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Correlation-based Controller Tuning

Outline

! Use of data for controller tuning

! Controller tuning based on the correlation approach

! Experimental illustrations

! Conclusions
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Correlation-based Controller Tuning

! Indirect model-based approaches
• Model identification

– Off-line (e.g. step response)
– On-line, fast update (indirect adaptive control)
– Repeated, slower update (identification for control)

• Controller design
• Key issue: model validity

! Direct data-driven approaches
• Direct adaptation of controller parameters

– On-line, fast update (direct adaptive control)
– Repeated, slower update (IFT, CbT)

• Key issue: gradient estimation

Use of Data for Controller Tuning
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Direct Data-driven Controller Tuning
Framework of closed-loop output error (CLOE)
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Design objective

εcl(ρ,t) helps compare achieved and
 desired closed-loop systems

εcl(ρ,t) contains effects of
• model mismatch
• noise

Model following
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Direct Controller Tuning
Features

! Iterative update ρ ρ γ ρ ρi i i i iQ J+
−= − ′1

1( ) ( )

ρ : controller parameters
γi : step size

! Difficulties
•  Gradient depends on unknown CL plant → gradient estimation

•  Presence of noise v(t)

Q(ρi) : positive definite matrix
J’(ρi) : gradient of criterion

! Two data-driven approaches with slow update
" IFT → gradient from closed-loop data (Hjalmarsson et al., 1994)

" CbT → no gradient needed (Karimi et al., 2003)

Robbins-Monro
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Iterative Feedback Tuning
Two Experiments

H. Hjalmarsson, Iterative Feedback Tuning: An Overview, Int. J. Adapt. Control Signal Process., pp 373-95  (2002)
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Evaluation of criterion
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Iterative Feedback Tuning
Properties

! Unbiased model-free estimation of gradient if
• Zero-mean disturbances
• Disturbances in Experiments 1 & 2  are uncorrelated
    →    convergence to (local) minimum

! Features 
•  Precise local information →  bias-free gradient estimation
•  Only local information  → only gradual changes possible → slow 
•  Good control → error e small or not sufficiently rich

→ poor gradient estimation (dual control problem)
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Correlation-based Tuning
Basic Idea

Objective: Determine K(ρ) such that εcl(ρ,t) is uncorrelated with r(t) 

    → controller compensates the effect of model mismatch

A. Karimi, L. Miskovic and D .Bonvin, Iterative Correlation-based Controller Tuning with Application to a Magnetic
Suspension System, Control Engineering Practice (2003)
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ε(ρ,t) affected by
• model mismatch, correlated with r(t)

• noise, uncorrelated with r(t)
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Correlation-based Tuning

f E t tcl( ) ( ) ( , )ρ ζ ε ρ= [ ] = 0

! Correlation equations

ζ(t) : nρ-dim. vector of instrumental variables
• correlated with r(t), for example, r(t-nz) … r(t) … r(t+nz)
• independent of noise v(t)

ρ ρ γ ρ ρi i i i iQ f+
−= −1

1( ) ( )

γI : step size Q(ρi) : positive definite matrix

! Iterative solution

Gauss-Newton

Q(ρi) = I  substitution method
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Solution of Correlation Equations

! Features
• Convergence is not affected by noise
• No need for gradient with the substitution method
• No need for second experiment
• Existence of a solution ? Perfect decorrelation might require a high-order

or non-causal controller → Minimize correlation function

! Newton-Raphson Algorithm:
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Frequency-domain Interpretation

! For IFT (minimization of 2-norm of εcl)

! For nz → ∞ and using Parseval theorem
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• Difference between achieved and desired closed-loop is minimized
• Noise has no effect on the criterion (Φr is the spectrum of r(t))
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Three-tank System
Experimental Setup Mathematical Model
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Three-tank System
Simulated Closed-loop Response

(linear model)

(data based)

(model based)
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Magnetic Suspension System
Experimental Setup

Nonlinear, unstable system

Optical sensor
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Magnetic Suspension System
Approximate Model and Initial Controller

! Linearized continuous model
 with U/I-converter dynamics

! Discrete-time model
 Ts = 10 ms

! Initial RST controller
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Magnetic Suspension System
Correlation-based Tuning

Closed-loop Response

Initial RST controller
(model based)

CbT after 6 iterations
(data based)
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Closed-loop Response

CbT after 6 experimentsIFT after 24 experiments

Magnetic Suspension System
 IFT vs. CbT
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Conclusions

! Role of the closed-loop output error
• Allows easy comparison with designed closed loop
• Expresses the effects of unmodeled dynamics, nonlinearities and noise

! Direct data-driven controller tuning
• IFT

– Two experiments per iteration
– Controller depends on noise

• CbT
– A single experiment per iteration
– Controller independent of noise


