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Matching Seqlets: An Unsupervised Approach
for Locality Preserving Sequence Matching
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Abstract—In this paper, we propose a novel unsupervised approach for sequence matching by explicitly accounting for the locality
properties in the sequences. In contrast to conventional approaches that rely on frame-to-frame matching, we conduct matching using
sequencelet or seqlet, a sub-sequence wherein the frames share strong similarities and are thus grouped together. The optimal
seqlets and matching between them are learned jointly, without any supervision from users. The learned seqlets preserve the locality
information at the scale of interest and resolve the ambiguities during matching, which are omitted by frame-based matching methods.
We show that our proposed approach outperforms the state-of-the-art ones on datasets of different domains including human actions,
facial expressions, speech, and character strokes.
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1 INTRODUCTION

Sequence matching is of crucial importance to many tasks
in computer vision, speech analysis and human computer
interaction such as action classification, audio recognition
and video retrieval. Given a pair of sequences, the goal of
sequence matching is to establish the correspondences be-
tween different parts of the two sequences, which provides
vital clues for subsequent tasks like sequence classifications.

Despite this straightforward problem definition, se-
quence matching turns out to be a very challenging problem
because of the three main reasons among many. First, for
different sequences of the same class, the temporal distri-
butions of the incidents may vary a lot. For example, when
speaking the word “eleven”, some people spend more time
on “e-” and less on “-leven” while others do the opposite;
when performing the action “standing up”, senior people
may act slower than the young. In the case of periodic
behaviors, the problem becomes even more demanding due
to the repetitive patterns that may occur at different time
instants.

Second, consecutive frames in local neighborhoods are
often correlated rather than independent of each other.
Recall that a frame is merely the consequence of temporal
discretization but not a natural entity. Therefore, consecutive
frames often share strong similarities and a group of them
correspond to one incident in the sequence. If we ignore
such affinity and coherence among local frames and only
use individual frames for matching, the results can be prone
to errors because of the ambiguities between them.
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Fig. 1: Matching two human action sequences using (a) individ-
ual frames and (b) seqlets. A seqlet is denoted as a bounding
box enclosing skeletons. The upper row depicts a “pick up”
action while the lower depicts a “walking”. They belong to
different classes and therefore fewer matchings, optimally zero,
are desirable. Frame-to-frame approach in this case produces
three matchings while our seqlet-based one produces none.

Third, micro-level matching labels, such as frame-level
ones, are usually too effort-consuming to obtain as it re-
quires significant amount of annotations. Moreover, such
matchings are often ambiguous, thus making the human
annotations subjective. As a result, sequence classification
accuracy is usually adopted as an evaluation measure for
sequence matching, despite the two tasks are intrinsically
different.

The lack of micro-level labels makes the fully-supervised
matching often intractable. Researchers have therefore re-
sorted to unsupervised or weakly-supervised approaches.
Existing unsupervised sequence matching approaches, how-
ever, focus on alleviating the first problem but barely the
second. In other words, they have mechanisms to handle
divergent temporal distributions of incidents within the
sequences, but do not account for the coherence among
frames in the local neighborhoods. For example, Dynamic
Time Warping (DTW) [28], the most popular unsupervised
sequence matching approach, treats neighboring frames in-
dependently, and conducts matching by strictly preserving
the temporal orders of the frames, meaning that frames
in one sequence can be matched to those in the other
only in the same order without any exception. Optimal
Transport (OT) [39] and its extension Sinkhorn Distance [8]
look at frame-to-frame matching and do not take temporal
order into account. The recently proposed Order-preserving
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Wasserstein Distance (OPW) [36], combines the flexibility of
OT and order-preserving alignment by imposing temporal
constrains on OT-based distance, but still neglects the intra-
sequence affinities. Existing weakly-supervised approaches
like HMM-based ones [33], [34] and LSTM-based ones [9],
on the other hand, rely on sequence-level supervisions
and also ignore the second problem. Furthermore, unlike
unsupervised approaches, such models are often trained
explicitly for one application, making them prone to errors
when generalized to other application scenarios.

We propose in this paper a fully unsupervised sequence
matching approach, without annotations at any level, that
explicitly handles all the aforementioned three challenges.
The essential idea is to conduct unsupervised sequence
matching by clustering neighboring frames into groups of
different sizes, which we call sequencelets’ or seqlets, and find
the correspondences between seqlets instead of individual
frames. Each seqlet is a collection of neighboring frames
that share strong affinities and thus assumed to be homo-
geneous, providing mid-level cues for matching. We thus
name our method Seqlet-Based Matching (SBM). Our model
simultaneously optimizes matching and clustering, which
benefit each other, and does not require any supervision
from users. The learned seqlets account for the varying
temporal spans of events and preserve the local structures
for matching at the scale of interest. They also help to re-
solve the ambiguities especially those erroneous matchings
between similar frames from sequences of different classes,
yielding results better than the state-of-the-art approaches.

We show in Fig. 1 an example of matching two human
action sequences, a “picking up” and a “walking”. The two
sequences are of different labels and thus fewer matchings,
optimally zero, are desirable. Frame-wise matching only
accounts for affinities between individual frames across se-
quences and in this case assigns three matchings, as shown
in Fig. 1a, where the matched pairs of skeletons indeed
appear very similar. If a wider range of frames are taken
into account, as done in our method shown in Fig. 1b, such
ambiguities can be removed. Our method simultaneously
clusters homogeneous frames to scales of interest and con-
ducts matching on top of clusters, and in the case leads to
zero matching between the two sequences. In Fig. 2, we
show our matching results on facial expression sequences
and online Chinese character stroke sequences. Notably, in
the case of character strokes, our approach automatically
clusters the strokes of the right parts of the two characters,
which are identical, into groups, and match them correctly.

Specifically, our approach starts by computing a number
of raw keyframes in each sequence, and then carries out
the joint segmentation and matching by taking into account
the affinities between seqlet candidates within the same
sequence and across the two. We allow for the temporal
disorders during matching, as done in OPW, with a cost
depending on the number of “crossings”. The joint opti-
mization is modeled as a Quadratic Integer Program (QIP)
and solved using off-the-shelf solvers. Based on the obtained
seqlets, we re-initialize the keyframes and conduct the joint
optimization again. The whole process is iterated until con-
vergence.

Our contribution is therefore, to our best knowledge, the
first unsupervised model that jointly conducts matching and

(a)

(b)

Fig. 2: Examples of SBM matching. (a) Matching two happy
expression sequences. (b) Matching two similar Chinese
characters. The left parts of the two characters are different
but the right parts are same. SBM automatically groups the
strokes of the right part and match them.

locality-preserving temporal segmentation of sequences,
which is in contrast to prior approaches that ignore such
affinities between neighboring frames. Our approach does
not require any supervision, and generalizes well to differ-
ent domains including human actions, facial expressions,
speech, and character strokes. We show that our approach
yields results superior to those of the state of the art on
standard datasets in these domains.

2 RELATED WORK

Here we give a brief review of the related work. We start
by reviewing the sequence matching methods and then
discuss action recognition, one of its direct applications.
Note that in this paper we focus on unsupervised sequence
matching. Despite supervised methods such as HMM-based
ones [33], [34] and LSTM-based ones [9] yield promising
results, they still rely on annotations, while ours require
no annotations and thus are expected to generalize better
to many application domains, as demonstrated later in our
experiment section.

2.1 Sequence Matching

DTW is the most commonly used approach for unsuper-
vised sequence matching. Some research work focus on
reducing the high computation cost of DTW. The Fast-
DTW [29] and SparseDTW [1] are two modified ver-
sions of DTW that run faster under certain circumstances.
Silva et al. [31] reduce the computation cost of DTW by
speeding up the calculation of its all-pairwise DTW matrix,
and Ratanamahatana et al. [25] improve the efficiency of
DTW by constraining the amount of warping. Canonical
Time Warping [48] and generalized time warping [47] gen-
eralize DTW to handle sequences with changing dimension
frames. Besides, the Longest Common Subsequences dis-
tance [5] and the edit distance [22], which are designed for
string comparisons, are extended to deal with the multi-
dimensional sequences matching in [21] and [40].

Some recent approach focus on learning-based matching
but still rely on DTW for computing distances. For example,
the approach of [26] generates a new sequence first by map-
ping the original sequence to the learned semi-continuous
HMMs, and then extracts the mixture weights of states. This
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is achieved under the supervision of sequence-level labels.
The DTW distance between the weight sequences is then
treated as the distance between sequences. Su et al. [33],
[34] extract the HMM-based statistic information from each
set of sequences. Then the DTW distance between sequence
statistic information is used as distance between sequences.
A rate-invariant distance based on the transported square-
root vector field representation is proposed in [38] and
applied on action recognition tasks [2]. Since these methods
all rely on DTW, they suffer the same problem as DTW.

Apart from DTW, some other distances have also been
adopted for sequence matching. Garreau et al. [11] pro-
pose to learn Mahalanobis distance for temporal sequence
alignment. However, the true alignment of the learning
examples must be known a priori. Su et al. [36], on the other
hand, propose an OT-based method, where two temporal
regularization terms are added to preserve the temporal
information of sequences in the matching process.

Unlike existing sequence matching methods that focus
on frame-to-frame matching, our method conducts seqlet-
to-seqlet matching, where locality is preserved and seqlets
are automatically learned without any human supervision.

Note that the sequence matching task is very different
from the sequence classification one, whose goal is to clas-
sify a sequence into one of the existing types. Nevertheless,
the latter task is often used as an evaluation measure for
the former as done in our experiments, due to the lack of
frame-to-frame matching annotations.

2.2 Action Recognition

Action recognition is one of many direct applications of
sequence matching. For this task, various graph-based mod-
els, such as the spatio-temporal graph [6], the temporal
AND-OR graph [23], [46] and the actom sequence mod-
els [10] have been used. Sadanand et al. [27] embed the
temporal information in the activity representation, while
Anirudh et al. [3] propose a geometry and data adaptive
symbolic framework to improve the efficiency of action se-
quence recognition. The approach of [17], performs isolated
recognition based on per-frame representation of sequence,
and on aligning test sequence with its model sequence. The
approaches of [41], [42], [45], on the other hand, use the
trajectory information on action sequence recognition. The
ones of [18], [19], [30] map action sequence on an HMM
model to carry out sequence prediction. Jiang et al. [14],
[15] convexity the action matching problems into a linear
programming task. Recently, Su et al. [37] parse action
sequences hierarchically into segments using the temporal
information, and have achieved very promising perfor-
mances. Also, deep learning models have been implemented
for action recognition [7], [13], [32] and have achieved
promising performance.

Our proposed seqlet matching approach can be directly
applied to not only action recognition, but also other do-
mains like facial expressions, speech and character strokes.

3 MODEL

Our method conducts sequence matching using seqlets,
which explicitly takes into account the local affinities be-
tween consecutive frames within each sequence. Specifi-

cally, our method jointly optimizes the intra-sequence se-
qlet selection and inter-sequence seqlet matching. This is
achieved by our formulation of the problem as a Quadratic
Integer Program (QIP). In what follows, we first go through
the workflow of our method, with the visual illustration
shown in Fig. 3, then give the definitions of individual
components, and finally show the complete QIP formulation
with constraints.

Our method works in an iterative manner by repeating
the keyframe extraction and seqlet matching until con-
vergence. We start by extracting initial keyframes in both
sequences, for which the details will be provided in Sec. 4.1.
Based on the obtained keyframes, we construct seqlets can-
didates, shown as the black bounding boxes in Fig. 3. Ini-
tially, each seqlet candidate is formed by including only one
keyframe and the possible non-keyframes. We then allow
at most three consecutive seqlet candidates to join together
into a longer one, which we name as the merging process.
For a merged seqlet, we re-compute a new keyframe fi∗ ,
taken to be the one whose sum of distances to all the frames
is minimized:

i∗ = argmin
i∈I

∑
t∈I
‖ft − fi‖2 , (1)

where I is the set of indices of all the frames contained in
the seqlet, and ‖·‖2 denotes the L2 norm. In this way, each
seqlet, merged or not, comprises only one keyframe.

We model the joint seqlet selection and matching using
a graph shown in Fig. 3, where we treat a seqlet as a node,
and a possible link between a pair of seqlets as an edge.
On top of each edge, we define a binary variable, indicating
whether the edge is selected or not in the final solution. We
categorize the variables into two types as follow:

• hi,j ∈ {0, 1}, for seqlet selection, defined on edges
between Seqlets i and j within a sequence. hi,j = 1
indicates the two seqlets are chosen and linked.

• si,j ∈ {0, 1}, for seqlet matching, defined on edges
between Seqlet i of the first sequence and Seqlet j
of the second. si,j = 1 indicates the two seqlets are
matched.

In Fig. 3, we denote hi,j in blue and si,j in yellow. Note that,
we define an edge between two seqlets in the same sequence
only if they are neighbors, meaning that they are temporally
consecutive without any overlap or gap.

Given the keyframes and thus the constructed graph,
we model our joint optimization problem as a QIP of the
selection variables. We write our objective function as

min
H,S

E(H,S) = min
H,S

Em(S) +Ec(H) +Ed(S) +El(S), (2)

where H denotes the set of all hi,j and S denotes the one
of all si,j . Em, Ec, Ed, and El denote the energy terms
corresponding to the seqlet matching, clustering, crossing
penalty and length penalty, respectively.

We solve the optimization of Eq. (2) and denote the
optimal solutions as H∗ and S∗, which correspond to the
optimal seqlet selection and matching under the current
keyframe setting. In Fig. 3, we use the red edges to denote
the selected hi,j and black edges to denote the selected
si,j . We then use the obtained seqlets to compute the new
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Fig. 3: Illustration of our matching process. We show two action sequences that comprise seven and nine frames respectively. We
use a black bounding box to denote a seqlet, and a green box to denote a merged one. Each selection edge hij is colored blue,
and each matching edge sij is colored yellow. Note that, for a more concise presentation, we show only a pair of matching edges.
A green skeleton denotes a keyframe. Also, we highlight a selected hij using red and a selected sij using black. By the end of
the first iteration, Seqlets 8 and 6 are selected for sequence 1, and Seqlets 12, 9, and 10 are selected for sequence 2. Meanwhile,
Seqlet 8 of sequence 1 is matched with Seqlet 12 of sequence 2. In Iteration 2, we update the keyframes and conduct the joint
clustering-matching again. This process is repeated until convergence.

keyframes using Eq. (1), and iterate the above process.
We stop the iterations when the objective of Eq. (2) stops
decreasing. In what follows, we give details of the four
energy terms in Eq. (2).

3.1 Matching Term

The matching term Em measures the similarity between a
pair of seqlets across two sequences. We take it to be

Em(S) =
∑

i,j:j∈M(i)

ci,jsi,j , (3)

where ci,j encodes the distance-based cost between Seqlet i
in the first sequence and Seqlet j in the second, M(i)
denotes the set of all seqlets in the other sequence that can
be potentially matched to Seqlet i, and si,j , as discussed,
is a binary variable denoting the matching between Se-
qlets i and j. To compute ci,j between two seqlets, we need
to account for their different lengths. In our implementation,
we up-sample the short seqlet by interpolation so that it
has the same number of frames as the long one, and then
compute the distance-based cost between the two equal-
length sequences. Note that the ci,j , whose details will be
provided in Sec. 4.2, takes a negative value when seqlets are
similar and a positive one when their distance is large.

3.2 Clustering Term

The clustering term Ec accounts for the grouping of consec-
utive frames within the same sequence. Intuitively, frames
with similar features are more likely to correspond to the
same incident and thus should be clustered into a seqlet.
We model each possible clustering or seqlet candidate as a
node in our graph, and then use the binary variable hij to

denote the linking of Seqlets i and j, where hij = 1 indicates
that both seqlets are selected. We define Ec to be

Ec(H) = α1 ·
1

K

∑
i,m:m ∈N (i)

ei,mhi,m, (4)

where ei,m encodes the affinities among frames within Se-
qlets i andm,K is the number of keyframes in the sequence.
N (i) is the set of all neighbors of Seqlet i, and α1 is a
weighting factor to balance the energy terms. Note that, we
define m ∈ N (i) only if the first frame of Seqlet m is right
next to the last frame of Seqlet i. We take the cost ei,m to be

ei,m =
1

2
(
1

Fi

∑
t∈Ii

‖ft − f∗i ‖2 +
1

Fm

∑
t∈Im

‖ft − f∗m‖2), (5)

where Fi and Fm denote respectively the total number of
frames in Seqlets i and m, f∗i and f∗m denote their corre-
sponding keyframes, while Ii and Im denote respectively
the sets of all frame indices in Seqlets i and m.

3.3 Crossing Penalty Term

We allow for non-chronological matching of seqlets across
two sequences, as incidents may not follow the exact same
order even for sequences of the same type. We impose a cost
for such matching that depends on the number of the non-
chronological matchings. Specifically, if two seqlets in the
first sequence match the other two in the second sequence in
a reverse-time order, the two matching edges, each of which
links two seqlets in the two sequences, lead to a “crossing”,
which is penalized in our objective. This means the more
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distant apart two seqlets are, the more crossing it costs for
their matching. We write the crossing penalty term Ed as

Ed(S) = α2 ·
∑

i,j,m,n:
j∈M(i)
m∈M(n)

di,mj,n si,jsm,n, (6)

where di,mj,n is the cost of “crossing” between si,j and sm,n,
and α2 is the weight. We take di,mj,n = 1 for crossed edges,
i.e., (t (i)− t (m)) ·(t (j)− t (n)) < 0 where t (i) denotes the
starting time of Seqlet i, and otherwise we take di,mj,n = 0 .

3.4 Inverse Length Penalty Term
We also introduce a term, El, to encourage longer seqlets to
be selected. This is because the selections of longer seqlets
tend to produce fewer number of matched edges, which
potentially lead to larger objective values and are thus
impeded by the optimization. We therefore penalize the
inverse length of seqlets by defining

El(S) = α3 ·
∑

i,j:j∈N (i)

li,jsi,j , (7)

where li,j = 1
2 (

1
l(i) +

1
l(j) ), l(i) denotes the temporal length

of Seqlet i, and α3 is the weight.

3.5 Constrained QIP
We have now described each term in our objective function
E(H,S) shown in E.q. (2), where all the variables to be
optimized, H and S, are binary. However, not all assign-
ments of H,S are physically plausible: they should obey
some hard constraints so that the intra-sequence clustering
and inter-sequence matching can influence and interact with
one another in a positive way. In our complete QIP model,
we include the following constraints.

The first set of constraints enforce that within a sequence,
each seqlet can be selected at most once:∑

m∈N (i)

hi,m ≤ 1,∀i. (8)

To handle the seqlets in the beginning and at the end of
a sequence, we introduce a virtual source node S and a
sink node T . For each source S, we set

∑
m∈N (S) hS,m = 1,

which ensures that one and only one path of nodes can be
selected within each of the two sequences.

The second set of constraints implement the “flow con-
servation”, meaning that each seqlet, if selected, must be
linked to two other neighboring seqlets, a left neighbor and
a right one. We link S to all the seqlets starting with the first
frame, and link all the seqlets ending with the last frame to
T . We write ∑

i:m∈N (i)

hi,m =
∑

k∈N (m)

hm,k,∀m. (9)

The third set of constraints enforce that, each seqlet can
be matched only if it is selected. In other words, for each
seqlet, the sum of all the matching variables should be less
or equal to the sum of all selection variables. We write∑

j∈M(i)

si,j ≤
∑

m∈N (i)

hi,m,∀i, (10)

∑
j:i∈M(j)

si,j ≤
∑

n∈N (j)

hj,n,∀i, (11)

where Constraint (10) accounts for Seqlet i in the first
sequence and Constraint (11) accounts for Seqlet j in the
second.

Our QIP is therefore a program with an objective func-
tion of (2) and with constraints of (8), (9), (10), and (11). We
solve this QIP using Gurobi, a state-of-the-art commercial
solver. The obtained assignments of H and S variables
indicate the optimal frame clustering for matching, and the
resulting objective indicates the minimum distance between
the two sequences. We keep record of the obtained objective
value, re-initialize the keyframes, re-run the QIP optimiza-
tion, and iterate this process until the objective value stops
decreasing.

4 IMPLEMENTATION DETAILS

We provide here the implementation details of our keyframe
extraction and distance-based cost between seqlets.

4.1 Keyframe Extraction
Our initial keyframe or the keyframe in the first iteration
is obtained as follows. We start by setting the first frame
in a sequence to be a keyframe, and then loop each frame
and check its distance to the previous keyframe using two
criteria, which we give details below. If this distance is larger
than a threshold, we set this frame to be a new keyframe.
We go through each frame in this way until we reach the
end of the sequence.

The first criterion concerns the normalized difference
between the current frame and the last keyframe. We define
λ1 =

∑N
m=1

∣∣∣ fc
m−f

k
m

fk
m

∣∣∣ and λ2 =
∑N

m=1

∣∣∣ fc
m−f

k
m

fc
m

∣∣∣, where N
is the dimensionality of features, f cm is the m-th dimension
feature of the current frame and fkm is the m-th dimension
feature of the last keyframe. Therefore, λ1 and λ2 measure
the relative changes in features with respect to the last
keyframe and the current frame, respectively.

The second criterion regards the feature with the largest
relative change. In human action matching, for example,
wave hand leads to only local changes in the features
corresponding to the locations of hands and arms. We
write the change over a single feature dimension as λ3 =

maxm=1,...,N

∣∣∣ fc
m−f

k
m

fk
m

∣∣∣ and λ4 = maxm=1,...,N

∣∣∣ fc
m−f

k
m

fc
m

∣∣∣,
where again f cm and fkm are the m-th dimension feature of
the current frame and the last keyframe respectively. Finally,
we set a frame to be a keyframe if (λ1 > β1) ∨ (λ2 >
β1) ∨ (λ3 > β2) ∨ (λ4 > β2), where ∨ is the or logical oper-
ation, and β1 and β2 are hand-set thresholds. In practice, β1
and β2 are set lower so that in the first iteration we produce
an over-complete set of keyframes and thus a dense initial
temporal segmentation.

In the following iterations, we extract one keyframe from
each obtained seqlet using Eq. (1). Intuitively, this means
that we select the most “representative” frame in the least
square sense within each seqlet, and use it for the next
iteration of matching.

4.2 Distance-Based Cost Between Seqlets
As we test our method on different domains, we have to
re-calibrate the distances so as to obtain plausible results.
For matching problems that require pre-alignment, such
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as the human actions and facial expressions to be intro-
duced in Sec. 5, we take the distance between seqlets as
d = minT,R,s

1
N ‖sR(M1 + T )−M2‖F , where M1 and M2

are the two seqlets after upsampling, N is the number
of elements of M1, T is the translation matrix, R is the
rotation matrix, s is the scale parameter, and ‖·‖F denotes
the Frobenius norm. For aligned data, like in the Spoken
Arabic Digits (SAD) and Similar Online Chinese Character
datasets to be described in Sec. 5, we take the distance to be
d = 1

N ‖M1 −M2‖F . Based on the obtained distance d, we
then compute our cost cij as cij = ed−1

ed+1
− 1

2 , so that cij can
be both negative and positive.

5 EXPERIMENTS

We test our proposed SBM on five benchmarks of dif-
ferent domains: human action datasets including MSR-
Action3D [19] and MSRDailyActivity3D [43], speech dataset
Spoken Arabic Digits (SAD) [4], facial expression dataset
Cohn-Kanade [20], and character stroke dataset Similar On-
line Chinese Character [34], [35]. In what follows, we show
our comparative results on the five datasets and provide
experimental analysis.

5.1 Evaluation Measures

We evaluate the matching performance in terms of sequence
classification accuracies, as done in [16], [24], [36], since
there are currently no large-scale publicly-available datasets
with frame- or seqlet- level matching ground truths. We
apply two classifiers, the k nearest neighbor (k-NN) classifier
and the nearest mean (NM) classifier. The k-NN classifier
classifies a test sample based on majority voting among the
k nearest neighbors, and the NM one assigns a sample based
on distance between the test sample and the centroid of each
class. We use the mean average precision (MAP) and the
classification accuracy as our evaluation measures, both of
which are computed based on the ranking of the distance
between the test sample and the training ones.

5.2 Baselines Methods

We compare our proposed method, SBM, with a number
of unsupervised sequence matching methods including the
state-of-the-art ones listed as follows.

• DTW [28]: It is most popular sequence matching
method, which strictly preserves the temporal order
of the frames during matching.

• nDTW [12]: It is a normalized version of DTW, which
accounts for the matching steps.

• Sinkhorn Distance [8]: It is a smoothed and com-
putationally efficient version of Optimal Transport,
providing a canonical method to lift the geometry
between instances so as to compute the distance
between sequences.

• OPW [36]: It is the current state-of-the-art method
in sequence matching. It is a variation of Optimal
Transport and computes the Wasserstein distance
between two sequences.

Note that, the results of SBM is obtained using the best
parameters obtained using 5-fold validation.

5.3 MSR-Action3D Dataset
The MSR-Action3D (MSR-3D) Dataset [19] comprises 23,797
frames from 567 action sequences. It features 20 sports
actions, each of which is performed by 10 subjects two to
three times. We split the dataset into the training and testing
sets according to the subjects, as done in [36], [43], [44],
where the action sequences performed by five of the ten
subjects are used for training and those by the other five are
used for testing. We use the raw skeleton joint positions as
features for SBM. We set α1, α2 and α3 to be 0.01, 0.01 and
0.05 respectively, and set β1 and β2 to be 1.5 and 0.20.

We show the results in Fig. 4a and 4f. As can be seen, our
proposed methods SBM beats all other methods using all
the metrics. SBM outperforms the state-of-the-art method,
OPW, by 0.98% on MAP and 2.61% on 1-NN.

5.4 MSRDailyActivity3D Dataset
The MSRDailyActivity3D (MSRD-3D) dataset [43] consists
of 16 activity types, where each type is performed by 10
subjects twice using two different poses: standing and sitting
on the sofa. We split the dataset by setting half of the 10
subjects to be the training set and the other half for testing,
as done in [36], [43], [44]. We again use the joint positions as
features for SBM. In this experiment, all the parameters, i.e.,
α1, α2, α3 and β1 and β2, are set to be the same values as in
the MSR-Action3D Dataset.

The results are shown in Fig. 4b and 4g. Our proposed
SBM achieves the best results in five out of six evaluation
measures. The MAPs of the NM classifier for all the com-
pared methods are low. This is because the representation
sequence of NM is always far away from part of the test
sequences in the same class, since the same activity is per-
formed with both standing and sitting on the sofa. For 1-NN
and 3-NN, SBM outperforms OPW distance by 2.50% and
5.01%, despite that the difference between SBM and OPW is
0.65% for 5-NN. For the NM and MAP of NM, SBM beats
the best method by 1.25% and 0.93%. The results show that
the overall performance of SBM outperforms other sequence
matching methods.

5.5 Spoken Arabic Digits Dataset
The SAD dataset includes 10 spoken Arabic digits from 88
subjects, where each subject speaks a digit for 10 times.
Among the 88 subjects, half of them are female and half
are male. In the experiment, 660 samples of each digits and
thus in total 6,600 audio sequences are used for training,
and the other 2,200 sequences are used for testing, as done
in [36]. We use the mel-frequency cepstrum coefficients
(MFCCs) provided by the author of [4] as the feature. In
this experiment, the parameters α1, α2 and α3 are set to
be the same as in MSR-Action3D and MSRDailyActivity3D,
but β1 and β2 are set to be 10 and 5 due to the feature scales.

It can be seen from Fig. 4c and 4h that SBM outperforms
all the compared methods, although the margin is not
significant. This is because the SAD dataset consists of only
audio sequences of digits 0 to 9, where each digit contains
limited syllables, making the recognition task simple.

5.6 Cohn-Kanade Dataset
The Cohn-Kanade (CK) dataset comprises 7 different emo-
tional expressions from 123 subjects. Although it contains
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in total 593 sequences, only 327 emotional expression se-
quences from 118 subjects are labeled and can be used for
our evaluation. In our experiment, we use 166 sequences
from 59 subjects for training and the rest 161 sequences from
the other 59 subjects for testing. The AAM landmarks are
used as features. We set α1, α2 and α3 to be the same values
as in MSR-Action3D, and set β1 and β2 to be 1.00 and 0.01.

We show in Fig. 4d and 4i the comparative results on the
CK dataset, where the proposed SBM outperforms all the
compared ones including the state-of-art method OPW [36]
on all evaluation metrics.

5.7 Similar Online Chinese Character Dataset
The Similar Online Chinese Character (SOCC) dataset in-
cludes 7 similar Chinese characters and each have 107
different samples. In this experiment, we use 54 out of 107
samples as training set and the other samples as testing set.
Different with [34], [35] that using a 10-dimensional feature
for each stroke, we directly use the points recorded with
each character as the input data in our experiment. For this
dataset, we set α1, α2 and α3 to be 0.0005, 0.01 and 0.5
respectively. Moreover, different with the initial keyframe
extraction manner of previous experiments, we extract the
initial keyframes by using the absolutely difference between
data, and we set β1 and β2 to be 5 and 3.

As can be seen from Fig. 4e and 4j, SBM again out-
performs all the compared algorithms on all evaluation
metrics. Although the 3-NN accuracy of SBM only obtains
an improvement of 0.11% compared to nDTW, the overall
performance of SBM is much better.

5.8 Sensitivity of Parameters
In Tab. 1, we show the influence of parameters, α1, α2, α3

and the (β1,β2) pair, on the matching results. We record the
results by varying one parameter while freezing the others.

Tab. 1a shows that when α1 is large, the matching
accuracy decreases as α1 increases. This is because when
the cluster term is heavily weighted, the seqlets tend to
include as few frames as possible. Also, when α2 is small,
the accuracy increases as α2 increases; when α2 is large,
the accuracy decreases. This is because when the weight of
crossing penalty term is small, temporal order information
tends to be ignored. When the crossing penalty is large,
however, SBM becomes a DTW-like matching, leading to
the problem of sparse matching. When α3 is small, the
accuracy increases with the increasing of α3, in which case
the inverse length penalty term guides the optimization to
find more suitable seqlets. However, when α3 is too large,
the optimization will result in long seqlets, making SBM
neglect locality temporal information.

We show in Tab. 1b the influence of the pair (β1, β2),
which are thresholds to extract the initial keyframes. Smaller
values of (β1, β2) lead to more initial keyframes and thus
more iterations to converge, but more chances to capture
the optimal seqlets and thus the better performance.

5.9 Influences of SBM Terms
Here we test the influences of the terms in SBM, by turning
one or more terms off and then comparing their correspond-
ing performances. The experiments are conducted on the
MSR-3D dataset. Our complete model adopts the parameter

α1 0.005 0.010 0.020 0.030 0.040 0.050
Accuracy 86.20 86.86 86.86 86.86 86.53 86.53

α2 0.005 0.010 0.020 0.030 0.040 0.050
Accuracy 83.16 86.86 86.20 85.81 85.12 83.50

α3 0.02 0.05 0.100 0.200 0.300 0.500
Accuracy 85.52 86.86 85.86 85.12 84.42 80.47

(a)
(β1,β2) (0.0, 0.00) (0.5,0.10) (1.0,0.15) (1.5,0.20) (2.0,0.30)

Accuracy 86.86 86.86 86.86 86.86 80.47
(b)

TABLE 1: The influence of α1, α2, α3 and (β1,β2) on the
MSR-Action3D dataset.

setting in Sec. 5.3. We first show the performance with one
term turned off, then with two terms, and finally with all the
three terms turned off. It can be seen that the performance
drops when removing more terms, indicating that each term
does play a role in positively influencing SBM, and all terms
together yield the promising performance of SBM.

Parameters
α1 α2 α3 Accuracy
0 0.01 0.05 80.80

0.01 0 0.05 79.12
0.01 0.01 0 75.08
0.01 0 0 72.05

0 0.01 0 74.41
0 0 0.05 73.74
0 0 0 72.05
Complete Model 86.86

TABLE 2: The influences of the terms in SBM.

6 CONCLUSION

In this paper, we propose a novel unsupervised sequence
matching approach, named Seqlet-Based Matching (SBM).
In contrast to conventional frame-to-frame matching meth-
ods, ours computes the correspondences between groups
of homogeneous frames, which we name as seqlets. Our
method looks at a longer and dynamic temporal range of
frames for matching and thus helps to remove the ambigui-
ties of frame-based associations. The optimal sets of seqlets
and matching are learned jointly, without any supervision
from human users. We compare SBM with state-of-the-art
sequence matching approaches in different domains includ-
ing human actions, facial expressions, speech, and character
strokes, and show that SBM yields superior results.
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