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Abstract: The optimization of batch process operation is a natural choice for
reducing production costs, improving product quality, and meeting safety and en-
vironmental regulations. The optimal solution can be implemented easily if it is
determined by the constraints of the optimization problem, i.e. it is not inside the
feasible region. For semi-batch two-reaction systems, this paper provides conditions
which guarantee that the optimal temperature and feed-rate policies be determined
by path constraints. It is shown that, for the majority of two-reaction schemes, the
optimal feed rate is indeed determined by constraints. The theoretical developments
are illustrated by computing the optimal solution for three different examples.
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1. INTRODUCTION

Batch and semi-batch processes are of consider-
able importance in the batch chemical industry. A
wide variety of specialty chemicals, pharmaceuti-
cal products, and polymers are manufactured in
batch operations (Macchietto, 1998).

The operation of batch processes typically in-
volves following recipes that have been developed
in the laboratory. However, at the production
level, operational decisions such as temperature
and feed-rate profiles are subject to various techni-
cal and operational constraints regarding quality
and safety aspects, for the satisfaction of which an
optimization approach can be used (Wiederkehr,
1988; Marchal-Brassely et al., 1992; Garcia et
al., 1995).

The optimization of dynamic systems with a finite
terminal time typically results in a discontinu-
ous solution that involves several intervals (Ray,
1981). These intervals are of two types, depending

on whether or not the solution therein is deter-
mined by active constraints such as input bounds,
state and terminal constraints (Srinivasan et al.,
2002):(i) If the optimal solution is determined
by a path constraint, the interval is referred to
as a constraint-seeking interval; (ii) Otherwise,
if the optimal solution is inside the feasible re-
gion in order to push the cost sensitivity to zero,
the corresponding interval is labeled a sensitivity-
seeking interval. An optimal solution that consists
only of constraint-seeking intervals can be imple-
mented easily through tracking of the active path
constraints using on-line measurements (Visser et
al., 2000). Thus, it is of considerable interest to
be able to provide conditions that guarantee that
the optimal solution be on the boundary of the
feasible region.

Whether or not the solution is determined by
constraints depends on the compromises present
in the optimization problem. These compromises
stem from the individual inputs having multiple
opposing effects on the objective function so that



intermediate values of the inputs are needed for
the sake of optimality. This paper analyses if such
compromises are ever possible in systems with two
reactions. If there are no intrinsic compromise, the
optimal inputs in each interval are determined by
active path constraints (input bounds and state
constraints).

Semi-batch reaction systems with two reactions
are considered. The objective is to maximize
some performance criterion such as productiv-
ity or product distribution at final time (Levien,
1992). Both the temperature and the feed rate
are considered as manipulated inputs as they
represent appropriate handles for dealing with
productivity and selectivity aspects (Uhlemann
et al., 1994). Conditions that guarantee the ab-
sence of sensitivity-seeking arcs are presented. For
the case of the temperature, these conditions are
based on the sensitivity of the objective function
with respect to the extents of the side reaction
and the difference in activation energies. This
work provides an analytical basis for some of the
qualitative results presented in (Rippin, 1983; Uh-
lemann et al., 1996). For the feed-rate policy, how-
ever, the derived conditions do not depend on the
formulation of the optimization problem (terminal
cost and constraints) but only on the dynamic
model. It will be shown that, for the vast majority
of semi-batch reaction systems with two reactions,
the optimal feed rate is indeed determined by the
constraints of the problem.

The paper is organized as follows. Section 2 briefly
reviews the formulation of the optimization prob-
lem and the modeling of chemical reaction sys-
tems. The main theoretical results are stated in
Sections 3 and 4 for the temperature and the feed-
rate policies, respectively. Section 4 also presents a
catalogue of semi-batch two-reaction systems with
a clear indication on whether or not the optimal
feed rate is determined by path constraints. Three
examples are provided in Section 5 to illustrate
the theoretical developments, and conclusions are
drawn in Section 6.

2. PRELIMINARIES

2.1 Optimization of dynamic systems

A typical optimization problem that involves
meeting certain specifications only at the end of
the batch can be written as:

max
u(t)

J = φ(x(tf )) (1)

s.t. ẋ = f(x, u), x(0) = x0 (2)

S(x, u) ≤ 0, (3)

where J is the scalar performance index to be
maximized, x the state vector with the initial
conditions x0, u the input vector, S the vector of
path constraints that include state constraints and
input bounds, f the smooth vector field describing
the dynamics of the system, φ the smooth scalar
function representing the terminal cost, and tf the
final time which can be either fixed or free.

To derive the conditions of optimality, Pontrya-
gin’s Maximum Principle uses the Hamiltonian
(Bryson and Ho, 1975; Kirk, 1970)

H = λT f + µTS (4)

with

λ̇T = −∂H

∂x
= −λT fx − µTSx, λT (tf ) = φx|tf(5)

where λ(t) �= 0 are the adjoints (Lagrange mul-
tipliers for the system equations), and µ(t) ≥ 0
the Lagrange multipliers for the path constraints.
The notation ab = ∂a

∂b is used.

The first-order necessary conditions of optimality
for Problem (1)-(3) can be obtained as:

Hu = λT fu + µTSu = 0, µTS = 0 (6)

The second-order necessary conditions of optimal-
ity require in addition that the second derivatives
of the Hamiltonian be negative semi-definite:

Huu = λT fuu + µTSuu ≤ 0 (7)

The formulation (1)-(3) does not consider termi-
nal constraints. These can be included by con-
sidering the augmented terminal cost φ̄(x(tf )) =
φ(x(tf ))+νTC(x(tf )) that combines the terminal
cost φ and the terminal constraints C, where ν ≥
0 are the Lagrange multipliers for the terminal
constraints.

2.2 Model of chemical reaction systems

Consider a homogeneous, constant-density, semi-
batch chemical reaction system comprising S
species and R reactions. It assumed that the
reactor temperature is a manipulated variable.
The component balances and total mass equations
read:

ṅ = K rn(n, V, T )V + cin F n(0) = n0

V̇ = F V (0) = V0
(8)

where n is the S-dimensional vector of numbers
of moles, F the inlet volumetric flowrate, T the
temperature, V the reactor volume, K the S ×
R stoichiometric matrix, rn the R-dimensional
reaction rate vector expressed in terms of n, cin
the molar concentrations of the inlet stream, n0



the initial numbers of moles, and V0 the initial
volume. The terms KrnV and cin F represent
the effect of the reactions and the inlet stream
on the numbers of moles, respectively. The molar
concentrations are given by c = n/V .

Instead of using (S + 1) states to represent the
dynamic system as in (8), some appropriate ex-
tents of reaction can be used to represent the same
system with only (R + 1) states (Srinivasan et
al., 1998). The R-dimensional extent of reaction
vector ξ is defined from the following relationship:

n = n0 + Kξ + cin(V − V0) (9)

Note that the elements of ξ are not dimensionless
in the range 0 − 1, but rather they express the
changes in the numbers of moles due to the
chemical reactions. Using (9) in (8) gives the (R+
1)st-order dynamic system with the inputs T and
F :

ξ̇ = r(ξ, V, T )V ξ(0) = 0
V̇ = F V (0) = V0

(10)

where r is the reaction rate vector expressed in
terms of ξ.

This study is limited to two-reaction systems.
Among the two reactions, one is considered as
the desired one, for which the objective function
improves with the extent of reaction The other
reaction, which may or may not be desirable, is
referred to as the side reaction. The two reactions
are labeled (·)d and (·)s, respectively. Thus, the
three state variables are ξd, ξs and V , and the
corresponding adjoint variables λd, λs and λV .

In addition, the following notations are used:
• A and B are the main reactants
• B is the reactant fed in the inlet steam with

concentration cBin .
• X is another reactant present in the reactor.
• C and D are products.
• The desired reaction is represented by adA+

bdB → γC.
• The side reaction is represented generically

by asA + bsB + csC + dsD + xsX → δD,
although it involves only 1 or 2 reactants.

It is assumed that the two reaction rates obey
power-law kinetics, i.e. rd = kdc

ad
A cbdB > 0 and rs =

ksc
as
A cbsB ccsC cdsD cxsX > 0. Furthermore, the kinetic

constant ki, i = {d, s}, is assumed to be of the
Arrhenius type, i.e. ki = ki0e

−Ei
RT with ki0 the pre-

exponential factor and Ei the activation energy.
Upon expressing the concentrations in terms of ξ,
the two reaction rates read:

rd(ξ, V, T ) = kd0e
−Ed
RT

(
nA0 + KAξ

V

)ad

(
nB0 + KBξ + cBin(V − V0)

V

)bd

(11)

rs(ξ, V, T ) = ks0e
−Es
RT

(
nA0 + KAξ

V

)as

(
nB0 + KBξ + cBin(V − V0)

V

)bs (
nC0 + KCξ

V

)cs

(
nD0 + KDξ

V

)ds (
nX0 + KXξ

V

)xs

(12)

where Kj is the row of the stoichiometric matrix
corresponding to the jth species, j = {A,B,C,D,X}.

3. OPTIMAL TEMPERATURE PROFILE
FOR SYSTEMS WITH TWO REACTIONS

Equations (11)-(12) show that T appears non-
linearly in the system equations (10). Thus, the
first-order necessary condition HT = 0 contains
T explicitly and can be used to determine T .
This section exploits the first- and second-order
necessary conditions of optimality, HT = 0 and
HTT ≤ 0, to provide sufficient conditions for
the temperature to be determined by active path
constraints, i.e. the optimal solution is on the
boundary of the feasible region.

Theorem 1. For a two-reaction system, if the side
reaction (i) does not worsen the objective func-
tion, ∂φ

∂ξs
≥ 0, or (ii) does not have the largest

activation energy, Es ≤ Ed, then the optimal
temperature profile is necessarily on the boundary
of the feasible region.

Proof (can be skipped without loss of continuity):
The contraposition of the theorem will be proven,
namely: If the optimal temperature profile is in-
side the feasible region, then the side reaction (i)
worsens the objective function, ∂φ

∂ξs
< 0, and (ii)

has the largest activation energy, Es > Ed.

The optimal temperature being inside the feasible
region requires µ = 0, i.e. no active path con-
straints. The first-order necessary condition then
reads:

HT = λT fT =
(
λd

∂rd
∂T

+ λs
∂rs
∂T

)
V = 0 (13)

It follows from (11)-(12), for i = {d, s}:

∂ri
∂T

=
Eiri
RT 2

(14)

∂2ri
∂T 2

=
(
Ei − 2RT

R2T 4

)
Eiri (15)



Using (14) in (13) gives:

λs = −λd

(
Edrd
Esrs

)
(16)

The signs of λd and λs are studied next. Inside
the feasible region (µ = 0), the first two adjoint
equations (5) read:

λ̇i = −λi
∂riV

∂ξi
− λk

∂rkV

∂ξi
, λi(tf ) =

∂φ

∂ξi
(tf )

(17)

for i, k = {d, s}, i �= k or upon using (16) in (17):

λ̇i = −λi

(
∂riV

∂ξi
− Eiri

Ekrk

∂rkV

∂ξi

)
, λi(tf ) =

∂φ

∂ξi
(tf )

(18)

This differential equation has the following ana-
lytical solution:

λi(t) = λi(tf )e
∫ tf

t

(
∂riV

∂ξi
− Eiri
Ekrk

∂rkV

∂ξi

)
dτ (19)

The exponential term is always positive and thus
λi(t) will have the sign of λi(tf ) = ∂φ

∂ξi
(tf ).

Furthermore, λd(tf ) = ∂φ
∂ξd

(tf ) is positive by
definition since the objective function improves
with the extent of the desired reaction. Hence,
λd(t) > 0 for all t. It follows from (16) that
λs(t) < 0 for all t, and using the same argument,
λs(tf ) = ∂φ

∂ξs
(tf ) < 0. Thus, condition (i) is

verified.

The second-order necessary condition leads to:

HTT =
(
λd

∂2rd
∂T 2

+ λs
∂2rs
∂T 2

)
V ≤ 0 (20)

Substituting (15) and (16) into (20) gives:

HTT = V

(
Edrd
R2T 4

)
λd(Ed − Es) ≤ 0 (21)

Since Ed, rd and λd are positive, (21) requires
Es ≥ Ed. When Es = Ed, HTT = 0 and so are
the further derivatives of H with respect to T .
This situation corresponds to an inflexion point
and not to a maximum. Thus, the optimum being
inside the feasible region requires Es > Ed, and
condition (ii) is verified. ✷

Figure 1 illustrates the solution type in terms
of the sensitivity of the objective function with
respect to the extent of the side reaction and the
difference in activation energies.

Interpretation:

This result can be interpreted intuitively as fol-
lows. Suppose that the amount of material pro-
duced by the desired reaction has to be maximized
in the presence of a side reaction that uses some
of the reactant. With Ed > Es, the differential
selectivity of the desired reaction increases with

Guaranteed on  path constraints

  Could be inside
the feasible region

∂φ
∂ξs

(Es−Ed)

Fig. 1. Type of solution in terms of the sensitivity
of the objective function φ with respect to
the extent of the side reaction ξs and the
difference in activation energies (Es − Ed).

temperature. Since the productivity (extent of the
desired reaction) also increases with temperature,
it is best to keep the temperature at its maximum
allowed value. On the contrary, if Es > Ed, a
compromise may occur since the temperature has
to be increased for productivity and decreased for
selectivity. All the two-reaction systems given in
Tables 2 and 3 of (Rippin, 1983) can be analyzed
rigorously using Theorem 1.

Remarks:

(1) Theorem 1 involves the terminal cost φ(x(tf ))
(and also possible terminal constraints via
the augmented cost) but not the path con-
straints S(x, u) ≤ 0. Thus, it is applicable to
any type of path constraints (e.g. maximum
heat generation, maximum or minimum con-
centrations, maximum cooling rate, etc.) and
not only to bounds on T .

(2) Theorem 1 indicates that if the side reac-
tion worsens the objective function, ∂φ

∂ξs
< 0,

and has the largest activation energy, Es >
Ed, then there exists the possibility of a
sensitivity-seeking interval. However, it has
to be emphasized that this is only a pos-
sibility and not a guarantee that the solu-
tion will indeed be inside the feasible region.
The guarantee of a sensitivity-seeking arc
requires complete knowledge of the optimiza-
tion problem (objective function as well as
path and terminal constraints).

(3) If the optimal temperature profile is inside
the feasible region, it can be obtained as
either a function of the adjoint variables or
the solution of a differential equation. For
the former case, the temperature profile can
be calculated from (16) and rd and rs using
explicit temperature dependency:



T =
Es − Ed

R ln
(
− λsEsks0rskd

λdEdkd0rdks

) (22)

To obtain a differential equation for T ,
(16) needs to be differentiated once with
respect to time. Then, λ̇ is obtained from
(17), and ṙi, i = {d, s}, can be expressed as
ṙi = ∂ri

∂ξd
ξ̇d + ∂ri

∂ξs
ξ̇s + ∂ri

∂V V̇ + ∂ri
∂T Ṫ , with ξ̇d,

ξ̇s, and V̇ taken from (10) and Ṫ retained
as a free variable. Using (16) again, the
adjoint variables can be eliminated to give
the following differential equation for the
optimal temperature:

Ṫ =−RT 2

(
rs

Edrd

∂rdV

∂ξs
+

rd
Esrs

∂rsV

∂ξd

+
F

(Ed − Es)
(

1
rd

∂rd
∂V
− 1

rs

∂rs
∂V

)
)

(23)

4. OPTIMAL FEED RATE FOR SYSTEMS
WITH TWO REACTIONS

Unlike the temperature, the feed rate appears lin-
early in the system equations (10). Thus, the first-
order necessary condition HF = 0 is independent
of F , which implies that HF needs to be differenti-
ated with respect to time to determine the optimal
value of F . Moreover, if F does not appear in the
successive time differentiations of HF , the optimal
solution will necessarily be on the boundary of the
feasible region. This section presents the scenarios
for which it can be guaranteed that the optimal
solution is on the boundary of the feasible region.

Theorem 2. Consider a two-reaction system and
let αi be the total order of the ith reaction, i =
{d, s}. For the scenarios of Table 1, the optimal
feed rate profile is on the boundary of the feasible
region.

Scenario ad bd αs bs as × cs
I 0,1 free 1 0 0
II 1 1 2 0 0
III 1 free bd + 1 bd 0

Table 1. Scenarios for which the optimal
feed rate is guaranteed to lie on the

boundary of the feasible region.

Proof (can be skipped without loss of continu-
ity): The proof proceeds by contradiction. With
the assumptions that the optimal feed rate lies
inside the feasible region and the reaction rates
are strictly positive, it will be shown that the
necessary conditions of optimality are inconsistent
with these assumptions.

Let the optimal feed rate be inside the feasible
region. Then, with µ = 0, the first-order necessary

condition of optimality requires HF = λT fF =
λV = 0. Since this condition is independent of F ,
taking its time derivative and using (5) gives:

dHF

dt
= λ̇V = −λT fV = −λd

∂rdV

∂V
− λs

∂rsV

∂V
= 0

(24)

Since (24) is still independent of F , it has to be
differentiated further with respect to time:

d2HF

dt2
= λdWd + λsWs −

F

(
λd

∂2(rdV )
∂V 2

+ λs
∂2(rsV )
∂V 2

)
= 0 (25)

with

Wi =
∂riV

∂ξd

∂rdV

∂V
+

∂riV

∂ξs

∂rsV

∂V

− ∂2riV

∂V ∂ξd
rdV −

∂2riV

∂V ∂ξs
rsV (26)

for i = {d, s}. Solving (24) for λd and substituting
it into (25) gives:

d2HF

dt2
=

λs

∂rdV
∂V

(W − FC) = 0 (27)

with

C ≡ ∂(rdV )
∂V

∂2(rsV )
∂V 2

− ∂(rsV )
∂V

∂2(rdV )
∂V 2

(28)

W ≡ ∂(rdV )
∂V

Ws −
∂(rsV )
∂V

Wd (29)

For the power-law kinetics (11) and (12), analyt-
ical expressions for the partial derivatives can be
obtained:

∂riV

∂V
= ri

(
1− αi + bi

cBin
cB

)
(30)

for i = {d, s} and with

αd = ad + bd (31)

αs = as + bs + cs + ds + xs (32)

Similarly,

∂2riV

∂V 2
=

ri
V

(
αi(αi − 1)− 2(αi − 1)bi

cBin
cB

+bi(bi − 1)
c2Bin
c2B

)
(33)

The stage is now set to show the contradiction
in the scenarios of Table 1. The basic idea is the
following: If the optimal feed rate lies inside the



feasible region, it should be possible to compute it
from HF = 0 and its time derivatives (Srinivasan
et al., 2002). It will be shown next that, in the
three scenarios of Table 1, the input cannot be
computed from the time derivatives of HF . In the
first and third cases, F has no effect on HF and
thus the necessary conditions cannot be used to
determine F . In Scenario II, on the other hand,
the system has to be on a surface to satisfy
the necessary conditions of optimality, and this
surface is shown to be infeasible.

(1) Scenario I: The side reaction is first order
and does not involve the added species, i.e.
αs = 1, bs = 0. From (30), ∂rsV

∂V = 0 for
all t, which with (24) leads to λd

∂rdV
∂V = 0.

It also follows that ∂2rsV
∂V 2 = ∂2rsV

∂V ∂ξi
= 0,

which gives C = 0 and W =
(
∂rdV
∂V

)2 ∂rsV
∂ξd

.
The choice ad = (0, 1) forces the term(
1− αd + bd

cBin
cB

)
=

(
1− ad + bd(

cBin
cB
− 1)

)
to be positive. Hence, ∂rdV

∂V > 0 and, from
λd

∂rdV
∂V = 0, it follows that λd = 0 for all

t. This implies λ̇d = 0, which together with
(17) leads to either λs = 0 or ∂rsV

∂ξd
= 0. If

λs = 0, it follows from (27) that d2HF
dt2 = 0

irrespective of the choice of F . If ∂rsV
∂ξd

= 0,

W = 0 and, in this case too, d2HF
dt2 = 0 follows

irrespective of the choice of F . This means
that F has no effect on H, which contradicts
the assumption that the optimal feed rate
can be determined from HF = 0 and its time
derivatives.

(2) Scenario II: The two reactions are second
order, with the desired and side reactions
being first- and zeroth-order with respect to
the added species, i.e. αd = αs = 2, bd = 1
bs = 0. Furthermore, A and C do not react
with each other in the side reaction. For this
scenario, it can be worked out using (28)-(33)
that C = 0 and

W =−V cBin
c2B

(
cBr2

s

∂rd
∂ξs
− (cBin − cB)r2

d

∂rs
∂ξd

+
r2
drs
V

)
(34)

W �= 0 implies d2HF
dt2 �= 0, which contradicts

(25) derived from the necessary conditions
of optimality. It will be shown next that
W = 0 also leads to a contradiction. For
this scenario, ∂rd

∂ξs
= −as rd

cAV
and ∂rs

∂ξd
=

−as rs
cAV

+ csγ
rs

cCV
. Thus, W = 0 implies:

ascBrs − (cBin − cB)(as − csγ
cA
cC

)rd − cArd = 0

(35)

Various cases for as need to be considered:

• as = 0: If cs = 0, Condition (35) gives
rd = 0, which is inconsistent with the
assumption that the reaction rates are
strictly positive. For cs = 1 or 2, Con-
dition (35) reduces to cC = csγ(cBin −
cB). Differentiating it with respect to
time leads to (cs − 1)γrd + csrs = 0.
Due to the positivity of rd and rs, the
above condition is inconsistent with the
assumptions.
• as = 1: Since by definition of Scenario

II, ascs = 0, it follows that cs = 0. Also,
for the side reaction to be second order,
xs = 1 (or ds = 1; in which case the
proof is similar with X replaced by D).
Differentiating (35) with respect to time
gives (cBin − cB + cA)(cA + cB)cXr2

d +
((cBin − 2cB + cA)cBcXrdrs − c2B(cA +
cX)r2

s = 0. Solving this along with (35)
for cA and cB gives cA = 0 or cB =
0. This implies that the reaction rates
are zero, which is inconsistent with the
assumptions.
• as = 2: It follows from αs = 2 that cs = 0

and xs = 0. Differentiating (35) with
respect to time gives (2cBin(cA + cB) +
c2A−2c2B)r2

d+(cA−6cB +2cBin)cBrdrs−
4c2Br2

s = 0. Solving this along with (35)
for cA and cB gives cA = 2cBin

2ks−kd
kd

,
and cB = 4kscBin

kd−ks
k2
d

. The fact that
cA is constant implies rd+2rs = 0, which
is inconsistent with the assumptions.

(3) Scenario III: The two reactions are of the
same order and involve the added species in
a similar way, i.e. αd = αs and bd = bs.
Furthermore, A and C do not react with
each other in the side reaction. Equation (30)
implies ∂riV

∂V = riκ, with κ a scalar factor
independent of i. Then, (24) gives λdrd +
λsrs = 0. This, together with λV = 0,
gives H = λdrdV + λsrsV + λV F = 0
irrespective of the choice of F . This means
that F has no effect on H, which contradicts
the assumption that the optimal input can
be determined from HF = 0 and its time
derivatives.

Thus, it has been shown by contradiction that, for
the scenarios presented in Table 1, the solution is
necessarily determined by the constraints of the
optimization problem. ✷

Interpretation:

Though the proof of the theorem is quite involved,
the results can be interpreted fairly intuitively.

• First, the basic tradeoff introduced by a
variation of F is discussed. The feed rate has
two opposing effects on each reaction rate.



For example, feeding more B increases cB
and thereby also rd. On the other hand, cA
is decreased due to dilution, thus decreasing
rd.

Mathematically, these two effects can be
analyzed as follows: The input F has no
direct effect on ξ̇i as ri does not depend
explicitly on F . However, upon considering
ξ̈i, it is seen that F influences the reaction
system in two ways: (i) through nB weighted
by bi, and (ii) through V weighted by the
reaction order αi. Hence the importance of
bi and αi in Table 1.

Since F influences each of the two reactions
in two ways, it can have four different effects
on the reaction system. If these four effects
do not oppose each other, there is no need for
F to look for a compromise, and the optimal
solution will necessarily be on the boundary
of the feasible region.
• Next, the opposing effects within a reaction

are analyzed. Consider the reaction rate rd.
The influence of F on ξ̈d is through ∂rdV

∂V =

rdbd

(
cBin−cB

cB

)
+ rd(1 − ad). Here, the first

term that depicts the influence of F through
the increase of cB is always positive, while the
effect of dilution (second term) can change
sign as a function of ad. So, in order to
avoid compensation between the two terms,
the effect of dilution on the reaction rate
should not be negative, i.e the stoichiometric
coefficient ad should not exceed 1.

There is no competition between the op-
posing effects of F within the side reaction
if either bs = 0 (Scenario I, II) or as ≤ 1
(Scenario III).
• The competition between the two reactions is

now considered. In Scenario I, the influence
of F on ξ̈s is eliminated. With αs = 1, the
effect of dilution does not exist. In addition,
if bs = 0, then ξ̈s is independent of F .

In Scenario II, only the dilution effect
exists in ξ̈s since bs = 0. For the dilution
to have a similar effect on both reactions,
the orders have to be the same, αs = αd.
The condition bd = 1 can be shown to arise
from matching the third time derivatives ξ

(3)
d

and ξ
(3)
s . However, since this part is quite

technical, it is not discussed here.
The four effects exist in Scenario III. In

order for them not to compete, they need to
be ‘similar’, i.e. αs = αd and bs = bd.
• Finally, the condition ascs = 0 can be ex-

plained as follows: As mentioned above, to
prevent the two reactions from competing
for the feed of B, they should be ‘similar’,
i.e. agree with respect to the total reaction
order or the order of B. This does not only

impose restrictions on αs and bs, but also
prevents A and C from reacting together in
the side reaction. For example, if given the
desired reaction A + B → C, the product
C reacts further with A as in A + C → D,
this is stoichiometrically (but not necessarily
kinetically) equivalent to a side reaction of
the form 2A + B → D, which may give rise
to a compromise.

Remarks:

(1) Since Theorem 2 and its proof involve only
the dynamic model, it applies irrespective of
the objective function and constraints of the
optimization problem.

(2) Theorem 2 states that, for certain scenarios,
the optimal feed-rate profile is guaranteed
to be determined by the boundary of the
feasible region. Though not included here, it
has also been proven that for all the other
cases, there exists the possibility for the op-
timal solution to lie inside the feasible region.
However, as in the case of the temperature,
a guarantee for the existence of a sensitivity-
seeking feed rate requires more information
regarding the optimization problem (objec-
tive function as well as state and path con-
straints).

(3) If the feed contains several reacting species,
Theorem 2 can still be applied upon con-
sidering one reacting species at a time and
independently of the other reactants that are
added.

Catalogue of two-reaction systems

Next, several semi-batch reaction systems involv-
ing two reactions are analyzed with respect to the
scenarios of Table 1. Instead of using a super-
structure where some of the coefficients can be
zero, all coefficients will be restricted to be pos-
itive in order to emphasize the structure of the
reaction schemes.

For some generic two-reaction schemes, Table 2
summarizes the conditions for which the optimal
feed rate of B is on the boundary of the feasible
region. The 15 reaction schemes can be classified
in 5 groups according to the type of conditions
that guarantee that the optimal feed rate will be
determined by the constraints of the optimization
problem:
(1) Group 1: The side reaction is first order and

does not involve B (Case i).
(2) Group 2: The side reaction does not involve

B but a single other species. There are two
possibilities for a constraint-seeking solution:
either the side reaction is first order or both
reactions are second order (Cases ii-iv).



Group Case Description Conditions → Scenario

1 i bdB
kd
⇀↽
ks

csC cs = 1→ I

ii adA+ bdB
kd
⇀↽
ks

csC
ad, cs = 1→ I
ad, bd = 1, cs = 2→ II

2 iii
adA+ bdB

kd→ γC

csC
ks→ δD

ad, cs = 1→ I
ad, bd = 1, cs = 2→ II

iv
adA+ bdB

kd→ γC

asA
ks→ δD

ad, as = 1→ I
ad, bd = 1, as = 2→ II

v adA+ bdB
kd
⇀↽
ks

asA ad, bd = 1, as = 2→ II

vi
adA+ bdB

kd→ γC

csC + xsX
ks→ δD

ad, bd, cs, xs = 1→ II

3 vii
adA+ bdB

kd→ γC

csC + dsD
ks→ δD

ad, bd, cs, ds = 1→ II

viii
adA+ bdB

kd→ γC

asA+ xsX
ks→ δD

ad, bd, as, xs = 1→ II

ix
adA+ bdB

kd→ γC

asA+ dsD
ks→ δD

ad, bd, as, ds = 1→ II

x
adA+ bdB

kd→ γC

asA+ bsB
ks→ δD

ad, as = 1, bd = bs → III

4 xi
adA+ bdB

kd→ γC

xsX + bsB
ks→ δD

ad, xs = 1, bd = bs → III

xii
adA+ bdB

kd→ γC

csC + bsB
ks→ δD

ad, cs = 1, bd = bs → III

xiii
adA+ bdB

kd→ γC

bsB
ks→ δD

-

5 xiv
bdB

kd→ γC

asA+ csC
ks→ δD

-

xv
adA+ bdB

kd→ γC

asA+ csC
ks→ δD

-

Table 2. Catalogue of two-reaction systems with the conditions for which the optimal
feed rate of B is determined by constraints and the corresponding scenarios of

Table 1.

(3) Group 3: The two reactions are second order
with the desired reaction being first order in
B and the side reaction involving neither B
nor A and C together (Cases v-ix).

(4) Group 4: B is active in the two reactions
that involved two species and are of the same
order. In addition, all the species reacting
with B contribute one order to the kinetic
law (Cases x-xii).

(5) Group 5: B is active (directly, or indirectly
via C) in the two reactions that either are of
different orders or see B with different orders
(Cases xiii-xv). These are the only cases
without conditions for which the optimal feed
rate is on the boundary of the feasible region.

A few remarks are appropriate at this point. In
the case of reversible reactions (Cases i, ii and v),
there is only one independent reaction and thus no
expected compromise. However, with a reaction
order with respect to A larger than 1, the feed rate

could create a compromise between an increase of
the concentration of B and a decrease of that of
A due to the effect of dilution.

If B is not involved in the side reaction (Cases i-
ix), the absence of a basic compromise is obvious
since the two reactions do not compete for the
manipulated input. However, here too, the dilu-
tion effect plays a role for reaction orders with
respect to A larger than 1.

Interestingly, if B reacts with the main reactant
(Case x), a secondary reactant (Case xi) or a prod-
uct (Case xii) and the two reactions have similar
orders, there exists no compromise between them.
However, a sensitivity-seeking solution is possible
if the two reactions are dissimilar in total order or
in the order with respect to B (Case xiii-xv).



5. EXAMPLES

This section presents the optimal solution for
several qualitatively different examples. The em-
phasis will be on using the theoretical results of
Sections 3 and 4 to predict whether or not the
optimal solution will be determined by the con-
straints of the optimization problem. Then, the
optimal solution will be calculated numerically
and the various intervals interpreted in terms of
constraint- or sensitivity-seeking arcs. The follow-
ing three examples will be considered:

(1) Optimal temperature profile for a reversible
reaction in a batch reactor. There is a single
manipulated variable, T . The type of solution
will depend on the relative values of Es and
Ed.

(2) Optimal feed rate in the presence of a decom-
position reaction in an isothermal reactor.
There is also a single manipulated variable,
F . With the chosen reaction scheme, there is
no guarantee that the solution be determined
by constraints, and a sensitivity-seeking arc
will be computed in the particular optimiza-
tion problem.

(3) Optimal temperature and feed-rate profiles
for a series reaction. There are two inputs,
T and F . With respect to the feed rate, the
series reaction does not offer the possibility
of a sensitivity-seeking interval. For the tem-
perature, however, a sensitivity-seeking arc
may result for Es > Ed. This example will
also illustrate the couplings that take place
between the various inputs.

5.1 Example 1: Optimal temperature profile for a
reversible reaction

Reaction system: A + B
kd⇀↽
ks

C.

Objective: Maximize the amount of C at a given
final time.

Constraints: Bounds on temperature.

Manipulated variable: Reactor temperature.

Kinetics:

rd =
kd0e

−Ed
RT nAnB

V 2
, rs =

ks0e
−Es
RT nC

V

Reaction extents:

nA = nA0 − ξd + ξs

nB = nB0 − ξd + ξs

nC = nC0 + ξd − ξs

Optimization problem:

kdo 4 l/mol h
kso 800 1/h

Ed 6× 103 J/mol

Es 20× 103 J/mol
R 8.31 J/mol K

Tmin 20 ◦C
Tmax 50 ◦C
tf 1 h

nAo 3 mol
nBo 2 mol
nCo 0.5 mol
V 1 l

Table 3. Model parameters, operating
constraints and initial conditions for

Example 1

max
T (t)

J = nC(tf ) (36)

s.t. ξ̇ = r(ξ, T )V ξ(0) = 0

Tmin ≤ T (t) ≤ Tmax

Optimal solution: The numerical values of the
model parameters, constraints and initial condi-
tions are given in Table 3. A sensitivity-seeking
solution is possible since the side reaction reduces
the objective function and Es > Ed. The com-
promise between the production and consumption
of C is reached through a sensitivity-seeking arc,
Tsens, that can be computed using (23). Tsens is
initially large to speed up the forward reaction and
decreases with time in order to reduce the back-
ward reaction. The optimal solution computed
numerically is given in Figure 2. It consists of
three arcs as explained below:

• Initially, since Tsens > Tmax, Tmax is used.
• Once Tsens = Tmax, Tsens is used.
• Upon reaching Tmin, Tmin is used.
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Fig. 2. Optimal temperature profile for Example
1

Remark: For Ed > Es, the differential selectivity
rd
rs

increases with temperature. Thus, from both
a productivity and a selectivity viewpoint, it is
recommended to increase the temperature. The
optimal temperature profile will then be deter-
mined by Tmax.



5.2 Example 2: Optimal feed rate in the presence
of a decomposition side reaction

Reaction system: A + B
kd→ C, B ks→ D.

Objective: Maximize the amount of of C at a given
final time.

Constraints: Input bounds, constraint on the vol-
ume in the reactor, constraint on the amount of
D at final time.

Manipulated variable: Feed rate of B.

Kinetics:

rd =
kdnAnB

V 2
, rs =

ksnB

V

kd 0.5 l/mol h
ks 0.02 1/h
cBin 5 g/l

Fmin 0 l/h
Fmax 0.01 l/h
Vmax 1 l
nDmax 0.02 mol
tf 20 h

nAo 1 mol
nBo 0 mol
nCo 0 mol
nDo 0 mol
Vo 0.9 l

Table 4. Model parameters, operating
constraints and initial conditions for

Example 2

Reaction extents:

nA = nA0 − ξd

nB = nB0 − ξd − ξs + cBin(V − V0)

nC = nC0 + ξd

nD = nD0 + ξs

Optimization problem:

max
F (t)

J = nC(tf ) (37)

s.t. system dynamics (10)

Fmin ≤ F ≤ Fmax

V (tf ) ≤ Vmax

nD(tf ) ≤ nDmax

Optimal solution: The reaction scheme corre-
sponds to Case xv of Table 2, for which there
exists no condition guaranteeing that the opti-
mal solution is determined by constraints. Thus,
there is the possibility of the sensitivity-seeking
arc Fsens. For the parameter values of Table 4,
the optimal solution obtained numerically is given
in Figure 3. It consists of two arcs as explained
below:

• The input is initially at the upper bound,
F = Fmax.
• The compromise between the production of

C and D is implemented through Fsens,
which can be computed as WC from (27):

Fsens =
nB(2kdnAcBinV + 2kscBinV

2 − kdnAnB)
2 cBinV (cBinV − nB)

0 5 10 15 20
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Input

Time [h]

F
 [l

/h
]

t
s
 = 1.49 [h]

Fsens

Fig. 3. Optimal feed rate for Example 2

Remark: Even when the possibility of a sensitivity-
seeking arc exists, the presence or absence of this
arc in the solution depends on the formulation
of the optimization problem. For example, if the
constraint on nD(tf ) had not been there in (37),
the solution would not have contained the arc
Fsens, i.e. F = Fmax until the reactor is full at
ts = 10 h and F = Fmin = 0 for the rest of the
batch.

5.3 Optimal temperature and feed-rate profiles for
a series reaction

Reaction system: A + B → C → D.

Objective: Maximize the amount of C at a given
final time.

Constraints: Bounds on feed rate and reactor
temperature, constraint on the heat rate produced
by the reactions, constraint on the volume in the
reactor.

Manipulated variables: Feed rate of B and reactor
temperature.

Comments: The reactor temperature is assumed
to be a manipulated variable though, in practice,
either the flowrate or the temperature in the
cooling jacket is manipulated. Hence, the heat
balance equation for the reactor is neglected.
However, to guarantee heat removal even in the
worst scenario, a bound on the heat rate produced
by the reactions, qrx(t) ≤ qrxmax , is imposed as an
additional constraint.

Kinetics:

rd =
kd0e

−Ed
RT nAnB

V 2
, rs =

ks0e
−Es
RT nC

V

Reaction extents:



kdo 4 l/mol h
kso 800 1/h

Ed 6× 103 J/mol

Es 20× 103 J/mol
R 8.31 J/mol K

∆Hd −3× 104 J/mol

∆Hs −104 J/mol
cBin 20 mol/l

Fmin 0 l/h
Fmax 1 l/h
Tmin 20 ◦C
Tmax 50 ◦C
Vmax 1.1 l

qrxmax 1.5× 105 J/h
tf 0.5 h

nAo 10 mol
nBo 1.1685 mol
nCo 0 mol
nDo 0 mol
Vo 1 l

Table 5. Model parameters, operating
constraints and initial conditions for

Example 3

nA = nA0 − ξd (38)

nB = nB0 − ξd + cBin(V − V0) (39)

nC = nC0 + ξd − ξs (40)

nD = nD0 + ξs (41)

Optimization problem:

max
F (t), T (t)

J = nC(tf ) (42)

s.t. system dynamics (10)

Fmin ≤ F (t) ≤ Fmax

Tmin ≤ T (t) ≤ Tmax

(−∆Hd)
kdnAnB

V
+ (−∆Hs)ksnC ≤ qrxmax

V (tf ) ≤ Vmax

Specific choice of experimental conditions: Let the
initial conditions be chosen such that as much
B as possible is charged initially in the reactor
while still meeting the heat removal constraint.
Thus, nBo is chosen to verify (−∆Hd)

kdnAonBo
Vo

+
(−∆Hs)ksnCo = qrxmax .

Optimal solution: The numerical values of the
model parameters, constraints and initial condi-
tions are given in Table 5. A sensitivity-seeking
temperature profile is possible since the side reac-
tion reduces the objective function and Es > Ed.
Furthermore, the reaction scheme corresponds to
Case iii of Table 2 with ad = cs = 1 (Scenario I),
which guarantees that the feed rate is determined
by constraints. The optimal inputs computed nu-
merically are given in Figure 4. Each input con-
sists of two arcs, Fpath and Fmin for the feed rate,
and Tmax and Tsens for the temperature:

• Since the initial condition cBo verifies qrx(0) =
qrxmax , the feed rate Fpath is applied to keep
that path constraint active.
• Once the volume constraint is attained, the

feed rate is set to Fmin = 0.

• The temperature starts at its upper bound
Tmax to favor the desired reaction.
• Later, the temperature switches to Tsens to

take advantage of the temperature-dependent
compromise between the production and con-
sumption of C.

When the temperature goes inside the feasible
region, there is a discontinuity in the feed rate due
to the coupling between the two inputs. Similarly,
when the feed rate switches to zero to satisfy the
volume constraint, there is a discontinuity in the
rate of change of the temperature.

6. CONCLUSIONS

For non-isothermal, semi-batch systems with two
reactions, this paper has proposed conditions un-
der which the optimal temperature and feed-rate
policies are determined by the constraints of the
optimization problem. The optimal temperature
profile is necessarily determined by an active path
constraint if the desired reaction has a larger
activation energy than the side reaction (which
is often the case) or if the side reaction tends to
improve the objective function (rarely the case).
Otherwise, the optimal temperature profile can
also be inside the feasible region. With respect
to the optimal feed-rate profile, it has been shown
that, for the majority of two-reaction systems, it
is determined by active path constraints.

When the optimal policies are determined by con-
straints, a measurement-based scheme for track-
ing the active constraints is an interesting al-
ternative to numerical model-based optimization,
especially in the presence of uncertainty (Bonvin
et al., 2002).

The results presented in this paper are based on
two core assumptions: (i) power-law kinetics and
(ii) systems with two reactions. Power-law kinetics
are monotonic, and maximizing the reaction rate
corresponds to increasing the concentrations of
the reacting species as much as possible. However,
if the kinetics are not monotonic, e.g. if there
is inhibition, then the maximum reaction rate
occurs at some intermediate concentration and
the optimal solution is not necessarily determined
by constraints.

The second assumption of two reactions is quite
important. Though the basic tools (first- and
second-order conditions of optimality and their
time derivatives) can still be used for systems with
more than two reactions, the analytical develop-
ments get involved. The conditions to guarantee
the solution on the boundary of the feasible region
get extremely complicated, thus questioning the
utility of such results. So, in the authors’ opinion,
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Fig. 4. Optimal feed rate and temperature profiles for Example 3

there is little hope for a general analytical theory
for reaction systems with more than two reactions,
while they can still be solved in a case-by-case
basis using standard numerical optimization tools.
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