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Abstract

The main bottleneck in using optimization in industry is the way uncertainty is handled,
which forms the subject of this series of two papers. The first part dealt with the characteriza-
tion of the nominal solution and proposed an approach to separate the constraint-seeking and
the compromise-seeking components of the inputs. This second part reviews various strategies
for optimization under uncertainty, namely the robust and measurement-based optimization
schemes. A novel scheme, labeled invariant-based optimization, is proposed, where optimal-
ity is achieved by tracking references that remain invariant under uncertainty. The different
approaches are compared via the simulation of a bioreactor for penicillin production.

Keywords: Batch processes, Dynamic optimization, Robust optimization, Run-to-run optimiza-
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1 Introduction

Optimization of batch processes has received attention recently because, in the face of growing
competition, it represents a natural choice for reducing production costs, improving product quality,
meeting safety requirements and environmental regulations. In the companion paper [51] of this
two-part series, the analysis and numerical computation of the optimal solution was discussed
based of a nominal process model, i.e., without considering the uncertainty resulting from model
mismatch and disturbances.

In practical situations, however, an exact model can rarely be found with affordable effort [8].
In many cases, the stoichiometry and kinetics of reaction systems are insufficiently characterized,
thereby leading to reaction lumping and to macroscopic modeling using time-varying parameters.
Furthermore, since the model parameters are usually estimated from laboratory-scale experiments,
they might vary in commercial-scale reactors due to differences in mixing characteristics, heat and
mass transfer, and unmodeled dynamics that get magnified in large-scale reactors. In addition,
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there could be uncertainty in loading conditions, especially when reactants are added as solids and
mixed with the solvent after charging. This can lead to batch-to-batch variations in product quality
and poor reproducibility. In the presence of uncertainty, the classical open-loop implementation of
off-line calculated optimal inputs may not lead to optimal performance [13, 41, 50]. Moreover,
constraint satisfaction, which becomes important in the presence of safety constraints, may not be
guaranteed unless a conservative strategy is adopted [25, 55].

Two different types of optimization are generally available for handling uncertainty. The essential
difference relates to whether or not measurements are utilized in the calculation of the optimal
strategy. A robust optimization approach is typically used in the absence of measurements. When
measurements are available, a measurement-based optimization approach can help adapt to process
changes and disturbances. This classification is somewhat analogous to robust control and adaptive
control for regulation problems.

In this paper, the available robust and measurement-based optimization strategies will be briefly
reviewed. A novel optimization approach for batch processes will then be proposed, where opti-
mality is achieved by using feedback along with an appropriate choice of reference signals, thereby
avoiding the need for on-line numerical optimization. These reference signals are chosen such that
they ensure optimality and, furthermore, are invariant under uncertainty.

The paper is written in a tutorial style. Section 2 reviews various optimization schemes that can
handle uncertainty. The robust optimization framework is developed in Section 3, while Section
4 presents various measurement-based optimization schemes. The invariant-based optimization
framework is developed in Section 5. A bioreactor example is provided in Section 6 to illustrate
theoretical developments, and conclusions are drawn in Section 7.

2 Overview of Batch Process Optimization

Batch optimization problems typically involve both dynamic and static constraints and fall under
the class of dynamic optimization problems. Possible scenarios in dynamic optimization are depicted
in Figure 1. The first level of classification depends on whether or not uncertainty (e.g., variations in
initial conditions, unknown model parameters, or process disturbances) is considered. The standard
approach is to discard uncertainty, leading to a nominal solution that may not even be feasible, let
alone optimal, in the presence of uncertainty.

The second level concerns the type of information that can be used to combat uncertainty. If
measurements are not available, a conservative stand is required. In contrast, conservatism can be
reduced with the use of measurements. In the next level, the classification is based on whether or
not a model is used to guide the optimization. The different scenarios are discussed in detail next.

In addition, since batch processes are typically repeated over time, the optimization problem can
also be formulated in terms of finding an improvement in cost over several batches. The goal of
batch-to-batch (or run-to-run) optimization is then to iteratively find the optimal operating condi-
tions in the presence of uncertainty, while performing only a few sub-optimal runs and preferably
no unacceptable ones [20, 59, 21].
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Figure 1: Dynamic optimization scenarios

2.1 Nominal Optimization

In nominal optimization, the uncertainty is simply discarded. The optimization objective typically
corresponds to achieving a desired product quality at the most economical cost, or maximizing the
product yield for a given batch time, i.e., the objective involves only specifications at the end of
the batch. The terminal-cost optimization can be stated mathematically as follows (see Part I [51]
for more information):

min
u(t)

J = φ(x(tf )) (1)

s.t. ẋ = F (x, u), x(0) = x0 (2)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (3)

where J is the scalar performance index to be minimized, x the n-vector of states with known
initial conditions x0, u the m-vector of inputs, F is a vector field describing the dynamics of the
system, S the ζ-vector of path constraints (which include state constraints and input bounds), T
the τ -vector of terminal constraints, φ a smooth scalar function representing the terminal cost, and
tf the final time. Without loss of generality, it will be assumed that the final time tf is fixed.

Application of Pontryagin’s Maximum Principle (PMP) to (1)–(3) results in the following Hamil-
tonian and adjoint equations [11]:

H = λTF (x, u) + µTS(x, u) (4)

λ̇T = −∂H

∂x
, λT (tf ) =

∂φ

∂x

∣∣∣∣
tf

+ νT
(

∂T

∂x

)∣∣∣∣
tf

(5)

where λ(t) �= 0 is the n-dimensional vector of adjoint states (Lagrange multipliers for the system
equations), µ(t) ≥ 0 the ζ-dimensional vector of Lagrange multipliers for the path constraints, and
ν ≥ 0 the τ -dimensional vector of Lagrange multipliers for the terminal constraints. The first-order
necessary conditions for optimality are:

∂H

∂u
= λT ∂F

∂u
+ µT ∂S

∂u
= 0 (6)

µTS = 0, νTT = 0 (7)
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The solution of this nominal optimization problem, where uncertainty is ignored, is discussed in
detail in the companion paper [51].

2.2 Optimization under Uncertainty

While the solution of the nominal optimization problem is important to elucidate the basic features
of the implementation strategy (e.g. shape of the solution, number and types of arcs), it is necessary
to modify this open-loop solution to account for uncertainty. The approaches used for handling
uncertainty essentially differ in the type of process information available to compensate the effect
of uncertainty.

• Robust optimization: In the absence of measurements, an open-loop off-line solution is sought
that takes the uncertainty into account explicitly [53]. The uncertainty is dealt with by con-
sidering several possible values for the uncertain parameters. The optimization is performed
by either considering the worst-case scenario or in an ‘expected sense’. The input trajec-
tories are then computed off-line once and utilized for all batches. However, this typically
requires solving an optimization problem of dimension larger than without uncertainty [46].
The resulting solution is conservative but corresponds to the best possibility in the absence
of measurements.

• Measurement-based optimization: Measurements are used to cope with uncertainty by adjust-
ing the input profiles to account for both parametric uncertainty and disturbances. If off-line
measurements are available, a run-to-run optimization approach can be used to account for
parametric uncertainty. Process knowledge obtained from previous batches is used to update
the operating strategy of the current batch. However, this approach does not account for the
effect of process disturbances within the batch. When information is available in the course
of the batch, an on-line optimization approach can be used. This approach, which seeks
to optimize every batch run amidst uncertainty, is much less conservative than the robust
optimization scheme and leads to a better cost.

The robust optimization approach is described in the next section and measurement-based opti-
mization in Section 4.

3 Robust Optimization

3.1 Problem formulation

The nominal optimization problem described in (1)–(3) and solved in the companion paper [51]
assumes the availability of a single (nominal) model that describes the process with sufficient
accuracy. However, the model may carry a significant amount of uncertainty expressed in the
form of uncertain model parameters, θ, and unknown disturbances, d(t). Model parameters can
be uncertain due to lack of knowledge or due to parameter variations resulting, for example, from
reaction lumping. Disturbances such as changes in the quality of the utilities, variations or failure
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in the dosing system also affect the process evolution. In general, disturbances can exhibit fast
variations as opposed to parametric uncertainty which is time-invariant or slowly time-varying.

In the uncertain scenario, the terminal-cost optimization can be formulated as follows:

min
u(t)

J = φ(x(tf ), θ) (8)

s.t. ẋ = F (x, θ, u) + d(t), x(0) = x0 (9)
S(x, θ, u) ≤ 0, T (x(tf ), θ) ≤ 0 (10)

where θ is the vector of uncertain parameters, and d(t) the unknown disturbance vector. In addition,
the initial conditions x0 could also be uncertain, mainly due to variations in reactant quality.

Robust optimization involves finding the optimal operating profile, where the cost function and the
constraints are constructed by taking into account the modeling uncertainties explicitly [53]. The
first task consists of characterizing the uncertainty, which can often be obtained from the parameter
identification step. Depending upon the measurement error structure, (random noise or bounded
error), the parametric uncertainty is either probabilistic or of the set membership type. When the
parametric uncertainty is probabilistic, θ ∈ Θ with the associated probability density function p(θ).
With the set membership type of uncertainty, the only information available is θ ∈ Θ. In the latter
case, Θ is essentially bounded, whereas this need not be the case in the former. In either case, the
unknown constant or possibly time-varying parameters are described as random variables.

Similarly, the disturbance d(t) ∈ D is also either random noise with the associated probability
density function p(d) or simply bounded in the set D. The main feature that distinguishes d(t)
from θ is the variation of the disturbance with time. Despite this fact, the ideas and tools used
for handling parametric uncertainty can be easily extended to treat the presence of disturbances.
Thus, for the sake of simplicity, parametric uncertainty will be considered below, and only brief
comments will be added regarding the disturbance case.

Robust optimization has also been studied in the context of process design under uncertainty
where the goal is to find design parameters which minimize an objective function [24, 40]. The
techniques used therein are quite similar and references to the process design literature will be
provided wherever appropriate.

3.2 Computation of the Probability Density Function for the States

Since the parameters and disturbances are random variables, the states are also random variables.
Thus, to be able to calculate the cost function and the constraints, the probability density function
of the state variables is necessary. Due to this additional calculation, the robust optimization
problem is typically more involved than the solution of a similar problem with known parameters.
The probability density function of x(t) can be computed using one of the two approaches described
below:

• Discretization: The probability density function p(θ) is discretized in the form of a numerical
grid. Let D be the number of discretization points, and θj , j = {1, 2, · · · , D}, the discrete
values of θ with relative weighting wj ,

∑
j w

j = 1. The grid for θ can be chosen either
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randomly (Monte-Carlo sampling) or through a systematic approach. The probability density
function of the states is then obtained in a discrete fashion, i.e., P [x = xj ] = wj , where xj is
obtained by simulating a copy of the system for the corresponding discretization point θj :

ẋj = F (xj , θj , u), xj(0) = x0, for j = {1, · · · , D} (11)

An augmented dynamic system of dimension nD needs to be integrated. However, such
problems are ideal candidates for parallelization since the individual model evaluations are
mutually decoupled [24]. In dealing with disturbances, the discretization should also be done
in the time direction, i.e., different disturbance values during different time intervals should
be considered. Such an approach is referred to as probability grid filtering [53].

• Propagation: If the probability density function of the states x(t) for all time instants t
can be assumed to follow (say) a gaussian distribution, the mean E(x) and the standard
deviation σ(x) give complete information, i.e., the probability density function is described
by p(x) = N (E(x), σ(x)), where N is the normal distribution function. In such a case, p(x)
can be obtained by propagating only the mean x̄ = E(x) and the standard deviation σ(x).
Also, it is assumed that the propagation of x̄ can be computed from the system with the
mean value of the parameter, θ̄ = E(θ), and the dynamics of σ(x) is determined from the
linearization of (2) around the mean value of the parameter:

˙̄x = F (x̄, θ̄, u), x̄(0) = x0 (12)

σ̇(x) =
∂F

∂x

∣∣∣∣
x̄, θ̄

σ(x) +
∂F

∂θ

∣∣∣∣
x̄, θ̄

σ(θ), σ(x(0)) = σ0 (13)

3.3 Expression for the Cost and the Constraints

Since the stochastic description of the states and model parameters cannot be used directly with the
available numerical techniques [51], the probability, the expected value, or the extremum value of
the random variable of interest (cost function and constraints) needs to be used in the formulation
of the optimization problem. The possible formulations for the cost function and constraints are
described below:

• Probability: Here, the probability of a random variable meeting a given set of specifications
is considered [54]. This is natural for the constraints where the probability of constraint
satisfaction should be greater than a specified confidence level c, P [S(x, θ, u) ≤ 0] ≥ c. Also,
in cases where the objective is to maximize the probability of the product meeting a given
set of specifications (or, equivalently, minimizing the risk of an undesired outcome of the
batch), the cost function can be a probabilistic measure, J = P [φ(x(tf ), θ) ≥ η], where η is
an appropriately chosen threshold value.

If the discretization approach is used, then the required probability is computed by picking
those realizations where φ(xj(tf ), θj) ≥ η:

P [φ(x(tf ), θ) ≥ η] =
D∑

j=1

Ijwj , where Ij =

{
1 if φ(xj(tf ), θj) ≥ η
0 if φ(xj(tf ), θj) < η

(14)

The discretization of θ can also be adapted as the optimization proceeds. For this, the
region in θ where φ(x(tf ), θ) ≥ η or S(x, θ, u) ≤ 0 is identified. More discretization points
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are provided in and around the feasible region to obtain a more accurate prediction of the
required probability [26].

If the propagation approach is used to evaluate the probability density function p(x), then
the required probability is obtained by integrating p(x(tf )) over the set where φ(x(tf ), θ) ≥ η.

P [φ(x(tf ), θ) ≥ η] =
∫

φ(x(tf ),θ)≥η

p(x(tf )) dx(tf ) (15)

• Expected value: For the cost function, it is more common to consider the expected value
of a random variable such as the expected product quality or quantity to be maximized,
or the expected amount of undesired products to be minimized, J = E [φ(x(tf ), θ)] [46].
Minimizing the variance of some target function h(x(tf ), θ) also falls under this framework
since by formulating φ(x(tf ), θ) = (h(x(tf ), θ)− E [h(x(tf ), θ)])

2, J becomes the variance of
h. Expectations can also enter the optimization problem at the constraint level, a typical

example being bounds on the variance of h(x, θ)), E
[(

h(x, θ)− E [h(x, θ)]
)2

]
≤ hmax.

The numerical evaluation of expectation-type functions is straightforward since they can be
obtained as the weighted sum of results computed with the various parameter realizations,
E [φ(x(tf ), θ)] =

∑D
j=1 φ(xj(tf ), θj)wj or as the weighted integration of the probability density

function, E [φ(x(tf ), θ)] =
∫
φ(x(tf ), θ) p(x(tf )) dx(tf ).

• Extremum value: When Θ is bounded, the cost and the constraints can be treated for the worst
(or, although rarely used, best) possible case. This is the only type of cost and constraints that
can be used in the face of set membership type of uncertainty. The optimization of the cost
becomes a min-max problem, minu(t) maxθ φ(x(tf ), θ), [3]. The constraints are reformulated
as maxθ S(x, θ, u) ≤ 0. Equivalent to the concept of variance, the difference maxθ φ(x(tf ), θ)−
minθ φ(x(tf ), θ) can also be used as the cost or in the constraints.

The calculation of extremum values is, in general, associated with the discretization approach.
Care should be taken to ensure that the extrema are adequately represented by the discretiza-
tion. While for nonlinear models the parameter values corresponding to an extremum can
theoretically be found anywhere in Θ, experience with batch process models shows that the
worst-case scenario is often found on the boundary of the set. Hence, in the case of interval
uncertainty, where Θ is a hypercube, the corners need to be included in the discretization.

The optimization problem (8)–(10) can be transformed into a numerical (crisp) form using proba-
bilities, expected values, or extremum values, for example as follows:

min
u(t)

J = E[φ(x(tf ), θ)] (16)

s.t. state probability density function computed from (11) or (12)–(13)

P [S(x, θ, u) ≤ 0] ≥ c, P
[
T (x(tf ), θ) ≤ 0

]
≥ c

where c is the confidence level for constraints satisfaction. For Problem (16), any of the optimization
methods described in [51] can be used. The choice of algorithm should be guided by criteria such
as the number of states, the nature and the number of constraints, and the number of discrete
parameter values.
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3.4 Concept of Backoff

Let θ̄ be the nominal value of the parameters and x̄ be the evolution of the states corresponding
to the parameters θ̄. In the absence of uncertainty, the active path constraints are those with
S(x̄, θ̄, u) = 0. However, in the presence of uncertainty, the condition P [S(x, θ, u) ≤ 0] = c de-
termines the active constraints. For the probability of constraint satisfaction to be equal to the
confidence level c, the nominal value S(x̄, θ̄, u) cannot be zero (i.e., right on the constraints), but
has to be pushed inside the feasible region or backed off. Let bS > 0 be the backoff required for con-
straint satisfaction in the presence of uncertainty, i.e., S(x̄, θ̄, u) + bS = 0⇒ P [S(x, θ, u) ≤ 0] = c.
The backoff bS is determined by the variance of S(x, θ, u) and, clearly, the larger the spread in
S(x, θ, u), the larger the necessary backoff [56]. Thus, with the concept of backoff, the optimization
problem (16) can be rewritten as:

min
u(t)

J = φ(x̄(tf ), θ̄) (17)

s.t. ˙̄x = F (x̄, θ̄, u), x̄(0) = x0 (18)
S(x̄, θ̄, u) + bS ≤ 0, T (x̄(tf ), θ̄) + bT ≤ 0 (19)

where x̄ is the nominal value of the states and bS > 0 and bT > 0 are the backoffs appropriately
chosen to account for uncertainty.

The concept of backoff close to that of the two stage stochastic programming approach [39] used
for optimal process design. If the backoffs were known, then the formulation (17)-(19) could be
solved to provide the robust optimal solution. However, the backoffs have to be consistent with the
distributions of S(x, θ, u) and T (x(tf ), θ) along the computed optimum solution. This calls for an
iterative procedure as described below:

1. Guess the initial backoffs b0S and b0T , k = 0.

2. Compute the optimal solution uk(t) of (17)-(19) using backoffs bkS and bkT .

3. Compute the probability density function of the states for the optimal solution using (11) or
(12)-(13) and thereby the distributions of S(xk, θ, uk) and T (xk(tf ), θ).

4. Choose the backoff bk+1
S such that S(x̄k, θ̄, uk) + bk+1

S = 0 ⇒ P
[
S(xk, θ, uk) ≤ 0

]
= c. Also,

choose bk+1
T accordingly.

5. Set k = k + 1 and repeat Steps 2-5 until convergence of bkS and bkT occurs or the maximum
number of iterations allowed is reached.

The main disadvantage of this iterative approach is the absence of guaranteed convergence. How-
ever, if the procedure converges, it might be computationally attractive since only the state prob-
ability density function corresponding to the optimal solution needs to be computed.

A comparison of (8)-(10) and (17)-(19) shows that the only difference is the introduction of the
backoffs bS and bT , which are clear indications of the amount of conservatism that is needed
to handle the uncertainty. Also, using the definition of Lagrange multipliers [51], the loss in
performance caused by the conservatism is given by

∫ tf
0 µT bS dt + νT bT . Thus, the larger the

backoff, the larger the loss in performance, thereby motivating the reduction of conservatism using
measurements.
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4 Measurement-based Optimization

The main disadvantage of robust optimization schemes is their conservative nature. The best
that can be done in the absence of measurements is to try to be ready for all possible scenarios.
However, in many batch processes, measurements are taken through: (i) on-line sensors such as
thermocouples, pH probes, spectroscopic sensors, and/or (ii) off-line analytical methods such as
HPLC and GC. These measurements can be used effectively to cope with uncertainty, thereby
leading to less conservative optimization strategies.

4.1 Problem Formulation

The optimization problem in the presence of uncertainty and measurements can be formulated as
follows:

min
uk
[tl,tf ]

Jk = φ(xk(tf ), θ) (20)

s.t. ẋk = F (xk, θ, uk) + dk, xk(0) = xk
0 (21)

yk = h(xk, θ) + vk (22)
S(xk, θ, u) ≤ 0, T (xk(tf ), θ) ≤ 0 (23)

given yj(i), i = {1, · · · , N} ∀ j = {1, · · · , k − 1}, (24)
and i = {1, · · · , l} for j = k.

where xk(t) is the state vector, uk(t) the input vector, dk(t) the process disturbance, vk(t) the
measurement noise, and Jk the cost function for the kth batch. Let y = h(x, θ), a p-dimensional
vector, be the combination of states that can be measured, yj(i) the ith measurement taken during
the jth batch, and N the number of measurements within a batch. The objective is to utilize the
measurements from the previous (k − 1) batches and the measurements up to the current time, tl,
of the kth batch in order to tackle the uncertainty in θ and dk and determine the optimal input
policy for the remaining time interval [tl, tf ] of the kth batch. If only off-line measurements are
available, N = 1 and tl = 0.

The formulation (20)–(24) is general in the sense that it does not address the question of how
the measurements will be used for adaptation of the decision variables. Depending on how the
measurements are utilized and whether or not a model is used, various schemes are possible as will
be described next.

At this juncture, two classifications are possible. One is based on the methodology, i.e., the role
of the model in the input calculation: (i) model-based repeated optimization, and (ii) model-free
implicit optimization (presented in Figure 1). The other classification depends on the type of mea-
surement available: (i) on-line measurements→ on-line optimization, and (ii) off-line measurements
→ run-to-run optimization. To use one classification or the other is a question of preference, and
here the classification based on the methodology is opted for. Then, for each methodology, the
case of on-line measurements will be discussed first, and a subsection will be devoted on how the
methodology can be modified to suit run-to-run optimization.
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4.2 Model-based Repeated Optimization

In the on-line version of model-based repeated optimization, the optimal inputs are calculated by
repeatedly solving (20)–(24) with the advent of every new measurement [47]. Measurements are
used to estimate the current states and parameters. With the information on the current states
serving as initial conditions, a model of the system is used to predict the evolution of the system
and update the inputs towards the optimum. The calculated inputs are implemented until the
next measurements are taken. As the estimation and optimization tasks are typically repeated
over time, this scheme is often referred to as repeated optimization [2, 47, 42, 18]. This procedure
is similar to model predictive control in the way the measurements are incorporated. One of the
main disadvantages of this approach is that, if the measurements are frequent, the solution can be
aggressive and often leads to switching between bounds resulting in a chattering solution [43].

In order to calculate the optimal inputs on-line, it is necessary to have a good estimate of the
states and parameters. Instead of reoptimizing at every measurement instant, the states and
parameters can be first estimated, and re-optimization can be undertaken only when the estimates
deviate significantly from their predicted values. A variety of stochastic methods such as Extended
Kalman Filtering [27, 48] and prediction error identification [33] as well as deterministic methods
such as nonlinear least squares [45, 47] have been proposed in the literature to estimate the system
states and parameters.

Though the problems of state and parameter estimation can be dealt with in a unified framework,
there is fundamental difference between the two problems. The state estimation problem, which
is linked to the disturbances d(t), requires the observability condition, i.e., one must be able to
reconstruct the states from the output and its derivatives. This condition is verified in most
applications. On the other hand, the parameter estimation problem (determination of θ) requires
persistency of excitation, i.e., the inputs should be varied sufficiently to uncover the unknown
parameters. This might be a problem as discussed next.

4.2.1 Type of Model

The model used to assist the optimization can either be fixed or refined using measurements, the
advantages and disadvantages of which are discussed next.

• Fixed model [35, 1]: If the model is not adjusted, it needs to be fairly accurate. This,
however, is against the philosophy of the approach that assumes the presence of (considerable)
uncertainty. If the uncertainty is only in the form of disturbances and not in the model
parameters, it might be sufficient to use a fixed model. On the other hand, if the model is not
accurate enough, the methodology will have difficulty converging to the optimal solution. Note
that, since the measurements are used to estimate the states only (and not the parameters),
there is no need for persistent inputs.

• Refined model [18, 47, 38]: When model refinement is used, the need to start with an accurate
model is alleviated, but it is necessary to excite appropriately the system for estimating the
uncertain parameters. However, the optimal inputs may not provide sufficient excitation.
On the other hand, if sufficiently exciting inputs are provided for parameter identification,
the resulting solution may not be optimal. This leads to a conflict between the objectives
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of parameter estimation and optimization. This conflict has been studied in the adaptive
control literature under the label dual control problem [44, 57].

4.2.2 Model-based Run-to-run Optimization

The run-to-run optimization is employed when only off-line measurements are available. Off-line
measurements include measurements taken at the end of the batch (batch-end measurements) and,
possibly, off-line analysis of samples taken during the batch. Such measurements are most common
in industrial practice [9].

Off-line measurements enable the set-up of a batch-to-batch or run-to-run optimization approach
that accounts for parametric uncertainty by exploiting the fact that batch processes are typically
repeated. Process knowledge obtained from previous batches is used to update the operating
strategy of the current batch. The objective is then to get to the optimum over a few batches.
With this approach, it is possible to account for parametric uncertainties and disturbances that are
repetitive in every batch. So, it is less conservative than the robust optimization scheme described
in Section 3. However, since off-line measurements cannot be used to improve the current batch
but only subsequent ones, random disturbances within the batch are not accounted for.

Two model-based run-to-run optimization schemes are discussed below, which vary fundamentally
on how the measurements are incorporated into the adaptation procedure.

• Measurements for model refinement [19, 21, 22]:
This approach uses a model of the process and refines it using information gathered from
previous batches. The measurements obtained from earlier batch runs are used to identify
the uncertain parameters. With the new set of parameters, the optimization problem is solved
at the beginning of each batch run. The optimal input profiles are implemented in open-loop
fashion as in the case of model predictive control.

• Measurements instead of simulation [59, 16, 12, 32]:
Any numerical optimization procedure involves: (i) the choice of initial inputs, (ii) the calcu-
lation of the system states, the performance index J , and the constraints S and T , and (iii)
the adaptation of the inputs towards the optimum (using for example gradient information).
The steps (ii) and (iii) are then repeated until convergence. The particularity of run-to-run
schemes is that the second step, which is usually calculated using a model, can be replaced by
measurements, i.e., J , S, and T can be measured from an experimental run. However, when
a gradient-based algorithm is used, a model is in general required to compute the gradient as
in (6). So an approach can be devised where the states are measured from an experimental
batch run, while the adjoints are obtained from a process model. The model parameters θ
can be either fixed or adapted from run to run, while the disturbances d(t) are ignored in the
computation of the adjoints.
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4.3 Model-free Implicit Optimization

One of the well-cited disadvantages of model-based schemes is the high computational burden in-
volved in the on-line calculation of the optimal policy, especially for large-dimensional systems [15].
Furthermore, model-based implementation can be quite aggressive in the presence of frequent noisy
measurements. Also, the disadvantages associated with a fixed model (possible poor prediction)
and refined model (lack of persistency of excitation) are quite important.

The reason for these difficulties can be understood from the following analogy. In feedback control,
the difference between the reference and measured signals is typically used to attenuate the effect of
uncertainty [37]. Adaptive control, which is often used to deal with demanding control tasks, uses
classical feedback control as the main building block and additional features for automatic tuning
of controller parameters [4, 31]. The model parameters are estimated using input-output data
(model refinement) and the controller parameters are updated accordingly. Instead of a standard
adaptive control scheme, imagine a scheme where: (i) there is no direct feedback, (ii) the model
is refined periodically, and (iii) the inputs are computed from the refined model. Such a scheme
would be, by all means, less efficient than standard adaptive control techniques and has not even
been reported in the control literature. Yet, the model-based approaches presented in the previous
subsection for optimization under uncertainty are analogous to an adaptive control scheme without
direct feedback and, thus, suffer from the aforementioned drawbacks.

Thus, an optimization approach where measurements are used directly to update the inputs towards
the optimum, i.e., without using a model and explicit numerical optimization, would be preferable.
Various possible options are discussed below.

4.3.1 Classification of Implicit Optimization Schemes

The classification here is based on whether measurements are used for interpolation between pre-
computed optimal values or simply compared to a reference.

• Interpolation [30, 49]: The optimal solution is worked out for different combinations of pa-
rameters and states as is done for the solution of the Hamilton-Jacobi-Bellman equation
(dynamic programming) [29]. Note that an additional complication arises since the solution
has to be discretized along the parameter values as well. The solution is then stored in some
form or the other, e.g. using a neural network or a look-up table. From past data and current
measurements, the point in the space of parameters and states that matches closely with the
behavior of the system is obtained, and the corresponding solution is implemented.

This is similar to the model-based approach, the main difference being that the estimation
problem (interpolation) and the optimization problem (reading from the look-up table) are
here implicit. The main drawback of this approach is the curse of dimensionality since it
either requires a computationally expensive look-up table or a closed-form feedback law that
is analytically expensive or impossible to obtain in many cases.

• Reference tracking [23, 55]: If the nominal model is available, it can be used to compute a
numerical optimal solution. Numerical optimization provides information not only on the
optimal evolution of the inputs u∗(t), but also on the states x∗(t). In the absence of distur-
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bances, open-loop application of the inputs u∗(t) or tracking of any of the states x∗(t) will
result in optimality.

However, in the presence of uncertainty, tracking some combinations of states can be better
than open-loop application of the inputs. Also, implementation of tracking feedback con-
trollers is numerically inexpensive and their tuning is quite simple.

The main bottleneck in incorporating reference tracking within the framework of optimization
is the choice of the reference signals. In control problems, the references are typically user
specified, whereas here the user provides the information via the formulation of the optimiza-
tion problem. If the reference is not properly chosen, its tracking would be either infeasible or
too conservative. Thus, it is important to track signals that are invariant under uncertainty.

Though there are many studies in the literature that use reference tracking, there is no
systematic study on how to chose the references so as to guarantee optimality in the presence
of uncertainty. As will be explained in the next section, this paper uses the concept of
invariants to choose references, the tracking of which implies optimality.

4.3.2 Model-free Run-to-run Optimization

In model-free run-to-run optimization, the idea of using the measurements instead of model pre-
diction is taken to the extreme. An experimental run is used to compute the cost J and the
constraints S and T [14]. In addition, if a gradient-based optimization algorithm is used to update
the decision variables, the gradient is also computed experimentally (as opposed to the model-based
gradient discussed in Section 4.2.2). Every decision variable is perturbed and an experimental run
is performed for each perturbation in order to obtain the gradient. Hence, for each optimization
iteration, as many batch runs as there are decision variables in the input parameterization are
necessary.

Such a procedure is termed evolutionary optimization in the literature [10]. Though the scheme
presents the advantage of being model-free, it is experimentally expensive. In addition, the opti-
mization algorithms that do not use gradient information converge slowly, thereby requiring even
more process runs. Yet, evolutionary optimization works well when it is known a priori that the
optimal solution is determined by path or terminal constraints. In such a case, the objective of the
optimization algorithm is to take the system to the constraints. Since the direction of update is
known, neither additional runs nor a process model are necessary to obtain the gradient [34, 52].

5 Invariant-based Optimization

In this section, an optimization scheme will be proposed where tracking feedback controllers form
the basic elements. The reference trajectories are chosen such that they are invariant under un-
certainty, i.e., they remain optimal despite uncertainty. If the structure of the optimal inputs is
known, measurements can be used to directly update a few input parameters. Thus, the optimal
inputs are determined directly from process measurements and not from a (possibly inaccurate)
model. Also, the fact that batches are typically repeated over time can be used advantageously,
thereby providing the possibility of on-line and/or batch-to-batch implementation.
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5.1 Signals Invariant under Uncertainty

The core problem in such a methodology is the choice of reference signals that are invariant under
uncertainty. Here, such a choice is based on the necessary conditions of optimality and constitutes
the novelty in the proposed methodology. Thus, the optimization problem is translated into the
satisfaction of selected constraints and the regulation of certain sensitivities around zero. Instead
of treating u(t) as a whole, the discontinuous optimal inputs are characterized in terms of specific
arcs and switching times. This characterization is discussed in detail in [51] and is summarized
below.

5.1.1 Characterization of the Optimal Solution

The dynamic optimization problem considered in (1)-(3) has two types of constraints: i) the path
constraints impose bounds on the inputs and the states during the batch, and ii) the terminal
constraints limit the outcome of the batch at final time. This gives rise to two corresponding types
of objectives: (i) the instantaneous objectives, and (ii) the terminal objectives. In studies available
in the literature, the importance of terminal objectives is almost always ignored. In contrast, the
proposed method treats instantaneous and terminal objectives on equal footing.

For the problem (1)-(3), the optimal solution can be shown to have the following properties [9]:

1. The inputs are in general discontinuous. The time at which an input switches from one
interval to another is called a switching time.

2. For each input, two types of arcs (constraint-seeking and compromise-seeking) are possible
between switching instants. In a constraint-seeking arc, the input is determined by a path
constraint, while in the other type of interval the input lies in the interior of the feasible
region.

3. The switching instants can also be constraint-seeking or compromise-seeking depending on
whether they are determined by terminal constraints or not.

A characterization of the optimal solution [51] can be performed that: i) treats the instantaneous
and terminal objectives independently, and ii) separates the constraint-seeking variables from the
compromise-seeking variables. Towards this end, the optimal inputs can be dissected into: i) the
various arcs, η(t), which cater to instantaneous objectives, and ii) the minimal parameterization π
that is necessary to handle terminal objectives. Also, the constraint-seeking variables η̄(t) and π̄
are separated from the compromise-seeking variables η̃(t) and π̃.

In the presence of uncertainty, certain directions in η(t) and π might change considerably while
others do not change. For example, consider an optimal input that switches between umax and umin

and an uncertainty that does not affect the sequence of arcs but only the switching time. Then,
the inputs in the various arcs η(t) do not change with uncertainty, while the switching time π does.
So, two transformations η(t)T → [ηf (t)T ηv(t)T ], πT → [πT

f πT
v ] can be found where ηf (t) and πf

represents the quantities (directions) that are fixed under uncertainty, while ηv(t) and πv are the
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quantities that change with uncertainty. Only ηv(t) and πv need to be adapted using measurements.
For the ease of notation, let ηv(t) = η(t) and πv = π.

In any case, what remains invariant under uncertainty is the fact that the necessary conditions of
optimality have to be verified. The invariants take on different expressions for constraint-seeking
and compromise-seeking arcs. In the following, it is assumed that the uncertainty is such that it
does not affect the type and sequence of arcs (active path constraints) nor the set of active terminal
constraints.

5.1.2 Invariants for Constraint-seeking and Compromise-seeking Input Directions

A set of signals Iη(t) = hη(x(t), u(t), t), referred to as invariants for the input directions, can be
chosen such that optimality is achieved by tracking Iηref = 0. Note the dependence of hη with
respect to t, which indicates that hη can be different in different intervals of the optimal solution.

Let S̄(x, u) denote the active constraints and µ̄ the corresponding Lagrange multipliers. Then,
the necessary conditions of optimality are, S̄ = 0 and ∂H

∂η = λT ∂F
∂η + µ̄T ∂S̄

∂η = 0. By definition,
the constraint-seeking input directions η̄(t) push the system towards the constraints, while the
compromise-seeking input directions η̃(t) do not affect the active constraints, i.e., ∂S̄

∂η̃ = 0. Thus,

the necessary conditions of optimality read, S̄ = 0, ∂H
∂η̃ = λT ∂F

∂η̃ = 0, and ∂H
∂η̄ = λT ∂F

∂η̄ + µ̄T ∂S̄
∂η̄ = 0.

The first two equations are independent of µ̄ and the third one determines the value of µ̄. Thus,
the advantage of separating the constraint-seeking and compromise-seeking input directions is that,
by guaranteeing S̄ = 0 and λT ∂F

∂η̃ = 0, optimality can be achieved without the knowledge of the
Lagrange multiplier µ̄.

The m input variables can be used to satisfy the m conditions S̄ = 0 and λT ∂F
∂η̃ = 0. Since the input

directions η̃(t) have no influence on S̄, it is logical to use the constraint-seeking directions η̄ to meet
S̄ = 0 and the compromise-seeking directions η̃ to satisfy λT ∂F

∂η̃ = 0. So, the invariants along the
constraint-seeking input directions are the active constraints themselves, hη̄(x, u, t) = S̄(x, u) and,
for compromise-seeking input directions, the invariants are hη̃(x, u, t) = λT ∂F (x,u)

∂η̃ . Note that the
element that remains invariant despite uncertainty is the fact that optimal operation corresponds
to Iηref = 0. However, the uncertainty does have an influence on the value of Iη(t), and the inputs
need to be adapted in order to guarantee Iηref = 0.

5.1.3 Invariants for Constraint-seeking and Compromise-seeking Parameters

In addition to the choice of invariants for the various arcs, it is important to choose the invariants for
the parameters π. Following similar arguments, a set of signals Iπ = hπ(x(tf )) can be constructed
such that the optimum corresponds to Iπref = 0, also in the presence of uncertainty. Clearly, the
invariants arise from the conditions of optimality of the parameterized problem, i.e., T̄ (x(tf )) = 0
and ∂φ

∂π + ν̄T ∂T̄
∂π = 0, where T̄ corresponds to the set of active terminal constraints. The reader is

referred to [51] for more details.

Following the same arguments as in the case of input directions, and noting that the compromise-
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seeking parameters are those with ∂T̄
∂π̃ = 0, the necessary conditions of optimality read: T̄ (x(tf )) =

0, ∂φ
∂π̃ = 0, and ∂φ

∂π̄ + ν̄T ∂T̄
∂π̄ = 0. So, for the constraint-seeking parameters, the invariants correspond

to the active terminal constraints hπ̄(x(tf )) = T̄ (x(tf )) and, for the compromise-seeking parameters,
to sensitivities hπ̃(x(tf )) = ∂φ(x(tf ))

∂π̃ .

5.1.4 Choice of References

In summary, the invariants are determined as follows:

• For constraint-seeking arcs: hη̄(x, u, t) = S̄(x, u)
• For compromise-seeking arcs: hη̃(x, u, t) = λT ∂F (x,u)

∂η̃

• For constraint-seeking parameters: hπ̄(x(tf )) = T̄ (x(tf ))

• For compromise-seeking parameters: hπ̃(x(tf )) = ∂φ(x(tf ))
∂π̃

If the inputs are in the interior of the feasible region, then, to a first-order approximation, the
deviation in cost is δJ = Huδu. Since by definition Hu = 0, any small deviation of u from the
optimal trajectory will cause a negligibly small loss in cost. On the other hand, the Lagrange
multipliers µ and ν capture the deviation in cost resulting from the path and terminal constraints
not being active. So, to a first-order approximation, δJ =

∫ tf
0 µT δS dt + νT δT . Thus, in general,

there is little to be gained/lost along the compromise-seeking variables, while it pays off to keep
the path and terminal constraints active. In short, optimality despite uncertainty is approached by
working close to the active constraints, i.e., where there is much to gain!

The core assumption in this approach is that the set of active constraints (both path and terminal)
does not change in the presence of uncertainty. This means that the type and sequence of arcs that
constitute the optimal solution, also in the presence of uncertainty, is known a priori. In fact, the
type and sequence of arcs and the set of active terminal constraints is the only information required
to set up the scheme.

5.2 Description of the Invariant-based Optimization Scheme

The proposed invariant-based optimization (IBO) scheme involves the following steps:

• Determination of the structure of the optimal solution: The structure of the optimal solution
is described by the type and sequence of arcs and the set of active terminal constraints. These
can be obtained in two ways: (i) educated guess by an experienced operator, or (ii) inspection
of the solution obtained from numerical optimization using a simplified model. Quite often,
experience dictates the qualitative shape of the inputs. Otherwise, a simplified (tendency)
model of the process can be used to compute a numerical solution in which the various arcs
are identified.

• Choice of invariant references for adaptation under uncertainty: In the presence of uncer-
tainty, the numerical values of the inputs in the various arcs and the switching times might
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change considerably. However, optimal operation corresponds to verifying the necessary con-
ditions of optimality, also in the presence of uncertainty. Under the assumption that the
type and sequence of arcs and the set of active terminal constraints remain unchanged, the
necessary conditions of optimality translate into satisfying the active constraints S̄ and T̄ and
regulating the sensitivities λT ∂F

∂η̃ and ∂φ
∂π̃ around zero.

• Tracking of invariants using measurements: The structure given in Figure 2 is proposed to
track the invariants by use of feedback. The invariants Iηref = 0 and Iπref = 0 are tracked with
the help of path and terminal feedback controllers, respectively. The details concerning the
design of the two controllers are discussed in the next subsection. The trajectory generator
computes the current inputs u(t) as a function of η(t) and π that are generated by the path
and terminal controllers. Note that the implementation is model-free and measurement-based.

Process
Trajectory

GeneratorPath

Controller

Terminal

Controller

Construction
of Invariants

On-line

Off-line

Choice of
Invariants

Tracking of invariants

Structure of the
Optimal Solution

π

η

Iη
Iπ

0
0

−
−

u y

d

hη, hπ
π∗

η∗

Figure 2: Invariant-based optimization

5.3 Design Aspects

The path controller is a PI-type controller that manipulates the various input arcs η(t) to regulate
S̄ and λT ∂F

∂η̃ around zero. The terminal controller is also a PI-type controller that manipulates the

input parameters π to regulate T̄ and ∂φ
∂π̃ around zero. Various design aspects are treated next.

• Difference in time scale – on-line vs. off-line measurements: In general, there is a difference
in time scale between the path controller and the terminal controller. The path controller
works within a batch using on-line measurements (running index is the batch time t) [7]. The
terminal controller operates on a batch-to-batch basis using off-line measurements (running
index is the batch number k) [52].
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If on-line measurements are not available, the path controller is inactive. If off-line mea-
surements of the path constraints are available, it is possible to use the path controller in a
batch-to-batch mode so that the system will be closer to the path constraints during the next
batch [36]. On the other hand, if it is possible to predict Iπ from on-line measurements, it
might be possible to use the terminal controller within the batch [58].

• Centralized vs. decentralized controllers: In general, the path controller is a multi-input multi-
output controller. However, since η̃ does not affect S̄, a first level input-output pairing can
be performed, i.e, η̄ → S̄ and η̃ → λT ∂F

∂η̃ . Still η̄, η̃, S̄, and λT ∂F
∂η̃ are vector quantities. A

further sensitivity analysis can be performed that leads either to an input-output pairing or
the design of a decoupling matrix. As a result, appropriate decentralized controllers can be
designed. A similar procedure is undertaken for the terminal controller.

• Construction of invariants from measurements: If Iη and Iπ are not measured directly, they
need to be reconstructed from the available measurements. In the case of constraint-seeking
arcs and parameters, the invariants correspond to physical quantities (path or terminal con-
straints). Off-line measurements of terminal quantities are in general available. In most
cases, a path constraint involves a variable that can be measured, or the constraint can be
rewritten in terms of a quantity that can be measured. For example, the path constraint may
correspond to a bound on temperature or pressure; or a constraint on heat removal can be
rewritten as a constraint on the cooling temperature. In such cases, on-line measurement of
the path constraint is directly available. On the other hand, if the path constraint cannot be
measured directly, some type of inference [28, 17] or state estimation is necessary.

For compromise-seeking arcs and parameters, the invariants are sensitivities. For computation
of sensitivities, multiple process runs are typically required. Two runs with two different values
of the decision variables are performed and the difference is used to compute the sensitivities.
With this approach, as many runs as there are decision variables are necessary to compute
all the sensitivities required for adaptation. Since η̃(t) is infinite dimensional, it needs to
be approximated using a finite number of decision variables before the sensitivities can be
computed experimentally, while the parameters π̃ can be perturbed directly. An alternative is
to use a model of the process just for sensitivity calculation as in [59], but such an approach is
typically more involved. However, as discussed in Subsection 5.1.4, the sensitivity with respect
to input variations in compromise-seeking arcs and parameters can often be neglected. In
such a case, all compromise-seeking arcs and parameters can be kept at predetermined values,
and only the constraint-seeking arcs and parameters are adjusted.

It is clear from the above discussion that IBO is easiest to implement when: i) path and
terminal constraints can be directly measured, and ii) compromise-seeking arcs are absent or
can be approximated by simpler profiles.

5.4 Practical Applicability of IBO

If the selected structure of the optimal solution (type and sequence of arcs, active terminal con-
straints) is correct, i.e., it corresponds to that of the true (unknown) system, IBO will be capable
of optimizing the true system. Thus, the applicability of IBO in practice will depend on: (i) the
robustness of the proposed input structure with respect to uncertainty (modeling errors and distur-
bances), and (ii) the ability to measure the path and terminal constraints. These issues are briefly
discussed next.
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• Role of the model: If the structure of the optimal inputs cannot be obtained from experience
or educated guess, then a process model is needed to determine the structure of the optimal
inputs numerically. Thus, the goal of a process model is only to provide the correct structure
for the optimal inputs. So, in contrast to model-based optimization approaches or what is
sought for simulation purposes, there is no need for a detailed model or for accurate parameter
values. The model simply needs to reflect the major tradeoffs specific to the optimization
problem at hand. The parts of the model that do not address these effects can be discarded.

• Disturbance rejection. The presence of disturbances influences both η(t) and π. Disturbances
affecting η(t) within the batch are rejected by the path controller. However, the effect of
any disturbance within the batch on π cannot be rejected since the terminal controller only
works on a batch-to-batch basis. Constant disturbances (e.g. raw material variations) can be
rejected from batch to batch by the terminal controller.

• Backoff from constraints. In the presence of disturbances and parametric uncertainty that
cannot be compensated for by feedback, the use of conservative margins, called backoffs, is
inevitable to ensure feasibility of the optimization problem [56]. The presence of measurement
errors also necessitates a backoff. Based on an estimate of the uncertainty, the probability
density function of the state variables can be calculated. The margins are then chosen such
that the spread of the states remains within the feasible region with a certain confidence level.
Note that the margins typically vary with time.

Due to the sensitivity reduction that is characteristic of feedback control, the conservatism
can be reduced considerably in the proposed framework in comparison with the standard
open-loop optimization schemes. The feedback parameters can be chosen so as to minimize
the spread in the state variables resulting from uncertainty. The use of feedback becomes
particularly important when the uncertainty tends to increase during a batch run. With
reduced backoffs, the process can be driven closer to active constraints, thereby leading to
improved performance.

6 Illustrative Example

In this section, the various optimization strategies discussed above are illustrated and compared
through the simulated operation of a fed-batch bioreactor in the presence of uncertainty. This
example, which represents a penicillin fermentation process, has the structure of Example 2 of the
companion paper [51] wherein the nominal solution has been characterized. The numerical values,
however, are different here as they have been adapted from [5].

• Reactions: S
X→ X, S

X→ P .

• Conditions: Fed-batch, isothermal.

• Objective: Maximize the concentration of product P at a given final time.

• Manipulated variable: Feed rate of S.

• Constraints: Input bounds; upper limit on the biomass concentration, which is motivated by
oxygen limitation typically occurring at large biomass concentrations.
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6.1 Nominal Optimization

Variables and parameters: S: Concentration of substrate, X: Concentration of biomass, P : Concen-
tration of product, V : Volume, u: Feed flowrate, Sin: Inlet substrate concentration, µm,Km,Ki, ν:
Kinetic parameters, and Yx, Yp: Yield coefficients.

Model equations:

Ẋ = µ(S) X − u

V
X X(0) = Xo (25)

Ṡ = −µ(S) X

Yx
− ν X

Yp
+

u

V
(Sin − S) S(0) = So (26)

Ṗ = ν X − u

V
P P (0) = Po (27)

V̇ = u V (0) = Vo (28)

with µ(S) = µm S

Km+S+S2

Ki

and the numerical values given in Table 1.

µm 0.02 1
h

Km 0.05 g
l

Ki 5 g
l

Yx 0.5 g[X]
g[S]

Yp 1.2 g[P]
g[S]

ν 0.004 1
h

Sin 200 g
l

umin 0 l
h

umax 1 l
h

Xmax 3.7 g
l

tf 150 h

Xo 1 g
l

So 0.5 g
l

Po 0 g
l

Vo 150 l

Table 1: Model parameters, operating bounds and initial conditions

Optimization problem:

max
u(t)

J = P (tf ) (29)

s.t. (25)− (28)
X(t) ≤ Xmax

umin ≤ u ≤ umax

Types of arcs [51]: The compromise-seeking solution corresponds to being on the surface S = S∗ =√
Ki Km, which can be differentiated once to obtain the input:

ucomp =
V

Sin − S

(
1
Yx

µ(S) X +
1
Yp

ν X

)∣∣∣∣∣
S=S∗

(30)

The path constraint corresponds to X = Xmax. The corresponding input can be obtained by
differentiating the path constraint once:

upath = µ(S) V |X=Xmax
(31)
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When u = upath is applied at X = Xmax, the substrate dynamics become:

Ṡ = − 1
Yx

µ(S) Xmax −
1
Yp

ν Xmax + µ(S) (Sin − S) (32)

Let Se correspond to the equilibrium point of the internal dynamics (32). For the input to remain
bounded, due to the instability of the internal dynamics, the biomass constraint has to be entered
with S = Se = 0.0037g

l .

Sequence of arcs [51]:

• The initial condition for S is chosen so that So = S∗ = 0.5g
l . Due to this specific choice of

initial condition, ucomp can be applied right from the start in order to increase X as quickly
as possible (Figure 3).

• The input is then lowered to u = umin in order to reach S = Se. The switching time between
the second and the third interval should be chosen so that the conditions X = Xmax and
S = Se occur at the same time instant.
• When X = Xmax, the input is set to u = upath.

The nominal optimal trajectories are given in Figure 3. The concentration of penicillin at the final
time is maximized to 1.68 g

l .
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Figure 3: Nominal optimal trajectories for Problem (29)
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6.2 Robust Optimization

Two types of uncertainty are considered:

• The parameter Yx is uncertain in the range 0.3− 0.5.

• The substrate inlet concentration is normally distributed with mean 200g
l and standard de-

viation 25g
l . Sin is assumed to change every hour.

The worst-case of Yx, i.e., Y max
x = 0.5 and the average value of Sin, i.e., Sav

in = 200g
l are used to

compute the conservative solution. The robust optimization problem is given below for a confidence
level of 95%:

max
u(t)

J = P̄ (tf ) (33)

s.t. ˙̄x = F (x̄, θ̄, u), x̄(0) = xo

X̄(t)−Xmax + bX ≤ 0
umin ≤ u(t) ≤ umax

where F represents the model equations (25)–(28). The backoff bX is calculated such that X̄(t)−
Xmax + bX ≤ 0⇒ P [X(t) ≤ Xmax] ≥ 0.95. Assuming that the states are normally distributed, the
propagation method, (12)–(13), is used to compute the probability density function of x(t). The
iterative algorithm described in Section 3.4 converges to bX = 0.19.
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Figure 4: Open-loop implementation of robust input: Biomass and substrate profiles for different
Yx values and Sin realizations

The conservative solution is applied open-loop for various Yx values and Sin realizations, the results
being illustrated in Figure 4. Note that the conservative input is computed once with the nominal
model and a necessary backoff. Due to the introduction of backoff, the feasibility of the biomass
constraint is ensured (with a confidence level of 95%). Thus, the conservative input can be applied
safely to the real process in an open-loop fashion. However, important oscillations of the substrate
level result from the uncertainty, and even wash-out of the substrate may result for low Yx values.
The resulting loss in performance is important and will be analyzed later.
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6.3 Measurement-based Optimization

Two different scenarios in the measurement-based optimization are considered: i) model-based
repeated optimization, and ii) model-free implicit optimization.

6.3.1 Model-based Repeated Optimization

The strategy based on repeating optimization at periodic intervals is considered. A direct optimiza-
tion approach is used with a piecewise constant input parameterization using 40 elements (CVP)
[51]. The optimization routine is time-consuming and frequently converges to a local minimum;
thus, it has to be restarted and manually guided to the optimal solution.

Full-state measurement is assumed and the current state acts as the initial condition for the dynamic
system in the optimization problem. Also, under the assumption that most of the substrate is
indeed consumed to produce biomass in the first part of the batch, the uncertain parameter Yx

is estimated from on-line measurements of biomass concentration and substrate consumption as:
Yx = XV−X0V0

Sin(V−V0)+S0V0−SV (stems from (25)–(28) with ν X = 0).

6.3.2 Model-free Implicit Optimization

The invariant-based optimization scheme illustrates the model-free approach. It is implemented in
the following manner.

• Along the first interval, a PI-controller is used to keep the system on the surface S = S∗ =
0.5g

l , which corresponds to maintaining maximum growth rate of the biomass.

• In the second interval, the input is set to its lower bound umin = 0.

• In the third interval, a biomass controller is used to track the biomass constraint Xmax. The
cascade structure (Figure 5) is necessary to stabilize the substrate internal dynamics and cope
with the large time-scale difference between the biomass and substrate dynamics.

ProcessPI PI
-

+

Se

X

X

S
Xmax

-

+

S

u

Figure 5: Biomass controller: Se = 0.0037g
l is the equilibrium value of the internal dynamics

Although the determination of the switching instant between the first and the second arcs is rather
involved, a simple heuristic approach is taken here: The input is switched when X = 0.96Xmax.
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The input is then kept at umin until the biomass constraint is reached (X = Xmax). Any error
in the choice of the first switching instant will be reflected as difference between Se and S when
X = Xmax, but this error will be compensated by the controller structure presented in Figure 5.

Simulation results are presented in Figure 6. Note that the variations in the biomass and substrate
profiles and thus the backoff from the biomass constraint are much smaller compared to the robust
optimization case since feedback is used to cope with the uncertainty. However, this scheme neces-
sitates the knowledge of biomass and substrate concentrations, which need to be either measured
or estimated with appropriate observers [6].

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Penicillin (g/l)

Time (h) 0 50 100 150
0

0.05

0.1

0.15

0.2

0.25
Input (l/h)

Time (h)

0 50 100 150
1

1.5

2

2.5

3

3.5

4
Biomass (g/l)

Time (h)
0 50 100 150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Substrate (g/l)

Time (h)

Figure 6: Invariant-based optimization for different Yx values and Sin realizations

6.4 Performance Comparison

Table 2 illustrates the average performance of the various optimization strategies for different values
of the uncertain parameter Yx. For each optimization strategy and each value of Yx, 50 different
realizations of Sin are considered and the average cost is computed. The robust optimal trajectory
is computed with the model parameters given in Table 1.

Though the parameter Yx changes, the nominal cost calculated using the correct Yx value remains
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Yx Nominal Robust Repeated Opt. with no IBO
Optimization Optimization 2 4 16 150

0.3 1.67 1.26 1.50 1.57 1.64 1.66 1.66
0.35 1.67 1.36 1.55 1.60 1.65 1.67 1.67
0.4 1.68 1.46 1.60 1.63 1.65 1.67 1.67
0.45 1.68 1.55 1.62 1.64 1.65 1.68 1.68
0.5 1.68 1.63 1.63 1.64 1.66 1.68 1.68

Table 2: Performance comparison (product concentration in g
l ) for various values of the uncertain

parameter Yx: Nominal Optimization → Solution where Yx is known and no disturbances; Robust
Optimization → Solution with Yx = 0.5 and backoff to account for variations in Sin (σ = 25g

l ); no

= number of on-line optimizations; IBO → Invariant-based optimization.

fairly constant. This can be explained as follows: From (25)–(28), it is seen that the variation in
Yx only affects the dynamics of S which in turn can be compensated by adapting u(t). So, after
compensation, all the state evolutions, and also the objective function, are fairly close to those in
the case Yx = 0.5. This is clearly illustrated by a comparison of Figures 4 and 6: Figure 6 shows
that variations in the input u(t) are capable of compensating the uncertainty in Yx and Sin.

The loss in performance observed in Table 2 compared to the nominal situation with Yx known is
due to two reasons:

1. The introduction of backoff in order to remain feasible amidst perturbation in Sin: The effect
of backoff on the average performance can be observed from the last row in Table 2. Each
optimization strategy deals with the uncertainty differently and thus the backoff is differ-
ent. The backoff is largest for the open-loop application of the conservative profile (robust
optimization) and is reduced progressively with increasing reoptimization frequency in the re-
peated optimization scheme. The smallest conservatism is obtained with the invariant-based
optimization scheme. Thus, the average performance increases from the robust optimization
over the repeated optimization to the invariant-based optimization scheme.

2. Too low substrate concentrations resulting from an actually lower value of Yx: The effect of
non-optimal S values (S �= S∗) at the beginning of the batch is strongest in the case Yx = 0.3,
as can be seen in Figure 4. The biomass grows slower than expected by the model and, at the
end of the first arc, there is a large offset from the biomass constraint. This causes a severe
loss in performance of 24.5 % in the case of robust optimization. This loss in performance
can be reduced with repeated optimization and, especially, invariant-based optimization. The
improvement is accomplished by increasing the feed rate of substrate in the first part of the
batch to bring the substrate concentration back to its optimal value S = S∗ = 0.5g

l .

With the repeated optimization scheme, it is observed that a significant performance improvement
is already obtained with a few reoptimizations. However, a total number of 150 optimizations
(a reoptimization every hour) would be necessary to achieve the same performance as with the
invariant-based optimization scheme. This performance is only slightly lower than the nominal
performance without uncertainty. Hence, the invariant-based optimization scheme is able to achieve
near-optimal performance by compensating the effect of unknown parameters and disturbances at
the cost of being able to measure or estimate a few states.
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7 Conclusions

Most techniques proposed in the literature for the optimization of dynamic processes are model-
based, whilst accurate models of industrial processes are rarely available. Owing to uncertainty
(model mismatch, parametric uncertainty, and disturbances), the open-loop implementation of an
off-line computed optimal solution leads to either infeasible or highly sub-optimal operation. Hence,
handling uncertainty becomes an important issue, especially in the presence of constraints related
to quality and safety.

On the other hand, frequent process measurements, which have been made possible by recent
developments in sensor technology, are now available in many industrial setups. Hence, the goal
of the work presented here has been to analyze measurement-based optimization strategies to cope
with uncertainty and make optimization more applicable industrially. The characterization step
proposed in the companion paper is crucial to the ideas presented in this paper.

It is also possible perceive the proposed feedback-based optimization strategy from an industrial
perspective. Classical PID control is the most popular technique used currently in industry, and
trading it to attain optimality is unacceptable industrially. Hence, in contrast to most model-based
optimization studies, this work attempts to use feedback control for the sake of optimality. In this
sense, the approach has a greater industrial potential.
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