Correlation-based Controller Tuning

L. Miskovic, A. Karimi and D. Bonvin
Laboratoire d'Automatique
EPFL, Lausanne, Switzerland

In honor of Duncan A. Mellichamp, teacher and humanist

Outline
- Use of data for controller tuning
- Controller tuning based on the correlation approach
- Experimental illustrations
- Conclusions

Use of Data for Controller Tuning
- **Indirect** model-based approaches
 - Model identification
 - Off-line (e.g. step response)
 - On-line, fast update (indirect adaptive control)
 - Repeated, slower update (identification for control)
 - Controller design
 - Key issue: model validity
- **Direct** data-driven approaches

Direct Data-driven Controller Tuning
Framework of closed-loop output error (CLOE)

Design objective
$$\min_{\rho} J = \| \varepsilon_{cl}(\rho, t) \|$$

Model following
$$\varepsilon_{cl}(\rho, t)$$ helps compare achieved and desired closed-loop systems
$$\varepsilon_{cl}(\rho, t)$$ contains effects of
- model mismatch
- noise
Direct Controller Tuning

Features

- **Iterative update**
 \[
 \rho_{i+1} = \rho_i - \gamma_i Q^{-1}(\rho_i) J'(\rho_i) \]
 Robbins-Monro

 - \(\rho \): controller parameters
 - \(\gamma \): step size
 - \(Q(\rho) \): positive definite matrix
 - \(J'(\rho) \): gradient of criterion

- **Difficulties**
 - Gradient depends on unknown CL plant \(\rightarrow \) gradient estimation
 - Presence of noise \(\nu(t) \)

- **Two data-driven approaches with slow update**
 - IFT \(\rightarrow \) gradient from closed-loop data (Hjalmarsson et al., 1994)
 - CbT \(\rightarrow \) no gradient needed (Karimi et al., 2003)

Iterative Feedback Tuning

Two Experiments

Evaluation of criterion

\[
J(\rho) = E[e^2(\rho,t)]
\]

Over \(N \) samples:

\[
J(\rho) = \frac{1}{N} \sum_{i=1}^{N} E_i(\rho,t)
\]

Estimation of gradient

\[
J'(\rho) = E[e(\rho,t)y'(\rho,t)]
\]

\[
y'(\rho,t) = G S(\rho) K'(\rho) e \quad S = \frac{1}{1 + K G}
\]

Correlation-based Tuning

Basic Idea

Properties

- Unbiased model-free estimation of gradient if
 - Zero-mean disturbances
 - Disturbances in Experiments 1 & 2 are uncorrelated \(\rightarrow \) convergence to (local) minimum

- **Features**
 - Precise local information \(\rightarrow \) bias-free gradient estimation
 - Only local information \(\rightarrow \) only gradual changes possible \(\rightarrow \) slow
 - Good control \(\rightarrow \) error \(e \) small or not sufficiently rich \(\rightarrow \) poor gradient estimation (dual control problem)

Objective: Determine \(K(\rho) \) such that \(e_d(\rho,t) \) is uncorrelated with \(r(t) \)

\(e(\rho,t) \) affected by

- model mismatch, correlated with \(r(t) \)
- noise, uncorrelated with \(r(t) \)

A. Karimi, L. Miskovic and D. Bonvin, Iterative Correlation-based Controller Tuning with Application to a Magnetic Suspension System, Control Engineering Practice (2003)
Correlation-based Controller Tuning

- **Correlation equations**

 \[f(\rho) = E[\zeta(t)\varepsilon_{cl}(\rho, t)] = 0 \]

 \(\zeta(t) \): \(n_\rho \)-dim. vector of instrumental variables

 - correlated with \(r(t) \), for example, \(r(t-n_z) \ldots r(t) \ldots r(t+n_z) \)

 - independent of noise \(v(t) \)

- **Iterative solution**

 \[
 \rho_{i+1} = \rho_i - \gamma_i Q^{-1}(\rho_i) \cdot f(\rho_i) \\
 \gamma_i: \text{step size} \quad Q(\rho_i): \text{positive definite matrix} \quad Q(\rho_i) = I \quad \text{substitution method}
 \]

Frequency-domain Interpretation

- For \(n_z \rightarrow \infty \) and using Parseval theorem
 \[
 \rho^* = \arg \min_\rho \int_{-\pi}^{\pi} \left[T(e^{-j\omega}, \rho) - T_d(e^{-j\omega}) \right]^2 \Phi_\varepsilon(\omega) \, d\omega
 \]

 - Difference between achieved and desired closed-loop is minimized

 - Noise has no effect on the criterion (\(\Phi_\varepsilon \) is the spectrum of \(r(t) \))

- For IFT (minimization of 2-norm of \(\varepsilon_{cl} \))
 \[
 \rho^* = \arg \min_\rho \int_{-\pi}^{\pi} \left[T(e^{-j\omega}, \rho) - T_d(e^{-j\omega}) \right]^2 \Phi_\varepsilon(\omega) + \left[S(e^{-j\omega}, \rho) \right]^2 \Phi_v(\omega) \, d\omega
 \]

Solution of Correlation Equations

- **Newton-Raphson Algorithm**
 \[
 Q(\rho) = \frac{\partial f}{\partial \rho} = E[\zeta(t)\psi^T(\rho, t)]
 \]

 \[
 \psi^T(\rho, t) \equiv \frac{\partial \varepsilon_{cl}(\rho, t)}{\partial \rho}
 \]

 \[
 \zeta(t) = \psi^T(\rho, t)
 \]

 makes \(Q \) positive definite

- **Features**

 - Convergence is not affected by noise

 - No need for gradient with the substitution method

 - No need for second experiment

 - Existence of a solution? Perfect decorrelation might require a high-order or non-causal controller \(\rightarrow \) Minimize correlation function

Three-tank System

Experimental Setup

Mathematical Model

\[
\begin{align*}
A \frac{dh_1}{dt} &= Q_1 - Q_{13} - Q_{out} \\
A \frac{dh_2}{dt} &= Q_{13} - Q_{32} \\
A \frac{dh_3}{dt} &= Q_2 + Q_{32}
\end{align*}
\]

\[
\begin{align*}
Q_{13} &= a_{13} S \text{sgn}(h_1 - h_3) \sqrt{2g(h_1 - h_3)} \\
Q_{32} &= a_{32} S \text{sgn}(h_3 - h_2) \sqrt{2g(h_3 - h_2)} \\
Q_{out} &= a_{out}(h_1) S \sqrt{2gh_1}
\end{align*}
\]

- \(A \) - section of cylinder [m2]

 - \(S \) - section of connecting pipe [m2]

 - \(a \) - outflow coefficient (dimensionless)
Three-tank System
Simulated Closed-loop Response

- Identification of a linear discrete model
- Initial PID-like controller of the form
 \[K(q^{-1}) = \frac{s_0 + s_1q^{-1} + s_2q^{-2}}{(1 - q^{-1})(1 + r_1q^{-1})} \]
designed using pole placement
- Sampling period \(T_s = 7s \)

- Reference signal
- Designed response (linear model)
- Initial CL response (model based)
- CbT after 2 iterations (data based)

Magnetic Suspension System
Experimental Setup

- Nonlinear, unstable system

Magnetic Suspension System
Approximate Model and Initial Controller

- Linearized continuous model with U/I-converter dynamics
 \[G(s) = \frac{0.1}{0.017s + 1} \frac{15750}{s^2 - 1238} \]

- Discrete-time model
 \(T_s = 10 \text{ ms} \)
 \[G_0(q^{-1}) = 10^{-4} (137q^{-1} + 481q^{-2} + 103q^{-3}) \]
 \[1 - 2.69q^{-1} + 2.19q^{-2} - 0.56q^{-3} \]

- Initial RST controller
 \[R_0(q^{-1}) = 1 + 0.686q^{-1} + 0.163q^{-2} \]
 \[S_0(q^{-1}) = 21.86 - 26.77q^{-1} + 8.15q^{-2} \]
 \[T_0(q^{-1}) = 1.83 \]
Conclusions

- Role of the closed-loop output error
 - Allows easy comparison with designed closed loop
 - Expresses the effects of unmodeled dynamics, nonlinearities and noise

- Direct data-driven controller tuning
 - IFT
 - Two experiments per iteration
 - Controller depends on noise
 - CbT
 - A single experiment per iteration
 - Controller independent of noise