
NeuroImage 224 (2021) 116778
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
The open EEGLAB portal Interface: High-Performance computing
with EEGLAB

Ram�on Martínez-Cancino a,b,*, Arnaud Delorme a, Dung Truong a, Fiorenzo Artoni c,
Kenneth Kreutz-Delgado b, Subhashini Sivagnanam d, Kenneth Yoshimoto d, Amitava Majumdar d,
Scott Makeig a

a Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, USA
b Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California San Diego, USA
c �Ecole Polytechnique F�ed�erale de Lausanne, Lausanne, Switzerland
d San Diego Supercomputer Center, University of California San Diego, USA
A B S T R A C T

EEGLAB signal processing environment is currently the leading open-source software for processing electroencephalographic (EEG) data. The Neuroscience Gateway
(NSG, nsgportal.org) is a web and API-based portal allowing users to easily run a variety of neuroscience-related software on high-performance computing (HPC)
resources in the U.S. XSEDE network. We have reported recently (Delorme et al., 2019) on the Open EEGLAB Portal expansion of the free NSG services to allow the
neuroscience community to build and run MATLAB pipelines using the EEGLAB tool environment. We are now releasing an EEGLAB plug-in, nsgportal, that interfaces
EEGLAB with NSG directly from within EEGLAB running on MATLAB on any personal lab computer. The plug-in features a flexible MATLAB graphical user interface
(GUI) that allows users to easily submit, interact with, and manage NSG jobs, and to retrieve and examine their results. Command line nsgportal tools supporting these
GUI functionalities allow EEGLAB users and plug-in tool developers to build largely automated functions and workflows that include optional NSG job submission and
processing. Here we present details on nsgportal implementation and documentation, provide user tutorials on example applications, and show sample test results
comparing computation times using HPC versus laptop processing.
1. Introduction

Despite the explosion in the use and diversification of research and
applications using electroencephalography (EEG), other than one current
privately financed project (Alexander et al., 2017; O’Connor et al., 2017),
significant recent brain biomarker discovery initiatives have not involved
EEG-derived measures (Pedroni et al., 2019). Other neuroimaging tech-
niques, chiefly MRI and fMRI, are the focus of leading initiatives such as
the IMAGEN study (Schumann et al., 2010), the U.K. Biobank project
(Sudlow et al., 2015), the Human Connectome Project (Van Essen et al.,
2012), the Autism Brain Imaging Data Exchange (Di Martino et al., 2014)
and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005). Three major factors are hindering the large-scale data
collection, analysis, and meta-analysis of EEG data.

Physiologic and experimental variability. The first factor is the
native high inter-subject signal variability in EEG signals themselves.
Brain anatomic and physiological (as well as cognitive and behavioral)
differences between individuals, produce differences in their EEG signals
that may severely affect the performance of models and preprocessing
* Corresponding author. UC San Diego, SCCN, 9500 Gilman Drive # 0559, La Jol
E-mail address: ram033@eng.ucsd.edu (R. Martínez-Cancino).

https://doi.org/10.1016/j.neuroimage.2020.116778
Received 25 December 2019; Received in revised form 22 February 2020; Accepted
Available online 11 April 2020
1053-8119/© 2020 The Authors. Published by Elsevier Inc. This is an open access a
techniques meant to generalize across many subjects (Pedroni et al.,
2019). Circumventing issues arising from this variability requires major
efforts both in data standardization and in data analysis (Bigdely-Shamlo
et al., 2016a,b; Bigdely-Shamlo et al., 2015; Gabard-Durnam et al., 2018;
Pedroni et al., 2019). Differences in number and placement of the
recording electrodes across studies, and difficulty in co-registering the
electrode positions to the head and underlying functional EEG brain
sources add further complexity.

Format variability and lack of specificity. A second factor hindering
development of large scale EEG data analysis and meta-analysis is the
lack of agreement within researchers and system manufacturer commu-
nities regarding EEG data formats. Lack of standardization in this area
has negatively impacted the growth of EEG data sharing. Inconsistent and
often insufficient documentation of data collection and analysis pro-
cedures have made it difficult to reproduce results across laboratories
and limited the possibility of bringing together data recorded in different
formats using varying experimental paradigms and recording systems
and parameters.

The Brain Imaging Data Structure (BIDS) specification initiative is
la, CA, 92093-0559, USA.

20 March 2020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:ram033@eng.ucsd.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.116778&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.116778
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2020.116778

Fig. 1. High-level overview of the Open EEGLAB Portal (OEP) workflow.
The OEP architecture has three main components: The EEGLAB user local
computer resource (in blue), the Neuroscience Gateway (NSG) (in orange), and
the NSG back-end HPC resources (in green). NSG can be accessed via the NSG
web interface or through the NSG applications programming interface (API)
operating in the Representational State Transfer (REST) environment (Miller
et al., 2015). The EEGLAB plug-in nsgportal exploits the latter access point to
provide seamless cross-communication between an EEGLAB session and NSG.
Once jobs are submitted to NSG, scripts to execute and data to operate on are
deployed to the back-end HPC resources for processing (red arrow). Once job
processing is finished, the NSG working directory is first returned to the NSG
server (green arrow) and then compressed. Following, the user is notified of the
job completion via email. Status of jobs submitted directly from EEGLAB using
the API-based nsgportal tools can also be monitored using plug-in tools and
features. The results from the computation can be retrieved manually via the
NSG web interface, or automatically through the nsgportal plug-in GUI running
within the same or a new EEGLAB session.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
attempting to establish a common set of standards for, first, MRI and
fMRI (Gorgolewski et al., 2016) and most recently MEG (Niso et al.,
2018), iEEG (Holdgraf et al., 2019), and EEG (Pernet et al., 2019) data.
The emerging BIDS standards are sets of interrelated research
community-developed specifications for organizing, archiving, sharing,
and easily analyzing brain imaging data collected within and across
studies and laboratories. The new BIDS standards, now being rapidly
adopted by neuroinformatics projects in the US and in Europe, address
the issue of heterogeneity in the structure of archived data across studies.
Importantly for EEG data, the root BIDS standard supports the Hierar-
chical Event Descriptor (HED) system for annotating the precise nature of
experimental events recorded in the data (Bigdely-Shamlo et al., 2016a,
b), thereby promoting greater depth of detail and improved consistency
across labs in the descriptions of experimental events recorded in the
data.

Need for high-performance computing. A third factor hindering the
development of large-scale EEG analysis is that, given the success of
applications of machine learning methods to very large data archives in
an increasing number of fields, and the relatively large amount of EEG
data that could potentially be made available for such analyses, there is
an increasing need for using high-performance computing (HPC) re-
sources. However, there are few readily available tools for solving diffi-
cult EEG signal processing problems such as EEG source localization
using realistic electrical head models (Akalin Acar and Makeig, 2010;
Brunet et al., 2011; Wolters et al., 2002); time-frequency (for example
Makeig et al., 2002; Onton et al., 2005; Pfurtscheller and Da Silva, 1999)
and cross-frequency coupling analysis (Canolty and Knight, 2010; Mar-
tínez-Cancino et al., 2019; Tort et al., 2010); stochastic analyses
including independent component analysis (ICA) (Artoni et al., 2014;
Makeig et al., 1996); and a growing variety of machine learning methods
(see examples in Lotte et al., 2018; Makeig et al., 2012). Thus, for many
EEG researchers lack of access to sufficient well-documented and
formatted data, readily applicable analysis tools, and connected
2

computing resources are major current obstacles to applying new
large-scale analysis and meta-analysis methods to EEG and related data.

HPC science gateways. Publicly available high-performance
computing (HPC) resources do exist at national academic supercom-
puter centers, but access by neuroscientists to these resources is limited
by both administrative and technical barriers including the steep
learning curve required to understand HPC hardware, software, usage
policies, user environments and to install and run applications on HPC
resources (Delorme et al., 2019). These obstacles are being partially
eliminated through the creation of science gateways to publicly-funded
HPC resources (Wilkins-Diehr et al., 2008). Each science gateway pro-
vides a customized set of compute-intensive applications to researchers
in a specific scientific field, making them available for use via a simple to
use web portal and/or an application programming interface (API).
These gateways allow scientists to access HPC resources without dealing
with the complexities associated with the machine environment. A
gateway has been developed for the neuroscience community, the
Neuroscience Gateway (Sivagnanam et al., 2013; Sivagnanam et al.,
2018). Here we present a solution linking the most widely used signal
processing environment for EEG research, EEGLAB (Delorme and
Makeig, 2004), to the U.S. HPC Extreme Science and Engineering Dis-
covery Environment (XSEDE) computer network (xsede.org) via the
Neuroscience Gateway (NSG).

The Neuroscience Gateway (NSG) (Sivagnanam et al., 2018) is a
National Science Foundation (NSF) funded project focused on providing
HPC resources to neuroscience researchers. In doing so, NSG aims to
lower or eliminate the administrative and technical barriers that
currently make it difficult for investigators to use these resources. The
NSG (nsgportal.org) gateway offers free computer time to neuroscientists
on the XSEDE computer network, providing a ready means to use HPC
resources for popular neuroscience tools, pipelines, data processing, and
software including NEURON (Hines and Carnevale, 2008), GENESIS
(Bower and Beeman, 2012), MOOSE (Ray et al., 2008), NEST (Gewaltig
and Diesmann, 2007), Brian (Goodman and Brette, 2009) and PyNN
(Davison et al., 2009), as well as software for analyzing and visualizing
structural and functional brain imaging data, such as Freesurfer (Fischl,
2012) and MRtrix (Tournier et al., 2012). NSG leverages access to re-
sources including the supercomputers Comet at the University of Cali-
fornia San Diego and Stampede2 at University of Texas Austin, and the
Jetstream cloud resource at the University of Indiana.

The EEGLAB signal processing environment. Resources for analyzing
EEG data are increasingly freely available as open-source software.
Leading examples are the EEGLAB (Delorme andMakeig, 2004), Fieldtrip
(Oostenveld et al., 2011), Brainstorm (Tadel et al., 2011), and MNE
(Gramfort et al., 2014) tool environments. In 2011, EEGLABwas reported
to be the most widely used by the cognitive neuroscience community
(Hanke and Halchenko, 2011), a report consistent with counts of more
recent research publications reporting the use of these respective envi-
ronments (see Inline Supplementary Fig. 1). EEGLAB, first introduced in
2002 organizing tools first released by Makeig and colleagues at the Salk
Institute in 1997, comprises a large set of tools for performing ICA
decomposition, time/frequency analysis, and effective source-level (or
scalp channel-level) data visualization. EEGLAB combines a simple but
powerful graphical user interface (GUI) for data exploration with an easy
transition to command line scripting for custom analysis, exploiting the
richness of the MATLAB environment (The Mathworks, Inc., Natick,
Massachusetts, United States) on which it runs. EEGLAB is also
compatible with the open source, cross-platform Octave application, and
is readily extensible through its increasing library of more than 100
plug-in extensions contributed by many laboratories, extensions that
appear as easy-to-launch items in the EEGLAB window menu of users
who download them. These plug-ins can take advantage of the wide
range of easily accessible core MATLAB graphics and other libraries.

Inline Supplementary Figure S1

Fig. S1. Citations of the EEGLAB reference paper vs. other open-source EEG analysis software reference paper citations as per the Web
of Science (https://www.webofknowledge.com, mid-December 2019).

Inline Supplementary Figure S2

Fig. S2. The graphical user interface of pop_nsginfo.m. In this window, users can specify their NSG username, password and other options
necessary to format the REST API curl commands and store their outputs. The values shown in fields ‘NSG key’ and ‘NSG url’ are set to use
EEGLAB by default.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
Inline Supplementary Figure S1 can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116778.

Using EEGLAB on high-performance computing resources. In a
recent publication (Delorme et al., 2019), we introduced the Open
EEGLAB Portal (OEP) software framework enabling interaction between
EEGLAB and the Neuroscience Gateway (NSG, nsgportal.org) to offer free
use of the HPC resources of the U.S. XSEDE network for analysis of EEG
and related data from the EEGLAB environment. The OEP makes use of
NSG to provide ready access to HPC resources without the burden of
complications typically associated with using HPC services.

Earlier, in (Delorme et al., 2019), we previewed the EEGLAB functions
supporting the OEP and discussed future development, e.g., a program-
matic user interface fromEEGLAB toNSG.Here,we introduce the EEGLAB
plug-in nsgportal (github.com/sccn/nsgportal) that fulfills this purpose – to
give cognitive neuroscientists free and easy access to HPC resources from
an EEGLAB session running on any lab or personal computer running
MATLAB.1 The current manuscript is organized as follows: In Section 2,
we expand on the structure and capabilities of the OEP, ways of accessing
it and the characteristics and structure of the computational jobs. In
Section 3, we introduce the nsgportal plug-in and discuss its architecture,
its GUI structure, and its set of MATLAB command line tools. In Section 4,
we present three nsgportal applications, the first illustrating the use of the
nsgportal GUI, the second its MATLAB command line tools, and the third
1 Currently, nsgportal functions cannot be run using Octave.

3

showing use of these tools to incorporate HPC access into new or existing
EEGLAB plug-ins, culminatingwith building nsgportal capabilities into the
compute-intensive RELICA (for ‘RELiable ICA’) plug-in of Artoni et al.
(2014). Finally, in Sections 5 and 6, we outline current and future de-
velopments and present conclusions from our work to date.

2. The open EEGLAB portal

2.1. NSG and open EEGLAB portal structure and capabilities

The Neuroscience Gateway software is based on the Workbench
Framework (WF) (Miller et al., 2010; Miller et al., 2011), a software
development kit designed todeployanalytical jobs anddatabase searches to
a generic set of computational resources and databases. The WF has been
used in building successful science gateways such as the CIPRES phyloge-
netic gateways (Miller et al., 2010) and the Portal for Petascale Life science
Applications and Research (PoPLAR) gateway (Rekapalli et al., 2013).
Among these, CIPRES is the most successful gateway, handling about 40,
000 unique users over a period of ten years (2009–2019). This speaks of the
maturity of theWF. To createNSG, the CIPRES-WFwasmodified to hide all
the complexities associated with accessing and using HPC resources for
various neuroscience tools made optimally available on HPC resources (for
more detail, see Sivagnanam et al., 2015).

The Open EEGLAB Portal (OEP) is built upon the NSG framework,
making use of its well-established and tested features, e.g., user interface,

https://doi.org/10.1016/j.neuroimage.2020.116778
https://doi.org/10.1016/j.neuroimage.2020.116778
https://www.webofknowledge.com
mailto:Image of Fig. S2|jpg

Fig. 2. The pop_nsg.m graphic user interface (GUI) window. This window is intended to be the primary point of user interaction with NSG within EEGLAB graphical
environment. From this interface the user can handle the submission, managing, deletion, and retrieval of jobs. The pop_nsg GUI comprises three main sections,
highlighted by dashed lines in the figure: Top section A (see green backing) allows user to interact with jobs already submitted under their own personal credentials. A
color-coded scheme (see its legend in the bottom of the display window) reveals to the user the status of the job selected. Middle section B (orange backing) shows
status and other messages associated with the job selected in Section A. Section C (cyan backing) manages user job submission.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
account management system, documentation, a ticketing system for bug
reports and resolution, a mechanism for user support as well as policies to
equitably distribute HPC time. Fig. 1 presents an overview of OEP
workflow. The OEP architecture connects three main components: The
user’s local computer, the NSG gateway interface, and the NSG backend
HPC resources. NSG resources may be engaged either through the NSG
web interface (nsgportal.org) or through its API, NSG-R, operating in the
Representational State Transfer (REST) environment. Here we focus on
the interface between EEGLAB and NSG-R through the NSG REST API.
2.2. Registering EEGLAB as an NSG application

To use NSG-R, the EEGLAB toolbox itself has been registered to use
NSG UMBRELLA authentication, whereby jobs can be submitted to NSG
on behalf of multiple registered users. The EEGLAB NSG identifier and
key are specified within the nsgportal authentication function pop_ns-
ginfo (see Inline Suppl. Fig. 2) and should not need to be changed by the
user.

Inline Supplementary Figure S2 can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116778.
2.3. User interaction with the OEP

The first step to using the Open EEGLAB Portal is to create a user NSG
account on the NSG home page (www.nsgportal.org). Obtaining an ac-
count first requires providing identity information to allow NSG ad-
ministrators to verify user authenticity. This information comprises
name, email, responsible principal investigator, and institution. Any
researcher associated with a not-for-profit institution may apply.
Receiving an account credential typically requires two days.

Any job submitted to NSGmust be in the form of a compressed .zip file
4

of a folder including raw or pre-processed data files (typically, EEGLAB-
formatted), an EEGLAB analysis script to run on MATLAB (The Math-
works, Inc.), plus any customMATLAB functions not in the main EEGLAB
distribution and used in the analysis script. Code for built-in MATLAB
and MATLAB toolbox functions, as well as functions in the current
EEGLAB release, are already available via NSG and do not have to be
provided in the job file.

The version of EEGLAB available in NSG, always the current stable
version, includes the most popular EEGLAB data processing plug-in ex-
tensions as well as all of the current EEGLAB data import plug-ins. If a
toolbox, plug-in, or function used in the job analysis script is not built-in
by default in MATLAB, in the EEGLAB release, or in one of the NSG-
installed plug-ins, the user must include the corresponding files in the
job .zip file. (Note: We may add to the installed NSG base other EEGLAB
plug-ins of general interest; please email requests to eeglab@ucsd.edu).

NSG job submission. User input files can be provided to NSG by using
its two main entry ports (see Fig. 1): (1) The user can upload through the
simple NSG web-based interface (nsgportal.org) a job .zip file containing
the data and the Matlab code to execute, plus further submission param-
eters (Section 3.4 and 3.5). Else, (2) the user can submit, monitor, and
retrieve NSG jobs through tools using the NSG REST API (Section 3.2).

Job execution. Once the job files and relevant settings are submitted
to NSG, independent of the interface used, NSG assigns a unique iden-
tifier to the job (Unique_job_identifier) and generates a job status object
with a handle in the following format:

NGBW-JOB-EEGLAB_TG-[Unique_job_identifier]

The NSG front end then sends the input job files with a job request to
the remote HPC server for processing. Once the job completes, its
working directory is compressed (by zip) along with the original job input
and any output files. Additional files generated by NSG to report HPC

https://doi.org/10.1016/j.neuroimage.2020.116778
https://doi.org/10.1016/j.neuroimage.2020.116778
http://www.nsgportal.org
mailto:eeglab@ucsd.edu
mailto:Image of Fig. 2|tif

Fig. 3. Workflow of the simple example plug-in RUNICA_NSG. This plug-in illustrates the use of nsgportal command line functions that enable EEGLAB functions
and plug-in tools to run on HPC resources via NSG. After installing the plug-in in the eeglab/plugins/ directory, the user can call it via the EEGLAB menu (Tools >
Compute ICA via NSG) or equivalently by invoking function pop_runica_nsg from the MATLAB command window. In the second case, an EEG data structure must be
provided as input. If invoked from the menu, or when either of its other two arguments, compflag (run locally or via NSG) or icamethod (ICA algorithm to use) are not
specified, a MATLAB window will pop up to allow the user to input these parameters. When pop_runica_nsg is invoked from the EEGLAB GUI, the data matrix in the
currently loaded EEGLAB dataset (EEG.data) is processed and the pop window is always launched to allow manual entry of arguments compflag and icamethod. When
the computation is to be run via NSG, pop_runica_nsg creates a temporary folder and saves the current EEG dataset in it along with function script eeg_runica_nsg.m and a
custom script (runica_nsg_job.m) generated to invoke this function using the parameters provided by the user (here, icamethod). This script, along with the data saved, is
then submitted to NSG for processing under a user-designated job ID (JobID in the figure). Function pop_nsg with options ‘run’, ‘filename’ and ‘jobid’ performs these
steps. Following job submission, pop_runica_nsg exits, providing the submitted jobID as output. Once the NSG job is complete (as flagged by an email message sent to the
user from NSG, or via the open pop_nsg GUI), the user must retrieve its results by calling pop_runica_nsg with the JobID as its first and only argument. Internally,
pop_runica_nsg will check the validity of the job ID and will then call pop_nsg (with arguments ‘run’ and ‘delete’) to retrieve the results and then delete the job from the
user’s NSG account record. Finally, the EEG data structure provided originally as input, including the ICA decomposition parameters, is loaded into EEGLAB by
pop_runica_nsg and returned as output.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
scheduler processing (scheduler_stderr.txt and scheduler_stdout.txt) or job
errors (stderr.txt), as well as the MATLAB command window output re-
cord (stdout.txt) are included in this directory. The resulting .zip file is
transferred to the NSG file system storage (Sivagnanam et al., 2015).

Once the results are ready for retrieval, an email is sent to the user to
notify them of the job completion. The user can then download the re-
sults contained in the .zip output file. Results must be retrieved through
the same NSG access mode used for job submission (the NSG web portal
or the NSG REST API).

3. The EEGLAB nsgportal plug-in

Here we formally introduce nsgportal, a plug-in interface between
EEGLAB and NSG using the REST API.
3.1. Accessing NSG through the plug-in nsgportal

Nsgportal capitalizes on the availability of the NSG REST API to pro-
vide EEGLAB users an nsgportal GUI plus MATLAB command line tools
5

allowing them to manage and interact with NSG jobs directly from the
MATLAB and EEGLAB interfaces. (Alternatively, programmatic access
using open source curl commands allows the user to perform the same
tasks outside the EEGLAB environment, directly from the operating sys-
tem command line, though doing this requires detailed familiarity with
operating system and curl syntax).
3.2. Implementation, architecture, and dependencies

The nsgportal plug-in, implemented and running in MATLAB, calls
curl command line tools that provide an interface to the NSG REST ser-
vice. As a consequence, to run nsgportal the user must have MATLAB and
curl/libcurl installed on their computer. Currently, most macOS and
Windows (Windows10 and later) releases have curl installed by default,
while Linux users can easily install curl from their software repository.
Since MATLAB and curl command line tool code are compatible with
macOS, Windows and Linux, the plug-in nsgportal will run without
modification in MATLAB on any of these platforms. As a plug-in to
EEGLAB, nsgportal also requires the EEGLAB environment functions to be

mailto:Image of Fig. 3|tif

Fig. 4. Original RELICA workflow. A high-level view of the original imple-
mentation of RELICA as proposed by Artoni et al. (Artoni et al., 2014). Given an
EEG dataset, relica first performs a reference decomposition of the whole input
data, and then multiple ICA decompositions of bootstrapped versions of the
same data (red area). The function relica then clusters the identified ICs from all
the decompositions and from this computes a measure of the stability of each IC
in the reference decomposition.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
in the MATLAB path and must be installed as per the standard EEGLAB
plug-in installation instructions (available online under sccn.ucsd.ed
u/wiki at EEGLAB_Extensions_and_plug-ins).

Functions included in the nsgportal plug-in are designated by
mimicking the function name hierarchy used in EEGLAB. Nsgportal has
twomain sets of functions, designated by the prefixes pop_ and nsg_. When
called with fewer than the required arguments, pop_ functions open a
parameter entry window, else run directly without opening a window.
The second class of nsgportal functions, with prefix nsg_, can be called
directly from MATLAB command line or from other MATLAB scripts or
functions. These functions perform lower-level tasks than the pop_ func-
tions. A main plug-in function (eegplugin_nsgportal) effects the inclusion
and manages the appearance of the nsgportal item(s) in the main EEGLAB
GUI window menu.

The NSG interface in nsgportal is implemented in the functions
nsg_jobs, nsg_run and nsg_delete. They each format a curl command, as per
NSG REST API specifications, as a MATLAB string variable using the
inputs received as arguments. The formatted curl command is then issued
for execution using the MATLAB system command call. All communica-
tion with NSG through the REST interface occurs within an SSL (Secure
Sockets Layer) encrypted session, ensuring that the information is
transmitted safely. The code samples in Appendix A show typical curl
calls to NSG-R in nsgportal for (A.1) Submitting a job, (A.2) Checking job
status, (A.3.) Retrieving job results, and (A.4.) Deleting a job. Here the
6

submitter must be a registered NSG user (here credited with symbolic
credentials your_username and your_password). These examples do not
demonstrate the full scope of the NSG REST API. For more information,
see the online API guide (nsgportal.org/guide.html).

Successful NSG job submission through the REST interface returns a
job status XML object. In nsgportal, this object is parsed into a MATLAB
job structure containing job information, parameters, and settings. To
manage this interaction, the output from the curl instructions used to
submit the job and to request job status are saved in a temporary file with
extension .TXT or .XML. These files are parsed into a structure by the
function xml2struct.m within nsgportal and are then deleted. Similar
workflows apply to other nsgportal interactions with NSG (job creation
and polling). Details of the XML object returned after submitting or
managing an NSG job can be found in the NSG REST API user guide
(nsgportal.org/guide.html). To download job output results only, the curl
command line tool syntax (A.3.) is quite similar but there is no need to
parse the output .zip file, and deleting a job does not return a job object.

Job structures contain information on current job status, results and
errors at a more detailed level of specificity and organization. To assist
nsgportal users in troubleshooting, an error-reporting heuristic has been
implemented: this categorizes job status as either Completed (job pro-
cessed), Processing (job processing in progress), MATLAB Error encoun-
tered, or NSG Error encountered. A successful NSG job should progress
through a series of states (listed in Appendix B), the last (Completed)
indicating that the job results are available for download. Note that these
four NSG status categories are not the same as the internal nsgportal status
states, although they are related, as we will show next.

To check NSG job status, nsgportal first checks for the latest job
message issued by NSG. If it is Completed, it checks output file stderr.txt to
look for error messages issued by MATLAB (typically these are in the first
line of the file, enclosed in curly brackets). If an error is found, nsgportal
sets its internal job status to MATLAB Error, or if not, to Completed.

If the last message issued for the job is not Completed, nsgportal checks
the Failed field in the job structure. If its value is 1, signifying an NSG
failure in processing the job, nsgportal sets its internal job status to NSG
Error. If not, it sets its internal status to Processing to indicate that the job
is still being processed. This internal categorization is available only
within the nsgportal GUI.

3.3. Preparing nsgportal for use

Installation. All EEGLAB plug-ins including nsgportal can be installed
by following the procedure described (EEGLAB extensions/plug-ins
under https://sccn.ucsd.edu/wiki/EEGLAB) in the EEGLAB documenta-
tion. For the following, we assume the plug-in nsgportal has been added to
the EEGLAB installation.

Setting NSG credential and other options. Although nsgportal uses
UMBRELLA authentication within NSG-R, curl commands issued from
EEGLAB to interface NSG employ username and password while sharing
the common application key ‘EEGLAB_TG’. These commands also use
settings that must be defined by the user, e.g., the NSG URL (typically
‘https://nsgr.sdsc.edu:8443/cipresrest/v1’). Storing NSG credentials and
managing other nsgportal settings is performed by pop_nsginfo. This
function belongs to the group of pop_ functions introduced in the previous
section; we can therefore invoke its GUI by calling the function without
any argument (e.g., by simply entering pop_nsginfo on the MATLAB
command line) or by selecting EEGLAB menu item ‘Tools > NSG Tools >
NSG account info’ (see Inline Supplementary Fig. 2).

The user-provided credentials and options are stored in file nsg_info.m
in the root of the home folder, or if provided in the path designated for
EEGLAB options (see EEGLAB script eeg_options.m). Alternatively, the
same process of setting up the plug-in, performed in the pop_nsginfo GUI
(shown in Inline Supplementary Fig. 2), can be accomplished by calling
pop_nsginfo from the MATLAB command window and providing the
required inputs as key-value pairs, as in the following code sample:

The EEGLAB default ‘nsgkey’ and ‘nsgurl’ values shown in the code

https://sccn.ucsd.edu/wiki
https://sccn.ucsd.edu/wiki
https://EEGLAB_Extensions_and_plug-ins
https://sccn.ucsd.edu/wiki/EEGLAB
https://nsgr.sdsc.edu:8443/cipresrest/v1
mailto:Image of Fig. 4|tif

Fig. 5. The NSG-capable RELICA plug-in. A high level view of the NSG-capable RELICA plug-in. Here we have added a last input, compflag, to the original inputs of
the main function relica to indicate where the computation should be carried out (‘nsg’ or ‘local’). When relica is called with an EEG set structure and compflag is ‘local’,
computation is performed as usual (central yellow panel). If compflag is ‘nsg’, nsgportal code in relica first saves the current EEG dataset in a temporary folder also
containing a script (relicansg_job.m) generated to run relica on NSG with the parameters provided by the user. This script and the data provided as input are submitted
to NSG for processing using pop_nsg with first argument ‘run’ (green panel on right). Additional inputs are provided to indicate the script to run (relicansg_job.m), and
the designated job ID. This uses pop_nsg options ‘run’, ‘filename’, and ‘jobid’. After the job submission, relica exits, providing the jobID as output. After this, the plug-in
processing proceeds as in runica_nsg (Fig. 3). Once the NSG job is complete, the user provides the job ID to NSG to retrieve the results by again calling relica with the job
ID as the first and only argument. After checking the validity of the submitted job ID, relica uses pop_nsg (with arguments ‘run’ and ‘delete’) to retrieve the results and
then delete the job from the user’s NSG account. Finally the submitted EEG dataset plus the RELICA-computed IC reliability measures are provided in the func-
tion output.

pop_nsginfo('nsgusername','[your_username]', ...
'nsgpassword','[your_password]', ...
'nsgkey','TestingEEGLAB-BCE8EC90088F4475AE48190A1B87EF8D', ...
'nsgurl','https://nsgr.sdsc.edu:8443/cipresrest/v1', ...
'outputfolder','/data/tmp');

Code sample 1. Generic command line call to pop_nsginfo to store NSG user credential information.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
sample should not be altered. After registering for and obtaining an NSG
account, as described above, the install process described in this section
should be performed only once to install the plug-in.

3.4. The main plug-in GUI: pop_nsg

The nsgportal GUI. The nsgportal graphical user interface (GUI) is
controlled by the function pop_nsg which, through its associated window
and command line interface, is intended to be the primary point of user
interaction with NSG within EEGLAB. The main functionalities of
7

nsgportal, comprise the submission, managing, deletion, and retrieval of
NSG jobs. The functionalities supported by the pop_nsgGUI allow users to:
(1) Submit an EEGLAB job to NSG and set NSG-R options. (2) Perform test
runs of NSG jobs on the local computer (typically using a reduced in-
struction set). (3) Delete jobs from the user’s NSG account. (4) Download
NSG job results. (5) Load NSG job results into EEGLAB. (6) Visualize NSG
job error and intermediate job logs. (7) Access pop_nsg help documenta-
tion. The pop_nsgGUI (Fig. 2) can be invoked by executing ‘pop_nsg’ on the
MATLAB command windows or by selecting menu item ‘Tools > NSG
Tools > Manage NSG jobs’ from EEGLAB menu.

mailto:Image of Fig. 5|tif
mailto:Image of Code sample 1|eps

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
The pop_nsg GUI has three main sections (highlighted in Fig. 2 by
backing green, orange and cyan areas; see labels on the upper right side
of Fig. 2). Top Section A allows the user to interact with their own jobs
after submission to NSG. A list of all the active jobs under the user ac-
NSGJobStructure = pop_nsg('option_name', 'option_value');

Code sample 2. Generic key-value input pairs used to invoke pop_nsg.
count is displayed in the central text box. There, users can select a job
with a mouse click, either to then delete it from the queue, to examine its
error logs, or to download and display its results. Here, a font color code
with four categories (see display window legend) is used to display job
status. Middle Section B displays job status and other messages associated
with the job selected in Section A. The first line of this information is one
of the job status indicators (Appendix B). The lower Section C allows
[NSGJobStructure, AllNSGJobStructure] = ...
pop_nsg('run','path/to/my/job/folder', ...

'filename', 'my_job_script.m');

Code sample 3. Example command line call running an NSG job from the MATLAB command line using pop_nsg .
users to submit jobs to NSG. Here the user can specify the job files (as a
named .zip file or folder). The MATLAB data processing script to run must
also be defined here, as well as other NSG processing options (e.g.,
requested maximum run time). Another important feature allows the
user to run a (user-prepared) downscaled version of the job on their local
computer to test the integrity of the script. To use this option, the user
must prepare and identify a limited version of the processing script, for
example replacing its major processing loop variable (e.g., N ¼ all_fi-
les_to_process) with the quicker-running (e.g., N ¼ 1). For a detailed
explanation of the elements of this GUI and their functionality, see Ap-
pendix D.
3.5. Nsgportal Matlab-interface command line tools

Nsgportal command line tools allow users to largely automate their
workflow and make the NSG job submission, job status monitoring, and
job results retrieval processes simple for users – and/or EEGLAB func-
tions and plug-ins – to accomplish. Main nsgportal functionalities – sub-
mitting, monitoring, deleting jobs, and/or retrieving job results without
NSGJobStructure = nsg_recurspoll('My_Job_ID', 'pollinterval', 120);

Code sample 4. MATLAB command line call to nsg_recurspoll.

2 https://github.com/sccn/nsgportal/wiki
3 https://github.com/sccn/nsgportal
GUI interaction – can be also performed directly using command line
calls to function pop_nsg providing all its required input arguments. Other
useful functions include pop_nsginfo (to set up and record user NSG cre-
dentials), nsg_jobs (to return the current list of user NSG jobs) and
nsg_recurspoll (to monitor the status of an NSG job). See their function
help messages for usage examples.

Setting up user NSG credentials. After installing the nsgportal plug-in
in EEGLAB, function pop_nsginfo can be used to specify the user NSG
credential. This function was introduced in Section 3.3, where an
example of its command line call was presented in Code sample 1.

SubmittingandmanagingNSG jobs.Functionpop_nsg is theworkhorse
of the nsgportal command line tools. It enables users to: (1) create and run
an NSG job (‘run’ option); (2) test a short form of the job on your local
computer (‘test’ option); (3) retrieve NSG job results (‘output’ option), and
8

(4) delete an NSG job (‘delete’ option). The function pop_nsgmust be called
with key-value input pairs as in the following pseudo-code:

For options ‘run’ and ‘test’, the second argument must always be the
pathname of the job .zip file or the folder containing the job to be sub-
mitted (or locally tested). Using any of these two options also requires a
second pair of compulsory arguments (first argument, ‘filename’) to
identify the .m processing script file to be run in the user test or NSG run.
For instance to run a job located in path/to/my/job/folder running
MATLAB script my_job_script.m:

When pop_nsg is executed with any of the four mode parameters (‘run’,
‘test’, ‘output’, or ‘delete’), the function returns two outputs: (1) a job
structure containing all relevant information of the submitted or managed
job, and (2) a cell array listing all NSG jobs currently in the user NSG
account. In the example code above, these two outputs are called
NSGJobStructure and AllNSGJobStructure respectively. These output ob-
jects use the same NSG job structure introduced in Section 3.2.

When pop_nsg is called with options ‘output’ or ‘delete’, users can pass
the job ID, NSG job structure, or the job URL (see Section 3.2) as the
second argument. To use either of these two options, the referenced NSG
job must exist in the user’s NSG REST account; to use the ‘output’ option,
the job must have completed. This flexibility in invoking pop_nsg is sup-
ported by the nsgportal functions nsg_getjobid and nsg_flindclinetjoburl,
which respectively translate job URLs to job IDs and vice versa. Function
nsg_jobs retrieves information about the jobs associated with the user’s
NSG credential. Users can request a recursive check of the status of a
submitted job using nsg_recurspoll (see Appendix A.2). The call below sets
the polling interval to 2 min (120 s).

Recursive polling in nsg_recurspoll is implemented using the MATLAB
timer class to create an object that manages a recursive execution of the
sub-function nsg_poll, which in turn executes nsg_jobs repeatedly to check
job status by pulling the job status object.

3.6. Nsgportal documentation

A comprehensive nsgportalwiki2 linked to the nsgportal repository,3 as
well as function help messages contained in nsgportal functions document
its use.

Thensgportalwiki.Thewikibeginswithaquick introductionto theOpen

mailto:Image of Code sample 2|eps
mailto:Image of Code sample 3|eps
mailto:Image of Code sample 4|eps
https://github.com/sccn/nsgportal/wiki
https://github.com/sccn/nsgportal

Fig. 6. RELICA processing time on NSG versus a laptop. The two leftmost bars
represent recorded processing time running RELICA on the sample data using a
laptop (MacBoook Pro, Intel(R) Core(TM) i7-4770HQ 4-core CPU @ 2.20 GHz) and
via NSG (1 node, all 24 cores of the XSEDE network cluster Comet) using 100 it-
erations of ICA decomposition using ‘runica’ (Bell and Sejnowski, 1995; Lee et al.,
1999; Makeig et al., 1996). The detailed breakdown of NSG processing time
(magnified by 10) is shown in the right gray panel. Here the initialization stages
(bottom of right bar) produced only a small delay, though this may vary with current
system load. Data upload and download times (not shown) here required about as
much time as the three job initialization stages (right column bottom), but these
delays were still negligible compared to the time saved by performing the compu-
tation using NSG versus on the laptop. Upload and download times depend heavily
on the Web bandwidth and traffic load between the user machine and NSG servers.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
EEGLAB Portal and details how to register as an NSG user and use its web
portal. Details on installation anduse of the nsgportal plug-in are provided. To
representtheworkflowwithinnsgportal,wehavegeneratedaplug-infunction-
calling scheme thatmayease futuremodifications andmaintenance.4 Finally,
asectionofthewikipresentsdetailedexamplesofhowtousethensgportalplug-
in both from the EEGLAB GUI and from the MATLAB command line. Addi-
tional examplesaregiven illustratinghowtousensgportal command line tools
to equip any new or existing EEGLAB plug-in with optional HPC capability.

Nsgportal function help messages. Each main function of nsgportal
begins with a detailed help message in EEGLAB format: a brief descrip-
tion of the function, a usage example, a table of compulsory and optional
input parameters, and a description of the outputs.
% Launch EEGLAB
eeglab;
% Load the sample EEGLAB dataset
EEG = pop_loadset('wh_sub011_proc.set')
% Decompose the data into independent c
EEG = pop_runica(EEG, 'icatype', 'runic

% Plot the scalp maps of the first (and
pop_topoplot(EEG, 0, [1:20] ,'EEG Data
% Save the figure as a JPEG file
print('-djpeg', 'IC_scalp_maps.jpg');
% Save the dataset, now including the I
pop_saveset(EEG, 'filename', 'wh_sub11_

% Delete the input dataset to reduce th
delete('wh_sub011_proc.set');
delete('wh_sub011_proc.fdt');

Code sample 5. Job scr

4 https://github.com/sccn/nsgportal/wiki/Scheme-of-plug-in-functions-call

9

4. Applications and examples

Below, we show three applications using the nsgportal plug-in, applied
to a representative EEG dataset. The first two applications illustrate the
submission, managing, results retrieval, and deletion of jobs from the
nsgportal GUI and MATLAB command line, respectively. The third appli-
cation demonstrates the use of nsgportal command line tools to implement
a computationally intense EEGLAB plug-in that gives the user the option to
perform the computation on HPC resources via NSG. We first demonstrate
this capability by implementing a simple plug-in using nsgportal functions,
and then by extending the more complex RELICA plug-in (Artoni et al.,
2014) to include the option to run its computationally demanding pro-
cessing on NSG resources. Finally, we report the results of testing the
NSG-enabled RELICA on actual EEG data.

4.1. The test data and simple job example

Test data description and preprocessing. To demonstrate the use of
nsgportal, we use a single dataset from the EEG/MEG study reported in
(Wakeman and Henson, 2015) and made publicly available on Open-
Neuro.org (accession number: ds000117). For information on the experi-
mental paradigm and a description of the preprocessing steps applied to
these data, see Appendix C. The preprocessed data are a set of 132 EEG 3-sec
data epochs time-locked to presentations of visual stimuli and recorded from
70 EEG channels at a sampling rate of 250 Hz, saved as an EEGLAB dataset.

The test job script. Electric potentials recordedwith EEG are the summation
of the underlying activity of multiple brain activity sources. Under favorable
circumstances, the activity from these sources can be separated by ICA (Makeig
et al., 2002). However, ICA computation may be lengthy and computationally
expensive. Herewe showhow to build a job script to useNSG to decompose the
data into maximally independent components (ICs) by applying Extended Info-
max Independent Component Analysis (ICA) using the EEGLAB function runica.

First, we create a job folder (runica_on_nsg) containing the test data (files
wh_sub11_preproc.set andwh_sub11_preproc.fdt) plus a simpleMATLAB script
(runica_on_nsg.m) that executes the decomposition via NSG and plots some
results. The script (Code sample 5 below) loads the dataset, runs the
decomposition, plots results, then saves the figure file and output EEGLAB
dataset (now including the ICAmixing and unmixingmatrices) to return to
the user. The input dataset is (optionally) deleted (to reduce the size of the
returned results package). The figure (IC_scalp_maps.jpg) shows scalp maps
(scalp projection patterns) of the largest 20 ICs (arranged in a 4-by-5 grid).

Assuming we have obtained an NSG account and have installed the
;
omponent (IC) processes
a');

 largest) 20 ICs
epochs',[4 5] ,0,'electrodes','on');

CA decomposition matrix
proc_output.set');

e output file size

ipt ‘runica_on_nsg.m’.

mailto:Image of Fig. 6|tif
mailto:Image of Code sample 5|eps
https://github.com/sccn/nsgportal/wiki/Scheme-of-plug-in-functions-call

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
nsgportal plug-in, we can then zip the job folder, log in to the NSG website
(www.nsgportal.org), and submit the job by identifying the .zip file con-
taining the job folder. Else, we can do this andmore using the nsgportalGUI.

Building a job test script for local execution. A second, ‘test’ version
of the job script (test_runica_on_nsg.m) in the job folder, differs from run-
ica_on_nsg.m in only one way: it reduces its computational complexity by
asking for a much smaller number of ICA training steps (here, it sets the
runica option ‘maxsteps’ to only 5 instead of the default 512). The
nsgportal GUI can then be used to run the test script on the user’s com-
puter to verify the accuracy of the syntax in the rest of the script, thereby
avoiding wasting user and NSG time and resources attempting to run
scripts that still need debugging. For jobs involving many data files (for
different participants and/or conditions) and/or surrogate data analysis,
this might also involve severely limiting the number of datasets and/or
loop iterations to minimize compute time while allowing MATLAB,
running on the user’s local computer, to find any coding mistakes before
launching the much longer-running full job script on NSG.

4.2. Submitting, managing and retrieving the job using the nsgportal GUI

After we have installed the nsgportal plug-in (Section 3.3), we launch
the EEGLAB GUI (command, eeglab) and then the pop_nsg GUI – either by
entering pop_nsg in the MATLAB command window or by selecting item
‘Tools > NSG Tools > Manage NSG jobs’ from the EEGLAB GUI menu. To
submit the sample job for processing via NSG from the nsgportal GUI
(Fig. 2 above), we first browse and select the (compressed or uncom-
pressed) job file runica_on_nsg.zip using the ‘Browse’ button. After
selecting the job file, the edit box ‘Job folder or .zip file’ and the drop-
down menu ‘Matlab script to execute’ are populated with the path to
the zip file and the names of the scripts runica_on_nsg.m and test_runi-
ca_on_nsg.m. The field ‘Job ID’ is also populated with a default job name
that we choose to change to the more mnemonic ‘runica_on_nsg_test’.
1>> ./runica_on_nsg/
2>>./runica_on_nsg/IC_scalp_maps.jpg
3>>./runica_on_nsg/runica_on_nsg.m
4>>./runica_on_nsg/wh_sub11_proc_output.set
5>>./runica_on_nsg/wh_sub11_proc_output.fdt
6>>./scheduler_stderr.txt
7>>./scheduler_stdout.txt
8>>./stderr.txt
9>>./stdout.txt
10>>Done.
11>>File downloaded and decompressed in the
output folder specified in the settings
12>>Accessing job: "https://nsgr.sdsc.edu:8443/cipresrest/v1/job/my_useraname/NGBW-JOB-
EEGLAB_TG-9FB3515E932C4CA8AADAEF6D40167F0D" on NSG...
13>>Done.

Code sample 6. The code above shows the MATLAB command window output after retrieving job results using the ‘Download job results’ button in
the pop_nsgGUI. Lines 1-5 (in green) show the files generated during the processing. The input job data files were (optionally) removed by our test script, so are not
contained in the downloaded results.
Running the test script locally. Field ‘Matlab script to execute’ has
the two .m file entries: runica_on_nsg.m and test_runica_on_nsg.m. To test
the script syntax on our local computer, we first select the test script
(test_runica_on_nsg.m) and press button ‘Test job locally’. This script is the
‘light’ version of the job script runica_on_nsg.m. After the job completes its
local processing without any error, we are assured that the job script
syntax at least contains no syntax errors. Testing the jobs script locally is
an optional step not required to submit a job for processing in NSG.
However, this check may save a lot of time in troubleshooting syntax
errors that may delay and interfere with the completion of the job while
unecessarily expending communal HPC resources.

Submitting the job to NSG. After testing the downscaled version of
the job locally, we selected the script to execute in NSG (runica_on_nsg.m)
10
in the field ‘Matlab script to execute’. Next, in edit box ‘NSG run op-
tions’, we set the job maximum time allocation (here) to 1 h by typing
‘runtime’, 1. The unit here is hours, and the maximum setting is 48 h.
Note: do not set this to less time than the job will require! Then, we click
the button ‘Run job on NSG’ to submit the job for processing. Upon
successful job submission, the Job ID we assigned (‘runica_on_nsg_test’), is
shown in the list of job records NSG associates with our NSG user
credential. The current status of the job (‘INPUTSTAGING’) is displayed
in the job status panel (see Appendix B for status name interpretations).

Monitor job status. After the job is submitted, to ask pop_nsg to check
periodically for its status check the checkbox ‘Auto-refresh job list’.
Messages giving the current NSG status of the selected job are then
printed (by default, every 30 s) on the MATLAB command line. The text
color used to display the job ID and job status in the nsgportal GUI, will
also be updated to show the current job status.

Retrieving the MATLAB command window output of the job. The
MATLAB command window output issued in the NSG MATLAB session
during the job processing can be checked from pop_nsg GUI. To retrieve
and display this information in the MATLAB browser, we used the button
‘Matlab output log’. It is possible that this information is not available at
the time of the request; in this case the user will be notified of this by a
MATLAB pop-up window.

Retrieving and loading job results. When the job has completed, an
email to this effect is sent to the registered user. At this point, the job
status in the GUI also reads ‘COMPLETED’. We can then download the job
results by clicking on ‘Download job results’. The names of the down-
loaded and unzipped files are then printed on the MATLAB command
window. The following code sample resembles the message printed on
the MATLAB command window after downloading the results of the
runica_on_nsg.zip test job.

Here, we can see that both results and files submitted (in green) are in
the downloaded file, saved in the path defined previously in pop_nsginfo.
To explore the output files, we use the file explorer implemented in the
button ‘Load/plot results’. This application can load datasets into
EEGLAB as well as display a wide range of image formats generated during
a job processing in NSG. From this file explorer, we can navigate to (by
double-clicking into) the downloaded folder runica_on_nsg and access the
result files. For instance, after navigating to the folder with the results of
the job in this example, if the file wh_sub11_proc_outpout.set is selected and
opened by using the button ‘Load/plot’, the main EEGLAB window will
pop up, showing that the selected data has been loaded and that the ICA
decomposition has been performed (the ‘ICA weights’ field reads ‘yes’).

Deleting a job. After retrieving the results, we may proceed to delete
the job from our NSG account, here by selecting the job ‘runi-
ca_on_nsg_test’ in the pop_nsg job list and clicking the button ‘Delete this

http://www.nsgportal.org
mailto:Image of Code sample 6|eps

Fig. 7. Cluster exemplar scalp map correla-
tions. Scalp maps and scalp map correlations
between pairs of best-matching IC cluster exem-
plars from the output of the same RELICA
decomposition run (twice) on a laptop and (once)
on XSEDE network cluster Comet using nsgportal.
Top trace: scalp map correlations of best-matching
IC exemplar pairs, sorted by decreasing correla-
tion values. Scalp maps: Scalp maps of selected
best-matching IC cluster exemplars from the three
decompositions. Black line segments indicate the
mean correlation rank of these ICs across the
three pairwise comparisons among the three
maps. Percentages above the scalp maps give the
stability index reported by RELICA for these ICs.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
NSG job’. This functionality can be used either on finished jobs or jobs
being currently processed. The deletion of jobs fromNSG is accomplished
by calling nsg_delete from pop_nsg.

4.3. Submitting, managing and retrieving a job using nsgportal command
line tools

Next, we show how to create, manage, and retrieve NSG jobs using
nsgportal command line tools to automate a data analysis pipeline. For
this purpose, we will use the same runica test job and data introduced in
Section 4.1. The nsgportal command line tools were introduced in Section
3.5; there their key components are described in more detail. Here, we
again assume we have obtained an NSG account and have installed the
nsgportal plug-in (see Section 3.3).

Submitting a job to NSG. The code sample below uses function
pop_nsg to submit the job runica_on_nsg.zip for processing via NSG. Here
we store the path to the job .zip file in a variable; this path can also be
passed directly as a string to the function:

Notice that three pairs of key-value parameters were used here (‘run’,
‘filename’ and ‘jobid’). The ‘filename’ argument is compulsory when using
% The job zip file is located in home directory
path2zip = 'Users/eeglabHome/runica_on_nsg.zip';
% Execute the job
currentjob = pop_nsg('run',path2zip,'filename', 'runica_on_nsg.m', ...

'jobid','runica_on_nsg_test');

Code sample 7. Using pop_nsg for submitting the runica_on_nsg.zip job for processing at NSG.
the option ‘run’ to specify the top-level script run in the job. Default
options in pop_nsg assign a randomly generated ID to the job. However,
we encourage users to specify a meaningful job ID for their NSG jobs, as
this will help in later job management, especially when the number of
user submitted jobs is large. In the code sample above, we specify the job
ID (‘runica_on_nsg_test’) using the input parameter jobid. After executing
the code above, the function pop_nsg returns a MATLAB NSG job structure
for the submitted job (currentjob) that we will use as an input for the next
pop_nsg('output', currentjob);

Code sample 8. Command line call initiating recur

11
processing steps.
Although not shown here, users can also specify other job parameters

while submitting a job by providing key-value pair arguments to the
function call. These optional arguments include the following: 1) ‘outfile’:
the local folder to which the NSG results are to be downloaded. The
default value for this parameter is the jobname and job ID plus prefix
‘nsgresults_’ (for example, nsgresults_ testjob_1234). 2) ‘runtime’: the
maximum time (in wall clock hours) to allocate for computation of the
job on NSG. The default value is 0.5 h (the maximum value is 48 h). Note,
again, that if the job takes longer to complete than asked for here, it will
be halted before completion! This maximum time estimate is used by the
job scheduler to maximize XSEDE resources. ‘subdirname’: name of the
sub-directory containing the script file to run on NSG if the script file is
not in the job’s root folder. The options available in pop_nsg are not
restricted to those shown here, as the list may grow based on the user
needs. Changes and additions will always be documented in the nsgportal
documentation (Section 3.6).

Monitoring job status periodically. After the job is submitted to NSG
it will be processed on the XSEDE network. We can check the status of the
job periodically by calling function nsg_recurspoll, providing as arguments
the job structure obtained when submitting the job (job ID, URL or
structure are valid inputs), currentjob, and the polling interval in seconds.
This function is particularly handy for running functions that operate on
the output of a submitted NSG job. Below, we specify the job structure
currentjob as a first argument and 120 s (2 min) as the polling interval:

Once initiated, function nsg_recurspoll exits when the NSG job has
completed and its output is ready to be accessed by the user. The function
sive polling of the job status of job ‘currentjob’.

mailto:Image of Code sample 7|eps
mailto:Image of Fig. 7|tif
mailto:Image of Code sample 8|eps

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
also returns a job structure containing the status of the specified job. This
structure is basically the same as that provided as input, but with the job
status field updated.

Retrieving job results. After the job completes and function nsg_re-
curspoll exits, job results can be retrieved using pop_nsg by providing the
job structure following the first argument ‘output’.

The input currentjob contains the NSG job structure of the job we want
to retrieve. As in the example using nsportal GUI, the output files are
NSGjobstruct = pop_nsg('delete', currentjob);

Code sample 9. Command line call to pop_nsg to retrieve results of job ‘currentjob’.
downloaded to the location defined by the user using pop_nsginfo (see
Section 3.3).

Deleting an NSG job. Below, we use the output structure of nsg_re-
curspoll to delete the job from the NSG record associated with the user’s
NSG credential.

The output here is the NSG job structure (NSGjobstruct) of the job
deleted. Note that when this command is executed the job is deleted from
currentjob = nsg_recurspoll(currentjob, 'pollinterval', 120);

Code sample 10. Command line call to delete the job whose job structure is currentjob.

5 http://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
6 https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/runica

_nsg_plugin
the user’s NSG account and can no longer be accessed.
In this sub-section, we have shown a proof of concept example

automating the use of NSG resources using nsgportal command line tools.
With minor changes to the job script, the example here might be scaled
up to process data from many subjects within a single job, etc.

The tools framed here can also be used to implement HPC access
offered by NSG from within any EEGLAB function or plug-in. This is the
focus of the next section.

4.4. Accelerating EEGLAB plug-in performance using nsgportal tools

EEGLAB plug-in extensions allow users to build and publish new or
customized data processing and visualization functions using EEGLAB
data structures, functions, and conventions. Plug-in functions can be
called conveniently by selecting the new menu item(s) they introduce
into the EEGLAB menu of users who have downloaded and installed
them. In this Section, we use nsgportal command line tools to implement
access to NSG HPC capabilities in: (1) an example plug-in that performs
the same processing as in the sample job shown in Section 4.1 and, (2) an
example adding nsgportal command line calls to an existing plug-in,
RELICA (Artoni et al., 2014).

4.4.1. Simple example plug-in: RUNICA_NSG
Here we describe a simple yet fully functional EEGLAB plug-in

(RUNICA_NSG) exemplifying the application of nsgportal command line
tools to implement HPC computation from within EEGLAB plug-ins. To
create this plug-in, we modified the simple runica_on_nsg.m script pre-
sented above (Section 4.1) by turning it into a function eeg_runica_nsg.m
that accepts inputs that 1) point to the data matrix to decompose, and 2)
select the ICA algorithm to use in the decomposition. To allow the
example plug-in to be called directly from the EEGLAB GUI menu, two
additional functions are needed: function eegplugin_runica_nsg manages
the listing of the plug-in in the EEGLAB menu, while pop_runica_nsg
manages the inputs, first popping up a parameter entry window if its two
required input arguments are unspecified, and then redirecting compu-
tation either to the local computer resource or to NSG. The example
RUNICA_NSG plug-in function code is available online, both from the
12
EEGLAB Extension Manager5 and from its GitHub repository.6

The workflow of RUNICA_NSG is purposely simple. When its main
pop_ window function, pop_runica_nsg, is invoked either from the EEGLAB
menu or the MATLAB command line, the data matrix in the currently
loaded EEG dataset (EEG.data) is selected for stochastic decomposition.
Two further parameters are required to specify: (1) whether the
computation should be performed on the user’s computer or on XSEDE
network HPC resources via the user’s NSG account, and (2) which ICA
algorithm to use (user is given two choices: ‘runica’ and ‘jader’). If the
user chooses to perform the computation on their local computer (second
argument ‘local’) pop_runica_nsg will perform the processing locally (by
calling eeg_runica_nsg.m), returning the input EEG dataset structure, now
containing the computed ICA decomposition parameters.

If the user chooses to perform the computation through NSG (second
argument ‘nsg’), the function pop_runica_nsg will: (1) create a temporary
folder, (2) save the EEG data passed as input in this folder, and (3)
generate and save in this folder a MATLAB script (runica_nsg_job.m)
including a call to the RUNICA_NSG plug-in function eeg_runica_nsg with
the user-specified parameters. Then pop_runica_nsgwill proceed to submit
this job folder to NSG using nsgportal command line tools, identifying
runica_nsg_job.m as the main script to execute (first argument ‘filename’).
After submitting the job, eeg_runica_nsgwill exit, returning the NSG job ID
assigned to the task.

The user can provide this job ID to pop_nsg to monitor the job progress
and then, when it completes, use it to retrieve its results through
pop_runica_nsg. The process of job submission and retrieval, as imple-
mented using nsgportal command line functions, is shown in Fig. 3, in
which the nsgportal functions used in the process are shown in green
boxes.

4.4.2. Adding HPC computation to the RELICA plug-in
RELICA (for ‘RELiable ICA’) is a method that uses a stochastic

approach to characterize the reliability of component processes identi-
fied by ICA decomposition of a multichannel dataset, by analyzing the
stability of the component processes under bootstrap resampling. After
computing a reference decomposition on the whole input data, RELICA
performs multiple ICA decompositions of bootstrapped versions of the
input data, then clusters the ICs from all the decompositions based on
similarities between their time courses. By default, the number of clusters
corresponds to the number of ICs per decomposition. Each cluster in the
analysis is associated with an exemplar IC, selected to be the IC nearest to
the cluster centroid in the clustering space. Finally, RELICA computes a
measure of the compactness of each bootstrap IC cluster that provides a
within-subject measure of IC stability for each IC.

Fig. 4 shows a high-level view of the process implemented in the
original RELICA implementation by Artoni et al. (2014). Most of the
computation time here is spent in the sequence of ICA decompositions

mailto:Image of Code sample 9|eps
mailto:Image of Code sample 10|eps
http://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/runica_nsg_plugin
https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/runica_nsg_plugin

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
performed on the bootstrapped data (red area, Fig. 4). The high
computational load required to perform these processes, particularly for
large datasets with many channels, makes the RELICA plug-in a good
candidate for running on NSG high-performance computing resources
using nsgportal tools.

Here we modified the RELICA implementation to reduce its runtime.
First we parallelized the main for loop in the RELICA bottleneck (red
area, Fig. 4) using parfor from the MATLAB Parallel Computing Toolbox
to speed processing on either local (multi-core) or (NSG-accessed) HPC
computers. Then we added nsgportal code to enable it to run on XSEDE
HPC resources via NSG. Fig. 5 shows a high level view of the resulting
NSG-capable RELICA code.

The user first provides an EEGLAB dataset (in the form of an EEG data
structure) for processing by relica. As in Section 4.4.1, by specifying the
‘nsgflag’ argument as ‘local’ or ‘NSG’, the user can direct the computation
to the user’s local computer or to NSG resources. In the latter case, relica
will create a command line call script to invoke relica on the HPC resource
and pass the user-selected options to it. This script plus the input data are
saved in a temporary folder and submitted to NSG as a job using pop_nsg
with argument ‘run’. If the submission is successful, the (assigned or
optionally user-specified) job ID is returned as a text output. This job ID
must later be used to retrieve the results when available. Here, the user
provides relica with the job ID as first argument.

When relica confirms the validity of the provided job ID and that the
job has completed, it downloads the job results (pop_nsg ‘output’), deletes
the job from the user’s NSG account (pop_nsg ‘delete’) and loads the output
of relica into the EEG dataset structure. The results of RELICA are stored
in the EEG dataset structure, allowing seamless integration of NSG
computation into RELICA post-processing and results visualization.

4.4.2.1. RELICA performance: HPC versus local computing. To test the
performance of RELICA running via NSG on XSEDE cluster Comet, we ran
RELICA on the sample EEG dataset referenced in Section 4.1, setting the
number of bootstraps to 100 and specifying the ICA algorithm as ‘runica’
(Extended Infomax ICA) (Bell and Sejnowski, 1995; Lee et al., 1999;
Makeig et al., 1996). The two bars on the left in Fig. 6 show RELICA
processing time on a modern laptop (MacBook Pro, Intel(R) Core(TM)
i7-4770HQ 4-core CPU@2.20 GHz) and on NSG (using one 24-core node
of the XSEDE network HPC resource Comet). Timestamps for each NSG
process were retrieved from the job status XML object introduced in
Section 3.2. Despite the relative simplicity of the task, via NSG the
RELICA job was performed 11 times faster than on the laptop. A detail of
the NSG processing time, magnified x10 in the gray panel on the right
side of Fig. 6, shows the time the job spent in the different NSG job
processing stages including data handling and job scheduling. The
scheduling delay depends on the queue wait time of the HPC machine to
which NSG sends jobs for processing, so may vary with machine demand
intensity.

In a second test, we explored the reliability of the RELICA computa-
tion performed via NSG vis a vis two trial runs performed on the same
laptop. To do this, we computed pairwise correlations between the IC
cluster exemplar maps obtained from RELICA computed via NSG and
from the two runs on the laptop using relica options as in Section 4.4.2.
Results of this analysis are shown in Fig. 7, in which the sorted best-
matching IC-pair correlations between the cluster exemplar IC scalp
maps obtained from the NSG and first laptop runs (NSG, Laptop1), be-
tween the NSG and the second laptop runs (NSG, Laptop2), and between
the two laptop runs (Laptop1, Laptop2), are indicated in blue, green and
orange traces respectively. As expected, in all three exemplar IC-pair
comparisons (NSG versus Laptop1, NSG versus Laptop2, and Laptop1
versus Laptop2) at least 60 of the 70 IC exemplars are near-perfectly
matched. The small remaining variability is a consequence of the sto-
chasticity of the ICA computation itself.

Fig. 7 shows four sets of best-matching cluster exemplar IC scalp maps
from the three runs. Black lines show the mean correlation-sorted rank of
13
the three matching IC cluster exemplar maps. Percentages above the
scalp maps give the stability indices reported by RELICA for each IC
cluster. The strong similarity of the scalp maps (even for the rightmost
pair), demonstrate the high level of consistency of RELICA output across
runs and compute resources.

5. Discussion

Recently (Delorme et al., 2019) we introduced the Open EEGLAB
Portal (OEP) framework providing free use of high-performance
computing (HPC) resources from the EEGLAB environment through the
Neuroscience Gateway (NSG, nsgportal.org). Here, we report the release
of an EEGLAB plug-in, nsgportal, implementing an interface between NSG
and EEGLAB running on MATLAB on any Web-connected computer. The
nsgportal plug-in uses the capabilities of the NSG REST API to enable
optional HPC processing of computationally intensive tasks directly from
any internet-connected EEGLAB GUI, or from any suitably adapted
EEGLAB function or the MATLAB command line. The nsgportal features a
flexible and user friendly GUI that allows users to directly submit,
manage and retrieve jobs running on the U.S XSEDE network of HPC
resources fromwithin any EEGLAB session. The set of nsgportal command
line tools supporting the functions of its GUI, enables users to create their
own HPC computation-enabled functions, function pipelines, and
EEGLAB plug-ins, while making the NSG job submission and results
retrieval process as simple as possible. Detailed documentation and wiki
pages are available to support nsgportal use and maintenance.

Here we have described nsgportal functions and interfaces, and
pointed to online documentation to support their use, maintenance and
further development. To illustrate the use of nsgportal and its potential
applications we have presented three examples. The first two examples
demonstrated how to use nsgportal to create, manage, retrieve results
from, and then delete an NSG job from the nsgportal GUI and the EEGLAB
session MATLAB command line. Here we used a simple script to compute
an ICA decomposition of an EEG dataset, save the results, and plot images
of some resulting IC scalp maps. The structured approach and guidelines
used in these examples can be easily modified to accomplish more
computationally intensive tasks.

We then demonstrated (Section 4.4.2), through a concrete example,
how to use nsgportal command line functions to implement direct HPC
access from within any EEGLAB function or plug-in. For this purpose, we
modified the job presented in Section 4.1 by turning the earlier example
script into a function accepting inputs pointing to the data matrix to
decompose and selecting the ICA algorithm to use in the decomposition.
The resulting simple example plug-in (RUNICA_NSG) is available from
the EEGLAB plug-in manager and includes abundant comments and
documentation to support implementing HPC access using nsgportal
within other EEGLAB functions and plug-ins. Please note that EEGLAB
plug-ins can be run in NSG processing scripts without including any
nsgportal functions; many commonly-used plug-ins are available in the
EEGLAB NSG distribution – any that are not yet available directly within
NSG can be uploaded to NSG, along with the data and any other custom
EEGLAB functions. Using the nsgportal functions within EEGLAB func-
tions and plug-ins (as in Sections 4.4.1 and 4.4.2) is a convenient option
for authors of new or existing plug-ins to consider, as using nsgportal
functions they can provide users an NSG-mediated computation option
within the plug-in itself.

To show this capability operating in an existing EEGLAB plug-in, we
chose to use the more computationally demanding RELICA plug-in of
Artoni et al. (2014). The addition of nsgportal tools to RELICA was pre-
sented in Section 4.4.2.

To explore the impact of these changes on RELICA performance, we
ran a RELICA task on NSG and on a modern laptop (MacBoook Pro,
Intel(R) Core(TM) i7-4770HQ 4-core CPU @ 2.20 GHz). The computa-
tion using NSG was eleven times faster than on the laptop, and the
resulting output across three runs (one via NSG and two on the laptop)
were practically indistinguishable (Section 4.4.2.1). NSG computation

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
time included data handling and scheduling delays. These times can vary
depending on the system load at the time of submission. To probe vari-
ability in the times required for NSG data handling and job scheduling,
we submitted the ICA decomposition job (Section 4.1) to NSG repeatedly
over a month, and recorded computation times and scheduling delays.
Total computation time averaged 31 � 3 min (mean � standard devia-
tion). Of this, job scheduling accounted for 2� 4 min (with a non-normal
distribution). These results provide a rough idea of the stability of NSG
regarding scheduling delay, here under relatively modest user demand.

Job file upload and download durations may depend heavily on user
Internet bandwidth and job size. Data upload and download times for the
RELICA test job were negligible compared to the required length of the
computation. However, we must warn users that data I/O speed may be
an important factor to consider when weighing the advantages of
running NSG jobs requiring very large data file uploads. NSG data I/O
speeds vary greatly depending on the bandwidth and then-existing traffic
load of each link in the user connection to NSG servers.

Lack of adequate computational power currently acts as a kind of
‘compute horizon’ boundary on scientific imagination itself – enhancing
computational power can thus, at its best, both prompt and enable new
scientific vision and discovery. However, before submitting EEGLAB jobs
to run via NSG using nsgportal, we encourage users to consider the time
cost/benefit ratio of submitting a job for processing to NSG versus using a
local compute resource. There may be instances in which the use of a
local resource and/or alternate analysis method are more efficient than
using NSG – for example, in cases in which uploading the data to NSG
might itself require more time than performing the computation locally
or where the applied algorithm may itself be easily optimized to achieve
the desired computation speed. Use of the substantial compute resources
available via NSG should be exercised thoughtfully, particularly in these
times in which reducing the human carbon footprint appears key to
preserving human civilization in its current form.

Another important aspect to consider before submitting a job to NSG
is whether and to what extent the task itself can take good advantage of
parallel computing resources. In some (extreme) cases, the overhead
involved in setting up and maintaining parallel processing might require
more time than the actual computation. Jobs running iterative processes
each requiring a long computation time (such as optimal electrical head
modeling or ICA decomposition of large datasets), or jobs applying
intensive processing to a large amount of data (applying time/frequency
analysis to a large EEG study, for example) may best take advantage of
NSG resources. Other EEGLAB scripts, functions, and pipelines that use
vectorized code already optimized for local computation may not benefit
from being sent to NSG for batch processing. The latter could only be
justified when the data handled by the pipeline are too large for a per-
sonal computer to manage. Finally, jobs that require human interaction
(e.g., manual data cleaning) cannot take useful advantage of batch-mode
HPC processing.

Some current limitations: Currently, the Comet supercomputer uses
24-core nodes (note: its planned successor will use 64-core nodes) and
NSG can assign a maximum of one node (24 cores) to each EEGLAB job,
though this limitation will soon be relaxed with the planned introduction
on Comet of the MATLAB Parallel Server™ library. Another current
limitation is the lack of NSG support for data retention and shareability
within user NSG accounts. Under a current NeuroElectroMagnetic data
Archive and tools Resource (NEMAR) project (R24 MH120037) oper-
ating under the OpenNeuro data archive umbrella (openneuro.org), we are
14
developing a solution that will ultimately allow joint use within NSG of
personal and/or public data published on OpenNeuro.

6. Conclusions

Here we have described nsgportal, an EEGLAB plug-in toolbox
providing neuroscientists and others using the EEGLAB signal processing
environment (sccn.ucsd.edu/eeglab) free access to HPC resources of the
U.S. XSEDE high-performance computing network directly from the
EEGLAB GUI or session MATLAB command line through a programmatic
interface to the Neuroscience Gateway (nsgportal.org). We also showed
how to use the nsgportal command line tools to equip EEGLAB functions
and plug-in toolboxes with direct HPC run capabilities. Finally, we per-
formed a proof-of-concept test of nsgportal performance on a suitable EEG
data processing task, and confirmed the equivalence of the obtained
results.

The ease and flexibility of the nsgportal tools can accelerate any
neuroelectromagnetic data research in need of higher computational
power. In particular, dynamic modeling and machine learning ap-
proaches that are now being applied to human electrophysiological data
can require unprecedented computing power. Limitations in available
computing resources might be said to constitute a ‘compute horizon’
beyond which researchers cannot or dare not explore or imagine.
Extending the compute horizon for electrophysiological imaging
research using nsgportal tools may hopefully stimulate researchers to use
new research methods built on richer data models and thereby obtain
new results stimulating new insights into brain function and health.

Funding sources

This work was supported by the National Institutes of Health, U.S.A.
(R01-NS047293, R24-MH120037, R01-MH123231, 5R01-EB023297)
and the National Science Foundation (#1458840), and by a gift from The
Swartz Foundation (Old Field, NY).

CRediT authorship contribution statement

Ram�on Martínez-Cancino: Conceptualization, Software, Writing -
review & editing, Visualization. Arnaud Delorme: Conceptualization,
Software, Writing - review & editing, Supervision, Funding acquisition.
Dung Truong: Software, Writing - review & editing. Fiorenzo Artoni:
Software, Writing - review & editing. Kenneth Kreutz-Delgado: Su-
pervision, Writing - review & editing. Subhashini Sivagnanam:
Conceptualization, Software, Writing - review & editing. Kenneth
Yoshimoto: Conceptualization, Software, Writing - review & editing.
Amitava Majumdar: Funding acquisition, Project administration,
Writing - review & editing, Software, Conceptualization. Scott Makeig:
Conceptualization, Software, Writing - review & editing, Visualization,
Project administration, Supervision, Funding acquisition.

Acknowledgements

Fig. 1 uses elements designed by macrovector/Freepik and Freepik
(freepik.com). The authors also thank all nsgportal beta users for their
encouragement and valuable feedback and to Dr. Johanna Wagner for
helping with the references.
Appendix A

The code samples below show typical curl calls to the NSG REST API used in nsgportal for: submitting a job, checking job status, retrieving job results,
and deleting a job. Lines in the code samples have been numbered for tutorial purposes (they are not present in the actual code). These examples assume
the user has been registered in NSG and obtained a valid username and password, designated as your_username and your_password respectively. The
application key and NSG URL (nsgr.sdsc.edu:8443/cipresrest/v1) are designated as $KEY and $URL respectively.

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
A.1. Submitting a job

1 curl -s -u your_username:your_password \
2 -H cipres-appkey:$KEY \
3 $URL/job/your_username \
4 -F tool=EEGLAB_TG \
5 -F input.infile_=@"/data/TestingEEGLABNSG.zip" \
6 -F vparam.filename_=run_ica_nsg.m \
7 -F metadata.clientJobId=TestingEEGLABNSG \
8 -F vparam.outputfilename_="nsgresults_TestingEEGLABNSG" \
9 -F vparam.number_nodes_=1 \

Code sample A1.
The code sample above (Code sample A1) shows a curl command following NSG REST API specification for submitting a job to NSG using EEGLAB as
a tool (see Line 4). The job zip file is specified with the parameter input.infile_ in Line 5, and the script to run with the parameter vparam.filename_ in Line
6. A job ID is indicated with the parameter metadata.clientJobId in Line 7. Although not compulsory in NSG REST API specifications, in nsgportal the use
of a job ID is mandatory. The rationale for this is to provide meaningful job identifiers to users, rather than a long job url used in NSG to tag and track
jobs. A default job ID assigned in nsgportal is created by taking the name of the file in input.infile_ and attaching three randomly generated numbers in its
end. This job ID can bemodified at the user’s convenience. In the sameway, in nsgportal, the name of the output file is assigned a default value created by
attaching the prefix ‘nsgresults_’ to the value defined in metadata.clientJobId. This value is set in Line 8 of the code sample above by using the parameter
vparam.outputfilename_. Finally, we define the number of nodes requested for computation with the parameter number_nodes_ in Line 9. At this moment,
NSG only allows the selection of one node (currently, of 24 cores) for each EEGLAB job. For more details on the MATLAB call of the code above, see
nsgportal function nsg_run.

A.2. Checking job status

1 curl -s -u your_username:your_password \
2 -H cipres-appkey:$KEY \
3 $URL/job/your_username

Code sample A2.
The code above (Code sample A2) allows checking for the status of all jobs under the user your_username account. The MATLAB call for this code, as
well as the one to retrieve job results, presented next in A.3., are implemented in the ngportal function nsg_jobs.

A.3. Retrieving job results

1 curl -s -u your_username:your_password \
2 -H cipres-appkey:$KEY \
3 $URL/job/your_username/NGBW-JOB-EEGLAB_TG-Unique_job_identifier/output

Code sample A3.
The code sample above (Code sample A3) is used to retrieve the job files and results (with job url:$URL/job/nsgusername/NGBW-JOB-EEGLAB_TG-
Unique_job_identifier).

A.4. Deleting a job

1 curl -u your_username:your_password \
2 -H cipres-appkey:$KEY \
3 -X DELETE \
4 $URL/your_username/NGBW-JOB-EEGLAB_TG-Unique_job_identifier

Code sample A4.
The code above (Code sample A4) is used to delete the job specified by the job URL in line 4 from the user’s NSG account. The MATLAB call for this
code is implemented in the ngportal function nsg_delete.
15

mailto:Image of Code sample A1|eps
mailto:Image of Code sample A2|eps
mailto:Image of Code sample A3|eps
mailto:Image of Code sample A4|eps

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
Appendix B

A successful NSG job should progress through the following states:

- QUEUE - The job has been validated and placed in the NSG queue.
- COMMANDRENDERING - The job has reached the head of the queue, and NSG has created the command line that will run the job on the HPC
resource.

- INPUTSTAGING - NSG has created a temporary working directory for the job on the execution HPC host and copied the input files over.
- SUBMITTED - The job has been submitted to the HPC host.
- LOAD_RESULTS - The job has finished running on the HPC host, and NSG has begun to transfer the results back.
- COMPLETED - Results have been successfully transferred and are available in the NSG web portal.

Appendix C

The stimuli presented in this experiment comprised two sets of 300 grayscale photographs, half from known people and half from unknown people.
Images of known, unknown and scrambled faces were presented for random durations between 800 and 1000 ms following the appearance of a fixation
cross cue with a random duration between 400 and 600 ms. During the 1700-ms interstimulus interval, a central white circle was presented. The
participant was told to fixate centrally throughout the experiment and asked to press one of two keys based on the degree of bilateral symmetry (more or
less) of each presented face. EEG data were recorded synchronously with MEG data using an Elekta Neuromag Vectorview 306 system (Helsinki, FI). A
70-channel Easycap (easycap.de) cap was used to record the EEG data, with electrode layout conforming to the extended 10–10% system. The EEG
electrodes location was digitized by using a 3-D digitizer (Fastrak Polhemus Inc., Colchester, VA, USA). Data were acquired at an 1100-Hz sampling rate
with a low pass filter applied below 350 Hz and no high pass filter. The EEG reference electrode was placed on the nose, and the common ground
electrode was placed at the left collar bone. Stimuli were presented during six, 7.5-min runs. The protocol is described in more detail in Wakeman and
Henson, 2015. Data preprocessing, performed using EEGLAB and custom scripts written in MATLAB (The Mathworks, Inc.), proceed through the
following steps:

a) Data file from subject sub-11 (in version 0.1) was downloaded fromOpenNeuro (https://openneuro.org/crn/datasets/ds000117/snapshots/1.0.3/fi
les/sub-08:ses-meg:meg:sub-08_ses-meg_task-facerecognition_run-01_meg.fif7).

b) Raw EEG data and event information were imported using FileIO plug-in for EEGLAB. The location of the fiducials were added to the channel
location and the channel montage was rotated to match EEGLAB format. Event latencies were corrected by 34ms as advised and reported by the data
authors.

c) Downsample data from 1100 Hz to 500 Hz using EEGLAB function pop_resample.
d) High-pass filter the data above 1 Hz (FIR, Hamming windowed, transition bandwidth 1 Hz).
e) Remove line noise (50 Hz) by applying a Hamming-windowed (sinc) FIR notch filters centered at the line frequency and its harmonics (e.g., 50 Hz,

100 Hz, 150 Hz, and 200 Hz).
f) Remove segments in the data containing non-brain artifact (e.g., high-frequency muscle noise and other irregular artifacts) as identified by visual

inspection.
g) Apply common-average reference computation involving all channels
h) Extract data segments time-locked to the presentation of each of the three main events (known, unknown and scrambled face) and spanning from 1 s

before to 2 s following stimulus onsets.
i) Save the dataset in EEGLAB .set format.

Code for the processing described here can be accessed in the GitHub repository8 of supporting material.

Appendix D

This appendix describes in more detail the elements and section of the nsportal main GUI in Fig. 2

Section A: Interacting with submitted NSG jobs

This section contains the following components:
(List box) Select job: lists all existing NSG jobs under the user credentials. Font color coding is used to indicate the job state: completed (Completed,

in green), still being processed (Processing, in blue), returning a MATLAB syntax-related job error (MATLAB error, in red) or an NSG-related error
(NSG error, in orange). For example, in Fig. 2, the job named oep_runica is shown in green, indicating that the job has been completed. Most of the
functionalities accessed in this section of the graphical interface will act on the job selected in this list.

(Button) Refresh job list: refreshes the list of existing NSG jobs under the user account.
(Checkbox)Auto-refresh job list: flags the interface to update the user NSG jobs status every 30 s. The status of the selected job is shown to the right

of ‘NSG job status’ label. This functionality uses a MATLAB timer object to schedule a sequential update of the status of the jobs.
(Button) Delete this NSG job: removes the selected job from the user’s NSG account.
(Button) Matlab output log: downloads and displays the accumulated MATLAB command line output for the selected NSG job.
(Button) Matlab error log: downloads and displays the MATLAB error log for the selected job (if available).
7 sub-11 in OpenfMRI data version 0.1 was later renamed to sub-08 in OpenNeuro data version 1.0.3
8 https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/wh_data

16

https://openneuro.org/crn/datasets/ds000117/snapshots/1.0.3/files/sub-08:ses-meg:meg:sub-08_ses-meg_task-facerecognition_run-01_meg.fif
https://openneuro.org/crn/datasets/ds000117/snapshots/1.0.3/files/sub-08:ses-meg:meg:sub-08_ses-meg_task-facerecognition_run-01_meg.fif
https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/wh_data

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
(Button) Download job results: downloads the job result .zip file from the currently selected job.
(Button) Load/plot results: launches a window controlling the browsing, loading, and displaying of job results.

Section B: Checking NSG job status

This section of the GUI window (beneath ‘NSG job status’) displays the job status and the messages issued by NSG during the submission and
processing of the job currently selected in the jobs list. The job-status is displayed in capital letters and reflects the current stage of the job at the time of
the last update (see Appendix B for the list of states). These states, while related to the four color-coded categories in the job list, are mostly referring to
more fundamental NSG processing stages in the selected job.

Section C: Submitting a job to NSG

The lower section of the GUI (beneath ‘Submit new NSG job’) is dedicated to submitting jobs to NSG as well as for performing testing of the jobs in
the user’s local computer. In what follows, we describe and explain the functionality of each component.

(Button) Browse and (edit box) Job folder or zip file: This button launches a window to browse for a .zip file or a folder containing the job to be
submitted to NSG (or tested locally). Once the file/folder is selected, its full path is displayed in (edit box) ‘Job folder or zip file’. The value in the edit
box is used in the NSG-R command line option input.infile_ when submitting a job.

(Drop-downmenu)Matlab script to execute: shows all the MATLAB script files (.m) in the job file (.zip file or file folder) selected above. The Matlab
script for NSG execution or testing must be selected here. In the case when a folder is selected, the list of files is generated by scanning the folder content
with the MATLAB function dir. When a .zip file is selected, the .m files are listed using the nsgportal function listzipcontents.m. This function uses Java
objects and methods native to MATLAB to read the content of the .zip file without unzipping it. Both options (folder and .zip file) are implemented in the
callback of (button) ‘Browse’ in pop_nsg.m. Entries in this menu are used in the NSG-R command line option input.filename_ when submitting a job (see
examples in Appendix A).

(Button) Test job locally: runs the job indicated by the job file and MATLAB script selected above on the local computer where nsgportal is being
executed. Local testing of the jobs is intended to use a downscaled version of the job to be submitted. This can be done, e.g., by using a scaled-down
script mimicking the main steps to be performed at NSG, but on a lower scale. For example, for a job that processes data from 200 subjects in a for loop,
the downscaled version of the job script might shorten the loop to process only the data from the first two subjects. This button is strategically located to
the right of (edit box) ‘Matlab script to execute’ to emphasize the idea that job testing should be done using a different script from the full script
intended to run on the HPC resource via NSG.

(Edit box) Job ID (default or custom): displays the unique identifier for the NSG job. The information in this field is generated automatically when
a job folder or .zip file is selected in the ‘Browse’ button above. The default value assigned here is created by taking the name of the job folder or .zip file
and attaching three randomly generated numbers at the end. We encourage users to modify this field for easier recall and reference. The value here is
used in the optional NSG-R command line option input.clientJobId when submitting a job. This option is compulsory when the job is submitted from
nsgportal, since the job ID value is used instead of the long job URL for job management and tracking in the nsgportal GUI machinery.

(Edit box) NSG run options (see Help): allows the user to specify options for the to be submitted job. The options defined here are appended to the
curl command when the job is submitted to NSG. Currently, nsgportal includes options for defining the maximum runtime allocation in NSG (runtime),
the number of NSG nodes to use in the computation (nnode) (currently, 1), and other options (see the pop_nsg and nsg_run help messages). The list of
options will eventually include all NSG-R options.

(Button) Run job on NSG: submits the job to NSG. The button callback calls nsg_run and passes the inputs provided by the user in the GUI. These
inputs are formatted in a curl command (see the example in Appendix A), before being issued for execution on the local computer.

(Buttons) ‘Help’ and ‘Close’ respectively display the help message of pop_nsg in a browser window and close the pop_nsg GUI.
References

Akalin Acar, Z., Makeig, S., 2010. Neuroelectromagnetic forward head modeling toolbox.
J. Neurosci. Methods 190, 258–270. https://doi.org/10.1016/
j.jneumeth.2010.04.031.

Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Kovacs, M.,
2017. The Healthy Brain Network Biobank: an open resource for transdiagnostic
research in pediatric mental health and learning disorders. bioRxiv 149369.

Artoni, F., Menicucci, D., Delorme, A., Makeig, S., Micera, S., 2014. RELICA: a method for
estimating the reliability of independent components. Neuroimage 103, 391–400.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind
separation and blind deconvolution. Neural Comput. 7 (6), 1129–1159.

Bigdely-Shamlo, N., Cockfield, J., Makeig, S., Rognon, T., La Valle, C., Miyakoshi, M.,
Robbins, K.A., 2016a. Hierarchical Event Descriptors (HED): semi-structured tagging
for real-world events in large-scale EEG. Front. Neuroinf. 10, 42.

Bigdely-Shamlo, N., Makeig, S., Robbins, K.A., 2016b. Preparing laboratory and real-
world EEG data for large-scale analysis: a containerized approach. Front. Neuroinf.
10, 7.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K.A., 2015. The PREP
pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinf. 9,
16.

Bower, J.M., Beeman, D., 2012. The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System. Springer Science & Business Media.

Brunet, D., Murray, M.M., Michel, C.M., 2011. Spatiotemporal Analysis of Multichannel
EEG: CARTOOL. Computational intelligence and neuroscience, 2011.

Canolty, R.T., Knight, R.T., 2010. The functional role of cross-frequency coupling. Trends
Cognit. Sci. 14 (11), 506–515.

Davison, A.P., Brüderle, D., Eppler, J.M., Kremkow, J., Muller, E., Pecevski, D., Yger, P.,
2009. PyNN: a common interface for neuronal network simulators. Front. Neuroinf.
2, 11.
17
Delorme, A., Majumdar, A., Sivagnanam, S., Martinez-Cancino, R., Yoshimoto, K.,
Makeig, S., 2019. The Open EEGLAB portal. In: Paper Presented at the 2019 9th
International IEEE/EMBS Conference on Neural Engineering (NER).

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134
(1), 9–21.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Dapretto, M.,
2014. The autism brain imaging data exchange: towards a large-scale evaluation of
the intrinsic brain architecture in autism. Mol. Psychiatr. 19 (6), 659.

Fischl, B., 2012. FreeSurfer. Neuroimage 62 (2), 774–781.
Gabard-Durnam, L.J., Mendez Leal, A.S., Wilkinson, C.L., Levin, A.R., 2018. The Harvard

Automated Processing Pipeline for Electroencephalography (HAPPE): standardized
processing software for developmental and high-artifact data. Front. Neurosci. 12, 97.

Gewaltig, M.-O., Diesmann, M., 2007. Nest (neural simulation tool). Scholarpedia 2 (4),
1430.

Goodman, D.F., Brette, R., 2009. The brian simulator. Front. Neurosci. 3, 26.
Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P.,

Halchenko, Y.O., 2016. The brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments. Sci. Data 3, 160044.

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C.,
H€am€al€ainen, M.S., 2014. MNE software for processing MEG and EEG data.
Neuroimage 86, 446–460.

Hanke, M., Halchenko, Y., 2011. Neuroscience runs on GNU/Linux. Front. Neuroinf. 5 (8)
https://doi.org/10.3389/fninf.2011.00008.

Hines, M.L., Carnevale, N.T., 2008. Translating network models to parallel hardware in
NEURON. J. Neurosci. Methods 169 (2), 425.

Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D’Ambrosio, S., David, O.,
Foster, B.L., 2019. iEEG-BIDS, extending the Brain Imaging Data Structure
specification to human intracranial electrophysiology. Sci. Data 6.

https://doi.org/10.1016/j.jneumeth.2010.04.031
https://doi.org/10.1016/j.jneumeth.2010.04.031
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref12
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref12
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref12
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref15
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref15
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref17
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref17
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref18
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref20
https://doi.org/10.3389/fninf.2011.00008
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref24
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref24
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref24

R. Martínez-Cancino et al. NeuroImage 224 (2021) 116778
Lee, T.-W., Girolami, M., Sejnowski, T.J., 1999. Independent component analysis using an
extended infomax algorithm for mixed subgaussian and supergaussian sources.
Neural Comput. 11 (2), 417–441.

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F.,
2018. A review of classification algorithms for EEG-based brain–computer interfaces:
a 10 year update. J. Neural. Eng. 15 (3), 031005.

Makeig, S., Bell, A., Jung, T.-P., Sejnowski, T., 1996. Independent component analysis of
electroencephalographic data. Adv. Neural Inf. Process. Syst. 8, 145–151.

Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., Kreutz-Delgado, K.,
2012. Evolving signal processing for brain–computer interfaces. Proc. IEEE 100,
1567–1584 (Special Centennial Issue).

Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E.,
Sejnowski, T.J., 2002. Dynamic brain sources of visual evoked responses. Science 295
(5555), 690–694. https://doi.org/10.1126/science.1066168.

Martínez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R.C., Makeig, S.,
2019. Measuring transient phase-amplitude coupling using local mutual information.
Neuroimage 185, 361–378.

Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for
inference of large phylogenetic trees. In: Paper Presented at the 2010 Gateway
Computing Environments Workshop (GCE).

Miller, M.A., Pfeiffer, W., Schwartz, T., 2011. The CIPRES science gateway: a community
resource for phylogenetic analyses. In: The CIPRES science gateway: a community
resource for phylogenetic analyses.

Miller, M.A., Schwartz, T., Pickett, B.E., He, S., Klem, E.B., Scheuermann, R.H.,
O’Leary, M.A., 2015. A RESTful API for access to phylogenetic tools via the CIPRES
science gateway. Evol. Bioinf. Online 11. EBO. S21501.

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust, W., Beckett, L.,
2005. Ways toward an early diagnosis in alzheimer’s disease: the alzheimer’s Disease
neuroimaging initiative (ADNI). Alzheimer’s Dementia 1 (1), 55–66.

Niso, G., Gorgolewski, K.J., Bock, E., Brooks, T.L., Flandin, G., Gramfort, A., Moreau, J.T.,
2018. MEG-BIDS, the brain imaging data structure extended to
magnetoencephalography. Sci. Data 5.

NSG. nsgportal. Retrieved from. http://www.nsgportal.org/guide.html.
O’Connor, D., Potler, N.V., Kovacs, M., Xu, T., Ai, L., Pellman, J., Ghosh, S., 2017. The

Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-
individual differences and their reliabilities across scan conditions and sessions.
GigaScience 6 (2), giw011.

Onton, J., Delorme, A., Makeig, S., 2005. Frontal midline EEG dynamics during working
memory. Neuroimage 27 (2), 341–356.

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci. 1, 2011.

Pedroni, A., Bahreini, A., Langer, N., 2019. Automagic: standardized preprocessing of big
EEG data. Neuroimage.
18
Pernet, C., Appelhoff, S., Gorgolewski, K.J., Flandin, G., Phillips, C., Delorme, A.,
Oostenveld, R., et al., 2019. EEG-BIDS, an extension to the brain imaging data
structure for electroencephalography. Sci. Data 6 (1), 1–5. https://doi.org/10.1038/
s41597-019-0104-8.

Pfurtscheller, G., Da Silva, F.L., 1999. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin. Neurophysiol. 110 (11), 1842–1857.

Ray, S., Deshpande, R., Dudani, N., Bhalla, U.S., 2008. A general biological simulator: the
multiscale object oriented simulation environment, MOOSE. BMC Neurosci. 9 (1),
P93.

Rekapalli, B., Giblock, P., Reardon, C., 2013. PoPLAR: portal for petascale lifescience
applications and research. BMC Bioinf. 14 (9), S3.

Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., Gallinat, J.,
2010. The IMAGEN study: reinforcement-related behaviour in normal brain function
and psychopathology. Mol. Psychiatr. 15 (12), 1128.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M.,
Carnevale, N.T., 2015. Early experiences in developing and managing the
neuroscience gateway. Concurrency Comput. Pract. Ex. 27 (2), 473–488.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A.,
Martone, M.E., Carnevale, N.T., 2013. Introducing the neuroscience gateway. In:
Paper Presented at the IWSG.

Sivagnanam, S., Yoshimoto, K., Carnevale, N.T., Majumdar, A., 2018. The neuroscience
gateway: enabling large scale modeling and data processing in neuroscience. In:
Paper Presented at the Proceedings of the Practice and Experience on Advanced
Research Computing.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Landray, M., 2015.
UK biobank: an open access resource for identifying the causes of a wide range of
complex diseases of middle and old age. PLoS Med. 12 (3), e1001779.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user-
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 8.

Tort, A.B., Komorowski, R., Eichenbaum, H., Kopell, N., 2010. Measuring phase-
amplitude coupling between neuronal oscillations of different frequencies.
J. Neurophysiol. 104 (2), 1195–1210.

Tournier, J.D., Calamante, F., Connelly, A., 2012. MRtrix: diffusion tractography in
crossing fiber regions. Int. J. Imag. Syst. Technol. 22 (1), 53–66.

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R.,
Curtiss, S.W., 2012. The Human Connectome Project: a data acquisition perspective.
Neuroimage 62 (4), 2222–2231.

Wakeman, D.G., Henson, R.N., 2015. A multi-subject, multi-modal human neuroimaging
dataset. Sci. Data 2, 150001.

Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., Pamidighantam, S., 2008. TeraGrid
science gateways and their impact on science. Computer 41 (11), 32–41.

Wolters, C.H., Kuhn, M., Anwander, A., Reitzinger, S., 2002. A parallel algebraic multigrid
solver for finite element method based source localization in the human brain.
Comput. Visual Sci. 5 (3), 165–177.

http://refhub.elsevier.com/S1053-8119(20)30265-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30265-2/optOAsX7ZQrlU
http://refhub.elsevier.com/S1053-8119(20)30265-2/optOAsX7ZQrlU
http://refhub.elsevier.com/S1053-8119(20)30265-2/optOAsX7ZQrlU
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref28
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref28
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref28
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref28
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref28
https://doi.org/10.1126/science.1066168
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30265-2/optRrDA21Aphz
http://refhub.elsevier.com/S1053-8119(20)30265-2/optRrDA21Aphz
http://refhub.elsevier.com/S1053-8119(20)30265-2/optRrDA21Aphz
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref34
http://www.nsgportal.org/guide.html
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref39
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref39
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.1038/s41597-019-0104-8
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref42
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref42
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref45
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref45
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref45
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref48
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref48
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref49
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref49
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref49
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref49
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref50
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref50
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref50
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref51
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref51
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref51
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref51
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref52
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref52
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref53
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref53
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref53
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref54
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref54
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref54
http://refhub.elsevier.com/S1053-8119(20)30265-2/sref54

	The open EEGLAB portal Interface: High-Performance computing with EEGLAB
	1. Introduction
	2. The open EEGLAB portal
	2.1. NSG and open EEGLAB portal structure and capabilities
	2.2. Registering EEGLAB as an NSG application
	2.3. User interaction with the OEP

	3. The EEGLAB nsgportal plug-in
	3.1. Accessing NSG through the plug-in nsgportal
	3.2. Implementation, architecture, and dependencies
	3.3. Preparing nsgportal for use
	3.4. The main plug-in GUI: pop_nsg
	3.5. Nsgportal Matlab-interface command line tools
	3.6. Nsgportal documentation

	4. Applications and examples
	4.1. The test data and simple job example
	4.2. Submitting, managing and retrieving the job using the nsgportal GUI
	4.3. Submitting, managing and retrieving a job using nsgportal command line tools
	4.4. Accelerating EEGLAB plug-in performance using nsgportal tools
	4.4.1. Simple example plug-in: RUNICA_NSG
	4.4.2. Adding HPC computation to the RELICA plug-in
	4.4.2.1. RELICA performance: HPC versus local computing

	5. Discussion
	6. Conclusions
	Funding sources
	CRediT authorship contribution statement
	Acknowledgements
	Appendix AAcknowledgements
	A.1. Submitting a job
	A.2. Checking job status
	A.3. Retrieving job results
	A.4. Deleting a job

	Appendix BA.4. Deleting a job
	Appendix CAppendix BA.4. Deleting a job
	Appendix DAppendix CAppendix BA.4. Deleting a job
	A: Interacting with submitted NSG jobs
	B: Checking NSG job status
	C: Submitting a job to NSG

	References

