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Abstract: At the nanoscale level, optical properties of materials depend greatly on their shape.
Finding the right geometry for a specific property remains a fastidious and long task, even with the
help of modelling tools. In this work, we overcome this challenge by using artificial intelligence
to guide a reverse engineering method. We present an optimization algorithm based on a deep
convolution generative adversarial network for the design a 2-dimensional optical cloak. The
optical cloak consists in a shell of uniform and isotropical dielectric material, and the cloaking
is achieved via the geometry of this shell. We use a feedback loop from the solutions of this
generative network to successively retrain it and improve its ability to predict and find optimal
geometries. This generative method allows to find a global solution to the optimization problem
without any prior knowledge of good cloaking geometries.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The theoretical idea of an optical cloak was first suggested in 2006 by JF Pendry in a paper of
transformation optics [1]. It introduced the idea that an electromagnetic wavefront could be
bent inside a shell of carefully chosen dielectric and magnetic materials and remain unchanged
upon its exit, thus concealing an object inside of it. Cloaking of objects was later demonstrated
experimentally [2] using metamaterials at microwave frequencies. The proposed material of
the shell consisted of a series of split-ring resonators of different dimensions to achieve a
non-uniform anisotropic dielectric permittivity and magnetic permeability. Recently, similar
cloaking behaviour was found to exist in shell designs of more simple all-dielectric isotropical
and uniform material [3–6]. The working principle for those shells resides in their geometry
which can lead to the bending of the wavefront around the object to hide. The optimal geometries
in those reported cases were found using topology optimization methods.

In this paper we use a deep learning generative algorithm to accomplish the optimization of
the geometry of an all-dielectric isotropic shell for cloaking. Generative networks have recently
been demonstrated as useful tools for finding global solutions to inverse engineering problems
[7–9] and have found applications in nanophotonics for the design of metasurfaces [10–14],
nanostructures [15,16], metagratings [17], thermal emitters [18], photonic crystals [19] and
power splitters [20]. We suggest to use a generative adversarial network [21] in a feedback loop
to find an optimal configuration for cloaking. The procedure is done in a few steps: First, several
shell geometries are randomly created and are simulated to obtain their scattering coefficient (see
Fig. 1(a)). We then train a forward network (FN) to predict the scattered fields amplitudes from
each geometry. A deep convolutional generative adversarial network (DCGAN) coupled to the
FN is then used to generate new solutions which are aimed at minimizing the scattered fields.
We then implement the feedback loop to reuse the generated solutions to improve both the FN
and the DCGAN for sufficient iterations until a satisfactory solution is found or the generative
algorithm doesn’t improve anymore.
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Fig. 1. (a) Schematic of the simulation domain. The object at r=R1 is represented by a
perfect electrical conductor (PEC). The shell consists of a medium of permittivity ϵ2 = 2
inside the region R1<r<R2. The scattered fields are calculated at the boundary of the domain
Ω (b) Total transverse fields Hz when no cloaks are included in the design.

2. Methods

2.1. FEM simulations

In order to obtain the scattered field’s amplitude from a given cloak geometry, finite-element
simulations using COMSOL’s RF module are used. The simulation domain is presented in Fig. 1
and has an exterior circular boundary with a radius of 12 µm. Another circular boundary of
perfect electrical conductor (PEC) is located at R1 =1 µm and constitutes the object to conceal.
Multiple polygons of dielectric constant ε2 = 2 are included in the region R1 < r < R2 to form
the cloaking shell. A background electromagnetic field defined by E⃗ = E0eik0xŷ is used and the
scattered fields are solved with scattering boundary conditions atΩ. We then integrate the relative
Poynting vector at the exterior boundary of the simulation to obtain the metric to minimize :

Ψ =
1
2

∫
Ω

−→
E rel ×

−→
H∗

rel dC, (1)

where −→E rel =
−→
E total −

−→
E background.

We use an object of radius R1=1 µm and a shell of R2=3 µm for the simulations, and the
wavelength is set at λ= R2/2.5 = 1.2 µm. A total of 13000 simulations were performed with
randomly generated shell geometries to form the initial dataset. The geometries were generated
using the union of randomly generated curves inside the defined shell radius. We use a shell
which is symmetrical in x- and y- directions according to the symmetry of the problem and also
to assure continuity of the shell around the object. Data is available in the figshare Ref. [22].

2.2. Neural networks

The first part of the model consists in a forward predictive model of the scattering coefficient Ψ
as a function of the shell geometry. The input image consists in 64 × 64 binary images where the
region of dielectric constant ϵ2 is represented by 1s and ϵ1 by 0s. Since the shells are symmetrical
in -x and -y, the images are taken for only one quadrant of the shell. Given the 1.5 µm span of
this region, that leads to a pixel of dielectric material measuring about 23 nm. A convolution
network is then used, which consists in 4 convolution block layers and 2 dense layers that takes a
(64 × 64) image data and creates a single digit output. The dataset was divided into a training set,
a validation set and a test set using a ratio of 70 − 15 − 15%. The network is trained with an
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Adam optimizer [23] with a learning rate of 1 · 10−4 and the mean squared error is used as the
loss function.

Each convolution block consists in a convolution layer (Conv2D), a batch normalization layer
(BatchNormalization) and a leaky rectifier linear unit (LeakyReLU) activation function. The
convolution operation optimizes a number of filters to be convolved with the inputs, whether
it is the input image or the subsequent output of each layer. The number of filters of the four
layers are respectively [30,32,24,18] and their size are [20,30,40,50]. Both the dense layers have
75 units and use LeakyReLU activation function and L2 regularization. All hyperparameters
were optimized using a grid search methodology. This network is represented in Fig. 2 and is
available in the Refs. [24].

Fig. 2. Forward predictive network. The input is the image of a cloaking shell configuration.
The network consists in 4 convolution layers and 2 dense layers, and the output is the
scattering coefficient Ψ

The generative adversarial network consists of two different networks, a generator and a
discriminator, which work in opposition to create new shell geometries similar to those of the
dataset. The generator is a transposed convolution network, which takes a random noise vector
of dimension 200 as input and creates a new "fake" image of a cloaking shell as output. The
discriminator is a convolution network and takes an image and gives it a probability that it is
"real", meaning that it came from the initial datatset.

The generator consists in a series of 3 transposed convolution layers (Conv2DTranspose), which
patches the input with zeros in between each of its row and columns, then applies convolution
operations with a series of filters. This operation thus upsamples its input by a factor of a certain
ratio, which is 2 for our case. This layer is followed by BatchNormalization and LeakyReLU
activation layers. The number of filters for these layers are [64,32,1] of size [5,5,5]. The
discriminator is a convolution network with 3 block layers of convolutions, LeakyReLU and
dropout layers (DropOut) of coefficient 0.3. The number of filters is [32,32,16], and the size
of the filters are [5,5,5]. All hyperparameters were optimized using a grid search methodology.
Both networks are represented in Fig. 3(a) and their details can be found in the online Ref. [24].

The adversarial play between the two networks is accomplished via their loss function, which
is computed using the binary cross-entropy function :

L(I) = −
1
N

N∑︂
i

yilog(p(yi)) + (1 − yi)log(1 − p(yi)), (2)

where I is the dataset of images, N is the number of images in the dataset, yi is the label of
the image, and p(yi) is the probability output. For every batch of the image dataset, a batch of
the same size of fake images is created using the generator. All those images are given to the
discriminator, who gives them a probability p(yi) of being real. The loss is then calculated using
Eq. (2), with the label value yi equal to 1 for the real images and 0 for the fake images in the
case of the discriminator loss, and 1 for the fake images in the case of the generator loss. This
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Fig. 3. (a) Discriminator and Generator networks. The Discriminator consists of 4
convolutions layers and one dense layer, with the output being the probability of the image
being "real" (from the dataset) or "false" (from the generator). The Generator consists of
3 Transposed convolution layers and the output is a binary image of a shell configuration.
(b) Block diagram of the DCGAN. The neural networks are represented with dashed lines,
while data are represented with full lines. Output value p(y) represents the probability of
an image being tagged as real, while output Ψ represents the scattering metric of the shell
represented by the image.

way, the discriminator is trained to differentiate the real and fake images, while the generator is
trained to fool the discriminator by feeding it more and more realistic images which look like
those of the dataset.

To this branched network we add an additional path, which will calculate the scattering metric
of the new fake images using the forward model. This way, we can add this value to the loss
function of the generator so the new images not only aim to mimick the ones of the dataset but
also to optimize cloaking. Schematic of the full DCGAN network is represented in Fig. 3(b).
The total loss function of the generator is thus given by :

Lt = αgLg + αf Lf , (3)

where Lt is the total loss, Lg is the generator loss, Lf is the forward model loss and αg, αf are
weighting coefficients. Care must be taken in order to choose weighting coefficients that balance
cloaking optimization and generator efficiency.

One important detail of the previous network is the implementation of a rounding function on
the fake images obtained from the DCGAN in order to have binary image input for the forward
model. Since a rounding function’s derivative is equal to zero, its direct use will lead to a
vanishing gradient and the forward model wouldn’t contribute to the training of the generator. We
thus use a parameterized sigmoid as an approximation of the round function with a continuous
derivative given by:

σ =
1

1 + e−b(x−a) dσ/dx = bσ(1 − σ) . (4)

Taking a = 0.5 and b = 10, this will give a good approximation of the rounding function for
values which are included in between [0,1]. Parameter b is a factor to control the slope of the
sigmoid.
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2.3. Feedback loop

DCGAN networks are effective at quickly generating and evaluating potential configurations for
the cloacking shell. The addition of the forward network guides this generative process towards
the optimization goal, in this case to minimize scattering. This method is limited though since
the forward model isn’t perfect at predicting the output to minimize, especially for configurations
that differ considerably from those of the dataset. Some solutions might thus not be as optimal as
the forward model predicts, and the model might also pass on a good configuration by wrongly
predicting its output.

For this reason, an iterative process of retraining the forward network is suggested for improving
the solution search. The method is depicted in Fig. 4. The best solutions from the DCGAN
according to the predicted scattering coefficient Ψp are taken and simulated using FEM in order
to obtain the real scattering coefficient Ψr. Those solutions are then added to the dataset and
the forward model is retrained. We reinitialized the weights of the forward model everytime in
order to avoid validation biases incoming from training examples reshuffled in the validation set.
The new forward model is added in the DCGAN and a new solutions search is initiated, using
the new and improved dataset. The generator is also reinitialized to avoid an early convergence
towards a local minimum.

Fig. 4. Feedback loop training of the DCGAN. After each training of the DCGAN for 60
epochs, the 1000 best configurations are taken and simulated using FEM. The new ground
truth data is used to retrain the forward model and the DCGAN is retrained with the new
dataset.

This way, the forward model is improved by correcting any wrong prediction attributed to
specific configurations which were deemed optimal. Furthermore, the dataset is improved by
including good configurations, which will in turn lead the generator towards suggesting more
favorable geometries.

3. Results and discussion

3.1. Training of the DCGAN

Training of the DCGAN usually requires a fine tuning of the parameters for each of the neural
networks, whether it is the generator, the discriminator or the forward model. Both generator and
discriminator are involved in a zero-sum game one with the other, since positive outcome for one
means negative outcome for the other. They usually reach a Nash equilibrium and oscillate out
of phase [25]. The generator and discriminator need not to overpower one another, or else the
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generated configuration might be random and noisy, and as they differ considerably from those
of the dataset the performance of the forward model will decrease significantly.

Adding an additional loss for the generator with the forward model creates a perturbation of
this equilibrium, since the generator not only updates its weights to fool the discriminator but
also to minimize the scattering metric Ψ. This leads, as can be seen in Fig. 5(a), to a generator
reaching an equilibrium slightly above that of the discriminator, meaning that the generator might
not perform fully at suggesting configuration resembling those of the dataset. Choosing the
weighting parameters αf and αg of Eq. (3) carefully as to keep the difference between generator
and discriminator loss as small as possible is thus crucial for obtaining adequate solutions. The
coefficient αg was set to 1 and the parameter αf = 5/<Ψ> for each iteration of the method in
order to adapt for lower loss with improved dataset.

Fig. 5. (a) Forward, Generator and Discriminator Loss during training of the DCGAN. (b)
Evolution of the generated images of the DCGAN for a specific noise vector during the
training of the 5th iteration of the feedback loop.

Since the dataset doesn’t contain similar type of images, the outputs of the generator remains
dynamic and keeps evolving during the training even once the equilibrium between discriminator
and generator has been reached. Figure 5(b) plots an exemple of the output image for a specific
noise vector during certain training epochs of the DCGAN (during the 5th iteration of the feedback
loop). Even if the image converges towards a certain shape at epoch 20, little variations are still
created for subsequent epochs. For this reason, a solution search is made after each epoch to
maximize the number of different potential configurations.

3.2. Feedback loop

In order to achieve optimization of the cloaking shell, 11 training iterations of the DCGAN were
accomplished. In Fig. 6, 4 random examples of the generator output are presented for each
iteration of this feedback loop of the DCGAN. The proposed configurations are very diverse for
the first few iterations, but converge towards one optimal configuration starting at iteration 5.
This convergence is caused by two effects: on one hand, the forward model forces the generator
to suggest optimal configurations, and on the other hand, the dataset is slowly getting more and
more populated by those optimal configurations. In order to avoid getting the algorithm trapped
in a local minimum, the αf parameter of Eq. (3) needs to be chosen low enough as to not collapse
all the solutions of the generator towards the same configuration.

The strong point of the DCGAN is its ability to generate adequate configuration and to quickly
predict the output of a certain configuration. The forward model takes about 0.1 ms for one
prediction working on a Kaggle 17 GPU RAM kernel, while one COMSOL simulation takes
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Fig. 6. Examples of 4 generated images at the end of the 60 epochs training of the DCGAN
for each iteration of the forward loop.

5-10s, making it roughly 50 000 - 100 000 times faster. We thus take advantage of this feature by
testing 128000 configurations at each of the 60 epoch of the training of the DCGAN.

After each training of the DCGAN the 1000 best configurations are taken according to their
predicted value of Ψp and are simulated in the FEM method in order to obtain their real value
Ψr. The loop is continued until no more improvements in the Ψr is observed. The minimal
value of Ψr and the average value for each of the 11 iterations are plotted in Fig. 7(a). Both
values are normalized with the value of the scattering coefficient of the object with no cloak.

Fig. 7. Average value (blue) and Minimum value (red) ofΨr for the 1000 best configurations
found by the DCGAN at every iteration. This value was normalized with the scattering
coefficient of the object without a cloak. The retraining of the DCGAN was done for 11
iterations until the minimal value of Ψr no longer improved. (b) Normalized value of the
trasverse Hz field with the optimal configuration.
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We can observe a continual improvement of the minimal value and the average value of Ψ until
it reaches 5.11 × 10−11 W/m. This leads to a cloaking ratio of 0.0089 when comparing to the
value 5.77 × 10−9 W/m without the cloak. This performance is comparable to solutions found
using topology optimization [3–5] for similar dimensions of the shell and object compared to the
wavelength. Restarting the feedback loop from the beginning gave a similar type of geometry,
meaning that the algorithm converges towards an optimized solution. Also, the average value of
the normalized scattering coefficients at iteration 0 is greater than one, meaning that most of the
random design of the initial set are detrimental to cloaking. This demonstrates the ability of the
method to reach a global minimum, with no prior initial assumptions on the shape of an optimal
cloak.

In Fig. 7(b) the total transverse magnetic field Hz is plotted with the optimal cloak configuration
found, which shows almost no distorsion of the wavefront compared to Fig. 1(b). A strong
concentration of the fields near the top and bottom regions of the object is observed, which is
typical of the bending of the electromagnetic wavefront for cloaking shells.

4. Conclusion

In this paper we have demonstrated the use of deep learning for the optimization of an optical
cloak. The suggested algorithm consists in a DCGAN architecture which is trained multiple times
in a feedback loop in order to improve the solution search. The total scattered field coefficient,
calculated with the Poynting vector at the outside boundary of the simulation domain of a FEM
simulation, reached a ratio of 0.0089 of the field scattered without a cloak, which is comparable
to results obtained using topology optimization. Since it started from completely random data,
this algorithm thus represent an efficient optimization method which can guide the solution
towards a global minimum, with no initial assumptions.
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