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Abstract- This paper reports an algorithm for the automatic identification of the beginning of the chain of events 

leading to a disruption, evaluating the so-called reference warning time. This is the time that separates the plasma 

current flat top of each disrupted discharge in two parts: a non-disrupted part and a pre-disrupted one. The 

algorithm is based on a statistical analysis of a set of dimensionless plasma parameters computed for a set of 

discharges selected from the JET experimental campaigns. In every data-driven or machine learning model, such 

as the GTM (Generative Topographic Mapping) predictor proposed in this paper, it is indeed necessary to label 

the samples needed for training the model itself. The samples needed to describe the disruption free behavior are 

extracted from the plasma current flat top phase of the regularly terminated discharges. Whereas, to describe the 

disrupted space, a proper selection of the pre-disruptive phase of each disruptive discharge plays a key role on the 

prediction performance of the model. Moreover, as well known, such models, which are highly dependent on the 

training input space, may be particularly prone to degradation; hence, a regular schedule of model review and 

retrain must be planned. The proposed algorithm avoids the cumbersome and time-consuming manual 

identification of the warning times, allowing, where appropriate, to implement a continuous learning system that 

can be completely automated. In this paper, the automatically evaluated warning times are compared with those 

obtained with a manual analysis in terms of the impact on the mapping of the JET input parameter space using 

the GTM methodology. Moreover, the algorithm has been used to build the GTM of recent experimental 

campaigns, with promising results. 

1.  Introduction 

Up to now, there are not self-consistent and general physical models available to reliably identify and predict 

the disruptions, whereas machine learning and data-driven approaches proved to be very useful tools for 

disruption prediction [1-9] and classification [10-12]. However, these algorithms require a certain number of 

regularly terminated and disrupted input discharges to learn how to predict disruptions and, more importantly, 

for each disrupted discharge, they require to identify the pre-disrupted phase to describe the disrupted input 

space of the model [13]. The size of the training set may depend on the complexity of the algorithm; even 

predictors developed to learn almost from scratch [5] may require tens of disruptive shots to perform well. 

Considering that ITER will not sustain more than a few major disruptions [13] at full performance, the 

disruptive data will be basically obtained through simulations [14], with low-performance discharges or from 

the lower-size tokamaks [15]. Nowadays, due to the availability of more powerful computing resources, Deep 

Learning (DL) algorithms were used [15-16], with very promising results towards a cross-machine predictor. 

For instance, in [15], authors tried to generalize the algorithm performance from DIII-D to JET in the ITER 

like Wall configurations. They trained their model, composed by elements from Convolutional Neural 

Network and Recurrent Neural Networks, on DIII-D, using 1-D profiles, then tried to generalize the 

performance on JET. The best results, however, have been reached using “glimpses” of data, which are 

basically samples from the JET’s training set. 

Despite the quite good results obtained with such black-box approaches, it would be beneficial to be able to 

use the prediction models also to understand the physical mechanisms which cause the discharge to disrupt. 



The identification of the chain of events leading to a disruption will allow the implementation of specific 

control schemes to counteract the disruptive mechanism, the synthesis of features able to better detect the 

beginning of this destabilizing chain of events [13, 17], and, together with the use of standardized or 

nondimensional parameters as inputs to the model, will allow the possibility of extending the analysis in a 

cross-machine framework, helping to define scaling laws or standard parameters for the detection. Several 

papers [13, 17, 18] had shown an increase in the algorithms' performances and the results interpretability if the 

training set contains information related to the events which describe the disruptive behavior. Signals or 

diagnostics properly describing the physics of the disruption process improved the performance of several 

black-box approaches, such as ones based on Deep Learning (DL) [15, 16]. Another crucial step to a better 

understanding of the disruptive mechanisms is the standardization of all the reference times usually considered 

for the prediction. In [19] the authors made a strong effort towards the standardization in this field, developing 

a tool for the automatic definition of important times and parameters of the disruptions, such as thermal quench 

and the current quench times, the time of disruption (tD) and the Mode Lock time (tLM), which is the time where 

the locked mode amplitude starts to rise [19]. In the same direction, in [13, 17] the authors manually identify 

the so-called reference warning time of a disruption, which provides a reference time to separate the plasma 

current flat top of each disrupted discharge in two parts: a non-disrupted part and a pre-disrupted part. This 

second part is defined as the phase where the chain of events leading the disruption takes place. The 

introduction of consistent reference warning times (Ti) is doubly beneficial. Firstly, the warning times allow 

to identify the pre-disruptive phase, which is used to describe the disrupted input space of the model. In most 

of the literature, this pre-disruptive phase was statistically or heuristically identified and assumed equal for all 

the disruptions in the data base, introducing contradictory information in the prediction model. Secondly, being 

the warning time strongly linked to the onset of destabilizing phenomena, the predictor response should be 

connected to phenomenology or precursors that characterize the various types of disruptions. 

Moreover, as the goal of the disruption prediction is moving nowadays from disruption mitigation to disruption 

avoidance, this would be only possible if the predictor provides its response in a suitable time prior the 

disruption depending on the characteristics times of the disruption precursor mechanisms and on the machine, 

and if it allows distinguishing among the different type of destabilizing chain of events. The key of a successful 

prediction model is therefore the capability, for each disrupted discharge in the training set, to discriminate 

among the non-disrupted and pre-disruptive phases following standard and coherent criteria, linked to the 

observed physical mechanisms. However, this classification requires a very time-consuming manual analysis 

[13,17]; hence, adopting it to classify tens of thousands of shots would be highly impractical. Therefore, in 

this work, an algorithm for the automatic identification of the reference warning times has been developed, 

based on a statistical approach. It makes use of similarity measures between distributions to quantify how 

much a disruptive pulse is becoming dissimilar from a typical regularly terminated discharge during its time 

evolution. The dissimilarity is evaluated for several plasma parameters and then an optimal weighted sum is 

assumed as overall dissimilarity. An optimal criterium has been introduced to automatically choose, for each 

discharge, the reference warning time over this total dissimilarity measure.  

Note that, both in the manual and in the automatic case, we assume to be able to estimate (or, better, 

approximate) these reference warning times by analyzing several disruption precursors. In this paper, the 

algorithm is based on the statistical analysis of the plasma parameters selected from the JET experimental 

campaigns performed from 2011 to 2013, and provides, for each disrupted discharge, the reference warning 

time (Ti-AUT); these times have been compared with the ones (Ti-MAN) manually computed [13,17] and 

extensively applied to the prediction [13, 18] and classification [17] of disruptions. The comparison has been 

performed in terms of performance of a prediction model based on Generative Topographic Map (GTM), 

which has been adopted as one of the event detectors in the PETRA system (Plasma Event TRiggering and 

Alarms) at JET. In particular, the performance of the GTMs as disruption predictor, built using both the manual 

and the automatic warning times, have been compared on the same test set selected within the same 

experimental campaigns. Moreover, besides the very good results of that comparison, the proposed algorithm 



has been applied to more recent campaigns at JET and the performance of the updated GTM model confirms 

the suitability of the algorithm. 

This paper is organized as follows: Section 2 discusses the considered problem and background on diagnostics 

and features used as inputs to the proposed algorithm. Section 3 details the data base used to assess and 

optimize the algorithm and to validate it. Section 4 reports a detailed description of the proposed algorithm, 

whereas in Section 5 the algorithm is validated referring to Generative Topographic Mapping of JET. Finally, 

conclusions and future development are provided in Section 6. 

2.  Background 

In [13] a set of dimensionless, machine-independent, physics-based features have been synthesized, which 

make use of 1-D plasma profile information. These features have been used as inputs to a GTM prediction 

model obtaining a 2D map of the multi-dimensional parameter space of JET, where it is possible to well 

identify a boundary separating the region free from disruption from the disruptive region. The GTM map has 

been used for disruption prediction projecting the discharge on the map and triggering an alarm depending on 

the disruption risk associated to its different regions. 

Beside the choice of proper features as input to the model, another key factor to obtain high performance, 

regardless the prediction model, is a proper selection of the start of the chain of events leading to the disruption. 

However, the determination of the sequence of events between the root cause and the final disruption is not so 

straightforward. Many researchers made efforts to analyze and classify manually the different chain of events 

which lead to disruptions, for different machines. For instance, [20] reports a summary of the statistical 

occurrence and the respective dependence of the events for 275 unintentional disruptions at JET during the 

period 2011 to 2012, after the installation of the ITER-Like Wall. In [13,17] the reconstruction of the chain of 

events was a key step and allowed a coherent manual identification of the warning times (Ti-MAN), which 

separate the non-disrupted part of a disrupted discharge from the pre-disruptive evolution of the same 

discharge. The identification of such warning time was based on manual analysis of physics mechanisms and 

chain of events leading to disruptions. Figure 1 shows the different phases of a regular terminated (green) and 

a disrupted (red) discharge. The split of the disrupted discharge into two well-defined phases dramatically 

improved the performance of the GTM predictor [13], as the input information is coherently labelled and 

unambiguous. Moreover, this warning time is a term of comparison for whatever disruption prediction 

algorithm: in other words, the alarm time provided by a predictor should not anticipate the beginning of the 

pre-disruptive evolution of the discharge. 

 
Figure 1. The plasma current evolution for a regularly terminated (#81852, in green) and a disrupted (#81916, in red) 

pulse. The flat-top of the disrupted shot is split in two: the non-disruptive phase, before the reference warning time (Ti) 



and the pre-disruptive one, after Ti. T0 is the starting time of the flat-top phase, whereas TF and tD (disruption time) are the 

flat-top phase ending times for a regular termination and a disruptive pulse, respectively.  

2.1.  Diagnostics and feature engineering 

The main purpose of the present paper is to present an algorithm for the automatic detection of the warning 

times using a limited set of diagnostic signals containing information on the spatial distributions of some 

relevant plasma properties, such as the Electron Temperature, the Electron Density and the Plasma Radiation. 

Moreover, the 0-D time series of the fraction of radiated power and the internal inductance have been used. In 

the following, the considered plasma parameters are explained in more detail together with the performed 

feature engineering, which is crucial to provide the algorithm with a set of inputs capable of separating the 

non-disrupted and pre-disruptive plasma behaviors. Another aim of the feature selection is the deletion of 

irrelevant or redundant information. 

The profiles represent the time evolution of fundamental plasma quantities such as the electron temperature, 

the electron density and the radiation. In [17] these 1-D profiles have been processed to synthesize physics-

based indicators called “peaking factors” (PFs), which have been used as input features of a GTM based 

disruption predictor [13]. The peaking factors demonstrated very useful to discriminate between a non-

disruptive plasma state and a disruptive one. To compute the peaking factor of the electron temperature profile, 

either the ECE (Electron Cyclotron Emission) or the High-Resolution Thomson Scattering (HRTS) diagnostics 

can be used. The temperature peaking factors (Tepf) based on the ECE diagnostic, in a not negligible number 

of cases, were found to be affected by the cut-off of several channels [21]. The effect was sometimes marginal, 

other times was heavily compromising the calculation of the peaking factor itself. This is the reason why the 

analysis of this work computes the peaking factors using only the HRTS profiles although the HRTS has a 

lower time resolution than the ECE. The HRTS diagnostic provides 63 data points with a repetition rate of 20 

light pulses per second (20Hz). The spatial resolution of the measurements for the core region and the pedestal 

is respectively of 1.6 cm and 1 cm. The peaking factors, for both density and temperature, have been 

considered as features defined with a “core versus all” metric; they are computed as the ratio between the mean 

value of the considered radial profile (temperature, radiation, density) around the magnetic axis and the mean 

value of the measurements over the entire radius. The radial interval to define the “core” with respect to the 

magnetic axis is the 25% of the radial coordinate (the minor radius for poloidal mid-plane measurements) in 

the case of electron temperature (Tepf) and density (Nepf) peaking factors.  

Regarding the radiated power, in [17] the same authors computed the peaking factors using the main-vessel 

bolometric camera with a horizontal view of the plasma cross-section (Bolo H). The camera collects the 

radiation along 24 channels, 8 of which cross the divertor region and the region adjacent to the divertor with 

8 cm separation between the channels’ axes. The other 16 channels cover the entire plasma. A simple pinhole 

structure is used to define the lines-of-sight of the camera [22]. Two different peaking factors have been derived 

splitting the information carried out by the global poloidal radiation distribution. We firstly define the core as 

4 channels of the Bolometer, from 13rd to 16th, and the divertor as 8 channels, from 1st to 8th. Then, we 

compute the two peaking factors, the Radpf_CVA and the Radpf_XDIV: the first one is the ratio between the average 

radiation in the core, and the average radiation in the entire plasma excluding the divertor area. The Radpf_XDIV 

is instead computed as the ratio between the average radiation in the divertor and the average radiation in entire 

plasma excluding the area of core (20 channels). These peaking factors describe the two main mechanisms 

involving a radiation collapse: the accumulation of high-Z impurities in the plasma core as opposed to edge-

radiative collapse. As analyzed in [19], the main events destabilizing a discharge are quite different, as well as 

the time scales of the corresponding chain of events. Nevertheless, the two destabilizing factors are not 

mutually exclusive; despite developing on different time scales, there are cases where both are simultaneously 

affecting the discharge. In general, even though in many cases it is possible to find clear examples of a well-

defined chain of events corresponding to a specific disruption type, in other cases there is an interplay of more 

than one mechanism destabilizing the discharge. Hence, the synthesis of more detailed and targeted indicators 



goes in the direction of a more accurate and flexible avoidance and prediction system. Finally, this split allows, 

in a sense, a decoupling of the two behaviors, improving the resolution of each of them. 

Within the profile indicators also the internal inductance Li has been considered as representative of the current 

density profile. 

In addition, a further dimensionless parameter has been considered, i.e., the fraction of radiated power divided 

by the total input power (PFRAC), which is a well-known indicator of the power balance. 

For the considered discharges, the signals have been uniformly sampled with a time step of 2ms, then they 

were processed with a casual median filter of 40 ms width. 

3.  Data Base 

To build the data base, both disrupted and regular terminated discharges have been selected from experimental 

campaign performed at JET from 2011 to 2016, after the installation of the ITER-Like Wall. Only the 

discharges where all the signals, needed to compute the features described in the previous subsection, were 

available and consistent have been selected. Moreover, the discharges caused by a Vertical Displacement 

Event, the ones terminated by massive gas injection and those in limiter configuration were excluded. In the 

present work, the analysis of the pulses refers to the flat-top phase; the ramp-up and the ramp-down have not 

been considered.  

The data base includes two sets; the first set contains 132 disrupted and 115 regularly terminated discharges 

within the ITER Like Wall (ILW) experimental campaigns performed at JET from 2011 to 2013 and already 

considered in [13], for which the warning times were manually identified (Ti-MAN). In the following we refer to 

it as C28-C30 data set. This first set has been used to perform the statistical analysis and to assess and optimize 

our algorithm. In order to test the generalization capability of the algorithm, a second data set has been selected, 

which includes 29 disrupted and 41 regularly terminated pulses within the more recent (2016) campaigns both 

in baseline and hybrid scenarios (we refer to this second set as C36 data set). In this case, the suitability of the 

algorithm to correctly identify the pre-disruptive phase of the disrupted discharges has been evaluated in terms 

of the composition of the GTM that maps the more recent input space, i.e., in terms of its capability to 

discriminate between disrupted and non-disrupted regions. 

Note that, the limited number of pulses in the C36 data set satisfying the previously described requirements is 

due to the increased number of mitigated disruption by MGI.  

In order to have a look of the operational scenarios between the two datasets, Figure 2 compares the distribution 

of their main plasma parameters for the regularly terminated discharges: plasma current, Ip, toroidal field, BT, 

normalized beta, N, total input power, line integrated density, edge safety factor q95. It can be seen that they 

occupy roughly the same ranges of values but with slightly different distributions. 



 

Figure 2. Probability density functions of the main parameters of the regularly terminated discharges in C28-C30 (blue) 

versus those in C36 (green) data sets for (from top left to bottom right): plasma current, toroidal field, normalized beta, 

total input power, line integrated density and edge safety factor q95. 

Table 1 reports the nondimensional plasma parameters considered to develop the proposed algorithm for the 

automatic identification of the warning times Ti-AUT, which are the same used to develop the GTM prediction 

model. The last column of the table reports the weights assigned to the parameters as a result of the algorithm 

optimization, which will be detailed in the following. Literature [13, 17] proved that the selected features 

discriminate well between regularly terminated and disrupted pulses.  

Table 1. Plasma parameters: parameter names, Acronyms, optimized weights.  

Parameter name  Acronym Weight 

Peaking Factor of Temperature Tepf 1 

Peaking Factor of Electron Density Nepf 1 

Peaking Factor of the Radiation (excluding the contribution of the X-point/divertor 

region)  

Radpf_CVA 0.8 

Peaking Factor of the Radiation (excluding the contribution of the core region) Radpf_XDIV 0.5 

Internal Inductance Li 1 

Fraction of the Radiated Power PFRAC 0.7 

Figures 3 and 4 report these features for the regularly terminated discharge # 83747 and the disrupted discharge 

#81916 respectively. The disrupted discharge is a high-Z impurity accumulation (or Radiation Peaking RPK) 

disruption [12, 23] with warning time Ti-MAN manually set at 50.07 (highlighted with a red vertical line in Figure 

4).  



 
Figure 3. The input features for the algorithm for the JET regularly terminated discharge #83747: a) the peaking factors 

of the temperature (Tepf, in blue) and density (Nepf, in green); b) the radiation peaking factors with the metric “Core Vs 

All” (Radpf_CVA, in blue), which excludes the divertor, and with metric “Edge Vs All” (Radpf_XDIV, in green), which excludes 

the core, and the Power Fraction (PFRAC, in black); c) the internal inductance (Li, in green). 

 
Figure 4. The input features for the algorithm for the JET disrupted discharge #81916: a) the peaking factors of the 

temperature (Tepf, in blue) and density (Nepf, in green); b) the radiation peaking factors with the metric “Core Vs All” 

(Radpf_CVA, in blue), which excludes the divertor, and with metric “Edge Vs All” (Radpf_XDIV, in green), which excludes 

the core, and the Power Fraction (PFRAC, in black); c) the internal inductance (Li, in green). A vertical red line marks the 

manually detected warning time Ti-MAN. 

It can be noted that, in the regularly terminated discharge the variation range of the signals is generally smaller 

than in the disrupted one; while this remark may be valid in most of the cases, it is not necessarily true for all 

the discharges. Moreover, looking at Figure 4, it can be seen that the peaking factors characterize well the 

typical RPK evolution: the Nepf shows an increase of the density in the plasma core correlated with a 

temperature drop. Moreover, the peaking factor of radiation at the core rises, as well as the overall fraction of 

radiated power, while the internal inductance starts to decrease. This chain of events starts from the penetration 



of high-Z atoms in the core that produces a change in the kinetic and current profiles that eventually leads to a 

destabilization of the MHD equilibrium in the plasma. The proposed algorithm weighs the variations in these 

signals’ distributions to identify the start of the chain of events leading to disruption. This is done by comparing 

the distribution of each signal in the regularly terminated discharges in different time instants with the 

distribution of the same parameter of the single disrupted discharge, as detailed in the next section. 

 

4. Automatic detection of the warning time 

4.1 Statistical analysis 

A univariate statistical analysis has been firstly performed to evaluate the power of each selected feature in 

discriminating between disruptive and non-disruptive behavior. This analysis has been performed on the first 

set of discharges of the data base (C28-C30 data set). Figure 5 reports the probability density functions (pdf) 

of the six parameters in Table 1 for the non-disruptive pulses (blue) versus the non-disrupted phase of the 

disruptive pulses (red). Here, the manual selected warning times have been used to discriminate between the 

non-disrupted and pre-disruptive phases of the disrupted discharges. The results of the analysis, reported in 

Figure 5, refer to phases that can be considered in a non-disrupted condition. It can be observed that there is 

an overlap between the pdf of the parameters of non-disrupted discharges and the non-disrupted phase of 

disrupted ones. Figure 6 reports the pdf of the parameters of the non-disruptive pulses (blue) versus the pre-

disruptive phase of the disrupted pulses (red) for the same parameters in Figure 5. Looking at Figure 6, it can 

be seen that the parameters distribute differently during the unstable phase (i.e., after the warning time Ti-MAN) 

with a wider range of parameter values. Moreover, the pdfs of the pre-disruptive phases of the disrupted 

discharges shift with respect to the stable phases. The orange arrows in Figure 6 highlight the shifts.  

Summarizing, during the non-disrupted phase of the disrupted discharges the distribution of the parameters is 

very similar to the distribution of the regularly terminated discharges, while during the pre-disruptive phase, 

the values are distributed quite differently.  

The main idea of the proposed algorithm is to introduce distance/similarity measures between these probability 

density functions when the reference warning time varies, in order to automatically identify the moment when 

a disrupted discharge starts its pre-disruptive evolution. For instance, Figure 7 compares the distribution of the 

temperature peaking factor of the non-disrupted pulses (blue) in the database with the pdf of a window of 

500 ms, centered at different time instants, of the disruptive discharge #81916. From a) to d) the time instant 

is getting closer and closer to the time of disruption, where in c) the time instant is the closest to the manually 

selected warning time (Ti-MAN) (about 50.07s) [13]. The time evolution in Figure 7 clearly shows that, 

approaching to the actual warning time, the overlap of the two distributions reduced. 

 



 
Figure 5. C28-C30 data set: Probability density functions of the parameters of the regularly terminated pulses (blue) 

versus the non-disrupted phase of the disrupted pulses (red) for (from top left to bottom right): electron temperature 

peaking factor, electron density peaking factor, internal inductance, radiation at the core peaking factor, radiation at the 

edge peaking factor, fraction of radiated power.  

 

Figure 6. C28-C30 data set: Probability density functions of the parameters of the regularly terminated pulses (blue) 

versus the pre-disruptive phase of the disrupted pulses (red) for (from top left to bottom right): electron temperature 

peaking factor, electron density peaking factor, internal inductance, radiation at the core peaking factor, radiation at the 

edge peaking factor, fraction of radiated power. The shift of the distributions is marked with an orange arrow. 

 



 

Figure 7. Probability density functions of the temperature peaking factor (Tepf) of the regularly terminated pulses (blue) 

in the C28-C30 data set versus the pdf of a 500 ms window, centered at different time instants (indicated on each subplot), 

of the disruptive discharge #81916. From a) to d) the time instant is getting closer and closer to the time of disruption, 

where in c) the time instant is the closest to the manually selected warning time (Ti-MAN) [13]. 

4.2 The algorithm 

As discussed in [13,17], the selection of the warning time Ti-MAN required a tedious and time-consuming 

analysis of several events and parameters, additional to the ones used as inputs for the proposed algorithm, and 

not necessarily available in real time. In this paper, a Warning Time Indicator (WTI) has been built that can be 

used to automatically detect the warning time in the disrupted discharges. 

As previously mentioned, the algorithm is based on the comparison of the distributions of the selected plasma 

parameters in the regularly terminated and in the disrupted discharges. In particular, it is assumed that, before 

the onset of the chain of events leading to disruption (before the actual warning time Ti), the distributions of 

the parameters in the disruptive discharges  are close to those of the regularly terminated ones, whereas they 

become more and more dissimilar while approaching the disruption time. Hence, for each plasma feature in 

Table 1, the distribution of the regularly terminated pulses (SAFE_distr) has been considered as the reference 

distribution. Then, for each discharge and for each time instant t, the algorithm scans every parameter from the 

beginning to the end of the flat-top, identifying two different distributions:  

− LEFTpart_distr: the distribution before t 

− RIGHTpart_distr: the distribution after t  

and computes the distance/similarity between these two distributions to the SAFE_distr.  

Note that, for time instants at the beginning (at the end) of the flat-top, a very small number of samples is 

available for the LEFTpart_distr (RIGHTpart_distr). This creates a border effect at the beginning (at the end), 

which has been partly compensated by padding the first 125 ms of the initial and final part of each signal. The 

padding has been done by simply replicating the respective part of the signal, so that at the beginning of the 

flat-top and at its end, the distributions could be represented by more values. 

In order to evaluate the distance/similarity, several metrics have been considered [24], based both on the 

computation of misclassification probability, such as Bhattacharya, Hellinger, Kullback-Leigler Divergence 



and Matusita and on the computation of the distribution similarities, such as those belonging to the inner 

product family. Among all the tested metrics, in this paper, the final choice was the Cosine similarity metric, 

which basically implements the normalized inner product: 

𝑠𝐶𝑜𝑠 =
∑ 𝑃𝑖𝑄𝑖

𝐵
𝑖=1

√∑ 𝑃𝑖
2𝐵

𝑖=1 √∑ 𝑄𝑖
2𝐵

𝑖=1

 

where, P and Q are the two probability density functions, each composed by the same number B of bins.  

This metric is itself normalized between 0 and 1 and allows to add the measures referred to different parameters 

without rescaling them regardless of their range of variation. 

Hence, two similarity measures have been evaluated for each parameter: the similarity of the left part of the 

discharge with the disruption-free input space (LEFTpart_simil) and the similarity of the right part of the 

discharge again with the same disruption-free input space (RIGHTpart_simil). For a disrupted discharge, when 

approaching the actual warning time Ti, it is expected that the right part distribution has similarity value close 

to 0, and the left part has similarity value close to 1. In fact, in such a case, in the left part the discharge is still 

in the non-disrupted phase, whereas in the right part it already shows a disruptive behavior. 

These similarity measures are normalized with respect to the similarity of the whole flat-top phase 

(Total_simil), then the values are truncated  to 1; this adjustment makes the algorithm work for the shots where 

the signal range is very different from the non disruptive one, even during the non-disrupted phase.  

Subsequently, the normalized left part similarity is subtracted from the normalized right part similarity and the 

negative values are truncated to 0.  

Then, the standard deviation of each plasma parameter is computed in a sliding window of 500 ms width, when 

the flat-top phase lasts more than 500ms, otherwise it is set equal to half flat-top length. Since the parameters 

may have different ranges, they are normalized between 0 and 1 before computing the standard deviation.  

For each plasma parameter, an indicator is evaluated by weighing its standard deviation with the difference of 

the similarities. Hence, the parameter variations which do not produce a destabilization of the discharge are 

neglected.  

Figure 8 shows, as an example, the construction of the indicator for the Radpf_CVA signal of the pulse #81916. 

Figure 8a) reports the signal Radpf_CVA (blue) and the same signal padded at the beginning and at the end (red 

dashed line) to avoid border effects processing the signal. Figure 8b) reports the normalized left part similarity 

(in blue), the normalized right part similarity (in red), and the difference between the blue and red signals (in 

yellow), where negative values are truncated to 0. Figure 8c) reports the Radpf_CVA standard deviation computed 

in the sliding window (red) and the Radpf_CVA indicator (in blue), computed as a time by time product between 

the yellow signal in Figure 8b) and the standard deviation.  

 



Figure 8. Construction of the indicator for the parameter Radpf_CVA, of the disrupted shot #81916: a) Radpf_CVA (blue), and 

Radpf_CVA padded at the beginning and at the end (red dashed); b) normalized LEFTpart_simil (blue), normalized 

RIGHTpart_simil (red), and their difference (yellow), where negative values are truncated to 0; c) standard deviation 

computed in a sliding window of variable length, adjusted depending on the signal length (maximum value is 0.5s) (red) 

and the indicator (blue). 

It can be noted that, at around 48 s, the original signal varies and produces some peaks in the windowed 

standard deviation; these variations of the signal, on the other hand, are not moving the signal distribution 

outside the non disruptive disruption one: this determines a low value of the similarity difference and hence a 

low value of the indicator for the Radpf_CVA. This is not true for the following variation at around 50s, which is 

the time when there is the beginning of the chain of event leading to the disruption. The indicator highlights 

the points where there is both a variation from the disruption-free input space and a variation in the signal 

trend. This is the reason why, in Figures 8c, the indicator grows at around 50.3 s and then drops afterwards, 

due to the drop of the standard deviation. 

Finally, an overall indicator (Warning Time Indicator or WTI) is evaluated as the weighted sum of the single 

plasma parameter indicators. To set the parameter weights an optimization procedure has been performed, as 

described in the next subsection. Table 1 (last column) shows the finally adopted weights.  

Figure 9 shows the WTI for the regularly terminated discharge #83747(a) and for the disrupted discharge 

#81916 (b), already considered in Figure 3 and Figure 4. Note the different range of variation. 

 
Figure 9. Overall Indicator: a) regularly terminated pulse #83437; b) for the disrupted pulse #81916.  

Figure 10 reports the pseudo-code of the algorithm to construct the WTI. 



 

Figure 10. Pseudo-code for the WTI  

4.2.1 Automatic identification of the warning time Ti-AUT 

As expected, the ranges of variation of the WTI are very different among the regularly terminated and the 

disrupted pulses. Moreover, looking at Figure 9b, it can be noted that the WTI highlights the moment when the 

features are varying, so that a threshold can be used to identify the onset of the chain of events leading to 

disruption.  

Figure 11 shows the distribution of the values of the WTI for the regularly terminated pulses in the C28-C30 

data set where the value 0.3 corresponds to the 99th percentile. Using this value as a threshold on the WTI, a 

warning time of 50.02 s is obtained (magenta star in Figure 9b). Other criteria have been taken into 

consideration to detect the warning time, such as the time corresponding to the first local maximum of the WTI 

greater than 0.3 (red star in Figure 9b), or the mean between the previous two. 

 

 
Figure 11. Probability density function of the WTI values for the regularly terminated pulses in the C28-C30 data set. 



The best criterion is the mean between the time detected using the threshold equal to 0.3, with an assertion 

time of 10 samples (20 ms), and the time of the first peak of the WTI greater than 0.3. It has been chosen in 

order to maximize the degree of separability of disrupted and non-disrupted regions in the GTM map.  

Moreover, in order to consider disruptive processes characterized by fast time scales, which cannot be 

identified through the proposed statistical method, the mode locking occurrence has been also considered. Note 

that, algorithms based on the Mode-Locking (ML) signal already exist and are implemented in the largest 

devices, to trigger an alarm and mitigate the disruption.  

Finally, the warning time has been identified as the lower time between the mode locking occurrence and the 

time obtained with the WTI. In this case, the value of the WTI may be greatly lower than the threshold. 

Assuming such criterion on the WTI, the corresponding warning time for the pulse #81916 is 50.075s, which 

is very close to the manually selected warning time Ti-MAN (50.07 s) (see Figure 9 b where this warning time is 

identified by the black star, whereas Ti-MAN corresponds to the vertical red dashed line). Furthermore, no 

warning time is detected for the regularly terminated discharge #81852 (see Figure 9a). 

4.2.2 Optimization of the algorithm parameters 

As previously mentioned, the WTI is obtained as a weighted sum of the indicators of the plasma parameters in 

Table 1. Varying the weights leads to different warning times, and therefore to different GTM maps. Only 

three of the six weights have been optimized, namely the two peaking factors of the radiation and the radiated 

fraction of the total input power, because they are all expression of the plasma radiation, whereas the other 

three weights have been set to the maximum value (equal to one). The optimization strategy consists in 

exhaustively exploring the search space along the three coordinate directions (in this case each coordinate 

corresponds to a weight) and considering as goal of the optimization, again, the maximization of the degree of 

separability of disrupted and non-disrupted regions in the map, which means the minimization of the 

percentage of samples falling in the mixed clusters of the GTM (grey clusters in Figure 12). During the search, 

each weight value has been uniformly varied between 0.1 and 1 with step 0.1. The optimal weights are reported 

in the last column of Table 1, which correspond to the minimal percentage of samples in grey clusters equal to 

21.47%. 

Figure 12 a) shows the GTM (GTMC28-C30-AUT) trained using the warning times Ti-AUT obtained with the optimal 

weights reported in Table 1. The clusters in the map are colored on the basis of the node composition: the 

green clusters contain only samples coming from regularly terminated pulses (safe samples), the red clusters 

contain only samples coming from the pre-disruptive phase of the disrupted discharges (disruptive samples), 

whereas grey mixed clusters contain both safe and disruptive samples. The white clusters are empty. Figure 

12b) reports the GTM trained using the manually identified warning times Ti-MAN (GTMC28-C30-MAN).  

The six parameters listed in Table 1 have been used to train both the GTMs. For the sake of comparison, the 

GTM hyperparameters, such as the number of latent points (2500), the number of radial basis functions (400) 

and their variance 𝜎 = 0.8, have been assumed equal to the ones used in [13], as well as the training set, which 

contains the same 89 disrupted shots and 70 regular terminations used in this paper. However, unlike in [13], 

in Figure 12a) the pre-disruptive phase of the disrupted discharges has been identified using Ti-AUT instead of 

Ti-MAN. It can be seen that, in both the maps, there is a well-defined separation between the two regions 

representing the disruptive (red) and non-disruptive (green) 2-D input space. Moreover, the shape and the 

compositions of the two maps are quite similar (see Table 2): the percentage of samples falling in the mixed 

grey clusters differs by about 3% and the percentage of white clusters differs less than about 1%. Hence, it is 

expected that the two maps have quite similar performance when used as disruption predictors, as it will be 

shown in the next section.  



 

Figure 12. a) GTMC28-C30-AUT of the 6 plasma dimensionless parameters obtained using Ti-AUT to determine the pre-

disruptive samples; b) GTMC28-C30-MAN of the same parameters obtained using Ti-MAN. The maps are colored on the basis 

of the node composition: the green clusters contain only samples coming from regularly terminated pulses, the red clusters 

contain only samples coming from the pre-disruptive phase of the disrupted discharges, whereas grey mixed clusters 

contain both non-disruptive and disruptive samples. The white clusters are empty. 

Table 2. GTMs composition (using Ti-AUT and Ti-MAN) 

GTM 

% safe samples 

belonging to safe 

(green) clusters  

% disr. samples 

belonging to disr. 

(red) clusters 

% samples in the 

grey clusters 

% empty 

clusters 

GTMC28-C30-AUT 75.25 81.51 21.47 4.92 

GTMC28-C30-MAN 79.17 84.74 18.12 5.52 

5. Algorithm validation and results 

Figure 13 reports the cumulative warning time, that is the difference between disruption time and the reference 

warning time Ti-MAN (in black) and Ti-AUT (in magenta). As can be noted, they follow quite the same trend 

confirming the validity of the proposed algorithm. Note that, in the construction of the algorithm, the warning 

times Ti-MAN have not been used. They were considered only as benchmarks values to evaluate the performance 

of the algorithm. 

The same Figure 13 reports the cumulative alarm time provided by the two GTMs in Figure 12 when used as 

disruption predictors on the entire C28-C30 data set adopting the same multiple condition alarm scheme in 

[13], shown in Figure 14. The cumulative alarm time distribution reports the fraction of the shots that has an 

alarm time larger than a selected value. In particular, Figure 13 reports, in blue, the cumulative alarm time 

provided by the GTM trained with the manually detected warning times Ti-MAN and, in orange (dashed), the 

alarms obtained using Ti-AUT. The cumulative alarm times are almost overlapping with comparable prediction 

performance: the GTM trained with Ti-AUT presents one missed alarm (0.7%), one tardy detection (a detection 

is considered tardy if the warning time is less than 10 ms), and 3 false alarms (2.6%) on the entire dataset, 

whereas the GTM trained with Ti-MAN  has one missed alarm, one tardy detection and 6 false alarms (6%) on 

the same dataset. Note that, the slight differences with the results in [13] are due to a slightly different definition 

of the peaking factors and a different choice of the parameters in the alarm scheme. 

Figure 13 reports also the cumulative Locked Mode time, evaluated as the difference between disruption time 

and Locked mode onset time (in green). Note that, the alarm time is well in advance with respect to the time 

needed by the disruption mitigation valve (DMV, highlighted with a red vertical dashed line in Figure 13) to 



intervene, with more than 55% of the discharges predicted more than 1 second before the disruption time. 

Furthermore, very often, the proposed predictor is able to activate an alarm well in advance with respect to the 

Locked Mode trigger. 

 

Figure 13. Cumulative warning time distributions for all the disrupted discharges in the training and test set of C28-C30 

data set (the red vertical dashed line points out the DMV time, which allows to identify tardy detections). 

 

Figure 14. Multiple condition alarm scheme of the disruption predictor [13]. DS is the percentage of disrupted samples 

in the cluster where the discharge trajectory stays for at least 𝑑 consecutive milliseconds (𝑑 is the assertion time). T0 is 

the starting point of the flat-top. 

The generalization capability of GTMC28-C30-AUT as disruption predictor has been evaluated on the C36 data set 

by projecting the 29 disrupted and 41 regular terminated discharges on the map. As expected, the prediction 

performance deteriorates with about 86% correct disruption predictions (1 missed alarm and 2 tardy detections) 

and 12% false alarms. Note that, 3 of the 5 false alarms are triggered by an abnormal increase of PFRAC due to 

interruption of the additional heating system and could be avoided by inhibiting GTM response when this 

event occurs. On the other hand, we did not observe any premature detection of disrupted discharges generated 

by this issue. For the two tardy detections, it is observed a very late locked mode as disruption cause.  
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The deterioration is commonly observed in whatever data-based model, and so in the present case, due to the 

variation of the GTM input parameters in the more recent campaigns. Figure 15 reports the probability density 

functions of the input plasma parameters of the regularly terminated discharges in C28-C30 (blue) versus those 

in C36 (green) data sets. From Figure 15 it can be seen that, even if the ranges of variation of the 6 considered 

input parameters are not so different, their distributions are quite different, especially for what concern the 

peaking factor of the radiation at the divertor (Radpf_XDIV). Hence the need to regularly update the GTM model, 

when the 6-D input parameter space changes. To automatize the update, the automatic identification of the 

reference warning time Ti is mandatory.  

 

Figure 15. Probability density functions of the parameters of the regularly terminated discharges in C28-C30 (blue) versus 

those in C36 (green) data sets for (from top left to bottom right): electron temperature peaking factor, electron density 

peaking factor, internal inductance, radiation at the core peaking factor, radiation at the edge peaking factor, fraction of 

radiated power. 

To this purpose, the warning times can be evaluated using the proposed algorithm avoiding the complex and 

time-consuming manual analysis.  

To confirm the robustness of the algorithm for automatically determining the warning times, a statistical 

analysis of the selected plasma parameters has been performed on the discharges in the C36 dataset. Figure 16 

reports the pdf of the selected parameters for the regularly terminated pulses (blue) versus the non-disrupted 

phase of the disruptive pulses (red), whereas Figure 17 reports the pdf of non-disruptive pulses (blue) versus 

the pre-disruptive phase of the disrupted pulses (red). Looking at Figure 17, it can be seen that, similarly to 

what observed in Figure 6, the pdfs of the pre-disruptive phases of the disrupted discharges shift with respect 

to the non-disrupted phases. The orange arrows in Figure 17 highlight the shifts. Hence, the previously 

proposed algorithm has been used to evaluate the warning times, Ti-AUT, in the disrupted discharges of the C36 

dataset. 



 

Figure 16. C36 data set: Probability density functions of the parameters of the regularly terminated pulses (blue) versus 

the non-disrupted phase (selected with the Ti-AUT) of the disruptive pulses (red) for (from top left to bottom right): electron 

temperature peaking factor, electron density peaking factor, internal inductance, radiation at the core peaking factor, 

radiation at the edge peaking factor, fraction of radiated power.  

 

Figure 17. C36 data set: Probability density functions of the parameters of the regularly terminated pulses (blue) versus 

the pre-disruptive phase (selected with the Ti-AUT) of the disrupted pulses (red) for (from top left to bottom right): electron 

temperature peaking factor, electron density peaking factor, internal inductance, radiation at the core peaking factor, 



radiation at the edge peaking factor, fraction of radiated power. The shift of the distributions is marked with an orange 

arrow. 

To validate the obtained Ti-AUT, a new GTM (GTMC36-AUT) has been trained using all the pulses in the C36 data 

set, except two disruptions where the Ti-AUT was not detected by the proposed algorithm.  

Note that, being the GTM an unsupervised algorithm, the data are mapped only exploiting their intrinsic 

properties. The optimal GTM hyperparameters are the following: number of latent points = 1024, number of 

radial basis functions = 784, variance 𝜎 = 1.2.  

A very important measure of the map properties is the Unified distance matrix (U-matrix) [25]. This matrix, a 

standard way of representing the Self-Organizing Maps, visualizes the Euclidean distance among adjacent 

clusters of the map by using different shades of grey. A darker shading between clusters corresponds to a large 

distance in the input space while a lighter shading indicates a proximity. Light regions, therefore, can be 

considered as macro-clusters of input data while dark areas as separators between these macro-clusters. This 

representation allows you to locate macro clusters without having a priori information.  

Figure 18 a) reports the U-matrix representation of the GTM of the C36 dataset where a clear dark boundary 

between two lighter macro-clusters can be identified (highlighted with a black dashed line). Using the 

automatically evaluated warning times, the GTM has been colored on the basis of the node composition and 

shown in Figure 18 b). From Figures 18 a) and 18 b), it can be noted that the boundary in the U-matrix is very 

similar to the boundary between the green (safe) and the red (disrupted) regions. Moreover, the map performs 

a clear separation of the safe and disrupted regions with very high discrimination capability as reported in 

Table 3.  

 

Figure 18. a) U-matrix of the GTMC36-AUT. Lighter colors indicate smaller distance between clusters, while darker colors 

indicate higher distances. b) GTMC36-AUT obtained coloring the clusters using the automatically evaluated warning times 

Ti-AUT. 

Table 3. GTMC36-AUT composition (using Ti-AUT) 

GTM 

% safe samples 

belonging to safe 

(green) clusters  

% disr. samples 

belonging to disr. 

(red) clusters 

% samples in the 

grey clusters 

% empty 

clusters 

GTMC36-AUT 96.45 86.34 8.06 5.08 

Due to the limited number of discharges in the C36 dataset, it was not possible to build wide independent test 

set for this map. 



As an example, Figure 19 reports the temporal evolution of the disrupted discharge #90346, not used to train 

the GTMC36-AUT: a) red (green) disrupted (non-disrupted) class membership function, which represents the 

percentage of samples of the disrupted and non-disrupted class respectively, in the cluster to which the sample 

is associated, with respect to the total number of samples in the cluster itself; b) trajectory of the discharge on 

the map. The circles depicting the evolution in time of the operating point are colored depending on the 

evolution time. The starting point is green, then the point becomes darker and darker as the discharge is 

approaching to the final point in red; c) Time evolution of the 6 plasma dimensionless parameters, together 

with the plasma current and the locked mode; the GTMC36-AUT alarm is marked with a vertical purple dashed 

line, the blue dashed line marks the mode lock time and the red dashed line marks the disruption time tD. The 

disruptive discharge starts in a non-disruptive cluster, firstly evolving in the non-disrupted (green) region, 

enters the disruptive (red) region, returns in the green region and enters, at the very end, in a disruptive cluster, 

which corresponds to the disruption time. For the considered discharge, the GTM identifies, according to what 

observed during the experimental session, an impurity accumulation pattern well in advance to the disruption 

time and triggers the alarm. Moreover, the trajectory on the map highlights the observed subsequent stable 

phase followed by a very fast disruption due to a mode lock.  

 

Figure 19. Disrupted discharge #90346: a) Membership function of the of non-disrupted (green) and disrupted (red) 

classes; b) Projection on the map; the lighter points correspond to the beginning of the discharge, whereas the darker one 

corresponds to the end, at the disruption time tD; c) Time evolution of the 6 plasma dimensionless parameters, together 



with the plasma current and the locked mode: the GTMC36-AUT alarm, corresponding to an impurity influx, is marked with 

a vertical magenta dashed line, the blue dashed line marks the mode lock time and the red dashed line marks the disruption 

time tD. 

All the presented results confirm the validity of the algorithm proposed for the evaluation of the warning times, 

mandatory for the updating of the model. The strategy to continuous learning the model is all but trivial and is 

out of the scope of the present paper. 

6. Conclusions 

In this paper an algorithm for the automatic identification of the pre-disruptive phase of tokamak discharges 

has been proposed. This work is framed in the complex and broad field of disruption prediction and 

classification; the field addresses the issues related to the integrity preservation of the tokamaks and to the 

better understanding of the physical mechanisms which destabilize the plasma. Presently, a general physical 

model for clearly recognizing disruptive behavior does not exist, and this sometimes produces ambiguity on 

the manual classification task as well. Hence, the interest is not only towards the classification task (as a 

plethora of different models exist, and many of them provide satisfying performance) but also in the properties 

of the parameter space where the relevant disruption physics takes place, its visualization and interpretative 

analysis. The challenge of the understanding of very complex high dimensional spaces led researchers to the 

use of manifold learning techniques such as Self-Organizing Map and Generative Topographic Mapping. 

Especially with the latter, the encouraging results led to the application of the method in a real-time framework. 

On the other hand, these models are trained using manually labelled data, which is necessary for the training 

step. The label identifies the reference warning time, the moment when the final chain of events destabilizes 

the plasma. The use of these times allows the machine learning methods to compare the regular terminated 

discharges with the pre-disruptive phase of the disruptive ones: the use of information inherent to the non-

disrupted evolution would introduce uncertainty in the model. The manual identification of the warning times 

is very time consuming and complicated; it can also be uncertain due to the possible interplay of many different 

mechanisms. In this context, using a set of features, synthetized to detect some of the main known disruption 

precursors in fusion experiments, an algorithm for the automatic identification of the warning times has been 

developed and tested. The algorithm is based on the use of similarity measures between distributions, and it 

weights the contribution of each input feature to construct a Warning Time Indicator. The study of the WTI 

distribution in the regular discharges allows to optimize a coherent threshold value for the identification of the 

warning times.  

The encouraging results led to the use of the automatic warning times as the new inputs of the GTM algorithm, 

in place of the manually detected ones. The shape and the composition of the GTMs trained with the manual 

and the automatic ones were comparable, as well as the data distribution obtained with the mapping and 

univariate analysis of the signals.  

The results obtained with the GTM confirm the efficacy of the method and validate the proposed algorithm. 

The general principle of the algorithm seemed to work quite well, leading to a coherent discrimination of the 

non-disrupted and pre-disruptive phases of discharges, also referring to more recent experimental campaigns.  

The Machine Learning models generally suffer from ageing whether the input parameter space of the machine 

changes, and this is also valid for different experimental campaigns, where the operational scenarios can be 

different. The presented results, together with the map composition, confirms the possibility to complement 

effectively the cumbersome and time-consuming identification of off-normal states in the evolution of 

disruption discharges with the objective of implementing continuous learning in a binary classification scheme. 

Control systems need to be informed about the occurrence of specific events, in order to map an off-normal 

state into a corresponding reaction to avoid a disruption. In this respect, a more detailed analysis is still required 

to characterize how different events chains develop during the pre-disruptive phase. Nevertheless, being able 

to identify an off-normal condition represents decidedly a step forward in this direction.  



Hence, in future works, this tool, together with a set of data analysis and clustering algorithms, could help in 

finding fundamental differences in the input parameters spaces, retraining the models and synthetizing more 

general features or indicators, to limit the performance degradation of the models.  
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