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Abstract—String sorting is an important part of database and
MapReduce applications; however, it has not been studied as
extensively as sorting of fixed-length keys. Handling variable-
length keys in hardware is challenging and it is no surprise that
no string sorters on FPGA have been proposed yet. In this paper,
we present Parallel Hybrid Super Scalar String Sample Sort
(pHS5) on Intel HARPv2, a heterogeneous CPU-FPGA system
with a server-grade multi-core CPU. Our pHS5 is based on the
state-of-the-art string sorting algorithm for multi-core shared
memory CPUs, pS5, which we extended with multiple processing
elements (PEs) on the FPGA. Each PE accelerates one instance
of the most effectively parallelizable dominant kernel of pS5

by up to 33% compared to a single Intel Xeon Broadwell core
running at 3.4 GHz. Furthermore, we extended the job scheduling
mechanism of pS5 to enable our PEs to compete with the CPU
cores for processing the accelerable kernel, while retaining the
complex high-level control flow and the sorting of the smaller
data sets on the CPU. We accelerate the whole algorithm by up
to 10% compared to the 28 thread software baseline running on
the 14-core Xeon processor and by up to 36% at lower thread
counts.

I. INTRODUCTION

Sorting is among the most studied [12] and ubiquitous [9],

[4], [5] problems in computer science. For the simplest and

yet common case of sorting fixed-length keys such as integers,

a number of implementations has been proposed on CPUs [8],

GPUs [10], and FPGAs [13], [14]. FPGAs typically provide the

best performance per watt [14]; however, the maximum dataset

size is often bound by the on-chip memory available on the

FPGA [13], which a few tens of megabytes at most and cannot

be expanded. On the other hand, there are important classes of

applications such as suffix sorting algorithms, MapReduce tools,

and database index construction [3] which require to sort strings

lexicographically. While parallel string sorting algorithms have

been proposed on CPUs [2] and GPUs [15], there has been

much less work compared to sorting of fixed-length keys [3]

and, to the best of our knowledge, no FPGA accelerator for

this problem has been proposed yet. Indeed, string sorting is

especially challenging because keys can be long (which makes

comparisons expensive) and of variable length (which makes

keys hard to handle, especially in hardware).

Heterogeneous CPU-FPGA SoCs for embedded systems have

been on the market for a few years already. Previous work

[20], [7] has shown that, on those platforms, it is possible

to take advantage of the best of the two worlds: massive

parallelism and energy efficiency of FPGAs, flexibility and

high performance on serial task execution of CPUs. High-

performance heterogeneous systems with server-class instead

of embedded CPUs are now being deployed in datacenters

[11], [16]. In this context, the competition for performance

is much fiercer than it has ever been in CPU-FPGA SoC

platforms because here processors run at clock speeds up to

an order of magnitude faster than FPGAs and have easily a

dozen physical cores. It is natural then to wonder how much

one has a chance to speedup significantly highly studied and

optimized applications and, if so, at which price in terms of

silicon real-estate and energy consumption. The results of the

Catapult project [16] are well known and very encouraging, but

are the result of hundreds of man years of work by arguably

one of the most skilled group of engineers in the field. What

can be expected with a few man months of averagely skilled

hardware designers?

In this paper, we present a hybrid CPU-FPGA system for

parallel string sorting implemented on the Intel’s HARPv2

experimental platform. We have chosen to accelerate the open-

source state-of-the-art parallel algorithm for string sorting on

multi-core CPUs, Parallel Super Scalar String Sample Sort

(pS5) [3]. We believe that pS5 is algorithmically representative

of modern CPU-optimized algorithms because of its irregular

structure (compared to the straightforwardness of the problem),

its nontrivial codebase (about 4,000 lines of C++ code), and

its opportunistic mix of several sort algorithms to obtain the

best for each dataset and at each point of the sorting process.

It is also representative of the quality of code that highly-

skilled performance-aware software programmers can produce—

e.g., exploiting in every possible way the actual dimensions

and properties of processor caches. Our effort targeted what

is arguably the single most time expensive and effectively

parallelizable kernel—which, despite its relative simplicity,

took considerable development and testing time to port on the

FPGA. We succeeded on having a processing element on the

FPGA compute its job faster than a CPU core, inclusive of all

data transfers and even including the fact that some necessary

data preparation remains in software. We integrated the kernel

into the job scheduling mechanism of the original software

(originally meant to ship jobs to CPU cores and now shipping

them to both CPUs and our processing elements) to achieve

what we think is the first FPGA-based system for string sorting
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Fig. 1: Example of ternary tree with depth d = 2 used during

S5 string classification. Based on the result of the comparison

with at most d splitters, each input string is classified into one

of 2d − 1 buckets (adapted from Bingmann et al. [3]).

acceleration and one of the few FPGA sorters whose maximum

dataset size is not bounded by the FPGA on-chip memory.

II. PRELIMINARIES

A. Terminology

We adopt the same terminology defined by Bingmann et al.

for the original pS5 algorithm [3]. A string sorting algorithm

classifies a set S = {s1, . . . , sn} of n strings with N characters

in total. A string s is an array of |s| characters from the

alphabet Σ = {1, . . . , σ}. Given two strings s1 and s2, lcp(s1,
s2) denotes their longest common prefix (LCP), that is, the

length of the longest sequence of initial characters that is shared

by s1 and s2 (e.g., lcp(’abacus’, ’aboriginal’) = 2 as they share

the prefix ’ab’). D represents the distinguishing prefix size of

S, that is, the minimum number of characters that have to be

inspected in order to determine the lexicographic ordering of

S. For example, D = 3 for S = ’aboriginal’, ’article’, ’abacus’

as sorting requires inspecting at least ’abo’, ’ar’ and ’aba’.

Sorting algorithms based on single character comparisons have

a minimum runtime complexity Ω(D+n log n) [3]. This bound
can be lowered by using super-alphabets, i.e. by grouping w
characters which are compared and sorted at once.

B. Super Scalar String Sample Sort (S5)

S5 is a string sorting algorithm based on sample sort. Sample

sort is a generalized quicksort with k - 1 pivots (splitters)
x1 ≤ · · · ≤ xk−1 which classifies strings into k buckets b1 ≤
· · · ≤ bk. Splitters are chosen by randomly sampling αk − 1
strings from the input, sorting them, and then taking every

α-th element, where α is the oversampling factor. The output

sorted set is obtained by concatenating the sorted buckets.

S5 uses a super-alphabet with w = 8 characters to exploit

word parallelism on 64 bit CPUs. In the first classification,

the common prefix of the whole set is initialized to l = 0
and the algorithm considers the first w characters of both the

strings and the splitters. When recursively sorting each bucket

bi, the starting index of the w characters to be compared (l)
is incremented by lcp(xi−1, xi) (i.e., the LCP of the splitters

delimiting the bucket), which is a lower bound on the LCP

of each couple of strings in the bucket. This minimizes the

total number of character comparisons by effectively reusing as

much of the information gained in the upstream classification

as possible.

Fig. 2: Sorting sub-algorithm selection in pS5 depending on

the size of the string subset Si. Each box represents a job
which can be processed by a different thread.

Splitters are arranged in a search tree and classification

is done by descending the tree. Equality buckets are defined

for strings whose next w characters are the same. At each

node, an equality check between the w characters of interest

of splitter and string is added. By definition, all strings in an

equality bucket share the first w characters which therefore can

be skipped altogether when the equality bucket is recursively

sorted. Therefore, v = 2d−1 splitters are arranged in a ternary

search tree and define k = 2v+1 buckets as shown in Figure 1.

String sample sort with implicit ternary tree and super-alphabet

has runtime complexity O(Dw log v + n log n)) [3].
The output of the classification kernel is a bucket counting

vector with k elements containing the number of strings in

each bucket and an oracle vector with one element per input

string, whose element oi contain the index of the bucket of

string si. After computing a prefix sum of the bucket counting

vector, the string pointers are redistributed in the respective

bucket. v is chosen to ensure that both the splitter tree and the

bucket counting array fit in the L2 cache of each processor.

For a 256 KB cache, this results in v = 8191, corresponding
to a tree with d = 13 levels.

C. Parallel S5 (pS5)

pS5 spawns one thread for each of the pCPU CPU logical

cores and invokes four different sub-algorithms depending on

the size of the string (sub)set to be sorted Si, where Si initially

corresponds to entire string set S and, as sorting progresses, to

the buckets that are recursively sorted. The algorithm selection

criteria are summarized in Figure 2. For the largest sets with

|Si| > n
pCPU

, a fully parallel version of S5 described below

is used, for tm < |Si| ≤ n
pCPU

the sequential S5 described in

Section II-B is invoked, for ti < |Si| ≤ tm a parallel version of

caching multikey quicksort (MKQS) [17] is run, and insertion

sort is called when |Si| ≤ ti, where tm = 220 = 1 Mi and

ti = 64 have been determined empirically by Bingmann et al.

The fully parallel version of S5 consists of four stages:

sampling the splitters to generate the ternary tree, classification,

global prefix sum and string redistribution. Classification is the

only parallel stage, where strings in Si are split evenly among
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p′ =
⌈
2× |Si|

max
(
tm, n

pCPU

)
⌉
jobs Global prefix sum starts as

soon as all classification jobs terminate; therefore, the total

execution time of the fully parallel S5 is determined by the

classification job that is completed last. For each instance of

the other sub-algorithms, as well as for the serial stages of the

fully parallel S5, a single job is created.

For dynamic load balancing, pS5 uses a central job queue

polled by all threads. In this way, multiple jobs ready for

processing can be handled in parallel by different threads.

All the sequential jobs use an explicit recursion stack and

implement voluntary work sharing: as soon as another thread is

idle, an atomic global flag is set, which causes other threads to

release the bottom of their stacks (with the largest subproblems)

as independent jobs.

D. Memory System Considerations

The string set is represented as an array of pointers to

the first character of each string. Because of this indirection,

scanning the input dataset is much less cache efficient than in

atomic sorting. During pS5 initialization, the string characters

are written to memory contiguously in the same order as they

appear in the file. Initially, the pointers to the beginning of

each string are arranged in memory in the same order as the

string characters. As strings are being sorted, only the pointers

are moved in memory and thus the order of the strings and

characters arrays will differ. As a result, the performance of

the memory system will be higher during the first sorting step

compared to all the following: initially, reads are still sequential

and may hit on the same cache line of the previous string, or at

least take advantage of hardware prefetching. As string pointers

start to be rearranged in memory, reads become completely

random and have a high chance of cache miss on datasets that

do not fit in the cache.

III. DESIGN METHODOLOGY

We decided to accelerate the classification steps of both the

parallel and sequential steps of S5 because, as discussed in

Section IV-B, it is one of the two dominant kernels of the whole

sorting algorithm. Moreover, classification is massively parallel

in itself, as each string can be classified independently. Finally,

sample sort classification can be seen as a generalization of the

three-way partitioning step of MKQS. As a result, it is easier

for a classification accelerator to be extended to also handle

MKQS partitioning in the future rather than the opposite. Our

accelerator contains a number of processing elements (PEs),

each capable of handling the entire classification step of a

single S5 job.

A. Hardware Platform

HARPv2 is a shared memory heterogeneous system, con-

sisting of a 14-core Intel Xeon Broadwell CPU and an Intel

10AX115N4F45I3SG Arria 10 FPGA. The FPGA logic is

divided in an FPGA Interface Unit (FIU) provided by Intel

and an Accelerated Functional Unit (AFU) designed by us.

The FIU implements platform capabilities such as the interface

logic for the links between CPU and FPGA and exposes a Core

Cache Interface (CCI-P) and a Memory Mapped I/O (MMIO)

interface to the AFU. The MMIO interface is used by the

CPU to initiate read or write transfers to the AFU registers,

whereas the AFU reads and writes 64 byte cache lines from/to

the system memory through CCI-P.

The AFU sees a three-level memory hierarchy: a 64 KB

first level cache inside the FPGA itself and managed by the

FIU, the 35 MB processor’s last level cache (LLC), and the 64

GB system memory. To access the system memory, the AFU

can use virtual addresses, provided that the buffers that will be

shared with the AFU are allocated using a special allocator.

B. Parallel Hybrid S5 (pHS5)

To fully exploit the additional parallelism available for the

parallel S5 steps of our Parallel Hybrid S5 (pHS5), we replaced

pCPU with pCPU + pAFU when computing the threshold for

the parallel S5 steps and p′ (see Section II-C), where pAFU is

the number of PEs in the AFU.

pS5 implements voluntary work sharing to achieve workload

balancing among CPU cores. Ideally, one would enable the

additional processing elements (PEs) on the FPGA to directly

push and pop jobs from the same shared job queue. However,

the current version of CCI-P does not support the atomic

memory operations that are necessary to use the lock-free job

queue. Moreover, the additional cores that the AFU introduces

can only process a kernel present in two kinds of jobs:

classification jobs from fully parallel S5 steps and sequential

S5 steps. Lastly, although the AFU can access the same system

memory using the same virtual addresses as the software,

buffers that must be shared with the AFU must be allocated

with a special allocator. In the case of pS5, these would include

the entire dataset array, the string pointers and a large number

of temporary buffers. Changing the way all these buffers are

allocated would require major modifications to the pS5 code

which we could not perform in the limited time frame we set.

Given all the constraints above, we resorted to a secondary

work sharing mechanism inside the two accelerable S5 jobs.

An array of AFU workspaces is allocated as a CPU/AFU

shared memory buffer. Whenever a CPU thread reaches the

classification kernel, it checks AFU job count, an atomic global

variable that counts the number of jobs currently attributed to

the AFU. If the AFU job count is less than a given maximum

value, the job is attributed to the AFU and the CPU (1) copies

the 8 characters of interest of all job’s splitters and strings to

one of the AFU workspaces and (2) sends a job descriptor to

the AFU via MMIO. The job descriptor contains the pointers

to the input splitter and string arrays in the AFU workspace,

as well as to the output oracle buffer. The availability of each

AFU workspace is managed by an array of atomic boolean

flags; sending the job descriptor via MMIO, which requires

some tens of microseconds, is the only operation that requires

the acquisition of a spinlock.

After sending the job descriptor, the CPU thread enqueues

a new polling job to the central job queue. In the polling job,

the CPU will poll a done bit in the respective AFU workspace:

if the job is done, the CPU reads back the oracle array and
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Fig. 3: System-level architecture of our AFU. Jobs are received

through the MMIO interface (1, 2) and dispatched to an idle PE

(3). PEs request splitters and input strings (4, 5, 6), classifies

them and return the oracles via CCI-P (7, 8, 9). Multiple PEs,

each processing a separate classification job, are needed to

fully utilize the CCI-P I/O bandwidth.

proceeds with the prefix sum and string permutation as in the

standard pS5; if not, it enqueues a new polling job. By using

a separate polling job, the CPU thread can process other jobs

in the queue, if any, while the AFU is busy. We empirically

determined 2 × pAFU to be a good value for the maximum

number of jobs that can be assigned to the AFU.

C. AFU Design

The top level architecture of our AFU is shown in Figure 3.

The CPU uses MMIO to enqueue jobs to the jobs FIFO (1),

where they are consumed by the dispatcher (2) whenever a

PE is available. Once a PE receives a job (3), it accesses the

CCI-P interface via the arbiter (4). The arbiter uses a simple

round-robin policy to provide fair I/O access to each requesting

PE. Once the PE has been granted access to the interface, it

sends CCI-P read requests to the read request FIFO for the

job splitters and strings (5), which will be forwarded via the

CCI-P read channel (6). Classification starts as soon as the first

64 B cache line is received. When the oracle buffers inside

the PEs are full, the PE requests the interface again (7) and

sends out the oracles via the write request FIFO (8) and the

CCI-P write channel (9).

While PEs could, in principle, handle a larger super-alphabet

than the CPU as its word-level parallelism is not locked to 64

bit, doing so would make S5 jobs for the two platforms not

compatible with each other. This would require our dynamic

scheduling described in Section III-B to be replaced by some

form of early job scheduling at job creation time. Even if we

cannot increase parallelism at character level, we increased

parallelism at string level by classifying multiple strings

concurrently. As shown in Figure 4, each PE contains 8

classification cores, one per 8 B string in a 64 B cache line.

Splitters are replicated in four dual port on-chip memories,

each serving two cores in parallel.

Fig. 4: Internal structure of one of the PEs shown in Figure 3.

A PE contains eight cores, each classifying one of the eight

strings contained in a 64 B cache line. Splitters are replicated

into four dual port on-chip RAMs each shared by two cores.

Fig. 5: Internal structure of one of the cores shown in Figure 4.

Strings are collected in the input FIFO, classified and oracles

are returned. To utilize all functional unit during 100% of the

cycles, four strings are classified in an interleaved fashion.

Figure 5 shows the internal structure of a core. Between

input and output FIFOs, a successive approximation register

(SAR) is used to descend the classification tree stored in the

splitter memory. Descending one level requires four cycles

(the on-chip memory has a 2-cycle latency, plus one for the

comparator and one for the SAR); therefore, four strings are

classified in an interleaved fashion in order to fully utilize all

the units. The resulting classification has a latency of 15 clock

cycles at 200 MHz per string per core: v = 13 cycles for the

tree descent plus 2 cycles to fill and flush the pipeline. A PE

with 8 cores classifies 8 strings simultaneously and thus has

a latency of 15 cycles per cache line with 8 strings, or 1.875

cycles per string.

Given that the CCI-P interface can supply up to one cache

line per clock cycle, we instantiate multiple PEs to match

computation to I/O throughput. Any time a PE requests the

CCI-P interface, the lock is granted to read the splitter set,

8,192 input strings, or to write 8,192 oracles before being given

to the next requesting PE.

IV. EXPERIMENTAL RESULTS

All tests have been performed on the HARP system described

in Section III-A. The CPU has 28 logical cores and the system

is equipped with 64 GB of RAM. We compiled our software

with gcc 6.3.1 with -O2 -march=broadwell. We evaluate

our pHS5 on three of the benchmarks that have been used by

Bingmann et al. in the original pS5 paper [3] which we take as

representative of datasets with qualitatively different statistics:
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URLs Wikipedia Random

n 161M 131M 617M
D
N

96.3% 29.8% 58.8%

avg. string length 66.9 81.9 17.4
parallel S5 steps 12 1 1

sequential S5 steps 69 21 0

TABLE I: Properties of the datasets used to evaluate our system.

ALMs M20Ks

CCI-P interface 793 (<1%) 0
FIFOs 119 (<1%) 38 (1%)
6 PEs 22,133 (5%) 1,164 (43%)

Total AFU 24,109 (6%) 1,202 (44%)

HARP infrastructure (FIU) 78,900 (18%) 351 (13%)

Total 103,009 (24%) 1,553 (57%)

TABLE II: Resource utilization of our FPGA design. No DSPs

were used. The AFU breakdown only contains the largest

modules and thus the total AFU resource utilization is larger

than the sum of that of the listed modules. In parenthesis:

percentage of total available resources.

• URLs contains a list of URLs crawled breadth-first from

the pS5 authors’ institutional web page. This set has

the largest D
N as all keys start with either http:// or

https:// followed, in many cases, by a small set of

labels such as www, en or de. For a given N , this dataset

is close to the worst case for a string sorting algorithm as

almost all characters must be checked in order to establish

the order of the strings.

• Wikipedia is the XML dump of all pages of the English

Wikipedia as of June 1st, 2012. Except for about 25% of

the strings which consist or start with XML tags and are

very similar to each other, all the other strings are lines

of text and have a more uniform distribution.

• Random is a list of randomly generated numbers of 16

to 19 digits. Both the digits and the length are uniformly

distributed, which results in an uniform distribution of

keys and thus of bucket sizes.

We consider the first 10 GB of each dataset; we noticed that

the trends are much more dependent on the dataset statistics

than on the dataset size, at least above a few gigabytes. Table

I summarizes the main properties of the datasets, together with

the number of parallel and sequential S5 invocations that are

called by pS5 at 28 threads.

A. Resource Utilization

Table II shows the resource utilization of the entire FPGA

design and a breakdown of the largest modules of our AFU.

Each PE consumes less than 1% of the ALMs and 7.1% of

the M20K memory blocks of the Arria 10 FPGA. All other

AFU modules have negligible resource utilization. The main

bottleneck for increasing the number of PEs is not the resource

utilization per se but rather timing closure. With more than 6

PEs in the design, we could not achieve timing closure with

a 200 MHz clock; falling back to the 100 MHz clock and

duplicating the number of PEs was not an option as 12 PEs

Fig. 6: Profiling of single thread pS5 run on our benchmarks.

We accelerate the classification part (dashed) of S5 (white),

which one of the two dominant kernels of the entire application.

would not have fit in the AFU LogicLock region which has

only 70% of the total M20K blocks.

B. Profiling of Single Thread pS5

Figure 6 shows the results of profiling a single thread

execution of pS5 on our benchmarks. Classification (the step

that we accelerate) is either the first or the second most

dominant kernel of the entire application. We expect the

runtime share of classification to increase even further for larger

datasets as more and more string subsets become larger than tm.

Moreover, our S5 classification can easily be extended in the

future to handle MKQS where strings are essentially classified

into three buckets by a single splitter, whereas extending an

MKQS accelerator to handle classification would require more

important adaptations.

C. Performance Evaluation

Kernel acceleration. To confirm the interest to accelerate

classification, Figure 7 compares the runtime of the classi-

fication kernel on a CPU core and on one of our PEs. We

distinguish the case of sequential reads (Figure 7a) in the first

sorting step from that of random reads (Figure 7b) which

applies to all subsequent sorting steps. We only consider

datasets bigger than tm = 1 Mi as smaller jobs are handled

by other sorting algorithms.

For large n, one PE is 10% and 33% faster than a Xeon CPU

core in the case of sequential and random reads respectively.

String fetching from main memory is 5.6× slower on random

than on sequential reads. This makes string fetching the

dominant step of all accelerated S5 jobs that are not part of the

first parallel S5 step. When the classification is done in software,

the three stages (input reading, actual classification, and output

writing) are finely intermixed with each other and their runtime

cannot be measured separately. The overall performance hit on

random reads is nevertheless clearly visible on the software

classification runtime (3× for n = 16 Mi).

As expected, PE execution time and oracle readback take the

same time irrespective of the sparsity of the input strings. For

large n, the PE classification throughput tends to 2.56 AFU

clock cycles per string. If 1.88 cycles are expected to be for the

actual classification (see Section III-C), we can estimate that

0.54 of the remaining 0.68 cycles are for reading the 8 input

137

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 06,2021 at 07:52:02 UTC from IEEE Xplore.  Restrictions apply. 



1 2 4 8 16
0

100

200

300

400

n (Mi)

R
u
n
ti
m
e
(m

s)

Strings fetching PE classification

Oracles readback Software classification

(a) Sequential reads: string pointers and characters have the same order
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(b) Random reads: string pointers and characters do not have the same
order. Fetching the string characters involve random reads.

Fig. 7: Runtime of classification when executed on the CPU

and on a PE. Strings have been extracted from the first 2 GB of

URLs, which contain 33 million strings. Writing the splitters

takes a negligible time in all cases (10 μs). For n ≥ 16 Mi, a

PE is 10% and 33% faster than a Xeon core on sequential and

random reads respectively.

characters and 0.14 to write the oracle from/to the CPU/AFU

shared memory (8 and 2 bytes respectively, both accessed

sequentially and contiguously), assuming that read and write

bandwidth between PE and shared memory are equal and if

we neglect the partial overlaps between I/O and classification.

pS5 Acceleration. To isolate the contribution of each of our

modification to the pS5 code to the overall performance, we

compare four different scenarios:

1) pS5: original pS5

2) pS5-add jobs: the same as pS5 where pCPU has been

replaced by pCPU + pAFU (see Section III-B), which

results in parallel S5 invocations with more, smaller

classification jobs.

3) pHS5-block sequential: the same as pS5-add jobs
where jobs are dispatched to the PEs whenever possible

but the software thread waits in a polling loop after

offloading the smaller sequential S5 jobs and a separate

polling job is enqueued only after offloading a classifi-

cation job from a parallel S5 step.

4) pHS5-no block: pHS5 as described in Section III-B.

Compared to pHS5-block sequential, a separate polling
job is created in every case.

Figure 8a-8c show the speedup of whole algorithm compared

to a single thread execution of pS5 and Figure 8d-8f compared

to pS5 with the same number of threads.

The results vary greatly depending on the input dataset

and on the number of CPU threads. In URLs, strings are very

similar to each other and, in the first iterations, most strings are

classified in a few large buckets. Indeed, parallel and sequential

sample sort are invoked 81 times overall, and the fraction of

accelerable code is the highest of all benchmarks. At low

thread counts, pHS5-no block on URLs provides the highest

acceleration compared to pS5 that we measured, peaking at

36% at 8 threads. Between 5 and 15 threads, part of the benefit

is due to splitting parallel S5 invocations in more classification

jobs, and having additional resources in the FPGA to handle

them with limited overhead on the CPU cores gives further

advantage. On more than 15 threads, pHS5-block sequential
becomes the best performing algorithm, providing a 6-8%

acceleration compared to the baseline.

On the Wikipedia dataset, pHS5-block sequential always
outperforms pHS5-no block except at one thread and has

the highest acceleration at 28 threads (10%). With more than

8 threads, pHS5-no block is actually slower than pS5, by

20-25% at high thread counts. Using more classification jobs

does not provide the same clear benefit as in URLs and is

even counter productive at high thread counts. As for the

random dataset, there is no distinction between the two pHS5

versions as there are no sequential S5 invocations: the only

accelerable jobs are those of the single parallel S5 invocation

at the beginning of the algorithm. On this dataset, the AFU

provides acceleration on either low thread counts, or when the

thread count exceeds the number of physical CPU cores.

At low thread counts, the relative increase of parallelism

provided by the 6 PEs is larger than at high thread counts. In

the case of URLs, increasing the number of classification jobs

seems to be beneficial in itself, perhaps due to the superlinear

runtime complexity of a single string sample sort (see Section

II-B). This effect may not appear on the other benchmarks

given the smaller number of parallel S5 invocations, and any

gains may be offset by having a number of jobs that is not

any more divisible by the number of threads. This results in an

increase of runtime of the slowest thread due to load unbalance,

which causes a slowdown of the overall parallel S5 step. The

AFU provides instead additional resources to handle those jobs

with limited overhead on the CPU cores.

Overall, we expected pHS5-no block to always outperform

pHS5-block sequential as the former provides a better use of

parallelism by enabling the thread that transferred the job data

to the AFU to process other jobs while the AFU is busy. This

actually holds when the number of threads is low and blocking

one of them in polling results in a significant reduction of

available computing resources. However, as the number of

threads placing jobs in the queue increases, the polling job

might end up being processed a significant time after the

completion of the classification job by the PE. This results

in (1) the AFU job queue slot being occupied for longer

than necessary, wasting AFU resources and (2) delaying the

creation, and thus the completion, of the 16,381 jobs to sort the
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Fig. 8: Sorting speedup compared to pS5 with one thread (8a, 8b, 8c) and to pS5 with the same number of threads (8d, 8e, 8f,

note the different vertical scales). The data points are the average of 5 runs; error bars show their standard deviation. Depending

on the dataset and on the number of threads, either pHS5-no block or pHS5-block sequential accelerate pS5 by up to 36%.

sequential job’s buckets. These effects have a smaller impact

on URLs than on Wikipedia because the number of sequential

S5 jobs in URLs is much greater than pAFU , which ensures

that there are always enough sequential S5 jobs processed by

CPU threads whose recursive subjobs are generated as soon

as the classification finishes.

V. RELATED WORK

A. Parallel String Sorting and Sorting on FPGAs

Besides pS5 [3], which is a state-of-the-art string sorting

algorithm for multi-core shared memory machines, Bingmann

et al. also analyzed string sorting parallelization on NUMA

machines [2]. For those architectures, they proposed to run

independent pS5 sorters on each NUMA node and then merging

the results with a multiway mergesort that uses the LCP

information from pS5 to skip over common characters during

merging. On both shared memory and NUMA machines, they

observed that the statistical properties of the dataset have a

large impact on the effectiveness of parallelization. This is

consistent with fixed-length key sorting and with our findings

on a heterogeneous shared memory CPU-FPGA machine.

On GPUs, Neelima et al. [15] proposed a parallel MKQS

that uses dynamic parallelism to recursively sort the partitions

as they are created, which result in an exponentially increasing

amount of GPU threads. Deshpande et al. [10] adapted the

radix sort for fixed-length keys provided as a part of the CUDA

Thrust library to handle variable-length keys by iteratively

extracting a fixed number of characters and treating them as

integers, which we see as a form of super-alphabet. Both works

use datasets not larger than a few hundreds of megabytes.

To the best of our knowledge, no other string sorting

implementations on FPGA or on heterogeneous CPU-FPGA

systems have been proposed. Sorting of fixed-length keys on

FPGA has been extensively studied; however, none of the

solutions we found can be easily extended to handle variable-

length keys as they rely on storing entire keys on the FPGA

on-chip memory and comparing them at once. Koch et al. [13]

proposed a FIFO-based merge sorter followed by a tree-based

merge sorter to maximize the maximum dataset size that an

FPGA can sort. Although partial runtime reconfiguration can

increase the maximum dataset size, it is still bounded by a

function of the total FPGA on-chip memory. Matai et al. [14]

proposed a framework that generates sorting architectures. The

work focuses on design automation and on simplifying design

space exploration; some of the generated architectures have

been evaluated on datasets that are at most on the order of

hundreds of thousands of keys.

B. Heterogeneous CPU-FPGA Platforms

Zhang et al. [20] presented a CPU-FPGA sorter for HARPv1.

The dataset is split into blocks sorted by a merge sorter on the

FPGA; blocks are eventually merged by the CPU. The first

blocks can be merged by the CPU while the FPGA is sorting

the next ones. Using the CPU to merge the blocks makes the

maximum dataset size independent from the FPGA on-chip

memory; however, the on-chip memory still limits the block
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size, which makes the runtime dominated by the CPU merge for

datasets larger than 256 MiB. A similar idea of pre-sorting on

the FPGA and merging with the CPU has also been evaluated

by Chen et al. [7] on a Zynq CPU-FPGA platform, obtaining

a similar conclusion that the CPU becomes the bottleneck for

problems that are large compared to the amount of FPGA

on-chip memory. In addition, the CPU merge algorithms that

have been proposed are sequential and heavily underutilize

modern multi-core CPUs. Our pHS5 is built on top of a state-

of-the-art multithreaded sorter that fully exploits the parallelism

of modern CPUs and extends it with additional specialized

processing cores on the FPGA. Moreover, the maximum dataset

size that can be processed by one of our PEs is only limited

by the system memory and not by the FPGA on-chip memory.

Umuroglu et al. [18] proposed a hybrid breadth-first search

(BFS) implementation on a Zynq CPU-FPGA system. Weisz et

al. [19] analyzed pointer chasing on three CPU-FPGA systems

including HARPv1. On single-linked lists with data payload

accessible through a pointer, the best results are achieved

when the CPU performs the indirections to visit the list nodes

and streams the payload pointers to the FPGA for processing.

Both works suggest that the highest performance on a CPU-

FPGA system are achieved when the CPU is used on irregular

and serial computations and the FPGA on massively parallel

processing involving large amounts of data. These results

inspired the high-level CPU-FPGA partitioning of our pHS5,

where we offload the most parallel kernel operating on the

largest data subsets to the FPGA while the CPU keeps handling

recursion and sorting of small datasets.

Chang et al. [6] presented an FPGA accelerator on HARPv1

for the SMEM seeding algorithm of DNA sequencing alignment.

SMEM involves a large amount of short, random reads and its

bottleneck resides in memory latency rather than computation.

The authors propose a many-PE architecture that issues as

many outstanding reads as possible to hide the long latency of

memory accesses. This is the work that is the most similar to

ours in that they also accelerate one of the dominant kernels of

a complex, multithreaded software on a cache-coherent CPU-

FPGA system. However, the FPGA can only service one CPU

thread at a time, which the authors cite as a possible limiting

factor for the acceleration of the entire algorithm. The AFU of

our pHS5 can instead accelerate the work coming from as many

CPU threads as there are PEs. Moreover, the main purpose of

using PEs on the FPGA in Chang et al. is to have as many

in-flight random reads as possible rather than accelerating the

computation itself as in pHS5. Their results suggest that we

could expect further speedups if we were to also delegate the

random reads, i.e. the string indirections, to the FPGA.

VI. CONCLUSION

We presented pHS5, to our knowledge the first hardware-

accelerated string sorter, which has been implemented on the

Intel HARPv2 CPU-FPGA heterogeneous system. Our pHS5

extends pS5, a string sorting software that has been extensively

optimized for multi-core CPUs. One of our processing elements

accelerates one of the dominant kernels in pS5 by up to 33%

compared to a single Xeon core, and 6 PEs accelerate the

entire application by up to 10% compared to pS5 running in its

fully parallel version on a 14-core Xeon CPU. We believe there

is potential for future FPGAs that promise clock frequencies

closer to those of CPUs, such as Intel Agilex and Xilinx Versal,

to improve upon the modest overall speedup that we could

achieve with today’s FPGA technology.
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