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Coarse-grained entropy production with multiple reservoirs: Unraveling the role of time scales and
detailed balance in biology-inspired systems
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A general framework to describe a vast majority of biology-inspired systems is to model them as stochastic
processes in which multiple couplings are in play at the same time. Molecular motors, chemical reaction
networks, catalytic enzymes, and particles exchanging heat with different baths, constitute some interesting
examples of such a modelization. Moreover, they usually operate out of equilibrium, being characterized by a net
production of entropy, which entails a constrained efficiency. Hitherto, in order to investigate multiple processes
simultaneously driving a system, all theoretical approaches deal with them independently, at a coarse-grained
level, or employing a separation of time scales. Here, we explicitly take in consideration the interplay among time
scales of different processes and whether or not their own evolution eventually relaxes toward an equilibrium
state in a given subspace. We propose a general framework for multiple coupling, from which the well-known
formulas for the entropy production can be derived, depending on the available information about each single
process. Furthermore, when one of the processes does not equilibrate in its subspace, even if much faster than
all the others, it introduces a finite correction to the entropy production. We employ our framework in various
simple and pedagogical examples, for which such a corrective term can be related to a typical scaling of physical
quantities in play.
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I. GENERAL MODELS FOR MULTIPLE COUPLING

Biological systems in general operate out of equilibrium
[1]. These can be described in terms of different states (both
discrete and continuous), which are connected to each other
through a set of transitions with given rates. States of a system
can be of various kinds, e.g., these can represent different
chemical species or configurations [2,3], as well as the cou-
pling to a given bath or a given potential [4,5], just to cite
some examples.

In general, multiple processes can act on a system at the
same time, each one being responsible for transitions between
states of the same kind. As an example, chemical species
that can also diffuse in space are connected though chemical
reactions [6,7], while the diffusive mechanism is governed
by Fick’s law. Alternatively, particles diffusing in a solution
that can be connected to different baths follow a Fokker-
Planck equation [8–10], while the switching between baths
is controlled by a different process. In Fig. 1, we present two
examples of systems with multiple coupling.
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A system composed only of discrete states is shown in
Fig. 1(a). It can perform transitions in different subspaces:
Within each single circle, identified by an index ν, and from
one circle to another, changing ν, in an abstract ν space. This
scheme fits the modelization of the motion of biomolecules
switching among baths at different temperatures [6], such as
proteins with many configurations [11] or chemical species
interacting with the solution in which they are embedded [12].

Some degrees of freedom can also be continuous, e.g., a
position in space. The sketch in Fig. 1(b) represents this situa-
tion. Molecular motors, in which each red line corresponds to
a track [13,14], or diffusing enzymes, where to different ν a
different diffusion coefficient (and a different chemical state)
is associated [15], are clearly examples belonging to this class
of systems.

From a theoretical point of view, a complete framework
to model a system in the presence of multiple coupling is
provided by a master equation keeping track of each process in
play [8]. As discussed above, several biology-inspired models
can be constructed within this picture. In what follows, they
will serve mainly as inspiration for the study of more funda-
mental and general aspects.

We start with a system composed of discrete states only, as
in Fig. 1(a). Each state is characterized by two indices, i and ν,
which label the accessible subspaces, named i and ν space for
the sake of simplicity. Hence, the probability to be in the state
(i, ν) is pν

i with i = 1, . . . , N and ν = 1, . . . , n. The evolution
equation for pν

i is [16]

d pν
i (t )

dt
= [W ν �pν (t )]i + [�i �pi(t )]ν, (1)
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(a)

(b)

FIG. 1. Systems with multiple coupling. (a) A class of transitions
is identified by a fixed ν and a change in the index i (within the blue
circle). The other class of transitions is associated to a variation of
ν for a fixed i (black dashed lines). (b) One degree of freedom is
continuous, representing the position in space x. Some transitions
changes ν for a fixed x (black dashed lines), while some others move
the particles in the same red stripe, varying x while keeping ν fixed.

where W ν is the N × N transition matrix with off-diagonal
elements (i j) equal to wν

j→i, i.e., the transition rate from
state ( j, ν) to state (i, ν). Analogously, �i is the n × n
transition matrix with off-diagonal elements (ν, μ) equal
to φ

μ→ν
i , i.e., the transition rate from state (i, μ) to state

(i, ν). In this short notation, �pν = (pν
1, . . . , pν

N )� and �pi =
(p1

i , . . . , pn
i )�, where � refers to the transpose operator. Thus,

for example, [W ν �pν (t )]i ≡ ∑
j (w

ν
j→i p

ν
j − wν

i→ j pν
i ). The di-

agonal elements of the two matrices are given by (W ν )ii =
−∑

j w
ν
i→ j and (�i )νν = −∑

μ φ
ν→μ
i . This choice guaran-

tees that the probability distribution pν
i is normalized at all

times:
∑N

i=1

∑n
ν=1 pν

i (t ) = 1.
In general, the transition rates acting on the index i can

also depend on ν, and the ones governing the transitions in
the ν space can also change with i. This is the case, for
example, of chemical rates between species i, depending on
the temperature of the bath ν which the system is coupled
to [6].

When one degree of freedom is continuous, the above
formalism is rephrased into a differential equation consider-
ing contributions from the dynamics on the discrete set of
variables as well as on the continuous ones. Therefore, the
evolution of the probability to be in the state (x, ν) at time t ,
Pν (x, t ), is [8,16]

∂t P
ν (x, t ) = −∂xJν (x, t ) + [�(x) �P(x, t )]ν . (2)

Here, for the sake of simplicity, we restrict ourselves to
one-dimension spatial systems, for which analogies and
differences with respect to a description in terms of dis-
crete states is well known and extensively studied [17–20].
Nonetheless, the generalization to higher dimensions is
straightforward. In the above equation, Jν (x, t ) is the

probability flux at position x and time t that can also depend
on ν. The detailed structure of the probability flux will be
discussed later. Molecular motors are the most prominent
examples in this category, where the potential experienced
by the motor, encoded in Jν (x, t ), depends on the track ν on
which it is moving [14].

Notice that we are implicitly assuming that the system can
either undergo a transition in the ν space, for a fixed i (or x),
or it can change the label i to j (or going from x to x + dx)
remaining in the same state ν. Indeed, this is a reasonable
assumption if a suitable time scale exists over which only
one transition at a time can occur [21]. However, we leave
for future works the investigation of cases where such a time
scale does not exist and thus also processes where both indices
i (or x) and ν are allowed to change in a single transition.
Moreover, even though the system described above can be
mimicked by time-periodic rates in the absence of multiple
coupling [22], we will not deal with the latter picture herein.

In what follows, without loss of generality, we will con-
sider the dynamics in the ν space to be faster than the one in
the i space, unless otherwise stated.

Since these models allow for a complete description of sys-
tems out of equilibrium, the main focus of this work is to study
the net production of entropy in the surroundings, which is
one of the fingerprints of a nonequilibrium condition [17,23–
25]. Besides its paramount theoretical importance, recently,
the entropy production is getting much attention also from
an experimental perspective. Indeed, being this involved in
the celebrated uncertainty relations [26–32], through them it
might be useful to infer the dissipation in a biological system,
hence quantifying how far from equilibrium they are operating
[33–37]. It has also been shown that this quantity plays a
leading role in driving the selection process in a chemical
reaction network, being able to estimate how much thermal
energy is converted into chemical energy [6]. Recently, in
Ref. [38], an upper bound to Gibbs energy dissipation rate is
found to constrain intracellular metabolic fluxes. The entropy
production is also a key quantity to estimate the efficiency
of nonequilibrium machines [39,40] and to eventually build
artificial motors with a performance as close as possible to
natural ones [22,41]. However, several other observables (e.g.,
heat, spatial currents) may spark intriguing questions in the
fields of bioenergetics and nonequilibrium thermodynamics,
and we believe they deserve a detailed investigation in future
works.

The entropy production of a system with multiple cou-
plings is a problem that has been faced several times from
various perspectives [5,6,20,39]. The most general approach
is to evaluate the entropy production by considering all pro-
cesses acting on similar time scales [42–48]. In this case, the
result is devoid of approximations. However, this is not always
the case. In many situations, the exact rates characterizing all
the processes are not known, and some simplifications have to
be employed.

In this paper, we consider two different models depicted
in Fig. 1 mimicking physical systems as discussed above,
Eqs. (1) and (2). We aim at evaluating the entropy production
for such systems driven by multiple processes at the same
time, when some of them are faster than the others. In the pres-
ence of a time-scale separation, one would naively think that
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the system is evolving under an effective dynamics, with its
energetics directly derived from the latter. Instead, we present
a general theory to consider the various possible approxi-
mations due to relative temporal scale, leading, in general,
to different results for the entropy production. Well-known
formulas presented in literature as general results emerge from
our framework only under some limiting conditions.

II. OUTLINE

In the following, we briefly present the outline of the pa-
per before getting into the detailed discussion on the various
forms of the entropy productions here presented. All possible
approximations stemming from our framework fall into two
classes, depending on whether the time-scale separation is
performed before or after the evaluation of the entropy pro-
duction.

The first one, which we refer to as coarse-grained approxi-
mation (CGA), deals with the coarse graining of the dynamics
(1) or (2), by integrating over all the possible fast states (see
Sec. III B), before the quantification of the entropy production.
Herein, we consider the dynamics in the ν space to be rela-
tively faster than the internal one over i variables. We show
that the total entropy produced using such coarse-grained
dynamics contains only effective probability distributions and
transition rates.

In the second approach [single index approximation (SIA)],
the total entropy production (see Sec. III C) carries details
of fast and slow processes, through their transition matrices,
W and �. However, the time-scale separation is employed
afterward to simplify the expression of the probability distri-
butions. It implies that the dynamics over the fast space, i.e.,
the ν space in this paper, is always at stationarity. This ap-
proach, under further approximations, leads to an expression
for the entropy production given in Refs. [5,20] for the case of
a system in contact to several baths, one at a time.

Notice that while in SIA the information about fast states
is neglected only in the probabilities, in CGA it is ignored
also in the rates, replacing them with effective quantities. In
other words, CGA is much stronger than SIA, in the sense
that the latter is aware of some microscopic details that are
neglected using the former approximation. As a consequence,
the entropy production obtained through CGA is always less
than or equal to that derived using SIA (see Sec. III C).

Consider an experimental setting. When fast processes can-
not be observed, the only solution to compute the entropy
production is to employ CGA. However, it is possible that
fast transition rates are known from different experiments for
every possible fixed realization of the variable ν, whereas
the occupancy of each fast state cannot be measured (e.g.,
fluorescence microscopy for enzymes [49,50]). In this case,
SIA can be used to obtain a better estimate for the entropy
production with respect to CGA. Moreover, it is true that SIA
can also be employed to speed up the numerical evaluation
of the entropy production in systems with a particularly large
state space.

The two models here studied, Eqs. (1) and (2), are man-
ifestly very general, since they contain no approximation on
the dynamics and therefore can capture phenomena not en-
coded in the above-mentioned simplified descriptions, i.e., in

CGA and SIA. Here, we show that the presence of the degrees
of freedom of the ν space introduces two ingredients that have
to be taken into account. The first one is a characteristic time
scale, considering the relative fast dynamics over the ν space.
The other one is whether or not both dynamics asymptotically
drive the system toward an equilibrium state in their respective
subspace.

We start by formally deriving the entropy production in the
general case and in both the approximation schemes detailed
above. In the limit in which the fast processes follow the
detailed balance condition (see Secs. III C and III D), i.e.,
these processes would drive the system toward equilibrium
in their subspace, we will obtain well-known results present
in the literature [5,20,51]. The advantage of our approach is
that we can relate the emerging effective quantities to the ones
characterizing the microscopic complete picture.

Further, when the detailed balance is broken, the formula
for the entropy production is affected by the interplay be-
tween nonequilibrium features of the fastest process and its
characteristic time scale. Said differently, out-of-equilibrium
conditions generate interactions that couple time scales that
would be separated otherwise. We also show that when the
system is close to equilibrium at stationarity (see Sec. III E), a
scaling relation holds, determining whether such an interplay
is relevant for the quantification of the entropy production.

In detail, the remaining paper is organized as follows. In
Sec. III, we discuss the entropy production for a system with
both discrete i and ν spaces. Section III A presents the time-
scale separation procedure. CGA and SIA are presented and
discussed in Secs. III B and III C, respectively. Section III D
refers to the simplest case of i-independent transitions in the
ν space. Further, the correction to the entropy production is
obtained in Sec. III E when the transitions in the ν space
are the fastest, but their rates do not satisfy detailed balance.
Finally, we give some examples to illustrate our results in
Sec. IV, evidencing the physical meaning of the condition for
a nonvanishing correction to the entropy production due to
nonequilibrium features in some simple pedagogical models.
We conclude our paper in Sec. V. In the Appendix A, we
present the detailed discussion on systems which make tran-
sitions among both discrete and continuous states, following
the same structure exploited in the main text. Appendix B dis-
cusses the equivalence of CGA and SIA entropy productions
for a three state system.

III. ENTROPY PRODUCTION WITH TRANSITIONS
AMONG DISCRETE STATES

In Sec. I, we introduced two different models for system
with multiple coupling, Eqs. (1) and (2). Here, we first con-
sider a system that performs jumps in the discrete i space, as
well as in the ν space. Its evolution equation is thus given by
Eq. (1).

The (average) entropy of the system is given by [4]

Ssys :=
∑

ν

Sν
sys, (3)

where

Sν
sys = −

N∑
i=1

pν
i ln pν

i , (4)
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is the entropy of the system when it is only coupled to a single
state ν. The sum in the last equation is performed over the state
variable i. The total system entropy production is obtained by
differentiating Eq. (3) with respect to time:

Ṡsys =
n∑

ν=1

Ṡν
sys = −

n∑
ν=1

N∑
i=1

[
ṗν

i ln pν
i + ṗν

i

]

= −
n∑

ν=1

N∑
i=1

ṗν
i ln pν

i , (5)

where
∑

i,ν ṗν
i = 0 has been used in the last step, due the

probability conservation. Proceeding like in Ref. [4], we can
rewrite the total system entropy production as

Ṡsys =
Ṡtot︷ ︸︸ ︷

Ṡtot + ṠX
tot −

Ṡenv︷ ︸︸ ︷(
Ṡenv + ṠX

env

)
, (6)

where subscripts sys, env, and tot refer to system, environ-
ment, and total, respectively. The superscript X only indicates
the ν space. In the above equation, we identify the terms as
follows:

Ṡtot =
∑

ν

∑
i, j

wν
j→i p

ν
j ln

wν
j→i p

ν
j

wν
i→ j pν

i

, (7)

Ṡenv =
∑

ν

∑
i, j

wν
j→i p

ν
j ln

wν
j→i

wν
i→ j

, (8)

ṠX
tot =

∑
i

∑
μ,ν

φ
μ→ν
i pμ

i ln
φ

μ→ν
i pμ

i

φ
ν→μ
i pν

i

, (9)

ṠX
env =

∑
i

∑
μ,ν

φ
μ→ν
i pμ

i ln
φ

μ→ν
i

φ
ν→μ
i

, (10)

where ṠX ≡ ṠX
tot − ṠX

env is the system entropy production due
to the process that governs transitions between different states
belonging to the ν space.

In Eq. (6), Ṡtot and Ṡenv, respectively, are the total entropy
production and the environmental entropy production due to
both transitions within i and ν spaces. In Eqs. (7)–(10), we
have separated the contribution to the entropy production
given by the transition matrix W ν , which couples states in
the i space for each state ν, from the one given by �i, acting
on the index ν for a given i. So far, we have not used any
approximation; thus the entropy production we have derived
contains all the available information about the system.

Similarly, the entropy production for the system obeying
Eq. (2) is given in Appendix A [see Eq. (A5)].

In the following, we analyze CGA and SIA for the dy-
namics (1). To do so, we start with introducing the time-scale
separation procedure, which is a fundamental ingredient for
both approximations.

A. Time-scale separation on the dynamics

Let us first consider a system with N states, amenable to be-
ing described by a master equation governed by the transition
matrix W ν and coupled to n states in the ν space. The whole
dynamical evolution is described in Eq. (1). From a physical
perspective, states in the ν space may correspond to reservoirs

of thermal energy, matter, and so on [4], each of them driving
the system away from equilibrium.

Just to fix some ideas, we provide one illustrative example
to qualitatively understand the possible scenarios. A molecule
has different states: It can change its configuration, or interact
with the solution forming complexes or varying its chem-
ical composition. Each state is identified by a certain i =
1, . . . , N . Moreover, the molecule can be coupled to several
thermal baths, one at a time, each one identified by an index
ν = 1, . . . , n [black dashed lines in Fig. 1(a)]. Hence, the
bath temperature modifies the chemical rates (W ν ), and the
molecular state can influence, in turn, the switching between
baths (�i ) (e.g., employing a positive feedback for a chemical
selection [6]). Three possibilities have to be considered:

(i) Chemical reactions affecting the state of the molecule
eventually would lead the system to a nonequilibrium condi-
tion if the index ν were fixed. Mathematically speaking, the
matrix W ν does not satisfy the detailed balance condition. On
the contrary, the switching between baths is unbiased, so that,
for a fixed i, �i follows detailed balance. In other words, the
stationary probability distribution in the ν space only, for a
fixed i, πν

i is such that π
μ
i φ

μ→ν
i = πν

i φ
ν→μ
i .

(ii) W ν obeys the detailed balance condition whereas �i

does not, meaning that the switching process among several
baths drives the system out of equilibrium.

(iii) Both transition matrices do not satisfy the detailed
balance condition, and an interplay between the two time
scales characterizing the processes can lead to nontrivial situ-
ations.

Here, we aim at investigating how the expression of the
entropy production changes when the transitions taking place
in a given subspace (herein, ν space) are relatively faster than
those occurring in the other (herein, i space). To do so, we in-
troduce below the standard framework to employ a time-scale
separation in the dynamics. We also show in the next sections
how to construct CGA and SIA. In particular, we show that in
cases analogous to (i) the SIA leads to a well-known formula
reported in the literature [5,20], whereas in cases belonging
to the classes (ii) and (iii) additional terms arise due to the
interplay between nonequilibrium stationarity and the time
scale of the fastest process.

Similar analysis for a system diffusing along a one-
dimensional domain and with fast transitions in the ν space,
Eq. (2), is described in detail in Appendix A 1.

We introduce a characteristic scale, 1/ε and 0 < ε � 1,
such that the matrix element [�]μ→ν → ε−1[�̃]μ→ν , and the
master equation (1)

d pν
i

dt
=

N∑
j=1

(
wν

j→i p
ν
j − wν

i→ j pν
i

)

+ ε−1
n∑

μ=1

(
φ̃

μ→ν
i pμ

i − φ̃
ν→μ
i pν

i

)
. (11)

In order to solve the system, we assume the solution of the
above differential equation to be

pν
i = pν0

i + εβ pν1
i + ε2β pν2

i + higher orders, (12)
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with the constant β > 0. Since
∑

i,ν pν
i = 1, we must have∑

i,ν

pν0
i = 1, (13)

∑
i,ν

pνk
i = 0, ∀ k > 0. (14)

Inserting the above solution in Eq. (11), we obtain

d pν0
i

dt
+εβ d pν1

i

dt
+· · · =

∑
j

(
wν

j→i p
ν0
j − wν

i→ j pν0
i

)
+ εβ

∑
j

(
wν

j→i p
ν1
j − wν

i→ j pν1
i

)

+ ε−1
n∑

μ=1

(
φ̃

μ→ν
i pμ0

i − φ̃
ν→μ
i pν0

i

)

+ εβ−1
n∑

μ=1

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)

+ ε2β−1
n∑

μ=1

(
φ̃

μ→ν
i pμ2

i − φ̃
ν→μ
i pν2

i

)
.

(15)

Let us first consider the case when β = 1. Here, we equate
terms of the same order in ε on both sides, finding

0 =
n∑

μ=1

(
φ̃

μ→ν
i pμ0

i − φ̃
ν→μ
i pν0

i

)
, (16)

d pν0
i

dt
=

∑
j

(
wν

j→i p
ν0
j − wν

i→ j pν0
i

)

+
n∑

μ=1

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)
, (17)

d pν1
i

dt
=

∑
j

(
wν

j→i p
ν1
i − wν

i→ j pν1
j

)

+
n∑

μ=1

(
φ̃

μ→ν
i pμ2

i − φ̃
ν→μ
i pν2

i

)
. (18)

The elements pν0
i always satisfy Eq. (16), which implies the

stationarity of the zeroth order of the probability distribution
function pν

i , for each i, with respect to the dynamics of the ν

space. Intuitively, the system reaches stationarity in the fastest
space before performing a transition in the slow one.

Conversely, if we equate terms of same order in ε in the
case of β �= 1, we obtain the following equations:

0 =
n∑

μ=1

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)
, (19)

0 =
n∑

μ=1

(
φ̃

μ→ν
i pμ0

i − φ̃
ν→μ
i pν0

i

)
, (20)

suggesting that pν0
i ∝ pν1

i . Therefore, we must have β = 1, as
in the standard approach [8].

Then, to the order ε−1, solving Eq. (16), we can write the
zeroth-order solution as

pν0
i = piπ

ν
i , (21)

such that the stationary probability distribution for the (�i )
matrix, πν

i for each i in the ν space, is normalized, i.e.,∑
ν πν

i = 1.
Substituting the zeroth-order solution pν0

i in Eq. (17) and
summing over the fast states ν, we obtain the evolution equa-
tion for pi as

d pi

dt
=

∑
j

[w̃ j→i p j − w̃i→ j pi], (22)

where we have defined the effective transition rates

w̃ j→i :=
∑

ν

πν
j w

ν
j→i. (23)

Notice that after Eq. (22) is solved, with the appropriate initial
conditions, pν0

i = piπ
ν
i is determined using Eq. (21). Hence,

Eqs. (14), (17), and the equation obtained by summing over
ν Eq. (18) can be used to determine pν1

i . The higher order
correction to Eq. (12) can thus be calculated iteratively.

Thus, we have an evolution described in terms of coarse-
grained rates, which are nothing but ensemble averages of the
transition rates, wν

j→i, and coarse-grained probabilities, pi. In
some experimental situations, we might think to them as the
only accessible variables. When this is the case, CGA has to
be employed, leading to an entropy production which depends
solely on these variables (see next subsection).

B. Integrating the fastest states (CGA)

In terms of the coarse-grained probabilities pi’s, the system
entropy production is defined as

Ssys(p) = −
∑

i

pi ln pi. (24)

Differentiating both sides with respect to time and using
Eq. (22), we get

Ṡsys(w̃, p) = 1

2

∑
i, j

(w̃i→ j pi − w̃ j→i p j ) ln
pi

p j
. (25)

We can now define the corresponding environmental contri-
bution, in terms of the coarse-grained variables:

Ṡenv(w̃, p) = 1

2

∑
i, j

(w̃i→ j pi − w̃ j→i p j ) ln
w̃i→ j

w̃ j→i
, (26)

so that the total entropy production in this coarse-grained
description becomes

Ṡtot (w̃, p) = Ṡsys(w̃, p) + Ṡenv(w̃, p)

= 1

2

∑
i, j

(w̃i→ j pi − w̃ j→i p j ) ln
w̃i→ j pi

w̃ j→i p j
. (27)

The environmental entropy production in Eq. (26) is differ-
ent from the one we introduced before, i.e., in the most general
case [Eq. (6)], since it depends solely on variables we consider
as observables of the system.
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In the case of a system with continuous variables [for
example, the system shown in Fig. 1(b)], the coarse-graining
procedure on the fast space yields the entropy production
given in Eq. (A15), where again details of the information on
the dynamics in the ν space are suppressed.

The above derivation relies on the fact that we can replace
all the quantities of interest with their ensemble average over
the fast states. This is because we are observing the system on
time scales larger than the characteristic time scale of transi-
tions in ν space. In this way, we are ignoring the details of the
latter dynamics: Even if the latter dynamics drives the system
out of equilibrium, it does not play a role here. Mathemati-
cally speaking, Eq. (27) does not change whether �i satisfies
detailed balance condition (πν

i φ
ν→μ
i = π

μ
i φ

μ→ν
i , ∀ i).

In the following subsection, we compare the above entropy
production (27), derived in the framework we name CGA,
with the one obtained considering the information about each
single process, i.e., using SIA.

C. Information on single processes (SIA)

Let us suppose that we are able to identify all processes
acting on the system, each one due to a different coupling,
and labeled by ν = 1, . . . , n.

To employ the SIA, we start from the complete expression
for the entropy production (6) and substitute the expression for
pν

i given by the time-scale separation, Eqs. (12) and (21). Up
to the zeroth order in ε, we get the following system entropy
production:

Ṡsys = ṠX
sys +

n∑
ν=1

∑
i, j

πν
j w

ν
j→i p j ln

πν
j w

ν
j→i p j

πν
i wν

i→ j pi

−
n∑

ν=1

∑
i, j

πν
j w

ν
j→i p j ln

wν
j→i

wν
i→ j

, (28)

where the second and third terms on the right-hand side cor-
respond to the total and environmental entropy production
arising from the state space transitions, respectively. Here, in
order to be consistent, in the environmental contribution we
split the term for each ν, as we have done before in the most
general case while getting Eq. (6).

A similar formula for the entropy production is shown in
Eq. (A16) for a system with continuous and discrete variables.

In Eq. (28), the entropy production associated to the tran-
sitions in the ν space is

ṠX
sys = 1

2ε

∑
i,μ,ν

pi
(
φ̃

μ→ν
i π

μ
i − φ̃

ν→μ
i πν

i

)
ln

φ̃
μ→ν
i π

μ
i

φ̃
ν→μ
i πν

i

− 1

2ε

∑
i,μ,ν

pi
(
φ̃

μ→ν
i π

μ
i − φ̃

ν→μ
i πν

i

)
ln

φ̃
μ→ν
i

φ̃
ν→μ
i

+ 1

2

∑
i,μ,ν

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)
ln

φ̃
μ→ν
i π

μ
i

φ̃
ν→μ
i πν

i

− 1

2

∑
i,μ,ν

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)
ln

φ̃
μ→ν
i

φ̃
ν→μ
i

+ 1

2

∑
i,μ,ν

(
φ̃

μ→ν
i π

μ
i − φ̃

ν→μ
i πν

i

)( pμ1
i

π
μ
i

− pν1
i

πν
i

)
. (29)

The first and third terms in the above equation correspond to
the total entropy production whereas the second and fourth
ones correspond to the environmental entropy production. The
last term appears as an extra contribution while considering
the fast transitions approximation in the ν space. Thus, the
entropy production given in Eq. (28) requires the knowledge
of all above terms.

Since now the information about the ν space is not inte-
grated out, we have to discuss the properties of the dynamics
on the fast states to proceed further. In particular, let us first
consider the case in which the transition matrix governing
the evolution in the ν space, �i, satisfies the detailed balance
[case (i), Sec. III A]. In this case, if the label i were frozen,
the system would reach equilibrium in the ν space. From
Eq. (16), the detailed balance condition on �i corresponds to
φ̃

μ→ν
i π

μ
i = φ̃

ν→μ
i πν

i for each i. With this assumption, the en-
tropy production ṠX

sys still exhibits a correction which depends

on pμ1
i :

ṠX
sys = −1

2

∑
i,μ,ν

(
φ̃

μ→ν
i pμ1

i − φ̃
ν→μ
i pν1

i

)
ln

φ̃
μ→ν
i

φ̃
ν→μ
i

. (30)

This can be seen as an extra contribution to the system entropy
production which survives also when the ν space relaxes
toward equilibrium (e.g., in the limit of equilibrated baths).
In other words, even when the transitions taking place in
the ν space are fast and follow detailed balance, the (sys-
tem) entropy production keeps track of first order terms in ε

through pν1
i .

The system entropy production can be further split into to-
tal and environmental contributions, with the latter containing
terms with the logarithm of ratio of transition rates. Hence,
the extra contribution in Eq. (30) can be incorporated into
the environmental part. This implies that the total entropy
production is

Ṡtot =
n∑

ν=1

∑
i, j

πν
j w

ν
j→i p j ln

πν
j w

ν
j→i p j

πν
i wν

i→ j pi
. (31)

This expression is analogous to the one presented in
Refs. [5,20] for a system in contact with multiple reservoirs.
Using the log-sum inequality, one derives that

Ṡtot � Ṡtot (w̃, p), (32)

where the right-hand side is given by Eq. (27) with the defini-
tion (23) of coarse-grained transition rates. The equality holds
in Eq. (32) if and only if πν

j w
ν
j→i p j = ci jπ

ν
i wν

i→ j pi, where
ci j is a constant independent of ν. The trivial case ci j = 1
corresponds to the detailed balance condition [see Eq. (22)],
in which both sides of Eq. (32) are zero. However, there
exist feasible solutions for ci j such that the system is out of
equilibrium, but still both Eqs. (27) and (31) have the same
value (see Appendix B for a simple example).

Note that in this formalism we find a connection between
transition rates appearing in similar formulas previously de-
rived in the literature, without explicitly using SIA, and the
microscopic underlying dynamics, Eq. (1).
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D. State-independent fast transitions

Here, we analyze how the entropy production obtained
using SIA [Eqs. (28) and (29)] changes when the transitions in
the ν space do not depend on i, i.e., φ

μ→ν
i ≡ φμ→ν . This sim-

plification leads to the conclusion that also πν are independent
of the index i.

Within this simple assumption, one can perform the sum-
mation over i variables in (29). Using Eq. (14),

ṠX
sys = 1

2ε

∑
μ,ν

(φ̃μ→νπμ − φ̃ν→μπν ) ln
φ̃μ→νπμ

φ̃ν→μπν

− 1

2ε

∑
μ,ν

(φ̃μ→νπμ − φ̃ν→μπν ) ln
φ̃μ→ν

φ̃ν→μ
. (33)

Employing also that the transition matrix � satisfies the
detailed balance condition in the ν space, i.e., φ̃μ→νπμ =
φ̃ν→μπν , ṠX

sys vanishes. Finally, up to zeroth order of ε, from
Eq. (28) one obtains

Ṡsys =
n∑

ν=1

πν
∑
i, j

wν
j→i p j ln

wν
j→i p j

wν
i→ j pi

−
n∑

ν=1

πν
∑
i, j

wν
j→i p j ln

wν
j→i

wν
i→ j

. (34)

Hence, when � satisfies the detailed balance condition and
is i independent, the total entropy production corresponds to
Eq. (31) with πν

i → πν . Notice that in this simple case there
is no correction in the system as well as in the environmental
entropy production due to the first-order solution in ε.

E. Broken detailed balance and time scales

In this section, we show the limits of applicability of
the expression for the total entropy production reported in
Eq. (31) and in some previous works [5,20,51]. To this aim,
we consider the case in which the matrix �i does not satisfy
detailed balance condition, i.e., cases (ii) and (iii) in Sec. III A.

Intuitively, the more the fast dynamics breaks detailed bal-
ance, the more it has to be faster than all other processes to not
affect the quantification of nonequilibrium features, i.e., the
entropy production in this context. This trade-off can indeed
be quantified.

For the sake of simplicity, we restrict ourselves to an
i-independent transition matrix �. From Eq. (29), when
detailed balance is broken, some corrective terms do ap-
pear. However, in order to investigate the trade-off between
characteristic time scale and nonequilibrium stationarity, we
consider the case in which the detailed balance is only slightly
broken. In formulas, we have

φ̃μ→νπμ − φ̃ν→μπν = ξ j̃μ→ν, (35)

where j̃μ→ν is the scaled probability flux and ξ is a small
parameter quantifying the out-of-equilibrium behavior. On a
fairly general level, a breakage of detailed balance stems from
the injection of energy in the system. It may be manifested
in several forms, as, for example, an imposed thermal [6] or
chemical gradient [49,50], chemostatted concentrations [3], or
a constant light irradiation [52]. Because of Eqs. (16) and (21),

we must have that
∑n

ν=1 j̃μ→ν = 0. An interesting perspective
might arise from framing ξ in the context of linear response
theory for Markovian systems [53]. We leave this for future
discussions.

From Eqs. (28) and (33), the total entropy production in
this condition can be identified as (up to the zeroth order in ε)

Ṡtot =
n∑

ν=1

πν
∑
i, j

wν
j→i p j ln

wν
j→i p j

wν
i→ j pi

+ 1

2ε

∑
μ,ν

(φ̃μ→νπμ − φ̃ν→μπν ) ln
φ̃μ→νπμ

φ̃ν→μπν
. (36)

Expanding the last term in the above equation up to the lead-
ing order in ξ , we get

Ṡtot =
n∑

ν=1

πν
∑
i, j

wν
j→i p j ln

wν
j→i p j

wν
i→ j pi

+ ξ 2

2ε

∑
μ,ν

j̃2
μ→ν

φ̃ν→μπν
,

(37)

giving a quantification of the interplay between broken de-
tailed balance and time-scale separation, encoded in the ratio
of two expansion parameters, ξ 2/ε. Note that the term mul-
tiplying this prefactor has the same form of the total entropy
production in ν space [17].

Similar corrections to the entropy production due to
slightly broken detailed balance condition for a system gov-
erned by Eq. (2) can be seen in Eq. (A17).

An imperative remark is that, given the expression of the
total entropy production in Eqs. (37) and (A17), the presence
of nonequilibrium conditions in the ν space, encoded in ξ ,
could prevent the possibility to perform a consistent time-
scale separation on the system dynamics. In fact, even if the
rates φμ→ν are much faster than all the others, nonequilib-
rium effects could lead to nonvanishing corrective terms of
order ε−1 in the entropy production. Naively speaking, there
exist situations in which different time scales are entangled
regardless of the level of description. This is in accordance
to what has been shown in Refs. [17,18,54]: The dissipation
keeps track of microscopic degrees of freedom which would
have been ignored describing the system ab initio through a
coarse-grained (i.e., approximately zeroth-order) dynamics.

In the following, we present some illustrative examples in
which the typical scales ξ and ε assume physical meanings.
We aim at hinting at the working conditions under which a
biological system can be effectively described performing a
time-scale separation, while keeping information about each
single process, i.e., using Eq. (31) for the total entropy pro-
duction with multiple coupling.

IV. EXAMPLES

In this section, we present some simple cases in which our
framework can be applied. We show under which conditions
the entropy production is affected by the interplay between
detailed balance and the fastest time scale, translating the
condition derived in this paper in terms of physical quantities.
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A. Molecular motors

At first, we consider a molecular motor moving along a
one-dimensional ring, having a potential landscape described
by U (x). A schematic diagram is shown in Fig. 1(b). This
model describes all families of motor proteins: kynesins and
dynesins moving along tubulin filaments and myosins along
actin filaments [13,14].

Here, we refer to the standard framework presented in
Ref. [39]. The molecular motor can be in different states
(tracks), each one following its own diffusion equation. More-
over, the system can change state by consumption of the
fuel, e.g., hydrolyzing ATP. As a consequence of the inter-
play between different processes, a linear directive motion is
induced in the system. For simplicity, we assume that there
are only two configurations. Then, the equation governing the
dynamics of the molecular motor is

∂ �P(x, t )

∂t
= −∂ �J

∂x
+ 	 �P(x, t ), (38)

where �P = [P1(x, t ), P2(x, t )]�, �J = [J1(x, t ), J2(x, t )]�
where Ji(x, t ) = −μi[−kBT ∂xPi(x, t ) + {−∂xUi(x) + fext}
Pi(x, t )], and

�(x) =
(−w1(x) w2(x)

w1(x) −w2(x)

)

is the matrix capturing the transitions of the molecular motor
among the tracks. Notice that its sum over each column is
equal to zero to ensure probability conservation.

Using the above model, we can find the entropy production
as given in Eq. (A5). It is equal to the one shown in Eqs. (22)
and (23) in Ref. [39] in the stationary state. In the following,
we further perform a time-scale separation analysis, assuming
that the transitions between different states are faster than the
diffusion along each track. A similar analysis on a general
setup is shown in Appendix A 1. Now, expanding the solution
of the master equation (38) as in Eq. (12) gives

�P(x, t ) ≈ �P(0)(x, t ) + ε �P(1)(x, t ) (39)

and by plugging Eq. (39) into the master equation
(38), we find that �P(0)(x, t ) = �
(x)P (x, t ), where �
(x) =
[
(1)(x),
(2)(x)]� is the stationary solution of the fast dy-
namics, governed by the transition matrix �(x), and P (x, t ) is
the effective probability density function (see Appendix A 1).
From the model given above, we can exactly find �
(x) =
[w2(x),w1(x)]�/[w1(x) + w2(x)].

An important remark can be made from the above calcula-
tions: When only two tracks are present, �(x) always obeys
detailed balance in the fast time-scale approximation, and
the only correction to the entropy production may arise from
the terms of first order in ε [e.g., see Eq. (A16)]. Finally, if the
transition rates across the tracks are also independent of the
spatial variable, the contribution due to first-order correction
also disappears and the entropy production only depends on
the driving along the tracks. In the following, we consider a
simple case when the detailed balance condition in the fast
space can also be violated.

Multiple configurations and breakage of detailed balance

Herein, we modify the problem discussed above, admitting
the existence of more than two internal configurations among
which the particle can switch. In this case, the detailed balance
can be broken in the internal space of tracks, even in the limit
of fast transitions.

We consider the most general case in which detailed
balance is slightly broken in the fast space. The latter is
characterized by the spatially dependent matrix �(x). We are
aiming at understanding how nonequilibrium features entan-
gle to fast time scales, leading to extra contributions to the
entropy production, and under which conditions on physical
parameters such a contribution is not negligible.

In particular, in the limit of fast internal transitions (among
tracks), the following term appears in the entropy production:

ξ 2

2ε

∑
μ,ν

j̃2
μ→ν

φ̃ν→μ(x)
ν (x)
, (40)

which contains information both on fast processes and
nonequilibrium behavior. Here, ξ is the magnitude of the
mechanism keeping the system away from equilibrium. Then,
we can see that if the product of the square of the strength of
the deviation from equilibrium condition, as measured by ξ

and its own time scale 1/ε, remains finite and nonzero, i.e.,
ξ 2/ε ∼ O(1), the total entropy production is affected by an
additional nonvanishing quantity, even in the limit of infinitely
fast transitions and very slight out-of-equilibrium conditions.
It is important to notice that such a contribution is due to the
microscopic fluxes among all possible configurations which
are present in the system, as evidenced by the term j̃μ→ν in
the equation above.

As a model, let us consider a system composed by three
tracks, each one with its own energy landscape, Uν (x).
Molecules can move on each of them, according to three
different diffusion equations. Moreover, they can also pass
from one track to the other with the following transition rates,

φμ→ν = φν→μe�Uμ,ν (x)/(kBT ) for all μ, ν, (41)

where T is the temperature of the environment, kB is the
Boltzmann constant, and �Uμ,ν (x) = Uμ(x) − Uν (x). For
simplicity, let us imagine that one particular transition rate
(from μ∗ to ν∗) is modified by the presence of a chemical
potential difference, �c:

φμ∗→ν∗ = φν∗→μ∗
e(�Uμ∗ ,ν∗ (x)−�c)/(kBT ). (42)

When �cμ,ν/(kBT ) is small, we can expand the (only) flux
flowing in the track-space, finding that πμφ̃μ→ν − πνφ̃ν→μ ∝
�c/(kBT ), for all μ and ν. Hence, �c/(kBT ) plays the role
of ξ , quantifying how much the system is out of equilibrium.
Thus, we have

ξ = �c

kBT
and ε = φ̃μ→ν

φμ→ν

, (43)

where the second term of the previous set of equations is just
the definition of ε (see Sec. III A).

If the motion along each single track, independently, would
reach equilibrium, the system would not produce entropy
based solely on the motion along the tracks. Mathematically,
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this corresponds to∫
dx

(Jν (x, t ))2

Dν (x)P(x, t )
= 0, (44)

for the ν = 1, 2, 3.
On the other hand, if the motion among tracks is not

at equilibrium, because of the chemical potential difference,
detailed balance is slightly broken. In the limit of fast tran-
sitions among tracks, considering all the typical scales in
play, the correction to the total entropy production becomes
non-negligible when the following scaling holds:

�c

√
φμ→ν

φ̃μ→ν

∼ kBT . (45)

Hence, even if the first contribution to the entropy production
in Eq. (40) is zero, the second one becomes relevant when
the chemical potential differences become comparable to the
available thermal energy for each transition.

A similar dynamically and thermodynamically consistent
coarse-graining procedure for molecular motors in the pres-
ence of probe particles is discussed in Ref. [55].

B. Three-state chemical reaction network in a
temperature gradient

Here, we present another example which is a slight gener-
alization of the one extensively studied in Ref. [6], inspecting
the possibility to select high-energy metastable states at sta-
tionarity via nonequilibrium processes and energy dissipation.

The system consists of three chemical states, A, B, and C,
and the transitions among them are defined by

A
κA→B←→
κB→A

B
κB→C←→
κC→B

C
κC→A←→
κA→C

A. (46)

The system can also diffuse between spatially separated baths
at different temperatures.

Following the original article [6], if all transition rates
satisfy Arrenhius relations, the detailed balance in the chem-
ical (internal) space is always respected. Going further, let us
consider that the rate from B to C is enhanced by a quantity
�e/(kBT ), because, for example, of the presence of a cat-
alytic molecule, so that the system can attain a nonequilibrium
steady state in the chemical space. In the limit of fast reactions
and close to equilibrium conditions, we can identify two small
parameters,

ξ = �e

kBT (x)
, ε = κ̃X→Y

κX→Y
, (47)

where X,Y = A, B,C and κ̃X→Y is the rescaled reaction rate
from X to Y leading to the identification of the small pa-
rameter ε. The working condition here employed, e.g., fast
reactions, serves only as an example. Indeed, as long as one
subspace supports faster transitions, our framework can be
applied. However, there are experimental settings in which
the stirring of solutions at different temperatures can be ex-
ternally controlled, modifying, in turn, the effective diffusion
coefficient [56].

A quantity that naturally appears in the context of
dissipation-driven phenomena is Lk = √

D/κX→Y [6]. This
is the characteristic length at which the system can absorb
and dissipate energy through diffusive cycles. It is possible to

write the condition ξ 2/ε ∼ O(1), letting this quantity appear,
as follows:

�e

Lk
∼ kBT (x)√

D/κ̃X→Y
. (48)

Notice that while Lk is a characteristic length,
√

D/κ̃X→Y con-
tains information only about the typical scale of the diffusion,
since κ̃X→Y is defined as the rate rescaled by its magnitude, ε.

This means that when the nonequilibrium energy den-
sity over the typical dissipation length, the left-hand side of
Eq. (48), is at least of the same order of the available energy
density over the typical diffusive length, the right-hand side
of Eq. (48), the entropy production has a nonvanishing contri-
bution stemming from the interplay between nonequilibrium
conditions and the fastest dynamics. In other words, Ṡtot is
affected by the presence of diffusive cycles dissipating energy
via fast chemical fluxes, represented by j̃μ→ν in Eq. (37),
which is the discrete counterpart of Eq. (40).

C. Catalytic enzymes

As another biologically inspired example, let us consider
the case of an enzyme E , which can catalyze the transfor-
mation of a substrate S into a product P. Moreover, it can
bind and unbind to both S and P with different rates, forming
complexes. In the simple yet quite common setting in which
the enzyme is much bigger than the substrate [15,49], its dif-
fusion coefficient can be considered similar to the one of the
complexes. The reaction network characterizing the system
can be schematized as follows:

E
kE→S[S]←→

kS→E

E + S, E
kE→P[P]←→

kP→E

E + P, E + S
kS→P←→
kP→S

E + P.

(49)

In the above equation, the transition rate above the arrow
is intended to pertain to the left-to-right transition. Here, E
indicates the free enzyme in solution, with S and P floating
around with concentration [S] and [P], respectively. The states
E + S and E + P are bound states (complexes with S and P).
In many experimental settings, [S] and [P] are chemostatted
or externally controlled, maintaining the system in a nonequi-
librium steady state, at a given energy cost. A quantification
of the latter is given by the deviation of the ratio between the
two concentrations from the equilibrium value,

r = [S]

[P]
= e�Sm

[S]eq

[P]eq
= e�Sm req, (50)

where �Sm is the entropy change in the environment. Hence,
the quantity r quantifies how far the system is from being at
equilibrium. One notable case is when [S] and [P] correspond
to adenosine triphosphate (ATP) and adenosine diphosphate
(ADP) concentrations, respectively, and r accounts for the
available energy in the system [11,57]. In the latter case, the
enzyme catalyzes ATP hydrolysis.

As for the previous examples, let us analyze the situation
in which the enzyme feels a substrate gradient, [S(x)] [49].
In this case, it has been shown that it is a good approxi-
mation to consider chemical interactions to be much faster
than diffusion [50]. If we are also in close to equilibrium
conditions, ξ = r/req ≈ 1, the typical scaling allowing for a
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non-negligible additional contribution to the entropy produc-
tion, i.e., the second term in Eq. (40), is

r

LS
∼ req√

D/k̃X→Y

. (51)

Here, ε = k̃X→Y /kX→Y as for the previous case, with the
subscripts X and Y indicating, in general, any two possible
states of the system. Analogously, LS = √

D/kX→Y is the en-
ergy absorption-dissipation characteristic length. Also in this
case, we can write this condition in terms of energy density,
noting that if the available energy over the dissipative length
scale LS is of the same order with respect to its equilibrium
value in a purely diffusive system, the entropy production
is affected by microscopic fluxes in the fast space [ j̃μ→ν in
Eq. (40)].

D. Multistate particles in contact with switching baths

Finally, we study the case of a multistate particle whose
transitions are triggered by the coupling to n thermal
baths.

In the literature [5,20], the entropy production has been
derived to be always equal to Eq. (37) with ξ = 0. Here, we
have shown that this is just an approximation of the most
general case. In fact, it implicitly assumes that the dynamics in
the ν space is faster than all other processes, hence employing
what we called SIA. Moreover, other necessary conditions to
obtain the entropy production as in Refs. [5,20] are that the
dynamics in the ν space obeys the detailed balance condition
and is space independent. More specifically, a particular case
satisfying all these assumptions is

φμ→ν = φν→μ ⇒ πν = 1

n
. (52)

The equation above implies that the effective transition rates
derived from the SIA are trivially proportional to the original
rates of the slow process.

However, it is important to note that when the dynamics
in the ν space, governed by the transition matrix �(x), is fast
but without satisfying the detailed balance condition, the total
entropy production has to be corrected. In particular, when
�(x) does not depend on x, we have that, even if the system
does not produce entropy according to the slow dynamics
only, i.e., Eq. (22) at stationarity satisfies∑

ν

πνwν
i→ j pi −

∑
ν

πνwν
j→i p j = 0, ∀ i, j, (53)

the total entropy production still does not vanish, because
of the nonzero contribution proportional to ξ 2/ε. This extra
term takes into account fluxes among reservoirs, j̃μ→ν . Here,
the physical meaning of the scaling relation, ξ 2/ε ∼ O(1),
has to be determined on a single case basis. In general, it is
worth noting that our proposed formula for the entropy pro-
duction can be markedly different from the previously derived
one.

V. CONCLUSIONS

Nonequilibrium features are sensibly affected by
coarse-graining procedures. This general statement has a

long-standing tradition, and it has been proved in many
different contexts [17,18,54]. However, some approximations
exist and are usually employed to describe nonequilibrium
systems without unnecessary details [20].

In this paper, we dealt with systems in the presence of mul-
tiple coupling. In other words, we have studied the interplay
between different classes of transitions, generated by different
processes, acting on the same system. Most of biological
systems belong to this category (e.g., molecular motors [14],
enzymes [15], chemical reaction networks [3,6]).

Two widely used approximations can be applied in the
presence of multiple coupling: SIA and CGA, both exten-
sively discussed throughout the paper. Here, as a first step, we
have explicitly derived them from a general framework both
for discrete and continuous state spaces.

Both SIA and CGA rely on the assumption that some
processes are much faster than all the others. The CGA erases
all information about the latter while the SIA applies a weaker
coarse graining, and some details about the fast dynamics
is retained. Well-known formulas previously obtained in the
literature can be reconstructed within the SIA. As a further
step, we have identified the physical conditions under which
our general framework leads to some extra contributions to
the entropy production, with respect to these formulas. These
latter terms are, in fact, signatures of an intrinsic nonequilib-
rium condition, and as such, they can be substantially affected
by any kind of coarse-graining procedure.

Indeed, it is possible to determine a scaling relation be-
tween the amount of breakage of detailed balance, named
ξ , and the characteristic time scale of the faster processes,
named ε, such that the entropy production will differ from the
one known in the literature. Intuitively speaking, even if one
process is very fast without leading to an equilibrium state
in its subspace, particularly strong microscopic fluxes can be
entangled with the slow process, producing a nonvanishing
extra entropy production at the macroscopic level.

In the last part of the paper, we have presented some simple
yet instructive systems in which the scaling relation between
ξ and ε can be translated into a relation among physical
quantities. These can serve both to unveil the roles of detailed
balance and time scales in some pedagogical examples and
to capture the main ingredients (and their interplay) that al-
low simplified theoretical analyses of chemical (or biological)
minimal models. However, since our approach is rather gen-
eral, mutatis mutandis, it is amenable of application even in
more complex settings.
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APPENDIX A: ENTROPY PRODUCTION WITH
TRANSITIONS AMONG DISCRETE ν SPACE AND

DIFFUSIVE DYNAMICS

In the following, we consider a system with a continuous
i space (let us call it x space) and a discrete ν space (e.g.,
chemical states, reservoirs). The case in which both of them
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are continuous is a straightforward generalization. This sys-
tem can also be described within the framework of the master
equation as Eq. (2) [8].

For sake of simplicity, we consider a system that moves
along a one-dimensional ring, whose evolution is governed by
the following overdamped Langevin equation:

ẋ = F ν (x, t )

γ ν (x)
+

√
2Dν (x)η(t ), (A1)

where F ν (x, t ) = −∂xU ν (x, t ) + f ν (x, t ) is the external force
acting on the system which can be decomposed into the force
arise from the confining potential U ν (x, t ) and a noncon-
servative external force f ν (x, t ). Herein, γ ν (x) and Dν (x),
respectively, are the space-dependent dissipation and diffusion
coefficient. Notice that the superscript labels the ν space. In
the above equation, η(t ) is a Gaussian white noise with mean
zero and unit variance: 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = δ(t − t ′),
where the angular brackets indicate the averaging over the
noise distribution.

The probability of the system to be at position x and in state
ν evolves according to Eq. (2), where

Jν (x, t ) = F ν (x, t )Pν (x, t )

γ ν (x)
− ∂ (Dν (x)Pν (x, t ))

∂x
(A2)

is the probability current.
In this case, the (average) entropy of the system is

Ssys = −
∑

μ

∫
dx Pμ(x, t ) ln Pμ(x, t ). (A3)

Differentiating with respect to time and using the normal-
ization condition

∑
ν

∫
dx Pν (x, t ) = 1, the system entropy

production becomes

Ṡsys = −
∑

μ

∫
dx

∂Pμ(x, t )

∂t
ln Pμ(x, t )

=
∑

μ

∫
dx

[
∂Jμ(x, t )

∂x
ln Pμ(x, t )

]

+ 1

2

∑
μ,ν

∫
dx [φμ→ν (x)Pμ(x, t ) − φν→μ(x)Pν (x, t )]

× ln
Pμ(x, t )

Pν (x, t )
, (A4)

where, going from first equality to the second one, we have
used Eq. (2). Integrating by parts the first term on the right-
hand side and substituting the definition of the current Jν (x, t ),
we get

Ṡsys =

Ṡtot︷ ︸︸ ︷∑
μ

∫
dx

Jμ(x, t )2

Dμ(x)Pμ(x, t )

+

ṠX
tot︷ ︸︸ ︷∑

μ,ν

∫
dx φμ→ν (x)Pμ(x, t ) ln

φμ→ν (x)Pμ(x, t )

φν→μ(x)Pν (x, t )

−
[ Ṡenv︷ ︸︸ ︷∑

μ

∫
dx

[
Aμ(x, t )Jμ(x, t )

Dμ(x, t )
−Jμ(x, t )

∂

∂x
ln Dμ(x)

]

−

ṠX
env︷ ︸︸ ︷∑

μ,ν

∫
dx φμ→ν (x)Pμ(x, t ) ln

Pμ(x, t )

Pν (x, t )

]
, (A5)

where we have defined Aν (x, t ) = F ν (x, t )/γ ν (x). In the
above equation, we have imposed the periodic boundary con-
ditions on the probability current Jμ(x, t ) for each μ. The
splitting here shown is analogous to the one presented in
Eq. (6).

When the external force and the potential are time inde-
pendent, the system asymptotically reaches the steady state.
At stationarity, the left-hand side of the above equation (A5)
vanishes, and the right-hand side is satisfied by Pν

ss(x), where
the subscript ss indicates the nonequilibrium stationary state.

1. Time-scale separation on the dynamics

As shown in Sec. III A, here we can also consider that the
transition occurring in the ν space are faster with respect to all
other possible transitions, i.e., φμ→ν (x) = φ̃μ→ν (x)/ε, where
ε is the characteristic time scale. Therefore, we get

∂Pν (x, t )

∂t
= − ∂Jν (x, t )

∂x
+ 1

ε

n∑
μ=1

[φ̃μ→ν (x)Pμ(x, t )

− φ̃ν→μ(x)Pν (x, t )]. (A6)

We assume the solution of the above equation (up to first order
in ε) as

Pν (x, t ) ≈ Pν0(x, t ) + ε Pν1(x, t ). (A7)

Substituting the above solution in Eq. (A6) and comparing the
terms of similar orders in ε yields

dPν0(x, t )

dt
= − ∂

∂x
Jν (x, t )

∣∣∣∣
Pν (x,t )→Pν0(x,t )

+
∑

μ

[φ̃μ→ν (x)Pμ1(x, t ) − φ̃ν→μ(x)Pν1(x, t )],

(A8)

dPν1(x, t )

dt
= − ∂

∂x
Jν (x, t )

∣∣∣∣
Pν (x,t )→Pν1(x,t )

, (A9)

0 =
∑

μ

[φ̃μ→ν (x)Pμ0(x, t ) − φ̃ν→μ(x)Pν0(x, t )]. (A10)

The above equation (A10) implies that the quantity Pμ0(x, t )
reaches stationary state in the ν space. Therefore, Pμ0(x) =

ν (x)P (x, t ). Notice that 
ν (x) is the space-dependent sta-
tionary distribution with respect to transition rates in the ν

space, φμ→ν (x), and it is normalized as
∑

ν 
ν (x) = 1.

043257-11



BUSIELLO, GUPTA, AND MARITAN PHYSICAL REVIEW RESEARCH 2, 043257 (2020)

Summing over the discrete state in Eq. (A8), we get

∂P (x, t )

∂t
= − ∂

∂x

J̃ (x,t )︷ ︸︸ ︷[
Ã(x, t )P (x, t ) − ∂ (D̃(x)P (x, t ))

∂x

]
,

(A11)

where P (x, t ) = ∑
ν 
ν (x)P (x, t ), due to the normalization

of 
ν (x), is defined as an effective probability distribution. In
analogy to what we have done in Sec. III, we also introduce
an effective drift, Ã = ∑

ν 
ν (x)Aν , and an effective diffusion
coefficient, D̃ = ∑

ν 
ν (x)Dν , which are nothing but the en-
semble average of Aν (x) and Dν (x) over the ν space.

2. Coarse-grained variables (CGA)

Retracing all the steps extensively discussed in Sec. III B,
here we consider the case where we cannot distinguish each
single fast state ν, and the only accessible information is
about coarse-grained quantities. Then, we write the master
equation for the coarse-grained probability density function
by summing Eq. (2) over the discrete variables as

∂P (x, t )

∂t
= −

∑
ν

∂Jν (x, t )

∂x
, (A12)

where P (x, t ) = ∑
ν Pν (x, t ), i.e., the coarse-grained proba-

bility distribution. We can define the entropy of the system in
this case as follows:

Ssys(P ) = −
∫

dx P (x, t ) lnP (x, t ). (A13)

Differentiating the above equation with respect to time, we
obtain the system entropy production as

Ṡsys(P ) = −
∫

dx
∂P (x, t )

∂t
lnP (x, t ). (A14)

We made use only of the accessible coarse-grained quantities
to define the system entropy.

Employing the fast time-scale approximation for the ν

space, i.e., Pν (x, t ) = 
ν (x)P (x, t ) + εPν1(x, t ), we rewrite
Eq. (A14) using Eq. (A11) as a function of Ã and D̃. After
some simple manipulation, we have

Ṡsys(P ) =
∫

dx
∂ J̃ (x, t )

∂x
lnP (x, t )

= −
∫

dx
J̃ (x, t )

P (x, t )

∂P (x, t )

∂x

=

Ṡtot︷ ︸︸ ︷∫
dx

J̃2(x, t )

D̃(x)P (x, t )

−

Ṡenv︷ ︸︸ ︷∫
dx

[
Ã(x, t )J̃ (x, t )

D̃(x, t )
− J̃ (x, t )

∂

∂x
ln D̃(x)

]
.

(A15)

As for the discrete state space (see Sec. III B), we do not need
further assumptions on the dynamics of the ν space. Indeed,
if they are fast, and we cannot discriminate among them, this
is enough to have a total entropy production which depends
just on the slow states. However, drift and diffusion coefficient
have to be substituted with their ensemble average over the
fast states. As a consequence, environmental entropy produc-
tion is identified only as a function of accessible variables in
this approximation.

3. Information on single processes (SIA)

In the following, we employ the time-scale separation on
the entropy production given in Eq. (A5), according to the
procedure characterizing the SIA. We have

Ṡsys =
∑

ν

∫
dx

(
[J̄ν (x, t )]2

D̄ν (x)P (x, t )
− J̄ν (x, t )Āν (x, t )

D̄ν (x)
+ J̄ν (x, t )

∂

∂x
ln D̄ν (x)

)
+ 1

2

∑
μ,ν

∫
dx

[
1

ε
P (x, t )

[
φ̃μ→ν (x)
μ(x)

− φ̃ν→μ(x)
ν (x)
]

ln

μ(x)


ν (x)
+ [

φ̃μ→ν (x)Pμ1(x, t ) − φ̃ν→μ(x)Pν1(x, t )
]

ln

μ(x)


ν (x)

+ [
φ̃μ→ν (x)
μ(x) − φ̃ν→μ(x)
ν (x)

](Pμ1(x, t )


μ(x)
− Pν1(x, t )


ν (x)

)]
, (A16)

where the integrals refer to to the motion in the continuum
space, whereas the summation are performed over the states
belonging to the discrete ν space. In the above equation, we
introduce the following notation: Z̄ν := Zν
ν (x).

Equation (A16) is the analogous of Eqs. (28) and (29) of
the main text.

4. Detailed balance and time scales

Simplified formulas for the total entropy production can
be recovered starting from Eq. (A16). In particular, when
the matrix �(x) satisfies the detailed balance condition, i.e.,

φ̃μ→ν (x)
μ(x) = φ̃ν→μ(x)
ν (x) for each x, the first and third
terms in the second summation on the right-hand side of
Eq. (A16) becomes zero, and the remaining terms contribute
to the entropy production. In the simplest case in which the
dynamics in the ν space is also independent of space, noticing
that

∫
dx Pν1(x, t ) = 0, also the second term in the second

summation on the right-hand side vanishes.
Conversely, if the detailed balance in the ν space is slightly

broken, nonequilibrium effects can entangle fast and slow
time scales. This provides an expression for the entropy pro-
duction which is not consistent with an adiabatic elimination
of fast variables apriori in the dynamics. In other words,
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employing the time-scale separation before or after the esti-
mation of the entropy production does not lead to the same
result: The former case corresponds to the CGA, while the
latter is the SIA. In complete analogy to what has been shown
in the main text, now we have

Ṡtot =
n∑

ν=1

∫
dx

J2
ν (x, t )

Dν (x)Pν (x, t )
+ ξ 2

2ε

∑
μ,ν

j2
μ→ν

φ̃ν→μ
ν (x)
,

(A17)

assuming that � does not depend on x, where ξ is the small
parameter as introduced in Eq. (35).

APPENDIX B: AN EXAMPLE OF EQUIVALENCE OF SIA-
AND CGA-ENTROPY PRODUCTION IN A THREE-STATE

SYSTEM IN A NONEQUILIBRIUM STEADY STATE

In this section, we discuss the condition under which the
entropy production in SIA and CGA becomes equal. Clearly,
from Eq. (32), the equality holds when

πν
i wν

i→ j pi = ci jπ
ν
j w

ν
j→i p j . (B1)

Plugging this condition into Eq. (22), we have

d pi

dt
=

∑
j

∑
ν

πν
i wi→ j pi(ci j − 1) = Ki pi, (B2)

where we have defined Ki = ∑
j

∑
ν πν

i wi→ j (ci j − 1).

Since pi is a probability, the only feasible solutions must
satisfy the condition Ki = 0. This can trivially happens when
ci j = 1, ∀ i, j, i.e., at equilibrium. However, here we show a
simple example in which Ki = 0 even if the system is in a
nonequilibrium steady state.

Consider a three-state model with the following effective
transition rates:

w̃1→2 = 2, w̃2→3 = 3, w̃3→1 = 4,

w̃2→1 = 1, w̃3→2 = 1, w̃1→3 = 3. (B3)

The product of transition rates in the clockwise direction is
larger than that in anticlockwise direction. Hence, the system
sustains a nonzero probability current at the stationary state
[see Eq. (22)].

Notice that w̃i→ j = ∑
ν πν

i wi→ j , so they can be obtained
in several ways starting from the microscopic rates. However,
Ki depends only on effective quantities. The condition Ki = 0
is fulfilled when

c1→2 = 13
34 , c2→3 = 6

13 , c1→3 = 24
17 , (B4)

with ci j = c−1
ji . Hence, the two approximations (SIA and

CGA) lead to the same value of the entropy produc-
tion even if the system is in a nonequilibrium stationary
state.

A similar result, in which the effect of the coarse graining
vanishes for particular choices of the currents, is also pre-
sented in Ref. [17].
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