Abstract

In the raser effect, a sample spontaneously emits continuous radiofrequency radiation, allowing exceptionally narrow NMR line widths to be recorded without applying pulses. To achieve this phenomenon, a large negative magnetization must be induced, which we show here can be achieved for the O-17 magnetization of isotopically labeled Gd-doped CeO2 using solid effect dynamic nuclear polarization (DNP), at high field and 110 K. This allows a 2 mHz line width to be measured, which is limited only by the magnetic field stability. The raser effect can be reversibly activated and deactivated by magic angle spinning (MAS), which modulates the nuclear spin coherence lifetime. The use of MAS DNP to enable the raser effect should be further applicable to other systems and nuclei.

Details