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tions. In this regard, plasmonic biosen-
sors employing nanoparticles and localized 
surface plasmon resonances (LSPR) have 
been receiving significant attention 
over the years due to their advantages, 
including high sensitivity and label-free 
operation.[1] By detecting trace amounts 
of molecular compounds from minute 
samples, their use has been shown in 
various settings including for diagnos-
tics,[2,3] environmental monitoring,[4] food 
industry,[5] and consumer products.[6]  
Access to kinetic information at the mono
layer level has also been demonstrated 
with applications in bioanalytics and phar-
macology.[7,8] The vast majority of LSPR 
sensors rely on refractive index change 
detection, and despite their advantage of 
high sensitivity, the method is inherently 
nonspecific and unable to identify the 
nature of the matter causing the refrac-
tive index shift. In order to achieve speci-
ficity with selective binding of the targeted 
analytes, LSPR sensors require biofunc-
tionalization through surface chemistry. 
However, going beyond the detection of 
one or two target analytes is very chal-

lenging, especially for processes in which the net refractive 
index remains mostly unchanged due to simultaneously occur-
ring association, dissociation, and removal events, making it 
difficult to perform accurate measurements and decouple the 
contribution of the individual analytes from the overall signal.[9] 
This is where plasmonic biosensors tailored for optical spec-
troscopy bring unique advantages because nanoantenna sen-
sors can be tuned so that their resonances spectrally match 
molecular vibrations of analytes of interest, thereby making 
chemically specific detection possible.[10,11] While surface-
enhanced Raman spectroscopy allows the detection of single 
molecules due to its extremely tight near-field confinement on 
the surface (with a decay length of a few nanometers only),[12] 
surface-enhanced infrared absorption spectroscopy (SEIRAS) 
nanosensors have a biologically relevant sensing depth (sev-
eral tens of nanometers), which make it possible to monitor 
larger entities, such as lipid vesicles interacting with various 
other biomolecules.[13] These types of biological samples play a 
pivotal role in numerous physiological and biomedical studies, 
e.g., in the investigation of exosomes carrying proteins and 
nucleic acids used for intercellular communication or the  

Insights into the fascinating molecular world of biological processes are 
crucial for understanding diseases, developing diagnostics, and effective 
therapeutics. These processes are complex as they involve interactions 
between four major classes of biomolecules, i.e., proteins, nucleic acids, 
carbohydrates, and lipids, which makes it important to be able to discrimi-
nate between all these different biomolecular species. In this work, a deep 
learning-augmented, chemically-specific nanoplasmonic technique that 
enables such a feat in a label-free manner to not disrupt native processes 
is presented. The method uses a highly sensitive multiresonant plasmonic 
metasurface in a microfluidic device, which enhances infrared absorption 
across a broadband mid-IR spectrum and in water, despite its strongly over-
lapping absorption bands. The real-time format of the optofluidic method 
enables the collection of a vast amount of spectrotemporal data, which allows 
the construction of a deep neural network to discriminate accurately between 
all major classes of biomolecules. The capabilities of the new method are 
demonstrated by monitoring of a multistep bioassay containing sucrose- and 
nucleotides-loaded liposomes interacting with a small, lipid membrane-
perforating peptide. It is envisioned that the presented technology will impact 
the fields of biology, bioanalytics, and pharmacology from fundamental 
research and disease diagnostics to drug development.

The ability to detect and monitor biomolecules is essential 
to extend our understanding of biological processes of both 
physiological and pathological order. Biosensors enabling the 
analysis of biomolecules from a wide range of samples are 
indispensable tools for analytical and biochemical studies as 
well as for medical diagnostics, safety, and industrial applica-
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characterization of liposomes loaded with drugs such as siRNA 
to treat pathological conditions.[14,15] SEIRAS using engineered 
nanoantennas is the ideal candidate for such studies; however, 
this research field is still in its infancy and several challenges 
remain to be addressed before a more widespread use can 
emerge. So far, most of the SEIRAS sensors exhibit narrowband 
resonances, thereby strongly restricting the number of absorp-
tion bands and analytes that can be analyzed. Many of these 
sensors have been tuned for protein detection via their charac-
teristic Amide I and II absorption bands,[16–20] with some even 
operating in water and providing information about their 3D 
structures.[21–24] Given the importance of proteins in physiology 
and the challenge of their detection with IR spectroscopy due to 
the overlap between water and Amide absorption bands, such 
SEIRAS sensors represent an important milestone. The next 
challenge is to simultaneously detect different classes of bio-
molecules, which is complicated due to the broadband nature 
of IR spectroscopy. For instance, while the Amide I and II bands 
of proteins absorb around 6  µm, lipids absorb more strongly 
near 3 µm and nucleic acids and carbohydrates around 10 µm; 
this demands to have a wide spectral coverage over 7 µm. Mul-
tiresonant metasurfaces represent a promising approach to 
address this challenge by providing several resonances to target 
spectrally distant absorption bands.[25–29] At the same time, the 
increased wealth of collected absorption signals and their partial 
overlap requires the use of chemometrics to effectively discrimi-
nate between analytes spectroscopically.[30] Recently, multiple 
linear regression (MLR) was used to resolve protein–lipid inter-
actions in processes involving lipid vesicles with dual-resonant 
metasurfaces consisting of plasmonic nanorod antennas.[9] 
While this approach showed promises, further developments 
are needed for simultaneous monitoring of a large number of 
analytes from all four major biomolecular classes without erro-
neous signal attributions by the readout system.

In this work, we experimentally demonstrate that deep 
learning empowers broadband plasmonic metasurfaces for 
SEIRAS by enabling the study of a multianalyte bioparticle 
system in water and in real-time. The biosample consists of 
liposome nanoparticles loaded with both sucrose and nucleo-
tides, and upon their binding on the surface of the SEIRAS 
sensor integrated with microfluidics, we introduce melittin, a 
small cytolytic peptide, which perforates the lipid membranes 
of the liposomes. This interaction leads to the breakage of 
liposomes and dual cargo release as well as the formation of 
supported lipid bilayer (SLB) patches on the sensor. With our 
optofluidic biosensor we can resolve in real-time these inter-
action events between all four major classes of biomolecules 
without using any external labels. This feat is achieved by engi-
neering a highly sensitive multiresonant metasurface providing 
large signal enhancements across a broad mid-IR spectrum 
ranging from below 1000 to above 3000 cm−1 to cover all the 
major absorption bands of biomolecules. Significantly, the sig-
nals from the broadband metasurface is extracted with a deep 
neural network (DNN) for effective and reliable discrimina-
tion between all the simultaneously present biomolecules. By 
introducing for the first time a deep learning approach to real-
time in situ SEIRAS measurements with nanoantennas, we 
expand the capabilities to new horizons where experiment com-
plexity and training data wealth go hand in hand. Augmenting 

SEIRAS with deep learning unleashes a vast potential to tap 
into and provides a powerful tool for unraveling open questions 
in biology, such the role of exosomes in health and disease.

To perform in situ SEIRAS, we nanofabricate gold antenna 
arrays on a transparent calcium difluoride substrate (Figure 1a) 
and integrate the plasmonic chip in a polydimethylsiloxane 
(PDMS) microfluidic device so that the incident light comes 
from the backside of the chip and reflects back to the objective 
above (Figure  1b). In this way, less IR light gets lost due to 
absorption by water and the analytes flowing through the 
microfluidic device can be sensed via the evanescent electric 
fields emanating from the resonant nanoantennas (Figure 1c). 
The nanoantennas are tuned so as to provide three resonances 
(Figure 1d, black and gray curves) which overlap with the mole-
cular vibrations of all the major biological building blocks, i.e., 
polypeptides, nucleic acids/nucleotides, lipids, and polysaccha-
rides (Figure  1d, colored curves). In the experimentally meas-
ured reflectance (Figure  1d, dotted gray curve), in addition to 
the three resonance peaks of the nanoantennas, we observe two 
large reflectance dips caused by the absorption due to water 
molecule vibrations around 1650 and 3500 cm−1. The numerical 
simulation (Figure 1d, solid black curve) does not feature these 
water absorption-caused modulations, as the imaginary part 
of water was not taken into account (kwater   =   0) to visualize 
better the antenna resonances. The low-frequency antenna res-
onance around 1200 cm−1 is suitable to sense the strong asym-
metric phosphate group stretching vibrations from nucleic 
acids (≈1230 cm−1) as well the characteristic stretching motion 
of the CO bond within the glycosidic linkage of carbohydrates 
(≈1142 cm−1),[31,32] while the other two resonances around 1600 
and 2900 cm−1 are tuned to sense the Amide I-II vibrations of 
proteins (≈1650, ≈1550   cm−1) and methylene stretching vibra-
tions of lipids (≈2850, ≈2920 cm−1), respectively.[9]

Our nanoplasmonic metasurface is a multiresonant grating 
order-coupled nanogap (MR-GONG) design based on the 
recently introduced grating order-coupled nanogap (GONG) 
antenna arrays.[23] It combines a single resonant array  
(SR-GONG) with a novel dual resonant array (DR-GONG). Each 
biochip (Figure 1a) contains pairs of 250 × 250 µm2 SR- and  
DR-GONG arrays separated by 100  µm2, which as a whole 
define a MR-GONG metasurface sensor (Figure   2a). In 
order to spectrally target four different major classes at the 
same time, we design the three resonances of the metasur-
face to be at 1200, 1600, and 2900 cm−1 by tuning the geo-
metrical parameters of the two types of arrays as seen in 
Figure 2b.

The experimentally measured reflectance spectra from SR-, 
DR-, and MR-GONG in water match well with the numerical 
simulations (Figure 2c). Here, the imaginary part of the refrac-
tive index for water has been used in the simulation to take 
into account absorption by water. The positions of the grating 
orders were tuned by the y-periodicities of the arrays to boost 
the electric near field enhancements around the 1200, 1600, 
and 2900  cm−1 resonances (Figure  2d). The maximum near-
field intensity enhancement in water surpasses 50 000 for the 
lower frequency resonance and scales with the third power of 
the wavelength for the two higher frequency resonances, in 
accordance with classical antenna theory.[33] The grating order  
presence can be observed as small modulations in the 
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reflectance spectra at multiple locations, and the most promi-
nent ones are around 2000 and 3800 cm−1.

Next, we experimentally demonstrate the applicability 
of the metasurface with a dynamically interacting nano-
particle biosystem (Figure  1c), which features multiple dif-
ferent species, including melittin polypeptides and lipid 
vesicles loaded with nucleotides as well as sucrose polysac-
charides. Successfully resolving the interactions between 
all these analytes in water medium would open the door 
to studies with native vesicles, such as exosomes or bio-
medical liposomes loaded with drugs. To perform real-time 
in situ SEIRAS measurements, we continuously measure 
the reflectance spectrum R of the MR-GONG metasur-
face and compute the absorbance with respect to the  
initial baseline spectrum R0 as -103·log10(R/R0). The thereby 
obtained real-time absorbance spectra incorporate the IR 
signatures of the four analytes (Figure 3a). The grayscale 
color bar in Figure  3a represents discrete time points, and 
the complete spectrotemporal data can be seen in Figure 4d 
as a 3D plot. To identify the contributions of each analyte 
at different time points, we have initially tested the use of 
MLR to model the relationship between the overall real-time 

absorbance signal and the individual analyte absorbance 
signal contributions by least-squares fitting.

SEIRAS spectra typically appear on a skewed baseline 
(Figure 3a) as a consequence of spectral shifting of the antenna 
resonance wavelengths throughout the experiment, which is due 
to the effective refractive index change in the antenna vicinity as 
analytes are introduced. We take this effect into account in the 
preprocessing of the raw spectra where we subtract an asym-
metric least squares (ALS) fit to have the real-time absorbance 
signals centered around zero (Figure  3b). To implement MLR, 
the resulting spectra (Figure  3b) and the reference absorbance 
spectra of all the analytes present in the experiment (Figure 3c) 
are fed into the model to extract the regression coefficients for 
each analyte and time point (Figure 3d). Most of the substantial 
absorbance changes (Figure  3a,b) happen within the first hour 
after baseline, i.e., between 30 and 90 min (Figure 3d) and the 
rest of the experiment features only subtle spectral changes over 
a longer time window, i.e., from 100 to 320  min. As shown in 
Figure 3e, we start the assay with a plasmonic chip functional-
ized with biotinylated thiols to which biotinylated vesicle tethers 
are bound via an intercalated streptavidin layer, which corre-
sponds to the initial stable baseline in Figure 3d. Half an hour 
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Figure 1.  a) Top: Top-view picture of a representative plasmonic chip. Bottom: Side view schematic. b) Fluidic setup used for in situ micro-FTIR bio-
experiments in water. A plasmonic chip is integrated into a PDMS device clamped below the micro-FTIR objective. c) Artwork showcasing the flow 
over plasmonic antennas of polypeptides, nucleic acids, lipid vesicles, and polysaccharides. d) Plot displaying the metasurface’s numerically simu-
lated (black solid curve) as well as experimentally measured reflectance spectrum in water (gray dotted curve) together with the absorption spectra 
of five species from all the major classes of biomolecules (colored curves). In the simulation, the imaginary part of water was not taken into account  
(kwater  =  0) to visualize better the antenna resonances, which are highlighted with colored, shaded areas.
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after the start of the experiment, the lipid, sucrose, and nucleo-
tide signals start to rise, as can be seen in the tricolor shaded 
area of Figure  3d. This corresponds to the injection and cap-
turing of liposomes filled and surrounded with nucleotides and 
sucrose, as is depicted in Figure 3e. Interestingly, this injection 
also induces a negative melittin curve, although the peptide is 
only introduced later in the experiment; we will discuss this 
point later in the text. The liposome capture is followed by the 
rinsing of the surface with the buffer solution (white shaded 
areas in Figure 3d), leading to the stabilization of the signals at 
t   =  100 min. Specifically, the lipid signal reaches a stable max-
imum, while the sucrose and nucleotide signals peak before 
stabilizing above zero. This can be understood with the help of 
Figure 3e schematics, i.e., the loaded liposomes are captured by 
the surface-displayed tethers, while the extravesicular nucleotide 
and sucrose molecules gradually rinse off with the flowing buffer. 
The remaining nucleotide and sucrose signals correspond to the 
molecules trapped as liposome cargo on the antenna surfaces.

An hour after all the signals have stabilized, we perform the 
first injection of 3 × 10−6 m cytolytic polypeptide melittin, which 
results in a slight increase of the melittin curve while the curves 
of the other analytes remain largely unaffected. It appears that 
at this concentration melittin binds without forming pores in 
the membranes[34] composed of 40  mol% 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), 20  mol% 1,2-dioleoyl- 

sn-glycero-3-phosphoethanolamine (DOPE), 20  mol%  
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), and 
20 mol% cholesterol. For the second injection at t  =  220 min, we 
increase the melittin concentration to 6 × 10−6 m. At this higher 
concentration the peptides should breach the lipid membranes 
and thereby lead to the release of nucleotides and sucrose.[35] 
However, this is not observed in the MLR sensorgrams, which 
points toward the limitations of the analysis. Another artefact of 
the MLR analysis is that before the peptide is even introduced  
on the sensor, the melittin curve becomes negative after  
the nanoparticle injection and remains below zero throughout the 
experiment. We believe that this artefact is mostly caused by the  
displaced water molecules from the binding of the nanoparti-
cles on the sensors’ surface and the overlapping water absorp-
tion band with the Amide  I band of polypeptides. In addition 
to the water interference, another complication for the MLR 
analysis arises from erroneous absorption signals caused by 
the grating order positions shifting with the change in the 
effective refractive index within the vicinity of the antennas 
throughout the experiment. This effect can be clearly visualized 
in Figure 3c, where we detect signal that resembles absorption 
bands in a spectral window (2000–2200  cm−1), which should 
normally be transparent. In fact, the origin of this signal can 
be traced back to the grating orders in that range because their 
corresponding peaks are observable in the resonance spectrum 
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Figure 2.  a) Infrared reflectance microscopy image in dry conditions obtained using quantum cascade laser light at 6 µm wavelength. Two 250 × 250 µm2 arrays 
can be seen with red and blue squares identifying DR- and SR-GONG arrays, respectively. Together, the two arrays form the MR-GONG metasurface indicated 
with the purple rectangle. b) Scanning electron microscopy (SEM) images of: i) a DR-GONG array with periodicities Px,DR  =  2.4 µm and Py,DR  =  2.9 µm, and 
ii) antenna lengths  L1  =  2.32 µm and L3  =  0.72 µm as well as interantenna gap size G  =  80 nm, iii) an SR-GONG array with periodicities Px,SR  =  1.58 µm, 
Py,SR  =  3.2 µm and antenna length L2  =  1.5 µm, and iv) an interantenna gap size G  =  80 nm. c) Micro-FTIR measured SR- and DR-GONG arrays in water 
as well as the combined MR-GONG metasurface reflectance, incl. numerically simulated spectrum. The arrows indicate the spectral positions at which we 
show d) numerically simulated electric field enhancements around the three resonances in water.
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of the metasurface (Figures  1d and  2c). Overall, even though 
the spectral signatures extracted by MLR give some insights 
into the molecular events happening on the metasurface, it is 
evident that MLR is not performing accurately. In fact in com-
parison to our earlier work with fewer numbers of analytes (i.e., 
three excluding the water medium),[9] we encounter that MLR 
is rather simplistic to fully resolve the signals over a broader 
spectrum when there are more analytes present in the sample 
simultaneously.

To address these shortcomings, we develop a DNN to dis-
criminate between different molecular components effectively. 
In general, deep learning models require a large set of input 

data to work accurately;[36–38] this is in stark contrast to the MLR 
approach, which only needed one spectrum per analyte for the 
input references. These single spectra references (Figure  3c) 
were extracted from additional real-time measurements fea-
turing only one analyte at a time. These measurements can 
be seen in Figure  4a, where we performed three real-time in 
situ experiments, i.e., one with melittin, one with nucleotides 
as well as sucrose, and one with empty lipid vesicles. In the 
first experiment, we flow melittin onto the bare sensing surface 
while continuously measuring the spectra to obtain a 3D plot 
of absorbance for each spectral and temporal point. Next, we 
extract a single spectrum around the time of maximum signal, 

Figure 3.  a) Real-time absorbance spectra calculated as −103 log10(R/R0) with R the reflectance spectrum of the MR-GONG metasurface and R0 the 
baseline reflectance. The asymmetric least squares (ALS) fit for the ultimate spectrum is also shown. The grayscale bar represents discrete time points. 
b) Absorbance spectra after subtracting the ALS fit for each spectrum. c) Reference absorption spectra for the four bioanalytes used to apply multiple 
linear regression (MLR) to obtain d) the  regression curves of the dynamic experiment involving lipid vesicles, sucrose, nucleotides, and melittin. 
e) Schematic depiction of the experiment.
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which we then use as a reference spectrum to get regression 
coefficients (Figure  4b). For the nucleotides and sucrose, we 
flow the molecules sequentially onto the sensor in a single 
experiment, as it is visible that these completely rinse off the 
functionalized surface (Figure  4b). Given the real-time format 
of these measurements, more spectral data are available than 

the one that is used for the MLR analysis. We utilize all these 
spectra (Figure  4a) as well as their associated regression coef-
ficients (Figure  4b) as input to build the DNN. Beyond the 
data shown in Figure  4a,b, we record a total input data set of 
more than three million spectrotemporal data points, from 
measurements featuring up to three analytes simultaneously 

a

b

c

d e

Injection of vesicles
with cargo molecules

Injection of melittin Rinse with buffer

Melittin
Lipids
Sucrose
Nucleotides

0

0.
2

0.
4

0.
6

0.
8

50 100
Time (min)

R
eg

re
ss

io
n 

si
gn

al
 (

a.
 u

.)

150 200 250 300

Melittin

0.
2

0.
4

0.
6

0.
8

R
eg

re
ss

io
n 

si
gn

al
 (

a.
 u

.)

0 40
Time (min)

80 120 160

SucroseNucleotides Lipids

0.
2

0.
4

0.
6

0.
8

111

R
eg

re
ss

io
n 

si
gn

al
 (

a.
 u

.)

500 100 150
Time (min)

200 250 300 350

1000
2000

3000

1000
2000

3000
Wavenumber (cm-1)

1000
2000

3000

Wavenumber (cm-1)

Wavenumber (cm-1)

Wavenumber (cm-1)

-10

0 0

140
275

10 4

-4

40
90

75

175 250
350

150
50

A
bs

or
ba

nc
e 

(m
O

D
)

A
bs

or
ba

nc
e 

(m
O

D
)

-4

0

4

( ecnabrosb
A

D
O

m
)

Nucleotides

Output weights

Sucrose

Lipids

Melittin

Training / testing data

1089 input nodes
2 hidden layers
20 nodes each

Experiment data

1000
2000

3000

0

5

-5

60
160

260

Tim
e (m

in)

Tim
e (

min)

Tim
e (m

in)

Tim
e (m

in)

A
bs

or
ba

nc
e 

(m
O

D
)

Time (min)

D
N

N
 o

ut
pu

t w
ei

gh
ts

 (
a.

 u
.)

0

0.5

50 100 150 200 250 300

1

1

3
2

Figure 4.  a) From several real-time measurements featuring melittin, nucleotides, sucrose, and lipids, the real-time 3D plots of absorbance signal 
versus time and wavenumber are extracted, b) as well as the associated regression curves obtained by MLR. c) The absorbance plots together with the 
associated regression coefficients shown in (a,b) are then used to fit the deep neural network. d) The spectrotemporal data points of the dual cargo 
release experiment were subsequently fed into the trained network to e) predict the scaled DNN output weight curves for each analyte.

Adv. Mater. 2021, 33, 2006054

 15214095, 2021, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202006054 by B
ibliothèque D

e L
'E

pfl-, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advmat.dewww.advancedsciencenews.com

2006054  (7 of 8) © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

(Figure S1a,b, Supporting Information), which we use to fit our 
DNN. The DNN input layer has 1089 nodes to match the wave-
number points of our spectra that spans from 960 to 3060 cm−1 
with a 4 cm−1 resolution, and the output layer has four nodes to 
match the number of analytes (Figure  4c). After training/vali-
dating the DNN, we input the data of the experiment with the 
four analytes (Figure 4d) to predict the output weights for each 
analyte and time point (Figure 4e).

In Figure  4e, we observe the increase of lipid, sucrose, 
and nucleotide signals after half an hour of baseline as the 
liposomes and cargo/extravesicular molecules are injected 
onto the metasurface. At the end of the injection, the lipid 
signal stabilizes as the liposomes are captured on the surface, 
while the sucrose and nucleotide molecule signals initially 
drop as the buffer rinses the molecules off and then stabilize at  
t  =  100 min, corresponding to the signal from the trapped cargo  
molecules only. In contrast with Figure  3d, the melittin signal 
barely features erroneous negative values and remains stable 
around zero before we introduce it onto the surface. Further-
more, as compared to Figure 3d, we can see a clear drop in the 
cargo molecule signals with the second melittin injection, evi-
dencing the content release from the breached liposome mem-
branes. As could already be seen previously in Figure  3d, this 
second melittin injection also leads to a pronounced increase in 
the lipid curve, which can be understood as the opening of some 
of the liposomes to form patches of SLBs in closer proximity to 
the sensing surfaces and thus giving stronger signals (Figure S3, 
Supporting Information). This effectively demonstrates the suit-
ability of SEIRAS for sensing small molecules simultaneously 
with larger structures, such as lipid assemblies, as the antennas’ 
evanescent fields can probe tens of nanometers away from the 
surface, thereby giving additional information regarding the 
analyte distribution along the surface normal. It is also important 
to highlight that the DNN approach helped to effectively reduce 
the interfering effects of grating orders and water displacement. 
These results show that the information extracted by the DNN 
yields superior performance in comparison to using only MLR.

In conclusion, we have introduced a deep learning-aug-
mented infrared nanoplasmonic metasurface, which is broadly 
applicable to the study of biomolecular interactions. In addition 
to the high sensitivity, label-free, and chemical specificity char-
acteristics of the spectroscopic biosensor, we also demonstrated 
its versatility and universality by simultaneously monitoring 
major biomolecule classes in water. Significantly, we could 
observe in real-time vesicle capture, perforation with dual cargo 
release, and partial transition to planar lipid bilayers. The bio-
sensor offers numerous application prospects, including char-
acterization of liposomal drugs,[39,40] antimicrobial peptides,[41,42] 
and exosomes.[43,44] Besides biomolecular interactions involving 
lipid membranes, bioanalytical studies for the characterization 
of protein-DNA interactions in gene regulation,[45] or protein–
polysaccharide interactions in neurodegenerative diseases[46,47] 
could also be investigated. The complexity of the tackled bio-
analytical studies go hand in hand with the wealth of avail-
able DNN training data, which is both a blessing and a curse, 
as extensive data collection can be tedious but also brings the 
prospect of eventually unraveling the biomolecular events.[48] 
Looking forward to future developments, one can envision the 
adaption of the technology to become compatible with mass-

production methods[19,49–52] and miniaturization efforts[53–56] 
for convenient diagnostics and therapeutics. This will probably 
require a move away from Au as the resonator material, and 
a Fourier-transform infrared (FTIR) spectroscope as the meas-
urement instrument, because the former is not complemen-
tary metal–oxide–semiconductor (CMOS)-compatible and the 
latter is bulky and expensive. Among the alternatives to Au as 
the resonator material, CMOS-compatible materials such as Al 
and Si have shown promising results for SEIRAS via plasmonic 
and dielectric resonances, respectively.[54,57] As for overcoming 
FTIR-related limitations, cutting edge measurement tools 
based on quantum cascade lasers and imaging-based microar-
rays offer the prospect of biosensor miniaturization.[54,58,59]

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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