

Iterative Tuning of Restricted-Complexity Controllers A Perspective

Alireza Karimi

Laboratoire d'Automatique Swiss Federal Institute of Technology at Lausanne (EPFL)

International Workshop on:

Design and Optimization of Restricted Complexity Controllers

Grenoble, January 2003

Outline

1. Introduction

- Identification for control
- Iterative Feedback Tuning

2. Iterative Correlation-Based Controller Tuning

- Correlation approach using Instrumental Variables
- Convergence and Frequency Analysis
- Simulation and Experimental Results

3. Iterative Controller Tuning by Minimizing a Frequency Criterion

- Simple relay tests for gain and phase margins measurement
- Model-free gradient estimation using Bode's integrals

4. Concluding remarks

Iterative identification and control

Because of unmodeled dynamics the designed performance cannot be achieved on the real system.

Solution: Closed-loop identification and Controller redesign

Direct Controller Tuning (controller order is independent of model order)

Objective: Minimizing

$$J(\rho) = ||\varepsilon_{cl}(\rho, t)||_2^2$$

using an iterative tuning algorithm:

$$\rho_{i+1} = \rho_i - \gamma_i [Q(\rho_i)]^{-1} J'(\rho_i)$$

 γ_i : Step size

 $Q(\rho_i)$: A positive definite matrix

 $J'(\rho_i)$: Gradient of the criterion

Problems:

1. Gradient estimation (Gradient depends on unknown G)

2. Noise effects

Gradient estimation

Gradient depends on the *true* closed-loop transfer function

Different approaches:

• Model Reference Adaptive Control (MRAC)[MIT rule, 1958]:

reference model → gradient

Self Tuning Regulation (STR)[Astrom, Wittenmark 1973]:

identified model → *gradient*

- Iterative Controller Tuning (Adaptation period ≫ Sampling period) [Trulsson, Ljung 1985]:
 - better identified model → better gradient estimate
- Iterative Feedback Tuning (IFT) [Hjalmarsson, Gunnarsson, Gevers 1994]:

closed-loop data → *gradient (model-free, unbiased)*

Iterative Feedback Tuning (two experiments)

 Normal experiment (criterion evaluation)

$$J(\rho) = \frac{1}{2N} \sum_{t=1}^{N} E\{ [y(\rho, t) - y_d(t)]^2 \}$$

Gradient experiment (gradient estimation)

$$J'(\rho) = \frac{1}{N} \sum_{t=1}^{N} E\{ [y(\rho, t) - y_d(t)] y'(\rho, t) \}$$

Unbiased model-free estimation of gradient → convergence to a local minimum of the criterion

Iterative Feedback Tuning: Properties

• Possibility of minimizing a generalized criterion:

$$J(\rho) = \frac{1}{2N} \sum_{t=1}^{N} F(q^{-1}) E\{ [y(\rho, t) - y_d(t)]^2 + \lambda u^2(\rho, t) \}$$

- Application to non-linear and MIMO systems
- Tuned controller depends on the reference signal and noise characteristics

$$\rho^* = \arg\min_{\rho} \frac{1}{2N} \sum_{t=1}^{N} E\{[y(\rho, t) - y_d(t)]^2\}$$

$$= \arg\min_{\rho} \int_{-\pi}^{\pi} [|T(e^{-j\omega}, \rho) - T_0(e^{-j\omega})|^2 \Phi_r(\omega) + |S(e^{-j\omega}, \rho)|^2 \Phi_v(\omega)] d\omega$$

$$S(\rho) = \frac{1}{1 + KG} , \quad T(\rho) = \frac{KG}{1 + KG} , \quad T_0 = \frac{K_0 G_0}{1 + K_0 G_0}$$

Iterative Correlation-Based Controller Tuning

- Correlation Approach
- Convergence and Consistency
- Simulation Results
- Reduced-Order Controller Tuning
- Frequency Analysis
- Application to a Magnetic Suspension System

Correlation Approach

Main idea

If $K=K_0$ then $\varepsilon_{cl}(t)$ contains:

- 1. filtered noise v(t)
- 2. filtered unmodeled dynamics $(G-G_0)$

Control objective: Find K that makes $\varepsilon_{cl}(t)$ uncorrelated with r(t)New controller should compensate for the unmodeled dynamics

Correlation Approach

Correlation Equation:

$$f(\rho) = E\{\zeta(t)\varepsilon_{cl}(\rho, t)\} = 0$$

 ρ : Vector of controller parameters

 $\varepsilon_{cl}(\rho,t)$: Closed-loop output error

 $\zeta(t)$: Vector of instrumental variables, correlated with r(t) and independent of noise v(t)

Iterative Solution to the Correlation Equation

$$\rho_{i+1} = \rho_i - \gamma_i [Q_N(\rho_i)]^{-1} \hat{f}(\rho_i)$$

where:

$$\hat{f}(\rho) = \frac{1}{N} \sum_{t=1}^{N} \zeta(\rho, t) \varepsilon_{cl}(\rho, t)$$

N: number of data

 γ_i : scalar positive step size

 $Q_N(\rho_i)$: a positive definite matrix

No gradient, no additional experiment and no model is required !!!

Correlation Approach

Newton-Raphson method: can be used in order to improve the convergence speed

$$Q_{N}(\rho_{i}) = \frac{\partial \hat{f}}{\partial \rho} \bigg|_{\rho_{i}} = \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{\partial \zeta(\rho, t)}{\partial \rho} \bigg|_{\rho_{i}} \varepsilon_{cl}(\rho_{i}, t) + \zeta(\rho_{i}, t) \frac{\partial \varepsilon_{cl}(\rho, t)}{\partial \rho} \bigg|_{\rho_{i}} \right\}$$

$$\approx \frac{1}{N} \sum_{t=1}^{N} \zeta(\rho_{i}, t) \frac{\partial \varepsilon_{cl}(\rho, t)}{\partial \rho} \bigg|_{\rho_{i}}$$

Choice of Instrumental Variables:

Let define:

$$\psi^{T}(\rho, t) = \frac{\partial \widehat{\varepsilon_{cl}}(\rho, t)}{\partial \rho} \qquad \qquad \zeta(\rho, t) = \hat{\psi}(\rho, t)$$

 $\psi^T(\rho,t)$: gradient estimate based on an identified model of the plant and real data $\hat{\psi}(\rho,t)$: noise-free part of the gradient estimate, based on the identified model and simulated data

Assumptions

- A1) The system to be controlled is SISO, LTI, finite order and strictly causal
- A2) The reference signal r(t) is persistently exciting of sufficiently high order and uncorrelated with zero-mean finite power disturbance signal v(t)
- A3) The controller Computed at each iteration stabilizes the closed-loop system
- **A4)** The solution ρ^* exists and is unique:

$$K^* = K_0 \frac{G_0}{G}$$

- ullet G_0 contains the unstable zeros of G
- the order of the estimated controller is large enough to compensate the unmodeled dynamics

The Controller parameters ρ_i , when $N \to \infty$ and $i \to \infty$, converge to the solution of the correlation equation with probability one if:

$$Q(
ho_i) = E\{\zeta(
ho_i,t)\hat{\psi}^T(
ho_i,t)\}$$
 exists and is nonsingular (w.p. 1)

Nonsingularity of $Q(\rho_i)$

Theorem: Consider the instrumental variables based on the identified model $\zeta(\rho_i, t)$ and $H(z^{-1})$ as follows:

$$H(z^{-1}) = \frac{\hat{A}(z^{-1})}{\hat{P}(z^{-1})} \frac{P(z^{-1})}{A(z^{-1})}$$

where $A(z^{-1})$ and $P(z^{-1})$ are denominator of the plant and the closed loop system respectively, and $\hat{A}(z^{-1})$ and $\hat{P}(z^{-1})$ are identified ones used in constructions of the IV.

- (a) If r(t) is persistently exciting of order ρ (or more) and $H(z^{-1})$ is SPR then Q is nonsingular.
- (b) If r(t) is a deterministic periodic signal with period ρ and persistently exciting of order ρ and $H(z^{-1})$ has no pole on the unit circle, then Q is nonsingular.

Simulation Example (effect of modeling error)

True system:

$$y(t) = \frac{q^{-1} + 0.5q^{-2}}{1 - 1.5q^{-1} + 0.7q^{-2}}u(t)$$

Reference model:

$$\frac{B_m}{A_m} = \frac{-10^{-3} [78q^{-1} + 63q^{-2} + 12q^{-3}]}{1 - 1.578q^{-1} + 0.638q^{-2} - 0.012q^{-3}}$$

The optimal controller:

$$R^* = 1$$
 and $S^* = -0.0781 - 0.0234q^{-1}$

The initial controller:

$$R_0 = 1$$
 and $S_0 = 0.075 + 0.0q^{-1}$

Modeling error does not affect the convergence of algorithm

Simulation Example (effect of noise)

True system:

$$y(t) = \frac{q^{-1} + 0.5q^{-2}}{1 - 1.5q^{-1} + 0.7q^{-2}}u(t) + v(t)$$

$$v(t) = \frac{1 + 0.5q^{-1} + 0.5q^{-2}}{1 - 1.5q^{-1} + 0.7q^{-2}}e(t)$$

- Monte-Carlo simulation with 100 runs
- ullet Noise/Signal ratio of 7.5% in terms of variance
- 11-bit PRBS of length 2047 as reference signal
- 25 iterations per simulation
- \bullet Plant model is identified with $n_{\hat{A}}=n_{\hat{B}}=1$

Noise does not affect the convergence of algorithm

Reduced-Order Controller Tuning

In this case there is no solution to the correlation equation

A new criterion is defined as follows:

$$\rho^* = \arg\min_{\rho} J(\rho) = ||f(\rho)||_2^2 = f^T(\rho)f(\rho)$$

Iterative Solution:

$$\rho_{i+1} = \rho_i - \gamma_i [Q(\rho_i)]^{-1} J'(\rho_i)$$

 γ_i : Step size $Q(\rho_i)$: A positive definite matrix $J'(\rho_i)$: Gradient of the criterion

This algorithm converges to a local minimum of the criterion provided that (Robbins-Monro):

- r(t) and v(t) are independent stationary stochastic processes.
- y(t) is bounded at each iteration (closed-loop system is stable).

Frequency Domain Analysis

Consider the following instrumental variables:

$$\zeta^{T}(t) = [r(t+n_z), r(t+n_z-1), \dots, r(t), r(t-1), \dots, r(t-n_z)]$$

So the criterion becomes:

$$J(\rho) = f^{T}(\rho)f(\rho) = \sum_{\tau = -n_z}^{n_z} R_{\varepsilon r}^2(\tau)$$

where: $R_{\varepsilon r}(\tau) = E\{\varepsilon_{cl}(\rho, t)r(t - \tau)\}$

Using the Parseval's relation for the criterion $(n_z \to \infty)$, we have:

$$\rho^* = \arg\min_{\rho} \int_{-\pi}^{\pi} |\Phi_{\varepsilon r}(\omega)|^2 d\omega = \int_{-\pi}^{\pi} |T(e^{-j\omega}, \rho) - T_0(e^{-j\omega})|^2 \Phi_r^2(\omega) d\omega$$

For the methods which minimize the two norm of closed-loop output error (like IFT, STR), we have:

$$\rho^* = \arg\min_{\rho} \int_{-\pi}^{\pi} [|T(e^{-j\omega}, \rho) - T_0(e^{-j\omega})|^2 \Phi_r(\omega) + |S(e^{-j\omega}, \rho)|^2 \Phi_v(\omega)] d\omega$$

Application to a Magnetic Suspension System

Linearized model:

$$G(s) = \frac{0.1}{0.017s + 1} \frac{15750}{s^2 - 1238}$$

Discrete-time model ($f_s = 100Hz$):

$$G_0(q^{-1}) = \frac{10^{-4}(137q^{-1} + 481q^{-2} + 103q^{-3})}{1 - 2.69q^{-1} + 2.19q^{-2} - 0.56q^{-3}}$$

Initial RST controller:

$$R_0(q^{-1}) = 1 + 0.686q^{-1} + 0.163q^{-2}$$

 $S_0(q^{-1}) = 21.86 - 26.77q^{-1} + 8.15q^{-2}$
 $T_0(q^{-1}) = 1.83$

Application to a Magnetic Suspension System

Closed-Loop Response

Initial RST controller and designed response

After 6 iterations using the proposed approach

Iterative Controller Tuning Using Bode's Integrals

- Minimizing a Frequency Criterion in Terms of Phase Margin, Gain Margin and Cross-Over Frequency
- Relay Feedback Tests for Measuring the Robustness Margins
- Using Bode's Integrals for Gradient and Hessian Estimation
- Simulation and Experimental Results

Frequency criteria

The objective is to tune a controller by minimizing iteratively a frequency criterion with the Gauss-Newton method

• Criteria:
$$J_1(\rho) = \frac{1}{2} [\frac{1}{\omega_d^2} (\omega_c - \omega_d)^2 + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d)^2]$$

$$J_2(\rho) = \frac{1}{2} \left[\frac{1}{\omega_d^2} (\omega_c - \omega_d)^2 + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d)^2 + \frac{1}{K_d^2} (K_u - K_d)^2 \right]$$

• Iterative solution:
$$\rho_{i+1} = \rho_i - H_{1,2}^{-1} J_{1,2}'(\rho_i)$$

 $\omega_{c(d)}$: Measured (desired) crossover frequencies ρ : Vector of the controller parameters

 $\Phi_{m(d)}$: Measured (desired) phase margin i: iteration number

 $K_{u(d)}$: Inverse of measured (desired) gain margin $J'_{1,2}$: Gradient of the criterion J_1 or J_2

 $H_{1,2}$: Hessian of the criterion J_1 or J_2

Closed-loop relay test (1)

Gain margin and ultimate frequency ω_u measurement [Aström, Hägglund]

- Relay output is the reference signal of the closed-loop system
- Condition for a limit cycle: $\frac{K(j\omega)G(j\omega)}{1+K(j\omega)G(j\omega)} = -\frac{\pi a}{4d}$
- Identified point: $K(j\omega_u)G(j\omega_u) = -\frac{\pi a}{4d+\pi a} \in (-1,0)$

Closed-loop relay test (2)

Phase margin and crossover frequency ω_c measurement [Schei, Longchamp, Piguet]

K(s)G(s)

• Condition for a limit cycle:

$$\frac{1}{j\omega} \frac{K(j\omega)G(j\omega) - 1}{K(j\omega)G(j\omega) + 1} = -\frac{\pi a}{4d}$$

• Identified point:

Procedure for phase margin adjustment (1)

• Criterion:
$$J(\rho) = \frac{1}{2} [\frac{1}{\omega_d^2} (\omega_c - \omega_d)^2 + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d)^2]$$

ullet Iterative solution: $ho_{i+1} =
ho_i - H^{-1}J'(
ho_i)$

- ρ : Vector of the controller parameters $\omega_{c(d)}$: Measured (desired) crossover frequencies
- i: iteration number $\Phi_{m(d)}$: Measured (desired) phase margin

- Gradient:
$$J'(\rho) = \frac{1}{\omega_d^2} (\omega_c - \omega_d) \frac{\partial \omega_c}{\partial \rho} + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d) \Phi_m'$$

- Hessian:
$$H(\rho) = J''(\rho) = \frac{1}{\omega_d^2} \frac{\partial \omega_c}{\partial \rho} (\frac{\partial \omega_c}{\partial \rho})^T + \frac{1}{\Phi_d^2} \Phi_m'(\Phi_m')^T \\ + \frac{1}{\omega_d^2} (\omega_c - \omega_d) \frac{\partial^2 \omega_c}{\partial \rho^2} + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d) \Phi_m'' \\ \approx \frac{1}{\omega_d^2} \frac{\partial \omega_c}{\partial \rho} (\frac{\partial \omega_c}{\partial \rho})^T + \frac{1}{\Phi_d^2} \Phi_m'(\Phi_m')^T$$

Procedure for phase margin adjustment (2)

Approximation of $\frac{\partial \omega_c}{\partial \rho}$:

$$\frac{d \ln |L(j\omega_c)|}{d\rho} = 0 \qquad \Rightarrow \frac{\partial \ln |L(j\omega_c)|}{\partial \rho} + \frac{\partial \ln |L(j\omega)|}{\partial \omega} \bigg|_{\omega_c} \frac{\partial \omega_c}{\partial \rho} = 0$$

$$\Rightarrow \frac{\partial \omega_c}{\partial \rho} = -\frac{\partial \ln |L(j\omega_c)|}{\partial \rho} \left[\frac{\partial \ln |L(j\omega)|}{\partial \omega} \Big|_{\omega_c} \right]^{-1}$$

Approximation of Φ'_m :

$$\Phi'_{m} = \frac{\partial \Phi_{m}}{\partial \rho} + \frac{\partial \Phi_{m}}{\partial \omega} \Big|_{\omega_{c}} \frac{\partial \omega_{c}}{\partial \rho} = \frac{\partial \angle L(j\omega_{c})}{\partial \rho} + \frac{\partial \angle L(j\omega)}{\partial \omega} \Big|_{\omega_{c}} \frac{\partial \omega_{c}}{\partial \rho}$$
$$\frac{\partial \angle L(j\omega)}{\partial \omega} \Big|_{\omega_{c}} = \frac{\partial \angle K(j\omega)}{\partial \omega} \Big|_{\omega_{c}} + \frac{\partial \angle G(j\omega)}{\partial \omega} \Big|_{\omega_{c}}$$

Bode's integrals: Derivative of amplitude

- For a stable minimum-phase transfer function G(s), the phase of the system at any ω_0 is given by:

$$\angle G(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{d\ln|G(j\omega)|}{d\nu} \ln\coth\frac{|\nu|}{2} d\nu$$

where $\nu = \ln \frac{\omega}{\omega_0}$

- Since: $\ln \coth \frac{|
u|}{2}$ decreases rapildy as ω deviates from ω_0

The slope of the Bode plot is almost constant in the neighborhood of ω_0

$$\angle G(j\omega_0) \approx \frac{\pi}{2} \left. \frac{d \ln |G(j\omega)|}{d\nu} \right|_{\omega_0}$$

$$\Rightarrow s_a(\omega_0) = \left. \frac{d \ln |G(j\omega)|}{d\nu} \right|_{\omega_0} \approx \frac{2}{\pi} \angle G(j\omega_0)$$

Bode's integrals: Derivative of phase

- For a stable minimum-phase transfer function G(s), the logarithm of the system amplitude at any ω_0 is given by:

$$\ln|G(j\omega_0)| = \ln|K_g| - \frac{\omega_0}{\pi} \int_{-\infty}^{+\infty} \frac{d(\angle G(j\omega)/\omega)}{d\nu} \ln \coth \frac{|\nu|}{2} d\nu$$

where $\nu = \ln \frac{\omega}{\omega_0}$, and K_g is the static gain of the plant

- In the same way

$$\ln |G(j\omega_0)| \approx \ln |K_g| - \frac{\omega_0}{\pi} \left. \frac{d(\angle G(j\omega)/\omega)}{d\nu} \right|_{\omega_0} \frac{\pi^2}{2}$$

$$\Rightarrow s_p(\omega_0) = \omega_0 \left. \frac{d \angle G(j\omega)}{d\omega} \right|_{\omega_0} \approx \angle G(j\omega_0) + \frac{2}{\pi} \left[\ln|K_g| - \ln|G(j\omega_0)| \right]$$

Bode's Integrals (Precision of estimates)

Comparison of true $S_a(\omega)$ and $S_p(\omega)/\omega$ and estimates based on Bode's integrals for:

$$G(s) = \frac{1}{(s+1)^n}$$

True values (solid line) and estimates (dashed line)

Procedure for phase and gain margin adjustment (1)

• Criterion:
$$J(\rho) = \frac{1}{2} \left[\frac{1}{\omega_d^2} (\omega_c - \omega_d)^2 + \frac{1}{\Phi_d^2} (\Phi_m - \Phi_d)^2 + \frac{1}{K_d^2} (K_u - K_d)^2 \right]$$
 • Iterative solution:
$$\rho_{i+1} = \rho_i - H^{-1} J'(\rho_i)$$

Measured (desired) crossover frequencies $\omega_{c(d)}$:

 ρ : Vector of the controller parameters

 $\Phi_{m(d)}$: Measured (desired) phase margin

iteration number

 $K_{u(d)}$: Inverse of measured (desired) gain margin

- Gradient:
$$J'(\rho) = \tfrac{1}{\omega_d^2} (\omega_c - \omega_d) \tfrac{\partial \omega_c}{\partial \rho} + \tfrac{1}{\Phi_d^2} (\Phi_m - \Phi_d) \Phi_m' + \tfrac{1}{K_d^2} (K_u - K_d) K_u'$$

- Hessian:
$$H(\rho) = J''(\rho)$$

$$\approx \frac{1}{\omega_d^2} \frac{\partial \omega_c}{\partial \rho} (\frac{\partial \omega_c}{\partial \rho})^T + \frac{1}{\Phi_d^2} \Phi_m' (\Phi_m')^T + \frac{1}{K_d^2} K_u' (K_u')^T$$

Procedure for phase and gain margin adjustment (2)

Approximation of K'_u :

$$K'_{u} = \frac{\partial |L(j\omega_{u})|}{\partial \rho} + \frac{\partial |L(j\omega)|}{\partial \omega} \bigg|_{\omega_{u}} \frac{\partial \omega_{u}}{\partial \rho}$$

$$\left. \frac{\partial |L(j\omega)|}{\partial \omega} \right|_{\omega_u} = |L(j\omega_u)| \left. \frac{\partial \ln |L(j\omega)|}{\partial \omega} \right|_{\omega_u} \approx K_u \frac{2\angle L(j\omega_u)}{\pi \omega_u} = -\frac{2K_u}{\omega_u}$$

Approximation of $\frac{\partial \omega_u}{\partial \rho}$:

$$\frac{\partial \angle L(j\omega_{u})}{\partial \rho} + \frac{\partial \angle L(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} \frac{\partial \omega_{u}}{\partial \rho} = 0 \quad \Rightarrow \frac{\partial \omega_{u}}{\partial \rho} = -\frac{\partial \angle L(j\omega_{u})}{\partial \rho} \left(\frac{\partial \angle L(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} \right)^{-1}$$

$$\frac{\partial \angle L(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} = \frac{\partial \angle K(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} + \frac{\partial \angle G(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} \approx \frac{\partial \angle K(j\omega)}{\partial \omega} \bigg|_{\omega_{u}} + \frac{s_{p}(\omega_{u})}{\omega_{u}}$$

Simulation results

$$G(s) = \frac{e^{-0.3s}}{(s^2 + 2s + 3)^3(s + 3)}$$

$$K(s) = 4.5 \left(1 + \frac{1}{0.41s} + 0.033s\right)$$
 (κ - τ tuning rule)

$$\Phi_m = 78.5^{\circ}$$
, $\omega_c = 0.139$ rad/s, $K_u = \frac{1}{4.39}$

$$\Phi_d=70^\circ$$
, $\omega_d=0.2$ rad/s, $K_d=\frac{1}{3}$

$$K(s) = 4.93 \left(1 + \frac{1}{0.316s} + 0.125s\right)$$

$$\Phi_m=66^\circ$$
 , $\omega_c=0.199$ rad/s, $K_m=rac{1}{2.97}$

Experimental Results (1)

Three-tank system

- T1, T2 and T3: interconnected cylinders
- L: water level of T2
- Q_1 , Q_2 and Q_{out} : flow rates
- Input u: controls the flow rate Q_1
- Output y: proportional to the level L
- Disturbance: flow rate Q_2

Experimental Results (2)

- Initial Controller:
$$K(s) = 29.3 \left(1 + \frac{1}{20.84s} + 4.72s\right) \quad (\kappa - \tau \text{ tuning rule})$$

- Measured performances: $\Phi_m = 64^\circ \ \omega_c = 0.097 \ {\rm rad/s}$
- Specifications: $\Phi_d=80^\circ$, $\omega_d=0.08$ rad/s, $T_i=4T_d$
- New controller (1 iteration): $K(s) = 20.4 (1 + \frac{1}{31.5s} + 7.88s)$
- Obtained performance: $\Phi_m = 86.2^\circ$, $\omega_c = 0.085$ rad/s

Concluding Remarks

- Experiment-based tuning methods are appropriate for restricted complexity controller design.
 No model is required or the model is not directly involved in controller tuning.
- Two new approaches for iterative controller tuning are proposed:

Correlation approach

- Making the closed-loop output error *uncorrelated* with the reference signal, can be used as an *objective* for controller tuning.
- Parametric convergence of the controller is not affected by noise and modeling errors.

Frequency approach

- Takes advantage of the Bode's integrals to estimate the gradient of a frequency criterion
- Converges in a few iterations to the minimum of the frequency criterion
- No parametric model is required

References

- 1. E. Trulsson and L. Ljung. Adaptive control based on explicit criterion minimization. *Automatica*, 21(4):385–399, 1985.
- 2. H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin. Iterative feedback tuning: Theory and application. *IEEE Control Systems Magazine*, pages 26–41, 1998.
- 3. H. Hjalmarsson. Iterative feedback tuning an overview. *International Journal of Adaptive Control and Signal Processing*, 16:373–395, 2002.
- 4. A. Karimi, L. Mišković, and D. Bonvin. Convergence analysis of an iterative correlation-based controller tuning method. In *15th IFAC World Congress, Barcelona, Spain*, July 2002.
- 5. A. Karimi, L. Mišković, and D. Bonvin. Iterative correlation-based controller tuning: Application to a magnetic suspension system. *Control Engineering Practice, to appear*, 2002.
- 6. A. Karimi, L. Mišković, and D. Bonvin. Iterative correlation-based controller tuning: Frequency-domain analysis. In *41st IEEE-CDC, Las Vegas, USA*, December 2002.
- 7. A. Karimi, D. Garcia, and R. Longchamp. Iterative controller tuning using Bode's integrals. In *41st IEEE-CDC, Las Vegas, USA*, December 2002.