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Abstract: Wyner’s common information is a measure that quantifies and assesses the commonality
between two random variables. Based on this, we introduce a novel two-step procedure to construct
features from data, referred to as Common Information Components Analysis (CICA). The first step
can be interpreted as an extraction of Wyner’s common information. The second step is a form
of back-projection of the common information onto the original variables, leading to the extracted
features. A free parameter γ controls the complexity of the extracted features. We establish that,
in the case of Gaussian statistics, CICA precisely reduces to Canonical Correlation Analysis (CCA),
where the parameter γ determines the number of CCA components that are extracted. In this sense,
we establish a novel rigorous connection between information measures and CCA, and CICA is a
strict generalization of the latter. It is shown that CICA has several desirable features, including a
natural extension to beyond just two data sets.

Keywords: common information; dimensionality reduction; feature extraction; unsupervised; canon-
ical correlation analysis; CCA

1. Introduction

Understanding relations between two (or more) sets of variates is key to many tasks
in data analysis and beyond. To approach this problem, it is natural to reduce each of
the sets of variates separately in such a way that the reduced descriptions fully capture
the commonality between the two sets, while suppressing aspects that are individual to
each of the sets. This permits to understand the relation between the two sets without
obfuscation. A popular framework to accomplish this task follows the classical viewpoint
of dimensionality reduction and is referred to as Canonical Correlation Analysis (CCA) [1].
CCA seeks the best linear extraction, i.e., we consider linear projections of the original
variates. Via the so-called Kernel trick, this can be extended to cover arbitrary (fixed)
function classes.

Wyner’s common information is a well-known and established measure of the depen-
dence of two random variables. Intuitively, it seeks to extract a third random variable such
that the two random variables are conditionally independent given the third, but at the
same time that the third variable is as compact as possible. Compactness is measured in
terms of the mutual information that the third random variable retains about the original
two. The resulting optimization problem is not a convex problem (because the constraint
set is not a convex set), and therefore, not surprisingly, closed-form solutions are rare.
A natural generalization of Wyner’s common information is obtained by replacing the
constraint of conditional independence by a limit on the conditional mutual information. If
the limit is set equal to zero, we return precisely to the case of conditional independence.
Exactly like mutual information, Wyner’s common information and its generalization are
endowed with a clear operational meaning. They characterize the fundamental limits of
data compression (in the Shannon sense) for a certain network situation.
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1.1. Related Work

Connections between CCA and Wyner’s common information have been explored
in the past. It is well known that, for Gaussian vectors (standard, non-relaxed), Wyner’s
common information is attained by all of the CCA components together, see [2]. This has
been further interpreted, see, e.g., [3]. Needless to say, having all of the CCA components
together essentially amounts to a one-to-one transform of the original data into a new basis.
It does not yet capture the idea of feature extraction or dimensionality reduction. To put
our work into context, it is only the relaxation of Wyner’s common information [4,5] that
permits to conceptualize the sequential, one-by-one recovery of the CCA components, and
thus, the spirit of dimensionality reduction.

CCA also appears in a number of other problems related to information measures
and probabilistic models. For example, in the so-called Gaussian information bottleneck
problem, the optimizing solution can be expressed in terms of the CCA components [6],
and an interpretation of CCA as a (Gaussian) probabilistic model was presented in [7].

Generalizations of CCA have appeared before in the literature. The most prominent
is built around maximal correlation. Here, one seeks arbitrary remappings of the original
data in such a way as to maximize their correlation coefficient. This perspective culminates
in the well-known alternating conditional expectation (ACE) algorithm [8].

Feature extraction and dimensionality reduction have a vast amount of literature
attached to them, and it is beyond the scope of the present article to provide a com-
prehensive overview. In a part of that literature, information measures play a key role.
Prominent examples are independent components analysis (ICA) [9] and the information
bottleneck [10,11], amongst others. More recently, feature extraction alternations via infor-
mation theory are presented in [12,13]. In [12], the estimation of Rényi’s quadratic entropy
is studied, whereas, in [13], standard information theoretic measures such as Kullback–
Leibler divergence are used for fault diagnosis. Other slightly related feature extraction
methods that perform dimensionality reduction on a single dataset include [14–20]. More
concretely, in [14], a sparse Support Vector Machine (SVM) approach is used for feature
extraction. In [15], feature extraction is performed via regression by using curvilinearity
instead of linearity. In [16], compressed sensing is used to extract features when the data
have a sparse representation. In [17], an invariant mapping method is invoked to map the
high-dimensional data to low-dimensional data that is based on a neighborhood relation.
In [18], feature extraction is performed for a partial learning of the geometry of the mani-
fold. In [19], distance correlation measure (a measure with similar properties as the regular
Pearson correlation coefficient) is proposed as a new feature extraction method. In [20],
kernel principal component analysis is used to perform feature extraction and allow for
the extraction of nonlinearities. In [21], feature extraction is done by a robust regression
based approach and, in [22], a linear regression approach is used to extract features.

1.2. Contributions

The contributions of our work are the following:

• We introduce a novel suit of algorithms, referred to as CICA. These algorithms are
characterized by a two-step procedure. In the first step, a relaxation of Wyner’s
common information is extracted. The second step can be interpreted as a form of
projection of the common information back onto the original data so as to obtain the
respective features. A free parameter γ is introduced to control the complexity of the
extracted features.

• We establish that, for the special case where the original data are jointly Gaussian,
our algorithms precisely extract the CCA components. In this case, the parameter
γ determines how many of the CCA components are extracted. In this sense, we
establish a new rigorous connection between information measures and CCA.

• We present initial results on how to extend CICA to more than two variates.
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• Via a number of paradigmatic examples, we illustrate that, for discrete data, CICA gives
intuitively pleasing results while other methods, including CCA, do not. This is most
pronounced in a simple example with three sources described in Section 7.1.

1.3. Notation

A bold capital letter such as X denotes a random vector, and x its realization. The
probability distribution function of random variable X will be denoted by pX or p(x)
depending on the context. A non-bold capital letter such as K denotes a (fixed) matrix, and
KH its Hermitian transpose. Specifically, KX denotes the covariance matrix of the random
vector X. KXY denotes the covariance matrix between random vectors X and Y. Let P be the
set of all probability distribution, discrete or continuous depending on the context. Let us
denote with In the identity matrix of dimension n× n and 0n the zero matrix of dimension
n× n. We denote by L[ f (x)]x the lower convex envelope of f (x) with respect to x and for
random variables L[ f (X)]pX is the lower convex envelope of f (X) with respect to pX . We
denote by hb(x) := −x log x− (1− x) log 1− x the binary entropy for 0 ≤ x ≤ 1.

1.4. A Simple Example with Synthetic Data

To set the stage and under the guise of an informal problem statement, let us consider
a simple example involving synthetic data. Specifically, we consider two-dimensional data,
that is, the vectors X and Y are of length 2. The goal is to extract, separately from each
of the two, a one-dimensional description in such a way as to extract the commonality
between X and Y while suppressing their individual features. For simplicity, in the present
artificial example, we will assume that the entries of the vectors only take value in a small
finite set, namely, {0, 1, 2, 3}. To illustrate the point, we consider the following special
statistical model:

X =

(
X1
X2

)
=

(
U ⊕ X2

X2

)
, (1)

and

Y =

(
Y1
Y2

)
=

(
U ⊕Y2

Y2

)
, (2)

where U, X2, and Y2 are mutually independent uniform random variables over the set
{0, 1, 2, 3} and ⊕ denotes addition modulo 4.

The reason for this special statistical structure is such that it is obvious what should
be extracted, namely, X should be reduced to U, and Y should also be reduced to U.
This reduces both X and Y to “one-dimensional” descriptions, and these one-dimensional
descriptions capture precisely the dependence between X and Y. In this simple example,
all the commonality between X and Y is captured by U. More formally, conditioned on U,
the vectors X and Y are conditionally independent.

The interesting point of this example is that any pair of components of X and Y are
independent of each other, such as, for example, X1 and Y1. Therefore, the joint covariance
matrix of the merged vector (X, Y) is a scaled identity matrix. This implies that any
method that only uses the covariance matrix as input, including CCA, cannot find any
commonalities between X and Y in this example.

By contrast, the algorithmic procedure discussed in the present paper will correctly
extract the desired answer. In Figure 1, we show numerical simulation outcomes for
a couple of approaches. Specifically, in (a), we can see that, in this particular example,
CCA fails to extract the common features. This, of course, was done on purpose: For the
synthetic data at hand, the global covariance matrix is merely a scaled identity matrix,
and since CCA’s only input is the covariance matrix, it does not actually do anything in
this example. In (b), we show the performance of the approximate gradient-descent based
implementation of the CICA algorithm proposed in this paper, as detailed in Section 6. In
this simple example, this precisely coincides with the ideal theoretical performance of CICA
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as in a Generic Procedure 1, but, in general, the gradient-descent based implementation is
not guaranteed to find the ideal solution.

At this point, we should stress that, for such a simple example, many other approaches
would also lead to the same, correct answer. One of them is maximal correlation. In
that perspective, one seeks to separately reduce X and Y by applying possibly nonlinear
functions f (·) and g(·) in such a way as to maximize the correlation between f (X) and g(Y).
Clearly, for the simple example at hand, selecting f (X) = X1 ⊕ X2 and g(Y) = Y1 ⊕ Y2
leads to correlation one, and is thus a maximizer.

Finally, the present example is also too simplistic to express the finer information-
theoretic structure of the problem. One step up is the example presented in Section 5 below,
where the commonality between X and Y is not merely an equality (the component U
above), but rather a probabilistic dependency.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(a) CCA

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(b) CICA

Figure 1. The situation for the synthetic data as described in example described in Section 1.4. Figure 1a shows the scatterplot
for two one-dimensional features extracted by CCA. Apparently, the approach is not able to extract the commonality between
the vectors X and Y in this synthetic example. Figure 1b shows the performance of the heuristic algorithm of CICA described
in Section 6, which, in this simple example, ends up matching the ideal theoretical performance of CICA as in a Generic
Procedure 1 for n = 105 data samples.

2. Wyner’s Common Information and Its Relaxation

The main framework and underpinning of the proposed algorithm is Wyner’s com-
mon information and its extension, which is briefly reviewed in the sequel, along with its
key properties.

2.1. Wyner’s Common Information

Wyner’s common information is defined for two random variables X and Y of arbitrary
fixed joint distribution p(x, y).

Definition 1 ([23]). For random variables X and Y with joint distribution p(x, y), Wyner’s
common information is defined as

C(X; Y) = inf
p(w|x,y)

I(X, Y; W) such that I(X; Y|W) = 0. (3)

Wyner’s common information satisfies a number of interesting properties. We state
some of them below in Lemma 1 for a generalized definition given in Definition 2.
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We note that explicit formulas for Wyner’s common information are known only for a
small number of special cases. The case of the doubly symmetric binary source is solved
completely in [23] and can be written as

C(X; Y) = 1 + hb(a0)− 2hb

(
1−
√

1− 2a0

2

)
, (4)

where a0 denotes the probability that the two sources are unequal (assuming without loss
of generality a0 ≤ 1

2 ). In this case, the optimizing W in Equation (3) can be chosen to be
binary. Further special cases of discrete-alphabet sources appear in [24].

Moreover, when X and Y are jointly Gaussian with correlation coefficient ρ, then
C(X; Y) = 1

2 log 1+|ρ|
1−|ρ| . Note that, for this example, I(X; Y) = 1

2 log 1
1−ρ2 . This case was

solved in [25,26] using a parameterization of conditionally independent distributions, and
we have recently found an alternative proof that also extends to the generalization of
Wyner’s common information discussed in the next subsection [5].

2.2. A Natural Relaxation of Wyner’s Common Information

A natural generalization of Wyner’s common information (Definition 1) is obtained
by replacing the constraint of conditional independence with a limit γ on the conditional
mutual information, leading to the following:

Definition 2 (from [4,5,27]). For random variables X and Y with joint distribution p(x, y),
we define

Cγ(X; Y) = inf
p(w|x,y)

I(X, Y; W) such that I(X; Y|W) ≤ γ. (5)

This definition appears in slightly different form in Wyner’s original paper (Section 4.2
in [23]), where an auxiliary quantity Γ(δ1, δ2) is defined satisfying Cγ(X; Y) = H(X, Y)−
Γ(0, γ). The above definition first appears in [4]. Comparing Definitions 1 and 2, we see
that, for γ = 0, we have C0(X; Y) = C(X; Y), the regular Wyner’s common information. In
this sense, one may refer to Cγ(X; Y) as relaxed Wyner’s common information.

In line with the discussion following Definition 1, it is not surprising that explicit
solutions to the optimization problem in Definition 2 are very rare. In fact, the only presently
known general solution concerns the case of jointly Gaussian random variables [5]. The
corresponding formula is given below in Theorem 1.

By contrast, the case of the doubly symmetric binary source remains open. An upper
bound for this case is given by choosing the auxiliary W as

W =

{
X⊕V, if X = Y,
U, if X 6= Y,

(6)

where V is Bernoulli with probability α and U is Bernoulli with probability 1
2 . Thus, the

upper bound is

Cγ(X; Y) ≤ I(X, Y; W) = 1− (1− a0)hb(α)− a0, (7)

where α ≥ αW is chosen such that

I(X; Y|W) = 2hb

(
(1− α)(1− a0) +

a0

2

)
− (1− a0)hb(α)− a0 − hb(a0) = γ, (8)

where

αW =
(1−

√
1− 2a0)

2

4(1− a0)
. (9)
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Numerical studies (Section 3.5 in [28]) suggest that this upper bound is tight, but no
formal proof is available to date.

The following lemma summarizes some basic properties of Cγ(X; Y).

Lemma 1 (partially from [5]). Cγ(X; Y) satisfies the following basic properties:

1. Cγ(X; Y) ≥ max{I(X; Y)− γ, 0}.
2. Data processing inequality: If X−Y− Z forms a Markov chain,

then Cγ(X; Z) ≤ min{Cγ(X; Y), Cγ(Y; Z)}.
3. Cγ(X; Y) is a convex and continuous function of γ for γ ≥ 0.
4. Tensorization: For n independent pairs {(Xi, Yi)}n

i=1, we have that

Cγ(Xn; Yn) = min
n

∑
i=1

Cγi (Xi; Yi),

where the min is over all non-negative {γi}n
i=1 satisfying ∑n

i=1 γi = γ.
5. If Z− X−Y forms a Markov chain, then Cγ((X, Z); Y) = Cγ(X; Y).
6. The cardinality ofW may be restricted to |W| ≤ |X ||Y|+ 1.
7. If f (·) and g(·) are one-to-one functions, then Cγ( f (X); g(Y)) = Cγ(X; Y).
8. For discrete X, we have Cγ(X; X) = max{H(X)− γ, 0}.

Proofs of items 1–4 are given in [5], and the proofs of items 5–8 are given in Appendix A.

2.3. The Non-Convexity of the Relaxed Wyner’s Common Information Problem

It is important to observe that the optimization problem of Definition 2 is not a convex
problem. First, we observe that I(X, Y; W) is indeed a convex function of p(w|x, y), which
is a well-known fact, see, e.g., (Theorem 2.7.4 in [29]). The issue is with the constraint
set. The set of distributions p(w|x, y) for which I(X; Y|W) ≤ γ is not a convex set. To
provide some intuition for the structure of this set, let us consider I(X; Y|W) as a function
of p(w|x, y), and examine its (non-)convexity. The relation between the two is described by
the epigraph

epigraph{I(X; Y|W)} = {(p(w|x, y), γ) : p(w|x, y) ∈ P , γ ≥ I(X; Y|W)}. (10)

The function I(X; Y|W) is convex in p(w|x, y) if and only if its epigraph is a convex set
which would imply that the set of distributions p(w|x, y) for which I(X; Y|W) ≤ γ is also
convex. Now, we present an example that I(X; Y|W) is not a convex function of p(w|x, y).

Example 1. Let the distributions p(x, y), p1(w|x, y), p2(w|x, y) be

p(x, y) =
[ 2

5
1

10
1

10
2
5

]
, p1(w|x, y) =

[ 1
4

1
4

1
4

1
4

3
4

3
4

3
4

3
4

]
, p2(w|x, y) =

[ 1
2

3
4

3
4

3
4

1
2

1
4

1
4

1
4

]
, (11)

respectively. For this example, one can evaluate numerically that, under p1(w|x, y), we have
Ip1(X; Y|W) < 0.279 and under p2(w|x, y), we have Ip2(X; Y|W) < 0.262. By the same token,
one can show that, under (p1(w|x, y) + p2(w|x, y))/2, we have I(p1+p2)/2(X; Y|W) > 0.274.
Hence, we conclude that, for this example,

I(p1+p2)/2(X; Y|W) >
1
2
(

Ip1(X; Y|W) + Ip2(X; Y|W)
)
, (12)

which proves that I(X; Y|W) cannot be convex.

2.4. The Operational Significance of the Relaxed Wyner’s Common Information Problem

It is important to note that Wyner’s common information has clear and well-defined
operational significance. This is perhaps not central to the detailed explanations and
examples given in the sequel. However, it has a role in the appreciation of the rigorous
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connection established in our work. An excellent description of the operational significance
is given in (Section I in [23]), where two separate aspects are identified. The first concerns a
source coding scenario with a single encoder and two decoders, one interested in X and the
other in Y. Three bit streams are constructed by the encoder: One public (to both decoders),
and two private streams, one for each decoder. Then, C(X; Y) characterizes the minimum
number of bits that must be sent on the public stream such that the total number of bits
sent stays at the global minimum, which is well known to be the joint entropy of X and
Y. If the rate on the public bit stream dips below C(X; Y), it is no longer possible to keep
the total rate at the joint entropy. Rather, there is a strict penalty now, and this penalty
can be expressed via Cγ(X; Y). The second rigorous operational significance concerns the
distributed generation of correlated randomness. We have two separate processors, one
generating X and the other Y. For a fixed desired resulting probability distribution p(x, y),
how many common random bits (shared between both processors) are required? Again, the
answer is precisely C(X; Y). A connection between caching and the Gray–Wyner network
is developed in [30].

3. The Algorithm

The main technical result of this paper is to establish that the outcome of a specific
procedure induced by the relaxed Wyner’s common information is tantamount to CCA
whenever the original underlying distribution is Gaussian. In preparation for this, in this
section, we present the proposed algorithm. In doing so, we will assume that the distribu-
tion of the data are p(x, y). In many applications involving CCA, the data distributions may
not be known, but, rather, a number of samples of X and Y are provided, based on which
CCA would then estimate the covariance matrix. A similar perspective can be taken on our
procedure, but is left for future work. A short discussion can be found in Section 8 below.

3.1. High-Level Description

The proposed algorithm takes as input the distribution p(x, y) of the data, as well as a
level γ. The level γ is a non-negative real number and may be thought of as a resolution
level or a measure of coarseness: If γ = 0, then the full commonality (or common infor-
mation) between X and Y is extracted in the sense that it is conditioned on the common
information, X and Y are conditionally independent. Conversely, if γ is large, then only the
most important part of the commonality is extracted. Fixing the level γ, the idea of the pro-
posed algorithm is to evaluate the relaxed Wyner’s Common Information of Equation (5)
between the information sources (data sets) at the chosen level γ. This evaluation will come
with an associated conditional distribution pγ(w|x, y), namely, the conditional distribution
attaining the minimum in the optimization problem of Equation (5). The second half of the
proposed algorithm consists of leveraging the minimizing pγ(w|x, y) in such a way as to
separately reduce X and Y to those features that best express the commonality. This may
be thought of as a type of projection of the minimizing random variable W back onto X
and Y, respectively. For the case of Gaussian statistics, this can be made precise.

3.2. Main Steps of the Algorithm

The algorithm proposed here starts from the joint distribution of the data, p(x, y).
Estimates of this distribution can be obtained from data samples Xn and Yn via standard
techniques. The main steps of the procedure can then be described as follows:

Generic Procedure 1 (CICA).

1. Select a real number γ, where 0 ≤ γ ≤ I(X; Y). This is the compression level: A low value of
γ represents low compression, and, thus, many components are retained. A high value of γ
represents high compression, and, thus, only a small number of components are retained.
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2. Solve the relaxed Wyner’s common information problem,

min
p(w|x,y)

I(X, Y; W) such that I(X; Y|W) ≤ γ, (13)

leading to an associated conditional distribution pγ(w|x, y).
3. Using the conditional distribution pγ(w|x, y) found in Step 2), the dimension-reduced data

sets can now be found via one of the following three variants:

(a) Version 1: MAP (maximum a posteriori):

u(x) = arg max
w

pγ(w|x), (14)

v(y) = arg max
w

pγ(w|y). (15)

(b) Version 2: Conditional Expectation:

u(x) = E[W|X = x], (16)

v(y) = E[W|Y = y]. (17)

(c) Version 3: Marginal Integration:

u(x) =
∫

y
p(y)E[W|X = x, Y = y]dy, (18)

v(y) =
∫

x
p(x)E[W|X = x, Y = y]dx. (19)

The present paper focuses on the three versions given here because, for these three
versions, we can establish Theorem 2, showing that, in the case of Gaussian statistics, all
three versions lead exactly to CCA. Second, we note that, for concrete examples, it is often
evident which of the versions is preferable. For example, in Section 5, we consider a binary
example where the associated W in Step 2 of our algorithm is also binary. In this case,
Version 1 will reduce the original binary vector X to a binary scalar, which is perhaps the
most desirable outcome. By contrast, Versions 2 and 3 require an explicit embedding of the
binary example in the reals, and will reduce the original binary vector X to a real-valued
scalar, which might not be as insightful.

4. For Gaussian, CICA Is CCA

In this section, we consider the special case where X and Y are jointly Gaussian random
vectors. Since the mean has no bearing on either CCA or Wyner’s common information,
we will assume it to be zero in the sequel, without loss of generality. One key ingredient
for this argument is a well-known change of basis, see, for example [2], which we will now
introduce in detail. Note that the mean will not change any mutual information term, thus
we assume it to be zero without a loss of generality. We first need to introduce notation
for CCA. To this end, let us express the covariance matrices, as usual, in terms of their
eigendecompositions as

KX = Qx

(
ΛrX 0

0 0n−rX

)
QT

x (20)

and

KY = Qy

(
ΛrY 0

0 0n−rY

)
QT

y , (21)
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where rX and rY denote the rank of KX and KY, respectively. Starting from this, we define
the matrices

K−1/2
X = Qx

(
Λ−1/2

rX 0
0 0n−rX

)
QT

x (22)

and

K−1/2
Y = Qy

(
Λ−1/2

rY 0
0 0n−rY

)
QT

y , (23)

where, for a diagonal matrix Λ with strictly positive entries, Λ−1/2
rY denotes the diagonal

matrix whose diagonal entries are the reciprocals of the square roots of the entries of the
matrix Λ. Using these matrices, the key step is to apply the change of basis

X̂ = K−1/2
X X (24)

Ŷ = K−1/2
Y Y. (25)

In the new coordinates, the covariance matrices of X̂ and Ŷ, respectively, can be shown
to be

KX̂ =

(
IrX 0
0 0n−rX

)
(26)

and

KŶ =

(
IrY 0
0 0n−rY

)
. (27)

Moreover, we have

KX̂Ŷ = K−1/2
X KXYK−1/2

Y . (28)

Let us denote the singular value decomposition of this matrix by

KX̂Ŷ = UΣVH . (29)

where Σ contains, on its diagonal, the ordered singular values of this matrix, denoted by
ρ1 ≥ ρ2 ≥ . . . ≥ ρn. In addition, let us define

X̃ = UHX̂ (30)

Ỹ = VHŶ, (31)

which implies that KX̃ = KX̂, KỸ = KŶ, and KX̃Ỹ = Σ.
Next, we will leverage this change of basis to establish Wyner’s common information

and its relaxation for the Gaussian vector case, and then to prove the connection between
Generic Procedure 1 and CCA.

4.1. Wyner’s Common Information and Its Relaxation in the Gaussian Case

For the case where X and Y are jointly Gaussian random vectors, a full and explicit
solution to the optimization problem of Equation (5) is found in [5]. To give some high-level
intuition, the proof starts by mapping from X to X̃ and from Y to Ỹ, as in Equations (30)
and (31). This preserves all mutual information expressions as well as joint Gaussianity.
Moreover, due to the structure of the covariance matrices of the vectors X̃ and Ỹ, we have
that {(X̃i, Ỹi)}n

i=1 are n independent pairs of Gaussian random variables. Thus, by the
tensorization property (see Lemma 1), the vector problem can be reduced to n parallel
scalar problems. The solution of the scalar problem is the main technical contribution of [5],
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and we refer to that paper for the detailed proof. The resulting formula can be expressed
as in the following theorem.

Theorem 1 (from [5]). Let X and Y be jointly Gaussian random vectors of length n and covariance
matrix K(X,Y). Then,

Cγ(X; Y) = min
γi :∑n

i=1 γi=γ

n

∑
i=1

Cγi (Xi; Yi), (32)

where

Cγi (Xi; Yi) =
1
2

log+ (1 + ρi)(1−
√

1− e−2γi )

(1− ρi)(1 +
√

1− e−2γi )
(33)

and ρi (for i = 1, . . . , n) are the singular values of K−1/2
X KXYK−1/2

Y , where K−1/2
X and K−1/2

Y are
defined to mean that only the positive eigenvalues are inverted.

As pointed out above, we refer to (Theorem 7 in [5]) for a rigorous proof of this theo-
rem.

4.2. CICA in the Gaussian Case and the Exact Connection with CCA

In this section, we consider the proposed CICA algorithm in the special case where
the data distribution is p(x, y), a (multivariate) Gaussian distribution. We establish that,
in this case, the classic CCA is a solution to all versions of the proposed CICA algo-
rithm. In this sense, CICA is a strict generalization of CCA. CCA is briefly reviewed in
Appendix B. Leveraging the matrices U and V defined via the singular value decomposi-
tion in Equation (29), CCA performs the dimensonality reduction

u(x) = UH
k x̂ = UH

k K−1/2
X x (34)

v(y) = VH
k ŷ = VH

k K−1/2
Y y, (35)

where the matrix Uk contains the first k columns of U (that is, the k left singular vectors
corresponding to the largest singular values), and the matrix Vk the respective right singular
vectors. We refer to these as the “top k CCA components.”

Theorem 2. Let X and Y be jointly Gaussian random vectors. Then:

1. The top k CCA components are a solution to all three versions of Generic Procedure 1.
2. The parameter γ controls the number k as follows:

k(γ) =



n, if 0 ≤ γ < ng(ρn),
n− 1, if ng(ρn) ≤ γ < (n− 1)g(ρn−1) + g(ρn),
n− 2, if (n− 1)g(ρn−1) + g(ρn) ≤ γ

< (n− 2)g(ρn−2) + g(ρn−1) + g(ρn),
...,

...,
` if (`+ 1)g(ρ`+1) + ∑n

i=`+2 g(ρi) ≤ γ
< `g(ρ`) + ∑n

i=`+1 g(ρi),
...,

...,
1, if 2g(ρ2) + ∑n

i=2 g(ρi) ≤ γ < ∑n
i=1 g(ρi),

0, if ∑n
i=1 g(ρi) ≤ γ,

(36)

where g(ρ) = 1
2 log 1

1−ρ2 .
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Remark 1. Note that k(γ) is a decreasing, integer-valued function. An illustration for a special
case is given in Figure 2.
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)

Figure 2. Illustration of the function k(γ) from Theorem 2 for the concrete case where X and Y have
n = 10 components each and the correlation coefficients are ρm = 1/(m + 1).

Proof. The main contribution of the theorem is the first item, i.e., the connection between
CCA and Generic Procedure 1 in the case where X and Y are jointly Gaussian. The proof
follows along the steps of the CICA procedure: We first show that, in Step 2, when X and
Y are jointly Gaussian, then the minimizing W may be taken jointly Gaussian with X and
Y. Then, we establish that, in Step 3, with the W from Step 2, we indeed obtain that the
dimension-reduced representations u(x) and v(y) turn into the top k CCA components.
In detail:

Step 2 of Generic Procedure 1: The technical heavy lifting for this step in the case
where p(x, y) is a multivariate Gaussian distribution is presented in [5]. We shall briefly
summarize it here. In the case of Gaussian vectors, the solution to the optimization problem
in Equation (5) is most easily described in two steps. First, we apply the change of basis
indicated in Equations (24) and (25). This is a one-to-one transform, leaving all information
expressions in Equation (5) unchanged. In the new basis, we have n independent pairs.
By the tensorization property (see Lemma 1), when X and Y consist of independent pairs,
the solution to the optimization problem in Equation (5) can be reduced to n separate
scalar optimizations. The remaining crux then is solving the scalar Gaussian version of the
optimization problem in Equation (5). This is done in (Theorem 3 in [5]) via an argument of
factorization of convex envelope. The full solution to the optimization problem is given in
Equations (32) and (33). The remaining allocation problem over the non-negative numbers
γi can be shown to lead to a water-filling solution, given in (Theorem 8 in [5]). More
explicitly, to understand this solution, start by setting γ = I(X; Y). Then, the corresponding
Cγ(X; Y) = 0 and the optimizing distribution pγ(w|x, y) trivializes. Now, as we lower γ,
the various terms in the sum in Equation (32) start to become non-zero, starting with the
term with the largest correlation coefficient ρ1. Hence, an optimizing distribution pγ(w|x, y)
can be expressed as Wγ = UH

k K−1/2
X X + VH

k K−1/2
Y Y + Z, where the matrices Uk and Vk

are precisely the top k CCA components (see Equations (34) and (35) and the following
discussion), and Z is additive Gaussian noise with mean zero, independent of X and Y.

Step 3 of Generic Procedure 1: For the algorithm, we need the corresponding conditional
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marginals, pγ(w|x) and pγ(w|y). By symmetry, it suffices to prove one formula. Changing
basis as in Equations (24) and (25), we can write

E[W|X] = E[UH
k X̂ + VH

k Ŷ + Z|X̂] (37)

= UH
k X̂ + VH

k E[Ŷ|X̂] (38)

= UH
k X̂ + VH

k

(
E[ŶX̂H ]

(
E[X̂X̂H ]

)−1
X̂
)

(39)

= UH
k X̂ + VH

k KŶX̂X̂ (40)

= UH
k X̂ +

(
KX̂ŶVk

)HX̂. (41)

The first summand contains exactly the top k CCA components extracted from X, which is
the claimed result. The second summand requires further scrutiny. To proceed, we observe
that, for CCA, the projection vectors obey the relationship (see Equation (A12))

u = αKX̂Ŷv, (42)

for some real-valued constant α. Thus, combining the top k CCA components, we can write

Uk = DKX̂ŶVk, (43)

where D is a diagonal matrix. Hence,

E[W|X] = UH
k X̂ + D−1UH

k X̂ (44)

= D̃UH
k X̂, (45)

where D̃ is the diagonal matrix

D̃ = I + D−1. (46)

This is precisely the top k CCA components (note that the solution to the CCA problem (A7)
is only specified up to a scaling). This establishes the theorem for the case of Version 2) of
the proposed algorithm. Clearly, it also establishes that pγ(w|x) is a Gaussian distribution
with mean given by (45), thus establishing the theorem for Version 1) of the proposed
algorithm. The proof for Version 3 follows along similar lines and is thus omitted.

5. A Binary Example

In this section, we carry through a theoretical study of a somewhat more general case
of the example discussed in Section 1.4 that is believed to be within the reach of practical
data. In order to do a theoretical study, we need to constrain the data into binary for the
reason that computing the Wyner’s common information for doubly binary symmetric
source is already known.

Let us illustrate the proposed algorithm via a simple example. Consider the vector
(U, X2, V, Y2) of binary random variables. Suppose that (U, V) is a doubly symmetric
binary source. This means that U is uniform and V is the result of passing U through a
binary symmetric (“bit-flipping”) channel with flip probability denoted by a0 to match
the notation in (Section 3 in [23]). Without loss of generality, we may assume a0 ≤ 1

2 .
Meanwhile, X2 and Y2 are independent binary uniform random variables, also independent
of the pair (U, V). We will then form the vectors X and Y as

X =

(
X1
X2

)
=

(
U ⊕ X2

X2

)
, (47)
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and

Y =

(
Y1
Y2

)
=

(
V ⊕Y2

Y2

)
, (48)

where ⊕ denotes the modulo-reduced addition, as usual. How do various techniques
perform for this example?

• Let us first analyze the behavior and outcome of CCA in this particular example.
The key observation is that any pair, amongst the four entries in these two vec-
tors, X1, X2, Y1, and Y2, are (pairwise) independent binary uniform random variables.
Hence, the overall covariance matrix of the merged random vector (XT , YT)T is merely
a scaled identity matrix. This, in turn, implies that CCA as described in Equations (34)
and (35) merely boils down to the identity mapping. Concretely, this means that, for
CCA, in this example, the best one-dimensional projections are ex aequo any pair
of one coordinate of the vector X with one coordinate of the vector Y. As we have
already explain above, any such pair is merely a pair of independent (and identically
distributed) random variables, so CCA does not extract any dependence between X
and Y at all. Of course, this is the main point of the present example.

• How does CICA perform in this example? We selected this example because it
represents one of the only cases for which a closed-form solution to the optimization
problem in Equation (13) is known, at least in the case γ = 0. To see this, let us first
observe that, in our example, we have

p(u, v, x2, y2) = p(u, v)p(x2)p(y2). (49)

Next, we observe that

Cγ(X; Y) = Cγ(U, X2; V, Y2) (50)

= Cγ(U; V, Y2) (51)

= Cγ(U; V) (52)

where (51) follows from Lemma 1, Item 5, and the Markov chain X2 −U − (V, Y2)
that is satisfied from (49). The last equation (52) follows from Lemma 1, Item 5,
and the Markov chain Y2 − V −U that is satisfied from (49). That is, in this simple
example, solving the optimization problem of Equation (13) is tantamount to solv-
ing the optimization problem in Equation (52). For the latter, the solution is well
known, see (Section 3 in [23]). Specifically, we can express the conditional distribution
pγ(w|x, y) that solves the optimization problem of Equation (13) and is required for
Step 3 of Generic Procedure 1 as follows:

pγ=0(w|x, y) =


1− ν, if w = 0, x1 ⊕ x2 = 0, y1 ⊕ y2 = 0,

ν, if w = 1, x1 ⊕ x2 = 0, y1 ⊕ y2 = 0,
ν, if w = 0, x1 ⊕ x2 = 1, y1 ⊕ y2 = 1,

1− ν, if w = 1, x1 ⊕ x2 = 1, y1 ⊕ y2 = 1,
1
2 , otherwise.

(53)

where

ν =
1
2
−
√

1− 2a0

2(1− a0)
. (54)

Let us now apply Version 1 (the MAP version) of Generic Procedure 1. To this end, we
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also need to calculate pγ(w|x) and pγ(w|y). Again, for γ = 0, these can be expressed
in a closed form as follows:

pγ=0(w|x) =


1− a1, if w = 0, x1 ⊕ x2 = 0,

a1, if w = 1, x1 ⊕ x2 = 0,
a1, if w = 0, x1 ⊕ x2 = 1,

1− a1, if w = 1, x1 ⊕ x2 = 1,

(55)

where

a1 =
1
2

(
1−

√
1− 2a0

)
. (56)

The formula for pγ(w|y) follows by symmetry and shall be omitted. The final step
is to follow Equations (14) and (15) and find arg maxw pγ=0(w|x) for each x as well
as arg maxw pγ=0(w|y) for each y. For the example at hand, these can be compactly
expressed as

u(x) = arg max
w

pγ(w|x) = x1 ⊕ x2 = u, (57)

v(y) = arg max
w

pγ(w|y) = y1 ⊕ y2 = v, (58)

from the fact that 0 ≤ a0 ≤ 1
2 that implies 0 ≤ a1 ≤ 1

2 . Hence, we find that, for CICA
as described in Generic Procedure 1, an optimal solution is to reduce X to U and Y to
V. This captures all the dependence between the vectors X and Y, which appears to be
the most desirable outcome.
As a final note, we point out that it is conceptually straightforward to evaluate Versions
2 and 3 (conditional expectation) of Generic Procedure 1 in this example, but this
would require embedding the considered binary alphabets into the real numbers. This
makes it a less satisfying option for the simple example at hand.

6. A Gradient Descent Based Implementation

As we discussed above, in our problem, the objective is indeed a convex function of
the optimization variables (but the constraint set is not convex). Clearly, this gives hope that
gradient-based techniques may lead to interesting solutions. In this section, we examine a
first tentative implementation and check it against ground truth for some simple examples.

In theory for convex problems, gradient descent will guarantee convergence to the
optimal solution; otherwise, it will guarantee only local convergence. Gradient descent
runs in iterative steps, where each step does a local linear approximation and the step
size depends on a learning parameter that is α for our problem. In our work, we want to
minimize the objective I(W; X, Y) when the constraint I(X; Y|W) is held below a γ−level.

Instead, we apply a variant of gradient descent where we minimize the weighted sum
of objective I(W; X, Y) and the constraint I(X; Y|W), which is I(W; X, Y) + λI(X; Y|W).
The parameter λ will permit some control on the constraint, thus sweeping all its possible
values. We present the algorithm where C(p(w|x, y)) will be a function of p(w|x, y) that
will represent I(W; X, Y), and J(p(w|x, y)) will be a function of p(w|x, y) that will represent
I(X; Y|W).

The exact computation of the stated update step is presented in the following lemma.

Lemma 2 (Computation of the update step). Let p(x, y) be a fixed distribution, then the
updating steps for the gradient descent are

∂C(p(w|x, y)
∂p(w|x, y)

= p(x, y) log
p(w|x, y)

∑x′ ,y′ p(x′, y′)p(w|x′, y′)
, (59)

∂J(p(w|x, y)
∂p(w|x, y)

= p(x, y) log
p(w|x, y)∑x′ ,y′ p(x′, y′)p(w|x′, y′)

∑x′′ p(w|x′′, y)p(x′′|y)∑y′′ p(w|x, y′′)p(y′′|x) . (60)
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Proof. Let the function C be as defined above

C(p(w|x, y)) = ∑
x,y,w

p(w|x, y)p(x, y) log
p(w|xy)

∑x′ ,y′ p(w|x′, y′)p(x′, y′)
, (61)

and, in terms of information theoretic terms, the function is C(p(w|x, y)) = I(W; X, Y). In
addition, C(p(w|x, y)) is a convex function of p(w|x, y), shown in (Theorem 2.7.4 in [29]).
Taking the first derivative, we get

∂C(p(w|x, y))
∂p(w|x, y)

= p(x, y) log
p(w|x, y)

∑x′ ,y′ p(w|x′, y′)p(x′, y′)
+ p(w|x, y)p(x, y)

1
p(w|x, y)

− ∑
x′′ ,y′′

p(w|x′′, y′′)p(x′′, y′′)
p(x, y)

∑x′ ,y′ p(w|x′, y′)p(x′, y′)
(62)

= p(x, y) log
p(w|x, y)

∑x′ ,y′ p(w|x′, y′)p(x′, y′)
. (63)

On the other hand, the term I(X; Y|W) can be expressed as

I(X; Y|W) = I(W; X, Y)− I(W; X)− I(W; Y) + I(X; Y) (64)

= C(p(w|x, y))− C(p(w|x))− C(p(w|y)) + I(X; Y). (65)

Taking the derivative with respect to p(w|x, y) becomes easier once I(X; Y|W) is written in
terms of function C and we already know the derivative of C from (63). Thus, the derivative
would be

∂J(p(w|x, y)
∂p(w|x, y)

=
∂C(p(w|x, y))

∂p(w|x, y)
− ∂C(p(w|x))

∂p(w|x, y)
− ∂C(p(w|y))

∂p(w|x, y)
(66)

=
∂C(p(w|x, y))

∂p(w|x, y)
− ∂C(p(w|x))

∂p(w|x)
∂p(w|x)

∂p(w|x, y)
− ∂C(p(w|y))

∂p(w|y)
∂p(w|y)

∂p(w|x, y)
(67)

= p(x, y) log
p(w|x, y)

∑x′ ,y′ p(w|x′, y′)p(x′, y′)
− p(x) log

p(w|x)
∑x′′ p(w|x′′)p(x′′)

p(y|x)

− p(y) log
p(w|y)

∑y′′ p(w|y′′)p(y′′)
p(x|y) (68)

= p(x, y) log
p(w|x, y)∑x′ ,y′ p(x′, y′)p(w|x′, y′)

∑x′′ p(w|x′′, y)p(x′′|y)∑y′′ p(w|x, y′′)p(y′′|x) . (69)

where (67) is an application of the chain rule, and the rest is straightforward computa-
tion.

Remark 2. In practice, it is useful and computationally cheaper to replace the derivative formulas
in Lemma 2 by their standard approximations. That is, the updating step in line 7 of Algorithm 1 is
replaced by

∂C(p(w|x, y))
∂p(w|x, y)

≈ C(p(w|x, y) + ∆)− C(p(w|x, y))
∆

, (70)

∂J(p(w|x, y))
∂p(w|x, y)

≈ J(p(w|x, y) + ∆)− J(p(w|x, y))
∆

, (71)

for a judicious choice of ∆. This is the version that was used for Figure 1b, with ∆ = 10−3. We
point out that, in the general case, the error introduced by this approximation is not bounded.
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Algorithm 1: Approximate CICA Algorithm via Gradient Descent

1 Set α, λ, error ;
2 β = λ · α ;
3 Initialise p(w|x, y) randomly ;
4 Initialise Cnew ← 1, Cold ← 0 ;
5 while |Cnew − Cold| > error do
6 Cold ← Cnew ;

7 p(w|x, y)← p(w|x, y) + α
∂C(p(w|x,y))

∂p(w|x,y) + β
∂J(p(w|x,y))

∂p(w|x,y) ; // update step

8 Cnew ← C(p(w|x, y)) ;

9 Output Cγ ← Cnew, γ← J(p(w|x, y)) ;

10 Function C(p(w|x, y))← ∑x,y,w p(w|x, y)p(x, y) log p(w|x,y)
∑x′ ,y′ p(x′ ,y′)p(w|x′ ,y′) ;

// I(W; X, Y)
11 Function

J(p(w|x, y))← ∑x,y,w p(w|x, y)p(x, y) log
p(w|x,y)p(x,y)∑x′ ,y′ p(x′ ,y′)p(w|x′ ,y′)

∑x′′ p(w|x′′ ,y)p(x′′ ,y)∑y′′ p(w|x,y′′)p(y′′ ,x) ;

// I(X; Y|W)

7. Extension to More than Two Sources

It is unclear how one would extend CCA to more than two databases. By contrast, for
CICA, this extension is conceptually straightforward. For Wyner’s common information, in
Definition 1, it suffices to replace the objective in the minimization by I(X1, X2, . . . , XM; W)
and to keep the constraint of conditional independence. To obtain an interesting algorithm,
we now need to relax the constraint of conditional independence. The most natural way is
via the conditional version of Watanabe’s total correlation [31], leading to the following
definition:

Definition 3 (Relaxed Wyner’s Common Information for M variables). For a fixed probability
distribution p(x1, x2, . . . , xM), we define

Cγ(X1; X2; . . . ; XM) = inf I(X1, X2, . . . , XM; W) (72)

such that ∑M
i=1 H(Xi|W)− H(X1, X2, . . . , XM|W) ≤ γ, where the infimum is over all probability

distributions p(w, x1, x2, . . . , xM) with marginal p(x1, x2, . . . , xM).

Not surprisingly, an explicit closed-form solution is difficult to find. One simple case
appears below as part of the example presented in Section 7.1, see Lemma 4. By analogy
with Lemma 1, we can again state basic properties.

Lemma 3. Cγ(X1; X2; . . . ; XM) satisfies the following basic properties:

1. Cγ(X1; X2; . . . ; XM) ≥ 1
M−1 max{∑M

i=1 H(Xi)− H(X1, X2, . . . , XM)− γ, 0}.
2. Cγ(X1; X2; . . . ; XM) is a convex and continuous function of γ for γ ≥ 0.
3. If Z− X1 − (X2, . . . , XM) forms a Markov chain,

then Cγ((X1, Z); X2; . . . ; XM) = Cγ(X1; X2; . . . ; XM).
4. The cardinality ofW may be restricted to |W| ≤ ∏M

i=1 |Xi|+ 1.
5. If fi(·) are one-to-one functions,

then Cγ( f1(X1); f2(X2); . . . ; fM(XM)) = Cγ(X1; X2; . . . ; XM).
6. For discrete X, we have Cγ(X; X; . . . ; X) = max{H(X)− γ

M−1 , 0}.

Proofs for these basic properties can be found in Appendix C.
Leveraging Definition 3, it is conceptually straightforward to extend CICA (that is,

Generic Procedure 1) to the case of M databases as follows. For completeness, we include
an explicit statement of the resulting procedure.
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Generic Procedure 2 (CICA with multiple sources).

1. Select a real number γ, where 0 ≤ γ ≤ ∑M
i=1 H(Xi) − H(X1, X2, . . . , XM). This is the

compression level: A low value of γ represents low compression, and, thus, many components
are retained. A high value of γ represents high compression, and, thus, only a small number
of components are retained.

2. Solving the relaxed Wyner’s common information problem,

min
p(w|x1,x2,...,xM)

I(X1, X2, . . . , XM; W) such that
M

∑
i=1

H(Xi|W)− H(X1, X2, . . . , XM|W) ≤ γ, (73)

leading to an associated conditional distribution pγ(w|x1, x2, . . . , xM).
3. Using the conditional distribution pγ(w|x1, x2, . . . , xM) found in Step 2, the dimension-

reduced data sets can now be found via one of the following three variants:

(a) Version 1: MAP (maximum a posteriori):

ui(xi) = arg max
w

pγ(w|xi), (74)

for i = 1, 2, . . . , M.
(b) Version 2: Conditional Expectation:

ui(xi) = E[W|Xi = xi] (75)

for i = 1, 2, . . . , M.
(c) Version 3: Marginal Integration:

ui(xi) =
∫

x1,...,xi−1,xi+1,...,xM

p(x1, . . . , xi−1, xi+1, . . . , xM)

E[W|X1 = x1, . . . , XM = xM]dx1 · · · dxi−1dxi+1 · · · dxM (76)

for i = 1, 2, . . . , M.

Clearly, Generic Procedure 2 closely mirrors Generic Procedure 1. The key difference
is that there is no direct analog of Theorem 2. This is no surprise since it is unclear how
CCA would be extended to beyond the case of two sources. Nonetheless, it would be very
interesting to explore what Generic Procedure 2 boils down to in the special case when
all vectors are jointly Gaussian. At the current time, this is unknown. In fact, the explicit
solution to the optimization problem in Definition 3 is presently an open problem.

Instead, we illustrate the promise of Generic Procedure 2 via a simple binary example
in the next section. The example mirrors some of the basic properties of the example tackled
in Section 5.

7.1. A Binary Example with Three Sources

In this section, we develop an example with three sources that borrows some of the
ideas from the example discussed in Section 5. In a sense, the present example is even
more illustrative because, in it, any two of the original vectors X1, X2, and X3, are (pairwise)
independent. Therefore, any method based on pairwise measures, including CCA and
maximal correlation, would not identify any commonality at all. Specifically, we consider
the following simple statistical model:

X1 =

(
U
Z1

)
, X2 =

(
V
Z2

)
, X3 =

(
U ⊕V

Z3

)
, (77)

where U, V, Z1, Z2, Z3 are independent uniform binary variables and ⊕ denotes modulo-2
addition. We observe that, amongst these three vectors, any pair is independent. This
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implies, for example, that any correlation-based technique (including maximal correlation)
will not identify any relevant features, since correlation is a pairwise measure. By contrast,
we can show that one output of Algorithm 2 is indeed to select W = (U, V), for γ = 0.
Thus, the algorithm would reduce each of the three vectors to their first component, which
is the intuitively pleasing answer in this case. By going through the steps of the Generic
Procedure 2, for γ = 0, where the the joint distribution satisfies

p(u, v, u⊕ v, z1, z2, z3) = p(u, v, u⊕ v)p(z1)p(z2)p(z3) (78)

we have that

C(X1; X2; X3) = C(U, Z1; V, Z2; U ⊕V, Z3) (79)

= C(U; V, Z2; U ⊕V, Z3) (80)

= C(U; V; U ⊕V, Z3) (81)

= C(U; V; U ⊕V) (82)

where we use Lemma 3, Item 3, together with the Markov chain Z1−U− (Z2, V, Z3, U⊕V)
that follows from (78) to prove step (80). Similarly, the Markov chain Z2 −V − (U, Z3, U ⊕
V) proves step (81) by making use of Lemma 3, Item 3. A similar argument is used
for the last step (82). Managing to compute C(U; V; U ⊕ V) is equivalent to computing
C(X1; X2; X3), and we demonstrate how to compute it in the next part.

Lemma 4. Let U, V be independent uniform binary variables and ⊕ denotes modulo-2 addition.
Then, the optimal solution to

Cγ=0(U; V; U ⊕V) = inf
W:H(U|W)+H(V|W)+H(U⊕V|W)−H(U,V,U⊕V|W)=0

I(W; U, V, U ⊕V)

(83)

is W = (U, V), where the expression evaluates to two.

The proof is given in Appendix D. If we apply Version 1 of Step 3 of Generic Procedure 2,
we obtain

arg max
w

pγ=0(w|x1) = {(u, 0), (u, 1)}, (84)

that is, in this case, the maximizer is not unique. However, as we observe that the set of
maximizers is a deterministic function of u alone, it is natural to reduce as follows:

u1(x1) = u. (85)

By the same token, we can reduce

u2(x2) = v, (86)

u3(x3) = u⊕ v. (87)

In this example, it is clear that this indeed extracts all of the dependency there is between
our three sources, and, thus, is the correct answer.

As pointed out above, in this simple example, any pair of the random vectors X1, X2,
and X3 are (pairwise) independent, which implies that the classic tools based on pairwise
measures (CCA, maximal correlation) cannot identify any commonality between X1, X2,
and X3.

8. Conclusions and Future Work

We introduce a novel two-step procedure that we refer to as CICA. The first step
consists of an information minimization problem related to Wyner’s common information,
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while the second can be thought of as a type of back-projection. We prove that, in the special
case of Gaussian statistics, this two-step procedure precisely extracts the CCA components.
A free parameter γ in CICA permits selecting the number of CCA components that are
being extracted. In this sense, the paper establishes a novel rigorous connection between
CCA and information measures. A number of simple examples are presented. It is also
shown how to extend the novel algorithm to more than two sources.

Future work includes a more in-depth study and consideration to assess the prac-
tical promise of this novel algorithm. This will also require moving beyond the current
setting where it was assumed that the probability distribution of the data at hand was
provided directly. Instead, this distribution has to be estimated from data, and one needs
to understand what limitations this additional constraint will end up imposing.
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Appendix A. Proof of Lemma 1

For Item 5, on the one hand, we have

Cγ((X, Z); Y) = inf
p(w|x,y,z):I(X,Z;Y|W)≤γ

I(X, Z, Y; W) (A1)

≤ inf
p(w|x,y):I(X;Y|W)+I(Z;Y|W,X)≤γ

I(X, Y; W) + I(Z; W|X, Y) (A2)

= Cγ(X; Y) (A3)

where, in Equation (A2), we add the constraint that conditioned on (X, Y), W is selected
to be independent of Z, which cannot reduce the value of the infimum. That is, for such a
choice of W, we have the Markov chain Z− (X, Y)−W, thus I(Z; W|X, Y) = 0. Further-
more, observe that the factorization p(x, y, z, w) = p(x, y)p(z|x)p(w|x, y) also implies the
factorization p(x, y, z, w) = p(x, w)p(z|x)p(y|w, x). Hence, we also have the Markov chain
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Z− (W, X)−Y; thus, I(Z; Y|W, X) = 0, which thus established the last step. Conversely,
observe that

Cγ((X, Z); Y) = inf
p(w|x,y,z):I(X,Z;Y|W)≤γ

I(X, Y, Z; W) (A4)

≥ inf
p(w|x,y):I(X;Y|W)≤γ

I(X, Y; W) + inf
p(w|x,y,z):I(X,Z;Y|W)≤γ

I(Z; W|X, Y) (A5)

≥ Cγ(X; Y) (A6)

where (A5) follows from the fact that the infimum of the sum is lower bounded by the
sum of the infimums and the fact that relaxing constraints cannot increase the value of the
infimum, and (A6) follows from non-negativity of the second term.

Item 6 is a standard cardinality bound, following from the arguments in [32]. For
the context at hand, see also Theorem 1 in (p. 6396, [33]). Item 7 follows because all
involved mutual information terms are invariant to one-to-one transforms. For Item 8),
note that we can express Cγ(X; X) = H(X)−maxp(w|x):H(X|W)≤γ H(X|W), which directly
gives the result.

Appendix B. A Brief Review of Canonical Correlation Analysis (CCA)

A brief review of CCA [1] is presented. Let X and Y be zero-mean real-valued random
vectors with covariance matrices KX and KY, respectively. Moreover, let KXY = E[XYH ].
We first apply the change of basis as in (24) and (25). CCA seeks to find vectors u and v
such as to maximize the correlation between uHX̂ and vHŶ, that is,

max
u,v

E[uHX̂ŶHv]√
E[|uHX̂|2]

√
E[|vHŶ|2]

, (A7)

which can be rewritten as

max
u,v

uHKX̂Ŷv
‖u‖ ‖v‖ , (A8)

where

KX̂Ŷ = K−1/2
X KXYK−1/2

Y . (A9)

Note that this expression is invariant to arbitrary (separate) scaling of u and v. To obtain a
unique solution, we could choose to impose that both vectors be unit vectors,

max
u,v:‖u‖=‖v‖=1

uHKX̂Ŷv. (A10)

From Cauchy–Schwarz, for a fixed u, the maximizing (unit-norm) v is given by

v =
KH

X̂Ŷ
u∥∥∥KH

X̂Ŷ
u
∥∥∥ , (A11)

or, equivalently, for a fixed v, the maximizing (unit-norm) u is given by

u =
KX̂Ŷv∥∥KX̂Ŷv

∥∥ . (A12)

Plugging in the latter, we obtain

max
v:‖v‖=1

vHKH
X̂Ŷ

KX̂Ŷv∥∥KX̂Ŷv
∥∥ , (A13)
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or, dividing through,

max
v:‖v‖=1

∥∥KX̂Ŷv
∥∥. (A14)

The solution to this problem is well known: v is the right singular vector corresponding
to the largest singular vector of the matrix KX̂Ŷ = K−1/2

X KXYK−1/2
Y . Evidently, u is the

corresponding left singular vector. Restarting again from Equation (A7), but restricting to
vectors that are orthogonal to the optimal choices of the first round leads to the second
CCA components, and so on.

Appendix C. Proof of Lemma 3

For item 1, we proceed as follows

Cγ(X1; X2; . . . ; XM) = inf
W:H(X1|W)+H(X2|W)+···+H(XM |W)−H(X1,X2,...,XM |W)≤γ

I(W; X1, X2, . . . , XM) (A15)

≥ inf
W

L(λ, p(w|x1, x2, . . . , xM)) (A16)

where we used weak duality for λ ≥ 0 and L(λ, p(w|x1, x2, . . . , xM) is

L(λ, p(w|x1, x2, . . . , xM) := I(W; X1, X2, . . . , XM) + λ[H(X1|W)

+ H(X2|W) + · · ·+ H(XM|W)− H(X1, X2, . . . , XM|W)− γ].
(A17)

By setting λ = 1
M−1 , we obtain

L(
1

M− 1
, p(w|x1, x2, . . . , xM)) (A18)

=
M

M− 1
I(W; X1, X2, . . . , XM)− 1

M− 1
[I(W; X1) + I(W; X2) + · · ·+ I(W; XM)]

+
1

M− 1
[H(X1) + H(X2) + · · ·+ H(XM)− H(X1, X2, . . . , XM)− γ] (A19)

=
1

M− 1
[I(W; X2, . . . , XM|X1) + · · ·+

1
M− 1

[I(W; X1, . . . , XM−1|XM)

+
1

M− 1
[H(X1) + H(X2) + · · ·+ H(XM)− H(X1, X2, . . . , XM)− γ], (A20)

where the infimum of L( 1
M−1 , p(w|x1, x2, . . . , xM)) in (A20) is attained for the trivial

random variable W, thus Cγ(X1; X2; . . . ; XM) ≥ 1
M−1 [H(X1) + H(X2) + · · ·+ H(XM)−

H(X1, X2, . . . , XM)−γ]. Item 2 follows from a similar argument as in (Corollary 4.5 in [23]).
For item 3, we start by showing both sides of the inequality that will result in equality. One
side of the inequality is shown below:

Cγ(X1, Z; X2; . . . ; XM) (A21)

= inf
W:H(X1,Z|W)+H(X2|W)+···+H(XM |W)−H(X1,Z,X2,...,XM |W)≤γ

I(W; X1, Z, X2, . . . , XM) (A22)

= inf
W:H(X1 |W)+H(X2 |W)+···+H(XM |W)−H(X1 ,X2 ,...,XM |W)

+I(Z;X2 ,...,XM |X1 ,W)≤γ

I(W; X1, X2, . . . , XM) + I(W; Z|X1, X2, . . . , XM) (A23)

≤ Cγ(X1; X2; . . . ; XM) (A24)
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where the last inequality follows by restricting the possible set of W, such that W and Z are
conditionally independent given (X1, X2, . . . , XM),

I(Z; W|X1, X2, . . . , XM) = 0. (A25)

From the statement of the lemma, we have Z− X1 − (X2, . . . , XM),

I(Z; X2, . . . , XM|X1) = 0. (A26)

By adding (A25) and (A26), we get I(Z; W, X2, . . . , XM|X1) = 0. This implies that we have
I(Z; X2, . . . , XM|X1, W) = 0, which appears in the constraint of (A23). For the other part of
the inequality we proceed as follows:

Cγ(X1, Z; X2; . . . ; XM) (A27)

= inf
W:H(X1|W)+H(X2|W)+···+H(XM |W)−H(X1,X2,...,XM |W)

+I(Z;X2,...,XM |X1,W)≤γ

I(W; X1, X2, . . . , XM) + I(W; Z|X1, X2, . . . , XM)
(A28)

≥ Cγ(X1; X2; . . . ; XM), (A29)

where the last part follows by relaxing the constraint set as I(Z; X2, . . . , XM|X1, W) ≥ 0
and, by further bounding the terms in the objective, I(W; Z|X1, X2, . . . , XM) ≥ 0.

Item 4 is a standard cardinality bound, following from a similar argument in [32].
Item 5 follows because all involved mutual information terms are invariant to one-to-one
transforms. For item 6, we apply the definition of relaxed Wyner’s common information
for M variables, and we have

Cγ(X; X; . . . ; X) = inf
W:(M−1)H(X|W)≤γ

I(X; W) (A30)

= H(X)− sup
W:(M−1)H(X|W)≤γ

H(X|W) (A31)

= H(X)− γ

M− 1
. (A32)

Appendix D. Proof of Lemma 4

An upper bound to the problem is to pick W = (U, V), thus

C(U; V; U ⊕V) ≤ H(U, V, U ⊕V) = 2. (A33)

Another equivalent way of writing the problem is by splitting the constraint into two
constraints, as we already know that the constraint cannot be smaller than zero, so it has to
be exactly zero, and it can be written in the following way:

C(U; V; U ⊕V) = inf
W:I(U⊕V;U,V|W)=0

I(U;V|W)=0

I(W; U, V, U ⊕V). (A34)

By using weak duality for λ ≥ 0, a lower bound to the problem would be the following

C(U; V; U ⊕V) ≥ inf
W:U−W−V

I(W; U, V, U ⊕V) + λ[H(U, V|W) + H(U ⊕V|W)

− H(U, V, U ⊕V|W)]. (A35)

By further using the constraint U −W −V, the above expression can be written as
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C(U; V; U ⊕V) ≥ inf
W:U−W−V

I(W; U, V, U ⊕V) + λ[H(U|W) + H(V|W) + H(U ⊕V|W)

− H(U, V, U ⊕V|W)] (A36)

= H(U, V, U ⊕V) + inf
W:U−W−V

λ[H(U|W) + H(V|W) + H(U ⊕V|W)]

− (1 + λ)H(U, V, U ⊕V|W) (A37)

≥ H(U, V, U ⊕V) + inf
Ũ,Ṽ

inf
W:Ũ−W−Ṽ

Ũ⊕Ṽ−(Ũ,Ṽ)−W

λ[H(Ũ|W) + H(Ṽ|W) + H(Ũ ⊕ Ṽ|W)]

− (1 + λ)H(Ũ, Ṽ, Ũ ⊕ Ṽ|W) (A38)

= 2 + inf
Ũ,Ṽ

inf
W:Ũ−W−Ṽ

Ũ⊕Ṽ−(Ũ,Ṽ)−W

λH(Ũ ⊕ Ṽ|W)− H(Ũ|W)− H(Ṽ|W)

︸ ︷︷ ︸
L[λH(Ũ⊕Ṽ)−H(Ũ)−H(Ṽ)]pŨ pṼ

(A39)

where (A38) is a consequence of allowing a minimization (if minimum exists) over binary
random variables Ũ, Ṽ and the rest of equalities is straightforward manipulation. The last
equation is in terms of the lower convex envelope with respect to the distribution pŨ pṼ .
The aim is to search for the tightest bound over λ by studying the lower convex envelope
with respect to pŨ pṼ , which, for binary Ũ, Ṽ, can be simplified into

L[λH(Ũ ⊕ Ṽ)− H(Ũ)− H(Ṽ)]pŨ pṼ
= L[λhb(αβ + (1− α)(1− β))− hb(α)− hb(β)]α,β (A40)

and the latter function is a lower convex envelope with respect to 0 ≤ α, β ≤ 1. Note that
(A40) is a continuous function of α, β, so a first order and a second order differentiation
will be enough to compute the lower convex envelope. As a result for λ ≥ 2, the lower
convex envelope of the right-hand side of (A40) is just zero, thus completing the proof.
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