Supplementary Information

Enantioselective $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{C}\left(\mathbf{s p}^{3}\right)$ Cross-Coupling of Non-activated Alkyl Electrophiles via Nickel Hydride Catalysis

Srikrishna Bera^{\dagger}, Runze Mao^{\dagger}, and Xile Hu*

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland.
*Correspondence to: xile.hu @epfl.ch; ${ }^{\dagger}$ Equal contributions.

Table of Contents

1. Instrumentation and chemicals 3
2. Optimization of reaction conditions (Table 1-6) 4-9
3. Synthesis of ligands 9-12
4. Synthesis of alkenyl boronic esters. 13-15
5. Preparation of alkyl halides 16-22
6. General Procedure (GP4) for probing the scope of enantioselective $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ cross- coupling of non-activated alkyl electrophiles 23-75
7. Functional group transformations 76-81
8. Synthesis of 12, a key intermediate of ($($)-(+)-Pregabalin 81-84
9. Large scale reaction (with $15 \mathrm{~mol} \%$ catalyst loading) 84-85
10. Gram scale reaction (with $10 \mathrm{~mol} \%$ catalyst loading) 85
11. One-pot reaction from alkyne without isolation of alkenyl Bpin intermediate 85-86
12. Mechanistic investigations:
12.1 Reaction with a cis-boronic ester 86
12.2 Monitoring of reactions with a mixture of cis- and trans-alkenyl boronic ester 86-87
12.3 Reaction profile 87-88
12.4 Radical-clock experiment 88-89
12.5 TEMPO quenching experiment 89
12.6 Probe for origin of regioselectivity. 90
12.7 Reaction with a pre-complex $\mathrm{NiCl}_{2}-\mathrm{L6}$ 90
13. Reactions with substrates where an alkenyl group is distal to a Bpin group 91-93
14. Determination of the absolute configuration of $\mathbf{3 e}$ and $\mathbf{4 g}$ 94
15. Crystallography details 95-99
16. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ NMR spectra of compounds 100-258
17. References 259-261

1. Instrumentation and chemicals:

All reactions for the Ni-catalyzed enantioselective $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ coupling were set up in a 10 mL Teflon-screw capped test tubes (unless otherwise noted) under an inert nitrogen (N_{2}) atmosphere using glove-box techniques. The test tubes were then sealed with airtight electrical tapes and the reaction mixtures were stirred at room temperature outside the glovebox for $36-48$ hours with 460 rpm . Solvents were either purified using a two-column solid-state purification system (Innovative Technology, NJ, USA) or bought from the commercial sources and transferred to the glovebox without exposure to air.

NMR: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 400 Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts were referenced internally to residual solvent peaks relative to TMS ($\delta=0 \mathrm{ppm}$) at 299 K . Chemical shifts $(\delta(\mathrm{ppm}))$ are reported relative to TMS $(\delta(1 \mathrm{H}) 0.0$ $\mathrm{ppm}, \delta(13 \mathrm{C}) 0.0 \mathrm{ppm})$. The solvent's residual proton resonance and the respective carbon resonance (for $\mathrm{CHCl}_{3} ; \delta(1 \mathrm{H}) 7.26 \mathrm{ppm}, \delta(13 \mathrm{C}) 77.0 \mathrm{ppm}$ were used for calibration. The boronbound carbon peaks were very weak due to quadrupolar coupling and were not assigned.

TLC: Merck silica gel 60 F 254 plates; detection with UV light or by dipping into a solution of $\mathrm{KMnO}_{4}\left(1.5 \mathrm{~g}\right.$ in $400 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 5.0 \mathrm{~g} \mathrm{NaHCO}_{3}$) or a solution of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \times \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$, phosphomolybdic acid hydrate (25 g), and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ in $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$, followed by heating.

Flash column chromatography (FC): Flash column chromatography was performed using silica gel (Silicycle, ultra-pure grade). Preparative thin layer chromatography (PTLC) was performed using glass plates from Merck KGaA, Darmstadt, Germany. The eluents for column chromatography and PTLC were presented as ratios of solvent volumes.

GC and GC-MS: All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with an FID detector. All GC-MS analyses were performed on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector.

HPLC spectra were recorded on an Agilent HPLC. Column, eluent and retention times for HPLC analysis used for the determination of enantiomeric ratios are given below in the details of the relevant experiments.

Optical rotations were measured on a Polartronic M polarimeter using a 0.5 cm cell with a Na 589 nm filter.

High-resolution mass spectra (HRMS) by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) method were performed at the EPFL ISIC Mass Spectroscopy Service.

All reagents were either prepared or purchased from Aldrich, TCI, Acros Organics, Alfa Aesar, Fluorochem, Enamine and $A B C R$. Anhydrous NiCl_{2} and DEMS from $A B C R$, anhydrous KF from Alfa Aesar, anhydrous DCE from Aldrich and anhydrous DMF from Acros Organics were purchased.

2. Optimization of reaction conditions

General procedure (GP1) for the Optimization of the Enantioselective C($\mathbf{s p}^{\mathbf{3}}$)-C(sp ${ }^{\mathbf{3}}$) CrossCoupling of Non-activated Alkyl Electrophiles:

To an oven-dried 10 mL Teflon-screw capped test tube equipped with a magnetic stir bar (6×15 mm) were added a Ni -salt ($\mathrm{x} \mathrm{mol} \%$) and a ligand \mathbf{L} ($\mathrm{y} \mathbf{\mathrm { mol } \%}$) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. An anhydrous solvent (0.5 mL) was added, and the mixture was stirred for 40 minutes at room temperature. Then a base (2.5 equiv.) was added to it and the stirring was continued for another $2-3$ minutes, at which point trans-1-hexenylboronic acid pinacol ester $1 \mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was added and the mixture was stirred for an additional 1 min . Then 3-phenyl-1-propyl iodide $\mathbf{2 a}$ ($24.4 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.5$ equiv.) was added to the resulting mixture. Stirring was further continued for 5 minutes, then a silane (2.5 equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes and removed from the glove box and stirred at room temperature for $24-48$ hours maintaining 460 rpm unless otherwise noted. Afterwards, water (1.0 mL) and EtOAc (3.0 mL) were added to the reaction mixture. Dodecane ($23.0 \mu \mathrm{~L}$) was added as an internal standard for GC FID analysis to this mixture and the resulting mixture was well mixed. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the volatiles were removed to afford the crude product. The crude product was purified by flash column chromatography.

Determination of enantiomeric excess (e.e.):

The boronic ester product was oxidized to the corresponding alcohol following GP2. Then, the alcohol was purified by PTLC and the enantiomeric excess (e.e.) was determined by HPLC analysis.

General procedure (GP2) for the stereospecific oxidation of boronic ester to alcohol:

The purified boronic ester product ($10-12 \mathrm{mg}$) was dissolved in a 1:1 mixture of THF: $\mathrm{H}_{2} \mathrm{O}(2.0$ $\mathrm{mL})$ and then $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(40 \mathrm{mg})$ was added to it at room temperature. After stirring for 4 hours at room temperature, $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 2.0 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the volatiles were removed under vacuum. The product was purified by PTLC. Afterwards, it was used for the HPLC analysis for the determination of enantiomeric excess (e.e.).

Optimization Tables

Table 1. Screening of ligands:

n.r. $=$ no reaction, n.d. $=$ not determined.

Table 2. Screening of Ni-salts:

$n-\mathrm{C}_{4} \mathrm{H}_{9}$	in +		
Entry	Ni-salt	Yield(\%)	e.e. (\%)
1	NiI_{2}	66	61
2	NiBr_{2}	72	64
3	NiCl_{2}	71	78
$4^{\text {a }}$	NiCl_{2}	79	80
$5^{\text {a,b }}$	NiCl_{2}	33	30
6	NiCl_{2}.dme	45	78
7	NiBr_{2}.dme	44	74
8	NiBr_{2}. diglyme	41	72
9	$\mathrm{Ni}(\mathrm{acac})_{2}$	26	22
10	$\mathrm{Ni}(\mathrm{OTf})_{2}$	9	17
11	$\mathrm{NiI}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	38	60
12	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	51	76
13	$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	65	72
14	$\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	51	68
15	$\mathrm{NiSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$	16	26
16	$\mathrm{NiF}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	n.r.	n.d.
17	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	48	52

${ }^{\mathrm{a}} 15 \mathrm{~mol} \%$ Ligand was used. ${ }^{\mathrm{b}}$ The reaction was conducted at $0^{\circ} \mathrm{C}$ for 48 hours. n.r. $=$ no reaction, n.d. $=$ not determined.

Table 3. Further screening of ligands:

Entry

Table 4. Screening of solvents:

Entry	Solvents	Yield(\%)	e.e.(\%)
1	DMA	79	80
2	DMF	78	59
3	NMP	64	80
4	DMI	34	48
5	DMPU	25	44
6	DCE	n.r.	n.d.
7	DMA:NMP(3:2)	59	80
8	DMA:DMF (3:2)	82	83
9	DMA:DCE(3:2)	54	79
10	DMA:DMSO(3:2)	61	70
11	DMA: $\mathrm{MeCN}(3: 2)$	79	68
12	DMA:THF(3:2)	63	74
13	DMA:DME(3:2)	76	72
14	DMF:DMA(3.17:1)	82	69
15	DCM:DMA(3.17:1)	19	92
16	$\mathrm{PhCF}_{3}: \mathrm{DMA}(3.17: 1)$	18	63
17	DCE:DMPU(3.17:1)	n.r	n.d.
18	DCE:DMA(3.17:1)	n.r	n.d.
19	DCE:NMP(3.17:1)	n.r	n.d.
20	DCE:DMF(3.17:1)	29	93
21	DCE: $\mathrm{PhCF}_{3}(3.17: 1)$	n.r	n.d.
$22^{\text {a }}$	DCE:DMF(3.17:1)	40	93
$23^{\text {a }}$	DCM: $\operatorname{DMF}(3.17: 1)$	34	92
$24^{\text {a }}$	$\mathrm{PhCl}: \mathrm{DMF}(3.17: 1)$	51	80
$25^{\text {a }}$	$\mathrm{PhCH}_{3}: \mathrm{DMF}(3.17: 1)$	40	73
$26^{\text {a }}$	$\mathrm{PhCF}_{3}: \mathrm{DMF}(3.17: 1)$	71	78
$27^{\text {a }}$	DCE:DMF(3:2)	55	92
$28^{\text {a }}$	DCE:DMF(1:1)	61	88
$29^{\text {a }}$	DCE:DMF(2:3)	79	84
$30^{\text {a }}$	DCE:DMF(4:1)	30	94
$31^{\text {a }}$	DCE:DMF(2.57:1)	36	93
$32^{\text {a }}$	DCE:DMF(2.12:1)	42	93

${ }^{\text {a }}$ Reaction time $=44$ hours. n.r. $=$ no reaction, n.d. $=$ not determined.

Table 5. Screening of silanes:

 1a				
Entry	Silanes	Yield(\%)		e.e.(\%)
1	DEMS	55		92
2	$(\mathrm{MeO})_{2} \mathrm{MeSiH}$	55		85
3	$(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{SiH}$	31		80
4	$(\mathrm{EtO}){ }_{3} \mathrm{SiH}$	42		89
5	$\mathrm{Me}(\mathrm{OTMS})_{2} \mathrm{SiH}$	trace		n.d.
6	PMHS	48		91
7	$\mathrm{Et}_{3} \mathrm{SiH}$	trace		n.d.
8	$\mathrm{Ph}_{2} \mathrm{SiH}_{2}$	14		n.d.
9	$\mathrm{Ph}_{3} \mathrm{SiH}$	trace		n.d.
10	PhSiH_{3}	trace		n.d.
11	$\mathrm{PhMe}_{2} \mathrm{SiH}$	n.r.		n.d.

n.r. $=$ no reaction, n.d. $=$ not determined.

Table 6. Screening of bases:

 1a	 2a	$\xrightarrow[\substack{\text { base (2.5 equiv) } \\ \text { DCE:DMF (3:2) } \\ \text { 0.2 (M), RT, } 44 \mathrm{~h}}]{\xrightarrow{\mathrm{NiCl}_{2}(10 \mathrm{~mol} \%)} \mathrm{LEMS}(2.5 \text { equiv) }}$		 L6
Entry	Bases	Yield(\%)	e.e. (\%)	
1	LiF	n.r.	n.d.	
2	NaF	n.r.	n.d.	
3	KF	55	92	
4	RbF	65	56	
$5^{\text {a }}$	CsF	63	53	
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	10	n.d.	
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	10	n.d.	
5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	n.r.	n.d.	

n.r. $=$ no reaction, n.d. $=$ not determined. ${ }^{\text {a }}$ Reaction time $=12$ hours.

Table 7. Manipulation of substrates ratio and catalyst loading:

${ }^{\mathrm{a}} 10 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ and $15 \mathrm{~mol} \%$ ligand. ${ }^{\mathrm{b}} 15 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ and $20 \mathrm{~mol} \%$ ligand. ${ }^{\mathrm{c}} 17.5 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ and $22 \mathrm{~mol} \%$ ligand. Isolated yield in the parenthesis.

3. Synthesis of ligands (\mathbf{L}):

Ligands L3, L8, L13, L14, L15 and L16 are commercially available.
Ligands L1, L2, L9, L10, L11 and L12 were synthesised according to a known literature procedure. ${ }^{[1]}$

(S)-4-Isopropyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L1):

The title compound was synthesized from 2-cyanopyridine and L-valinol following a known literature procedure. ${ }^{[1]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroformd) $\delta 8.65-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 4.51-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.06(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 162.54, 149.71, 146.92, $136.56,125.44,123.90,72.97,70.75,32.77,19.06,18.21$. Spectral data match those previously reported. ${ }^{[2]}$
(3aS,8aR)-2-(Pyridin-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (L2):

The title compound was synthesized from 2-cyanopyridine and ($1 S, 2 R$)-(-)-cis-1-amino-2-indanol following a known literature procedure. ${ }^{[3]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.68-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.02(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 5.80$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (td, $J=7.3,6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.22,149.72,146.93,141.62,139.87,136.58,128.65,127.53,125.76,125.55$, $125.40,124.15,84.02,77.19,39.79$. Spectral data match those previously reported. ${ }^{[3]}$

(4S,5R)-4,5-Diphenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L9):

The title compound was synthesized from 2-cyanopyridine and ($1 R, 2 S$)-2-amino-1,2-diphenylethan-1-ol following a known literature procedure ${ }^{[3]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.94$ $(\mathrm{m}, 4 \mathrm{H}), 6.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 164.20,150.06,146.66,137.32,136.81,136.17,127.96,127.67,127.48,127.07,126.50$, 125.93, 124.33, 86.02, 74.61. Spectral data match those previously reported. ${ }^{[3]}$
(S)-4-Isopropyl-2-(6-methylpyridin-2-yl)-4,5-dihydrooxazole (L10):

The title compound was synthesized from 2-cyano-6-methylpyridine and Lvalinol following a known literature procedure. ${ }^{[1]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.18-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.80,158.81,146.46,136.78,125.35,121.26,72.93$, $70.80,32.82,24.77,19.25,18.20$. Spectral data match those previously reported. ${ }^{[4]}$

(S)-4-Benzyl-2-(6-methylpyridin-2-yl)-4,5-dihydrooxazole (L11):

The title compound was synthesized from 2-cyano-6-methylpyridine and L-phenylalaninol following a known literature procedure. ${ }^{[1] ~}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.89-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.36-$ $7.19(\mathrm{~m}, 6 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 163.41, 158.94, 146.29, 137.98, 136.87, 129.30, 128.70, 126.65, $125.52,121.26,72.62,68.19,41.82,24.77$. Spectral data match those previously reported. ${ }^{[5]}$
(3aS,8aR)-2-(Isoquinolin-1-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (L12):

The title compound was synthesized from isoquinoline-1-carbonitrile and ($1 S, 2 R$)-(-)-cis-1-amino-2-indanol following a known literature procedure. ${ }^{[1] 1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.20-9.18(\mathrm{~m}, 1 \mathrm{H})$, $8.63-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dq}, J=7.9,2.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 - 3.52 (m, 2H). ${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 162.56$, 146.42, 141.88, 141.84, 140.07, 136.83, 130.47, 128.76, 128.57, 127.66, 127.64, 127.51, 127.08, 125.75, 125.61, 123.49, 82.91, 78.04, 39.91.

Ligands L4, L5, L6, L7, L17, L18 and L19 were synthesized according to a slightly modified known literature procedure. ${ }^{[6]}$

Dimethyloxalate (1.00 equiv.) and chiral amino alcohol (2.00 equiv.), followed by anhydrous PhMe were added to an oven-dried schlenk tube under an inert atmosphere. The tube was heated to $80^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight, during which the diamide precipitated out of solution as a white solid. The reaction mixture was cooled to room temperature and concentrated in vacuo to afford the crude diamide, which was directly used in the next step without further purification. To an oven-dried schlenk tube diamide ($1.00 \mathrm{mmol}, 1.00$ equiv.) and DCM (20 mL) were added under a N_{2} atmosphere. The tube was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry-ice/acetone bath, and diethylaminosulfur trifluoride ($0.39 \mathrm{~mL}, 2.80 \mathrm{mmol}, 2.80$ equiv.) was added dropwise. The reaction mixture was stirred for 1 h , then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($552 \mathrm{mg}, 4.00 \mathrm{mmol}, 4.00$ equiv.) was added slowly. The flask was removed from the cold bath and allowed to warm to room temperature. The stirring was continued for an additional 45 min . After that the reaction mixture was diluted with DCM (20 mL) and water (30 mL). The organic layer was washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$
and brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired $\mathrm{Bi}-\mathrm{Ox}$ ligands.

(4S,4'S)-4,4'-Diisopropyl-4,4',5,5'-tetrahydro-2,2'-bioxazole (L4):

The title compound was synthesized from L-valinol following the above mentioned procedure. Yield: 68%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) δ $4.47-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~h}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.00$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 154.65,73.26,71.17,32.54,19.07,18.36$. Spectral data match those previously reported. ${ }^{[7]}$

(4S,4'S)-4,4'-Di((S)-sec-butyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole (L5):

The title compound was synthesized from (S)-(+)-isoleucinol following the above mentioned procedure. Yield: $62 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 4.42$ (dd, $J=9.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{td}, J=9.2,6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.13$ (dd, $J=8.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.21$ (ddt, $J=$ $13.9,8.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 154.62,71.88,70.80,38.85,26.13,14.59,11.46$.

(4S,4'S)-4,4'-Diphenyl-4,4',5,5'-tetrahydro-2,2'-bioxazole (L6):

Ligand (L6) was synthesized according to slightly modified known literature. ${ }^{[6]}$ (S)-(+)-2-Phenylglycinol ($823 \mathrm{mg}, 6.00 \mathrm{mmol}, 2.00$ equiv.) and dimethyloxalate ($354 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.00$ equiv.), followed by anhydrous PhMe (70 mL), were added to an oven-dried schlenk tube under an inert atmosphere. The tube was heated to $80^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight, during which the diamide precipitated out of solution as a white solid. The reaction mixture was cooled to room temperature and concentrated in vacuo to afford the crude diamide, which was directly used in the next step without further purification. To an oven-dried schlenk tube diamide ($820 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.00$ equiv.) and DCM (40 mL) were added under a N_{2} atmosphere. The tube was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dryice/acetone bath, and diethylaminosulfur trifluoride ($0.92 \mathrm{~mL}, 7.00 \mathrm{mmol}, 2.80$ equiv.) was added dropwise. The reaction mixture was stirred for 1 h , then $\mathrm{K}_{2} \mathrm{CO}_{3}(1.40 \mathrm{~g}, 10.0 \mathrm{mmol}, 4.00$ equiv.) was added slowly. The flask was removed from the cold bath and allowed to warm to room temperature. The stirring was continued for an additional 45 min . After that the reaction mixture was diluted with DCM (20 mL) and water (30 mL). The organic layer was washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc (2:1) as eluent to afford the desired ligand $\mathbf{L 6}$ as a crystalline white powder (600 $\mathrm{mg}, 82 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.45$ $(\mathrm{t}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=10.4,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 155.73,140.56,128.93,128.05,126.85,75.37,70.53$.

(4S,4'S)-4,4'-Diethyl-4,4',5,5'-tetrahydro-2,2'-bioxazole (L7):

The title compound was synthesized from (S)-(+)-2-amino-1-butanol following the above mentioned procedure. Yield: 73%. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.49$ (dd, $J=9.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.24 (ddt, $J=9.7,8.4,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 154.72,73.05,68.62,28.26,10.20$.

The title compound was synthesized from (S)-2-amino-2-(4-fluorophenyl)ethan-1-ol following the above mentioned procedure. Yield: $67 \% .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H})$, 5.44 (dd, $J=10.4,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}$, 2H), 4.33 (t, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 163.80, 161.35, 155.78, $136.35,136.31,128.63,128.55,116.00,115.79,75.41,69.93 .{ }^{19}$ F NMR (376 MHz , Chloroformd) $\delta-114.19$.
(4S,4'S)-4,4'-bis(4-chlorophenyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole (L18):

The title compound was synthesized from (S)-2-amino-2-(4-chlorophenyl)ethan-1-ol following the above mentioned procedure. Yield: 55%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) δ $7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{t}, J=9.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.91-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz ,
Chloroform- d) $\delta 155.90,138.99,134.02,129.17,128.24,75.29,69.93$.
(4S,4'S)-4,4'-bis(4-methoxyphenyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole (L19):

The title compound was synthesized from (S)-2-amino-2-(4-methoxyphenyl)ethan-1-ol following the above mentioned procedure. Yield: $31 \% .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 4 \mathrm{H})$, $5.39(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.86-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.28$
$(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 159.48,155.64,132.85,128.09$, 114.36, 75.51, 70.11, 55.47.

4. Synthesis of alkenyl boronic esters

1a

1 e

1b

1 f

1c

1g

1d

1h

$1 i$

$1 n$

1j

11

1m

10

$1 r$
1 s

Alkenyl boronic esters $\mathbf{1 a}, \mathbf{1 i}, \mathbf{1 j}, \mathbf{1 k}, \mathbf{1 n}, \mathbf{1 r}$ and $\mathbf{1 s}$ are commercially available.
Compound $\mathbf{1 b}-\mathbf{1 h}^{[8]}, \mathbf{1 I}^{[9]}, \mathbf{1 m}{ }^{[11]}, \mathbf{1 0}{ }^{[12]}, \mathbf{1} \mathbf{p}^{[12]}$ and $\mathbf{1} \mathbf{q}^{[14]}$ were prepared according to the previously reported procedures.
(E)-4,4,5,5-tetramethyl-2-(5-phenylpent-1-en-1-yl)-1,3,2-dioxaborolane (1b):

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{dt}, J=17.9,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{q}, J=7.0,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.75(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 154.21, $142.44,128.58,128.40,125.83,83.17,35.44,35.37,29.93,24.93$. Spectral data match those previously reported. ${ }^{[8]}$
(E)-2-(6-chlorohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1c):

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta 6.68-6.55(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 153.60,83.22,45.01,34.99,32.14,25.56$, 24.93. Spectral data match those previously reported. ${ }^{[8]}$

Methyl (E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-enoate (1d):

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta 6.65-6.53(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.32$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 174.05,153.06,83.22,51.62,35.08,33.52,24.92$, 23.52. Spectral data match those previously reported. ${ }^{[8]}$

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 6.60(\mathrm{dt}, J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 171.27,152.86,83.24,64.03,32.13,27.27$, 24.92, 21.11. Spectral data match those previously reported. ${ }^{[8]}$

(()-4,4,5,5-tetramethyl-2-(6-phenoxyhex-1-en-1-yl)-1,3,2-dioxaborolane (1f):

Bpin OPh

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{dt}, J=17.9,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.79(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 159.19,154.09,129.53,120.62,114.62,83.18,67.70,35.53,28.92,24.93,24.81$. Spectral data match those previously reported. ${ }^{[8]}$

(E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl benzoate (1g):

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.63(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz , Chloroform- d) δ 166.78, 153.84, 132.95, 130.59, 129.68, 128.47, 83.21, $64.97,35.44,28.42,24.93,24.83$. Spectral data match those previously reported. ${ }^{[8]}$

(E)-tert-butyldimethyl((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1yl)oxy)silane (1h):

Prepared according to the known literature procedure. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 6.59$ (dt, $J=17.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 150.81,83.20,62.41,39.60,26.11,24.91,18.53$, 5.10. Spectral data match those previously reported. ${ }^{[8]}$

(Z)-2-(Hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11):

 Chloroform- d) $\delta 6.42$ (dt, $J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 155.38$, 82.91, 32.03, 31.79, 24.98, 22.24, 14.05. Spectral data match those previously reported. ${ }^{[10]}$

(\boldsymbol{E})-4,4,5,5-Tetramethyl-2-(3-methylbut-1-en-1-yl)-1,3,2-dioxaborolane (1m):

Prepared according to the known literature procedure. ${ }^{[11]} \mathbf{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 6.61$ (dd, $J=18.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(101$ MHz , Chloroform- d) $\delta 161.09,83.14,33.72,24.94,21.56$. Spectral data match those previously reported. ${ }^{[11]}$

2-(But-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10):

Bpin Prepared according to the known literature procedure. ${ }^{[12]}{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 5.88$ (ddt, $J=16.6,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.03-4.86(\mathrm{~m}, 2 \mathrm{H}), 2.16$ $(\operatorname{tdd}, J=7.9,5.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz ,

Chloroform- d) $\delta 140.81,113.29,83.15,28.12,24.97$. Spectral data match those previously reported. ${ }^{[12]}$

(E)-2-(Hex-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1p):

Prepared according to the modified literature procedure from (E)-1-bromohex-3-ene. ${ }^{[12]} \mathbf{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.49$ - 5.37 (m, $2 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 131.05,83.07$, 26.95, 25.67, 24.97, 14.09. Spectral data match those previously reported. ${ }^{[13]}$

(1s,5s)-9-((E)-Hex-1-en-1-yl)-9-borabicyclo[3.3.1]nonane (1q):

The title compound was generated in situ following a known literature procedure then it was directly used in the reaction. ${ }^{[14]}$

5. Preparation of alkyl halides:

Compound $\mathbf{2 a}, \mathbf{2 0}, \mathbf{2 p}, \mathbf{2 q}, \mathbf{2 r}, \mathbf{2 s}, \mathbf{2 v}, \mathbf{2 w}, \mathbf{2 y}, \mathbf{2 z}, \mathbf{2 a}$ and $\mathbf{2 c}$ ' were purchased from commercial sources. Alkyl halides $\mathbf{2 b}{ }^{[15]}, \mathbf{2}{ }^{[16]}, \mathbf{2 d}{ }^{[17]}, \mathbf{2}{ }^{[18]}, \mathbf{2 f}^{[8]}, \mathbf{2 h}{ }^{[19]}, \mathbf{2} \mathbf{i}^{[20]}, \mathbf{2 j}{ }^{[21]}, \mathbf{2 k}{ }^{[8]}, \mathbf{2 m}{ }^{[22]}, \mathbf{2} \mathbf{n}^{[15]}, \mathbf{2} \mathbf{t}^{[23]}$, $\mathbf{2 u}{ }^{[15]}, \mathbf{2} \mathbf{x}^{[16]}, \mathbf{2} \mathbf{b}^{\text {[} 24]}, \mathbf{2} \mathbf{d}^{[25]}, \mathbf{2 g}^{[8]}, \mathbf{2} \mathbf{m}^{\text {[27] }}$ and $\mathbf{2} \mathbf{n}^{\text {! } 15]}$ were prepared according to known literature procedures.

General Procedure (GP3) for the synthesis of alkyl iodides:

To a stirred solution of carboxylic acid ($5.00 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{DCM}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere was added N, N^{\prime}-diisopropylcarbodiimide ($0.86 \mathrm{~mL}, 5.50 \mathrm{mmol}, 1.1$ equiv.). After 10 minutes, 3-iodo-1-propanol ($0.53 \mathrm{~mL}, 5.50 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.77 \mathrm{~mL}, 5.5 \mathrm{mmol}$ 1.1 equiv.) were added to it. The resulting reaction mixture was allowed to warm to room temperature and the stirring was continued for overnight. The solution was diluted with DCM and filtered through a plug of silica gel. The solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel with a mixture of hexane:EtOAc as eluent to obtain the desired alkyl iodides.

1-(3-Iodopropyl)-4-methoxybenzene (2b):

Prepared according to the known literature method. ${ }^{[15]} \mathbf{~ 1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.18-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{p}, J=6.7 \mathrm{~Hz}$, 2H). ${ }^{13}$ C NMR (101 MHz , Chloroform- d) $\delta 158.15$, 132.53, 129.59, 114.02, 55.39, 35.38, 35.21, 6.59. Spectral data match those previously reported. ${ }^{[15]}$

(3-Iodopropoxy)benzene (2c):

Prepared according to the known literature method. ${ }^{[16]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 158.78,129.62,121.05,114.67,67.28,33.16,2.70$. Spectral data match those previously reported. ${ }^{[16]}$

4-Iodo-1-phenylbutan-1-one (2d):

Prepared according to the known literature method. ${ }^{[17]} \mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$,
Chloroform- $d) \delta 8.05-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}$,
$2 \mathrm{H}), 3.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{p}, J=6.8 \mathrm{~Hz}$,
2H). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}$, Chloroform- d d $\delta 198.70,136.84,133.35,128.78$,

1-Bromo-4-(3-iodopropyl)benzene (2e):

Prepared according to the known literature method. ${ }^{[18]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.48-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- d) $\delta 139.45,131.69,130.44,120.10,35.70,34.69,6.06$. Spectral data match those previously reported. ${ }^{[18]}$

3-Iodopropyl 4-chlorobenzoate (2f):

Prepared according to the known literature method. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.40(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 165.58$, 139.64, $131.08,128.87,128.52,64.92,32.51,1.34$. Spectral data match those previously reported. ${ }^{[8]}$

3-Iodopropyl 4-iodobenzoate (2g):

Prepared according to GP3 with 4-iodobenzoic acid (1.20 g, 5.00 mmol, 1.00 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 40: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 g}$ as a white solid ($1.37 \mathrm{~g}, 66 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d): $\delta 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 2 \mathrm{H})$, $4.39(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 165.95,137.88,131.12,129.55,101.05,64.94,32.50,1.34$. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{I}_{2} \mathrm{O}_{2}{ }^{+} 416.8843$; Found 416.8838 .

Benzyl (3-iodopropyl)carbamate (2h):

Prepared according to the known literature method. ${ }^{[19]}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ MHz, Chloroform-d) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, $3.29(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{p}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 156.53,136.51,128.67$,
$128.31,128.27,66.94,41.59,33.29,3.03$. Spectral data match those previously reported. ${ }^{\text {[19] }}$

2-(3-Iodopropyl)isoindoline-1,3-dione (2i):

Prepared according to the known literature method. ${ }^{[20]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.83$ (ddd, $J=7.7,4.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.77-7.66$ (m, 2H), $3.77(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 168.37, 134.19, 134.10, 132.11, $123.47,123.41,38.78,32.70,1.31$. Spectral data match those previously reported. ${ }^{[20]}$

4-(3-Iodopropyl)phenol (2j):

Prepared according to the known literature method. ${ }^{[21]} \mathbf{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.16-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.66(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-1.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 153.93$, 132.77, 129.81, 115.45, 35.39, 35.18, 6.58. Spectral data match those previously reported. ${ }^{[21]}$

3-Iodopropyl furan-2-carboxylate (2k):

Prepared according to the known literature method. ${ }^{[8]} \mathbf{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=3.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{p}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 158.57,146.54,144.52$, $118.25,111.99,64.59,32.56,1.28$. Spectral data match those previously reported. ${ }^{[8]}$

3-Iodopropyl thiophene-2-carboxylate (21):

Prepared according to GP3 with 2-thiophenecarboxylic acid ($640 \mathrm{mg}, 5.00$ mmol, 1.00 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 l}$ as a colorless oil (1.15 g , 78%). ${ }^{1}$ H NMR (400 MHz , Chloroform- d): $\delta 7.81$ (dd, $J=3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 162.14,133.74,132.70$, 127.95, 64.82, 32.64, 1.40. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{IO}_{2} \mathrm{~S}^{+} 296.9441$; Found 296.9436.

Methyl 1-(3-iodopropyl)-1H-indole-3-carboxylate (2m):

Prepared according to the known literature method. ${ }^{[22]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.23-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ $(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 165.39, 136.41, 134.25, 126.84, 123.05, 122.14, 121.98, 109.97, 107.56, 51.13, 46.86, 33.05, 2.25 .

Benzyl 4-(iodomethyl)piperidine-1-carboxylate (2n):

Prepared according to the known literature method. ${ }^{[15]}{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77$ (s, 2H), 1.85 (d, J=13.0 Hz, 2H), $1.71-1.57$ (m, 1H), 1.29 $-1.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 155.23,136.92,128.60$, $128.10,127.98,67.21,43.89,38.64,32.63,13.33$. Spectral data match those previously reported. ${ }^{[15]}$

Iodocyclooctane (2t):

Prepared according to the known literature method. ${ }^{[23]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 4.60$ (ddd, $J=13.0,7.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31-2.19$ (m, 4H), $1.75-$ $1.39(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 38.48,38.07,27.58,26.79$, 25.28. Spectral data match those previously reported. ${ }^{[23]}$

2-Iodo-2,3-dihydro-1H-indene (2u):

Prepared according to the known literature method. ${ }^{[15]}{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{p}, J=5.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}$, 2 H), $3.44-3.35$ (m, 2H). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 141.56, 127.05, $124.42,46.69,23.96$. Spectral data match those previously reported. ${ }^{[15]}$

8-Iodo-1,4-dioxaspiro[4.5]decane (2x):

Prepared according to the known literature method. ${ }^{[16]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.45-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 4 \mathrm{H})$, $1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ $107.60,64.50,64.43,36.38,34.89$. Spectral data match those previously reported. ${ }^{[16]}$

(3-Iodobutyl)benzene (2b'):

Prepared according to the known literature method. ${ }^{[24]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 1 \mathrm{H})$, $2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-$ $1.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 140.88$, 128.65, 128.62, 126.25, 44.54, 35.98, 29.77, 29.13. Spectral data match those previously reported. ${ }^{[24]}$

(1R,5S)-2-(2-Iodoethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene (2d'):

Prepared according to the known literature method. ${ }^{[25]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.32$ (s, 1H), 3.18 - 3.13 (m, 2H), 2.59 - 2.53 (m, 2H), 2.39 (dt, J $=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{td}, J=5.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz ,

Chloroform- d) $\delta 146.89,118.85,45.48,41.61,40.83,38.28,31.90,31.44,26.41,21.52,3.83$. Spectral data match those previously reported. ${ }^{[26]}$

3-Iodopropyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (2e'):

Prepared according to GP3 with naproxen $(1.15 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2} \mathbf{e}^{\prime}$ as a white solid ($1.39 \mathrm{~g}, 70 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d): $\delta 7.76-7.67$ (m, 2H), 7.66 (d, J $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13}$ C NMR (101 MHz , Chloroform- d): $\delta 174.59,157.80,135.69$, 133.83, 129.40, 127.33, 126.25, 126.02, 119.17, 105.73, 64.40, 55.45, 45.56, 32.34, 18.58, 1.53. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{INaO}_{3}{ }^{+} 421.0271$; Found 421.0277.

3-Iodopropyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (2f'):

Prepared according to GP3 with gemfibrozil ($1.25 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 f}$ ' as a colorless oil $(1.13 \mathrm{~g}, 54 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.01$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.66 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-$ $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.16$ $-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 177.71, $157.04,136.61,130.45,123.71,120.86,112.11,68.01,64.13,42.31,37.30,32.39,25.32,21.56$, 15.95, 1.59. HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{IO}_{3}{ }^{+}$419.1078; Found 419.1082.
tert-Butyl(((3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-iodopentan-2-yl)-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)dimethylsilane (2g'):

Prepared according to the known literature method. ${ }^{[8]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 3.57$ (td, $J=10.5,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{dt}, J=16.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.59$ - 1.51 (m, 2H), 1.49 - 1.30 (m, 9H), 1.27 - 1.17 (m, 3H), $1.16-1.00(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 16 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}), 0.05$ (s, 6H). ${ }^{13}$ C NMR (101 MHz , Chloroform- d) $\delta 72.96,56.55$, $56.22,42.86,42.44,40.35,40.28,37.07,37.01,36.01,35.73,35.25,34.73,31.18,30.55,28.47$, $27.45,26.56,26.13,24.37,23.55,20.95,18.85,18.47,12.17,8.01,-4.43$. Spectral data match those previously reported. ${ }^{[8]}$

3-Iodopropyl 2-(2,4-dichlorophenoxy)acetate (2 h '):

Prepared according to GP3 with 2,4-dichlorophenox yacetic acid (1.10 $\mathrm{g}, 5.00 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 7: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 h}$ ' as a white solid (1.27 g, 65%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{p}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 168.09$, 152.46, 130.57, 127.76, 127.40, 124.42, 114.84, 66.50, 65.23, 32.07. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{INaO}_{3}{ }^{+}$410.9022; Found 410.9020 .

Prepared according to GP3 with isoxepac ($1.34 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 i}$ ' as a white solid ($1.32 \mathrm{~g}, 61 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 8.12$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (dd, $J=7.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}$, 1 H), 7.42 (dd, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.13$ (p, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 190.92,171.32,160.64$, $140.55,136.37,135.67,132.92,132.56,129.64,129.41,127.95,127.77,125.30,121.24,73.78$, 64.70, 40.32, 32.33, 1.45. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{IO}_{4}{ }^{+} 437.0244$; Found 437.0248.

3-Iodopropyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2j'):

Prepared according to GP3 with indomethacin ($1.78 \mathrm{~g}, 5.00 \mathrm{mmol}$, 1.00 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, \quad 5: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 j} \mathbf{j}$ as a white solid $(1.29 \mathrm{~g}, 49 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.66(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.11 (p, J=6.5 Hz, 2H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 170.77, 156.21, 139.45, 136.07, $133.99,131.33,130.93,129.28,115.14,112.54,111.85,101.35,64.71,55.91,32.29,30.47,13.49$, 1.26. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClINO}_{4}^{+}$526.0277; Found 526.0282.

3-Iodopropyl 4-(N, N-dipropylsulfamoyl)benzoate ($2 \mathrm{k}^{\prime}$):

Prepared according to GP3 with probenecid ($856 \mathrm{mg}, 3.00 \mathrm{mmol}$, 1.00 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, \quad 3: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 k}$ ' as a white solid (930 g, 68\%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 8.16-8.06(\mathrm{~m}, 2 \mathrm{H})$, $7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.13-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz , Chloroform- d) $\delta 165.13,144.54,133.34,130.33,127.15,65.33,50.03,32.41$, 22.04, 11.27, 1.19. HRMS (ESI/QTOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{INO}_{4} \mathrm{~S}^{+} 454.0544$; Found 454.0553 .

3-Iodopropyl 6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoate (21'):

Prepared according to GP3 with adapalene ($412 \mathrm{mg}, 1.00$ mmol, 1.00 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 1}$ ' as a white solid
 $1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.92$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.36(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d): δ 166.72, 159.07, 141.61, 139.14, 136.14, 132.61, 131.33, $131.00,129.83,128.41,126.84,126.67,126.09,125.86,125.62,124.85,112.24,64.81,55.30$,
40.75, 37.35, 37.27, 32.78, 31.06, 29.25, 1.65. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{IO}_{3}{ }^{+}$581.1547; Found 581.1552.

tert-Butyl(2-iodoethoxy)diphenylsilane (2m'):

TBDPS $\int_{-}-\begin{aligned} & \text { Prepared according to the known literature method. }{ }^{[27]}{ }^{\mathbf{1}} \mathrm{H} \text { NMR }(400 \mathrm{MHz}, \\ & \text { Chloroform- } d) \delta 7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 6 \mathrm{H}), 3.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 3.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \text { NMR }(101 \mathrm{MHz} \text {, Chloroform- } d)\end{aligned}$ $\delta 135.70,133.43,129.96,127.90,64.76,26.94,19.40,6.89$. Spectral data match those previously reported. ${ }^{[27]}$

6-Iodohex-1-ene (2n'):

Prepared according to the known literature method. ${ }^{[15]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 5.91-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{td}, J=7.0,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{p}, J=7.3,7.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 138.24,115.13,33.04,32.75,29.83,6.98$. Spectral data match those previously reported. ${ }^{[15]}$
6. General Procedure (GP4) for probing the scope of enantioselective $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)$ crosscoupling of non-activated alkyl electrophiles:

To an oven-dried 10 mL Teflon-screw capped test tube were added $\mathrm{NiCl}_{2}(1.9 \mathrm{mg}, 15 \mu \mathrm{~mol}, 0.15$ equiv.) and $\mathbf{L 6}$ ($5.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.20$ equiv.). The vial was introduced in a nitrogen-filled glovebox. A magnetic stir bar ($6 \times 15 \mathrm{~mm}$), anhydrous DCE (0.30 mL) and DMF (0.20 mL) were added, and the mixture was stirred for 40 minutes at room temperature. Then KF ($14.5 \mathrm{mg}, 0.25$ mmol, 2.50 equiv.) was added to it and the stirring was continued for additional $2-3$ minutes, at which point alkenyl boronic acid pinacol ester $1(0.15 \mathrm{mmol}, 1.00$ equiv.) was added and the mixture was stirred for additional 1 min . Then alkyl iodide $\mathbf{2}(0.10 \mathrm{mmol}, 1.50$ equiv.) was added to the resulting mixture [for cross coupling with secondary alkyl iodides: alkenyl boronic acid pinacol ester 1 ($0.10 \mathrm{mmol}, 1.00$ equiv.) and secondary alkyl iodide ($0.15 \mathrm{mmol}, 1.50$ equiv.) were used]. Stirring was further continued for 5 minutes, then DEMS ($43.0 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.50$ equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes and removed from the glove box and stirred at RT for 40 hours maintaining 460 rpm . The crude reaction mixture was directly subjected to flash column chromatography by using a mixture of hexane and EtOAc to obtain $\mathbf{3 a - 6 i}$. A relatively low rpm was chosen to avoid the spill.

For cross-coupling with alkyl bromide $40 \mathrm{~mol} \% \mathrm{KI}$ was used. KI was added together with KF.
Adding all the reagents together after the catalyst formation (40 minutes later) without a waiting period resulted in 66% yield and 91% e.e. of the desired product 3a. When the sequence of addition was changed, the product still can be obtained in 66% yield and 91% e.e.. However, when the base was added together with NiCl_{2} and ligand and the mixture was stirred for 40 minutes followed by the sequential addition of the other reagents, the yield and e.e. substantially decrease to 49% and 83%, respectively.
(S)-4,4,5,5-Tetramethyl-2-(1-phenylnonan-4-yl)-1,3,2-dioxaborolane ((+) 3a)
 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 100: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3a as a colorless oil (23 mg , $69 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.31-7.27$ ($\mathrm{m}, 2 \mathrm{H}$), $7.21-7.17$
$(\mathrm{m}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.26(\mathrm{~m}$, 19H), $1.06-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 143.07$, $128.51,128.32,125.62,82.95,36.39,32.29,31.51,31.32,31.30,29.08,24.97,24.94,22.75,14.21$. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 34.23$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BNaO}_{2}{ }^{+}$353.2622, Found 353.2623. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+5.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=20.1 \mathrm{~min}$.

(S)-2-(1-(4-Methoxyphenyl)nonan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 3b) Bpin Prepared according to GP4 with $\mathbf{1 a}$ ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2b (28.0 $n-\mathrm{C}_{4} \mathrm{H}_{9}$
 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 60: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3b as a colorless oil (29 mg , 80\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.13-7.01$ (m, 2H), $6.88-6.74$ $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.37$ $(\mathrm{m}, 3 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 19 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 157.68,135.18,129.34,113.75,82.94,82.82,55.37,35.43,32.28,31.52,31.24$, 29.07, 24.96, 24.94, 22.74, 14.20. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform-d) $\delta 34.00$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BNaO}_{3}{ }^{+} 383.2728$, Found 383.2731. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+5.0$ ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (90\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=13.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=18.5 \mathrm{~min}$.

(S)-4,4,5,5-Tetramethyl-2-(1-phenoxynonan-4-yl)-1,3,2-dioxaborolane ((+) 3c)

Prepared according to GP4 with $\mathbf{1 a}(38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2c ($28.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 100:1 hexane:EtOAc) afforded the desired product (+) 3c as a colorless oil ($25 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$, $6.98-6.87(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.46(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 19 \mathrm{H}), 1.05(\mathrm{ddd}, J=8.7,5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d): $\delta 159.25,129.48,120.50,114.67,83.05,68.24,32.28,31.42$, 29.85, 29.01, 28.97, 27.77, 24.98, 24.93, 22.75, 14.21. HRMS (APPI/LTQ-Orbitrap) m/z:
$[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BO}_{3}{ }^{+} 346.2674$; Found 346.2677. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.21. $[\alpha]_{\mathrm{D}}^{20}=+2.6\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (89%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=60.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=68.1 \mathrm{~min}$.

(S)-1-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)decan-1-one ((+) 3d)

Bpin Prepared according to GP4 with $\mathbf{1 a}$ ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2d (27.4 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 60: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3d as a colorless oil (24 mg , 67%). ${ }^{1}$ H NMR (400 MHz , Chloroform- d): $\delta 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.53(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{q}, J=6.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{p}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.22(\mathrm{~m}, 22 \mathrm{H}), 1.01(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 200.66,137.21,132.92,128.63,128.22,83.03,39.15,32.27,31.36$,
31.26, 28.99, 24.96, 24.93, 24.27, 22.73, 14.20. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{BNaO}_{3}{ }^{+}$381.2571; Found 381.2574. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 34.08 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=$ $+2.6\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (92%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=22.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=51.6 \mathrm{~min}$.

(S)-2-(1-(4-Bromophenyl)nonan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 3e)

Prepared according to GP4 with $\mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.00$ equiv.), 2e (48 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 100: 1$ hexane:EtOAc) afforded the desired product (+) 3e as a colorless oil (30 mg , $73 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39$ - 7.34 (m, 2H), 7.06 - 7.01 $(\mathrm{m}, 2 \mathrm{H}), 2.54(\mathrm{td}, J=7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.35(\mathrm{~m}$, $4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 18 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$

NMR (101 MHz, Chloroform- d) $\delta 141.96,131.35,130.29,119.32,82.98,35.71,32.25,31.48$, 31.10, 29.04, 24.95, 24.92, 22.73, 14.20. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 33.59. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BBrO}_{2}{ }^{+} 409.1908$; Found 409.1919. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}$ $=+3.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (89\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=9.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=12.2 \mathrm{~min}$.

	6	8	10	$12 \sim 14$	16	18	min
Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]		$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.667	MM	0.2573	2571.70117	166.60675		6.3082
2	12.208	MM	0.3266	2981.74707	152.13881		3.6918
mAU 400 350 300 250 200 200 150 100 50 50 0							
	6	8	10	$12 \sim 14$	16	18	min
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$		Area 응
1	9.650	MM	0.2617	7059.00879	449.47610		4.4545
2	12.200		0.3210	414.44342	21.51644		5.5455

(S)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl 4-chlorobenzoate ($(+$) 3f)

Prepared according to GP4 with $\mathbf{1 a}(38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv. $)$, $\mathbf{2 f}(33 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 25: 1\right.$ hexane: EtOAc) afforded the desired product

(+) 3f as a colorless oil ($26 \mathrm{mg}, 64 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ $8.06-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{p}, J=$ $7.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.22(\mathrm{~m}, 22 \mathrm{H}), 1.02(\mathrm{ddd}, J=8.8,7.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.87$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 165.92$, 139.30, $131.11,129.19,128.76,83.10,65.79,32.25,31.35,28.94,28.46,27.78,24.98$, 24.93, 22.74, 14.19. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 35.76. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BClNaO}_{4}{ }^{+} 431.2131$, Found 431.2130. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+1.5$ ($\mathrm{c}=1.00$ in CHCl_{3}).
HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=10.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=9.6 \mathrm{~min}$.

mAU				
$2 \quad 4 \quad 6$	8	10 12	14 16	18 min
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area 응
19.581 MF	0.3215	544.93121	28.24557	49.1597
210.712 FM	0.3513	563.56030	26.73437	50.8403
$\begin{gathered} \mathrm{mAU} \\ 100 \\ 80 \\ 60 \\ 40 \\ 40 \\ 20 \\ 0 \\ 0 \end{gathered}$				
$\begin{array}{llll}2 & 4 & 6\end{array}$	8	$10 \quad 12$	$14 \quad 16$	18 min
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
19.630 MM	0.3260	154.17059	7.88233	5.2747
210.746 MM	0.3669	2768.68652	125.78008	94.7253

(S)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl 4-iodobenzoate ((+) 3g)

Prepared according to GP4 with 1a ($25.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 g}$ (62 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 25: 1\right.$ hexane:EtOAc) afforded the desired product (+) $\mathbf{3 g}$ as a colorless oil $(23 \mathrm{mg}$, 46%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.83-7.74$ (m, 2H), $7.78-7.70$ (m, $2 \mathrm{H}), 4.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.29-$ $1.22(\mathrm{~m}, 18 \mathrm{H}), 1.01(\mathrm{tt}, J=8.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 3 \mathrm{H}).){ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 166.28,137.77,131.19,130.19,100.62,83.09,65.79,32.24,31.34$, 28.93, 28.43, 27.76, 24.97, 24.92, 22.73, 14.20. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 36.03$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BINaO}_{4}{ }^{+} 523.1487$; Found 523.1504. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}$ $=+1.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (90\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=49.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=52.2 \mathrm{~min}$.

Benzyl (S)-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl)carbamate ((-) 3h)

Prepared according to GP4 with 1a ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2h (32 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 7: 1$ hexane:EtOAc) afforded the desired product (-) $\mathbf{3 h}$ as a colorless oil (28 mg , 70%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, 4.83 (s, 1H), $3.24-3.11$ (m, 2H), $1.90-1.04(\mathrm{~m}, 24 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 1 \mathrm{H})$, $0.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 156.46,136.86$, 128.61, 128.22, 128.15, 83.09, 66.63, 41.44, 32.24, 31.37, 29.54, 28.89, 28.40, 24.93, 24.91, 22.71, 14.19. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 34.46$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BNNaO}_{4}{ }^{+} 426.2786$; Found 426.2784. $[\alpha]_{\mathrm{D}}^{20}$ $=-1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (88\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=99: 1$ at a flow rate $0.3 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=68.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=66.0 \mathrm{~min}$.

(S)-2-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl)isoindoline-1,3-dione ((+) 3i)

Prepared according to GP4 with 1a ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 i}$ ($31.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography (SiO_{2}, 10:1 hexane:EtOAc) afforded the desired product (+) $\mathbf{3 i}$ as a colorless oil (30 $\mathrm{mg}, 75 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.76$ (dd, $J=5.4,3.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{dtd}, J=$ $13.2,6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.43-1.14$ (m, 22H), 0.91 (ddd, $J=8.9,5.6,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 168.53,133.88,132.40,123.23,83.07,38.50,32.23,31.38,28.97,28.69,28.39$, 24.95, 24.89, 22.71, 14.18. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 35.88. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{BNNaO}_{4}{ }^{+} 422.2473$, Found 422.2471. $[\alpha]_{\mathrm{D}}^{20}=+3.0(\mathrm{c}=1.00 \mathrm{in}$ CHCl_{3}).

HPLC: The enantiomeric excess (90\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=96: 4$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=35.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=30.4 \mathrm{~min}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.369	MM	1.2330	840.65161	11.36321	5.0361
2	35.195	MM	1.6677	1.58519 e 4	158.42488	94.9639

(S)-4-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl)phenol ((+) 3j)

Prepared according to GP4 with $\mathbf{1 a}$ ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 j}$ (26 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane:EtOAc) afforded the desired product (+) $\mathbf{3 j}$ as a colorless oil (19 mg , $55 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.14-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.57$ (m, 2H), 4.71 (brs, 1H), 2.52 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.57 (p, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.46$ $-1.23(\mathrm{~m}, 22 \mathrm{H}), 0.99(\mathrm{q}, J=8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 153.54, 135.27, 129.53, 115.14, 83.02, 35.44, 32.28, 31.52, 31.22, 29.09, 24.96, 24.93, 22.74, 14.21. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BO}_{3}{ }^{+} 346.2674$; Found 346.2674. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 36.02. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}=+0.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (93\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=15.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=13.2 \mathrm{~min}$.

	$\underbrace{\circ}$				
	8 10	12	14	16	min
Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	13.105 MM	0.4443	718.19611	26.93867	49.5835
2	15.410 MM	0.4988	730.26135	24.39973	50.4165

(S)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl furan-2-carboxylate ((-) 3k)

Prepared according to GP4 with $\mathbf{1 a}(38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 k}$ (28 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv. $)$. Flash column chromatography $\left(\mathrm{SiO}_{2}, 20: 1\right.$ hexane:EtOAc) afforded the desired product (-) 3k as a colorless oil (26 mg , $71 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d): $\delta 7.56(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 22 \mathrm{H}), 1.00(\mathrm{ddd}, J=8.8,7.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.84(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d): $\delta 158.98$, 146.23, 145.10, 117.74, 111.85, 83.08, 65.52, $32.25,31.33,28.92,28.47,27.61,24.97,24.92,22.73,14.19 .{ }^{11} \mathbf{B} \mathbf{N M R}(128 \mathrm{MHz}$, Chloroformd) δ 35.39. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BNaO}_{5}{ }^{+} 387.2313$, Found 387.2313. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-2.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess $(90 \%$) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}{ }^{\circledR} \mathrm{OJ}-\mathrm{H}$ column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=20.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=18.6 \mathrm{~min}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.557		0.5306	3843.66113	120.73885	50.0761
2	19.334		0.5754	3831.97998	111.00167	49.9239
10	12	14	16 18	$20-22$	24.26	28 min
Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 응
1	18.606	MM	0.5619	113.36444	3.36265	5.1097
2	20.401	MM	0.6129	2105.23022	57.24960	94.8903

(S)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl thiophene-2-carboxylate ((+) 31)

Prepared according to GP4 with 1a ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 l}$ (30 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) afforded the desired product (+) $\mathbf{3 1}$ as a colorless oil (23 mg , 60%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.79$ (dd, $J=3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (dd, $J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 22 \mathrm{H}), 1.01(\mathrm{ddd}, J=8.7,5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 158.98,146.23$, 145.10, 117.74, 111.85, 83.08, 65.52, 32.25, 31.33, 28.92, 28.47, 27.61, 24.97, 24.92, 22.73, 14.19. HRMS (ESI/QTOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BNaO}_{4} \mathrm{~S}^{+} 403.2085$; Found 403.2080. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 35.35 .[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+1.3\left(\mathrm{c}=1.00 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (90\%) was determined after oxidation (GP2) via HPLC analysis using a $\mathrm{CHIRALCEL}{ }^{\circledR}$ ($\mathrm{OJ}-\mathrm{H}$ column, with hexane:isopropanol $=96: 4$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=18.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=16.4 \mathrm{~min}$.

Methyl
(S)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl)-1H-indole-3carboxylate ($(+$) 3m)

Bpin Prepared according to GP4 with $\mathbf{1 a}$ ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 m}$
 ($34 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) afforded the desired product (+) $\mathbf{3 m}$ as a colorless oil (22 mg, 50\%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 8.20(\mathrm{dd}, J=6.2,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85$ ($\mathrm{s}, 1 \mathrm{H}$), $7.43-7.37$ (m, 1H), 7.28 (dd, $J=6.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.15 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.21(\mathrm{~m}, 22 \mathrm{H}), 1.00(\mathrm{dq}, J=20.3,7.6$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d): $\delta 165.70,136.63$, $134.38,126.89,122.66,121.86,121.83,110.20,106.88,83.17,51.04,47.39,32.19,31.39,29.54$, 28.89, 28.60, 24.96, 24.87, 22.69, 14.17. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{BNNaO}_{4}{ }^{+}$450.2786; Found 450.2793. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 35.39. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}$ $=+4.00\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=92: 8$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=22.8 \mathrm{~min}$.

Benzyl (S)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)piperidine-1carboxylate ($(+$) 3n) Bpin Prepared according to GP4 with 1a ($38.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2n (36 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 20: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3n as a colorless oil (35 mg , 79%). ${ }^{1}$ H NMR (400 MHz , Chloroform-d): $\delta 7.41-7.16$ (m, 5H), 5.12 (s, 2H), $4.24-4.03(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=27.5,13.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46-1.22(\mathrm{~m}, 23 \mathrm{H}), 1.14-0.97(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 155.45,137.20,128.58,127.99,127.92,83.04,67.00,44.47,38.22,35.52,32.27$, 31.78, 29.00, 24.98, 24.91, 22.74, 14.20. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for
$\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{BNNaO}_{4}{ }^{+} 466.3099$; Found 466.3095. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 35.84 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}$ $=+4.7\left(\mathrm{c}=1.00 \mathrm{in} \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=45.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=42.8 \mathrm{~min}$.

Methyl (S)-10-phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)decanoate ((-) 30)

Prepared according to GP4 with $\mathbf{1 b}$ ($54 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ equiv.), 2 o ($43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.50$ equiv.) and $\mathrm{KI}(13.2 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.40$ equiv.) in 3:2 DCE:DMF (1.0 mL). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (-) $\mathbf{3 o}$ as a colorless oil (42 $\mathrm{mg}, 54 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d): $\delta 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.74$ (s, 3H), 2.68 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.35(\mathrm{~m}, 8 \mathrm{H})$, $1.29(\mathrm{~s}, 12 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.40,142.96,128.54$,
128.30, 125.62, 82.97, 51.53, 35.99, 34.21, 31.82, 31.37, 31.13, 28.97, 28.91, 25.37, 24.89, 24.87.
${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 33.70$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNaO}_{4}{ }^{+}$411.2677; Found 411.2672. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=-1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (83\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=34.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=31.9 \mathrm{~min}$.

(S)-4,4,5,5-Tetramethyl-2-(1-phenoxy-9-phenylnonan-5-yl)-1,3,2-dioxaborolane ((-) 3p)
 $\mathrm{mg}, 54 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98$

- $6.87(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{td}, J=6.8,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.29(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.01(\mathrm{ddd}, J=8.7,5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 159.25,142.97$, 129.52, 129.48, 128.55, 128.31, 125.63, 120.50, $114.59,82.99,67.84,36.00,31.83,31.40,31.30,29.67,28.99,25.81,24.90,24.88 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 33.72. HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{BO}_{3}{ }^{+}$422.2987; Found 422.3004. $[\alpha]_{\mathrm{D}}^{20}=-0.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (85\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=12.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=10.8 \mathrm{~min}$.

(S)-4,4,5,5-Tetramethyl-2-(2-methyl-7-phenylheptan-3-yl)-1,3,2-dioxaborolane ((-) 4a)

Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 r}(15 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 150: 1\right.$ hexane: EtOAc$)$ afforded the desired product

(-) $\mathbf{4} \mathbf{a}$ as a colorless oil ($22 \mathrm{mg}, 70 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ $7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ (ddd, $J=28.7,14.3,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 16 \mathrm{H}), 0.94(2 \mathrm{~d}, 4.7 \mathrm{~Hz}$, 6 H), 0.84 (dt, $J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 143.03,128.57,128.31$, $125.62,82.91,36.07,31.93,29.84,29.41,29.29,25.07,24.97,22.52,22.00 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.97. HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BO}_{2}{ }^{+}$316.2568; Found 316.2566. [$\left.\alpha\right]_{\mathrm{D}}^{\mathbf{2 0}}=-6.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (93\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=16.1 \mathrm{~min}$.

(S)-2-(1-Cyclohexyl-5-phenylpentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((-) 4b)

Prepared according to GP4 with $\mathbf{1 b}(27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 s}(20 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 150: 1$ hexane: EtOAc) afforded the desired product

$(-) \mathbf{4 b}$ as a colorless oil ($24 \mathrm{mg}, 67 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ 7.27 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.85$ $-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{dq}, J=13.4,6.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24$ (m, 15H), $1.16-0.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): δ 143.03, 128.57, 128.30, $125.61,82.91,39.90,36.04,33.05,32.72,31.91,29.44,28.84,26.95,26.93,25.10,24.95 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.18. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BO}_{2}{ }^{+} 356.2881$; Found 356.2878. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-4.33\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (93\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=23.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=22.8 \mathrm{~min}$.

(S)-2-(1-Cyclooctyl-5-phenylpentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((-) 4c)

Prepared according to GP4 with $\mathbf{1 b}(27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 t}(36 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 150: 1$ hexane: EtOAc) afforded the desired product

$(-) \mathbf{4 c}$ as a colorless oil ($30 \mathrm{mg}, 78 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.66$ $-1.22(\mathrm{~m}, 33 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 143.03,128.57,128.30,125.61,82.86,39.22,36.05,32.72,32.59,31.91$, 29.47, 29.26, 27.10, 27.07, 26.70, 26.64, 25.96, 25.07, 24.93. ${ }^{11}$ B NMR (128 MHz , Chloroformd) $\delta 33.82$. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BO}_{2}{ }^{+} 384.3194$; Found 384.3192. $[\alpha]_{\mathrm{D}}^{20}=-1.0\left(\mathrm{c}=1.00 \mathrm{in} \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=96: 4$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=7.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=8.1 \mathrm{~min}$.

(S)-2-(1-(2,3-Dihydro-1H-inden-2-yl)-5-phenylpentyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($(-)$ 4d)

Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), 2u (36 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 100: 1\right.$ hexane:EtOAc) afforded the desired product (-) 4d as a colorless oil (27 mg , 69%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.15-7.11$ (m, 2H), $7.08-$ $7.00(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{ddd}, J=36.2,15.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 4 \mathrm{H})$, $2.44-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.04(\mathrm{~m}, 19 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 143.94,143.74$, $142.92,128.58,128.34,126.04,126.02,125.67,124.40,124.38,83.09,42.29,39.39,38.77,36.03$, 31.91, 30.58, 29.23, 24.98. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 33.68. HRMS (APPI/LTQOrbitrap) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BO}_{2}{ }^{+} 390.2725$; Found 390.2724. $[\alpha]_{\mathrm{D}}^{20}=-5.8(\mathrm{c}=1.00$ in CHCl_{3}).
HPLC: The enantiomeric excess (91%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=22.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=19.3 \mathrm{~min}$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.257	MM	0.7927	266.35928	5.60041	4.5004
2	22.357		0.7888	5652.26172	119.42857	95.4996

(S)-4,4,5,5-Tetramethyl-2-(5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentyl)-1,3,2dioxaborolane ((-) 4e)

Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 v}$ (18 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (-) $\mathbf{4 e}$ as a colorless oil $(25 \mathrm{mg}$, 70%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.28$ (dd, $J=8.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.96(\mathrm{dt}, J=10.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.23$ $(\mathrm{m}, 23 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13}$ C NMR (101 MHz , Chloroform- d): $\delta 142.86,128.54,128.32$, $125.67,83.13,68.66,68.54,37.05,35.99,32.93,32.54,31.83,29.14,28.40,25.07,24.99 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform-d) δ 33.62. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{BO}_{3}{ }^{+}$359.2752; Found 359.2753. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-3.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (92%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $1.0 \mathrm{~m} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=6.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=5.7 \mathrm{~min}$.

	3	5	7	8	9 min
Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.667 MF	0.2191	1800.97412	137.01515	48.5651
2	6.087 FM	0.2286	1907.39783	139.03949	51.4349

tert-Butyl (S)-4-(5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)piperidine-1-carboxylate ($(+$ 4f)
Bpin Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 w}$ ($47 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$ hexane: EtOAc) afforded the desired product (+) $\mathbf{4 f}$ as a colorless oil (28 mg , 61%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.28(\mathrm{dd}, J=9.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 4.16-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dt}, J=15.1,10.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.40$ $-1.08(\mathrm{~m}, 19 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): 155.05, 142.85, 128.55, $128.33,125.67,83.13,79.19,44.59,38.09,35.97,31.89,31.80,31.49,29.16,28.65,28.62,25.06$, 24.95. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 36.14. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{BNNaO}_{4}{ }^{+}$480.3256; Found 480.3263. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+1.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (92%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=15.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=18.1 \mathrm{~min}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.921		0.6108	1118.12720	30.50814	50.4403
2	19.022	MM	0.7342	1098.60767	24.94016	49.5597
	12	14	16×18	$20 \quad 22$	24.26	28 min
Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	15.006		0.6106	6870.53320	187.52461	96.0784
2	18.082	MM	0.7479	280.42938	6.24909	3.9216

(S)-4,4,5,5-Tetramethyl-2-(5-phenyl-1-(1,4-dioxaspiro[4.5]decan-8-yl)pentyl)-1,3,2-

 dioxaborolane ($(-) 4 \mathrm{4g})$

Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 x}$ (40 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (-) $\mathbf{4 g}$ as a colorless oil (26 mg , $63 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.22$ (dd, $J=33.2,7.5 \mathrm{~Hz}, 5 \mathrm{H}$), $3.94(\mathrm{~s}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.28(\mathrm{~m}$, $9 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 142.94$, $128.56,128.30,125.62,109.22,83.03,64.29,64.26,38.44,35.99,35.01,34.97,31.84,29.63$, 29.32, 29.01, 25.07, 24.91. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BO}_{4}{ }^{+} 415.3014$; Found 415.3016. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 35.38 .[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=-2.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. HPLC: The enantiomeric excess (92\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Elution time: $\mathrm{t}_{\text {majar }}=19.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=24.0 \mathrm{~min}$.

(S)-4,4,5,5-Tetramethyl-2-(1-(oxetan-3-yl)-5-phenylpentyl)-1,3,2-dioxaborolane ((-) 4h)
 58%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.34-7.15$ (m, 5H), 4.76 (ddd, $J=10.9,7.9,5.9 \mathrm{~Hz}$, 2H), $4.54-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~h}, J=6.9 \mathrm{~Hz}$, 2H), $1.41-1.20(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 142.72, 128.53, 128.34, 125.71, 83.28, 78.91, 77.73, 37.19, 35.89, 31.77, 29.00, 28.82, 24.87, 24.77. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 33.49. HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BO}_{3}{ }^{+}$331.2439; Found 331.2438. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-10.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (85\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\otimes}$ AD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=8.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=7.7 \mathrm{~min}$.

tert-Butyl (S)-3-(5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)azetidine-1-carboxylate ($(-)$ 4i)

Bpin Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 z}$ (28
 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 15: 1$ hexane:EtOAc) afforded the desired product (-) $\mathbf{4 i}$ as a colorless oil (22 mg , 51%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.30-7.15$ (m, 5H), 3.97 (q, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.60 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{q}, J=7.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ (d, $J=2.1 \mathrm{~Hz}, 9 \mathrm{H}$), $1.36-1.19(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 156.49,142.72$, $128.53,128.34,125.71,83.33,79.10,55.33,54.30,35.89,31.76,30.70,29.04,28.78,28.57,24.91$, 24.77. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 35.28. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BNNaO}_{4}{ }^{+} 452.2943$; Found 452.2948. $[\alpha]_{\mathrm{D}}^{20}=-4.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (89\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=93: 7$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=10.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=15.7 \mathrm{~min}$.

4,4,5,5-Tetramethyl-2-((4S)-3-methyl-8-phenyloctan-4-yl)-1,3,2-dioxaborolane (4j)

Prepared according to GP4 with $\mathbf{1 b}$ ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), 2a' (18 $\mu \mathrm{L}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 100: 1$ hexane:EtOAc) afforded the desired product $\mathbf{4} \mathbf{j}$ as an inseparable mixture of diastereomers $(\mathrm{dr}=1: 1.04)$ and a colorless oil $(23 \mathrm{mg}, 70 \%)$. The diastereomeric ratio was determined by chiral HPLC. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.31-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.22$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.31-1.16(\mathrm{~m}$, 14H), 1.19 - 1.02 (m, 1H), $1.01-0.82(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 143.05$, $128.57,128.31,125.62,82.89,82.87,36.65,36.38,36.07,31.94,31.91,29.56,29.46,29.11,28.74$, 28.06, 25.08, 24.94, 24.87, 18.42, 18.23, 12.23, 11.85. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ
33.67. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BNaO}_{2}{ }^{+} 353.2622$; Found 353.2628.

HPLC: The enantiomeric excesses (94% and 95%) were determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=21.0 \mathrm{~min}, 21.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}$ $=28.6 \mathrm{~min}, 29.6 \mathrm{~min}$.

	15	20	25	$30 \quad 35$	min
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.133 MF	0.4586	1994.55847	72.48192	23.6959
2	21.916 FM	0.5246	2220.67480	70.55004	26.3822
3	28.712 MF	0.6298	2028.08398	53.66684	24.0942
4	29.603 FM	0.6766	2174.00757	53.55584	25.8278
			$\stackrel{0}{0}$		
10	15	20	25	$30 \quad 35$	min
Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.999 MF	0.4575	4306.46680	156.89224	47.8474
2	21.763 FM	0.5005	4450.07471	148.19080	49.4429
3	28.628 MF	0.6340	132.82445	3.49193	1.4758
4	29.592 FM	0.6456	111.05887	2.86715	1.2339

4,4,5,5-Tetramethyl-2-((4S)-3-methyl-1,8-diphenyloctan-4-yl)-1,3,2-dioxaborolane (4k)

100:1 hexane:EtOAc) afforded afforded the desired product $\mathbf{4 k}$ as an inseparable mixture of diastereomers $(\mathrm{dr}=1: 1.05)$ and a colorless oil $(28 \mathrm{mg}, 69 \%)$. The diastereomeric ratio was determined by chiral HPLC. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.41$ - $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-$ $7.20(\mathrm{~m}, 6 \mathrm{H}), 2.84-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.24(\mathrm{~m}, 13 \mathrm{H}), 1.16-0.98(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 143.37, 143.32, 143.00, 128.57, 128.53, 128.49, 128.39, 128.34, 128.31, 125.63, 125.59, 82.96, 82.94, 38.64, $38.10,36.05,35.99,34.61,34.35,34.11,33.80,31.91,31.88,29.50,29.45,29.33,28.01,25.11$, 25.05, 24.94, 18.85, 18.69. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 34.61. HRMS (APPI/LTQOrbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{BNaO}_{2}{ }^{+} 429.2935$; Found 429.2947.

HPLC: The enantiomeric excesses (94% and 94%) were determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.5 \mathrm{~min}, 20.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}$ $=16.8 \mathrm{~min}, 19.0 \mathrm{~min}$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.802		0.3957	173.08803	7.29061	1.2270
2	17.494		0.4333	6690.52002	257.32394	47.4275
3	19.050	MM	0.7896	176.20824	3.71941	1.2491
4	20.891		0.7801	7067.03076	150.98814	50.0965

4,4,5,5-Tetramethyl-2-((1S)-5-phenyl-1-(tetrahydrofuran-3-yl)pentyl)-1,3,2-dioxaborolane (41)

Prepared according to GP4 with $\mathbf{1 b}(27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), 2c' (30 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane:EtOAc) afforded afforded the desired product 41 as an inseparable mixture of diastereomers ($\mathrm{dr}=1: 1.1$) and a colorless oil colorless oil ($26 \mathrm{mg}, 75 \%$). The diastereomeric ratio was determined by chiral HPLC. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.39$ $-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.01(\mathrm{dt}, J=23.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{tdd}, J=8.4,5.8,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{tt}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dt}, J=9.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{td}, J=7.6,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.31 (tdt, $J=14.9,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddtd, $J=31.2,11.8,7.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.51$ (m, $4 \mathrm{H}), 1.52-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 12 \mathrm{H}), 1.12-0.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 142.80,142.76,128.54,128.33,125.68,83.22,83.20,73.79,72.86,68.22,68.16$, $41.35,41.13,35.95,35.93,32.54,31.95,31.81,31.74,30.79,30.65,29.83,29.16,29.01,24.93$, 24.90, 24.85. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 32.74$. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{BO}_{3}{ }^{+}$345.2596; Found 345.2603.
HPLC: The enantiomeric excesses (90% and 90%) were determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IA column, with hexane:isopropanol $=98: 2$ at a flow rate $0.7 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=52.5 \mathrm{~min}, 62.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ $55.8 \mathrm{~min}, 57.7 \mathrm{~min}$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	52.384		1.2373	6433.73486	86.66511	23.8196
2	55.049		1.1911	6212.09570	86.92649	22.9990
3	56.945		1.3623	7371.70020	90.18723	27.2922
4	61.858	MM	1.3860	6992.71777	84.08586	25.8891
	25	30	$35 \quad 40$	45 50	$55 \quad 60$	$65 \quad$ min
Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 응
1	52.520		1.2906	9782.80859	126.33604	45.4066
2	55.815		1.1029	508.75348	7.68788	2.3614
3	57.687		1.3363	583.35461	7.27594	2.7076
4	62.080		1.4378	1.06700 e 4	123.68741	49.5244

(S)-2-(9-Chloro-1-(4-methoxyphenyl)nonan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (+) 5a)

CI Bpin Prepared according to GP4 with $\mathbf{1 c}$ ($37 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}$ (28 mg , $0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product (+) 5a as a colorless oil (24 mg , $61 \%) .{ }^{1}{ }^{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.13-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.74$ (m, 2H), 3.78 (d, $J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{td}, J=6.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.75(\mathrm{~h}, J=7.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~h}, J=7.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.23(\mathrm{~m}, 20 \mathrm{H}), 0.98(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 157.70,135.08,129.34,113.76,83.02$, $55.38,45.23,35.40,32.68,31.44,31.26,31.12,28.58,27.25,24.95 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 33.73. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{BClNaO}_{3}{ }^{+} 417.2338$; Found 417.2340. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+1.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=46.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=41.4 \mathrm{~min}$.

Methyl (S)-9-(4-methoxyphenyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonanoate ($(+$ 5b)
$\mathrm{CO}_{2} \mathrm{Me}$ Bpin Prepared according to $\mathbf{G P 4}$ with $\mathbf{1 d}(38 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}$ (28 mg , $0.10 \mathrm{mmol}, 1.00$ equiv. $)$. Flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 1\right.$ hexane:EtOAc) afforded the desired product (+) 5b as a colorless oil (23 mg , $57 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) : ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{td}, J=14.7,14.2,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.47-1.35(\mathrm{~m}$, $3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.38,157.69,135.08,129.33,113.76,83.01,55.37,51.53,35.39$,
34.22, 31.43, 31.10, 31.07, 28.90, 25.38, 24.94. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 36.32$. HRMS (APCI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNaO}_{5}{ }^{+}$427.2626; Found 427.2633. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+3.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=92: 8$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=22.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=20.7 \mathrm{~min}$.

(R)-8-(4-Methoxyphenyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl acetate ((+) 5c)

$2.05(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 18 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 171.30,157.68,135.02,129.30,113.74,83.01,64.71,55.34,35.36,31.40$, 31.08, 28.96, 25.67, 24.91, 21.10. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 33.78. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNaO}_{5}{ }^{+} 427.2626$; Found 427.2627. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+2.8$ ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=92: 8$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=21.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=20.2 \mathrm{~min}$.

(S)-2-(1-(4-Methoxyphenyl)-9-phenoxynonan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($(-) 5 \mathrm{~d})$

Prepared according to GP4 with $\mathbf{1 f}(45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2b ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane: EtOAc) afforded the desired product

(-) $\mathbf{5 d}$ as a colorless oil ($31 \mathrm{mg}, 69 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ $7.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (dd, $J=29.9,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.57$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (p, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60 (dd, $J=15.0,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46$ $-1.25(\mathrm{~m}, 17 \mathrm{H}), 1.07-0.99(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ $159.26,157.69,135.14,129.51,129.35,120.55,114.62,113.77,83.00,67.96,55.39,35.42,31.48$, 31.42, 31.19, 29.36, 29.13, 26.43, 24.96, 24.94. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 35.50$. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{BO}_{4}{ }^{+} 452.3092$; Found 452.3081. $[\alpha]_{\mathrm{D}}^{20}=-0.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=44.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=55.4 \mathrm{~min}$.

(S)-6-(Tetrahydro-2H-pyran-4-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl benzoate ((-) 5e)

Prepared according to GP4 with $\mathbf{1 g}$ ($33 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.), $\mathbf{2 v}$ ($18 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.50$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane:EtOAc) afforded the desired product (-) 5e as a colorless oil (33 mg , 79%). ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d): $\delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=11.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.75(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.23(\mathrm{~m}, 23 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $166.78,132.91,130.64,129.66,128.44,83.17,68.65,68.54,65.16,37.05,32.92$, 32.47, 29.21, 28.79, 28.38, 26.48, 25.11, 25.00. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 34.35$.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{BO}_{5}{ }^{+} 417.2807$; Found 417.2804. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-$ 0.5 ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (90%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=11.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=10.5 \mathrm{~min}$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 응
1	10.502		0.3544	182.56752	8.58649	4.8058
2	11.308		0.3516	3616.30103	171.42809	95.1942

(R)-tert-Butyl((7-(4-methoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)heptyl)oxy)dimethylsilane ($(+$) 5f)

Prepared according to GP4 with $\mathbf{1 h}(47 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}$ ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product (+) 5f as a colorless oil (26 mg , 56%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.07$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.81 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.62-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 1.05-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.69,135.14,129.34,113.76,83.00,63.72,55.38,35.42,32.67$, $31.45,31.16,27.56,26.15,24.96,18.52,-5.07 .{ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 33.63$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{BO}_{4} \mathrm{Si}^{+} 463.3409$; Found 463.3408. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=$ $+1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ ($\mathrm{OD}-\mathrm{H}$ column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=15.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=19.6 \mathrm{~min}$.

(R)-2-(1-Cyclohexyl-5-(4-methoxyphenyl)pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ((+) 5g)

Prepared according to GP4 with $\mathbf{1 i}$ ($36 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2b (28 mg , $0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 60: 1\right.$ hexane: EtOAc) afforded the desired product (+) $\mathbf{5 g}$ as a colorless oil $(20 \mathrm{mg}$, 54%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.08$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.81 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{td}, J=7.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.19(\mathrm{~m}, 29 \mathrm{H})$, $0.88-0.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.69,135.17$, 129.36, 113.76, 82.93, $55.39,39.28,37.24,35.42,33.96,33.44,31.54,31.50,26.87,26.63,26.59,25.01,24.89 .{ }^{11} \mathbf{B}$ NMR (128 MHz, Chloroform- d) δ 34.31. HRMS (APPI/LTQ-Orbitrap) m/z: [M] Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{BO}_{3}{ }^{+}$386.2987; Found 386.2999. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=16.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=20.9 \mathrm{~min}$.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.276		0.5813	3330.38159	95.48704	50.1097
2	21.268	MM	0.7387	3315.79956	74.81236	49.8903
10	12	14	16×18	$20 \quad 22$	24.26	28 min
Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.834		0.5723	6599.80664	192.20392	95.5663
2	20.886	MM	0.6790	306.19308	7.51567	4.4337

(S)-2-(5-(4-Methoxyphenyl)pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 5h)
 Prepared according to GP4 with $\mathbf{1 j}$ ($51 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}(56 \mathrm{mg}, 0.20$ mmol, 1.00 equiv.), DEMS ($86 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.50$ equiv.), $\mathrm{KF}(29 \mathrm{mg}, 0.50 \mathrm{mmol}$, 2.5 equiv.) and DCE/DMF (1.0 mL). Flash column chromatography ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product (+) $\mathbf{5 h}$ as a colorless oil ($41 \mathrm{mg}, \mathbf{6 8 \%}$). ${ }^{1}$ H NMR (400 MHz , Chloroform- d): $\delta 7.19-7.07$ (m, 2H), 6.94-6.79 (m, 2H), 3.81 (s, 3H), 2.57 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{dq}, J=9.3,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.07(\mathrm{dd}, J=14.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.68,135.20,129.33,113.75,82.93,55.36,35.38,33.03,31.24,24.90$, 24.85, 15.63. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 34.31$. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BO}_{3}{ }^{+}$304.2204; Found 304.2209. $[\alpha]_{\mathrm{D}}^{20}=+4.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=25.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=28.2 \mathrm{~min}$.

$10 \sim 15$	20	25	30	n
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
125.639 MF	0.9158	3716.80762	67.64159	52.8144
2 28.168 FM	0.9079	3320.67944	60.95637	47.1856
$\begin{aligned} & \mathrm{mAU} \\ & 150 \text { 音 } \\ & 125 \text { : } \\ & 100 \text { : } \\ & 75 \text { : } \\ & 50 \text { : } \\ & 25 \end{aligned}$			币	
$10 \sim 15$	20	25	30	min
Peak RetTime Type \# [min]	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 응
125.615 MF	0.8489	9494.51563	186.40912	95.2092
2 28.209 FM	0.8748	477.74991	9.10241	4.7908

(R)-2-(6-(4-Methoxyphenyl)-2-methylhexan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 5i)
Bpin Prepared according to GP4 with $\mathbf{1 k}(62 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}$ (56 mg , $0.20 \mathrm{mmol}, 1.00$ equiv.), DEMS ($86 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.50$ equiv.), KF ($29 \mathrm{mg}, 0.50$ mmol, 2.5 equiv.) and DCE/DMF (1.0 mL). Flash column chromatography (SiO_{2}, 60:1 hexane:EtOAc) afforded the desired product (+) $\mathbf{5 i}$ as a colorless oil (20 mg , 30%). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91-6.73$ $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{td}, J=7.9,7.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.34(\mathrm{~m}, 5 \mathrm{H})$, $1.24(\mathrm{~s}, 12 \mathrm{H}), 0.92-0.83(\mathrm{~m} .6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 157.67, 135.20, 129.36, $129.33,113.75,82.95,55.38,35.48,31.86,29.79,29.05,25.14,24.99,22.52,21.95 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.85. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BO}_{3}{ }^{+}$332.2517; Found 332.2526. $[\alpha]_{\mathbf{D}}^{20}=+3.61\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 230 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=22.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=20.8 \mathrm{~min}$.

2-((S)-1-((1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)-7-phenylheptan-3-yl)-4,4,5,5-

 tetramethyl-1,3,2-dioxaborolane ((-) 6a)

Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2d' (28 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 100: 1$ hexane:EtOAc) afforded the desired product (-) 6a as a colorless oil (20 mg , 54%) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ $7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dt}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-$ 2.14 (m, 2H), 2.08 (dddd, $J=6.8,5.5,3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{td}, J=5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (ddt, J $=9.1,7.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{ddt}, J=13.9,7.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz ,

Chloroform- d) $\delta 148.86,143.01,128.56,128.31,125.62,115.67,82.95,45.90,41.05,38.09,36.78$, $36.01,31.84,31.81,31.41,31.39,29.85,29.22,29.02,26.53,24.94,24.91,21.36 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 35.26. HRMS (APPI/LTQ-Orbitrap) m / z : [M] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{BO}_{2}{ }^{+} 422.3351$; Found 422.3352. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-11.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
Determination of dr: The diastereomeric ratio (95:5) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=14.5$ min.

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl
(S)-2-(6-methoxynaphthalen-2-yl)propanoate ($(+$) 6b):
Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2e' ($40 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane: EtOAc) afforded the desired product

(+) $\mathbf{6 b}$ as a colorless oil ($37 \mathrm{mg}, 68 \%$) in $94: 6$ diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.75-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ - 7.26 (m, 2H), $7.20-7.11$ (m, 5H), 4.08 (t, $J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.92$ (s, 3H), 3.87 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.62-1.57$ (m, 6H), $1.45-$ 1.17 (m, 19H), 0.91 (dq, $J=8.8,5.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.80$, $157.70,142.94,136.00,133.77,129.41,129.06,128.53,128.31,127.18,126.43,126.03,125.64$, $119.01,105.69,83.02,65.21,55.41,45.64,35.97,31.79,31.23,28.85,28.30,27.57,24.89,24.85$, 18.66. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 36.03. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{BNaO}_{5}^{+}$567.3252; Found 567.3265. $[\alpha]_{\mathrm{D}}^{20}=+14.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
Determination of dr: The diastereomeric ratio (94:6) was determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=14.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=11.6 \mathrm{~min}$.

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate ($(+$) 6c):

Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2f' ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 1\right.$ hexane:EtOAc) afforded the desired product (+) $\mathbf{6 c}$ as a colorless oil ($32 \mathrm{mg}, 57 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): δ $7.30-7.26$ (m, 2H), $7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.52$ $-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.24(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 18 \mathrm{H}), 1.00(\mathrm{ddd}, J=8.8,5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 177.93, 157.10, 142.91, 136.53, 130.39, 128.54, 128.31, $125.65,123.71,120.77,112.05,83.06,68.11,64.84,42.21,37.25,36.00,31.80,31.33,29.84$, 28.92, 28.44, 27.77, 25.34, 24.91, 24.88, 21.55, 15.92. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.07. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{BNaO}_{5}{ }^{+}$587.3878; Found 587.3892. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=+1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=17.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=19.4 \mathrm{~min}$.

tert-Butyl(($3 R, 5 R, 8 R, 9 S, 10 S, 13 R, 14 S, 17 R)-10,13-d i m e t h y l-17-((2 R, 6 S)-11-p h e n o x y-6-~$ (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undecan-2-yl)hexadecahydro-1Hcyclopenta $[a]$ phenanthren-3-yl)oxy)dimethylsilane ($(+$) 6d)

Prepared according to GP4 with $\mathbf{1 f}(45 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.50 equiv.), 2g' ($59 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography $\quad\left(\mathrm{SiO}_{2}, \quad 30: 1\right.$ hexane:EtOAc) afforded the desired product (+) 6d as a white solid ($33 \mathrm{mg}, 43 \%$) in 95:5 diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{tt}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.63-$ $0.91(\mathrm{~m}, 59 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 159.28,129.51$, $120.53,114.63,82.95,73.03,67.99,56.59,56.41,42.82,42.49,40.38,40.33,37.10,36.31,36.04$, $35.76,34.76,32.10,31.61,31.19,29.38$, 29.22, 28.46, 27.49, 26.59, 26.45, 26.14, 25.74, 24.99, 24.96, 24.40, 23.57, 20.98, 18.79, 18.50, 12.17, -4.43. HRMS (ESI/QTOF) m/z: [M + Na] Calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{BNaO}_{4} \mathrm{Si}^{+} 785.6046$; Found 785.6050. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 37.90. $[\alpha]_{\mathrm{D}}^{20}=+23.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Determination of dr: The diastereomeric ratio (95:5) was determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 280 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=15.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=12.3 \mathrm{~min}$.

$6 \quad 8$	10	12 14	16	18 min
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 응
$1 \quad 12.337 \mathrm{MM}$	0.1862	539.98956	48.33888	49.4963
215.786 MM	0.9984	550.97998	9.19735	50.5037
$\begin{array}{r} \mathrm{mAU} \\ 8 \\ 8 \\ 8 \\ 6 \\ 6 \\ 4 \\ 4 \\ 2 \end{array}$				
6 8	10	12 14	16	18 min
Peak RetTime Type \# [min]	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area [mAU*s]	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 응
$1 \quad 12.360 \mathrm{MM}$	0.1784	33.76090	3.15323	5.3510
215.791 MM	0.9837	597.17194	10.11783	94.6490

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl

Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2h' ($39 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 15: 1$ hexane: EtOAc) afforded the desired product (-) 6e as a colorless oil ($34 \mathrm{mg}, 64 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.41$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (td, $J=7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 - 7.11 (m, 4H), $6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.72-0.91$ (m, 23H). ${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 168.26,152.60,142.88,130.44$, $128.54,128.33,127.66,127.14,125.67,124.39,114.89,83.13,66.57,66.07,35.97,31.79,31.30$, 28.83, 28.23, 27.57, 24.93, 24.88. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 34.13. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BCl}_{2} \mathrm{NaO}_{5}{ }^{+}$557.2003; Found 557.2012. $[\alpha]_{\mathbf{D}}^{20}=-$ $1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (89\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=70: 30$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=29.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=25.6 \mathrm{~min}$.

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl dihydrodibenzo[b,e]oxepin-2-yl)acetate ((-) 6f)

Prepared according to GP4 with $\mathbf{1 b}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 i} \mathbf{i}^{\prime}$ ($44 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography (SiO_{2}, 7:1 hexane:EtOAc) afforded the desired product (-) $\mathbf{6 f}$ as a colorless oil ($34 \mathrm{mg}, 58 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 8.14(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{dt}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{dd}, J=8.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.63$ (ddt, $J=10.7,7.7,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.54-1.13(\mathrm{~m}, 19 \mathrm{H}), 0.98(\mathrm{tt}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 190.93, 171.58, 160.55, 142.92, 140.60, 136.49, 135.69, $132.85,132.58,132.55,129.62,129.36,128.54,128.31,128.15,127.90,125.64,121.12,83.07$, $73.75,65.52,40.40,35.98,31.79,31.28,28.87,28.31,27.65,24.92,24.88 .{ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) $\delta 35.70$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{BNaO}_{6}{ }^{+} 605.3045$; Found 605.3057. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-0.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (92\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=42.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=36.0 \mathrm{~min}$.

	25	30	35	45	50 min
Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	38.812 MM	1.4273	1193.29309	13.93437	50.0875
2	46.128 MM	1.7529	1189.12170	11.30647	49.9125
20	${ }^{1}$	${ }^{30}$	${ }_{35}^{1}$	40	$45 \quad$ min
Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	36.016 MM	1.1830	581.88513	8.19762	4.1616
2	42.495 MM	1.6417	1.34004 e 4	136.04102	95.8384

(S)-9-Phenoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate ((-) 6g)
Prepared according to GP4 with $\mathbf{1 f}\left(45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50\right.$ equiv.), $\mathbf{2 j}{ }^{\prime}(53 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product (-)

$\mathbf{6 g}$ as a colorless oil ($37 \mathrm{mg}, 53 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.86(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{dd}, J=$ 9.0, 2.3 Hz, 1H), 4.03 (dt, $J=59.1,6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 3.86 (s, 3H), $3.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dq}, J=55.1,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.54$ $-1.17(\mathrm{~m}, 19 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 171.02, 168.40, $159.23,156.18,139.33,135.99,134.10,131.31,130.92,130.83,129.51,129.23,120.56,115.06$, $114.60,112.91,111.83,101.39,83.11,67.90,65.56,55.82,31.32,30.55,29.35,29.00,28.36$, 27.67, 26.43, 24.94, 24.90, 13.51.. ${ }^{11}$ B NMR (128 MHz , Chloroform-d) δ 36.50. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{BClNNaO}_{7}{ }^{+} 724.3183$; Found 724.3189. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=-$ 0.67 ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (90\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=29.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=26.1 \mathrm{~min}$.


```
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
---- |------- |---- |------------------- |-----------------------
\(1 \quad 26.156 \mathrm{MM} \quad 1.1791 \quad 771.83325 \quad 10.90991 \quad 5.1568\)
2 29.710 MM 1.6194 1.41954e4 146.09392 94.8432
```

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl dipropylsulfamoyl)benzoate ($(-)$ 6h)

Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2k' ($46 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane:EtOAc) afforded the desired product (-) $\mathbf{6 h}$ as a colorless oil ($36 \mathrm{mg}, 60 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 8.22-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.93$ $-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.10(\mathrm{~m}, 5 \mathrm{H}), 4.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.18-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.17(\mathrm{~m}, 25 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 165.41,144.21,142.85,133.99,130.32,128.52,128.32,127.07,125.67,83.14$, 66.14, 50.06, 35.98, 31.78, 31.29, 28.86, 28.40, 27.79, 24.94, 24.89, 22.07, 11.29. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 35.11. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{BNO}_{6} \mathrm{~S}^{+} 600.3525$; Found 600.3537. $[\alpha]_{\mathrm{D}}^{20}=-0.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (89\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 230 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=69.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=37.9 \mathrm{~min}$.

(S)-8-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octyl 6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoate ((+) 6i)

Prepared according to GP4 with $\mathbf{1 b}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 21' ($58 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product (+) $\mathbf{6 i}$ as a colorless oil ($43 \mathrm{mg}, 59 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d): $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.20$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.03 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 ($\mathrm{s}, 3 \mathrm{H}$), 2.64 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.23(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 8 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.64$ $-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 167.00$, 159.03, 142.93, 141.39, 139.12, 136.03, 132.73, 131.39, 130.84, $129.82,128.55,128.32,128.25,127.50,126.52,126.10,125.85,125.80,125.65,124.86,112.24$, 83.12, 65.61, 55.30, 40.75, 37.35, 37.27, 36.02, 31.83, 31.32, 29.26, 28.93, 28.57, 27.88, 24.96, 24.92. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 34.12. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{BO}_{5}{ }^{+} 727.4528$; Found 727.4526. $[\alpha]_{\mathrm{D}}^{20}=+1.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $0.8 \mathrm{~mL} / \mathrm{min}$ detected at 230 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=23.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=22.1 \mathrm{~min}$.

7. Functional group transformations:

(S)-4-(5-Phenyl-1-(thiophen-2-yl)pentyl)tetrahydro-2H-pyran ((-) 7)

The title compound was prepared following a known literature procedure with slight modification. ${ }^{[28]}$ To a solution of thiophene $(14.0 \mu \mathrm{~L}, 0.18 \mathrm{mmol}, 1.20$ equiv.) in THF (1.0 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane; 112 $\mu \mathrm{L}, 0.18 \mathrm{mmol}, 1.20$ equiv.) dropwise under an inert atmosphere. The mixture was then warmed to room temperature and stirred for 30 min . Then the mixture was cooled to $78{ }^{\circ} \mathrm{C}$ again. A solution of (S)-4,4,5,5-tetramethyl-2-(5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentyl)-1,3,2-dioxaborolane (4e) ($54.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv.) in THF (2.5 mL) was added dropwise to it. The reaction mixture was further stirred for 1.5 hours at this temperature. Then a solution of N -bromosuccinimide ($32.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.20$ equiv.) in THF (2.5 mL) was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for additional 1.5 hours. Then the reaction was quenched with a saturated aqueous sodium thiosulfate solution $(2.0 \mathrm{~mL})$ and the reaction mixture was allowed to warm to room temperature. The resulting mixture was diluted with water (5.0 mL) and ethyl acetate (5.0 mL). The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$ hexane:EtOAc) to obtain the desired product (-) $7(31 \mathrm{mg}, 67 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.29$ (ddd, J $=7.6,6.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (ddd, $J=8.3,5.9,3.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.96(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{td}, J=11.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=11.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=11.3,7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dddd}, J=15.8,13.7,8.3,4.7 \mathrm{~Hz}, 2 \mathrm{H})$, 1.86 (dddd, $J=13.5,10.1,6.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (ddq, $J=13.0,4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.49$ (m, 4H), $1.45-1.17$ (m, 6H). ${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 147.70, 142.80, 128.46, 128.36, $126.43,125.73,124.86,123.03,68.37,68.19,47.16,41.77,35.93,33.69,31.59,31.57,31.15$, 27.39. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OS}^{+} 314.1699$; Found 314.1699. $[\alpha]_{\mathrm{D}}^{20}=-5.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) was determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=99: 1$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 230 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=127.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=109.7 \mathrm{~min}$.

(S)-6-Phenyl-2-(tetrahydro-2H-pyran-4-yl)hexan-1-ol ((-) 8)

The title compound was prepared following a known literature procedure with slight modification. ${ }^{[29]}$ A solution of (S)-4,4,5,5-tetramethyl-2-(5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentyl)-1,3,2-dioxaborolane (4e) (54.0 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv.) and chloroiodomethane ($22.0 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$, 2.00 equiv.) in THF (0.8 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane; $188 \mu \mathrm{~L}, 0.30$ $\mathrm{mmol}, 2.00$ equiv.) was added slowly to it. The resulting reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature overnight. The reaction flask was then transferred to an ice bath and $\mathrm{NaOH}(1.5 \mathrm{~mL}, 2.0 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.80 \mathrm{~mL},>30 \%$ w/v) were added. The reaction mixture was stirred for an additional 2 hours at this temperature and was then diluted
with $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and EtOAc (5.0 mL) and extracted with EtOAc ($3 \times 4.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 2: 1$ hexane:EtOAc) to obtain the desired product (-) $\mathbf{8}$ (33 $\mathrm{mg}, 84 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20$ (td, $J=5.7,5.2,2.6 \mathrm{~Hz}, 3 \mathrm{H}$), 4.01 (ddd, $J=11.6,4.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.64(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.39 (ddt, $J=13.2,11.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{dd}, J=6.3,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d): $\delta 147.70,142.80,128.46,128.36,126.43,125.73,124.86,123.03,68.37$, 68.19, 47.16, 41.77, 35.93, 33.69, 31.59, 31.57, 31.15, 27.39. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}$263.2006; Found 263.2008. $[\alpha]_{\mathrm{D}}^{20}=-10.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=31.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=30.1 \mathrm{~min}$.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.175		1.0303	269.26025	4.35569	3.5955
2	31.965		1.3405	7219.55078	89.75989	96.4045

(S)-5-Phenyl-1-(tetrahydro-2H-pyran-4-yl)pentan-1-ol ((-) 9)

(S)-4,4,5,5-tetramethyl-2-(5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentyl)-1,3,2-dioxaborolane (4e) ($36.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.) was dissolved in a 1:1 mixture of THF and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at room temperature. Then $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($39 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.50$ equiv.) was added. The resulting mixture was stirred 6 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water $(5.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$. The organic layer was separated and aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane:EtOAc) to obtain the desired product (-) $9(22 \mathrm{mg}, 89 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 147.70$, 142.80, 128.46, 128.36, 126.43, 125.73, 124.86, 123.03, 68.37, $68.19,47.16,41.77,35.93,33.69,31.59,31.57,31.15,27.39 .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 142.63,128.50,128.41,125.81,75.47,68.15,67.99,41.14,36.05,33.92,31.63$, 29.27, 28.34, 25.51. HRMS (LTQ-Orbitrap) m/z: [M + H-1] Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}^{-}$247.1704; Found 247.1693. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-8.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\otimes}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=32.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=30.1 \mathrm{~min}$.

$\begin{gathered} \text { mAU } \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \end{gathered}$					
15	17.5 20	$22.5 \quad 25$	$27.5 \quad 30$	$32.5 \quad 35$	37.5
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.100 MF	1.1264	558.84937	8.26930	49.3753
2	32.537 FM	1.2277	572.98944	7.77885	50.6247

(R)-4-(1-Bromo-5-phenylpentyl)tetrahydro-2H-pyran ((+) 10)

The title compound was prepared following a known literature procedure with slight modification. ${ }^{[30]}$ To a solution of 1-bromo-3,5bis(trifluoromethyl)benzene ($66 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.50$ equiv.) in THF (2 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane; $144 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 1.50$ equiv.) dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , at which point a solution of (S)-4,4,5,5-tetramethyl-2-(5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentyl)-1,3,2-dioxaborolane (4e) ($54.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv.) in THF (1.0 mL) was added. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{N}$ bromosuccinimide ($40 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.50$ equiv.) was added as a solid to it and stirred at this temperature for another 5 minutes, and then allowed to warm to room temperature and stirred for 1 hour. Then the reaction was quenched with a saturated aqueous sodium thiosulfate solution (2.0 $\mathrm{mL})$. The resulting mixture was diluted with water $(5.0 \mathrm{~mL})$ and ethyl acetate $(5.0 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) to obtain the desired product $(+) \mathbf{1 0}(38 \mathrm{mg}, 81 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $\delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=5.4,3.0$ $\mathrm{Hz}, 3 \mathrm{H}), 4.03$ (ddt, $J=11.7,6.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{dt}, J=7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{tt}, J=11.3,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.66 (dt, $J=6.7,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.91-1.46(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroformd): $\delta 142.44,128.49,128.44,125.89,67.96,67.77,63.85,42.13,35.90,35.56,31.00,30.98,30.23$, 27.56. HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrO}^{+} 311.1005$; Found 311.1004. $[\alpha]_{\mathrm{D}}^{20}=+16.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91\%) was determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=99: 1$ at a flow rate $0.5 \mathrm{ml} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=27.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=24.8 \mathrm{~min}$.

8. Synthesis of 12, a key intermediate of (S)-(+)-Pregabalin:

(S)-(+)-Pregabalin. HCl

(S)-tert-Butyl((5-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hexyl)oxy)diphenylsilane ((+) 11)

The title compound was prepared according to GP4 with $\mathbf{1 m}(29.4 \mathrm{mg}, 0.15$ mmol, 1.50 equiv.), 2m' ($41.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.) in a mixture of DCE (0.40 mL) and DMF (0.14 mL) after stirring for 48 hours. Flash column chromatography ($\mathrm{SiO}_{2}, 150: 1$ hexane:EtOAc) afforded the desired product (+) $\mathbf{1 1}$ as a colorless oil ($20 \mathrm{mg}, 42 \%$). ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.72-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 6 \mathrm{H}), 3.72-3.58(\mathrm{~m}$, $2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.15(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 12 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 135.72,134.37,129.54,127.68,82.92,63.85,40.55,34.43,27.29,27.04,24.88$, 24.82, 23.05, 22.73, 19.36. ${ }^{11} \mathbf{B}$ NMR (128 MHz , Chloroform- d) δ 35.12. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{BO}_{3} \mathrm{Si}^{+} 481.3304$; Found 481.3310. $[\alpha]_{\mathrm{D}}^{20}=+4.5(\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (90\%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IB column, with hexane:isopropanol $=99.5: 05$ at a flow rate $0.5 \mathrm{ml} / \mathrm{min}$ detected at 210 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=12.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=14.0 \mathrm{~min}$.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.998		0.2652	6135.11523	385.49411	94.8943
2	14.025	MM	0.2714	330.09207	20.27290	5.1057

(S)-tert-Butyl((5-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)hexyl)oxy)diphenylsilane

The title compound was prepared following a known literature procedure with slight modification. ${ }^{[29]}$ A solution of (S)-tert-butyl((5-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)oxy)diphenylsilane (11) ($90.0 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.00$ equiv.) and chloroiodomethane ($29.1 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 2.00$ equiv.) in THF (1.0 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then n-BuLi (1.6 M in hexane; $238 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 2.00$ equiv.) was added slowly to it. The resulting reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and diluted with dichloromethane (15 mL). The aqueous and organic layers were separated, and the aqueous layer was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The crude reaction mixture was placed on the high-vac overnight. The crude material was subjected to amination without additional purification.
tert-Butyl (S)-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-4-methylpentyl)carbamate
NHBoc The conversion of the Bpin group to NHBoc group was conducted following a literature reported method. ${ }^{[31]}$ A solution of O-methylhydroxylamine $(0.28 \mathrm{~mL}$, $0.52 \mathrm{mmol}, 1.88 \mathrm{M}$ in THF) was diluted with THF (1.5 mL) and the reaction flask was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath. Then n-BuLi (1.6 M in hexane; $330 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 3.00$ equiv.) was added slowly to it and the resulting reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. Afterwards a solution of (S)-tert-butyl((5-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)hexyl)oxy)diphenylsilane ($\mathbf{1 1}, 85 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.00$ equiv.) was added dropwise to the solution of deprotonated O-methylhydroxylamine via syringe. The reaction tube was allowed to warm to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 12 h . The reaction tube was then cooled to room temperature and $\mathrm{Boc}_{2} \mathrm{O}(126 \mathrm{mg}, 0.55 \mathrm{mmol}, 3.20$ equiv.) was added. After stirring at room temperature for 1 h the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give the crude reaction mixture. The crude material was subjected to TBDPS deprotection (see below) without further purification.
tert-Butyl (S)-(2-(2-hydroxyethyl)-4-methylpentyl)carbamate ((+) 12):

A heat-gun dried schlenk tube was charged with tert-butyl (S)-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-4-methylpentyl)carbamate (see above, $49 \mathrm{mg}, 0.10$ mmol, 1.00 equiv.) in THF (4 mL) under N_{2} atmosphere and the flask was cooled down to $0{ }^{\circ} \mathrm{C}$ with an ice-water bath. Then TBAF (1.0 M in THF, $0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 4.00$ equiv.) was added dropwise to it. The reaction mixture was then allowed to warm to room temperature and stirred for 2 hours and quenched with an aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL). The resulting mixture was diluted with EtOAc (5 mL) and brine (5 mL). The organic layer was separated and the aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 2:1 hexane:EtOAc) to obtain the desired product (+) $\mathbf{1 2}(20 \mathrm{mg}, 81 \%$, overall 43% from 11) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 3.71$ (dtd, $J=17.0,10.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15-$ $3.02(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 156.63,79.44,60.94,44.32,42.16,34.88$, 33.77, 28.56, 25.38, 22.98, 22.94. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NNaO}_{3}{ }^{+}$268.1883; Found 268.1886. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+1.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

9. Large Scale Reaction (with $15 \mathrm{~mol} \%$ catalyst loading):

A heat gun dried schlenk tube equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) was charged with NiCl_{2} ($38.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.15$ equiv.) and $\mathbf{L 6}$ ($116 \mathrm{mg}, 0.40 \mathrm{mmol}, 0.20$ equiv.) under N_{2}. The tube was evacuated and backfilled with nitrogen (three cycles). Then anhydrous DCE (6.0 mL) and DMF (4.0 mL) were added via syringe and the mixture was stirred at room temperature for 40 minutes. Then KF ($290 \mathrm{mg}, 5.00 \mathrm{mmol}, 2.50$ equiv.) was added to it and the heterogeneous mixture was stirred for 3 minutes at which point alkenyl boronic acid pinacol ester $\mathbf{1 b}$ ($544 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.00 equiv.) was added and the mixture was stirred for additional 2 minutes. 4-Iodotetrahydro- $2 \mathrm{H}-$ pyran $2 \mathbf{v}(370 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 1.50$ equiv.) was added to the resulting mixture, which was stirred for 5 minutes. Then DEMS ($0.85 \mathrm{~mL}, 5.00 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it over a period of 5 minutes and the resulting mixture was stirred for 40 hours. Afterwards, the reaction was diluted by addition of $\mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ and $\mathrm{EtOAc}(10.0 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by flash
column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane: EtOAc$)$ to obtain the desired product $\mathbf{4 e}$ as colourless oil ($488 \mathrm{mg}, 68 \%$ yield, 92% e.e.).

10. Gram Scale Reaction (with $10 \mathrm{~mol} \%$ catalyst loading):

A heat gun dried schlenk tube (50 mL) equipped with a cylindrical magnetic stir bar was charged with NiCl_{2} ($64.5 \mathrm{mg}, 0.50 \mathrm{mmol}, 0.10$ equiv.) and $\mathbf{L 6}\left(219 \mathrm{mg}, 0.75 \mathrm{mmol}, 0.15\right.$ equiv.) under N_{2}. The tube was evacuated and backfilled with nitrogen (three cycles). Then anhydrous DMF (10.0 $\mathrm{mL})$ and DCE $(15.0 \mathrm{~mL})$ were added via syringe and the mixture was stirred at room temperature for 80 minutes. Then $\mathrm{KF}(733 \mathrm{mg}, 12.5 \mathrm{mmol}, 2.50$ equiv.) was added to it and the heterogeneous mixture was stirred for 3 minutes at which point alkenyl boronic acid pinacol ester $\mathbf{1 b}(1.36 \mathrm{~g}, 5.00$ mmol, 1.00 equiv.) was added and the mixture was stirred for additional 2 minutes. 4-Iodotetrahydro- 2 H -pyran $\mathbf{2 v}$ ($0.92 \mathrm{~mL}, 7.50 \mathrm{mmol}, 1.50$ equiv.) was added to the resulting mixture, which was stirred for 4 minutes. Then DEMS ($2.10 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it over a period of 5 minutes and the resulting mixture was stirred for 46 hours. Afterwards, the reaction was diluted by addition of $\mathrm{H}_{2} \mathrm{O}(15.0 \mathrm{~mL})$ and EtOAc (15.0 mL). The organic layer was separated and the aqueous phase was extracted with EtOAc ($3 \times 30.0 \mathrm{~mL}$). The combined organic phase was washed with brine (15.0 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane: EtOAc) to obtain the desired product 4 e as colourless oil $(1.116 \mathrm{~g}, 62 \%$ yield, 93\% e.e.).

11. One-pot reaction from alkyne without isolation of alkenyl Bpin intermediate:

In a heat gun dried schlenk tube equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) freshly prepared dicyclohexylborane ($3.60 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 0.05$ equiv.), 1 -hexyne ($115 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 1.00$ equiv.) and pinacolborane ($145 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 1.00$ equiv.) were added successively under an N_{2} atmosphere. The reaction mixture was stirred for 18 hours. Afterwards, the volatile materials were removed under reduced pressure at room temperature for 30 minutes. The tube was refilled with
N_{2}. To the resulting residue was added a solution of preformed catalyst [prepared with $\mathrm{NiCl}_{2}(9.5$ $\mathrm{mg}, 75 \mu \mathrm{~mol}, 0.15$ equiv.), L6 ($29.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.20$ equiv.) in DCE (1.5 mL) and DMF (1.0 $\mathrm{mL})$ after stirring for 40 minutes]. Then $\mathrm{KF}(72.5 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.50$ equiv.) was added to it and the heterogeneous mixture was stirred for 3 minutes at which point $\mathbf{2 b}$ ($138 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv.) was added. The resulting mixture was stirred for 5 minutes. Then DEMS ($215 \mu \mathrm{~L}, 1.25$ mmol, 2.5 equiv.) was added dropwise to it over a period of 5 minutes and the resulting mixture was stirred for 30 hours. Afterwards, the reaction was diluted by addition of $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ and EtOAc $(5.0 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 60: 1\right.$ hexane:EtOAc) to obtain the desired product 3b as colourless oil ($133 \mathrm{mg}, 74 \%$ yield, 90% e.e.).

12. Mechanistic investigations:

12.1 Reaction with a cis-boronic ester:

The reaction was conducted for 30 hours according to GP4, with (Z)-2-(hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11) ($42 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ equiv.) and 1-(3-iodopropyl)-4methoxybenzene ($\mathbf{2 b}$) ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.) as coupling partners. Flash column chromatography ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product $(+) \mathbf{3 b}$ as a colorless oil ($24 \mathrm{mg}, 66 \%$). The enantiomeric excess (90%) was determined after oxidation (GP2) via HPLC analysis which confirmed the same enantiomer as obtained from the reaction with its trans analogue 1a.

12.2 Monitoring of reactions with a mixture of cis- and trans-alkenyl boronic esters:

Three parallel reactions at a 0.1 mmol scale with an equimolar mixture (1:1) of cis- and transalkenyl boronic esters (11) and (1a) were performed following GP4. 1a ($37.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathbf{1 1}$ ($32 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.) and $\mathbf{2 a}$ ($16.1 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0$ equiv.) were used. The
reactions were stopped at the indicated reaction time. Afterwards, water (1.0 mL) and EtOAc (3.0 mL) were added to the reaction mixture. The organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The volatiles were removed to afford the crude product. Then dibromomethane was added as an internal standard to this mixture and the resulting mixture was mixed well. A small organic aliquot was used for ${ }^{1} \mathrm{H}$ NMR analysis to determine the reactivity of cis and trans isomers. The results show that the cis to trans conversion occurs prior to the hydroalkylation. However, it was also observed that without Ni-calatyst, the cis to trans conversion still occurred.

12.3 Reaction profile:

Five parallel reactions at a 0.1 mmol scale were performed following GP4. The reactions were stopped at the indicated reaction time. Afterwards, water $(1.0 \mathrm{~mL})$ and EtOAc (3.0 mL) were added to the reaction mixture. Dodecane ($23.0 \mu \mathrm{~L}$) was added as an internal standard for GC FID analysis to this mixture and the resulting mixture was mixed well. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The combined organic phases were dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the volatiles were removed to afford the crude product. The crude product was directly oxidized following GP2 to obtain the pure alcohol which was subjected to HPLC analysis to determine the e.e.

- yield \quad enantiomeric excess

12.4 Radical-clock experiment:

The reaction was conducted in 0.2 mmol scale following GP4, with $\mathbf{1 b}(81 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.50$ equiv.) and 6 -iodohex-1-ene ($\mathbf{2} \mathbf{n}^{\prime}$) ($42 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ equiv.) as coupling partners. Purification by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}, 60: 1\right.$ hexane:EtOAc) afforded compound (-) $\mathbf{1 3}$ as a colorless oil ($8 \mathrm{mg}, 11 \%$). The analogous compound with no cyclization was detected but could not be purified. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H})$, $2.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.29$ $(\mathrm{m}, 5 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 143.04, 128.57,
$128.31,125.62,82.91,39.89,38.08,36.05,33.23,32.87,31.90,31.85,29.07,25.40,25.26,24.96$, 24.91. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 35.31$. HRMS (APPI/LTQ-Orbitrap) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNaO}_{2}{ }^{+} 379.2779$; Found 379.2788. $[\alpha]_{\mathrm{D}}^{20}=-1.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (91%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=13.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=16.8 \mathrm{~min}$.

12.5 TEMPO quenching experiment:

The reaction was conducted following GP4. TEMPO ($15.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was added after the addition of all reagents. The hydroalkylation product was not detected.

12.6 Probe for origin of regioselectivity:

See main text for design of experiments. The reaction was conducted following GP4 using L20 ($4.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.20$ equiv.) instead of $\mathbf{L 6}$. The regioselectivity was found to be $13: 1$ where 3a was obtained in 31\% yield.

12.7 Reaction with a pre-complex NiCl_{2}-L6:

The $\mathrm{NiCl}_{2}-\mathbf{L} 6$ complex was prepared following a literature procedure with slight modification. ${ }^{[32]}$ To a 20 mL oven-dried vial equipped with a magnetic stir bar in a glovebox was added $\mathrm{NiCl}_{2} \cdot \mathrm{DME}$ ($46 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv.) and $\mathbf{L 6}(73 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.19$ equiv.) and DCM (7.5 mL). The mixture was stirred for 4 hours and it was then concentrated to dryness. After that DCM (1.5 mL) was added to it followed by the addition of $\mathrm{Et}_{2} \mathrm{O}$ to precipitate a light blue solid, which was filtered off. The precipitate was then washed with pentane and $\mathrm{Et}_{2} \mathrm{O}$ and finally dried under high vacuum to afford light blue powder ($45 \mathrm{mg}, 51 \%$). Then it was used in the hydroalkylation reaction following GP4. The reaction was conducted in 0.1 mmol scale with respect to $\mathbf{2 a}$ using $\mathrm{NiCl}_{2}-\mathbf{L 6}$ complex ($6.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv.) instead of using NiCl_{2} and $\mathbf{L 6}$. The product was formed in 61% yield with 92% e.e..
13. Reactions with substrates where an alkenyl group is distal to a Bpin group:

(S)-2-(6-(4-Methoxyphenyl)hexan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 3s)

Prepared according to GP4 with $\mathbf{1 n}(30.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.50$ equiv.), $\mathbf{2 b}$ (28.0 mg , $0.10 \mathrm{mmol}, 1.00$ equiv.). Purification by PTLC ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product $(+) 3 \mathrm{~s}$ as a colorless oil $(10 \mathrm{mg}, 30 \%)$. The other regioisomeric products were also formed in this reaction as observed by GC-MS. But the regioselectivity of those isomers were not determined. The overall regioselectivity of this reaction was 2.6:1 favoring the desired product as determined by using GC-FID (the minor isomers include all the other regioisomers). ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d): $\delta 7.12-7.06$ (m, $2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.36(\mathrm{~m}$, $3 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 14 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): $\delta 157.67$, 135.20, 129.38, 129.35, 113.75, 82.98, 55.39, 35.44, 31.50, 30.93, 29.86, 24.97, 13.85. ${ }^{11} \mathbf{B}$ NMR (128 MHz, Chloroform- d) δ 35.15. HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{BO}_{3}{ }^{+}$318.2361; Found 318.2375. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+4.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (91%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=20.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=19.3 \mathrm{~min}$.

	6 \%	10	12	$14 \quad 16$	18 20	24 min
Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	19.270	MM	0.4262	5840.36377	228.39580	50.4988
2	20.551		0.4432	5724.99658	215.28188	49.5012
	6	10	12	$14 \quad 16$	$18 \quad 20$	22.24 min
Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.266	MM	0.4195	481.55267	19.12977	4.3236
2	20.508	MM	0.4597	1.06561 e 4	386.34412	95.6764

(S)-2-(1-(4-Methoxyphenyl)heptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((+) 3t)

Bpin Prepared according to GP4 with $\mathbf{1 0}(27.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv.), 2b (28.0
 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv.). Purification by PTLC ($\mathrm{SiO}_{2}, 60: 1$ hexane:EtOAc) afforded the desired product (+) 3t as a colorless oil ($11 \mathrm{mg}, 31 \%$). The other regioisomeric products were also formed in this reaction as observed by GC-MS. But the regioselectivity of those isomers were not determined. The overall regioselectivity of this reaction was $2.6: 1$ favoring the desired product as determined by using GCFID (the minor isomers include all the other regioisomers). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d): $7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{td}, J=7.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.53$ (m, 2H), $1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 12 \mathrm{H}), 1.01$ (ddt, $J=11.1$, 8.7, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $0.90-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d): δ 157.67, 135.19, $129.37,129.35,113.75,82.95,55.39,35.44,33.87,31.53,31.21,29.86,24.97,24.94,22.54,14.60$.
${ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 35.15. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BO}_{3}{ }^{+} 332.2517$; Found 332.2527. $[\alpha]_{\mathbf{D}}^{20}=+4.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric excess (91%) was determined after oxidation (GP2) via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 230 nm wavelength. Elution time: $\mathrm{t}_{\text {major }}=40.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=38.7 \mathrm{~min}$.

The reaction of substrate $\mathbf{1 p}$ with $\mathbf{2 b}$ was conducted following GP4. A mixture of regioisomeric products were formed as observed by GC-MS. The yield of the desired product was very low ($<10 \%$) and the regioisomeric ratio was not determined. The enantiomeric excess (90%) was determined after oxidation (GP2) of the crude mixture (after work-up) via HPLC analysis which confirmed the same enantiomer as obtained from the reaction with its trans analogue 1a.

14. Determination of the absolute configuration of 3 e and 4 g :

Absolute configuration of 3e:

(S)-1-(4-bromophenyl)nonan-4-ol (3e') was obtained from the stereospecific oxidation of (S)-2-(1-(4-bromophenyl)nonan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e). The alcohol 3e' was crystalized from a mixture of DCM/hexane at room temperature by slow evaporation. The crystal structure indicates the absolute configuration of $\mathbf{3 e}$ ' is (S). By analogy, we assign the corresponding absolute configurations to other products.

Fig. Crystal structure of 3e'

Absolute configuration of $\mathbf{4 g}$:

(S)-5-phenyl-1-(1,4-dioxaspiro[4.5]decan-8-yl)pentan-1-ol (4g') was obtained from the stereospecific oxidation of (S)-4,4,5,5-tetramethyl-2-(5-phenyl-1-(1,4-dioxaspiro[4.5]decan-8-yl)pentyl)-1,3,2-dioxaborolane ($\mathbf{4 g}$). The alcohol $\mathbf{4 g}^{\prime}$ was crystalized from a mixture of DCM/hexane at $4{ }^{\circ} \mathrm{C}$. The crystal structure indicates the absolute configuration of $\mathbf{4 g}$ ' is (S). By analogy, we assign the corresponding absolute configurations to other products.

Fig. Crystal structure of $\mathbf{4 g}^{\prime}$

15. Crystallography details

$3 e^{\prime}$

Experimental. Single colourless prism crystals of $\mathbf{3 e}$ ' were used as supplied. A suitable crystal with dimensions $0.35 \times 0.17 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer. The crystal was kept at a steady $T=140.00$ (10) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Compound	$\mathbf{3 e}$
Formula	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrO}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.343
μ / mm^{-1}	3.639
Formula Weight	299.24
Colour	colourless
Shape	prism
Size $/ \mathrm{mm}^{3}$	$0.35 \times 0.17 \times 0.04$
T / K	$140.00(10)$
Crystal System	monoclinic
Flack Parameter	$-0.034(13)$
Hooft Parameter	$-0.037(5)$
Space Group	$P 21$
a / \AA	$9.52472(11)$
b / \AA	$4.93139(5)$
c / \AA	$15.77317(18)$
αl°	90
βl°	$92.4023(10)$
γ°	90
$\mathrm{~V} / \AA^{3}$	$740.216(14)$
Z	2
Z	1.54184
Wavelength $/ \AA$	$\mathrm{CuK} \mathrm{\alpha}$
Radiation type	1

$\Theta_{\text {min }}{ }^{\circ}$	4.647
$\Theta_{\text {max }} l^{\circ}$	76.118
Measured Refl's.	14280
Ind't Refl's	3058
Refl's with I > 2 $\sigma(\mathrm{I})$	3024
$R_{\text {int }}$	0.0217
Parameters	160
Restraints	1
Largest Peak/e \AA^{-3}	0.226
Deepest Hole/e \AA^{-3}	-0.251
GooF	1.059
$w R_{2}$ (all data)	0.0519
$w R_{2}$	0.0517
R_{I} (all data)	0.0195
R_{I}	0.0193

Structure Quality Indicators

Refinement: \quad Shift 0.000 Max Peak 0.2 Min Peak -0.3 Goof 1.059 Flacio34(13)
A colourless prism-shaped crystal with dimensions $0.35 \times 0.17 \times 0.04 \mathrm{~mm}^{3}$ was mounted. Data were collected using a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer operating at $T=$ 140.00(10) K.

Data were measured using ω scans using $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.40.81a (Rigaku OD, 2020). The maximum resolution achieved was $\Theta=76.118^{\circ}$ ($0.79 \AA$).

The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.40.81a (Rigaku OD, 2020). The unit cell was refined using CrysAlisPro 1.171.40.81a (Rigaku OD, 2020) on 11785 reflections, 83% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.40.81a (Rigaku OD, 2020). The final completeness is 99.90% out to 76.118° in Θ. A Gaussian absorption correction was performed using CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as
implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is $3.639 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.54184 \AA)$ and the minimum and maximum transmissions are 0.295 and 1.000.

The structure was solved and the space group $P 2_{1}$ (\# 4) determined by the ShelXT 2018/2 (Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^{2} using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Most hydrogen atom positions were calculated geometrically and refined using the riding model, but some hydrogen atoms were refined freely.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z^{\prime} is 1 .

The Flack parameter was refined to -0.034(13). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in $-0.037(5)$. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2011678 contains the supplementary crystallographic data for 3e'. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

$4 g^{\prime}$

Experimental. Single clear intense red plate crystals of $\mathbf{4 g}$ ' were used as supplied. A suitable crystal with dimensions of $0.75 \times 0.39 \times 0.17 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady $T=139.94(12) \mathrm{K}$ during data collection. The structure was solved with the ShelXT 2018/2 solution program using dual methods and by using Olex2 as the graphical interface. The model was refined with ShelXL 2018/3 using full matrix least squares minimisation on $|\boldsymbol{F}|^{2}$.

Compound	$\mathbf{4 g}$
Formula	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.174
μ / mm^{-1}	0.613
Formula Weight	304.41
Colour	clear colourless
Shape	plate
Size $/ \mathrm{mm}^{3}$	$0.75 \times 0.39 \times 0.17$
T / K	$139.94(12)$
Crystal System	orthorhombic
Flack Parameter	$0.04(16)$
Space Group	$P 22_{1} 2_{1}$

a / \AA	5.30185(5)	
b / \AA	$9.59127(10)$	
c/A	33.8681(3)	
$\alpha 1^{\circ}$	90	
βl°	90	
$\gamma 1^{\circ}$	90	
V / \AA^{3}	1722.24(3)	
Z	4	
Z^{\prime}	1	
Wavelength/ \AA	1.54184	
Radiation type	$\mathrm{Cu} K \alpha$	
$\Theta_{\text {min }} \\|^{\circ}$	2.609	
$\Theta_{\text {max }}{ }^{\circ}$	76.013	
Measured Refl.	15899	
Independent Refl.	3578	
Reflections with $\mathrm{I}>2(\mathrm{I})$	3546	
$R_{\text {int }}$	0.0154	
Parameters	313	
Restraints	0	
Largest Peak/e \AA^{-} 3	0.215	
Deepest Hole/e \AA^{-3}	-0.123	
GooF	1.059	
$w R_{2}$ (all data)	0.0711	
$w R_{2}$	0.0709	
R_{1} (all data)	0.0254	
R_{1}	0.0252	

Structure Quality Indicators
Reflections: $\quad d \min (\mathrm{Cu}) \quad 0.79$ 85.9

Data were measured using ω scans using $\mathrm{Cu} K \alpha$ radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlis ${ }^{\text {Pro }}$ (Rigaku, V1.171.40.62a, 2019). The maximum resolution achieved was $\Theta=76.013^{\circ}(0.79 \AA)$.

The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlis ${ }^{\text {Pro }}$ (Rigaku, V1.171.40.62a, 2019) and the unit cell was refined using CrysAlis ${ }^{\text {Pro }}$ (Rigaku, V1.171.40.62a, 2019) on 12356 reflections, 78% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlis ${ }^{\text {Pro }}$ (Rigaku, V1.171.40.62a, 2019). The final completeness is 100.00% out to 76.013° in Θ. A Gaussian absorption correction was performed using CrysAlis ${ }^{\text {Pro }}$ 1.171.40.62a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is $0.613 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.542 \AA)$ and the minimum and maximum transmissions are 0.468 and 1.000 .

The structure was solved and the space group $P 2_{12} 2_{1} 1_{1}$ (\# 19) determined by the ShelXT 2018/2 structure solution program using dual methods and refined by full matrix least squares minimisation on $|F|^{2}$ using version 2018/3 of ShelXL 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were found in a difference map and refined freely.

This structure was refined as a 2-component inversion twin.
CCDC- 1971802 contains the supplementary crystallographic data for $\mathbf{4 g}$ '. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

16. NMR spectra

NMR spectra of L1

NMR spectra of L2

NMR spectra of L4

NMR spectra of L5

NMR spectra of L6

NMR spectra of L7

NMR spectra of $\mathbf{L 9}$

NMR spectra of L10

NMR spectra of L11

NMR spectra of L12

NMR spectra of L17

NMR spectra of L18

NMR spectra of L19

NMR spectra of $\mathbf{1 b}$

NMR spectra of $\mathbf{1 c}$

NMR spectra of 1d

NMR spectra of 1 e

NMR spectra of $\mathbf{1 f}$

NMR spectra of $\mathbf{1 g}$

NMR spectra of $\mathbf{1 h}$

NMR spectra of 11

NMR spectra of 1m

NMR spectra of 10

NMR spectra of $\mathbf{1 p}$

NMR spectra of $\mathbf{2 b}$

NMR spectra of 2c

NMR spectra of 2d

NMR spectra of 2e

129

NMR spectra of $\mathbf{2 f}$

NMR spectra of $\mathbf{2 g}$

NMR spectra of $\mathbf{2 h}$

NMR spectra of $\mathbf{2 i}$

NMR spectra of $\mathbf{2 j}$

NMR spectra of $\mathbf{2 k}$

NMR spectra of 21

NMR spectra of 2m

NMR spectra of $\mathbf{2 n}$

NMR spectra of $2 t$

NMR spectra of $\mathbf{2 u}$

NMR spectra of $\mathbf{2 x}$

NMR spectra of $\mathbf{2 b}{ }^{\prime}$

NMR spectra of 2d'

NMR spectra of $\mathbf{2 e}{ }^{\prime}$

NMR spectra of $\mathbf{2 f}{ }^{\prime}$

NMR spectra of $\mathbf{2 g} \mathbf{g}^{\prime}$

NMR spectra of $\mathbf{2 h}{ }^{\prime}$

NMR spectra of $\mathbf{2 i}^{\prime}$

NMR spectra of $\mathbf{2 j}{ }^{\prime}$

NMR spectra of $\mathbf{2} \mathbf{k}^{\prime}$

NMR spectra of $\mathbf{2 1}^{\prime}$

NMR spectra of $\mathbf{2 m} \mathbf{m}^{\prime}$

NMR spectra of $\mathbf{2 n}{ }^{\prime}$

NMR spectra of 3a

NMR spectra of 3b

NMR spectra of 3c

NMR spectra of 3d

NMR spectra of 3e

NMR spectra of $3 f$

NMR spectra of $\mathbf{3 g}$

NMR spectra of 3h

NMR spectra of 3i

NMR spectra of $\mathbf{3 j}$

NMR spectra of 3k

NMR spectra of 31

NMR spectra of 3m

NMR spectra of 3n

NMR spectra of $\mathbf{3 o}$

Ph($\left.\mathrm{H}_{2} \mathrm{C}\right)_{3}$

NMR spectra of 3p

NMR spectra of 4a

NMR spectra of 4b

NMR spectra of $\mathbf{4 c}$

NMR spectra of 4d

NMR spectra of 4e

NMR spectra of $\mathbf{4 f}$

NMR spectra of $\mathbf{4 g}$

NMR spectra of $\mathbf{4 h}$

NMR spectra of 4i

NMR spectra of $\mathbf{4 j}$

NMR spectra of $\mathbf{4 k}$

NMR spectra of 41

NMR spectra of 5a

NMR spectra of 5b

NMR spectra of $5 \mathbf{c}$

NMR spectra of 5d

NMR spectra of 5e

NMR spectra of $\mathbf{5 f}$

NMR spectra of $\mathbf{5 g}$

NMR spectra of $\mathbf{5 h}$

NMR spectra of $\mathbf{5 i}$

NMR spectra of 6a

NMR spectra of $\mathbf{6 b}$

NMR spectra of $\mathbf{6 c}$

NMR spectra of 6d

NMR spectra of 6e

NMR spectra of $\mathbf{6 f}$

NMR spectra of $\mathbf{6 g}$

NMR spectra of $\mathbf{6 h}$

NMR spectra of $\mathbf{6 i}$

NMR spectra of 7

NMR spectra of 8

NMR spectra of 9

NMR spectra of 10

NMR spectra of 11

NMR spectra of 12

NMR spectra of 13

NMR spectra of 3s

NMR spectra of 3t

17. References

[1] Huang, W., Wan, X. \& Shen, Q. Enantioselective Construction of Trifluoromethoxylated Stereogenic Centers by a Nickel-Catalyzed Asymmetric Suzuki-Miyaura Coupling of Secondary Benzyl Bromides. Angew. Chem. Int. Ed. 56,11986-11989 (2017).
[2] Bolm, C., Weickhardt, K., Zehnder, M. \& Ranff, T. Synthesis of Optically Active Bis(2oxazolines): Crystal Structure of a 1,2-Bis(2-oxazolinyl)benzene ZnCl_{2} Complex. Chem. Ber. 124, 1173-1180 (1991).
[3] Pezzetta, C., Bonifazi, D. \& Davidson, R. W. M. Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Org. Lett. 21, 8957-8961 (2019).
[4] De Crisci, A. G., Chung, K., Oliver, A. G., Solis-Ibarra, D. \& Waymouth, R. M. Chemoselective Oxidation of Polyols with Chiral Palladium Catalysts. Organometallics 32, 2257-2266 (2013).
[5] Wang, H. et al. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. J. Am. Chem. Soc. 140, 3542-3546 (2018).
[6] Woods, B. P., Orlandi, M., Huang, C.-Y., Sigman, M. S. \& Doyle, A. G. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling of Styrenyl Aziridines. J. Am. Chem. Soc. 139, 56885691 (2017).
[7] Cheng, X., Lu, H. \& Lu, Z. Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis. Nat Commun 10, 3549 (2019).
[8] Bera, S. \& Hu, X. Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. Angew. Chem. Int. Ed. 58, 13854-13859 (2019).
[9] H. Shimizu, T. Igarashi, T. Miura, M. Murakami, Rhodium-catalyzed reaction of 1alkenylboronates with aldehydes leading to allylation products. Angew. Chem., Int. Ed. 50, 1146511469 (2011).
[10] Yoo, K. S., Yoon, C. H. \& Jung, K. W. Oxidative Palladium(II) Catalysis: A Highly Efficient and Chemoselective Cross-Coupling Method for Carbon-Carbon Bond Formation under Base-Free and Nitrogenous-Ligand Conditions. J. Am. Chem. Soc. 128, 16384-16393 (2006).
[11] Kontokosta, D., Mueller, D. S., Wang, H.-Y. \& Anderson, L. L. Preparation of α-Imino Aldehydes by [1,3]-Rearrangements of O-Alkenyl Oximes. Org. Lett. 15, 4830-4833 (2013).
[12] Sušnik, P. \& Hilt, G. Homoallylpinacolboronic Ester as Alkene Component in CobaltCatalyzed Alder Ene Reactions. Organometallics 33, 5907-5910 (2014).
[13] Laulhé, S., Blackburn, J. M. \& Roizen, J. L. Exhaustive Suzuki-Miyaura reactions of polyhalogenated heteroarenes with alkyl boronic pinacol esters. Chem. Commun. 53, 7270-7273 (2017).
[14] Franco, T. D., Epenoy, A. \& Hu, X. Synthesis of E-Alkyl Alkenes from Terminal Alkynes via Ni-Catalyzed Cross-Coupling of Alkyl Halides with B-Alkenyl-9-borabicyclo[3.3.1]nonanes. Org. Lett. 17, 4910-4913 (2015).
[15] Rezazadeh, S., Devannah, V. \& Watson, D. A. Nickel-Catalyzed C-Alkylation of Nitroalkanes with Unactivated Alkyl Iodides. J. Am. Chem. Soc. 139, 8110-8113 (2017).
[16] Chen, Y., Ma, G. \& Gong, H. Copper-Catalyzed Reductive Trifluoromethylation of Alkyl Iodides with Togni’s Reagent. Org. Lett. 20, 4677-4680 (2018).
[17] Zhou, J. \& Fu, G. C. Cross-Couplings of Unactivated Secondary Alkyl Halides: RoomTemperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides. J. Am. Chem. Soc. 125, 14726-14727 (2003).
[18] Andersen, C., Ferey, V., Daumas, M., Bernardelli, P., Guérinot, A. \& Cossy, J. Introduction of Cyclopropyl and Cyclobutyl Ring on Alkyl Iodides through Cobalt-Catalyzed Cross-Coupling. Org. Lett. 21, 2285-2289 (2019).
[19] Wotal, A. C. \& Weix, D. J. Synthesis of Functionalized Dialkyl Ketones from Carboxylic Acid Derivatives and Alkyl Halides. Org. Lett. 14, 1476-1479 (2012).
[20] Hea, C. \& Gaunt, M. J. Ligand-assisted palladium-catalyzed C-H alkenylation of aliphatic amines for the synthesis of functionalized pyrrolidines. Chem. Sci. 8, 3586-3592 (2017).
[21] Zhou, F., Zhu, J., Zhang, Y. \& Zhu, S. NiH-Catalyzed Reductive Relay Hydroalkylation: A Strategy for the Remote C($\left.\mathrm{sp}^{3}\right)$-H Alkylation of Alkenes. Angew. Chem. Int. Ed. 57, 4058-4062 (2018).
[22] Vechorkin, O. \& Hu, X. Nickel-catalyzed cross-coupling of non-activated and functionalized alkyl halides with alkyl Grignard reagents. Angew. Chem. Int. Ed. 48, 2937-40 (2009).
[23] Ren, P., Vechorkin, O., von Allmen, K., Scopelliti, R. \& Hu, X. A Structure-Activity Study of Ni-Catalyzed Alkyl-Alkyl Kumada Coupling. Improved Catalysts for Coupling of Secondary Alkyl Halides. J. Am. Chem. Soc. 133, 7084-7095 (2011).
[24] Deng, W., Ye, C., Li, Y., Li, D. \& Bao, H. Iron-Catalyzed Oxyalkylation of Terminal Alkynes with Alkyl Iodides. Org. Lett. 21, 261-265 (2019).
[25] Hazra, A., Chen, J. \& Lalic, G. Stereospecific Synthesis of E-Alkenes through AntiMarkovnikov Hydroalkylation of Terminal Alkynes. J. Am. Chem. Soc. 141, 12464-12469 (2019).
[26] Dai, C., Narayanam, J. M. R. \& Stephenson, C. R. J. Visible-Light-Mediated Conversion of Alcohols to Halides. Nat. Chem. 3, 140-145 (2011).
[27] Fürstner, A. et al. Total Syntheses of Amphidinolides B1, B4, G1, H1 and Structure Revision of Amphidinolide H2. Chem. Eur. J. 15, 3983-4010 (2009).
[28] Hoang, G. L. \& Takacs, J. M. Enantioselective γ-borylation of unsaturated amides and stereoretentive Suzuki-Miyaura cross-coupling. Chem. Sci. 8, 4511-4516 (2017).
[29] Vedrenne, E., Wallner, O. A., Vitale, M., Schmidt, F. \& Aggarwal, V. K. Homologation of Boronic Esters with Lithiated Epoxides for the Stereocontrolled Synthesis of 1,2- and 1,3-Diols and 1,2,4-Triols. Org. Lett. 11, 165-168 (2009).
[30] Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. \& Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265-1269 (2016).
[31] Mlynarski, S. N., Karns, A. S. \& Morken, J. P. Direct Stereospecific Amination of Alkyl and Aryl Pinacol Boronates. J. Am. Chem. Soc. 134, 16449-16451 (2012).
[32] Rand, A. W. \& Montgomery, J. Enantioselective α-Arylation of Benzamides via Synergistic Nickel and Metallaphotoredox Catalysis. ChemRxiv doi: 10.26434/chemrxiv.9978824.v1 (2019).

