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The diffusion limit of kinetic systems has been
subject of numerous studies since prominent works
of Lebowitz et al. [1] and Van-Kampen [2]. More
recently, the topic has seen a fresh interest from the
rarefied gas simulation perspective. In particular,
Fokker-Planck based kinetic models provide novel
approximations of the Boltzmann equation, where the
relaxation induced by binary collisions is modeled
via continuous stochastic processes. Hence in contrast
to direct simulation Monte-Carlo, computational
particles follow seemingly independent stochastic
paths. As a result, a significant computational gain at
small/vanishing Knudsen numbers can be obtained,
where the dynamics of particles is overwhelmed
by collisions. The cubic Fokker-Planck equation
derived by Gorji et al. [3] gives rise to the correct
viscosity and Prandtl number for monatomic gases
in the hydrodynamic limit, and further accurate
behavior at moderate Knudsen numbers. Yet the
model lacks a rigorous structure and more crucially
does not admit the H-theorem. The latter underpins
its accuracy e.g. in predicting shock wave profiles.
This study addresses bridging the gap between
diffusion processes and the Boltzmann equation
by introducing the Entropic-Fokker-Planck kinetic
model. The drift-diffusion closures derived for the
model, allow for an H-theorem besides honouring
consistent relaxation of moments. The devised model
is validated with respect to direct simulation Monte-
Carlo for high-Mach as well as Couette flows. Good
performance of the model together with its easy
to compute coefficients, make the Entropic-Fokker-
Planck framework attractive for computational
investigation of gases beyond equilibrium.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
Gas flows in small scale devises or rarefied conditions may depart significantly from thermal
equilibrium, and thus the conventional Navier-Stokes-Fourier equations fail to describe them
properly. The Boltzmann equation on the other hand, gives the appropriate starting point for
studying gas flows at such scenarios by providing a statistical account of molecular interactions.
However, due to the complexity of the Boltzmann collision operator and high dimensionality of
its solution domain, alternative computational methods are desirable. In general, three categories
of solution methods tackle gas flows far from equilibrium.

Moment methods consider a finite set of partial differential equations (PDEs) governing the
evolution of several velocity moments. The closure for higher order moments can be achieved
by prescribing the distribution function or its expansion with respect to some basis. For example
in the R13 method, the Grad distribution is employed for deriving the closures (see e.g. [4–7]).
Apart from relatively low computational cost, the moment methods can provide interesting
insights about the physical mechanisms involved in high Knudsen gas flows. Yet inherent closure
assumptions and complexity of boundary conditions are major drawbacks.

In particle Monte-Carlo methods, the flow field is described by computational particles
representing the distribution function. Foremost, direct simulation Monte-Carlo (DSMC)
invented by Bird [8] is employed for rarefied gas flow simulations. As a particle Monte-Carlo
scheme, it has been shown that the molecular distribution obtained by a converged DSMC
simulation is consistent with solution of the Boltzmann solution [9,10]. Over its half-a-century
development, DSMC has evolved to a mature general-purpose particle algorithm capable of
dealing with complex rarefied gas flow scenarios [11]. Yet since collisions have to be resolved,
DSMC can become prohibitively expensive at vanishing Knudsen numbers. The scenario which
may arise e.g. in plume flows where a wide range of Knudsen numbers exists in the flow field.
Another computational drawback comes from statistical errors associated with Monte-Carlo. In
particular at the vanishing Mach number, the uncertainty of computed observables diverges.
Recent advancements in DSMC techniques are thus tackling these issues; see e.g. [12,13].

The third category belongs to direct methods, where the PDE governing the evolution of the
probability density is directly addressed. This can be applied either to the Boltzmann equation or
to kinetic models with simpler operators such as BGK [14], S-BGK [15] or ES-BGK [16]. The main
advantage of this category is that the computations are free from statistical noise. However the
drawback comes from the high dimensionality of the solution domain. Efficient direct schemes
have been devised e.g. based on the discrete velocity model or spectral methods (see [17,18]).

The stiffness of the collision operator which results in massive computational costs in the near-
hydrodynamic/hydrodynamic regimes, can be treated by passing to the diffusion limit of the
Boltzmann equation. In this context, the Fokker-Planck equation naturally arises as a diffusion
approximation of the underlying Master equation. There has been an extensive amount of work
on the Fokker-Planck limit of the (linearized) Boltzmann equation e.g. by Lebowitz et al. [1], Van-
Kampen [2], Pawula [19], Skorokhod [20], Bogomolov [21] and Heinz [22].

Due to the inherent connection between white-noise driven stochastic processes and the Fokker-
Planck equation, particle Monte-Carlo solution algorithms can be easily constructed upon
Fokker-Planck kinetic models. From the computational point of view, the idea has been originally
persuaded by Jenny et al. [23], where the Langevin equation was employed for modeling particles
kinetics. The Fokker-Planck model (FP) can be regarded as an approximation of the Botlzmann
equation, where the effect of binary collisions is described by a drift-diffusion mechanism. In
other words, the net force acting on a particle due to successive collisions is decomposed into
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a part which is correlated to the particles velocity (drift) and the remainder which is a purely
random contribution (diffusion). The latter can be seen as a direct consequence of the molecular
chaos and is responsible for entropy production (hence the H-theorem). Yet the drift and diffusion
coefficients employed in the Fokker-Planck model are unclosed terms that should be determined
based on the underlying collision operator. Matching evolution of different moments of the
Boltzmann equation with those arising from the Fokker-Planck model, leads to closure equations
for drift and diffusion coefficients.

The linear drift model proposed in [23], could only provide one time scale which can be found
based on the relaxation of the stress tensor (i.e. second order velocity moment), and thus resulting
in wrong Prandtl number of 3/2. Next, a cubic ansatz was derived by Gorji et al. [3] where higher
order terms were introduced in the drift term in order to match the relaxation of the heat-fluxes to
those resulting from the Bollzmann collision integral. Since then different attempts were made in
order to study the performance of cubic Fokker-Planck based kinetic model in more details [24].
Besides algorithmic improvements [25,26], the model was extended to a hybrid framework in
order to cover a larger Knudsen number range [27,28].

Alternative Fokker-Planck models were proposed for studying rarefied gas flow simulations
[21,29–31]. In particular the ES-FP model devised by Mathiaud & Mieussens [29] had been
compared with respect to the cubic-FP model [32]. The comparison suggests that the former gives
more accurate shock profiles while the latter provides a better heat-transport prediction in the low
Knudsen regime. Further studies are required in order to compare the performance of different
Fokker-Planck models in more general settings.

Motivated by recent studies pointing out to the lack of H-theorem and practical deficiency of
the cubic-FP model in accurately resolving shock profiles [33,34], the objective of this work is to
derive a mathematically rigorous FP framework which offers two features: consistency of moment
relaxations and H-theorem.

In the following, first we review linear- and cubic- FP models. Next, theoretical limitations of
the cubic-FP model, including lack of the H-theorem are discussed. In the follow up section, the
Entropic Fokker-Planck (EFP) equation is introduced. Here an explicit relation between diffusion
and drift coefficients is derived such that the positivity of the entropy production is guaranteed. In
Sec. 6, the solution algorithm and corresponding integration schemes are reviewed. In the results
section, the Couette scenario as well as a high Mach flow of argon over a vertical plate are studied
using the EFP model. The paper closes with concluding remarks.

2. Review of cubic-Fokker-Planck model
Consider a dilute gas medium with the density field ρ(x, t). The molecular velocity distribution
F = ρf(v;x, t) corresponds to the probability density f of finding a molecule with a velocity
infinitesimally close to v ∈R3 at position x∈R3 and time t∈R+. Adopting the molecular chaos
assumption, the Boltzmann equation

∂F
∂t

+
∂

∂xi
(viF) =

1

m

∫
R3

∫4π
0

(
F(v′)F(v′t)−F(v)F(vt)

)
gI(Ω, g)dΩdvt (2.1)

provides the evolution of F due to binary collisions of the form (v, vt)→ (v′, v′t). Here g is the
magnitude of the relative velocity g= |v − vt|, I(Ω, g) is the differential cross section with Ω the
solid angle about g, and m is the molecular mass. For details of the derivation see e.g. [35]. Here
and henceforth the index summation convention is used for simple indices. Note that the right
hand side of Eq. (2.1) will be denoted as SBoltz .

One of the issues in gas flow simulations based on the Boltzmann equation is the stiffness of
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the collision operator at low Knudsen numbers. For example in DSMC, the number of collisions
that have to be calculated becomes significantly large as Kn→ 0. Therefore an approximation that
reduces the jump process arising from binary collisions to a continuous Markovian one, is highly
attractive. A generic form of continuous Markovian processes is governed by the FP equation

∂F
∂t

+
∂

∂xi
(viF) =

∂

∂vi
(−AiF) +

∂

∂vivj
(DijF) (2.2)

with drift A and diffusion D [36]. In general, the FP operator is nonlinear with respect to F due
to the fact that A and D are functions of F . We refer to the right hand side of Eq. (2.2) as SFP .

The physical assumption underlying the FP approximation can be better understood by
considering a point particle following the random process generated by Eq. (2.2). The velocity
of this particle continuously changes due to two contributions. One comes from the drift which
is the summation of all forces correlated with the particle velocity. The other is the rapidly
changing random force scaled by the diffusion. Note that the latter is an alternative account of
the molecular-chaos and is a necessary means for the entropy production in the FP formulation.

The consistency between FP and Boltzmann operators has to be fulfilled by appropriate closures
for drift and diffusion coefficients. Different degrees of consistency lead to different FP models
with varying levels of complexity.

(a) Linear drift
The simplest relevant closure is known as the Langevin equation. The closure for the drift

Ai = − 1

τ
(vi − Ui) (2.3)

is a linear relaxation of the velocity towards the mean velocityU . The time scale τ = 2µ/p is chosen
such that the viscosity µwill be achieved in the hydrodynamic limit. The pressure p= nkT follows
the ideal gas law (due to the dilute gas assumption) with number density n and temperature T .

Accordingly, the diffusion coefficient is found from energy conservation

Dij =
θ

τ
δij , (2.4)

where θ= kT/m. Equations (2.3)-(2.4) lead to the following consistency relations∫
R3

PSFP dv =

∫
R3

PSBoltzdv (2.5)

for P ∈ {1, vi, vivj}, assuming the Maxwell interaction law. Note that while the higher order
moments will have similar evolution forms in both operators, the relaxation rates are different.
For example considering the heat-fluxes

qi =
1

2

∫
R3

v′iv
′
jv
′
jFdv, (2.6)

the linear-drift FP model gives rise to the relaxation rate of 3p/(2µ) which deviates from the rate
2p/(3µ) resulting from the Boltzmann operator (with Maxwell molecules). Therefore a wrong
Prandtl number of 3/2 is found in the hydrodynamic limit from the linear drift FP model.

The linear-drift FP model was adopted for rarefied gas flow simulations by Jenny et al. [23].
Accurate mass flow rate results could be achieved for planar Poiseuille setup up to order one
Knudsen numbers. Furthermore, its consistency with the second law of thermodynamics and
thus the H-theorem has already been proven in [37]. However in order to tackle a wider range of
problems, the Prandtl number issue had to be coped with.
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(b) Cubic drift
The relaxation of velocity moments in accordance with the Boltzmann operator can be obtained
by a polynomial expansion of the drift. Therefore the drift was extended to a cubic form

Ai = cijv
′
j + γi

(
v′jv
′
j − 3θ

)
+ Λ

(
v′iv
′
jv
′
j −

2qi
ρ

)
(2.7)

with the fluctuating velocity v′ = v − U [3]. The coefficients c and γ are introduced in order to
match the evolution of second and third order velocity moments. Therefore they are found from
the consistency relation∫

R3

PSFP dv =

∫
R3

PSBoltzdv; P ∈ {1, vi, vivj , vivjvj}, (2.8)

where P is now extended to include the heat-fluxes as well. Consequently, the coefficients c and
γ are found at each position and time from a 9× 9 linear system of moments. The coefficient Λ
is set to a small negative value (which vanishes at the equilibrium), for stability of the process.
Finally, a diffusion closure similar to the Langevin model i.e. Eq. (2.4) was adopted.

The cubic-FP model introduced in [3], has been studied for various rarefied gas flow problems
including lid-driven cavity and high Mach flows [24,27]. While accurate results could be achieved
in different test cases, certain formal and practical problems arise due to the extension given by
Eq. (2.7).

3. Limitations of cubic-Fokker-Planck
In this section we analyze some theoretical shortcomings of the cubic-FP model.

(a) H-theorem
Let us consider the evolution of the entropy functional

H(F) =−
∫
R3

F logFdv (3.1)

for the FP equation (2.2) in a homogeneous setting. Therefore

∂H
∂t

=

∫
R3

∂Ai
∂vi
Fdv +

∫
R3

Dij
F

∂F
∂vi

∂F
∂vj

dv. (3.2)

Now by applying the cubic-FP closure

∂H
∂t

=

ḢA︷ ︸︸ ︷
(cii + 15θΛ)+

ḢD︷ ︸︸ ︷
θ

τ

∫
R3

1

F
∂F
∂vi

∂F
∂vi

dv (3.3)

is obtained. For the Maxwellian distribution

F0 = Z−1 exp
(
−v
′
iv
′
i

2θ

)
(3.4)

the macroscopic coefficients become cij =− 1
τ δij , γi = 0 and Λ= 0. Therefore the right hand side

of Eq. (2.2) vanishes and the equilibrium is achieved.

Yet for a general distribution F , the entropy rate arising from the drift i.e. (cii + 15θΛ) is not
known explicitly. Therefore dH/dt might become negative depending on the ratio between ḢA
and ḢD . In a general setting, the cubic-FP model may not admit the H-theorem.
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(b) Time scale
The time scale τ in the cubic-FP model controls the diffusion and thus the entropy production
rate ḢD . However there is no clear justification for the value τ = 2µ/p which is taken from the
Langevin process. Note that for any positive τ , the system of constitutive equations arising from
Eq. (2.8) lead to correct transport properties in the hydrodynamic limit. Therefore the notion of τ
is somewhat redundant for the cubic model.

(c) Stability
The cubic coefficient Λ was introduced in the drift in order to have a dominant attractive
acceleration towards the mean velocity, as the fluctuations become large. Note that this stability
argument is purely intuitive and has little or no mathematical justification. A more appropriate
stability criterion can be sought from the kinetic equation (2.2). By providing the H-theorem, the
solution of the FP equation becomes stable. Therefore in order to have a stable stochastic process,
it would be sufficient to construct a FP equation which admits the H-theorem.

In the next section we introduce the Entropic-FP equation which overcomes the mentioned
deficiencies.

4. Entropy guided Fokker-Planck expansion

(a) General formulation
Consider a class of FP equations

∂

∂t
F =

∂

∂vi

(
∂Ψ

∂vi
F
)
+D

∂2

∂vi∂vi
F (4.1)

where the drift Ai =−∂Ψ(v, t,F)/∂vi, and the diffusion Dij(v, t,F) =D(t,F)δij may depend
on F . Before proceeding to the details of the closure for Ψ and D, below we sketch the main idea
behind the above kinetic model.

Let

Jl =

{
α= (αi, 1≤ i≤ 3)

∣∣∣∣αi ∈ {0, 1, 2, ..., l}, |α|= 3∑
i=1

αi

}
; l= 1, 2, ... (4.2)

denote the set of multi-indices α. Now consider a series of FP operators

SFP,l(F) =
∂

∂vi

(
∂

∂vi
Ψ (l)F

)
+D(l) ∂2

∂vi∂vi
F , (4.3)

where Ψ (l) is such that for a given l and for ∀α∈ Jl, we get

∫
R3

SFP,l(F)Hα(v′)dv =

Ṗα︷ ︸︸ ︷∫
R3

SBoltz(F)Hα(v′)dv, (4.4)

where {Hα}α∈Jα are |α|-order rotational invariant Hermite polynomials. By fulfilling Eq. (4.4),
Hermite projections of the solution of the FP equation become identical to the ones arising
from the Boltzmann equation. Hence assuming that solutions of both equations admit Hermite
expansions, the solution of the FP equation (if it exists) converges to the solution of the Boltzmann
equation in the weighted L2 sense [38].

Consequently the question of the FP kinetic model reduces to devising Ψ and D such that the
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resulting FP equation has a solution and Eq. (4.4) is fulfilled for a given order l. A general
approach to achieve that is by considering a Hermite expansion of Ψ for a given l ∈N

Ψ (l)(c, v′) =
∑
α∈Jl

cαHα(v
′) (4.5)

and a non-negative value for the diffusion. Once Dl is fixed, the coefficient vector c can be found
from linear equations resulting from Eq. (4.4). More clearly let

Sαβ =

∫
R3

∂

∂vi
Hα

∂

∂vi
HβFdv and (4.6)

Lα =

∫
R3

∂2Hα
∂vi∂vi

Fdv. (4.7)

Therefore

cα =
∑
β∈Jl

S−1αβ

(
D(l)Lβ − Ṗβ

)
. (4.8)

Observe that Sαβ is a symmetric-positive-definite matrix. Furthermore, Ṗα are given by the
Boltzmann collision operator. They have a closed form structure for Maxwell’s interaction law and
can be approximated for other potentials [39]. Note that Dl is responsible to control the entropy
of the solution, whose closure is discussed in the following.

(b) Entropy consideration
An important property of the Boltzmann operator is the H-theorem. Physically, it means that the
entropy of the system is increased through collisions. Mathematically, the H-theorem provides the
L1 regularity in terms of the distance from the equilibrium, through Kullback’s inequality [40].
Therefore providing an H-theorem can also lead to the long-time solution existence of the FP
equation. Below first we derive a relationship between Ψ andD which results into the H-theorem.
Next we provide drift-diffusion closures in accordance with the entropy constraint.

(i) H-theorem

First we should find a condition such that the Maxwellian distribution becomes the stationary
solution of Eq. (4.1). However note that Eq. (4.8) with F =F0 yields Ψ (l) = 1/2D(l)v′iv

′
i/θ.

Therefore no extra constraint on Ψ and D would be required to keep the solution stationary at
the Maxwellian.

Now let us move to the non-equilibrium scenario. First observe the entropy evolution

∂H
∂t

= −
∫
R3

∂2Ψ (l)

∂vi∂vi
Fdv +D(l)

∫
R3

F ∂

∂vi
logF ∂

∂vi
logFdv. (4.9)

In the following we justify that the constraint

D
(l)
opt = ḢΨ , (4.10)

where

ḢΨ =
θ

3

∫
R3

∂2Ψ (l)

∂vi∂vi
Fdv (4.11)
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ensures ∂H/∂t≥ 0. Using F0 given by Eq. (3.4), we have∫
R3

(
− ∂

2Ψ (l)

∂vi∂vi
+D

(l)
opt

∂

∂vi
logF ∂

∂vi
logF

)
Fdv = D

(l)
opt

∫
R3

F ∂

∂vi
log
F
F0

∂

∂vi
log
F
F0

dv

+

∫
R3

(
3

θ
D

(l)
opt −

∂2Ψ l

∂vi∂vi

)
Fdv. (4.12)

Now using Eq. (4.10), we get

∂H
∂t

= D
(l)
opt

∫
R3

F ∂

∂vi
log
F
F0

∂

∂vi
log
F
F0

dv (4.13)

and hence ∂H/∂t≥ 0 with equality for F =F0.

(ii) Diffusion closure

The constraint (4.10) suggests a closure for D(l). In fact provided ḢΨ ≥ 0, Eq. (4.10) yields

D
(l)
opt =

−
∑
α,β∈Jl S

−1
αβ ṖαLβ

3/θ −
∑
α,β∈Jl S

−1
αβLαLβ

, (4.14)

by virtue of Eq. (4.8). However since the right hand side can become negative, the closure may fail
to exist. Yet one key observation here is that the negative value of ḢΨ leads to ∂H/∂t≥ 0. Using
this fact, we propose the closure

D(l) =

∣∣∣∣∣
∑
α,β∈Jl S

−1
αβ ṖαLβ

3/θ −
∑
α,β∈Jl S

−1
αβLαLβ

∣∣∣∣∣ (4.15)

for the diffusion coefficient, which is positive and yields

∂H
∂t
≥ 0 (4.16)

as shown in the following. First observe that

∂H
∂t

= −3

θ
ḢΨ +D(l)

∫
R3

F ∂

∂vi
logF ∂

∂vi
logFdv. (4.17)

Now let us consider two cases

(i) Suppose we have ∑
α,β∈Jl S

−1
αβ ṖαLβ

3/θ −
∑
α,β∈Jl S

−1
αβLαLβ

≤ 0 =⇒ ḢΨ ≥ 0, (4.18)

and hence the inequality (4.16).
(ii) Consider the case when∑

α,β∈Jl S
−1
αβ ṖαLβ

3/θ −
∑
α,β∈Jl S

−1
αβLαLβ

≥ 0 =⇒ ḢΨ ≤ 0. (4.19)

Observe that since ḢΨ ≤ 0, the inequality (4.16) is fulfilled due to Eq. (4.17).

We refer to the FP equation with closures (4.5) and (4.15) as the EFP model.

(iii) Discussion

Before proceeding to an affordable EFP model, it is important to explore the closure given by
Eq. (4.15) in more details.
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(i) Observe that we have∑
α,β∈Jl

S−1αβ ṖαLβ→ 0 and
∑

α,β∈Jl

S−1αβLαLβ→
3

θ
(4.20)

as F →F0. Therefore it is necessary to make sense of Eq. (4.15) at F =F0. By interpreting
the equilibrium via limε→0 F0(1 + εΦ(v′)), the limit of Eq. (4.15) can be evaluated for a
polynomial Φ(.). Yet in practice we dont need to evaluate Eq.(4.15) at the equilibrium
(limit), since any pair of (Ψ (l) = 1/2D(l)v′iv

′
i/θ,D

(l) > 0) yields SFP,l(F0) = 0.
(ii) While both discussed cases (i) and (ii) provide non-negative entropy productions, the

former is the preferred one due to two reasons. First, note that the entropy rate of the
former case is proportional to the Fisher information

I(F|F0) =

∫
R3

F ∂

∂vi
log
F
F0

∂

∂vi
log
F
F0

dv. (4.21)

The Fisher information is a measure of uncertainty and induces a metric between two
distributions with fundamental importance in many physical systems [41,42]. Second,
the condition ḢΨ ≤ 0 implies that the drift is gradient of a scalar which is convex in
the average sense. This can have favorable consequences in terms of the stability of the
random paths generated by the resulting FP equation.

5. Quadratic Entropic Fokker-Planck model
Now based on the general EFP formulation, we propose a computationally affordable model. In
order to achieve correct transport properties (i.e. viscosity and heat conductivity) we focus only
on the evolution of moments up to the heat-fluxes. Hence the consistency relations reduce to∫

R3

SFP,(3)(F)Hα(v′)dv =

∫
R3

SBoltz(F)Hα(v′)dv (5.1)

where Hα ∈ {1, v′i, 1/2v
′
kv
′
k, v
′
iv
′
j − 1/3v′kv

′
kδij , v

′
iv
′
jv
′
j}. Accordingly, the potential ansatz takes

the form

Ψ = c
(1)
i v′i +

1

2
c
(2)
ll v
′
kv
′
k + c

(2)
ij

(
v′iv
′
j −

1

3
v′kv
′
kδij

)
+ c

(3)
i v′iv

′
jv
′
j . (5.2)

(a) Closures
Note that the first order term c(1) can be found from the rest, due to conservation of momentum

c
(1)
i = −3c(3)i θ − 2c

(3)
j

pij
ρ
. (5.3)

Furthermore, only the symmetric part of c(2)ij is relevant. Therefore we end up with nine

unknowns (six c(2) and three c(3)). The corresponding equations for c(2,3) can be written more
transparently using the following notation. Let

x=
[
c̃
(2)
11 c̃

(2)
12 c̃

(2)
13 c̃

(2)
22 c̃

(2)
23 c̃

(2)
33 c̃

(3)
1 c̃

(3)
2 c̃

(3)
3

]T
, (5.4)

where c̃ is comprised of the unknowns in the drift

Ai = c̃
(2)
ij v
′
j + c̃

(3)
i

(
v′jv
′
j − 3θ

)
+ 2c̃

(3)
j

(
v′iv
′
j −

pij
ρ

)
(5.5)

and is a function of c according to

c̃
(2)
ij = −

(
c
(2)
ij + c

(2)
ji

)
− 1

3
c
(2)
ll δij (5.6)

and c̃
(3)
i = −c(3)i . (5.7)
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Furthermore, let y be the production vector Ṗα. Therefore the consistency relations can be written
in the form

Lijxj = yi −Dzi (5.8)

where z = ρ[1 0 0 1 0 1 0 0 0]T . Hence we have

D =

∣∣∣∣∣ L−1jk ykzj
3/θ − L−1pq zpzq

∣∣∣∣∣ (5.9)

and xi = L−1ij
(
yj −Dzj

)
. (5.10)

The production terms Ṗα should be specified from the underlying molecular law. Except the case
of Maxwell interactions, they do not have an analytical form unless a closure for the distribution
is prescribed. In this study we adopt the non-linear production terms evaluated in [39] for the
case of hard sphere interaction law.

(b) Discussion
The drift-diffusion closures given by Eqs. (5.5) and (5.9) give rise to a quadratic Entropic FP model
(referred henceforth as quad-EFP) which admits the H-theorem subject to a constrained relaxation
of moments up to the heat-fluxes. In comparison to the cubic-FP model, the EFP formulation does
not require stabilizing term due to the fact that the entropy constraint bounds the L1 distance of
the distribution from the equilibrium. Furthermore in contrast to the other kinetic models such as
ES-FP or ES-BGK, the EFP formulation does not depend on a specific structure of the production
term Ṗ . Therefore generalization for complex molecular potentials and/or including higher order
moments are rather straight-forward.

In the following Section, we discuss a numerical integration scheme for the quad-EFP model in a
particle framework very similar to the cubic-FP scheme.

6. Solution algorithm
Similar to DSMC, a particle Monte-Carlo technique is developed in order to perform simulations
based on the quad-EFP model. Itô’s Lemma provides us with the set of stochastic processes
that represent the same distribution as the solution of the Fokker-Planck equation [36,43]. More
precisely suppose M(t)−X(t) are time-indexed velocity-position processes governed by

dMi(t) = Aidt+DdWi and (6.1)

dXi = Midt, (6.2)

where dWi is the Wiener process honoring 〈dWi〉= 0 and 〈dWidWj〉= dtδij with 〈...〉 the
ensemble average. As it is derived in [44], the probability density of realizations generated by the
above stochastic differential equations (SDEs) (6.1)-(6.2) converge to f(V ;x, t) being the solution
of the Fokker-Planck equation (2.2) with Dij =Dδij .

By examining the SDEs (6.1)-(6.2), the motivation behind the Fokker-Planck kinetic model
becomes more evident. Here each stochastic path generated by the process only depends on the
moments of the distribution function. Thus providing an accurate integration scheme one can
overcome the high cost of dense collisions appearing in the near-hydrodynamic regime [27].

(a) Time integration
The time integration scheme devised for the cubic-FP model [24] can be readily applied to the
quad-EFP model. The idea is to make use of the exact integration of the Langevin equation
together with a first order approximation of the nonlinear contribution in the drift. Moreover,
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fluctuating velocities are scaled such that kinetic energy is conserved. In order to formulate the
same scheme here, we have to introduce a relevant time scale for decomposition of the process
into a Langevin part and the remainder. We can do this by defining a frequency

ν =
D

θ
(6.3)

and correspondingly

Ai = −νM ′i +Ni (6.4)

where M ′ =M − U and

Ni =
(
c̃
(2)
ij − νδij

)
M ′j + c̃

(3)
i

(
M ′jM

′
j − 〈M

′
jM
′
j〉
)
+ 2c̃

(3)
j

(
M ′jM

′
i − 〈M

′
jM
′
i

)
. (6.5)

Let Mj and Xj be approximations of the velocity and position at time tj resulting from the
numerical scheme. Therefore velocity-position updates follow

Mn+1
i =

1

αn

(
M ′,ni e−∆tν

n

+ (1− e−∆tν
n

)
1

νn
Nn
i +Dn

√
1

νn
(1− e−2∆tνn)ξi)

)
+ Uni

(6.6)

and Xn+1
i = Xn

i +Mn
i ∆t (6.7)

for the time step size ∆t= tn+1 − tn. Note that all the values with the superscript n and n+ 1

are evaluated at tn and tn+1, respectively. Here ξi are independent standard normal variates. The
conservation of energy is ensured by the correction factor α

α2 = 1 +
1

3D

(
ν−1(1− e−∆tν)2〈NiNi〉+ 2

(
e−∆tν − e−2∆tν

)
〈M ′iNi〉

)
, (6.8)

see [27] for details.

(b) Moments
As a particle Monte-Carlo scheme, the moments of the distribution function are evaluated from
an ensemble of particles (realizations). Consider a set of np particles in the infinitesimal volume
δΩ(x) around point x at time t. Thus the distribution

F(v, x, t) =
1

δΩ
lim

np→∞

np∑
j=1

δ
(
M (j)(t)− v

)
w(j) (6.9)

can be represented by the set of particles velocitiesM (j) with j ∈ {1, ..., np}. The statistical weight
w(j) is the number of real molecules that are simulated by particle j. Using a finite set of particles,
the identity (6.9) becomes an approximation through which different moments of F can be
estimated at each position from nearby particles.

Once different velocity moments are sampled from the particles, the macroscopic coefficients and
the diffusion have to be estimated and then utilized in the update scheme (6.6)-(6.7). That involves
solution of the system (5.10) and then evaluation of diffusion via (5.9).

(c) Solution algorithm
Initially, the physical domain is discretized into a set of fine enough computational cells.
The resolution requirement here is to capture the gradients of macroscopic quantities [25,45].
According to the CFL criterion, then the time step size is chosen. Note that both local grid
refinement and local time stepping might be employed as well [26]. A minimum number of 20-50
particles per cell has to be considered if instantaneous averaging is conducted for estimating the
coefficients involved in the drift and diffusion. Furthermore, treatment of boundary conditions is
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Figure 1: Couette flow at Kn∈ {0.02, 0.1, 0.5}; black: cubic-FP, red: quad-EFP and blue: DSMC;
left: mean velocity U [m/s] and right: temperature T [K]

similar to other kinetic models. They are fully determined by the wall kernel or inflow/outflow
distribution fluxes. In summary the algorithm is outlined:

Table 1: Outline of the Algorithm

1- Move particles according to Eq. (6.7).
2- Apply boundary conditions.
4- Calculate the coefficients in each cell via Eq. (5.10) and diffusion via Eq. (5.9).
5- Update velocities based on Eq. (6.6) for particles in each cell.
7- Sample observables.

7. Results
Two sets of simulations are conducted for validation of the quad-EFP model. First, the planar
Couette flow is studied at different Knudsen numbers. Next, the high Mach flow around a vertical
plate is simulated. The focus in both simulations is to demonstrate the accuracy of the quad-
EFP model. For all simulations, the hard sphere model of argon with d= 3.628× 10−10 m and
m= 66.3× 10−27 kg is employed. Therefore, in both cubic-FP and quad-EFP simulations the
macroscopic coefficients are found based on the Boltzmann production terms corresponding to
the hard sphere model [39]. DSMC simulations are conducted based on Bird’s algorithm [8].

(a) Couette
The gas at the number density n= 1020 1/m3 is confined between two isothermal walls at
Tw = 273 K moving with respect to each-other at the speed of Uw = 300 m/s. The channel is
assumed to be long enough and therefore the flow condition only varies normal to the walls
i.e. along the x-coordinate. The walls are separated by the distance L, where diffuse boundary
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condition is applied to both x= 0 and x=L. Three Knudsen numbers are considered Kn=

λ/L∈ {0.02, 0.1, 0.5} with λ being the hard sphere mean-free-path. The flow domain x= [0, L]

is discretized into ncell = 200 computational cells resulting in the length δx=L/ncell for each.
According to the CFL criterion, the time step size ∆t= δx/θw/2 is utilized. Total number of 105

particles are employed in each simulation, which initially 5,000 time steps are calculated to reach
the stationary condition; the time averaging is employed for 20,000 steps onwards. The results
are calculated using quad-EFP, cubic-FP and DSMC. The mean velocity U and the temperature
T are depicted in Fig.1 . Very good agreement between all three methods can be seen. The slip
velocity and the temperature jump are captured accurately by the FP models. However as Kn
increases, the discrepancy appears especially inside the Knudsen layer. Furthermore, a slight but
clear improvement of the quad-EFP model with respect to the cubic-FP can be observed.

(b) Flow over a plate
As a more challenging test case, Ma=5 flow of argon around a vertical plate of lengthL= 0.1828 m
is considered. The physical domain is extended 2.5L along x- and 3L along y-axis. The upstream
condition is set to T0 = 273 K and n0 = 1020 1/m3. The flow enters vacuum condition at the
downstream x= 2.5L. Vertical ends of the domain i.e. y= 0 and y= 3L are assumed to be specular
boundaries. The isothermal plate is 1.25L far from the inflow and assumed to be diffusive
with Tw = 273 K. The Knudsen number based on the half of the plate size is 0.14. Symmetry
condition at y= 1.5L is exploited and only the upper half of the domain is simulated. Therefore
the computational domain 2.5L× 1.5L is discretized into 120× 120 computational cells resulting
in ∆t= 1.5978× 10−6 s according to the CFL condition. Particles statistical weights are set to
4× 10−13 kg resulting in around 3× 106 number of particles at the stationary condition. Initially
2,000 time steps are advanced and afterward, 5,000 steps for time averaging.

Formation of a normal shock and its interaction with rarefaction waves from the tip of the plate at
the downstream, make the flow structure quite complex. While the FP models produce smoother
shocks, a better agreement between the quad-EFP model and DSMC can be observed in Mach
contours depicted in Fig. 2. More detailed results are shown in Figure 3 for different moments
along y= 1.875L line. Better agreements are shown between the quad-EFP model and DSMC.

8. Conclusion
In this work, we addressed the Fokker-Planck approximation of the Boltzmann equation
following twofold objectives: moment consistency and entropy law. The former could be achieved
by considering an expansion of the drift coefficient while the latter is honoured by introducing
an appropriate diffusion coefficient. Therefore a simple quadratic drift Fokker-Planck model was
derived which gives rise to correct relaxations of moments up to the heat-fluxes besides satisfying
the H-theorem. The resulting quad-EFP model was then compared with respect to the cubic-FP
model as well as DSMC. Overall a better agreement between quad-EFP and DSMC was found. It
is interesting to see that no arbitrary time scale had to be introduced for the EFP formulation, and
the model is fully determined by the Boltzmann collision integrals. Future studies will focus on
the extension of the EFP model for polyatomic gases and mixtures.

Funding. Hossein Gorji acknowledges the funding provided by the Swiss National Science Foundation
under Grant No. 174060.
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Figure 3: Ma= 5 flow of argon around a vertical plate at Kn=0.14. The x−component of the
bulk velocity i.e. U1[m/s], the normalized temperature T/Tw and the stream-wise heat-flux i.e.
q1[W/m

3] are shown along y= 1.875L at top, middle and bottom, respectively.
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