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We investigate optical absorption spectra obtained through time-dependent density functional theory (TD-
DFT) based on nonempirical hybrid functionals that are designed to correctly reproduce the dielectric function.
The comparison with state-of-the-art GW calculations followed by the solution of the Bethe-Salpeter equation
(BSE-GW ) shows close agreement for both the transition energies and the main features of the spectra. We
confront TD-DFT with BSE-GW by focusing on the model dielectric function and the local exchange-correlation
kernel. The present TD-DFT approach achieves the accuracy of BSE-GW at a fraction of the computational cost.
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Semilocal density functionals are notoriously unsuitable
for describing band gaps in semiconductors due to the lack
of a derivative discontinuity [1,2]. Thus, most of the ab initio
methods for optical absorption calculations based on density
functional theory (DFT) have to address two important prob-
lems. First, it is necessary to correct the band gap. Second, the
interaction between electrons and holes has to be taken into
account. The state-of-the-art approach to improve the band
gap is the GW approximation [3–6], whereas the electron-hole
interaction can be included by solving the Bethe-Salpeter
equation (BSE) [7–11]. The combined BSE-GW approach
has been shown to give very accurate results compared to
experiment, but the main drawback is the scaling, which
makes it computationally very challenging for large size
systems.

Gross developed an alternative approach based on the time-
dependent electron density, typically referred to as the time-
dependent density functional theory (TD-DFT) [7,12,13]. In
this approach, the time-dependent Kohn-Sham equations in-
clude a time-dependent exchange-correlation (xc) potential
vxc and its variation with the time-dependent density, also
known as the exchange-correlation kernel fxc. The exact
vxc and fxc are unknown, but several approximations have
been introduced. Local approximations to fxc lack the correct
long-wavelength limit, fxc(q → 0) ∝ 1/q2, responsible for
the correct description of the electron-hole interaction. There-
fore, local approximations are unable to capture excitonic
effects, but can perform well for metallic systems [14–17].
The correct asymptotic behavior is recovered in the so-
called “nanoquanta” kernel [18–20] derived from the BSE to
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capture excitonic effects. Hence this approach produces ac-
curate spectra for solids, but remains computationally as
expensive as solving the BSE.

Hybrid-functional calculations with a nonlocal Fock ex-
change can be used to improve the band gaps. Moreover, since
the long-wavelength limit is accounted for, it can be expected
that these functionals could be used for calculating optical
spectra. Various hybrid functionals have been tested in TD-
DFT and it has been shown that a good performance can be
achieved in molecules [21,22]. However, a good description
in solids requires the consideration of the screening in the
exchange interaction [23,24]. Such a screened interaction was
found to be crucial for the correct description of optical
spectra [23,25].

Several different approximations for the screening of the
nonlocal exchange interaction have been investigated [26–30].
The results suggest that hybrid functionals yield spectra com-
parable to BSE-GW provided the adopted fraction of Fock
exchange accounts for the screening in the long range. In
particular, Wing et al. obtained good results with screened
range-separated hybrid functionals [29]. However, the correct
screening in the short and medium range was not imposed
but rather followed from the empirical setting of the hybrid-
functional parameters in their TD-DFT approach. For in-
stance, their choice of taking 25% of Fock exchange in the
short range does not describe the physically correct behav-
ior of the screening. More importantly, the range separation
parameter was empirically tuned so that the calculated band
gaps matched the GW ones.

Recently, Chen et al. [31] developed a nonempirical
hybrid-functional scheme, in which all the parameters are
taken from the static screening without tuning. The method
showed very accurate electronic structures and band gaps
for a large number of semiconductors and insulators. The
advantage of this approach is that it accurately accounts
for the wave-vector-dependent screening: At short range the
exchange interaction is only weakly screened, whereas in the
long range it is reduced by the static dielectric constant.
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In this Rapid Communication, we investigate the perfor-
mance of hybrid-functional TD-DFT for optical absorption
calculations through a comparison with state-of-the-art BSE-
GW . In the TD-DFT scheme, we employ hybrid functionals
that have been designed to reproduce the correct screening
properties through a self-consistent procedure [31]. We show
that this scheme provides absorption spectra with an accuracy
comparable to that of BSE-GW without tuning parameters.
In particular, we show that equivalent descriptions of the
screening in TD-DFT and BSE-GW result in very similar
absorption spectra.

Following recent work on dielectric-dependent hybrid
functionals (DDH) [31–33], we use in this work the explicit
form of the exchange-correlation potential given by

Vxc(r, r′) = [
1 − (

1 − ε−1
∞

)
erf(μ|r − r′|)]V Fock

x (r, r′)

+ (
1 − ε−1

∞
)
V PBE,LR

x (r; μ)δ(r − r′)

+V PBE
c (r)δ(r − r′), (1)

where μ is the range-separation parameter, and V PBE
x and

V PBE
c are the Perdew-Burke-Ernzerhof (PBE) exchange and

correlation potentials [34]. Here, V Fock
x is the Fock exchange

operator given by

V Fock
x (r, r′) = −e2 1

Nk

∑
nk

ψ∗
nk(r′)ψnk(r)

|r − r′| , (2)

where ψnk are one-electron Bloch states, the sum over k is
over Nk k points of the Brillouin zone, and the sum over n is
over all the occupied bands. In Eq. (1), the Fock exchange in-
teraction in reciprocal space is thus multiplied by the function
[33]

cDDH
x (|q + G|) = 1 − (

1 − ε−1
∞

)
e−|q+G|2/4μ2

. (3)

In the GW approximation, the Coulomb interaction is
screened by the dielectric function which is a frequency-
dependent tensor ε−1

G,G′ (q, ω) [6]. Thus, cDDH
x (|q + G|) in

Eq. (3) corresponds to a model inverse dielectric function
ε−1

model(|q + G|) that neglects the dynamical screening (ω �= 0)
and the off-diagonal elements.

In the approach of Ref. [31], the parameters in Eq. (3) are
determined self-consistently. In the long-wavelength limit, the
interaction is set to 1/(ε∞q2), where the dielectric constant
ε∞ is calculated using the random-phase approximation with
vertex corrections. The parameter μ is obtained by fitting
the model to the calculated dielectric function. In Fig. 1,
the model dielectric functions associated with the DDH are
compared to the diagonal elements of the dielectric matrix at
the � point at zero frequency. The dielectric matrix is obtained
within partially self-consistent GW with vertex corrections
[cf. Supplemental Material (SM) [35]]. In all the cases, we
find the model dielectric function to be in good agreement
with the calculated dielectric function.

The excitation spectra in both BSE and TD-DFT are ob-
tained by solving an eigenvalue problem, referred to as the
Bethe-Salpeter and Casida equation, respectively [7,36],

(
A B
B∗ A∗

)(
X
Y

)
= �

(
1 0
0 −1

)(
X
Y

)
, (4)

FIG. 1. Inverse dielectric functions vs wave vector at the � point
for Si, diamond, SiC, Ar, NaCl, and MgO, as calculated in GW and
given by the model in Eq. (3) with parameters taken from Ref. [31].

where submatrices A and B read

Aai,b j = (εa − εi )δi, jδa,b + 〈ib| K |a j〉 , (5)

Bai,b j = 〈i j| K |ab〉 , (6)

with the indices i, j and a, b referring to occupied and un-
occupied states, respectively. The excitation frequencies of
the system are given by �. X and Y are the two-body
electron-hole eigenstates in the transition basis ψa(r)ψ∗

i (r′)
and ψi(r)ψ∗

a (r′). Matrix A includes two terms, the energy
of the direct transition from occupied to unoccupied states
and the electron-hole interaction described by the kernel
K [37,38]. Equation (4) is non-Hermitian, which makes it
difficult to solve with standard eigenvalue solvers [39,40].
A common practice to avoid this difficulty is to neglect the
coupling between excitations and deexcitations by setting B
to zero. This approximation is known as the Tamm-Dancoff
approximation.

The distinction between BSE-GW and TD-DFT ap-
proaches results, on the one hand, from the origin of the
one-particle eigenfunctions and energies and, on the other
hand, from the type of interaction kernel K . To make the
comparison between different methods more transparent, we
provide in Fig. 2 the Feynman diagrams corresponding to the
various irreducible polarizabilities χ̃ discussed in this work.

In BSE-GW , the orbitals and energies are derived from a
preceding GW calculation and the kernel consists of a Hartree
term V and a screened exchange term W [38],

〈ib| K |a j〉 = 2 〈ib|V |a j〉 − 〈ib|W | ja〉 . (7)

The Hartree term describes the bare Coulomb interaction and
is the same in all the approximations considered here. It
can be included straightforwardly in a two-point formulation

032019-2



ACCURATE OPTICAL SPECTRA THROUGH … PHYSICAL REVIEW RESEARCH 2, 032019(R) (2020)

FIG. 2. Irreducible polarizabilities χ̃ in various approximations.
The reducible polarizability is obtained from χ = χ̃ + χ̃vχ . The
wiggly line indicates the screened interaction W .

involving the polarizability χ . The exchange term, however,
requires calculating four-point integrals, which drastically
increases the complexity of the problem. The screening of
the exchange interaction is determined by the frequency-
dependent dielectric function ε obtained from GW and is rep-
resented by a vertical wiggly line in the diagrams. However,
as shown in Refs. [41–43], the dynamical effects can often be
neglected in BSE calculations.

In the TD-DFT approach, the electron energies and wave
functions are obtained from a semilocal or hybrid-functional
calculation. The interaction kernel consists of three terms, a
Hartree and a screened exchange term W m as in the BSE, and
an additional local exchange-correlation interaction f loc

xc [44],

〈ib| K |a j〉 = 2 〈ib|V |a j〉 − 〈ib|W m | ja〉 + 〈ib| f loc
xc |a j〉 .

(8)

The screening of the exchange interaction in TD-DFT is
described by a constant through W m = cxV (|q + G|) or by
a function through W m = cx(|q + G|)V (|q + G|), depending
on the exchange-correlation functional. In particular, cx = 0
for semilocal DFT functionals. In the case of DDH, the ex-
change interaction is screened by the model inverse dielectric
function cx = cDDH

x (|q + G|) given in Eq. (3) and the local
exchange-correlation interaction f loc

xc is derived from the local
part of the exchange-correlation potential

f loc
xc (r, r′) = δ

{
V PBE

c + (
1 − ε−1

∞
)
V PBE,LR

x

}
δρ(r)

δ(r − r′). (9)

In Fig. 2, f loc
xc is represented by a dotted line connecting χ0

and χ̃ . In this work, we refer to this version of TD-DFT as
TD-DDH.

Next, we focus on the comparison between BSE-GW
and TD-DDH. In both schemes, the absorption spectra are
obtained from the eigenvalue problem in Eq. (4). In partic-
ular, the BSE-GW calculations are based on partially self-
consistent GW using the “nanoquanta” vertex corrections fxc

FIG. 3. Absorption spectra for Si, diamond, SiC, Ar, NaCl, and
MgO calculated with BSE-GW and TD-DDH. Experimentally mea-
sured spectra are taken from Ref. [45] for diamond, from Ref. [46]
for Si, from Ref. [47] for SiC, from Ref. [48] for Ar, from Ref. [49]
for NaCl, and from Ref. [50] for MgO.

in the polarizability χ̃ [51]. These two approaches are tested
on a set of materials possessing a wide range of band gaps.
The corresponding spectra are given in Fig. 3. Our calcula-
tions show that both approaches agree well with experiment
and that TD-DDH reproduces all the spectral features with
the correct oscillator strengths. In the case of diamond, Si, and
SiC, the spectra are nearly on top of each other. For Ar, NaCl,
and MgO, the relative positions of the main features in the
spectra are found to be shifted slightly. In principle, this shift
can result from differences in the band structure and in the
screening. Our analysis indicates that the dominant effect is
due to the energy transition terms in Eq. (5). From Table I, we

TABLE I. Band gaps (in eV) obtained with the semilocal PBE
functional [34], DDH, and GW . The experimental values are aug-
mented by theoretical corrections resulting from the coupling to
phonons.

Si SiC Diamond NaCl Ar MgO

PBE 0.75 1.35 4.14 5.21 8.70 4.77
DDH 1.31 2.50 5.69 9.13 14.60 8.41
GW 1.41 2.55 5.85 8.86 13.75 8.12
Expt. 1.23a 2.53b 5.85c 9.14d 14.33e 8.36f

aReference [55], with a correction of 0.06 eV from Ref. [56].
bReference [57], with a correction of 0.11 eV from Ref. [58].
cReference [59], with a correction of 0.37 eV from Ref. [56].
dReference [49], with a correction of 0.17 eV from Ref. [60].
eReference [61], with a correction of 0.03 eV calculated using the
method described in Refs. [62,63].
fReference [64], with a correction of 0.53 eV from Ref. [65].
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FIG. 4. Optical absorption spectrum of diamond calculated with
BSE and full ε−1 from GW (W full), BSE and diagonal ε−1 (W diag),
BSE and model ε−1

model (W m), and TD-DDH and model ε−1
model with f loc

xc

(W m + f loc
xc ). All spectra are based on energies and wave functions

from a G0W0 calculation. A 6 × 6 × 6 k-point grid is used.

notice that the calculated band gaps differ by less than 0.15 eV
for Si, SiC, and diamond, but that the disagreement is more
substantial for NaCl, Ar, and MgO. Overall, when compared
to experimental values corrected for the coupling to phonons,
DDH and GW band gaps show mean average errors of 0.11
and 0.22 eV, respectively. These errors are consistent with the
current accuracy of ab initio methods [52,53], indicating that
the agreement with experiment should be considered excellent
for both schemes. As far as the screening is concerned, we
show below that the small discrepancies observed in Fig. 1
hardly change the spectra.

The performance of TD-DDH can also be assessed through
a comparison with TD-PBE0, an approach commonly used
for the calculations of spectra [26,54]. TD-PBE0 is based on
a global hybrid functional where 25% of Fock exchange is
used uniformly and the exchange interaction in the calculation
of the spectra is screened by ε∞. As shown in the SM [35],
the accuracy of TD-DDH is significantly better. Moreover,
TD-PBE0 does not reproduce the dielectric screening over the
full range, which obscures the understanding of the underlying
physics.

To compare the screening in BSE-GW and TD-DDH, we
show in Fig. 4 the absorption spectra of diamond calculated
in various approximations using the same energies and wave
functions, which are taken from a G0W0 calculation. We
start our analysis from a BSE calculation in which the full
static inverse dielectric matrix is used (W full). In particu-
lar, we show that the off-diagonal elements of this matrix
barely have any effect on the calculated spectrum (W diag),
in accordance with Ref. [30]. Next, we replace the inverse
dielectric function with the model cDDH

x (|q + G|) and find
no discernible difference in the spectrum (W m). Notice that

we here consider isotropic screening and that the extension
of this model to anisotropic materials remains to be inves-
tigated. The present treatment of the screening is equivalent
to that of TD-DDH, where the local exchange-correlation
kernel is neglected, i.e., f loc

xc = 0, also referred to as model
BSE (mBSE) [30,66]. To restore the full TD-DDH screening,
we include the f loc

xc and still obtain essentially the same
spectrum (W m + f loc

xc ). Hence, these results indicate that the
model screening in TD-DDH gives an accurate description
of the screening in W = ε−1V and that the effect of f loc

xc is
negligible for extended systems. Considering this, we can say
that for extended systems TD-DDH is de facto equivalent to
mBSE.

The numerical complexity of Eq. (4) is the same in BSE
and TD-DDH. However, the preceding GW calculations re-
quired in BSE-GW involve a high computational cost, which
scales as N4 in the number of electrons N in most GW
implementations instead of as N3 in TD-DFT. Additionally,
in the calculation of the Green’s function in GW , the con-
vergence with respect to the number of unoccupied states
and the number of frequency points has to be controlled
carefully, which significantly increases the complexity of the
calculations. Note that the static dielectric constant only needs
to be determined at the � point of the Brillouin zone and that
it converges quickly with respect to the number of included
orbitals. Furthermore, the hybrid-functional approach only
requires a model static dielectric function, for which the
static limit can be obtained rather efficiently [32]. Thus, the
hybrid-functional approach opens the way to more efficient
numerical schemes that can circumvent the calculation of the
full dielectric matrix.

In conclusion, we have shown that time-dependent calcu-
lations using the parameter-free DDH functional yield optical
absorption spectra with an accuracy comparable to BSE-GW .
The success of this approach originates from the use of a
model dielectric function that gives a physically motivated
description of the screened exchange interaction over the full
spatial range. Notably, the computational complexity of the
method is drastically reduced compared to BSE-GW , as it
eliminates the need for preceding GW calculations. This will
allow one to consider larger and more complex systems than
hitherto possible.

The structures and the input files used for the calcula-
tions are freely available on the Materials Cloud platform,
see Ref. [67].
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