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Context

Emulsion polymerization is one of the most subtle of all polymerization processes. Despite its relative complexity, batch emulsion polymerization is the method of choice whenever specifications on conversion, particle size or molecular weight distribution are stringent. The dynamic optimization of such processes has not been studied extensively in the literature since most optimization strategies require a model of the process, and accurate models are rarely available for emulsion polymerization processes. In this talk, measurement-based optimization of inverse emulsion polymerization will be presented and illustrated with an industrial example. 

Problem Formulation

Case study: An industrial case study is investigated in collaboration with AQUA+TECH Specialties S.A., which produces water-soluble polymers used for wastewater treatment. Inverse emulsion copolymerization of acrylamide with quaternary ammonium cationic monomers is carried out isothermally in a 1-ton batch reactor. Several safety and quality constraints must be satisfied:

· Large final conversion since the monomer is toxic

· Prescribed minimum average molecular weight in order to guarantee the effectiveness of the polymer

· Limitation on the heat removal capacity

· Bounds on the reactor temperature

The objective is to determine the reactor temperature that minimizes the batch time while respecting these constraints. 
Solution approaches: The standard approach to solving dynamic optimization problems consists of using a dynamic model of the process and a numerical optimization package to determine the optimal inputs. Unfortunately, in this area, an accurate model of the emulsion polymerization process is difficult to obtain. In the presence of uncertainty – in the form of model mismatch and disturbances – the open-loop application of optimal profiles that have been determined off-line might not lead to a feasible solution, let alone an optimal one. The feasibility issue calls for the introduction of conservatism. For example, lower and upper bounds on the uncertainty can be used to compute an input policy that ensures feasibility for all admissible situations. This method is referred to as robust optimization and has been studied extensively in the literature [1]. However, though feasibility can be guaranteed in this worst-case type of scenario, the nominal performance may be rather poor. Thus, the main issue concerns performance improvement while still guaranteeing feasibility. 

Measurement-based Optimization 

Use of measurements: To reduce this conservatism, the main idea is to use measurements in the optimization framework. Measurements can be used to either (i) refine the process model that will be used to compute the remaining part of the inputs (re-optimization), or (ii) adjust the inputs directly, i.e. without the use of a process model, so as to meet the necessary conditions of optimality (NCO-tracking). This second approach is chosen in this work. 

Interpretation of the NCO: The basic idea of NCO-tracking is to interpret the different parts of the necessary conditions of optimality (NCO) and use them appropriately to enforce optimality. In a dynamic optimization problem, there are typically path objectives (constraints and sensitivities) that need to be dealt with during the run, and terminal objectives that can be handled at the end of the run [2]. Or, from a different perspective, one sees that the NCO consist of two parts that deal with the constraints and the sensitivities, respectively. The first part of the NCO implies that some of the path or terminal constraints are active at the optimum, while the second part requires that the cost variation at the optimum be zero. The idea of enforcing these two parts using measurements associated with the constraints and sensitivities is quite natural since uncertainty leads to a deviation from the NCO. 

Model of the solution: A key feature of the proposed approach is the use of a qualitative model of the optimal solution. Typically, the optimal inputs are discontinuous and are composed of various arcs, and of switching times where, for example, an input switches from an arc to the next. Choosing a model of the solution means prefixing the shape and sequence of arcs that compose the optimal inputs. Such a solution model can be obtained using various methods, e.g. educated guess, numerical optimization of a tendency model of the process, pre-specified structure, etc. This way, the inputs are parameterized using a small number parameters that typically correspond to switching times and input values of piecewise-constant or piecewise-linear arcs. As with identification, upon searching in the space of input parameters, how close the best solution is from the optimal one will depend on the selected input structure.
Adaptation of the solution model: Once the input profiles have been parameterized, the next step is to make a correspondence between the various parts of the NCO and the parameters of the input model. For this, the optimal inputs are characterized in terms of constraint-seeking arcs, sensitivity-seeking arcs, constraint-seeking parameters, and sensitivity-seeking parameters. Meeting the path objectives is accomplished on-line by adjusting the constraint- and sensitivity-seeking arcs via appropriate controllers. The input parameters are adapted on a run-to-run basis using off-line measurements in order to satisfy the terminal constraints and sensitivities [1]. 

Results

Model of the solution: A tendency model has been developed for the copolymerization of acrylamide in order to generate a model of the solution. This tendency model captures the main effects of temperature and initiator concentration on conversion and final average molecular weight. An increase in temperature leads to shorter batch times, but also to lower molecular weights. However, towards the end of the batch, the final average molecular weight is rather insensitive to the temperature, since an increase in temperature strongly reduces the instantaneous molecular weight but for a shorter period of time. These assertions have been confirmed by experiments performed in an 80 l tank. Since the temperature cannot be raised during the first half of the batch because of heat removal limitation, the model of the optimal temperature profile consists of two arcs:

· Heat removal limitation: The temperature profile that exactly generates the amount of heat that can be removed has a fairly complicated shape and is extremely sensitive to parameter variations. Thus, the industrially accepted solution is to maintain the temperature constant at a pre-specified conservative (safe) value.

· Compromise between molecular weight and conversion: This corresponds to an increasing temperature profile that can be approximated well by adiabatic operation. The adiabatic operation is implemented by opening the temperature control loop and letting the temperature rise because of heat generation.

Semi-adiabatic profile: The proposed temperature profile can be parameterized using only two parameters: the switching time between isothermal and adiabatic operations, and the final batch time. The former is determined by the constraint on final average molecular weight, and the latter by the constraint on final conversion. This profile, which is labeled semi-adiabatic, has been tested on a 80 l tank reactor, leading to a batch-time reduction of 25%, with no loss on the final average molecular weight. 

Run-to-run adaptation: With the last arc being implemented by opening the temperature control loop, care should be taken to ensure that the final reactor temperature does not exceed its upper bound. Note that the final temperature depends on the concentrations of the reactants at the switching time, and thus on the switching time itself. In this case, since the constraint on final reactor temperature is more restrictive than that on final molecular weight, the switching time is adapted in a run-to-run manner to meet the upper bound on the final temperature.

Trajectory tracking: The run-to-run adaptation requires several runs to converge and, in addition, it cannot take into account within-the-run variations. Thus, it has been proposed in [3] to track a reference trajectory, the main purpose of which is to bring the system to an active terminal constraint at final time. In this application, instead of having adiabatic operation in the second interval, it is proposed to track an appropriate temperature trajectory that takes the reactor temperature to its upper bound at final time (here at final conversion since the final time is determined by reaching the desired conversion). Thus, for implementation purpose, the temperature trajectory is expressed in terms of conversion. Though near-optimality can be achieved within a single run, trajectory tracking requires conversion estimates to be available on-line.

Comparison: Four different strategies with uncertainty regarding the initiator efficiency and the propagation rate constant have been investigated in simulation: 

· Isothermal strategy

· Semi-adiabatic conservative strategy that meets all constraints

· Run-to-run adaptation of the semi-adiabatic strategy 

· Tracking of a temperature trajectory that leads to the temperature upper bound at the desired final conversion

The conservative semi-adiabatic strategy reduces the batch time by about 25% compared to the isothermal case, while the last two result in about 36% improvement. The run-to-run adaptation needs about five batches to converge, while tracking a temperature trajectory in terms of conversion can be implemented within a run.
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