-temperature mobility of β-Ga2O3 was computed to be
115 cm2/Vs at a carrier concentration of 1017 cm−3, with a
temperature dependence in good agreement with experiment
[19], by using Wannier interpolation of the electron-phonon
matrix elements [30] and Rode’s method [31]. The mobility
was also estimated to be below 200 cm2/Vs using k · p
perturbation theory [20].

In this context, a careful and detailed analysis of the crystal
structure, electronic, optical, vibrational, elastic, and transport
properties of β-Ga2O3 is warranted. The manuscript is or-
ganized as follows. In Sec. II we discuss the relaxed crystal
structure of the monoclinic β-Ga2O3 and the importance of
spin-orbit coupling. Section III is dedicated to the study of
the electronic properties, including bandgaps, electronic band
structure, and effective masses. In Sec. IV we analyze the
phonon dispersion, infrared and Raman spectra, dielectric
constant and Born charges, and elastic properties. Section V
presents the computed electron and hole carrier mobility
with temperature as well as a mode-resolved analysis of the
scattering contribution to the mobility. Finally, in Sec. VI we
discuss and compute Baliga’s figure of merit of β-Ga2O3 and
compare it with silicon.

II. CRYSTAL STRUCTURE

The crystal structure of β-Ga2O3 was originally investi-
gated by Geller to be monoclinic with the C2h (2/m) point
group [32] and later refined by Åhman et al. [33] using
single-crystal diffraction. The measured lattice parameters of
the conventional unit cell are a = 12.214 Å, b = 3.037
Å, c = 5.798 Å, and β = 103.83◦ [33]. The conventional
cell vectors are (a, 0, 0), (0, b, 0), and (c cos β, 0, c sin β ),
while the primitive cell vectors are ( a

2 ,− b
2 , 0), ( a

2 , b
2 , 0), and

(c cos β, 0, c sin β ). Any atomic coordinate expressed in the
conventional cell (cx, cy, cz ) can be expressed in the primitive
cell by using the transformation (cx − cy, cx + cy, cz ). The
primitive and conventional cell are made of 10 and 20 atoms,
respectively.

The gallium atom sits in two inequivalent positions with
octahedral and tetrahedral coordination, respectively. There
are three inequivalent oxygen atoms occupying a distorted
cubic lattice, with two oxygen atoms being threefold coor-
dinated and one oxygen atom fourfold coordinated. All the
five inequivalent atoms have 4i Wyckoff position which cor-
responds to symmetry (x, 0, z) and (−x, 0,−z). The system
has four crystal symmetries: the identity, a π rotation around
the Cartesian y axis, and their inversions.

To determine the atom positions, we relaxed the lat-
tice parameters and atomic coordinates, starting from the
experimental data. We used the QUANTUM ESPRESSO soft-
ware suite [34] with relativistic local-density approximation
(LDA) pseudopotentials from Pseudo Dojo [35], including
the 3s2 3p6 3d10 4s2 4p1 semicore states for gallium and
the 2s2 2p4 electrons for oxygen. The wave functions were
expanded in a plane-wave basis set with energy cutoff of
120 Ry (160 Ry for the elastic response) and a homogeneous
�-centered Brillouin-zone sampling of 8 × 8 × 8 points. We
converged the structure such that the maximum force was

FIG. 1. Relaxed crystal structure of the primitive cell of β-Ga2O3

where the large atoms are gallium and the small red atoms are
oxygen. Rendered using VESTA [36].

smaller than 2 × 10−7 Ry/Å and the maximum stress com-
ponent was lower than 0.07 Ry/Å3. The relaxation yielded
the lattice parameters a = 12.128 Å, b = 3.016 Å, c = 5.752
Å, and β = 103.75◦, which slightly underestimates the ex-
perimental one as expected from LDA. The relaxed primitive
cell crystal structure is shown in Fig. 1 and is formed by two
distorted octahedra and two distorted tetrahedra. The gallium
and oxygen atoms occupy two and three inequivalent sites at
the 4i Wyckoff position, respectively, whose coordinates are
provided in Table I and are in close agreement with the ex-
perimental assignment [33]. The inequivalent gallium-oxygen
bond lengths are also reported in Table I, with the tetrahedra
having smaller bond lengths than the octahedra. Interest-
ingly, due to their distorted nature, there are two inequivalent
GaII-OIII bond lengths in the octahedral configuration, despite
having only one inequivalent oxygen position.

We also report in Table I the volume, density, atomic
coordinates, and bond lengths and compare them with ex-
perimental data. The calculations were made without spin-
orbit coupling (SOC), but we tested that including this effect
modifies the crystal data shown in Table I by less than 0.005%.
Hence, this effect is neglected for the rest of this work. We
finally note that the primitive cell vectors can equivalently
be rotated such that a = b = 11.809 Å, c = 10.869 Å,
α = β = 103.335◦, and γ = 27.933◦.

III. ELECTRONIC PROPERTIES

The room-temperature optical band gap of β-Ga2O3 ob-
tained through absorption measurements is estimated to be
between 4.54 and 4.90 eV [37–39]. Our calculated direct band
gap at the zone center is 2.55 eV, strongly underestimating ex-
periments as expected from density functional theory (DFT).
In agreement with prior work [15], we find that the valence
band maximum (VBM) is located on the I − L high-symmetry
lines in the Brillouin zone and yields a slightly smaller indirect
band gap of 2.53 eV. A comparison with an earlier work is
given in Table II. Our values are consistent with calculations
at an equivalent level of theory; hybrid functionals slightly
overestimate room-temperature experimental band gaps.

There has been some confusion in the literature about the
shape of the Brillouin zone of β-Ga2O3 [11,40–43]. The first
band structure using the correct monoclinic variation was
reported in 2015 [15]. It is therefore important to pay close
attention when constructing the Brillouin zone of β-Ga2O3.
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TABLE I. Experimental and LDA crystal atom coordinates of
β-Ga2O3 without spin-orbit coupling with conventional unit-cell
coordinates (000, 1

2
1
2

1
2 ) ± (x0z) (20 atoms) and primitive cell coor-

dinates ±(xxz) (10 atoms). In parentheses after the nonequivalent
atoms we indicate their Wyckoff position. † There are two inequiva-
lent bond-length GaII-OIII in the octahedral configuration.

Lattice Experimental [33] This work

a (Å) 12.214 12.128
b (Å) 3.037 3.016
c (Å) 5.798 5.752
β (◦) 103.83 103.750
Volume (Å3) 104.425 102.190
Density (g/cm3) 5.961 6.092

Coordinates

Experimental This work

Atom x z x z

GaI (4i) 0.09050 0.79460 0.0907608352 0.7951120184
GaII (4i) 0.34134 0.68598 0.3411450768 0.6855889459
OI (4i) 0.16450 0.10980 0.1655995553 0.1094726070
OII (4i) 0.49590 0.25660 0.4963406016 0.2557307370
OIII (4i) 0.82670 0.43680 0.8269104067 0.4378690351

Distances (Å)

Pairs Experimental [33] This work

GaI-OI 1.835 1.818
GaI-OII 1.833 1.825
GaI-OIII 1.863 1.852
GaII-OI 1.937 1.924
GaII-OII 1.935 1.919
GaII-OIII 2.005 1.992
GaII-O

†
III 2.074 2.054

We note that as the definition of two of the primitive cell
vectors in the QUANTUM ESPRESSO software are inverted with
respect to prior studies, we had to adapt the definition of
the high-symmetry points of the Brillouin zone. We give the
conversion for clarity in the Table III as well as the value of
the four parameters that define the high-symmetry points. To
avoid further confusion, the primitive vectors for the base-
centered monoclinic Bravais lattice have been modified in
QUANTUM ESPRESSO version 6.5 to use the same definition
as in the literature [15]. The electronic band structure along
high-symmetry lines is given in Fig. 2(a), where the highest
valence band and lowest conduction band are highlighted in
orange.

We computed the electron effective mass using finite differ-
ences, and found 0.267, 0.254, and 0.244 along the �-X, �-Y,
and �-Z direction, respectively. The electron effective mass is
quite isotropic, with an average value of 0.255 as reported in
Table II, which compares well with prior theoretical work and
is also close to the experimental value of 0.28 [40,42]. This
level of agreement gives us confidence that our calculations
of electronic transport properties will be reliable.

In contrast, the hole effective mass at the zone center is
highly anisotropic, with very heavy masses along the �-X

TABLE II. Effective masses of β-Ga2O3. The electron effective
mass is almost isotropic so we report the average, as done in prior
studies. The hole effective mass is reported at � as well as at the
valence band maximum located between the I and L high-symmetry
point. The negative value between the brackets is not an effective
mass since the band curvature is positive; this value is reported as a
measure of the band curvature.

Direct gap (eV) Indirect gap(eV)

This work LDA 2.5532 2.53
LDA [11] 2.188 –
GGA-AM05 [9] 2.377 2.36
HSE+G0W0 [9] 5.038 5.05
HSE06 [15] 4.88 4.84
Experiment [37] – 4.90
Experiment [38] – 4.54
Experiment [39] – 4.70

Hole (me)

Electron (me) �X �Y �Z IL‖ IL⊥

This work LDA 0.255 [−78] 3.40 0.35 3.0 3.6
LDA [11] 0.24 – – – 2.90 4.19
HSE06 [40] 0.28 – – – – –
HSE06 [15] 0.275 – – – – –
B3LYP [41] 0.342 – – – – –
HSE [9] 0.268 – – – – –
Experiment [40] 0.28 – – – – –
Experiment [42] 0.28 – – – – –

and �-Y direction, and a small hole mass of 0.35 me along
the �-Z direction. As a result, this should be an ideal hole
transport direction. However, the VBM is not located at the
zone centered but 26 meV higher in energy on the I-L line. The
transverse and perpendicular hole effective mass at that point
is 3.0 me and 3.6 me, respectively, in agreement with previous

TABLE III. Reciprocal space coordinates of the high-symmetry
point in the Brillouin zone of β-Ga2O3. � = 3

4 − b2/(4a2 sin2 β ),
φ = � − ( 3

4 − �) a
c cos β, ζ = (2 + a

c cos β )/(4 sin2 β ), η = 1
2 −

2ζ c
a cos β.

Coordinates

Label Peelaers [15] This work

N
(
0, 1

2 , 0
) (− 1

2 , 0, 0
)

X (1 − �, 1 − �, 0) (� − 1, 1 − �, 0)
� (0,0,0) (0,0,0)
M

(
0, 1

2 , 1
2

) (− 1
2 , 0, 1

2

)
I

(
φ − 1, φ, 1

2

) (−φ, φ − 1, 1
2

)
L

(− 1
2 , 1

2 , 1
2

) (− 1
2 ,− 1

2 , 1
2

)
F (ζ − 1, 1 − ζ , 1 − η) (ζ − 1, ζ − 1, 1 − η)
Y

(− 1
2 , 1

2 , 0
) (− 1

2 ,− 1
2 , 0

)
� (0,0,0) (0,0,0)
Z (0,0, 1

2 ) (0,0, 1
2 )

� 0.734 0.7336
φ 0.742 0.7418
ζ 0.397 0.3971
η 0.590 0.5895
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FIG. 2. Electronic (a) and phonon (b) band structure of β-Ga2O3

along high-symmetry lines of the monoclinic Brillouin zone. For the
phonons, the gray lines denote bands with the identity point group
while the red lines have a π rotation around the [0,1,0] Cartesian axis
(C2 point group), and the blue line are lines with inversion symmetry
[Cs(m) point group].

work [11]. As transport properties scale inversely with the
effective mass, we expect at least an order of magnitude lower
hole mobility than the electron mobility.

IV. VIBRATIONAL PROPERTIES

A. Phonon dispersions

We now study the vibrational properties of β-Ga2O3 using
density functional perturbation theory (DFPT) [45,46]. The
calculated phonon band structure along the monoclinic Bril-
louin zone is presented in Fig. 2(b).

The point groups along high-symmetry lines are either
Cs(m) or C2. The Cs(m) point group contains two symmetry
operations: the identity operation E and a mirror plane σ .
This point group possess two irreducible representations: the
phonon branches belonging to the A′ irreducible representa-
tion are symmetric with respect to both the identity operation
and reflection through the mirror plane, while the branches
belonging to the A′′ representation are symmetric with respect

to the identity but antisymmetric with respect to reflection
[colored in Fig. 2(b) in gray and blue, respectively]. The other
point group is the C2 point group, which contains the identity
(gray) and a π rotation around the [0,1,0] Cartesian axis
[displayed with red lines in Fig. 2(b)]. Note that some direc-
tions in the Brillouin zone are less symmetric and only possess
the identity (gray). In addition, specific high-symmetry points
have higher symmetries: (i) the point group at the N and M
points is Ci(−1) with Ag and Au symmetry operation; (ii) the
point group at the X , I points is C2(2) with identity E and
C2 with π rotation around the [0,1,0] Cartesian axis; (iii) the
point group at the �, L, Y , Z point is C2h(2/m) with Ag, Bg,
Au, Bu symmetries.

B. Infrared and Raman spectra

The infrared spectrum as well as polarization and
temperature-dependent Raman spectra of bulk β-Ga2O3 were
first measured by Dohy et al. [44] in 1982. The measured
normal mode frequencies are reported in Table IV along with
more recent measurements and previous ab-initio values, and
are compared to the calculated frequencies from this work.
Our calculated phonon band structure slightly underestimates
experiments but they are in better agreement than previous
calculations. Overall, our calculations agree with previous
theoretical work [22,24,47] with a notable difference: in
agreement with experiments [23,25] we find that the Ag(3)
Raman-active mode has a lower frequency than the Bu(TO1)
mode. The highest phonon frequency at the zone center is a
LO mode in the Z direction, with a frequency of 97 meV, very
close to the experimental value of 100 meV [25]. However,
we note that the highest phonon frequency occurs at the Z
point with a value of 99.12 meV (not shown in Table IV). Our
predicted Raman-active phonon frequencies are 2.5% within
the experimental data [23], with the largest difference being
attributed to the Ag(6) mode. Our predicted infrared-active
LO modes are even closer, with deviation of 1.4% from
experimental data [25], while the agreement with LO modes
is not as good, with a deviation of 5.4%.

C. Dielectric constant and Born charges

The high-frequency dielectric tensor is fairly isotropic,
with εxx = 3.98, εyy = 4.09, and εzz = 4.08, slightly overes-
timating the experimental value of 3.53–3.6 [48–50] obtained
as an isotropic average in thin films. The slight overestimation
of the theoretical dielectric tensor is a direct consequence of
the underestimation of the band gap by DFT as the electronic
part of the dielectric function is inversely proportional to
the band gap [51]. We note one experimental work which
obtained a direction-dependent dielectric tensor εxx = 3.7,
εyy = 3.2, and εzz = 3.7 [25] using generalized spectroscopic
ellipsometry within the infrared and far-infrared spectral re-
gion. This anisotropy was not observed in another recent
experiment reporting εxx = 3.6, εyy = 3.58, and εzz = 3.54
[52], also using generalized spectroscopic ellipsometry. Our
calculations appear to support an isotropic dielectric tensor.
β-Ga2O3 also possesses one nonzero off-diagonal component
of the dielectric tensor, but the computed value was lower than
10−4 and therefore is not reported.
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The computed diagonal Born effective charges are GaI =
(2.74, 2.88, 3.04), GaII = (3.23, 3.42, 3.12), OI = –(1.46,
2.09, 2.47), OII =–(2.27, 2.25, 1.39), OIII =–(2.22, 1.96, 2.28)
in units of electron charge. The off-diagonal components are
lower than 0.3 and not reported.

D. Elastic properties

The stiffness Ci j and compliance Si j = C−1
i j tensors link

the stress tensor to the strain tensor following the generalized
Hooke’s law:

σi j = Ci jklεkl , (1)

εi j = Si jklσkl , (2)

where Einstein’s notation is implied.
The Young’s modulus E is the linear response of a material

to a uniaxial stress where the response is measured in the
direction of the applied stress and the bulk modulus B is the
response to an isotropic stress. The Young’s and bulk moduli
can therefore be expressed as a function of a single unit
vector in Cartesian space expressed in spherical coordinates
0 � θ � π and 0 � φ � 2π as u = (sin θ cos φ, sin θ sin φ,

cos θ ) [60]:

E (θ, φ) = 1

uiu jukulSi jkl
, (3)

B(θ, φ) = 1

uiu jSi jkk
, (4)

where in the case of the Young modulus we have transformed
the head of the compliance tensor from the Cartesian basis
to a new basis whose first unit vector is u following the
transformation

S′
1111 = a1ia1 ja1ka1l Si jkl = uiu jukulSi jkl , (5)

where ai j indicates the direction cosine, specifying the angle
between the ith axis of the new basis and the jth axis of
the initial basis. The bulk modulus is simpler because it is
obtained by applying an isotropic stress (pressure p) such that
εi j = −pSi jkk .

Other elastic properties such as the shear modulus G or
Poisson’s ratio ν depend on the direction in which the stress
is applied u but also the orthogonal direction in which the
response is measured v and can be parametrized with three
angles θ , φ, and 0 � ξ � 2π :

v =
⎡
⎣cos θ cos φ cos ξ − sin φ sin ξ

cos θ sin φ cos ξ + cos φ sin ξ

− sin θ cos ξ

⎤
⎦. (6)

The shear modulus and Poisson’s ratio can therefore be ob-
tained as

G(θ, φ, ξ ) = 1

4uiv jukvl Si jkl
, (7)

ν(θ, φ, ξ ) = −uiu jvkvl Si jkl

uiu jukulSi jkl
. (8)

We note that for the elastic properties studied here we
only need up to two vectors (or three angles) in the new
basis because the directions of applied stress and measured

response are orthogonal, but a general elastic property where
this was not the case would require three vectors (or four
angles) in the transformed basis.

These elastic properties can be averaged by direct integra-
tion on the unit sphere to give the standard Young modulus,
bulk modulus, shear modulus, and Poisson’s ratio. However,
very popular averaging approximations have been developed,
including the Voigt approximation, where the average bulk
and shear moduli are given by [61]

9BV = C11 + C22 + C33 + 2(C12 + C13 + C23), (9)

15GV = C11 + C22 + C33 − (C12 + C13 + C23)

+ 3(C44 + C55 + C66). (10)

In the Reuss approximation, the bulk and shear modulus
are defined as [61]

B−1
R = S11 + S22 + S33 + 2(S12 + S13 + S23), (11)

15G−1
R = 4(S11 + S22 + S33) − 4(S12 + S13 + S23)

+ 3(S44 + S55 + S66). (12)

The Voigt approximation provides an upper bound for the
bulk and shear moduli, while the Reuss approximation gives a
lower bound. We can therefore define the arithmetic mean,
referred to as the Void-Reuss-Hill approximation [61], as
BH = (BV + BR)/2 and GH = (GV + GR)/2. We then express
the effective Young E modulus and Poisson ratio ν as

E = 9BG/(3B + G), (13)

ν = (3B − 2G)/(6B + 2G), (14)

where the relations apply to the Voigt, Reuss, and Hill approx-
imation of the Young, bulk, and shear moduli and the Pois-
son’s ratio. We can also define the universal elastic anisotropy
as [55]

AU = 5(GV/GR) + (BV/BR) − 6. (15)

Finally, we can obtain the bulk sound velocity vB, the com-
pressional velocity vP, shear velocity vG, and the average
sound velocity vav as

vB =
√

B/ρ, (16)

vP =
√(

B + 4

3
G

)
1

ρ
, (17)

vG =
√

G/ρ, (18)

vav =
[

1

3

(
2

v3
G

+ 1

v3
P

)]− 1
3

, (19)

where ρ is the average mass density. Using the average sound
velocity, the Debye temperature can be estimated within the
Debye model as

�D = h

kB
vav

[
3Nat

4πρ

]1/3

, (20)

where h, kB, and Nat are the Planck constant, Boltzmann
constant, and the number of atoms in the primitive cell,
respectively.
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FIG. 3. Spatial dependence of the (a) Young modulus, (b) shear modulus, and (c) Poisson’s ratio of β-Ga2O3 using the ELATE software
[59] for visualization of second-order elastic constants. In (b), (c) the blue and green surfaces represent the maximum and minimum of the
third-angle parametrization, see text. The directions x, y, and z represent the increments along the a, b, and c directions of the primitive cell
shown in Fig. 1.

We studied the elastic properties of β-Ga2O3 using the
THERMO_PW code [62]. The stiffness tensor of Laue class
C2h for base centered monoclinic crystals has 13 independent
elastic constants written in Voigt notation as follows: C11, C12,
C13, C15, C22, C23, C25, C33, C35, C44, C46, C55, and C66. The
stiffness matrix Ci j was obtained by third-order polynomial
fitting using 12 deformations with strain intervals of 0.001 to
remain in the linear regime. The strains were applied along the
crystal lattice vector of the β-Ga2O3 primitive cell presented
in Fig. 1 such that the resulting stiffness matrix is expressed
in that basis. For each strain, the ions were relaxed to their
equilibrium positions with a very tight convergence threshold
of 4 × 10−6 Ry/Å on forces. We used a 160-Ry energy cutoff
on plane waves and a 12 × 12 × 9 k-point grid. All the elastic
coefficients and elastic properties are reported in Table V.
Our calculations compare well with prior theoretical work
and with resonant ultrasound spectroscopy coupled with laser-
Doppler interferometry [53]. We computed all coefficients
independently such that we can estimate off-diagonal accu-
racy when symmetry constraints are not precisely fulfilled.
The most sensitive coefficient is the C12, with an accuracy of
±3.4 GPa.

Using Eqs. (9)–(14), we obtained a bulk modulus of
184 GPa, a Young modulus of 207 GPa, a shear modulus
of 79 GPa, and a Poisson’s ratio of 0.313. Those numbers
agree well with recent experimental elastic constants of B =
183 GPa, E = 210 GPa, G = 80 GPa, and ν = 0.31 [53].
Finally, using Eqs. (15), (17)–(19), and (20), we compute
the universal elastic anisotropy AU to be 0.84, the average
sound velocity to be 4.01 km/s, and the estimated Debye
temperature �D to be 551 K.

Using the ELATE software [59,60], we show in Fig. 3(a)
the parametrized Young modulus of Eq. (3) as a parametrized
three-dimensional surface and in Figs. 3(b) and 3(c) the
parametrized shear modulus and Poisson’s ratio of Eqs. (7)
and (8), where the maximum and minimum value of the third
angle is shown in blue and green, respectively. Compared to
simple semiconductors where the bulk modulus is spherical,
β-Ga2O3 is strongly anisotropic. For example, the Young
modulus has a minimum value of 134 GPa in the xz plane

with a unit vector (0.94, 0, 0.34), while the maximum value
of the Young modulus is 293 GPa in the (0.34, 0.93, 0.13)
direction. In the case of the shear modulus and the Poisson’s
ratio presented in Fig. 3, they are also highly anisotropic, with
values ranging from 50 to 133 GPa for the shear modulus
and from 0 to 0.67 for the Poisson’s ratio, which displays a
flowerlike shape along the diagonal axes.

V. CARRIER MOBILITY

We now analyze the intrinsic carrier transport properties of
β-Ga2O3. We compute the ab initio drift carrier mobility

μαβ = e

Vucnc

∑
n

∫
d3k

�BZ
vα

nk∂Eβ
fnk (21)

through the linear response ∂Eβ
fnk of the electronic occu-

pation function fnk to the electric field E, where Vuc is the
unit-cell volume, �BZ the first Brillouin-zone volume, and
nc = (1/Vuc)

∑
n

∫
(d3k/�BZ) fnk is the carrier concentration.

We solve the linearized Boltzmann transport equation (BTE)
[63,64],

∂Eβ
fnk = evβ

nk

∂ fnk

∂εnk
τnk + 2πτnk

h̄

∑
mν

∫
d3q

�BZ
|gmnν (k, q)|2

× [(nqν + 1 − fnk )δ(εnk − εmk+q + h̄ωqν )

+ (nqν + fnk )δ(εnk − εmk+q − h̄ωqν )]∂Eβ
fmk+q,

(22)

with τnk being the total scattering lifetime,

τ−1
nk = 2π

h̄

∑
mν

∫
dq
�BZ

|gmnν (k, q)|2

× [(nqν + 1 − fmk+q)δ(εnk − εmk+q − h̄ωqν )

+ (nqν + fmk+q)δ(εnk − εmk+q + h̄ωqν )]. (23)

Here vnk is the electronic velocity of the eigenstates εnk, fnk
is the Fermi-Dirac occupation, and nqν is the Bose-Einstein
distribution function. The electron-phonon matrix elements
gmnν (k, q) are the probability amplitude for scattering from

033102-7



SAMUEL PONCÉ AND FELICIANO GIUSTINO PHYSICAL REVIEW RESEARCH 2, 033102 (2020)

TABLE V. Comparison between our calculated elastic constants
Ci j , bulk modulus BH, Young modulus EH, shear modulus GH, Pois-
son’s ratio νH, universal elastic anisotropy AU, bulk sound velocity
vB, compressional velocity vP, shear velocity vG, average velocity
vav, and Debye temperature �D, and prior theoretical and experi-
mental work. The subscript H denotes the Void-Reuss-Hill averaging
approximation.

C11 C12 C13 C15 C22 C23 C25 C33

This work GPa GPa GPa GPa GPa GPa GPa GPa

LDA 242 127 140 –17.7 360 90.3 12.0 355
±3.4 ±0.0 ±0.3 ±0.7 ±0.4

Previous

LDA [53] 219 127 169 –1.4 365 106 3.5 344
AM05 [9] 223 116 125 –17 333 75 12 330
GGA [54,55] 199 112 125 –2 312 62 1 298
PBESOL [56] 227 128 135 –3.6 335 73 0 313
PBESOL [57] 208 118 146 0 335 83 0 318
Exp. [58] 238 130 152 –4 359 78 2 346
Exp. [53] 243 128 160 –1.6 344 71 0.4 347

C35 C44 C46 C55 C66 BH EH GH

This work GPa GPa GPa GPa GPa GPa GPa GPa

LDA 7.7 58 19.7 69 97 184 207 79
±0.5 ±0.3

Previous

LDA [53] 18 54 13 76 99 189 198 74
AM05 [9] 7 50 17 69 94 167 194 74
GGA [54,55] 17 39 3 77 95 155 182 70
PBESOL [56] 18 45 6.4 83 99 177 207 79
PBESOL [57] 19 50 9 77 96 171 192 73
Exp. [58] 19 49 6 91 107 184 213 82
Exp. [53] 1 48 5.6 89 104 183 210 80

νH AU vB vP vG vav �D

This work km/s km/s km/s km/s K

LDA 0.31 0.84 5.48 6.87 3.59 4.01 551
Previous

LDA [53] 0.33 0.93 5.55 6.86 3.49 3.91 538
AM05 [9] 0.31 0.92 5.23 6.60 3.49 3.90 536
GGA [54,55] 0.31 1.04 5.04 6.37 3.37 3.77 518
PBESOL [56] 0.31 0.70 5.38 6.80 3.60 4.03 553
PBESOL [57] 0.31 0.85 5.28 6.62 3.46 3.87 532
Exp. [58] 0.31 0.90 5.48 6.91 3.65 4.08 561
Exp. [53] 0.31 0.88 5.47 6.88 3.62 4.04 556

an initial state nk to a final state mk + q via the emission
or absorption of a phonon of frequency ωqν . A common
approximation, known as the self-energy relaxation time ap-
proximation (SERTA), consists in neglecting the second term
on the right-hand side of Eq. (22). The mobility then takes the
simpler form:

μSERTA
αβ = 1

Vucnc

∑
n

∫
d3k

�BZ
vα

nkv
β

nkτnk. (24)

We used the EPW software [30,65] to interpolate the electron-
phonon matrix element gmnν (k, q) from a coarse 8 × 8 × 6 k-
point and 4 × 4 × 3 q-point grid to dense 160 × 160 × 120 k

and q grids, as required to converge the electron mobility. The
interpolation uses the maximally localized Wannier function
[66] and the WANNIER90 software [67]. We used 22 Wannier
functions of initial s character centered on the gallium atoms
and of p character centered on the oxygen atoms. The Dirac
δ functions in Eqs. (22) and (23) were computed using the
adaptive smearing method of Refs. [68,69].

To reduce computational costs, we computed separately
the electron and hole mobility by explicitly interpolating only
the matrix elements for which their electronic eigenvalues
at k and k + q were within 0.3 eV of the band edges. We
also relied on crystal symmetries to decrease the number of
k points. In the case of the electron mobility, we explicitly
interpolated 13 516 k points and 101 346 q points, instead
of the 3 072 000 points that would have been required by
computing all the points from the 160 × 160 × 120 grid. In
the case of the hole mobility, owing to very flat bands the
majority of grid points contribute to the hole mobility, as
can be seen in Fig. 2(a). Thus the computational cost is
much higher and our densest interpolated grid is 56 × 56 × 42
points, which corresponds to 55 892 k points and 131 712 q
points explicitly computed.

We obtained the following room-temperature electron and
hole drift mobility tensor (cm2/Vs) in the SERTA:

μSERTA
αβ,e =

⎡
⎣170 0 2.6

0 165 0
2.6 0 166

⎤
⎦,

μSERTA
αβ,h =

⎡
⎣ 1.1 0 −0.3

0 0.6 0
−0.3 0 1.6

⎤
⎦. (25)

The results using the self-consistent BTE are

μBTE
αβ,e =

⎡
⎣258 0 7.5

0 277 0
7.5 0 239

⎤
⎦,

μBTE
αβ,h =

⎡
⎣ 1.2 0 −0.2

0 0.8 0
−0.2 0 1.7

⎤
⎦. (26)

Interestingly, although the electron effective mass is isotropic
(see Table II), we observe about 15% anisotropy for the
electron mobility resulting from anisotropic electron-phonon
scattering. This result is in line with the recently observed
10%–15% anisotropy in the electron mobility of β-Ga2O3

[16]. Based on our convergence study, with increasing fine
grid size we estimate an accuracy of ±3 cm2/Vs for the
electron mobility and ±0.5 cm2/Vs for the hole mobility. The
anisotropy of the hole mobility is within the uncertainty of
the calculations.

The temperature dependence of the BTE electron and hole
mobility as a function of temperature is presented in Fig. 4,
slightly overestimating experimental data. The isotropic aver-
ages of the electron and hole mobility are 258 and 1.2 cm2/Vs,
respectively. To our knowledge, this may be the first time
that the hole mobility of β-Ga2O3 is computed from first
principles.
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FIG. 4. (a) Electron and (b) hole drift mobility of β-Ga2O3 using
the Boltzmann transport equation along the three principal directions
where the dashed line indicates the direction-averaged drift mobility,
including the effect of 1015 cm−3 ionized impurity scattering. The
experimental data of Oishi et al. [70], Irmscher et al. [12], and
Chikoidze et al. [71] are Hall measurements of the mobility.

Our room-temperature value of the electron mobility of
β-Ga2O3 is slightly higher than prior theoretical studies:
Ref. [19] gives 115 cm2/Vs at a carrier concentration of
1017 cm−3 using Rode’s method [31] and 200 cm2/Vs using
k · p perturbation theory [20]. Reference [21] obtained an
electron mobility of 155 cm2/Vs using the SERTA, in close
agreement with our SERTA value of 167 cm2/Vs.

The overestimation with respect to experimental electron
mobility can be traced back to the fact that our calculated
electron effective mass is 7% smaller than in experiments
and that the electron-phonon matrix elements are dominated
by Fröhlich polar scattering, which in turn scales with the
dielectric constant. Our calculated dielectric constant is ap-
proximately 11% higher than in experiments. Taken together,
these estimates indicate that our calculation underestimates
the Fröhlich coupling by approximately 13%. In Ref. [72] we
have shown that the mobility is inversely proportional to the
Fröhlich coupling and effective mass; therefore we expect that
the use of DFT leads to an overestimation of the mobility by
approximately 24%. Experimental Hall electron mobilities of
125 cm2/Vs [12] and 152 cm2/Vs [70] were reported and are
consistent with our findings.

Since lattice scattering becomes negligible at low temper-
ature, the mobility computed using Eq. (21) diverges when T
tends to zero. At low temperature other scattering mechanisms
dominate carrier transport, including defect [73] and impurity

scattering [63]. The impurity scattering may be included using
the semi-empirical model developed by Brooks and Herring
[74–76]. The ionized-impurity limited mobility μi can be
evaluated analytically assuming spherical energy surfaces,
negligible electron-electron interactions, and complete ioniza-
tion of the impurities:

μi = 27/2ε2
s (kBT )3/2

π3/2e3
√

m∗
d niG(b)

[
cm2

Vs

]
, (27)

where G(b) = ln(b + 1) − b/(b + 1), b = 24πm∗
dεs(kBT )2/

e2h2n′, and n′ = n(2 − nh/ni ). Here m∗
d = 0.26 m0 and

3.39 m0 is the density-of-state effective mass for the electron
and hole, respectively, n and ni are the electron or hole
densities and the density of ionized impurities, respectively,
εs = 4.05ε0 is the average dielectric constant, ε0 is the per-
mittivity of vacuum, and h is Planck’s constant. In the above
expressions, the concentrations are expressed in cm−3, and
the temperature T is in K. The mobility including phonon
(μ) and impurity (μi) scattering can be computed using
the mixed-scattering formula [76] μl [1 + X 2{ci(X ) cos(X ) +
sin(X )[si(X ) − π

2 ]}], where X 2 = 6μ/μi and ci(X ) and si(X )
are the cosine and sine integrals. The resulting combined
mobility for a concentration of 1015 cm−3 of ionized impurity
is shown with a dashed line in Fig. 4, improving the agreement
with experiment in the low-temperature regime.

Finally, to shed light on the microscopical mechanisms
driving the electron mobility in β-Ga2O3 we computed the
isotropic average of the momentum and mode-resolved con-
tribution to the SERTA mobility as

μ =
∑
qν

T −1
qν , (28)

where the mode-resolved inverse mobility Tqν is

Tqν = 6π

h̄
Vucnc

∑
mn,α

∫
d3k

wq|gmnν (k, q)|2
vα

nkv
α
nk

× [(nqν + 1 − fmk+q)δ(εnk − εmk+q − h̄ωqν )

+ (nqν + fmk+q)δ(εnk − εmk+q + h̄ωqν )], (29)

where wq is the weight of the q point.
We show in Fig. 5 the mode contribution to the inverse

mobility as well as the density of state inverse mobility along
with the cumulative integral (dashed red line). The mode
contribution spans a region close to the zone center, since as
discussed above, larger momenta have negligible contribution
to the mobility. The spectral decomposition is separated into
three defined energy regions: low-energy (h̄ω < 50 meV),
middle-energy (50 meV � h̄ω < 71 meV), and high-energy
(h̄ω � 71 meV) regions. The high-energy phonons alone ac-
count for 62% of the inverse mobility at room temperature,
followed by the low-energy phonons (22%) and middle-
energy phonons (16%). We mention the following ten modes,
in relation with Table IV, that contribute significantly to re-
ducing the mobility: the Bu (LOz : 1−3,8) and Bu (LOy : 2−3,
5−8) modes. Interestingly, all the dominant modes have Bu

symmetry and are longitudinal-optical modes.
As can be seen on the left side of Fig. 5, the spectral de-

composition of the mode contribution to the inverse mobility
is complex, with many modes contributing to the mobility.
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FIG. 5. Direction-averaged momentum and mode-resolved contribution to the inverse electron mobility Tqν at room temperature (left) as
well as spectral decomposition of the inverse mobility (right). The dashed red line represent the cumulative integral of each spectrum ∂μ−1/∂ h̄ω

and adds up to the inverse electron mobility in the self-energy relaxation time approximation.

Such complexity in the phonon spectrum of β-Ga2O3 with
30 crossing and intertwined phonon branches translates into
many ways for the electrons to interact with the bosonic con-
tinuum, yielding increased scattering and reduced mobility. It
is worth comparing such behavior of the electron scattering
with a related material, wurtzite GaN, that possesses similar
electron effective mass ≈ 0.2–0.3 me. In the nitride com-
pound, the phonon band structure is composed of 12 modes
clearly separated by a 20-meV gap [77]. This translates into
a reduced scattering with two dominant scatterings at around
2 and 92 meV [78] and explains why the electron mobility in
wurtzite GaN is four times larger than in β-Ga2O3, despite
similar effective masses.

VI. BALIGA’S FIGURE OF MERIT

Figures of merit have been introduced as a way to quantify
the influence of materials parameters on the performance of
semiconductor devices. The most common figures of merit
include the Johnson figure of merit (JFOM), which assesses
the quality of a semiconductor for high-frequency power
transistor application [79], the Keyes figure of merit (KFOM),
which quantifies the thermal limitation of transistor switching
frequency [80], and the Baliga figure of merit (BFOM) [3].
In this work we focus solely on the BFOM, which is used
to identify materials parameters so as to minimize losses
in power field effect transistors [1]. The BFOM relies upon
the assumption that power losses are solely due to power
dissipation in the on state by current flow through the on
resistance of the device. As a result, the BFOM is used for
devices operating at low frequency, where the conduction
losses are dominant.

The BFOM is given by

BFOM = ε0μE3
b , (30)

where Eb is the computed breakdown field, μ the computed
mobility from Eq. (21), and ε0 is the temperature-dependent
experimental static dielectric function with the field perpen-
dicular to the (100), (010), and (001) direction, respectively
[81], which we reproduce in Fig. 6(c). Importantly, we stress
that all the quantities entering in Eq. (30) are temperature
dependent.

The temperature- and direction-dependent mobility has
already been obtained in Sec. V. Therefore we only need to
compute the breakdown field to obtain the BFOM. References
[84,85] proposed the following model:

Eb = 24.442 exp(0.315
√

Egωmax), (31)

where Eg is the band gap of the materials in eV, ωmax the
phonon cutoff frequency in THz, and Eb the breakdown field
in MV/m. Although successful, the main limitation of this
model is that it is independent of temperature. For this reason,
we aim at computing the BFOM from first principles while
retaining the temperature dependence. To do so, in addition to
the intrinsic carrier mobility, we need to compute the intrinsic
breakdown field.

The most common theory for a material breakdown relies
on electron avalanche [86], which occurs when the electron
energy reaches the threshold for impact ionization. This is the
energy at which an electron generates a second conduction
electron by excitation across the electronic energy gap, caus-
ing electron multiplication (avalanche) and leading to a break-
down of the material [27]. As a result, the threshold for impact
ionization is usually taken as the electronic band gap. The
idea behind the theory relies on accelerating the conduction
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FIG. 6. (a) Average energy-gain rate A(ε) from an applied external field and average energy loss to the lattice B(ε). Both quantities are
for 300 K. The intrinsic breakdown occurs when the applied electric field is such that the gain rate is larger than the loss rate for all energies
between the conduction-band minimum (CBM) and the CBM plus the energy of the band gap (4.5 eV). (b) Variation of computed breakdown
field with temperature. (c) Experimental variation of dielectric function with direction and temperature of β-Ga2O3 from Ref. [81]. (d) Baliga’s
figure of merit (BFOM) with respect to the BFOM of silicon. The BFOM of Si was obtained using dielectric constants from Ref. [82] and a
breakdown field of 0.3 MV/cm, as well as the experimental electron mobility from Norton et al. [83].

electron with a laser field and taking into account the electron
scattering with the lattice during pumping. Indeed, the phonon
collision reduces the acceleration of the electron by modifying
their momentum.

The von Hippel low-energy criterion is more stringent and
states that breakdown will occur when the rate of energy gain
A(E , ε, T ) by an electron of energy ε due to the external field
E at temperature T is larger than the energy-loss rate B(ε, T )
to the lattice due to electron-phonon interaction [26–28]:

A(E , ε, T ) > B(ε, T ), (32)

for energies ε going from the conduction-band minimum to
the threshold for impact ionization, i.e., the band gap of the
materials.

The steady-state solution for the average energy-gain rate
from the electric field is [27]

A(E , ε, T ) = 1

3

e2τ (ε, T )

m∗ E2, (33)

where e2 is the electron charge and m∗ = 0.3 [87] the elec-
tron effective mass. The energy- and temperature-dependent
electron-phonon lifetime is given by

τ−1(ε, T ) =
∑
nk

τ−1
nk (T )δ(εnk − ε)/D(ε), (34)

where D(ε) is the density of state and τ−1
nk is given by Eq. (23).

The field-independent net rate of energy loss B(ε, T ) to the
lattice is obtained by subtracting the rate of phonon absorption

from phonon emission [27,28]:

B(ε, T ) = 2π

h̄D(ε)

∑
nmν

∫∫
d3kd3q

�2
BZ

|gmnν (k, q)|2δ(εnk − ε)

× h̄ωqν[(nqν + 1/2)δ(εnk − εmk+q + h̄ωqν )

− nqνδ(εnk − εmk+q − h̄ωqν )], (35)

where nqν are the Bose-Einstein occupation factors in the
absence of an electric field.

We computed the energy-gain and energy-loss rates using
the EPW software by interpolation on a dense 80 × 80 × 60 k-
point grid and a 40 × 40 × 30 q-point grid with a constant
smearing of 20 meV. In Fig. 6(a) we present the change of
energy-loss rate as a function of energy, starting from the
conduction-band minimum (CBM). On the same figure, we
compare the loss rate with the average energy-gain rate for
increasing external electric field E at room temperature. We
define the intrinsic breakdown field Eb as the smallest external
electric field such that the energy-gain curve is larger than
the energy-loss curve for all energies between the CBM and
the CBM plus the energy of the band gap (4.5 eV). This
value provides an estimate of the electric field range for
which the material will not undergo dielectric breakdown. We
compute that at room temperature the breakdown field is 5.8
MV/cm, including all electron-phonon scattering processes.
Using the same approach for different temperatures, we can
obtain the change of breakdown field with temperature shown
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in Fig. 6(b). We find a breakdown field of 6.64 MV/cm at
500 K.

Such calculation was performed by Mengle and Kioupakis
[22] for the intrinsic electron breakdown field at 300 K. They
obtained 5.4 MV/cm by considering only the dominant LO
phonon mode and estimated that the contribution of other
modes would lead to 6.8 MV/cm. We note that the experi-
mental breakdown field in β-Ga2O3 is typically reported at
around 8 MV/cm [1]. This is in line with our calculations,
since the von Hippel low-energy criterion should be seen as a
lower bound for the breakdown field.

Using this information and the experimental dielectric
function, we can compute the temperature- and direction-
dependent BFOM. The BFOM is typically given with respect
to the BFOM of silicon.

In this case we computed the reference BFOM of silicon
by using the temperature-dependent dielectric constant of
Refs. [82,88] and a breakdown field of 0.3 MV/cm, as well
as the experimental temperature-dependent electron mobility
from Norton et al. [83]. The resulting change of BFOM
is given in Fig. 6(d). The direction-averaged minimum and
maximum values are 1130 and 2035, respectively. We see that
even though the computed breakdown field underestimates the
experiment, this effect is compensated by an overestimation
of the mobility. As a result, our calculated BFOM is close to
experimental estimates of 2000–3000 [1]. This cancellation
suggests that the current level of theory could be sufficient to
predict the BFOM of new materials.

VII. CONCLUSION

In this work, we performed an in-depth study of the struc-
tural, vibrational, elastic, electrical, and transport properties
of β-Ga2O3 using state-of-the-art, first-principles simulation
tools. We carefully analyzed the structural properties of the
monoclinic variation of β-Ga2O3 and analyzed the effect
of spin-orbit coupling on those properties. We studied the
electronic structure and carrier effective masses. We made a
careful analysis of the vibrational properties, including a sym-

metry analysis of β-Ga2O3 using first-order response function
theory, including dielectric and Born effective charges study.
We calculated many elastic properties by computing the elas-
tic constants tensor, including the bulk, shear, and Young mod-
ulus tensor, using parametric three-dimensional visualization
but also Poisson’s ratio, universal elastic anisotropy, sound
velocities, and Debye temperature, and found a strong direc-
tional anisotropy. We used the Boltzmann transport equation
to compute the intrinsic electron and hole drift mobility and
obtained room-temperature values of 258 and 1.2 cm2/Vs, re-
spectively. We found that the mobility in β-Ga2O3 was limited
by a series of longitudinal optic phonons with symmetry char-
acter Bu at the zone center. Finally, we used the von Hippel
low-energy criterion to compute fully from first principles the
breakdown field, which allowed us to compute the direction-
and temperature-dependent Baliga figure of merit for high-
power devices. We saw that the predicted figure of merit was
in good agreement with experiment and attributed this to an
overestimation of the computed mobility compensating an
underestimation in the computed breakdown field.

The present analysis may serve as the basis for a general,
consistent, and predictive framework to study materials for
power electronics from first principles.
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