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Introduction

lterative identification and control
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Because of unmodeled dynamics the designed performance cannot be achieved on the real system.

Solution: Closed-loop identification and Controller redesign
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Introduction

Direct Controller Tuning (controller order is independent of model order)

| o(t)
Objective: Minimizing r_(t) e(t) %/ u(t)= - <y y(t)

J(,O) — ||€cl(p7t)||% _ ¥

using an iterative tuning algorithm: (}—>

i+1 = Pi — Vi DT (pi eq Ug p
it = pi = 1@ () O o |0 g |

vi: Step size

Q(p;): A positive definite matrix Reference Model

J'(p;i): Gradient of the criterion

Problems:

1. Gradient estimation (Gradient depends on unknown () 2. Noise effects
4



Introduction

Gradient estimation
Gradient depends on the true closed-loop transfer function
Different approaches:

e Model Reference Adaptive Control (MRAC)[ MIT rule, 1958]:.

reference model — gradient

e Self Tuning Regulation (STR)[ Astrom, Wittenmark 1973]:

identified model — gradient

e |terative Controller Tuning (Adaptation period > Sampling period) [ Trulsson, Ljung 1985]:

better identified model — better gradient estimate

e |terative Feedback Tuning (IFT) [Hjalmarsson, Gunnarsson, Gevers 1994].

closed-loop data — gradient (model-free, unbiased)
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Introduction

Iterative Feedback Tuning (two experiments)

1. Normal experiment K(p)

(criterion evaluation)

Y

T(0) = 5 3 B{ly(p, ) -ya(t))*}

2. Gradient experiment K(p)

(gradient estimation)

W

V2 (t)

Y

K'(p)

T(0) = ¢ S EA(o. )l (p.1)}

Unbiased model-free estimation of gradient — convergence to a local minimum of the criterion
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Introduction

lterative Feedback Tuning: Properties

e Possibility of minimizing a generalized criterion:

T(0) = 5 S F @ E{[u(p.1) — yal®)] + M (. 1))

t=1
e Application to non-linear and MIMO systems

e Tuned controller depends on the reference signal and noise characteristics

p* = arg mpin 2LN Z E{ly(p,t) — ya(t)]*}

= argmin / 1T(e™7%, p) = To(e77“) 2 ®r(w) + [S(e77%, p) 2Py (w)]dw

B 1 T()— KG T KoGog
“1+KG 0 W TIYKG T T 11 K.G,
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lterative Correlation-Based Controller Tuning

Correlation Approach
Convergence and Consistency
Simulation Results
Reduced-Order Controller Tuning
Frequency Analysis

Application to a Magnetic Suspension System



Correlation Approach

Main idea

If K = K¢ then

ec1(t) contains:

1. filtered noise v(t)

2. filtered unmodeled

dynamics (G — G))

v(t)
e(t) u(t) v y(t)
! K G
Achieved Closed-Loop ’
ea(t) ua(t) ya(?)

Ky

Designed Closed-Loop

»
'
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Control objective: Find K that makes £.;(t) uncorrelated with ()

New controller should compensate for the unmodeled dynamics
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Correlation Approach

Correlation Equation:
( ) E{C( )gcl(p7 )} =0

p: Vector of controller parameters ecl(p, t): Closed-loop output error

C(t): Vector of instrumental variables, correlated with 7(¢) and independent of noise v(t)

Iterative Solution to the Correlation Equation

pit1 = pi — vlQn(p)] " f(p2)

where:
1 N
(o) =5 D¢ t)zalp,t)
t=1
N: number of data 7;: scalar positive step size Q) N(pi): a positive definite matrix

No gradient, no additional experiment and no model is required !!!
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Correlation Approach

Newton-Raphson method: can be used in order to improve the convergence speed

- { ¢ (p,t)
dp

OE ¢ (p, t)

QN (pi) = 5= 9p

(]

ect(pirt) + C(pist)
Pi

y

1
N

Pi t

1

8861(,0, t)
dp

2
=] =
] =

C(pi,t)

t=1

Choice of Instrumental Variables:

Let define:

a/c\ 3 7
VT (p,t) = = g([f ‘) (p,t) = ¢(p, 1)

wT(p, t): gradient estimate based on an identified model of the plant and real data

A

Y (p, t): noise-free part of the gradient estimate, based on the identified model and simulated data

11



Convergence and Consistency

Assumptions

Al) The system to be controlled is SISO, LTI, finite order and strictly causal

A2) The reference signal r(t) is persistently exciting of sufficiently high order and uncorrelated with

zero-mean finite power disturbance signal v(t)

A3) The controller Computed at each iteration stabilizes the closed-loop system

A4) The solution p* exists and is unique:
Go

K* = K,—2
e

e (7 contains the unstable zeros of GG

e the order of the estimated controller is large enough to compensate the unmodeled dynamics
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Convergence and Consistency

The Controller parameters p;, when N — oo and ¢ — 00, converge to the solution
of the correlation equation with probability one if:

Q(p:) = E{C(pi, )T (p;, t)} exists and is nonsingular (w.p.1)

Nonsingularity of Q(p;)
Theorem: Consider the instrumental variables based on the identified model (p;,t) and H(z™1)

as follows:
A(z"1) P(zTY
P(z=1) A(z™1)

where A(z71) and P(z71) are denominator of the plant and the closed loop system respectively,

H(z 1) =

and A(z~1) and P(z~!) are identified ones used in constructions of the IV.
(@) If r(t) is persistently exciting of order p (or more) and H (2~ 1) is SPR then (Q is nonsingular.

(b) If r(t) IS a deterministic periodic signal with period p and persistently exciting of order p and

H (2~ 1') has no pole on the unit circle, then (Q is nonsingular.
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Convergence and Consistency

Simulation Example (effect of modeling error)

True system:

-1 —2
q ~ + 0.5¢q
t) = t
y( ) 1—15¢q= 1 +0.7¢g72 u( ) 0031
Reference model: 80'025
B,  —107%[78¢71 +63¢72 + 12¢7°] 2"
Am  1—1578¢71 +0.638¢72 — 0.012¢g=3 o=
The optimal controller: -
R*=1and S* = —0.0781 — 0.0234(]‘1
The initial controller: ! . : . S
RO — 1 and SO = 0.075 + 0.0q_l Iterations

Modeling error does not affect the convergence of algorithm
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Convergence and Consistency

Simulation Example (effect of noise)

True system:

_— SO
E— SO - optimal

B g ' +0.5¢g 2
- 1—-1.5¢"140.7¢2

y(t)

u(t) + v(t)

Parameter SO

 140.5¢"" +0.5¢7 (1) | ‘ ‘ ‘
- 1 o 1°5q_1 —|— 0'7q_2 i i ? Iterations ° “ ®

v(t)

e Monte-Carlo simulation with 100 runs

_— S1
-0.1 - E— S1 - optimal

e Noise/Signal ratio of 7.5% in terms of variance
e 11-bit PRBS of length 2047 as reference signal

Parameter S1

e 25 jterations per simulation 025

1 1 1 1 J
0 5 10 15 20 25
Iterations

e Plant model is identified withn ; = npg = 1

Noise does not affect the convergence of algorithm
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Reduced-Order Controller Tuning

In this case there is no solution to the correlation equation

A new criterion is defined as follows:

p" = argmin J(p) = 1F ()13 = F"(p)f(p)

Iterative Solution:
piv1 = pi —%[Q(p:) T (i)
~;: Step size Q(p;): A positive definite matrix J'(p;): Gradient of the criterion
This algorithm converges to a local minimum of the criterion provided that (Robbins-Monro):
® D oY= D i Vi < 00
e 1(t) and v(t) are independent stationary stochastic processes.

e y(t) is bounded at each iteration (closed-loop system is stable).
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Frequency Domain Analysis

Consider the following instrumental variables:
)y =[r(t+ny),r(t+n, —1),...,r@t),r(t—1),...,7(t —n,)]
So the criterion becomes:

J0)= 1T (o) = S RE(r)

T:_nz

where: R..(7) = E{eq(p,t)r(t — 1)}

Using the Parseval’s relation for the criterion (n, — ©0), we have:

pr = argmin/ P, (w)]? dw = / T(e™7%, p) — To(e 7¥)|* @3 (w)dw
p

—Tr — 7T

For the methods which minimize the two norm of closed-loop output error (like IFT, STR), we have:
7T
p* = arg min/ 1T(e77%, p) = To(e™7*)[* @y (w) + |S(e77%, p)|* o (w)]dw
P —Tr
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Application to a Magnetic Suspension System

Linearized model;

G (s) 0.1 15750

T 0.017s+ 1 s2 — 1238
Discrete-time model (fs = 100H z):

Go(g™") =

~107*(137¢7 " +481¢~* 4+ 103¢?)

Initial RST controller:

Ro(g™') = 1+0.686¢ " +0.163¢>
Solg™Y) = 21.86—26.77¢ " +8.15¢ > fg
To(¢~') = 1.83

1 —2.69¢~ ! +2.19¢~2 — 0.56q3
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Application to a Magnetic Suspension System

Closed-Loop Response

05 T T T T T T T 04 T T T T T T T
0.4 T 0.3
AT p [ e I A
0.2H
L 0.2H ] o
5 § o1
2 2
e 0.1 e
g .l g’
o o
g %—0.1
S . g
oz | 0.2 R
0.3 \% -0.3 &W*a' me. \-N&.J \‘va*
045 o5 ) 15 > 25 3 25 4 045 o5 1 15 > 25 3 35 4
Time [s] Time [s]
Initial RST controller and designed response After 6 iterations using the proposed approach
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Iterative Controller Tuning Using Bode’s Integrals

e Minimizing a Frequency Criterion in Terms of Phase Margin, Gain Margin

and Cross-Over Frequency
e Relay Feedback Tests for Measuring the Robustness Margins
e Using Bode’s Integrals for Gradient and Hessian Estimation

e Simulation and Experimental Results
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Frequency criteria

The objective is to tune a controller by minimizing iteratively a frequency criterion
with the Gauss-Newton method

e Criteria;

e lterative solution:

We(d):  Measured (desired) crossover frequencies p: Vector of the controller parameters
CIDm(d): Measured (desired) phase margin 1 iteration number
K a): Inverse of measured (desired) gain margin J{,Q: Gradient of the criterion J; or Ja

H1 o: Hessian of the criterion J1 or Jo
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Closed-loop relay test (1)

Gain margin and ultimate frequency w,, measurement [Astrom, Hagglund]

e Relay output is the reference signal of the closed-loop system

e Condition for a limit cycle: 14[—([((](?2‘)();6(}](?2‘)) = =77
e Identified point: K (jwy)G(jwu) = — 174, € (—1,0)
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Closed-loop relay test (2)

Phase margin and crossover frequency w. measurement [Schei, Longchamp, Piguet]

e Condition for a limit cycle: 0 1 d— K(5)G(s)

1 K(jw)G(jw) —1 __Ta
jo K(Go)GUw) +1  4d :

@ |
|
=¥
!

O 2 I
e |dentified point: =
K(w)Gliws) — 12920 o= == [~ i T
K (jwe)G(jwe)| = 1
[K(Jjw.)G(jw.) = =2 arctan(ﬂz;dc)
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Procedure for phase margin adjustment (1)

e Criterion:

e lIterative solution:

p:  Vector of the controller parameters We(q): Measured (desired) crossover frequencies
1:  iteration number CIDm(d): Measured (desired) phase margin

: 1 Owe
- Gradient: J'(p) = w—g(wc —wq) G+ q)Q (@), — Py)D!

PR R 77/ 1 Ow. (Ow:N\T 1 5/ ! \T
- Hessian: H(p) = J"(p) = 2 o (Fe) + —2<I> (P! )

1 8 9 we
+w_(21(wc - wd) = + CI)Q ((I) — (I)d)q);;,b

2




Procedure for phase margin adjustment (2)

Approximation of %"C:
dln|L(jwe)| _ 0 = Oln|L(jw.)| N Oln|L(jw)|| Owe _ 0
dp op Ow w, Op
~1
N Ow.  Oln|L(jw)| | dln|L(jw)|
op op Ow o,
Approximation of ¢’
o O%m  0Pm| Ow. O/L(jwe)  O/L(jw)|  Owe
™ Op Ow |, Op B d0p ow |, Op
0/L(jw)|  OLK(jw) N 0/G(jw)
ow |, N Ow o, ow o
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Bode’s integrals: Derivative of amplitude

- For a stable minimum-phase transfer function G(s) the phase of the system at any wy is given by:

1 [T dl '
LG (jwo) = —/ n|Gljw) In coth Mdu
T dv 2

— OO

where v = In %
wo

- Since: In coth % decreases rapildy as w deviates from wq

The slope of the Bode plot is almost constant in the neighborhood of wy

T dln|G(jw)|
2 dv

wo




Bode’s integrals: Derivative of phase

- For a stable minimum-phase transfer function G(s) the logarithm of the system amplitude at any

wo IS given by:

00 .
In[G(jwo)| = In|K4| — ﬂ/ d(ZGEi]Vw)/w) In coth %du

T — OO

where v = In w% and K, is the static gain of the plant

- In the same way

. wo d(/G(jw)/w 2
In|G(jwo)| = In|K,| — 7r0 ( EiV )/w) 5

d/G(jw . 2 .
— Sp(wp) = wo df;] ) ~ ZG(]wo)—F;[ln Ky —1In |G(jwo)l]

wo
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Bode’s Integrals (Precision of estimates)

Comparison of true S, (w) and S, (w) /w and estimates based on Bode’s integrals for:

1
G(s) =
(s+1)"
Sp(oo)/w
OF—=—=—= or
-n/2 -n/2 +
N \ N ~
N> 1 o 1\\\\¥_>2 N o 1 2
10 10 10 10 10 10 10 10 10 10
Frequency [rad/s] Frequency [rad/s]

True values (solid line) and estimates (dashed line)
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Procedure for phase and gain margin adjustment (1)

e Criterion: J(p)

e [terative solution: p;41

We(q):  Measured (desired) crossover frequencies p:  Vector of the controller parameters
CIDm(d): Measured (desired) phase margin 1. iteration number

Ku(d): Inverse of measured (desired) gain margin

- Gradient:  J'(p) = & (we — wa) % + L (P — Pa)P, + 2= (Ku — Ka) K/,
“a P d d

- Hessian:  H(p) = J"(p)

1 8wc(8wc)T i L(I)’ ((I)’ )T i LK’ (K/)T

w2 Op \ Op

Q




Procedure for phase and gain margin adjustment (2)

Approximation of K :

O|L(jwu)|  O|L(jw)|| Own
K/ =
“ dp i ow |, Op
O|L(jw , Oln |L(jw 2/ L(jw, 2K,
L(jw) 1L(w)] LG g 2eE0e)
Oow o ow o TWa, Wy,
Approximation of 8570“:
~1
0/L(jw.y) N OLL(jw)| Ow, 0 = Ow,  O0/L(jwy) [ 0/L(jw)
op ow |, Op B op op ow |,
0/L(jw) 0/K(jw) 0/G(jw) 0/K(jw) Sp(wy)
— + ~
Ow » Ow o Ow o Oow o Wy,
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Simulation results

- Model:

- Initial Controller:

- Measured performances:

- Specifications:

- New controller (1 iteration):

- Obtained performance:

Step response

e—0-3s
G(8) = resr97G7)
K(s) =4.5(1 + g5z +0.033s) (k-7 tuning rule)

d,, = 78.5° w. = 0.139 radls, K, — ——

4.39
by =70° wyg = 0.2radls, Kg = %

K(s) =4.93 (1 + g5 + 0.1255)
o) 1
®,, =66, w. = 0.199 rad/s, K,,, = 557

Control signal

1 - I
0.8k //
//
- /
0.6 ,
0.4 /
//
0.2k //
) - -~ Initial -~~~ Initial
J ——  Proposed Proposed
0 1 1 1 1 1 1
0 10 20 30 40 O0 10 20 30 40
Time [s] Time [s]
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Experimental Results (1)

Three-tank system

7\

{ )

- T1, T2 and T3: interconnected cylinders u__4

- L: water level of T2

Tl

21, Q2 and (), flow rates

Input u: controls the flow rate ()1

Output y: proportional to the level L

Disturbance: flow rate ()5

out

T3
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Experimental Results (2)

- Initial Controller: K(s)=29.3(1+ ﬁ +4.72s) (k-7 tuning rule)
- Measured performances: ®,,, = 64° w. = 0.097 rad/s

- Specifications: b, = 80°, wyg = 0.08radls, T; = 4Ty

- New controller (1 iteration): K(s) =20.4 (1 + 57 + 7.88s)

- Obtained performance: d,,, = 86.2°, w. = 0.085 rad/s

Step and load disturbance response
2 ' ' ! ! Auto-tuning experiment

Initial 0.04
—— Proposed
- - - Reference signal

0.02

-0.02

-0.04

Time [s]
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Concluding Remarks

e Experiment-based tuning methods are appropriate for restricted complexity controller design.

No model is required or the model is not directly involved in controller tuning.
e Two new approaches for iterative controller tuning are proposed:
Correlation approach

- Making the closed-loop output error uncorrelated with the reference signal, can be used as an

objective for controller tuning.
- Parametric convergence of the controller is not affected by noise and modeling errors.
Frequency approach
- Takes advantage of the Bode’s integrals to estimate the gradient of a frequency criterion
- Converges in a few iterations to the minimum of the frequency criterion

- No parametric model is required
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