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In this letter, we discuss certain universal predictions of the large charge expansion in conformal field 
theories with U (1) symmetry, mainly focusing on four-dimensional theories. We show that, while in 
three dimensions quantum fluctuations are responsible for the existence of a theory-independent Q 0

term in the scaling dimension �Q of the lightest operator with fixed charge Q � 1, in four dimensions 
the same mechanism provides a universal Q 0 log Q correction to �Q . Previous works discussing four-
dimensional theories failed in identifying this term. We also compute the first subleading correction to 
the OPE coefficient corresponding to the insertion of an arbitrary primary operator with small charge q �
Q in between the minimal energy states with charge Q and Q + q, both in three and four dimensions. 
This contribution does not depend on the operator insertion and, similarly to the quantum effects in �Q , 
in four dimensions it scales logarithmically with Q .

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In [1] it was argued that, in conformal field theory (CFT), opera-
tors with large internal charge can generally be associated, via the 
state-operator correspondence, to a superfluid phase of the the-
ory on the cylinder. As a consequence, the universal effective field 
theory (EFT) description of the hydrodynamic Goldstone modes of 
the superfluid [2] allows to study systematically correlation func-
tions of these operators [3] (see also [4]). The derivative expansion 
of the EFT coincides with an expansion in inverse powers of the 
charge. This construction is reviewed in sec. 2 of this letter for 
U (1)-invariant CFTs.

In the calculation of a given observable within EFT, one may 
distinguish between classical and quantum contributions. In par-
ticular, while the classical contributions depend on a new set of 
UV-dependent Wilson coefficients at each order in the derivative 
expansion, the quantum corrections are usually related to the Wil-
son parameters determining the lower orders; therefore, they are 
calculable and, in some sense, universal. For instance, in the chiral 
Lagrangian (in the limit of vanishing quark masses) the structure 
of the ∼ E2/�2 contribution to pion scattering at center of mass 
energy E � �, � being the chiral symmetry breaking scale, is 
fixed by the EFT up to a single Wilson coefficient. The same lead-
ing order action determines the non-analytic piece of the one-loop 
contribution; this is proportional to the logarithm of the cutoff 
and scales as (E2/�2)2 log �2/E2 [5]. Instead, the finite (E2/�2)2

contributions from the one-loop are renormalized by the higher 
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derivative operators in the chiral Lagrangian; therefore, the ana-
lytic (E2/�2)2 term is purely a classical contribution and the EFT 
predicts its structure only up to a set of new Wilson parameters.

The interplay between classical contributions and the sublead-
ing universal quantum corrections obviously plays an important 
role also in the determination of the CFT data of the theory within 
the large charge superfluid EFT. The most appreciated example 
concerns the prediction for the scaling dimension �Q of the oper-
ator with lowest dimension at fixed charge Q in a U (1)-invariant 
three-dimensional CFT. The result is [3,6]:

�Q |d=3 = α1 Q
3
2 + α2 Q

1
2 − 0.0937255 + . . . . (1)

To the first subleading order, the result depends on the value of 
two Wilson coefficients α1 and α2. The Q 0 term corresponds in-
stead to the Casimir energy of the Goldstone mode and it is there-
fore a one-loop quantum correction. As shown in [1], its value is 
fully calculable since it cannot be renormalized by any local coun-
terterm. Remarkably, not only this term does not depend on any 
new coefficients, but it takes the same universal value for all CFTs 
whose large charge sector corresponds to a superfluid phase.

The structure of the quantum corrections to �Q in four-
dimensional U (1)-invariant CFTs is qualitatively different. Indeed, 
in that case the scaling dimension �Q is proportional to Q

4
3 , with 

subleading corrections arising from higher derivative terms sup-

pressed by powers of Q
2
3 . The one-loop Casimir energy scales as 

Q 0 and may therefore be renormalized by the operators associated 
with the Wilson coefficients contributing to the third order action. 
Because of this, the authors of [7–9] concluded that the predic-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tion of the large charge EFT in four dimensions concerns only the 
structure of �Q , but, differently from d = 3 (1), no fully universal 
contribution arises in this case; in other words, each order in the 
1/Q

2
3 expansion is proportional to a new independent Wilson co-

efficient. The main purpose of this letter is to disprove such claim. 
Indeed, in sec. 3 we show that the large charge EFT predicts the 
existence of a calculable and theory-independent Q 0 log Q term in 
�Q . More precisely, the final result reads:

�Q |d=4 = α1 Q
4
3 + α2 Q

2
3 − 1

48
√

3
log Q + α3 + . . . , (2)

where the αi ’s are UV-dependent Wilson coefficients. The exis-
tence of a universal contribution proportional to the logarithm of 
the charge is fully analogous to the (E2/�2)2 log�2/E2 corrections 
to pion scattering, and more in general to the standard logarithms 
of the cutoff scale arising at one-loop in perturbative field theo-
ries. As in those cases, the coefficient of the Q 0 contribution that 
is not logarithmically enhanced by the cutoff depends on the pre-
cise value of the counterterm renormalizing the quantum loop and 
it is thus not universal.

As already noticed in [10], the second subleading quantum cor-

rection to �Q , scaling as Q −1 ind d = 3 and as Q − 2
3 log Q in 

d = 4, is also of some interest, since its value is correlated with the 
subleading corrections to the dispersion relation of the Goldstone. 
In sec. 3 we also provide explicit expressions for this correction in 
both d = 3 and d = 4. We also discuss the generalization of eqs. (1)
and (2) to d = 5 and d = 6.

Universality is manifest also in other CFT data predicted by the 
large charge expansion. As a further illustration, in sec. 4 we con-
sider the correlator of an arbitrary light operator with small U (1)

charge q in between the lowest dimensional operators with charge 
Q and −(Q + q). In [3] it was shown that, matching the light 
operator in terms of the Goldstone field, the EFT predicts that, 
to leading order, the OPE coefficient scales as Q

δ
d−1 times a Wil-

son parameter that depends on the operator under consideration. 
Here we show that the first subleading correction to this result 
is instead independent of the specific operator and, in d = 3, it is 
proportional to q2 Q

δ−1
2 , while in d = 4 it scales as q2 Q

δ−2
3 log Q .

2. The conformal superfluid EFT

Consider a d dimensional CFT with U (1) internal symmetry and 
let us call |Q 〉 the minimal energy state at fixed value of the in-
ternal charge for the theory quantized on R × Sd−1 with sphere 
radius R . By the state-operator correspondence |Q 〉 has the same 
quantum numbers of the operator OQ (x) with lowest dimension 
at fixed charge Q , the energy E Q being related to the scaling di-
mension �Q of the operator as E Q = �Q /R . Further consider the 
Euclidean matrix element for an arbitrary number of operator in-
sertions with small quantum numbers in between the ground state 
|Q 〉:

〈Q , τout |Om(τm, n̂m) . . .O1(τ1, n̂1)|Q , τin〉 , (3)

where τ = R log (|x|/R) denotes Euclidean time on the cylinder, 
n̂μ = xμ/|x| specify the coordinates on the sphere and the states 
are defined in Schrödinger picture,

|Q , τin〉 ≡ eHτin |Q 〉 = eE Q τin |Q 〉 , (4)

〈Q , τout | ≡ 〈Q | e−Hτout = 〈Q | e−E Q τout . (5)

The basic observation of [1,3] can be phrased as follows. In 
the limit Q � 1 we expect the path-integral describing the matrix 
element (3) to be dominated by semiclassical saddle-point trajecto-
ries characterized by a specific pattern of symmetry breaking. The 
2

most natural situation corresponds to the case in which the lead-
ing trajectory is characterized by a superfluid pattern [3], which is 
defined as, in obvious notation,

S O (d + 1,1) × U (1) −→ S O (d) × D̄ , (6)

where S O (d + 1, 1) is the d-dimensional conformal group, S O (d)

the Euclidean rotation group, Q̂ is the U (1) generator and D̄ =
D +μR  ̂Q is a linear combination of the dilation generator D , cor-
responding to the cylinder Hamiltonian, and the internal generator 
Q̂ . Here μ defines the chemical potential. Under the assumption 
that the leading semiclassical trajectory realizes the pattern (6), the 
properties of the ground state and its fluctuations are character-
ized by the corresponding Goldstone excitations. When not implied 
differently by additional symmetries, such as supersymmetry [11], 
additional degrees of freedom are expected to be separated by a 
finite gap from the Goldstones and may be integrated out. We 
can therefore effectively compute the path-integral corresponding 
to the matrix element (3) using a low energy action for the Gold-
stone degrees of freedom.1

The pattern (6) may be realized in terms of a single shift-
invariant superfluid Goldstone χ(x) = −iμτ + π(x) [2,3], associ-
ated to the breaking of the U (1) symmetry, where the chemical 
potential μ will be determined eventually by the charge Q . The 
action is easily constructed in an expansion in derivatives over μ
noticing that the following modified metric ĝμν = gμν(∂χ)2, where 
(∂χ) = (−∂μχ gμν∂νχ)1/2, is invariant under Weyl transforma-

tions. Denoting ∇̂μ and R̂ρ
μσν the covariant derivative and the 

Riemann tensor obtained from ĝμν and discarding terms which 
vanish on the equations of motion of the leading order Lagrangian 
[12], the action reads

S = S(1) + S(2) + S(3) + . . . (7)

S(1) = − c1

∫
ddx

√
ĝ = −c1

∫
ddx

√
g(∂χ)d , (8)

S(2) =
∫

ddx
√

ĝ
{

c2R̂− c3R̂μν∂μχ∂νχ
}

=c2

∫
ddx

√
g(∂χ)d

{
R

(∂χ)2
+ . . .

}
−c3

∫
ddx

√
g(∂χ)d

{
Rμν

∂μχ∂νχ

(∂χ)4
+ . . .

}
, (9)

S(3) =c4

∫
ddx

√
ĝR̂2 + . . .

=c4

∫
ddx

√
g(∂χ)d

{
R2

(∂χ)4
+ . . .

}
+ . . . , (10)

where Rρ
μσν is the Riemann tensor deriving from the cylinder 

metric gμν and the dots stand for terms with at least two co-
variant derivatives acting on ∂μχ ; their precise form can be found 
using the standard formulas relating curvature invariants of two 
Weyl equivalent metrics reported, e.g., in [13]. The ci ’s are Wilson 
coefficients, whose value depends on the microscopic dynamics of 
the specific underlying CFT. In the simplest scenario, correspond-
ing to an underlying strongly coupled theory, the ci ’s are given 
by inverse powers of 4π ’s according to generalized dimensional 
analysis [14]. Weakly coupled theories correspond instead to non-
generic sizes for the Wilson coefficients, see e.g. [10] for an explicit 
example. For future convenience, we also wrote the only term of 

1 Notice that despite the leading trajectory in the path-integral induces the sym-
metry breaking pattern in eq. (6), the state |Q 〉 does not break the U (1) symmetry; 
see [3] for additional comments on this point.
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the third order action which does not vanish on the background 
∂μχ = −iμδ0

μ in d = 4.

Let us prove that no other terms at order μd−4|d=4 = μ0 con-
tribute on the background solution in d = 4. To this aim, notice 
that ∇μ∂νχ = 0 and that R0

μνρ = Rμ
0νρ = Rμ

ν0ρ = Rμ
νρ0 = 0, so 

that any contraction of the Riemann tensor with ∂μχ vanishes. 
Therefore, the only two additional invariants that need to be con-
sidered in d = 4 are Ŵμνρσ Ŵ μνρσ and Ê , where Wμνρσ and E
are, respectively, the Weyl tensor and the Gauss-Bonnet term [13]. 
However both of them vanish identically on the background. In-
deed the first is Weyl invariant and the metric ĝμν is conformally 
equivalent to flat space, while the second one in four dimensions 
coincides with the Euler density, whose integral is a topological 
invariant and vanishes on the cylinder. Finally, due to the Weyl 
anomaly in four dimensions, at the same order the effective action 
must include also the following Wess-Zumino term [1,15]:

SW Z |d=4 =
∫

d4x
√

g log(∂χ)
[−aE + cWμνρσ W μνρσ

] + . . . ,

(11)

where a and c are the trace anomalies and the dots stand again 
for terms with at least two covariant derivatives acting on ∂μχ . 
Also this term vanishes on the superfluid solution by considera-
tions similar to the ones above.

3. The scaling dimension

Using the action (7), in this section we extract the scaling di-
mension of the lightest operator with fixed charge Q � 1. We 
shall present the calculation in an arbitrary number spacetime of 
spacetime dimensions d. This will allow us to immediately identify 
the main differences between even and odd spacetime dimensions. 
Furthermore, since the previously derived action is Weyl and U (1)-
invariant in an arbitrary number of spacetime dimensions, working 
for arbitrary d provides us with a natural regulator for the quan-
tum corrections to the energy.

Following [3], we can compute E Q considering the Euclidean 
evolution amplitude of an arbitrary charge Q state |Q , X〉:

〈Q , X |e−H T |Q , X〉 ∝ e−E Q T , (12)

where we used that in the limit T → ∞ any state with charge Q
will project to the ground state. A convenient choice of the state 
leads to the following path-integral [3]

〈Q |e−H T |Q 〉 ∝
∫

DχiDχ f ψQ (χi)ψ
∗
Q (χ f )

×
χ=χ f∫

χ=χi

Dχ exp

⎡⎢⎣−
T /2∫

−T /2

dτ

∫
dd−1x

√
gL

⎤⎥⎦ , (13)

where the wave-functionals ψQ (χ) ensure that the initial and final 
state have the correct U (1) charge:

ψQ (χ) = exp

[
i Q

Rd−1�d−1

∫
dd−1x

√
gχ

]
. (14)

Here �d−1 = 2πd/2

�(d/2)
is the volume of the d − 1 dimensional sphere.

For large Q , the integral (13) can be computed semiclassically 
around the saddle-point solution

χ = −iμτ + π0 . (15)

Notice that on the solution the term proportional to c3 in the 
action (9) vanishes, since R00 = 0 on R × Sd−1. Here π0 is an 
3

integration constant and the field is analytically continued away 
from the real axis. The variation of the field at the boundary fixes 
the chemical potential μ in terms of the charge Q via

i
∂L
∂χ̇

= Q

Rd−1�d−1
. (16)

Solving this equation perturbatively for large Q , we find

Rμ = Q̃
1

d−1

[
1 + c2(d − 2)2

c1d
Q̃ − 2

d−1 +O
(

Q̃ − 4
d−1

)]
,

Q̃ ≡ Q

c1d �d−1
. (17)

For Q � 1 we thus have μ ∝ Q
1

d−1 , with subleading corrections 
suppressed by powers of Q − 2

d−1 .2 Computing the action on this 
solution, we find the classical contribution to the energy of the 
state:

�Q |classical = α1 Q
d

d−1 + α2 Q
d−2
d−1 + α3 Q

d−4
d−1 + . . . , (18)

where the αi ’s are combination of the Wilson coefficients. For in-
stance, the first two read:

α1 = c1(d − 1)�d−1(
c1d �d−1

) d
d−1

, α2 = c2(d − 1)(d − 2)�d−1(
c1d �d−1

) d−2
d−1

. (19)

The scaling with Q of the leading term in eq. (18) could have 
been inferred on dimensional grounds [1]. Indeed, for a scale in-
variant theory in the semiclassical regime the charge density ρ
and the energy density ε are expected to obey a local relation of 
the form ε ∝ ρ

d
d−1 . Subleading terms are suppressed by the ratio 

of the cutoff and the compactification scale (R−1/μ)2 ∼ Q − 2
d−1 ; 

this structure follows from the fact that the EFT action depends 
analytically on the curvature invariants.

We now want to consider quantum corrections to eq. (18). To 
this aim, we define χ(x) = −iμτ + π(x) and we expand the low 
energy action to quadratic order in the fluctuations:

S � d(d − 1)

2
c1μ

d−2

×
∫

ddx
√

g

[
π̇2 + 1

d − 1
(∂iπ)2 +O

(
∇4/μ2

)]
. (20)

This action describes a phonon mode with speed of sound c2
s =

1
d−1 , as it is mandated by tracelesness of the energy momentum 
tensor. More precisely, upon including the subleading correction to 
the quadratic phonon action, we find that the dispersion relation 
reads

ω� = 1√
d − 1

J� + γ

Q
2

d−1

(
J 3
� R2

d − 1
− J�

)
+O

(
J 5
� R4

Q
4

d−1

)
,

γ = [c2(d − 2) + c3] (d − 2)

c
d−3
d−1
1 d

√
d − 1

(
d �d−1

) −2
d−1

, (21)

where J 2
� = �(� + d − 2)/R2 is the �th eigenvalue of the Laplacian 

on the sphere. The Fock space of these modes, except for the zero 
mode which relates different charge sectors, describes operators 
with the same U (1) charge Q but with higher scaling dimension: 
� = �Q + ∑

n�Rω� . In particular, the descendants correspond to 

2 Notice however that for c1 � 1, as it is expected in weakly coupled theories, 
the chemical potential may be parametrically smaller than Q

1
d−1 .
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states involving a number q > 0 of spin one quanta, each increas-
ing the energy by ω1 = 1/R .

The one-loop contribution to the energy is given by the fluc-
tuation determinant arising from the Gaussian integration of eq. 
(20):

T

R
δ�

(1)
Q = 1

2
log det

[
−∂2

τ − 1

d − 1
∇2 +O

(
∇4/μ2

)]
where ∇2 = |gij|∇i∇ j is the Laplacian on the d − 1 dimensional 
sphere. Proceeding as in [16], one can show that the value of δ�(1)

Q
in dimensional regularization coincides with a sum of zero point 
phonon energies:

δ�
(1)
Q = 1

2

∑
�

n�,d Rω� = β0 + β1 Q − 2
d−1 + . . . . (22)

Here n�,d = (2�+d−2)�(�+d−2)
�(�+1)�(d−1)

is the multiplicity of the Laplacian 
eigenvalue J� on a d − 1 dimensional sphere. We formally wrote 
the result in a large Q expansion in terms of dimensionless co-
efficients βi ’s, whose specific value depends on the number of 
dimensions d. Notice that β0 cannot depend on the ci ’s, because 
the sound-speed in eq. (20) is fixed by conformal invariance at 
leading order in Q . Summing the quantum corrections to the clas-
sical result (18) we find

�Q = Q
d

d−1

[
α1 + α2 Q − 2

d−1 + α3 Q − 4
d−1 + . . .

]
+Q 0

[
β0 + β1 Q − 2

d−1 + . . .
]
+ . . . . (23)

We neglected the two-loop correction to the energy, which scales 
as ∼ Q − d

d−1 (up to logarithms of Q ).
Eq. (23) immediately shows the main difference between even 

and odd d. Indeed, the contribution from the classical solution, as-
sociated to the coefficients αi , does not contain any term scaling as 
Q 0 for non-even d. This implies that, in odd spacetime dimensions, 
the one-loop correction (22) cannot be renormalized by any lo-
cal counterterm and it is hence finite and calculable. In particular, 
since β0 is independent of the Wilson coefficients, the Q 0 con-
tribution takes the same universal value for all three-dimensional 
U (1)-invariant CFTs whose large charge sector is described by a 
superfluid phase. The explicit result for the quantum corrections 
in d = 3 can be found proceeding as in the appendix of [16] and 
reads3

β0|d=3 = −0.0937255 ,

β1|d=3 = (c2 + c3) × 1.21666 . (24)

This result for β0 is in agreement with the value originally derived 
in [6] within zeta-function regularization. Summing everything, the 
final result in d = 3 reads:

�Q |d=3 = α1 Q
3
2 + α2 Q

1
2 − 0.0937255 + α3 Q − 1

2

+(c2 + c3) × 1.21666 × Q −1 +O
(

Q − 3
2

)
. (25)

Notice that the combination c2 + c3 controlling the Q −1 contribu-
tion can be extracted from the first subleading correction to the 
dispersion relation of the Goldstone mode (21). A non-trivial check 
of both this relation and the value of the Q 0 term in a specific 

3 The value of β1 here corrects eqs. (36) and (38) of [10], where the piece pro-
portional to c3|here = λα2|there was incorrect; this mistake however did not affect 
the main results of that work, where the authors considered a specific UV complete 
theory such that c3|here = λα2|there = 0 in the EFT to tree-level accuracy.
4

three-dimensional weakly coupled model was provided in [10]. 
The value of the Q 0 term was previously verified in [17] at large 
N for monopole operators and it is in agreement with the result 
of Monte-Carlo simulations [18].

Conversely, in d = 4 the β0 term in eq. (23) can be renormalized 
by the classical contribution proportional to α3, and it is hence ex-
pected to be divergent. Similarly for β1 that may be renormalized 
by α4. Indeed, we find that their expressions within dimensional 
regularization contain a pole for d → 4:

β0|d→4 = 1

16
√

3(d − 4)
+ finite ,

β1|d→4 = − 7π
4
3 (2c2 + c3)

48
√

3 c1/3
1 (d − 4)

+ finite . (26)

The finite parts can always be re-absorbed in the definition of the 
Wilson coefficients of the operators contributing to the third and 
higher orders in the action and are hence irrelevant for our pur-
poses.

As typical in quantum field theory, the divergent part of a quan-
tum loop is related to a calculable logarithm of the UV scale. To 
see this mechanism at work here, notice that the UV divergence 
associated to β0 can be reabsorbed in the definition of the bare 
coefficient c4 upon writing it as

c4 = − 1

36�3
× 1

16
√

3(d − 4)
+ cren.

4 , (27)

where cren.
4 is finite and we used R2 = 36/R4 in d = 4 to obtain 

the prefactor. Adding the contribution from eq. (10) to β0 and ex-
panding the result for d → 4 we find:

β0 + R

T
S(3) = lim

d→4

[
1 − (Rμ)d−4

16
√

3(d − 4)

]
+ finite × Q 0

= − 1

16
√

3
log Rμ + finite × Q 0 , (28)

which indeed contains a logarithm of μ ∼ Q 1/3. The divergent 
contribution from β1 may be similarly renormalized by higher or-
der terms, schematically of the form 

√
ĝR̂3 ∼ (∂χ)d−6R6, their 

precise expression being irrelevant. Proceeding as before, we find 
a calculable contribution of the form (Rμ)− 2

3 log Rμ. Eventually, 
using eq. (17) to relate μ and Q , the final result reads:

�Q
∣∣
d=4 = α1 Q

4
3 + α2 Q

2
3 − 1

48
√

3
log Q + α3

+7π
4
3 (2c2 + c3)

144
√

3 c1/3
1

Q − 2
3 log Q + α4 Q − 2

3 +O
(

Q − 4
3

)
.

(29)

Eq. (29) is the main result of this letter. It shows that the large 
charge expansion in d = 4 predicts the existence of a universal 
and calculable Q 0 log Q contribution to the energy. Some previ-
ous works studying four-dimensional models [7–9] have failed in 
identifying the existence of such term, incorrectly claiming instead 
that �Q does not contain any theory-independent contribution in 
d = 4. Perhaps, this mistake was induced by the use of an ar-
guably less transparent regularization scheme for the quantum cor-
rections, namely zeta-function regularization, which breaks scale 
invariance at intermediate steps. In our approach, the result (29)
was instead obtained in a straightforward manner within dimen-
sional regularization, which preserves both the conformal and the 
internal symmetry at every step of the calculation. Notice also that, 
similarly to the Q −1 contribution in eq. (25), the coefficient of the 
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Q − 2
3 log Q term is related to the subleading correction to the dis-

persion relation of the phonon (21).
The result (29) applies to any 4d CFT with U (1) symmetry 

whose large charge sector is a superfluid, including superconformal 
theories in which supersymmetry is fully broken at large charge 
[1]. In the future, it should be possible to verify explicitly the value 
of the universal logarithmic contributions in perturbative models, 
along the lines of [10,17].

Finally, we mention that our results admit obvious extensions 
to higher spacetime dimensions. For completeness, we provide the 
expression of �Q both in d = 5 and d = 6 to order Q 0:

�Q |d=5 = α1 Q 5/4 + α2 Q 3/4 + α3 Q 1/4

− 0.1079 +O
(

Q −1/4
)

, (30)

�Q |d=6 = α1 Q 6/5 + α2 Q 4/5 + α3 Q 2/5

− 1

60
√

5
log Q + α4 Q 0 +O

(
Q −2/5

)
. (31)

The superfluid description at large charge might apply in some 
two dimensional models as well. That case however is special, 
since the two-dimensional cylinder is a flat manifold and the EFT 
coincides with the theory of a free compact boson to leading order. 
In particular, the Q 0 Casimir energy of the Goldstone boson is not 
renormalized by any classical term differently from higher even 
dimensions. In the future, it would be interesting to identify ex-
plicitly interacting 2d CFTs whose large charge sector is described 
by the superfluid EFT.

4. OPE coefficients

Suppose that in the CFT under consideration there exists a 
scalar primary operator with scaling dimension δ � �

1/2
Q

4 and 
small charge q, in a sense that will be quantified later. We can 
reconstruct this operator in the large charge EFT by matching its 
quantum numbers in terms of the Goldstone field as [3]

O(δ)
q = C (1)

δ,q(∂χ)δeiqχ − C (2)
δ,q(∂χ)δ−2 [R+ . . .] eiqχ + . . . . (32)

As for the ci ’s in the effective action (7), C (1)
δ,q and C (2)

δ,q are Q -
independent Wilson coefficients whose value is not predicted by 
the EFT.

We can use the expression (32) for the operator to compute the 
matrix element λ(δ)

q ≡ 〈Q + q|O(δ)
q |Q 〉 in d = 3 and d = 4. To this 

aim, we insert the expression (32) in the path-integral (3)

〈Q + q, τout |O(δ)
q (xc)|Q , τin〉

=
∫

Dχ
[

C (1)
δ,q (∂χ)δ + . . .

]
e−Smod , (33)

where we included the eiqχ contribution from the operator in-
sertions and the wave-functions in the definition of the following 
modified action

Smod[χ ] = S[χ ] + i
Q + q

�d−1

∫
d�d−1χ f

− iqχ(τc, n̂c) − i
Q

�d−1

∫
d�d−1χi .

(34)

To compute the path-integral in a saddle-point approximation, we 
look for a solution of the equations of motion of the action Smod

to leading order in derivatives:

4 This ensures that the terms arising from the expansion of the term (∂χ)δ of eq. 
(32) into canonically normalized field fluctuations are small.
5

∇μ jμ(x) = qδ(d)(x − xc) , (35)

where δ(d)(x −xc) = δ(τ −τc)δ
d−1(n̂−n̂c)/ 

√
g and jμ= i∂L/∂(∂μχ)

is the Noether current. In the limit T → ∞ the boundary condi-
tions read

jμ(x)
τ→−∞−−−−→ δ

μ
0

Q

Rd−1�d−1
,

jμ(x)
τ→+∞−−−−→ δ

μ
0

Q + q

Rd−1�d−1
. (36)

Physically, we can think of equation (35) as a non-linear version 
of the electrostatic Gauss-law (where the current is not an exact 
form), the scalar operator acting as a point-like source with charge 
q, slightly deforming the path-integral. For sufficiently small q, we 
may solve this equation expanding the field around the superfluid 
solution. To leading order the solution coincides with (15) and we 
find that the path-integral evaluates to

C (1)
δ,qμ

δe−�Q (τout−τin)−qμ(τout−τc)

≈ C (1)
δ,qμ

δe−�Q +q(τout−τ )−�Q (τ−τi) , (37)

where in the second line we used

qRμ = q
∂�Q

∂ Q
≈ �Q +q − �Q . (38)

Using (17) we find that the EFT structure predicts the following 
scaling law for the OPE coefficient:

λ
(δ)
q ∝ Q

δ
d−1 . (39)

This result was originally presented in [3].
We now proceed to extend this analysis to the next order by 

expanding the solution in fluctuations π(x) = χ(x) + iμτ −π0. The 
linearized problem reads:

ic1d(d − 1)μd−2
(

∂2
τ + 1

d − 1
∇2

)
π(x) = q

δ(d)(x − xc)√
g

. (40)

This equation can be straightforwardly solved expanding the field 
into Gegenbauer polynomials:

π(x) = i
q/(Rd−1�d−1)

c1d(d − 1)μd−2

[
− (τ − τc)θ(τ − τc)

+
∞∑

�=1

2� + d − 2

d − 2

e−ω�|τ−τc |

2ω�

C

(
d
2 −1

)
�

(
n̂ · n̂c

)]
. (41)

Using μ ∼ Q
1

d−1 this implies that the field scales as π(x) ∼
q/Q

d−2
d−1 . Corrections arising from nonlinear terms in the expan-

sion are suppressed by a relative power of q/Q with respect to 
the leading expression (41). Plugging this solution in the action 
(34) and extracting the coordinate dependence as before, we ex-
press the OPE coefficient as

λ
(δ)
q = C (1)

(δ,q)(Rμ)δ
[

1 + i
q

2
π(xc) + . . .

]
+ C (2)

(δ,q)(Rμ)δ−2(d − 1)(d − 2) + . . . (42)

From eq. (42) we infer that the modification of the superfluid pro-
file induces a relative correction to the OPE coefficient proportional 
to qπ(xc) ∼ q2/Q

d−2
d−1 . In order for this term to be subleading we 

assume q2 � Q
d−2
d−1 . Similarly to the discussion below eq. (23), this 

scale coincides with some integer power of the one controlling the 
derivative expansion, given by Q − 2

d−1 , only in even dimensions. As 
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before, this implies a different structure in the predictions in d = 3
and d = 4. Notice indeed that the value of π(xc) is finite only for 
sufficiently negative d; thus, in general, its value is obtained by an-
alytic continuation in d and, similarly to the Casimir energy (22) in 
d = 4, may contain poles for integer values of d. We shall discuss 
the case of a three-dimensional and that of a four-dimensional the-
ory separately in the following.

Consider first d = 3. In this case, the first subleading correc-
tion to eq. (39) cannot be renormalized by the operator-dependent 
coefficients of the matching (32). Correspondingly, evaluating the 
value of π(xc) within dimensional regularization we find a finite 
result. Absorbing all the anyway unknown constants in a new Wil-
son parameter η(1)

(δ,q)
, the OPE coefficient reads

λ
(δ)
q

∣∣
d=3 = Q δ/2

[
η

(1)
(δ,q)

(
1 + 0.05051 × q2

√
c1 Q

)
+O

(
Q −1)]

.

(43)

The second term in round brackets provides the first correction to 
the leading order result.5 Its coefficient is entirely fixed in terms 
the same parameter c1 controlling the scaling dimension �Q at 
leading order (see eqs. (18) and (19)) and it is hence independent 
of the specific operator under consideration.

This situation is to be contrasted with d = 4, in which case 
the corrections arising from the modification of the profile (15)
are renormalized from the first subleading term in the operator 
matching (32), proportional to C (2)

(δ,q) . Proceeding as we did above 
eq. (29), we find that π(xc) has a pole for d → 4. This implies that 
there exists a calculable logarithmic correction which is indepen-
dent of C (2)

(δ,q) . The final result reads

λ
(δ)
q

∣∣
d=4 = Q δ/3

[
η

(1)
(δ,q)

(
1 − q2 Q −2/3 log Q

48
√

3π2/3c1/3
1

)

+η
(2)
(δ,q) Q −2/3 +O

(
Q −4/3

)]
, (44)

where the η(i)
(δ,q)

’s are independent Wilson coefficients. The coeffi-

cient of the Q −2/3 log Q term in round brackets does not depend 
on the specific operator under consideration.

Finally, we remark that the results (43) and (44) hold also for 
primary operators in spin � traceless-symmetric representations. 
To see this, we notice that a spin � primary, with scaling dimension 
δ and charge q, can be matched in the low energy EFT as

O(δ)
q μ1...μ�

∝ �
ν1...ν�
μ1...μ�

∂ν1χ . . . ∂ν�
χ(∂χ)δ−�eiχq , (45)

where �ν1...ν�
μ1...μ�

is the projector onto traceless symmetric tensors 
and the overall coefficient depends on the underlying theory and 
operator. We omitted higher derivative contributions, which may 
be straightforwardly constructed as in eq. (32). Then, proceeding 
as before, we find that the matrix element reads

5 This term was neglected in the bootstrap analysis of [19], but it can be easily 
checked to be consistent with the crossing conditions discussed there.
6

〈Q + q|O(δ)
q μ1...μ�

|Q 〉 = λ
(δ,�)
q δ0

μ1
. . . δ0

μ�
, (46)

where λ(δ,�)
q takes precisely the form in eq. (42).
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