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Abstract

The use of measurements to compensate for model uncer-
tainty has received increasing attention in the context of
process optimization. The idea consists of iteratively using
the measurements for identifying model parameters and the
updated model for optimization. This paper investigates the
convergence of various iterative identification and optimiza-
tion schemes in the presence of model mismatch. The op-
timization can be model-based, data-based or of mixed na-
ture. Based on the advantages and drawbacks of the various
approaches, a novel scheme is proposed, by which the op-
timization starts model-based so as to ensure fast improve-
ment and finishes as a data-based approach so as to converge
towards the true optimum. The performance improvement
obtained with the proposed methodology is illustrated via
the simulation of a semi-batch reaction system.
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run optimization.

1 Introduction

Optimization has received increasing attention in indus-
try since its provides a unified framework for improving
productivity while meeting safety and quality constraints.
Many optimization techniques are model-based, and they
must be able to cope with the following two sources of un-
certainty: (i) modeling errors are invariably present since
reliable models are rarely available at the industrial level,
and (ii) disturbances arise naturally due for example to vari-
ations in initial conditions and process operation. Optimal
operation under uncertainty requires either a robust opti-
mization approach or the use of measurements to adjust on-
line the off-line calculated strategy [9].

In order to compensate the effect of model mismatch, the
idea of iterating between identification and optimization has
been used extensively in the context of model-based opti-
mization. Numerous studies in the literature document the
identification and optimization approach, for example in the
context of on-line optimization and model-predictive con-
trol [4, 3] or with respect to run-to-run optimization [2, 6].
However, the convergence of these schemes towards the true

optimum requires: (i) the excitation generated by the opti-
mal inputs to be sufficient to identify all uncertain parame-
ters, and (ii) no model mismatch. Since these two assump-
tions are nearly impossible to verify in practice, the itera-
tive identification and optimization schemes typically suffer
from convergence problems.

One improvement has consisted in matching the objective
functions of the identification and optimization problems,
thereby providing more synergy between the two steps [8].
With this approach, the goal of identification is not to come
up with a model that best predicts the true outputs, but rather
to generate a model that allows computing inputs that are
nearly optimal for the reality.

In this paper, the convergence issue using classical (i.e. non-
matched) cost functions is considered. The convergence
properties of various iterative identification and optimiza-
tion schemes are analyzed in a deterministic framework.
Thus, only model mismatch will be considered, without
measurement noise. It will be shown that fast convergence
to the true optimum can be obtained by using initially a
model-based scheme (ensures fast approach but no conver-
gence) and then a data-based scheme (experimentally ex-
pensive but converges to the true optimum).

The paper is organized as follows. Section 2 introduces the
various model- and data-based optimization schemes. The
unconstrained static optimization problem will be consid-
ered first. The results will be extended to the case of con-
strained dynamic optimization problems in the example sec-
tion. Section 3 discusses the modification of these schemes
when the model is inaccurate and needs to be refined dur-
ing optimization. A novel scheme that combines the advan-
tages of model- and data-based optimization approaches is
proposed in Section 4. Section 5 compares the performance
of the various schemes via the simulation of a semi-batch
reaction system, and conclusions are drawn in Section 6.

2 Model-based vs. Data-based Optimization

Consider the following unconstrained static optimization:

min
u

Jopt = φ(x,u) (1)

s.t. F(x,u) = 0 (2)



where Jopt is the the cost function to be minimized, x the
state vector, u the input vector, F the system equations, and
φ a smooth scalar function expressing the cost. Upon elimi-
nation of the states using (2), the optimal inputs read:

u∗ = argmin
u

Jopt(u) (3)

where the superscript ∗ indicates a quantity calculated via
optimization.

A typical optimization procedure is depicted in Figure 1.
The first iteration starts with k = 1 and some input values
u0. Then, a direction dk in input space is found along which
the cost can be reduced. This is typically done by evaluating
the gradient of the cost function with respect to the inputs,
dk = H ∂Jopt

∂u |uk−1 , where H is a positive definite matrix. The
minimum along the decent direction is found iteratively us-
ing a line search procedure that results in the optimal step
size αk. The new input vector becomes:

uk = uk−1 +αkdk (4)

The iterations in k are repeated until there is no variation in
uk, the convergence being guaranteed by the line search.
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Figure 1: Iterative optimization scheme

The standard approach to optimization is model-based,
whereby a model is used to evaluate the cost function. In
contrast, in purely data-based optimization, the cost func-
tion is measured directly on the real plant [1]. There may
also be hybrid approaches for which certain intermediary
steps are model-based and the others are data-based. Since
it will be important to distinguish between the reality and
the model, the accent ¯(·) will be used whenever necessary
to denote a quantity related to the model.

2.1 Model-based numerical optimization
Numerical optimization of the model gives:

ū∗ = argmin
ū

J̄opt(ū,θ) (5)

where θ are the model parameters. The iterations of
the model-based numerical optimization follow exactly the

steps of Figure 1, with uk, dk and αk replaced by ūk, d̄k, and
ᾱk, respectively:

ūk = ūk−1 + ᾱkd̄k (6)

Here, both the evaluation of the decent direction and the
line search are done using the model and do not involve any
experimentation. With such a procedure, the iterations do
converge, but not necessarily to the true optimum due to
model inaccuracy, i.e. limk→∞ ūk = ū∗ �= u∗.

2.2 Data-based experimental optimization
In data-based optimization, Jopt(u) is directly obtained from
the real plant through an experiment [1]. The experimental
optimization scheme also follows the algorithm in Figure 1,
with the decent direction being evaluated using finite per-
turbations of the input elements. Also, the line search is
performed through experimentation. Such a procedure is
experimentally expensive but, in the absence of measure-
ment noise, the algorithm converges to the true optimum
u∗, i.e. limk→∞ uk = u∗.

2.3 Model-based decent direction and data-based line
search
An intermediate approach is possible, where the computa-
tion of the decent direction is model-based, while the line
search is performed using experimental data. With this ap-
proach, the number of experiments can be considerably less
than with the purely data-based optimization. The iterations
do converge but, since the decent direction can be inaccu-
rate, this procedure need not converge to the true optimum.

3 Optimization with Refined Models

The main drawback of model-based optimization is that the
models are often inaccurate. Thus, possible improvement
is via model identification using measurements. A typical
identification problem consists of estimating the parameters
θ so as to minimize a fit criterion:

min
θ

Jiden =
N

∑
i=1

‖yi(u)− ȳi(u,θ)‖ (7)

s.t. F(x,u,θ) = 0 (8)

ȳ = h(x,θ) (9)

where Jiden is the fit criterion, y the measured outputs, ȳ the
outputs predicted by the model, and N the number of data
points available. Upon elimination of the states using (8),
the optimal parameter vector can be written as:

θ∗ = argmin
θ

Jiden(u,θ) (10)

Note that the computation of Jiden requires an experimental
run, while the computation of the gradient ∂Jiden

∂θ does not
require any further experimentation.



Since Jiden is a function of u, so will the optimal parameters,
i.e. θ∗(u). Two conditions are necessary for the identified
parameters to be independent of u: (i) the model structure
is correct so that θtrue exists, and (ii) the Hessian ∂2Jiden

∂θ2 is
positive definite for the given u (such an input is called per-
sistently exciting [10]). If these two conditions are verified,
the identification generates an accurate model and the op-
timization calculates the optimum for this accurate model,
i.e. the true optimum.

Unfortunately, this desirable situation is rarely found in
practice since: (i) structural mismatch is always present, and
(ii) persistency of excitation is difficult to achieve when the
inputs are calculated for the sake of optimality (dual con-
trol problem [10]). Consequently, the identified parame-
ters depend on the inputs, and the combination “identifica-
tion/optimization” leads formally to the solution (ū∗,θ∗):

θ∗(ū∗) = argmin
θ

Jiden(ū∗,θ) (11)

ū∗(θ∗) = argmin
ū

J̄opt(ū,θ∗) (12)

However, there is no guarantee that this solution exists.

3.1 Alternating regression
If a solution exists, one possibility to approach it is via an
iterative scheme, where the result of one problem is used in
the next. This structure is referred to as alternating regres-
sion [5]:

θ∗k = argmin
θ

Jiden(ū∗k−1,θ) (13)

ū∗k = argmin
ū

J̄opt(ū,θ∗k) (14)

This iterative procedure, which is depicted in Figure 2, starts
with k = 1 and some input ū∗0. Each iteration first solves the
identification problem (13) to obtain the updated parameters
θ∗k , which are then used in the optimization problem (14)
to calculate the inputs ū∗k . This procedure is repeated until
there is no more variation in ū∗k .

The main problem with this scheme is that convergence
cannot be guaranteed. Due to the optimization step (14),
J̄opt(ū∗k ,θ

∗
k) ≤ J̄opt(ū∗k−1,θ

∗
k). However, after the identifica-

tion step, there is no guarantee that J̄opt(ū∗k−1,θ
∗
k) is smaller

than J̄opt(ū∗k−1,θ
∗
k−1). Thus, there is no defined relation be-

tween J̄opt(ū∗k−1,θ
∗
k−1) and J̄opt(ū∗k ,θ

∗
k), i.e. between the

costs in two successive iterations. This prevents analyzing
the convergence in a general setting.

If alternating regression converges, it requires very little ex-
perimentation since only the identification problem requires
experimentation, while the optimization problem (both de-
cent direction evaluation and line search) is entirely model-
based. However, there is no guarantee that ū∗(θ∗) = u∗

3.2 Inner-outer optimization
Another possibility is to consider the identification problem
(or its necessary conditions) acting as constraints in the op-
timization problem. In other words, the model used in the
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Figure 2: Alternating regression (experimentally-expensive
blocks in bold)

optimization algorithm will always have optimal parameter
values, θ∗(ū). For this to happen, the identification problem
needs to be repeated every time ū changes. Such a structure
is referred to as inner-outer optimization or lexicographic
preference in the multi-criteria literature [11]:

ū∗ = argmin
ū

J̄opt(ū,θ∗(ū)) (15)

s.t. θ∗(ū) = argmin
θ

Jiden(ū,θ)

The procedure is depicted in Figure 3. The advantage is that
convergence is guaranteed due to the fact that only the cost
function J̄opt is considered in the main iteration loop. How-
ever, the decent direction evaluation and line search require
experimentation (indicated as bold blocks in Figure 3). This
is because, for every new input vector ū, the correspond-
ing optimal θ∗(ū) is needed. Though the procedure con-
verges, it is experimentally very expensive, and there is still
no guarantee that ū∗ = u∗ due to model mismatch.

3.3 Decent direction from a refined model and data-
based line search
As in Section 2.3, a hybrid approach can be devised, where
the decent direction is computed from a refined model and
the line search is data-based [3]. The procedure follows
Figure 3 with the following modifications: (i) no itera-
tion between decent direction computation and identifica-
tion for every new trial value ū, (ii) the second identification
and model-based line search are replaced by a data-based
line search that uses the measured cost Jopt(ū) instead of
J̄opt(ū,θ∗(ū)).

This scheme is experimentally less expensive than the inner-
outer structure, while it still guarantees convergence (yet,
not necessarily to the true optimum).
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Figure 3: Inner-outer optimization

4 Transition Between Model- and Data-based Schemes

A comparison of model- and data-based methods is pre-
sented in Table 1. The two main schemes of interest are:
(i) model-based numerical optimization with refined model
(Section 3.1) due to little experimentation and fast ap-
proach, and (ii) data-based experimental optimization with
no model (Section 2.2) due to convergence to the true value.

# Decent
direc-
tion

Line
search

Model Experi-
mental
effort

Convergence

2.1 Model Model Fixed None Not to optimum
2.2 Data Data None Large True optimum
2.3 Model Data Fixed Some Not to optimum

3.1 Model Model Refined Little No convergence
Fast approach

3.2 Model Model Refined Large Not to optimum
3.3 Model Data Refined Some Not to optimum

4 Model/
Data

Model/
Data

Refined Some True optimum
Fast approach

Table 1: Comparison of model- and data-based optimization
schemes

The approach proposed in this paper is depicted in Figure 4.
It starts as model-based numerical optimization, and ends
up as a data-based optimization scheme. To make a smooth
transition between the two, a data-based line search as in
Section 3.3 is incorporated.

The details of the procedure are as follows. Alternating re-
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∆ū∗k
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ũ∗ = u∗

Figure 4: Optimization with smooth transition between model-
and data-based schemes

gression is used to determine the optimal correction term
∆ū∗k (using model-based decent direction and model-based
line search). As long as alternating regression progresses
towards the optimum, the data-based line search simply im-
plements the newly found optimum and verifies that the
measured cost indeed decreases. Otherwise, the data-based
line search adapts the step-size α̃k to enforce a reduction in
cost. At this stage, the computation of the decent direction
is model-based and the line search is data-based. Contin-
uing along, when the data-based line search finds that no
further reduction in cost is possible in the direction pointed
out by the model, i.e. α̃k = 0, then the scheme switches to
purely data-based optimization, where both the decent di-
rection computation and line search are done using the data.
This way, a smooth transition is introduced from reliance on
the model to reliance on the data.

The features of this scheme are as follows:

• The main reason for the lack of convergence of the
model-based iterative schemes is the absence of a
global line search in the overall loop. In contrast, the
new scheme proposes a global data-based line search.

• A parallel can be drawn with sequential quadratic
programming, where a local optimization problem is
solved to provide the decent direction for the global
problem. The local problem in this case is model-
based, while the global problem is data-based.

• The data-based optimization scheme may require a
large number of additional runs to converge. How-
ever, since these runs start from an operating point
relatively close to the optimum, the loss in optimality
is low.



k1 0.1 l/mol min t f 120 min
k2 0.2 l/mol min cmax 0.15 mol/l
k3 0.03 l/mol min umin 0 l/min
cbin 5 mol/l umax 0.002 l/min
ca0 1 mol/l α 0.01 mol
cb0 0 mol/l ε 0.01 mol/l
V0 1 l

Table 2: Parameter values and initial conditions

5 Run-to-run Optimization of a Semi-batch Reactor

The performance of different schemes will be compared in
simulation of an isothermal semi-batch reaction system for
the acetoacetylation of pyrrole with diketene [7]. Pyrrole is
initially in the reactor and diketene is fed so as to maximize
the production of acetoacetyl pyrrole. The simulated reality
has the three reactions:

A+B
k1→ C

2 B
k2→ D

C +B
k3→ E

where A: pyrrole, B: diketene, C: 2-acetoacetyl pyrrole, D:
dehydroacetic acid, E: undesired by-product.

The optimization problem is formulated mathematically as
follows:

max
u(t)

Jopt = cc(t f )V (t f )− p(cd(t f )+ ce(t f )− cmax) (16)

s.t. ċa = −k1cacb − (u/V ) ca

ċb = −k1cacb −2 k2c2
b − k3cbcc

+(u/V )(cbin − cb)
ċc = k1cacb − k3cbcc − (u/V ) cc

ċd = k2c2
b − (u/V ) cd

ċe = k3cacb − (u/V ) ce

V̇ = u

umin ≤ u ≤ umax

where ca, cb, cc, cd , and ce are the concentrations of A, B,
C, D, and E in mol/l, respectively. The feed consists of
Species B with concentration cbin . The numerical values of
the parameters used in this study are given in Table 2. The
goal is to maximize the number of moles of C at the given
final time t f by manipulating the feedrate u (l/min), whilst
satisfying bounds on the input. An penalty barrier function
p(s) is added to the cost to penalize the production of the
undesired species D and E above the prescribed limit cmax:

p(s) =
{

−α log(−s) if s ≤−ε
α

(
1− log(ε)+ s

ε

)
if s > −ε (17)

The optimal solution computed numerically is shown in
Figure 5. It is discontinuous with two intervals: (i) input at
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Figure 5: Optimal feedrate (the singular arc is approximated by
the constant profile us)

its upper bound umax, and (ii) singular input approximated
here by a constant profile of magnitude us. The singular arc
represents the compromise between producing the desired
product C and the undesired side products D and E. The
maximum value of Jopt is 0.371 mol, with the switching
time ts = 10.84 min, and us = 9.98×10−4 l/min.

To introduce model mismatch, it is assumed that the model
used in the optimization does not know about the third re-
action, i.e. kmodel

3 = 0. The concentration of A is measured
every 20 min. The parameters k1 and k2 are adapted from
run-to-run using the measurements from the previous run
only. Since convergence in the presence of model mismatch
is studied, no measurement error is considered. The evo-
lution of the cost function over 20 runs are depicted in Fig-
ures 6 and 7 for the various schemes. Furthermore, the value
of the cost function after the 20th run, and its sum over the
20 runs, Jopt

sum =∑20
k=1 Jopt

k , are presented in Table 3. It shows
that the sum of the cost function over 20 runs is best for the
proposed scheme.

Section Jopt(20) Jopt
sum

2.1 0.314 6.29
2.2 0.369 6.88
2.3 0.315 6.30
3.1 0.344 6.85
3.2 0.341 6.68
3.3 0.347 6.87
4 0.371 7.22

Table 3: Cost function [mol] after 20 runs and sum over the 20
runs

Figure 6 shows that none of the model-based schemes con-
verges to the true optimum (Jopt = 0.371 mol). Even the
data-based line search does not help when the model-based
decent direction is incorrect (solid curve). However, the use
of a refined model systematically leads to better results than
with a fixed model. The estimated parameters are k1 = 0.11
and k2 = 0.40 l/mol min, where k2 is increased to account
for the loss of B being consumed by the third (unmodeled)
reaction. The inner-outer structure is not very performant
and converges to 0.341 mol. Using the decent direction
from a refined model and a data-based line search (Section
3.3) improves the cost only marginally to 0.347 mol.



Figure 7 shows that alternating regression converges rapidly
to 0.344 mol (dashed line), and that both the purely data-
based scheme and the proposed hybrid scheme converge
(more or less slowly) to the true optimum. It is also seen
that the proposed scheme starts out as alternating regression
before leaving it to converge to the true optimum. The flat
region for the proposed scheme corresponds to the alternat-
ing regression that improves very slowly. In this case, it
would be appropriate to modify the algorithm and make it
switch to data-based optimization earlier. The sluggish re-
gion in the data-based optimization corresponds to the runs
necessary for decent direction evaluation and line searches.
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Figure 6: Comparison of various iterative model-based optimiza-
tion schemes: Evolution of the cost over 20 runs. Dot-
ted – model-based optimization (Section 2.1), dash-
dotted – model-based decent direction and data-based
line search (Section 2.3), dashed – inner-outer opti-
mization (Section 3.2), solid – decent direction with
refined model and data-based line search (Section 3.3)
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Figure 7: Performance of the proposed method compared to re-
lated existing schemes: Evolution of the cost over 20
runs. Dashed – alternating regression (Section 3.1),
dash-dotted – data-based optimization (Section 2.2),
solid - proposed method (Section 4)

6 Conclusions

The main advantage of model-based optimization methods
is their fast approach towards the optimum while, in the
vicinity of the optimum, they have difficulty converging to
the true optimum due to the presence of model mismatch.

This paper has illustrated how data-based computation of
the decent direction and line search (guaranteeing conver-
gence to the true optimum) can be used in conjunction with
model-based techniques so as to speed up converge.

In order to quantify convergence in a deterministic frame-
work, only noise-free data have been considered in this
work. Extension of these results to noisy data requires
working in a stochastic framework and represents a chal-
lenging research direction.

References

[1] G. E. P. Box and N. R. Draper. Empirical Model-
building and Response Surfaces. John Wiley, New York,
1987.

[2] C. Filippi-Bossy, J. Bordet, J. Villermaux,
S. Marchal-Brassely, and C. Georgakis. Batch reactor
optimization by use of tendency models. Comp. Chem.
Eng., 13:35–47, 1989.

[3] G. Gattu and E. Zafiriou. A methodology for on-line
setpoint modification for batch reactor control in the pres-
ence of modeling error. Chem. Eng. Journal, 75(1):21–29,
1999.

[4] A. Helbig, O. Abel, and W. Marquardt. Model pre-
dictive control for the on-line optimization of semi-batch re-
actors. In American Control Conference, pages 1695–1699,
Philadelphia, PA, 1998.

[5] E. J. Karjalainen. The spectrum reconstruction prob-
lem: Use of alternating regression for unexpected spectral
components in two-dimensional spectroscopies. Chemome-
terics and Intelligent Laboratory Systems, 7:31–38, 1989.

[6] M. V. Le Lann, M. Cabassud, and G. Casamatta.
Modeling, optimization, and control of batch chemical re-
actors in fine chemical production. In IFAC DYCOPS-5,
pages 751–760, Corfu, Greece, 1998.

[7] D. Ruppen, D. Bonvin, and D. W. T. Rippin. Imple-
mentation of adaptive optimal operation for a semi-batch
reaction system. Comp. Chem. Eng., 22:185–189, 1998.

[8] B. Srinivasan and D. Bonvin. Interplay between
identification and optimization in run-to-run optimization
schemes. In American Control Conference, pages 2174–
2179, Anchorage, Alaska, 2002.

[9] B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki.
Dynamic optimization of batch processes: II. Role of mea-
surements in handling uncertainty. Comp. Chem. Eng.,
44:27–44, 2003.

[10] B. Wittenmark. Adaptive dual control methods: An
overview. In IFAC Symposium on Adaptive Syst. in Control
and Signal Proc., pages 67–72, Budapest, 1995.

[11] P. L. Yu. Multiple criteria decision making : Five
basic concepts. In G.L.Nemhauser, A. H. G. Rinnooy, and
M. J. Todd, editors, Handbooks in Operation Research and
Management Science, Volume 1 - Optimization, pages 663–
699, Amsterdam, 1989. North-Holland.


