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A B S T R A C T

A
polariton is a quasiparticle formed from the coupling of a
confined photon in a cavity to electronic excitation, like ex-
citon in a semiconductor. This dissertation reports on series

of experiments in confined polariton interaction by design, fabrication, and
characterization of semiconductor microcavity structures operating in strong
or weak coupling regime.

In the first part of the thesis, we mainly concentrate on the optical study
of the 2D microcavity sample, including spin-dependent lower-upper polari-
ton cross interactions by pump-probe spectroscopy technique, supported by
theoretical analyses and numerical simulations based on Gross-Pitaevskii
equations. In particular, we present a scattering resonance behavior via an
exciton molecule (biexciton) when polaritons from both the upper and lower
branches with anti-parallel spins are involved through a polaritonic cross Fes-
hbach resonance. This demonstration will permit the control of the polariton
interbranch scattering.

The second part of the thesis is dedicated to the design and fabrication of
the potentials where the photonic part of polaritons is confined laterally by
adjusting the thickness of the cavity layer locally in so-called mesa structures.
By engineering a periodic lattice of mesas on a two-dimensional microcavity,
it is possible to couple confined polariton modes of nearby mesas to establish
an optical lattice analogous to the crystalline semiconductors’ electronic band
structures. We especially demonstrate the localization of light with a lasing
mode at the edge of the Brillouin zone in a two-dimensional triangular lattice.
We produce a self-trapping of light by optically inducing a local breaking
of the strong-coupling regime of excitons to photons. In the weak coupling
regime, we control the confined modes by the shape of the generated defect.
We also reveal a controllable localization degree and experimental signature
of the Anderson localization in microcavity polaritons by inducing positional
disorder in the triangular lattice.

The last part is devoted to the fabrication of sub-micron size mesas to en-
hance polariton interaction by confining them tightly and discuss the quantum
correlation of polaritons by a Hanbury Brown and Twiss (HBT) setting toward
polariton blockade.

Key Words: semiconductor, microcavity, polariton, exciton, biexciton, Fes-
hbach resonance, pump-probe spectroscopy, localization, photon lasing, An-
derson localization, polariton blockade, second-order correlation, light-matter
interaction, strong coupling, weak coupling, fabrication.
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R É S U M É

U
n polariton est une quasi-particule formée par le couplage d’un
photon confiné dans une cavité à une excitation électronique,
comme l’exciton dans un semi-conducteur. Cette thèse rend

compte d’une série d’expériences sur l’intéraction des polaritons confinés par
la conception, la fabrication et la caractérisation de structures de microcavités
de semi-conducteurs fonctionnant en régime de couplage fort ou faible.

Dans la première partie de la thèse, nous nous concentrons principalement
sur l’étude optique de l’échantillon de microcavité 2D, y compris les interacti-
ons croisées entre les polaritons inférieurs et supérieurs dépendant du spin
par la technique de spectroscopie pompe-sonde, soutenue par des analyses
théoriques et des simulations numériques basées sur les équations de Gross-
Pitaevskii. En particulier, nous présentons un comportement de résonance
de diffusion via une molécule d’exciton (biexciton) lorsque les polaritons des
branches supérieure et inférieure avec des spins antiparallèles sont impliqués
par une résonance de Feshbach croisée polaritonique. Cette démonstration
permettra de contrôler la diffusion interbranche des polaritons.

La deuxième partie de la thèse est consacrée à la conception et à la fa-
brication des potentiels où la partie photonique des polaritons est confinée
latéralement en ajustant localement l’épaisseur de la couche de la cavité dans
des structures dénomées mésa. En concevant un réseau périodique de mésas
sur une microcavité bidimensionnelle, il est possible de coupler les modes
de polaritons confinés des mésas proches pour établir un réseau optique ana-
logue aux structures de bandes électroniques des semi-conducteurs cristallins.
Nous démontrons en particulier la localisation de la lumière avec un mode
d’émission laser au bord de la zone de Brillouin dans un réseau triangu-
laire bidimensionnel. Nous produisons un auto-piégeage de la lumière en
induisant optiquement une rupture locale du régime de couplage fort des
excitons aux photons. Dans le régime de couplage faible, nous contrôlons
les modes confinés par la forme du défaut généré. Nous révélons également
un degré de localisation contrôlable et une signature expérimentale de la
localisation d’Anderson dans les polaritons de microcavité en induisant un
désordre positionnel dans le réseau triangulaire.

La dernière partie est consacrée à la fabrication de mésas de taille sous-
micrométrique pour améliorer l’interaction des polaritons en les confinant
étroitement et discute de la corrélation quantique des polaritons par un réglage
de Hanbury Brown and Twiss (HBT) vers le blocage des polaritons.

Mots clés : semi-conducteur, microcavité, polariton, exciton, biexciton, ré-
sonance de Feshbach, spectroscopie pompe-sonde, localisation, laser à pho-
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tons, localisation Anderson, blocage de polariton, corrélation de second ordre,
interaction lumière-matière, couplage fort, couplage faible, fabrication.
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N O TAT I O N

frequently used symbols

a∗B Bohr radius

â†
L (âL) lower polariton creation (annihilation) operator

â†
U (âU) upper polariton creation (annihilation) operator

b̂† (b̂) biexciton creation (annihilation) operator

ĉ† (ĉ) photon creation (annihilation) operator

C Hopfield coefficient

E energy

Eb biexciton energy

EBXX biexciton binding energy

Ec cavity photon energy

Eg gap energy

ELP lower polariton energy

EUP upper polariton energy

Ex exciton energy

ES
0 energy of the S photon mode in an isolated mesa

EP
0 energy of the P photon mode in an isolated mesa

F amplitude of classical light field

F cavity finesse

fext external field excitation

g exciton-exciton interaction

g′ strength of excitation induced dephasing

g+− exciton-exciton interaction with anti-parallel spins

gbx exciton-biexciton coupling

gpae photon assisted exchange scattering

I inverse participation ratio (IPR)

k photon and polariton wavevector

Lc cavity space thickness

m rest mass

mc confined photon effective mass (10−5me in GaAs microcavity)

me electron rest mass

xv



xvi notation

mh hole mass

mLP lower polariton effective mass

mUP upper polariton effective mass

mx exciton mass

nc cavity spacer refractive index

n1, n2 refractive index

npu pump photon density

nR exciton reservoir population

n̂ photon number operator

p̂† (p̂) polariton creation (annihilation) operator

P continuous-wave pump

P0 condensation threshold power

Q quality factor

R mirror reflectivity

R exciton reservoir polariton exchange rate

U strength of exciton-exciton interaction

Upp strength of polariton-polariton interaction

V(r) potential landscape

Vm mode volume

X Hopfield coefficient

x̂† (x̂) exciton creation (annihilation) operator

αB absorption variation

γB biexciton linewidth

γc photon decay rate

γLP lower polariton decay rate

γp polariton linewidth

γR exciton reservoir decay rate

γS tunneling energy associated to S orbital

γUP upper polariton decay rate

γU upper polariton linewidth

γx exciton decay rate

γ∗x exciton pure dephasing rate

Γx exciton population decay rate

γ‖ tunneling energy associated with the P orbital parallel to link
direction



notation xvii

γ⊥ tunneling energy associated with the P orbital perpendicular
to link direction

γ0, γ1, γ2 corrective energies for photonic modes in isolated mesas

γ3 tunneling energy associated to the coupling Px and Py orbital

δ cavity-exciton detuning

δλDBR reflection bandwidth

δνc linewidth of the cavity mode

∆EU,↓ upper polariton energy shift

∆EX exciton energy shift

∆ωL laser-polariton detuning

λc vacuum wavelength

µ reduced mass of the electron and hole

σ+, σ− photon’s circular polarizations

τ time delay

Ωqm external and cavity fields coupling strength

ΩR Rabi splitting

physical constants

c speed of light in vacuum, c = 299 792 458 m s−1

me electron mass, me = 9.1093837015(28)× 10−31 kg

h Plank constant, h = 4.135667696× 10−15 eV s

ε0 vacuum electric permittivity, ε0 = 8.8541878128(13)× 10−12 F m−1

(CODATA 2018 [1])





1
I N T R O D U C T I O N

I have perceived a lightning flash from Tūr. Perchance, I
will bring you a brand of glowing embers.

— Hafez

B
ased on an old myth, Lucifer ("light-bringer" in Latin) fall
from heaven after stealing God’s peculiar creation, the Light.
From ancient Greece until the quantum gold rush, humankind

experienced and learned to use and control light. A myriad of technologies is
based on light employment or light-matter interaction like lasers and LEDs.
A polariton is the quantum of the electromagnetic field in a dielectric with
mixed light and matter nature [2, 3]. In 1992, Weisbuch and Ulbrich evidenced
for the first time polaritons in a GaAs planar semiconductor microcavity by
increasing light-matter coupling strength with embedded quantum well inside
a cavity [4]. Polaritons are composite bosons, and the hybrid light-matter
nature of these quasiparticles provides nonlinear behavior due to excitonic
interactions and extremely light mass because of their photonic component [5].

The excitonic interaction induces nonlinearity, which is crucial for effects
such as polariton parametric amplification [6–8], polariton bistability [9] and
optical switching [10]. Polaritons behave in certain limits like a non-interacting
Bose gas; thus, they are considered to realize quantum condensed phases in
solids. Bose-Einstein condensate of two-dimensional polaritons was demon-
strated for the first time in CdTe microcavity [11]. Afterward, in GaAs [12]
and at room temperature, in GaN [13] microcavity.

New research directions were sought in order to confine polaritons in
a lower dimension applying diverse techniques, such as zero-dimensional
micropillars [14] and one-dimensional arrays [15].

This thesis is devoted to the study of confined polariton interaction in a mi-
crocavity. The fabrication of mesa structures creates the potential for confining
polaritons. The pump-probe technique, near- and far-field spectroscopy, and
second-order correlation measurements are used to investigate the samples.

Chapter 2 gives a summary of the interaction between exciton and photon
modes in a semiconductor microcavity. The exciton-photon coupling in the
weak and strong coupling regime. We provide the fundamental properties of
the excitons and the microcavity.

In chapter 3, we discuss the theoretical and experimental groundwork of
spin dependant Polaritons interaction. We start by presenting the interaction
Hamiltonian in the exciton-photon basis following with the polariton Hamilto-
nian describing their mutual interactions. We obtain the equations of motions

1



2 introduction

for the exciton-photon and polariton basis of excitonic Bloch equations (EBE)
and Gross-Pitaevskii equations (GPE). We end the chapter given the spinor
polariton interactions, including the biexciton state.

Chapter 4 is dedicated to the fabrication of high-quality semiconductor het-
erostructures and microcavity samples using standard cleanroom procedures.

In chapter 5, we study the spinor polariton interactions using polarization-
dependent pump-probe spectroscopy. We discuss the upper and lower polari-
tons scattering via the biexciton, namely polaritonic cross Feshbach resonance.
The experimental results are analyzed with the Gross-Pitaevskii equations,
considering the biexciton effect. We conclude the chapter with a presentation
of future studies using polaritonic cross Feshbach resonance.

In chapter 6, we present coupled polaritons in a triangular lattice landscape.
The first part is about the localization due to the breaking of translational
symmetry in a regular lattice. In the second part, we present localization by
introducing controlled lattice disorder. The experimental results are examined
and related to the prediction of the theory. The chapter ends with a perspective
about future studies one polariton localization in polaritonic lattice landscapes.

Chapter 7 is devoted to tightly confined polaritons. We describe the engi-
neered microcavity structures with sub-micron size mesas for strong confine-
ment of polaritons. Finally, we explain the second-order correlation measure-
ment toward the polariton blockade.

Finally, in chapter 8, we address a concluding remark.



2
S E M I C O N D U C T O R C AV I T Y Q E D W I T H S T R O N G
C O U P L I N G

This chapter is devoted to giving a background to the interaction between
exciton and photon modes in a semiconductor microcavity, namely semicon-
ductor cavity quantum electrodynamics (QED). The strength of the interaction
defines the exciton-photon coupling in two regimes: the weak coupling and
the strong coupling regime. In the first section, we give the fundamental
properties of the microcavity. In the second and third sections, we present
the basic concepts of semiconductor excitons. We end the chapter with the
description of photon-exciton interaction in the strong coupling regime.

2.1 microcavity

A
microcavity is a wavelength sized optical resonator that con-
fines light at a particular wavelength. This confinement allows
semiconductor microcavity devices to interact strongly with

the matter. The resonant optical modes in a microcavity have specific line-
shapes, wavelength spacings, and other features. To form a confined standing
wave, a longitudinal resonant mode has to have an integral number of half
wavelengths that fit into the microcavity.

Since the mirrors of the resonator are not quite reflecting, the photon will
stay in the resonator for a certain amount of time. Hence, the linewidth of
the cavity mode (δνc, the full width at half maximum linewidth in frequency
domain) is defined by this photon decay rate (γc) where δνc = γc/2π. A
quantity related to the linewidth of the cavity is the finesse (F ), determined
as the frequency separation between successive longitudinal cavity modes to
the linewidth of a cavity mode and is connected to the mirrors reflectivities R
by [16]

F =
π
√
R

1−R (2.1)

The finesse gives a measure of how much the cavity is close to the ideal case
with delta-like resonances. Another essential feature of microcavities is the
mode volume Vm, which is defined as the integral over the field intensities
at different positions, normalized to unity at the maximum of the field. The
figure of merit for the cavities used in cavity QED is given by Q/Vm (or Q2/Vm
for some cases). where Q = νc/δνc is the quality factor of the cavity. High
Q-factor increases the photon storage time, which is good per se, but in some
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4 semiconductor cavity qed with strong coupling

applications decreases the speed of operation, which is vital for information
processing.

A primary requirement for strong coupling is to have a small cavity mode
volume Vm, considering the fact that single-photon Rabi frequency scales as
1/
√

Vm. This requirement pushes toward fabricating cavity with a smaller
length. Nevertheless, the cavity decay rate scales inversely with the length.
Hence, as cavity size decreases, the cavity finesse must increase concomitantly;
accordingly, mirrors with ultra-high reflectivity are needed.

The reflectivity of metallic mirrors is limited to 99%. Preferably to obtain
ultra-high reflectivity, distributed Bragg reflectors (DBRs) with reflectivity of
more than 99.999% are used. DBRs are consisted of multilayers of several pairs
of alternating refractive indexes of n1 and n2 (n2 > n1). Each DBR mirror is
designed for the desired wavelength of reflection λc (vacuum wavelength),
and the principal requirement is that the thickness of each layer is a quarter of
the desired wavelength of reflection (λc/4n1,2). In this case, the constructive
interference magnifies reflection, whereas destructive interference mitigates
the transmitted field. The reflectivity of each mirror depends on the number
of replicated pairs and the refractive index difference between the two layers.
DBR is reflective over a range of wavelengths named the stopband δλDBR
(reflection bandwidth), which depends on the refractive index contrast between
two materials.

δλDBR =
4λc

π
arcsin(

n2 − n1

n2 + n1
) (2.2)

The complete microcavity structure is made of two DBRs separated by a
dielectric material, called “spacer” and the whole device can be considered as
a 1D photonic crystal including a central defect.

We use transfer matrix formalism [17] to elucidate the principle of the
microcavity, including a GaAs cavity spacer with a center wavelength at 835

nm made up of 20 DBR pairs of GaAs/AlAs with refractive indexes of 3.556

and 2.948, respectively at 10 K. The reflectivity spectrum of a single DBR
is illustrated in fig. 2.1(a). A drop in reflectivity at 818 nm corresponds to
the absorption of GaAs. In fig. 2.1(b) we simulate full microcavity (λ-cavity).
The microcavity highlights a dip in the reflectivity spectrum at the cavity
resonance wavelength in which transmission is obtained. The width of this
drop is the cavity linewidth and enables us to define the Q-factor which is
about 4× 104. The confined electromagnetic field inside the microcavity can
be seen by plotting its amplitude at the resonant wavelength fig. 2.1(c). Since
the spacer layer has a higher refractive index, its maximum is in the center.
Although the spacer layer confines one optical wavelength, most of the electric
field penetrates the DBR layers. Defining the field penetration depth at the
resonant wavelength inside both DBRs by [18]

LDBR =
λc

2nc

n1n2

n2 − n1
(2.3)
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where nc is the refractive index of the cavity spacer. Commonly LDBR is about
2µm, which is much larger than cavity spacer thickness Lc = λc/n2 ≈ 0.234µm.
In a microcavity with DBRs, the cavity resonance can be adjusted by varying
the spacer thickness keeping the stopband defined by the DBRs. This feature
is useful for cavity detuning and also for designing patterned cavities.
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Figure 2.1: Calculated reflectivity and electric field intensity using transfer ma-
trix formalism. (a) Reflectivity spectrum of a single 20 DBR pairs of
GaAs/AlAs. (b) The reflectivity of a full microcavity (λ-cavity) highlight-
ing a dip in the reflectivity spectrum at the cavity resonance wavelength
(835 nm). (c) In z-direction, the variation of the refractive index (red) and
the electric field intensity (blue).

We can decompose the photon wavevector k into the in-plane k‖ and
perpendicular k⊥ components, respecting the DBRs so that k2 = k2

‖ + k2
⊥. k⊥

represents the mode quantization in the cavity by having |k⊥| = 2πnc/λc.
The energy of a photon in a cavity with |k⊥| � |k‖| approximation reads [18]

Ec(k‖) =
h̄c
nc

√
|k‖|2 + |k⊥|2 ' Ec(k‖ = 0) +

h̄2|k‖|2

2mc
(2.4)

Where Ec(k‖ = 0) = hc/λc and mc = hn2/cλc is the effective mass of a
confined photon typically on the order of 10−5me (me is the electron rest mass)
for GaAs microcavities. Eq. (2.4) shows a parabolic dispersion for confined
photons.



6 semiconductor cavity qed with strong coupling

2.2 optical transitions in semiconductors

A semiconductor is a material whose electrical conductivity lies in between
metals and insulators. In a crystal, a lot of atoms with discrete electronic levels
are congregating in a periodic structure to form bands. There is also the range
of energies that an electron may not have, which calls gaps (Eg in fig. 2.2).
Since the Fermi level falls in the bandgap in semiconductors, by sufficient
excitation, an electron from the valence band moves to the conduction band
and it leaves a net positive charge in the valence band, which calls a hole. The
wavevector for which the bandgap is minimum divides semiconductors into
direct bandgap and indirect bandgap types. If the wavevectors of electrons
and holes are similar in the conduction and valence band, the semiconductor
is direct bandgap like GaAs (fig. 2.2 at the Γ-point), and if they are not, it is
indirect bandgap like silicon.

X-valley
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Energy
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0
E
g[100] [111]
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E
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Wave vector
Heavy holes

Light holes

Split-off band

GaAs at 300 K
E
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= 1.42 eV

E
L 

= 1.71 eV
E

X 
= 1.90 eV

E
so 

= 0.34 eV

Figure 2.2: Bulk GaAs band structure. Scheme of the band structure of bulk GaAs
semiconductor along the [111] and [100] momentum-space directions at
300 K. The conduction band is located above the degenerate heavy-hole
and light-hole bands. The figure is reproduced from [19].

Fig. 2.2 shows the bandstructure of bulk GaAs. The lowest conduction
band has an s-type symmetry (l = 0) with the total angular momentum of
J = l + s = 1/2, which is twofold degenerate. In the valence band, two bands
converging at the Γ-point. These bands are identified as the heavy-hole and
light-hole; the more concave one with a smaller value of (d2E/dk2)−1 (it is
proportional to the effective mass), is the light hole band, and the other one
is the heavy hole band. The valence band orbitals have p-type symmetry
(l = 1). The spin-orbit interaction splits the p-type state into the valence band
J = l + s = 3/2 (Jz = ±3/2 heavy hole and Jz = ±1/2 light hole with fourfold
degeneracy) and J = l− s = 1/2 (split-off band with twofold degeneracy). An
interband optical excitation moves an electron to an s orbital of the conduction
band, leaving a hole in a p orbital of the valence band.
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2.3 excitons

Upon adequate excitation energy, a Coulomb correlated electron-hole pair
is created in a semiconductor called an exciton. This neutral quasiparticle
has a close analogy to the hydrogen atom with a corresponding Bohr radius
and binding energy. There are two major types of excitons Wannier-Mott and
Frenkel. The latter has much larger binding energy and a much smaller Bohr
radius than the former, which is the case in semiconductors like GaAs and
GaN. Wannier-Mott excitons can be described by a two-body Schrödinger
equation similar to the hydrogen-like atoms with the electron and hole effective
masses and a screened Coulomb interaction. To solve this equation, one can
assume the envelope wave function as the product of wave functions of the
center of masses and the relative motion of the electron and the hole. The
center of the masses equation is like a free particle with a total mass of electron
and hole (mx = me + mh) and gives a parabolic dispersion. The equation of
the relative motion is equal to the hydrogen atom problem, which offers a
series of n quantized states [18, 20].

E3D
n (k) = Eg +

h̄2|k|2
2mx

−
E3D

b
n2 (2.5)

The Bohr radius and the binding energy in the 3D case are defined as following
where µ = (m−1

e + m−1
h )−1 is the reduced mass of the electron and hole.

a∗B =
h̄2ε2

µe2 (2.6)

E3D
b =

µe4

2ε2h̄2 =
h̄2

2µa∗2B
(2.7)

The electron and hole finally recombine and emit a photon with identical
energy of exciton that is lower than the bandgap.

Excitons can have a total angular momentum of ±1 and ±2 of conduction
and valence bands. They can couple to photons while having similar total
angular momentum to circular polarization of light (±1), and hence they
called bright excitons, whereas the other excitons are called dark.

2.3.1 Wannier Excitons in Quantum Wells

A quantum well is a semiconductor heterostructure with varying bandgaps,
where conduction and valence bands form a potential well. Free carriers or
excitons are confined in one dimension (the growth direction defined as z-
direction) and free to move in the other two dimensions (x-y plane). Quantum
well structure is engineered by embedding a thin layer (few nanometers) of
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a semiconductor among two thicker layers of another semiconductor with a
larger bandgap. The quantized energies of the exciton in the quantum well
are [21]

E2D
n (k) = Eg +

h̄2|k|2
2mx

−
E3D

b
(n + 1/2)2 (2.8)

The lowest exciton state has four times the binding energy and half of the
Bohr radius of a similar state in bulk. More importantly, the oscillator strength,
which is a measure of coupling strength between light and an oscillating
dipole (exciton), is increased by a factor of four in a quantum well due to
changes in the exciton Bohr radius and the electron-hole overlap [22].

2.4 strong coupling regime : exciton-polaritons

To introduce a strong coupling between exciton and photon, a quantum well is
placed at the antinode of the cavity electric field of a high Q-factor microcavity.
A new quantum state arises if their mutual interaction outweighs the system’s
dissipation, called exciton-polariton.

To fulfill energy and momentum conservation, the linear photon dispersion
should cross the parabolic exciton dispersion. In a microcavity with embed-
ded quantum well, translational symmetry is broken along the growth axis,
indicating that momentum conservation applies only to the in-plane wave
vector. Therefore an exciton with a certain k‖ interacts with a continuum of
photons with the identical in-plane wave vector and any possible values of the
orthogonal wave vector kz. Hamiltonian of the coupled exciton-photon system
in the second quantization formalism under rotating wave approximation in k
space reads

Ĥ =

∫∫
d2k

(2π)2 {Ex(k)x̂†
k x̂k + Ec(k)ĉ†

k ĉk +
ΩR
2

[x̂†
k ĉk + ĉ†

k x̂k]} (2.9)

Where Ex and Ec are exciton and photon energy, x̂†
k (ĉ†

k ) and x̂k(ĉk) are exciton
(photon) creation and annihilation operators at a given k respectively and they
satisfy Bose commutation relations

[xi, x†
j ] = δij, [xi, xj] = 0 (2.10)

ΩR is called Rabi splitting and represents the coupling strength of the exciton-
photon [23]. The new eigenstates of the system are called upper polariton (UP)
and lower polariton (LP) with eigenenergies

EUP,LP(k) =
1
2
[Ec(k) + Ex(k)±

√
δ2 + Ω2

R] (2.11)
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Where δ = Ec(k) − Ex(k) is the cavity detuning. The Hamiltonian 2.9 is
diagonalised with a unitary transformation of [2](

âL,k

âU,k

)
=

(
X C
−C X

)(
x̂k

ĉk

)
(2.12)

Where C and X are the so-called Hopfield coefficients with C2 +X 2 = 1. They
are real coefficients such that X > 0, C < 0 and are given by

|X |2 =
1
2

1 +
δ√

δ2 + Ω2
R

 , |C|2 =
1
2

1− δ√
δ2 + Ω2

R

 (2.13)

|X |2 and |C|2 show respectively the excitonic and photonic fraction of the
lower polariton mode that varies with cavity detuning δ. The LP and UP
energy dispersion versus the in-plane wavevector with the associated Hopfield
coefficients are shown in fig. 2.3 for cavity-exciton detunings of δ(k‖ = 0) >
0, δ(k‖ = 0) = 0 and δ(k‖ = 0) < 0. The LP and UP effective mass follow
accordingly as

1
mLP

=
|X |2
mx

+
|C|2
mc

,
1

mUP
=
|C|2
mx

+
|X |2
mc

(2.14)

The decay rates of LP and UP are given by their respective excitonic and
photonic part on the exciton and cavity photon decay rates

γLP = γx|X |2 + γc|C|2, γUP = γx|C|2 + γc|X |2 (2.15)

γx and γc are exciton and cavity photon decay rates, respectively.
By considering the finite lifetime of the cavity photon and excitons in quan-

tum well and adding the corresponding decay rates to the photon (Ec(k)− iγc)
and exciton (Ex(k)− iγx) energies phenomenologically, eq. (2.11) becomes [23]

EUP,LP(k) =
1
2
[Ec(k) + Ex(k)− i(γx + γc)±

√
(δ + i(γx − γc))2 + Ω2

R]

(2.16)

At the resonance between bare exciton and photon modes (δ = 0), the energy
splitting equals ΩR, and the equal linewidth of a lower and upper polariton is
defined by the arithmetic average of the exciton and cavity photon damping
rates eq. (2.15). The strong coupling condition in cavity QED occurs when
a finite real energy splitting is obtained ΩR > |γc − γx| [23, 24] and it is
experimentally observable when the Rabi splitting is larger than polariton
linewidths ΩR > (γc + γx)/2 [25]. On the contrary, when ΩR < |γc − γx|,
the square root in eq. (2.16) is purely imaginary, and the system is in weak-
coupling regime.
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ELP,UP!k"# = 1
2 $Eexc + Ecav ± %4g0

2 + !Eexc − Ecav#2& .

!17#

When the uncoupled exciton and photon are at reso-
nance, Eexc=Ecav, LP and UP energies have the mini-
mum separation EUP−ELP=2g0, which is often called
the normal-mode splitting in analogy to the Rabi split-
ting of a single-atom cavity system. Due to the coupling
between the exciton and photon modes, the new polar-
iton energies anticross when the cavity energy is tuned
across the exciton energy. This is one of the signatures of
“strong coupling” !Fig. 3#. When 'Ecav−Eexc'!g0, polari-
tons quickly become indistinguishable from a photon or
exciton. Unless otherwise specified, the detuning is as-
sumed to be comparable to or less than the coupling
strength in our discussions.

2. Polariton dispersion and effective mass

We define "0 as the exciton and photon energy detun-
ing at k" =0,

"0 ! Ecav!k" = 0# − Eexc!k" = 0# . !18#

Given "0, Eq. !17# gives the polariton energy-
momentum dispersions. In the region #2k"

2 /2mcav$2g0,
the dispersions are parabolic,

ELP,UP!k"# ( ELP,UP!0# +
#2k"

2

2mLP,UP
. !19#

The polariton effective mass is the weighted harmonic
mean of the mass of its exciton and photon components,

1
mLP

=
'X'2

mexc
+

'C'2

mcav
, !20#

1
mUP

=
'C'2

mexc
+

'X'2

mcav
, !21#

where X and C are the Hopfield coefficients given by
Eq. !16#. mexc is the effective exciton mass of its center-
of-mass motion and mcav is the effective cavity-photon
mass given by Eq. !10#. Since mcav$mexc,

mLP!k" ) 0# ( mcav/'C'2 ) 10−4mexc,
!22#

mUP!k" ) 0# ( mcav/'X'2.

The very small effective mass of LPs at k" )0 makes
possible the very high critical temperature of phase tran-
sitions for the system. At large k" where Ecav!k"#
−Eexc!k"#!g0, dispersions of the LP and UP converge to
the exciton and photon dispersions, respectively, and LP
has an effective mass mLP)mexc. Hence the LP’s effec-
tive mass changes by four orders of magnitude from k"

)0 to large k". This peculiar shape has important impli-
cations in the energy relaxation dynamics of polaritons,
as discussed in Sec. IV. A few examples of the polariton
dispersion with different "0 are given in Fig. 4.

3. Polariton decay

When taking into account the finite lifetime of the
cavity photon and QW exciton, the eigenenergy !17# is
modified as

ELP,UP!k"# = 1
2 *Eexc + Ecav + i!%cav + %exc#

± %4g0
2 + $Eexc − Ecav + i!%cav − %exc#&2+ .

!23#

Here %cav is the out-coupling rate of a cavity photon due
to imperfect mirrors and %exc is the nonradiative decay
rate of an exciton. Thus the coupling strength must be
larger than half of the difference in decay rates to ex-
hibit anticrossing, i.e., to have polaritons as the new
eigenmodes. In other words, an excitation must be able
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Figure 2.3: LP and UP dispersion with the associated Hopfield coefficients for
cavity-exciton detuning. (a) δ(k‖ = 0) > 0, (b) δ(k‖ = 0) = 0 and (c)
δ(k‖ = 0) < 0 [18].

In this dissertation, we will study semiconductor microcavity with exciton-
photon in the strong coupling regime to study polariton interactions as well in
the weak coupling regime to explore the lasing effect as in VCSELs (vertical-
cavity surface-emitting lasers).



3
T H E T H E O R E T I C A L F R A M E W O R K O F P O L A R I T O N S
I N T E R A C T I O N

In this chapter, we discuss the theoretical and experimental groundwork of
spin dependant Polaritons interaction. Quantum well excitons have two spin
projection (up and down); consequently, polaritons have the same feature
due to correspondence between exciton’s spin and photon’s polarization.
Therefore, polariton-polariton spinor interaction proceeds with parallel and
anti-parallel spins. We start by presenting the interaction Hamiltonian in the
exciton-photon basis following with the polariton Hamiltonian describing
their mutual interactions. We end the chapter given the spinor polariton
interactions.

3.1 hamiltonian in exciton-photon basis

I
n order to represent the interaction, it is crucial to start with the
Hamiltonian of the system. The single particle energy and the
linear coupling term between exciton and photon in real space

reads.

Ĥ0 =

∫
dr {Ex(k)x̂† x̂ + Ec(k)ĉ† ĉ +

ΩR
2

[x̂† ĉ + ĉ† x̂]} (3.1)

The interaction Hamiltonian including the exciton-exciton interaction and
the phase space filling on the exciton-photon basis in real space defines as

Ĥint =

∫
dr {1

2
gx̂† x̂† x̂x̂− gpae(ĉ† x̂† x̂x̂ + x̂† x̂† x̂ĉ)} (3.2)

x̂†
k (ĉ†

k ) and x̂k(ĉk) are exciton (photon) creation and annihilation operators,
respectively, and they satisfy Bose commutation relations

[x̂i, x̂†
j ] = δij, [x̂i, x̂j] = 0

[ĉi, ĉ†
j ] = δij, [ĉi, ĉj] = 0

(3.3)

The representation in real space enables us to simplify summing over
all possible momentum exchanges. The interaction coefficient g represents
an exciton-exciton interaction due to Coulomb exchange scattering, which
touches the exchange of an electron or a hole [26–28], while gpae denotes

11



12 the theoretical framework of polaritons interaction

photon assisted exchange scattering due to the fermionic composite nature of
the excitons [8, 28, 29].

Ĥpump =

∫
dr Ωqm(Fĉ† + ĉF∗) (3.4)

This Hamiltonian illustrates the resonant pumping of the system by a classical
light field of amplitude F and coupling strength of Ωqm between the external
and cavity fields [8].

To find the time evolution of the system, the equations of motion of the
operators x̂, x̂† x̂ and ĉ with the Heisenberg equation ih̄ ˆ̇x = [x̂, Ĥ] should
be calculated. Where Ĥ = Ĥ0 + Ĥint + Ĥpump and the operator x̂ must be
replaced by x̂, x̂† x̂ and ĉ. We represent the mean fields as

P(t) =< x̂ >, N(t) =< x̂† x̂ >, E(t) =< ĉ > (3.5)

Which we refer to them as Polarization, Population, and photon field, respec-
tively. Following the common mean-field approximation [30] < x̂† x̂x̂ >'<
x̂† x̂ >< x̂ > and < x̂† x̂† >=< x̂x̂ >= 0.

Eventually, we obtain excitonic Bloch equations (EBE) 1

ih̄Ṅ = −iΓx N − 2i
(

ΩR
2 − 2gpaeN

)
= (PE∗)

ih̄Ṗ = (Ex − iγx + gN) P +
(

ΩR
2 − 2gpaeN

)
E

ih̄Ė = (Ec − iγc)E +
(

ΩR
2 − gpaeN

)
P− fext

(3.6)

Where the external excitation field fext = −ΩqmF. The exciton density-dependent
interaction terms’ role is explicit: The photon assisted term, which represents
phase space-filling, induces a reduction of the Rabi coupling while the exciton-
exciton interaction term causes renormalization of exciton energy. γc and Γx
represent photon and exciton population decay rate respectively. The general
form of the dephasing rate of the exciton is given by

γx(N) = Γx/2 + g′N + γ∗x (3.7)

γx is dephasing rate of excitons and γ∗x is the exciton pure dephasing rate. g′

is the strength of excitation induced dephasing (EID) term, which depends
on exciton density and leads to a density dependent exciton linewidth. In the
coherent limit (γ∗x = g′ = 0), the time evolution of the population is given
by the square of the magnitude of polarization. Hence, we can reduce EBE
equations to two coupled exciton-photon Gross-Pitaevskii equations (GPE)

ih̄ẋ =
(
Ex − iγx + g|x|2

)
x +

(
ΩR
2 − 2gpae|x|2

)
c

ih̄ċ = (Ec − iγc)c +
(

ΩR
2 − gpae|x|2

)
x− fext

(3.8)

The polarization and the photon field are replaced by x and c, respectively.
1 =(Z) is imaginary part of Z .
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3.2 interaction hamiltonian in polariton basis

We use the Hopfield transformation as in the equation 2.12 to rewrite the
Hamiltonian 3.2 in Polariton basis. The first term of the Hamiltonian becomes

Ĥxx
int =

∫
dr g{1

2
|X |4 â†

L â†
L âL âL +

1
2
|C|4 â†

U â†
U âU âU (3.9)

+ 2|C|2|X |2 â†
L â†

U âL âU + · · · } (3.10)

The interaction between polariton comes from their excitonic fraction pon-
dered by the Hopfield coefficients. Likewise, the second term of the interaction
Hamiltonian transforms into

Ĥpae
int =

∫
dr 2gpae{|X |3|C|â†

L â†
L âL âL − |X ||C|3 â†

U â†
U âU âU (3.11)

+ 2|C||X |(|C|2 − |X |2)â†
L â†

U âL âU + · · · } (3.12)

Based on equation 3.9, the exciton-exciton interaction due to Coulomb ex-
change scattering is repulsive for both upper and lower polariton modes.
Differently, the photon-assisted exchange scattering is repulsive for lower
polariton mode but attractive for the upper one (look at the signs in equation
3.11), which induces a decrease of the Rabi energy splitting. Equations 3.10

and 3.12 are contributing to the mutual interaction between lower and upper
polariton modes. These cross interactions between lower and upper polaritons
will be considered in detail in chapter 5 . We can neglect the upper polari-
ton state when a spectrally narrow pump resonantly excites only the lower
polariton mode. Thus, reduced lower polariton Hamiltonian reads

ĤLP
int =

∫
dr {1

2
g|X |4 â†

L â†
L âL âL + 2gpae|X |3|C|â†

L â†
L âL âL} (3.13)

If we consider quasi-mode coupling Hamiltonian between the external field
and the lower polariton mode with coupling strength ΩLP = Ωqm|C|(like in
equation 3.4), the Heisenberg equation for the lower polariton mode gives
Gross-Pitaevskii equation as

ih̄ȧL =
(
ELP − iγL + g|X |4|aL|2 + 4gpae|X |3|C||aL|2

)
aL − fext (3.14)

To derive this equation, the coherent limit approximation is applied. fext =
−ΩLPF and γL is the dephasing rate of the lower polariton branch eq. (2.15) .
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3.3 spin-dependent interaction

So far, we didn’t consider the spin-degree of freedom in the interactions.
In this section, we include the spin in the exciton-exciton interactions. As
mentioned before, excitons in a quantum well can take two possible spins up
and down, that can couple to the cavity photon with corresponding circular
polarization. Furthermore, the coupling of two excitons with opposite spins is
a new quasi-particle form called biexciton. The creation (b̂†) and annihilation
(b̂) operator of the biexciton with energy of Eb, satisfy Bose commutation rules.

Photon-assisted exchange scattering is independent of any Coulomb process,
and it arises from the saturation of the exciton oscillator strength. The Pauli
exclusion principle forbids the creation of another exciton at a distance shorter
than the Bohr radius with the same spin. Thus the photon-assisted exchange
scattering occurs between excitons and photons with parallel spins.

Ĥ0 = ∑
σ={↑,↓}

∫
dr {Ex x̂†

σ x̂σ + Ec ĉ†
σ ĉσ + Eb b̂† b̂ +

ΩR
2

(x̂†
σ ĉσ + ĉ†

σ x̂σ)} (3.15)

Ĥint = ∑
σ={↑,↓}

∫
dr

1
2
{gx̂†

σ x̂†
σ x̂σ x̂σ + g+− x̂†

σ x̂†
−σ x̂−σ x̂σ

− 2gpae(ĉ†
σ x̂†

σ x̂σ x̂σ + x̂†
σ x̂†

σ x̂σ ĉσ)

+ gbx(b̂x̂†
σ x̂†
−σ + x̂σ x̂−σ b̂†)}

(3.16)

Where gbx is exciton-biexciton coupling, and g+− renders exciton-exciton
interaction with anti-parallel spins. The Heisenberg equation of motion for the
exciton, photon, and biexciton with the coherent limit assumption reads

ih̄ẋ↑ =
(
Ex − iγx + g|x↑|2 + g+−|x↓|2

)
x↑

+ gbxbx∗↓ +
(

ΩR
2
− 2gpae|x↑|2

)
c↑

ih̄ċ↑ = (Ec − iγc)c↑ +
(

ΩR
2
− gpae|x↑|2

)
x↑ − fext

ih̄ḃ = (Eb − iγb)b + gbxx↑x↓

(3.17)

Where γb is the biexciton linewidth. To study the effect of the biexciton on
the lower-polariton mode, consider the spin-dependent Hamiltonian in the
lower-polariton basis.

ĤLP
int = ∑

σ={↑,↓}

∫
dr {(1

2
g|X |4 + 2gpae|X |3|C|)â†

L,σ â†
L,σ âL,σ âL,σ

+ g+−|X |4 â†
L,σ â†

L,−σ âL,−σ âL,σ

+
1
2

gbx|X |2(b̂â†
L,σ â†

L,−σ + âL,σ âL,−σ b̂†)}

(3.18)
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Then, the equations of motion for lower polariton in the spin-dependent case
are

ih̄ȧL,↑ =
(
ELP − iγL + g|X |4|aL,↑|2 + 4gpae|X |3|C||aL,↑|2 + g+−|X |4|aL,↓|2

)
aL,↑

+ gbx|X |2ba∗L,↓ − fext

ih̄ḃ = (Eb − iγb)b + gbx|X |2aL,↑aL,↓
(3.19)

In the case of polaritons with parallel spins, the polariton interaction is re-
pulsive (g > 0), and the energy of the lower polariton is renormalized to
higher energy. Regarding the interaction between polaritons with antiparallel
spins, it appears to be attractive (g+− < 0) [31]. This interaction constant g+−

represents a background exciton-exciton interaction with antiparallel spins
due to unbound continuum states referred to continuum correlations [32]. The
biexciton interaction gbx represents the polariton biexciton bound state’s inter-
action. When the energy of the lower polariton is about half of the biexciton
energy, a scattering resonance happens. At this resonance, an enhancement
of the attractive anti-parallel spin polariton interaction and transformation to
repulsive one occurs. The polaritonic Feshbach resonance was demonstrated in
lower polariton scattering with biexciton [31]. In chapter 5, we will extend the
interactions to lower-upper polariton to a biexciton and present the conditions
and the demonstration of cross Feshbach resonance.





4
S A M P L E FA B R I C AT I O N

In previous chapters, we reviewed the basics of light-matter interaction in the
microcavities. This chapter is about the fabrication of high-quality semicon-
ductor heterostructures and microcavity samples.

4.1 ingaas quantum well microcavity

F
abrication of Fabry-Pérot resonators with a lot of different layers
requires highly stable deposition conditions and precise control
of the beam flux. Molecular beam epitaxy (MBE) is an epitaxial

growth process involving the reaction of different thermal beams of atoms or
molecules with a crystalline surface under ultra-high vacuum conditions. The
quality of MBE grown epitaxial layers, especially in GaAs, has the state of the
art criteria compared to the other methods [33].

GaAs and InAs have similar band structure qualitatively, but InAs has
lower bandgap energy and larger lattice constant. Ternary compound material
InxGa1−xAs, where x denotes the fraction of replaced In as Ga in the compo-
sition, empowers us to tune the bandgap by altering the x value. The larger
lattice parameter of InxGa1−xAs to the GaAs imposes compressive strain in the
plane. Meanwhile, a large amount of In increases defects, and inhomogeneous
linewidth of the exciton [34] and decreases the absorption of the emitted
photons by quantum well in the surrounding GaAs. To address this concern,
we use 4% of In and a rotating sample holder during the growth process to
achieve lattice matching over the whole substrate [35]. The rotation of the
sample holder introduces a homogeneous growth rate and reduces thickness
variation on the wafer and leads to a thickness gradient that is nearly linear
from the center of the wafer to the outer edge. This wedge grants us to tune
the cavity energy by changing the excitation position on the sample.

The samples used in this dissertation consist of a microcavity made with a
GaAs λ-spacer layer between two distributed Bragg reflector (DBR) mirrors
consisting of pairs of GaAs/AlAS layers. A single InGaAs quantum well is
placed in the middle of the spacer layer (fig. 4.1). The In content and the
number of DBR pairs are mentioned for different samples in each chapter.

17
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GaAs/AlAs 

DBR Mirrors

GaAs/AlAs 

DBR Mirrors

InGaAs QW
GaAs λ-spacer

z

Figure 4.1: Scheme of the semiconductor microcavity sample. The growth axis is
along the z-direction.

4.2 lateral confinement

Polaritons in planar microcavity are free to move in the plane of the quantum
well perpendicular to the growth axis. The confinement of polaritons in
reduced dimensionality structures causes new features of polaritons and
enhances control and interaction of them. Several techniques were developed
to trap polaritons either by acting on the excitonic part like using external
stress [36] or the photonic part like micropillars [37]. One feasible approach
to engineer the potential where polaritons are created and confine them
spatially is to alter the thickness of the cavity layer locally in so-called mesa
structures. The mesa is formed by etching of the spacer layer of the half
cavity after a photolithography or electron-beam lithography process with the
desired layout. Photons in a mesa (more extended cavity) have lower energy
concerning the neighboring part, and this means a trap for photons and thus
polaritons [38]. This mesa confines the cavity photons with a diameter of 400

nm till few microns and typically 6 nm height, the lateral confinement causes
the quantization of the lower and upper polariton modes in several states [39].

4.3 fabrication procedures

To fabricate the sample, preliminary, we design patterns with a layout editor
program, and then based on the resolution that we are interested in, we
can employ either photolithography or electron-beam lithography to expose
structures on the half cavity (on the spacer layer without the top DBR mirror)
directly or with a mask.
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4.3.1 Photolithography

One fast way to expose the desired layout indirectly on the sample is to use
a Cr mask. By this method, first of all, we form a pattern on a layer of light-
sensitive material (photoresist), and then by selective etching, we transfer it
into the underlying film (fig. 4.2). Eventually, by using a UV light and exposing
the mask on top of the sample, the patterns are transferred onto the half cavity
sample. The smallest feature size in this process is 650 nm.

Figure 4.2: Image of the fabricated Cr mask used for the photolithography
means.

4.3.2 Electron-beam Lithography

The most precise and high-resolution way to expose custom shapes on the half
cavity sample is to use electron-beam lithography. In this method, the focused
electron beam scans the sample by the electromagnetic deflection system and
draw the patterns on an electron sensitive layer (we use HSQ, which is a
negative tone resist with very high resolution). Like photolithography, after
developing, we can remove either the exposed or non-exposed areas selectively
with sub 10 nm resolution. The advantages of the electron-beam lithography
are resolution and accuracy. The machine provides the length scales that are
not achievable with any other lithography techniques. It can be optimized
by using some strategies such as changing spot size, dose, or using different
scanning procedures, but it is slower than the photolithography method.

After fabricating a single mesa successfully, we went through building an
array of them or a lattice structure. The concept is to introduce interaction in a
photonic crystal via polaritons. We have made different patterns like square,
triangular, and disordered lattices (fig. 4.3) for various utilization.
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Figure 4.3: SEM image of the exposed random array pattern on a developed half
cavity using E-beam lithography.

The quest for harnessing the single-polariton quantum nonlinearity in the
zero-dimensional polaritonic systems, impel us to fabricate sub-micron mesa
structures considering the polariton nonlinearity is scanty. Polariton-polariton
interaction causes a blueshift; thus, if the blueshift is larger than the linewidth
of the driving field, the presence of one polariton can hinder the absorption of
another one, and the system enters the polariton blockade regime [40, 41]. To
fulfill this purpose, we have designed and made a range of mesa with a width
of 400 nm to 1 µm with 20 nm elevation to increase the polariton-polariton
interaction (fig. 4.4).

Figure 4.4: SEM image of the sub-micron mesa on a developed half cavity using
E-beam lithography. 500 nm mesa (at the center) is surrounded by 2µm
mesas.
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4.3.3 Etching

The scheme of the fabrication process and the wet etching is represented in
fig. 4.5. The half cavity sample consists of bottom DBR, embedded quantum
well in a spacer layer, 1.8 nm of AlAs as an etch stop layer, and 6 nm or 20 nm
of GaAs on top of that. After the lithography process is finished fig. 4.5 (a),
we develop the sample fig. 4.5 (b). Then we perform the wet etching of GaAs
with a 1:500 NH4OH : H2O2 solution for 15 seconds fig. 4.5 (c). After cleaning
with water, the sample is left in the air for 3 minutes to oxidize the AlAs layer.
Then the AlAs layer is removed by soaking the sample into 1:1 HCl : H2O
solution for one second. Lastly, the remaining photoresist is removed fig. 4.5
(d), and the sample is cleaned in the oxygen plasma chamber. We have, in this
stage, the mesa structures on the spacer layer. Finally, the sample is transferred
to the MBE machine to continue the growth of the top part of the sample to
obtain the full microcavity fig. 4.6.

GaAs AlAs InGaAs QW Resist E-beam 

(a) (b) (c) (d)

Figure 4.5: Scheme of the fabrication process. The MBE grown half-cavity: the
bottom DBR and the λ-spacer layer with a single QW, with the e-beam
resist on top. (a) e-beam resist deposition and e-beam exposure of the
patterns. (b) developing the e-beam resist (c) wet etching (d) removing
the AlAs etch-stop and e-beam resist layers.
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Figure 4.6: Schematic of the patterned sample. Schematic drawing of the sample
with a triangular patterned structure.



5
P O L A R I T O N I C C R O S S F E S H B A C H R E S O N A N C E

The spinor character of polariton interactions offers a broad range of physics
to explore; for instance, polarization multistability [42], spin switching [10],
spin memory [43], and spinor stochastic resonance [44]. The formation of a
molecular bound state or a biexciton, which consists of two excitons with
opposite spins, performs a role in the spinor polariton interaction [27, 45].
The scattering resonance between polaritons and biexciton, named polari-
tonic Feshbach resonance [31], allows the modification of lower-polariton
self-interactions from attractive to repulsive when tuning the energy of the
two polaritons in the vicinity of the biexciton resonance. Likewise, the cross
interaction between lower and upper polariton [46] gives rise a polaritonic
cross Feshbach resonance [47], which opens the road for a new tool for tun-
ing polariton interactions and go forward into quantum correlated polariton
physics [48–51].

This chapter is devoted to the demonstration of polaritonic cross Feshbach
resonance. The following sections concentrate on the polariton scattering
via the biexciton through femtosecond polarization-dependent pump-probe
spectroscopy. Initially, we describe the sample used to carry out this study,
and we explain the experimental setup of the pump-probe spectroscopy.
Next, we present the experimental results and theoretical model based on the
spin-dependent Gross-Pitaevskii equation, including the biexciton effect. The
content henceforth is adapted from the following paper [47]. Some paragraphs
are reported (quasi-)verbatim.

• Polaritonic Cross Feshbach Resonance
M. Navadeh-Toupchi, N. Takemura, M.D. Anderson, D.Y. Oberli, and
M.T. Portella-Oberli
Phys. Rev. Lett. 122, 047402 (2019)

5.1 sample

T
he sample [52] under study is a III-V GaAs based microcavity with
a single 8 nm In0.04Ga0.96As quantum well embedded between
top and bottom DBRs with 20 and 26.5 pairs of GaAs/AlAs,

respectively fig. 5.1. The exciton energy is 1.4868 eV, and the Rabi splitting
is 3.45 meV. The sample is kept at a temperature of 4 K. Since the sample is
wedged, we can tune the cavity-exciton detuning by varying the laser spot
across the sample. The lower and upper polaritons energy as a function of

23
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24 pairs of bottom 
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GaAs λ-cavity

Figure 5.1: The semiconductor microcavity sample scheme. Two GaAs/AlAs
DBRs intercalate a single In0.04Ga0.96As quantum well.

cavity detuning (fig. 5.2) is obtained by observing the transmitted beam under
resonant excitation of the 2D-semiconductor microcavity.
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Figure 5.2: Lower and upper polaritons modes of the 2D sample. Lower (dark
blue line) and upper (light blue line) polariton energy at k = 0 as a
function of the cavity detuning. The Rabi splitting at zero detuning
and bare photon (light orange line) and exciton (dash line) energies are
shown.

5.2 pump-probe experiment

Since a quantum well exciton has two spin projections of spin-up and spin-
down, they coupled with photon by circular polarization σ+ and σ−, re-
spectively. Therefore we can categorize polariton-polariton interaction with
parallel and anti-parallel spins. The experimental arrangement of polarization-



5.3 polaritonic feshbach resonance 25

dependent pump-probe spectroscopy consists of an almost degenerate pump
and probe beams with kpump = 0 kprobe ' 0 µm−1 wave vectors, and finally, the
probe beam is selected spatially by a pinhole and is sent to the spectrometer.

Ti:Sapphire Laser

BS

Grating

GTQWP

GT

QWP Pump

Probe

SampleQWPSpectrometer

Delay Line

BS

Pulse Shaper

Figure 5.3: Scheme of the pump-probe setup. With the following abbreviation. BS:
beam splitter, GT: Glan-Taylor Polarizer, QWP: quarter wave plate.

In fig. 5.3, the experimental setup of the pump-probe experiment is shown.
Broadband (35-100 fs) TSUNAMI Ti:sapphire laser with 80 MHz repetition
rate is employed. The laser beam is split into two beams of pump and probe by
a beam splitter. The single grating pulse shaper remolds the broadband pump
pulse (14 meV) into a narrowband pulse (to 0.5 meV), which is used to excite
only the lower polariton mode and prevents the formation, by upper polariton
relaxation, of an exciton population in the reservoir. In this configuration, we
utilize quarter-wave plates to change the pump’s and probe’s polarization
to the counter circular polarization of σ+ and σ−, respectively. The pump
and probe pulses reach the sample at the time tpump and tprobe. The time
delay τ = tprobe − tpump is defined between two pulses and sets by an optical
delay stage. τ > 0 (τ < 0) means that the pump (probe) arrives before the
probe (pump) pulse. The spectrum of the probe beam is measured in the
transmission configuration.

5.3 polaritonic feshbach resonance

An exciton molecule or biexciton can be defined as a bound state of two
excitons with opposite spins. Because there is a one-to-one correspondence
between the spin of an exciton and the polarization of the cavity photon,
the spin of a polariton is described as either right or left circularly polarized
photonic component.
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A Feshbach resonance emerges when two interacting free particles reso-
nantly couple to a molecular bound state. Near the resonance, the strength
of the interaction between the particles is modified, and its sign changes at
resonance. Since the demonstration of atomic Feshbach resonances [53], they
have been widely used to control the interaction of atoms in Bose-Einstein
condensates, and they have been the key to many breakthroughs in many-body
quantum physics [54–57].

A polaritonic Feshbach resonance was demonstrated [31] in a semiconductor
system when two lower polaritons were efficiently coupled to the biexciton.
As analogous to atomic Feshbach resonance in which the energy between
unbound atomic states and bound molecular state is tuned with an applied
magnetic field, the energy of two polaritons with opposite spins can be tuned
through the cavity detuning near the biexciton bound state energy which is
slightly below the exciton energy. The experiment is done through spectrally
resolved broadband femtosecond pump-probe spectroscopy. A circularly po-
larized pump pulse resonantly excites lower and upper polariton branches.
Then, the energy shift and amplitude variation of the lower polariton reso-
nance is measured by the transmitted counter polarized probe beam. Thus,
the interaction strength was tuned by involving just lower polaritons.

5.4 polaritonic cross feshbach resonance

A similar enhancement of the scattering strength occurs when the energy sum
of the lower and upper polaritons with opposite spins matches the biexciton
energy by a polaritonic cross Feshbach resonance (fig. 5.4). This demonstration
will allow the control of the polariton interbranch scattering. It may initiate
studies of many-body physics with polaron quasiparticles [50] and lead to the
generation of entangled photon pairs via the biexciton [48, 49].

We use spectrally resolved circularly polarized pump-probe spectroscopy.
The lower polaritons are excited resonantly with a circularly polarized (σ+)
narrow-band pump pulse generating a spinor lower polariton population. The
cross interaction between the upper and lower polariton is probed with a
counter-circular polarized (σ−) probe pulse. We spectrally probe the energy
and intensity of the upper polariton peak by measuring the transmission
spectrum of the probe pulse (fig. 5.5).

The cross Feshbach resonance occurs at a negative cavity detuning energy
equal to the binding energy of the biexciton (fig. 5.5 (b)), where the total
energy of one lower plus one upper polariton equals the biexciton energy
(fig. 5.5 (c)).
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Figure 5.4: The cross Feshbach resonance. Two interacting lower polariton (LP)
and upper polariton (UP) with antiparallel spin scatter to a biexciton
state resonantly. Near the resonance, the interaction strength is enhanced,
and its character changes from attractive to repulsive. The gray shaded
area shows the cavity detuning range where scattering to the biexciton
is significant. EBXX is the biexciton binding energy.

5.4.1 Experimental Results

The experiment’s central intention is to measure the energy renormalization
induced by the polariton interaction by the transmitted probe’s energy shift.
The strength of the interaction between upper and lower polariton is deter-
mined from the renormalized energy shift of the upper polariton resonance
due to the lower polaritons’ presence. A blueshift appears if the interaction
is repulsive; otherwise, it shows a redshift, which manifests an attractive
interaction. The pump spot size is larger than the probe to ensure the probing
of a constant carrier density. The probe intensity is one-tenth of the pump
npu = 2.8× 1011 photon pulse−1 cm−2. The pump pulse energy is adjusted to
the energy of the lower polariton resonance for each detuning. The probe
spectrum and intensity are measured in transmission as a function of the
detuning and the delay τ between the pump and probe pulses.

In fig. 5.6, we compare the transmitted probe spectrum of the upper polari-
ton resonance for different cavity detunings, measured at zero pump-probe
delay, with or without the pump. We can follow the variations in the upper
polariton’s energy shift in the presence of an anti-parallel spin lower polariton
population. A change of detuning from negative to positive corresponds to
an energy shift of the upper polariton. It is first a redshift, then switching to
a blueshift and recovering to a zero value. The signal’s amplitude decreases,
and the linewidth of the signal increases with detuning until -0.9 meV.

In Fig. fig. 5.7 (a), we plot as a function of cavity detuning the energy shift
and, in fig. 5.7 (b), the change of absorbance of the transmitted probe signal at
zero time delay, ln(Iprobe/Ipump−probe) where Iprobe and Ipump−probe refer to the



28 polaritonic cross feshbach resonance

ε
B

E
UP

E
LP

ε
B
/2

0
δ = - E

BXX

ν
UP

ν
LP

X
C

UP

LP

2E
X

QW Mirror

Probe

(a)

(b)

(c)

Mirror

Pump LP

Probe U
P

σ+σ-

Figure 5.5: A schematic representation of the experimental condition. (a)
Schematic view of the embedded quantum well in a semiconductor
microcavity and pump-probe experiment configuration. (b) The cross
Feshbach resonance occurs at the cavity detuning between the exciton
state (X) and the cavity mode (C) given by δ = −EBXX . (c) Under this
condition, an upper polariton with a spin down (↓) and a lower po-
lariton with a spin up (↑) scatter resonantly to the biexciton state (↓↑).
EX , εB, EUP and ELP are respectively, exciton, biexciton, upper-polariton
and lower-polariton energy. νLP (νUP) and σ+ (σ−) are, respectively, the
energy and polarization of the pump (probe) pulse.

maximum intensity of probe signal either alone or in the presence of the pump
pulse. The signature of the cross Feshbach resonance is clearly evidenced at -0.9
meV detuning through the change of sign of the energy shift, demonstrating
the switching of the nature of the interactions between lower and upper
antiparallel spin polaritons from attractive to repulsive. Correspondingly,
the maximum reduction of the signal intensity at this detuning shows the
resonant conversion of the upper and lower antiparallel spin polariton pair
into a biexciton. This optimum cavity detuning also provides a direct measure
of the biexciton binding energy EBXX (see inserts in fig. 5.7 (a) and (b)) which
has the value of EBXX = 0.9 meV. Its value, EBXX = 0.9 meV, lies in the
expected range within the three-dimensional limit (0.15meV) and the two-
dimensional limit (1.4 meV) given for an infinity deep confinement potential.
The latter limit is estimated using a ratio of 0.22 between the biexciton and the
exciton binding energies [58] and experimental value of the exciton binding
energy of 6.5 meV [59]. There are different biexciton binding energies reported
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Figure 5.6: Transmitted probe pulse at different detunings. Transmitted probe
spectra at upper polariton peak with (blue) and without (red) the pres-
ence of the anti-parallel spin lower polariton population for different
cavity detunings at τ = 0.

in the earlier studies of polaritonic Feshbach resonance, as large as 3 meV [31]
and 2.3 meV [32]. This difference could be traced back to the pump excitation
conditions [60]. In the former case, the pump pulse is a broadband pulse, which
favors the generation of an excitonic reservoir. In the latter case, the pump
pulse was spectrally narrowed, however as the experiments are performed
in positive detunings, an excitonic reservoir can be formed. Moreover, at a
positive cavity detuning, the lower polaritons are more exciton-like, increasing
their interactions and significantly lower polariton energy renormalization. In
our work, the experiment is performed with a spectrally narrow pump pulse
at negative cavity detunings; under these conditions, we prevent an excitonic
reservoir formation [60]. Additionally, the generated lower polaritons are more
photon-like. In this configuration, an effect of energy renormalization either
due to lower polariton-polariton interaction or due to their interactions with
an excitonic reservoir is suppressed. We speculate that the latter mechanism
was likely responsible for the larger value of the biexciton’s binding energy [31,
32].

The increased depletion rate of the upper polariton population is quantified
by the absorbance (fig. 5.7 (b)). The depletion rate caused by the upper-
polariton-lower-polariton scattering to the biexciton at resonance corresponds
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Figure 5.7: Energy and intensity variation of UP. Energy shift (a) and intensity
variation (b) of the upper polariton peak in the presence of the anti-
parallel spin lower polariton population as function of cavity detuning.
The dots and the solid lines are the experimental and numerical simu-
lation results, respectively. The gray shaded area shows the detuning
range where scattering to the biexciton is effective. Inserts : The two
contributions of background (green) and biexciton scattering (blue) to
the upper polariton energy shift (a) and absorbance (b) as a function of
detuning.

to the relative change of probe transmission at the energy of the upper po-
lariton mode that is equal to 0.35 (= 1− r.e−1.1), where 1.1 is the maximum
of the measured absorbance change and r = 2 is the ratio of the upper po-
lariton linewidths with and without the pump pulse. This means that about
35% of the transmitted photon flux of the probe pulse at the energy of the
upper polariton gives rise to the creation of biexcitons at the cross Feshbach
resonance.

The cross Feshbach resonance dynamic is studied by measuring the time-
integrated transmission spectrum of the delayed probe pulse to the arrival of
the pump pulse. In fig. 5.8, we present the probe spectrum centered on the
upper polariton peak as a function of the pump-probe delay, for a detuning of
δ = −1.2 meV, in the vicinity of the cross Feshbach resonance. These features
are also highlighted in fig. 5.9 , in which we show the transmitted probe
spectra measured at zero delay with and without the pump beam. We observe
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Figure 5.8: Dynamic of the cross Feshbach resonance. Transmitted probe spectra
around the upper polariton energy (1.488 eV) as a function of pump-
probe delay at δ = −1.2 meV. The signal intensity fluctuations along the
time delay correspond to shot noise.

an energy shift of the upper polariton peak and a reduction of its amplitude
around a zero delay, which characterizes the cross Feshbach resonance. The
dynamic is clearly revealed by the dependence of the energy shift with delay.
The energy shift reaches its maximum value at zero delay. This corresponds
to the largest scattering rate of an upper polariton with a lower polariton to
the biexciton state occurring as expected when the optical pulses have the
largest temporal overlap. The energy shift varies more rapidly at negative
delays than it does at positive delays. The dynamic of the signal at negative
delays is governed by the decoherence rate of the upper polariton polarization
generated by the probe pulse. In contrast, the dynamic at positive delays is
governed by the lifetime of the lower polariton population created by the
pump. This lifetime is determined in part by the scattering rate between a
lower and an upper polariton with opposite spins to the biexciton and, for the
other part, by the escape rate of the photon from the microcavity.
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Figure 5.9: Resonance variation with the pump pulse presence. Transmitted probe
spectra at zero delay with (blue line) and without the pump beam (red
line) at the cavity detuning δ = −1.2 meV in the vicinity of the cross
Feshbach resonance.

5.4.2 Theoretical Model

The theoretical model we use to analyze our experimental results is rooted in
the model developed for lower polariton interactions in a Feshbach resonance
vicinity, described in detail in [32]. The model is based on the Bogoliubov
theory; the scattering resonance of polaritons with a biexciton is studied within
a mean-field two-channel model. We have introduced the exciton-photon
basis Hamiltonian which involves the exciton-biexciton coupling eqs. (3.15)
and (3.16). Assuming that the pump pulse excites the lower polariton branch
with spin-up and the probe is resonant to the upper-polariton mode with
spin-down by considering only the LP and UP cross interactions, we can
rewrite the Hamiltonian in polariton basis as

Ĥ0 '
∫

dr {ELP â†
L,↑ âL,↑ + EUP â†

U,↓ âU,↓ + Eb b̂† b̂} (5.1)

Ĥint '
∫

dr {g+−X 2C2 â†
U,↓ â

†
L,↑ âL,↑ âU,↓ + gbxX |C|(b̂â†

U,↓ â
†
L,↑ + âU,↓ âL,↑ b̂†)}

(5.2)
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Ĥqm '
∫

dr {−Ωqm |C| (â†
L,↑F↑ + F∗↑ âL,↑) + ΩqmX (â†

U,↓F↓ + F∗↓ âU,↓)} (5.3)

Finally, we obtain the Gross-Pitaevskii equation for the upper polariton and
the biexciton as

ih̄ȧU,↓(x, t) =
(
EU − iγU + g+−X 2 |C|2

∣∣aL,↑(x, t)
∣∣2) aU,↓(x, t)

+ gbxX0 |C0| b(x, t)a∗L,↑(x, t) + fext,↓(x, t)
(5.4)

ih̄ḃ(x, t) = (Eb − iγB)b(x, t) + gbxX |C| aU,↓(x, t)aL,↑(x, t) (5.5)

fext,σ(x, t) = ΩqmX Fσ(x, t) (5.6)

We consider a continuous-wave (CW) pump excitation resonant with the
lower polariton and a CW probe beam with energy ε probing the upper
polariton (ε̃ = ε− εU). We assume that the wave functions can be written as
mixtures of finite modes within these assumptions, the wave functions are
written as

aU,↓ = apr
U,↓ = u↓(ε̃)e−i(ε̃+εU)t/h̄eikx

aL,↑ = apu
L,↑e
−iεLt/h̄

b = m(ε̃)e−i(ε̃+εL+εU)t/h̄eikx

f pr
ext = |F

pr
↓ |e

−i(ε̃+εU)t/h̄eikx

(5.7)

By substituting eq. (5.7) in eqs. (5.4) to (5.6) we have ε̃− g+−X 2C2
∣∣∣ψpu

L,↑

∣∣∣2 + iγU −gbxX |C|ψpu∗
L,↑

−gbxX |C|ψpu
L,↑ ε̃− (εB − εL − εU) + iγB


(

u↓(ε̃)

m(ε̃)

)
=

 ∣∣∣Fpr
↓

∣∣∣
0

 (5.8)

Eventually, the analytical solution for u↓(ε̃) at k = 0 holds

u↓(ε̃) =

(
ε̃− (g+−X 2C2|ψpu

L,↑|
2) + iγU −

(gbx)2X 2C2|ψpu
L,↑|

2

ε̃− (εB − εL − εU) + iγB

)−1

(5.9)
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eq. (5.9) real and imaginary parts give the upper polariton branch’s energy
shift (∆EU,↓) and the absorption variation (αB).

∆EU,↓ = g+−X 2C2|ψpu
L,↑|

2 + (gbx)2X 2C2|ψpu
L,↑|

2 εU + εL − εB

(εL + εU − εB)
2 + γ2

B

(5.10)

αB = (gbx)2X 2C2|ψpu
L,↑|

2 γB

(εL + εU − εB)
2 + γ2

B

(5.11)

γB is the biexciton linewidth, and the |ψpu
L,↑|

2 = C2npu is the lower polariton
density generated by the pump.

In eq. (5.10), the first and second terms contribute to the upper polariton’s
energy shift by LP-UP antiparallel spin background interaction and scattering
to the biexciton state, successively. There are also two contributions to the
change of absorbance of the upper polariton mode. The first one originates
from the LP-UP scattering to the biexciton, given by eq. (5.11). The second
contribution results from the negative background term that corresponds to
an attractive interaction between upper and lower polariton modes of opposite
spins. This interaction results in an effective energy redshift of the exciton,
∆EX = g+−X 2npu, and then in an effective increase of the cavity detuning
δ
′
= δ− ∆EX , which implies a larger photonic fraction of the upper polariton

mode [61]. The dependence of this absorbance variation with detuning is
thus given by αB = 2ln[X (δ)/X (δ

′
)]. Where X is the Hopfield coefficient and

given by eq. (2.13).
In fig. 5.7 (a) and fig. 5.7 (b), we plot the detuning dependence given by

the above expressions for the energy shift and the absorbance, respectively,
with the experimental results. The best fit with the theoretical model was
obtained with EBXX = 0.9 meV, gbx = 0.86 meV/

√
npu, γB = 0.5 meV and

g+− = −0.62 meV/npu. The fits reproduce the resonance features with a
perfect agreement with the experimental results. In the inserts of fig. 5.7, we
compare the contributions of the background and the biexciton scattering
to the energy shift (insert (a)) and the absorption (insert (b)) of the upper
polariton mode. The green and blue lines correspond to the energy shift and
absorbance using the parameters mentioned earlier, but by setting, gbx = 0
and g+− = 0, respectively. The biexciton scattering contribution (in blue color)
to the energy shift and the absorbance clearly shows the dispersion shape
with a centered resonance on the biexciton energy. The negative background
contribution (in green color) only accounts for the Hopfield coefficient’s
dependence with detuning. From this comparison, we infer that the cross
Feshbach resonance’s principal effect is arising at a cavity detuning equal to
the biexciton binding energy. The weak contribution of the background effect
to the absorbance and the resonance position centered at a cavity detuning
equals the biexciton binding energy is a strong signature of the cross Feshbach
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resonance. From the fits’ quality, we conclude that the observed resonance is
indeed caused by the scattering of a pair of upper and lower polaritons into
the biexciton state. The fits provide an excellent and quantitative description
of the primary resonance features across the detunings range, apart from a
small absorption deviation at the positive detunings. The measured absorption
change is more significant than prediction based on a single scattering channel
(the biexciton state), indicating the existence of additional scattering channels
above the biexciton energy that corresponds to the energy continuum of
two-exciton states [62], which sets at zero detuning.

The coupling between polaritons and biexcitons depends on the lower po-
lariton population. This coupling does not overcome the biexcitons’ damping
rate in the low-density regime of the lower polariton. In this weak interaction
(perturbative) regime, the cross Feshbach resonance (fig. 5.7) appears with
a dispersive shape and a width due to the biexciton lifetime. However, in
the high lower-polariton density regime, when the coupling overcomes the
biexcitons’ damping rate, the system will enter the strong interaction regime,
and polaritons biexcitons states manifest an anticrossing [31, 63]. In our ex-
periments, the transition from weak to strong interaction regime could be
reached by increasing the pump power, which was not achievable under our
experimental conditions using an optical pulse shaper.

In a recent theoretical paper [63], the authors present a many-body theory
for interacting polaritons with a Bose-Einstein condensate of polaritons in
another spin state. They evidence the cross Feshbach resonance in the upper
polariton branch when the biexciton energy equals two free lower plus upper
polaritons. They model our experiments, and the numerical results fit the
upper polariton energy shift as a function of the cavity detuning accurately.
The position and width of the resonance are reproduced with only two free
parameters: the biexciton binding energy -0.7 meV and the biexciton decay of
0.4 meV, which all agree with our results.

In conclusion, we have done pump-probe spectroscopy with a counter-
circular polarization arrangement to study the polariton interactions. A narrow-
band pump pulse is exciting lower polariton mode, and a transmitted broad-
band probe pulse conveys the signatures of the optical resonance, strength,
and sign of the energy shift induced by the pump. We attribute the scattering
process’s origin between polariton modes with opposite circular polarization
to a biexciton bound state. Additionally, we have investigated the biexciton’s
critical role in interbranch polariton interaction with the opposite spins. We
found the energy shift and enhancement of the probe spectra’s absorption.
This behavior can be incorporated with a scattering resonance of the lower and
upper polaritons to the biexciton state or polaritonic cross Feshbach resonance.
For the interpretation, a spin-dependent Hamiltonian, including the coupling
between excitons and biexciton, has been implemented.
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5.5 perspectives

The demonstration of polaritonic cross Feshbach resonance will permit the
control of the polariton interbranch scattering. It may initiate studies of many-
body physics with polaron quasiparticles and lead to entangled photon pairs’
generation via the biexciton.

5.5.1 Many-body Physics with Polaron Quasiparticles

The behavior of an impurity interacting with a quantum bath gives insight into
quantum many-body systems’ physics. For instance, the coupling between
electrons and lattice phonons leads to the existence of quasiparticles termed
polarons [64]. Recently, the Feshbach resonance has been implemented to
tune the interaction strength between a mobile impurity and a Bose gas
of cold atoms in order to realize a Bose polaron in a strongly interacting
regime [65, 66]. This is illustrated in fig. 5.10. The strength of the attractive and
repulsive interaction of the impurity atoms (orange dots) with the condensate
(blue background) is represented, respectively, by the decrease and increase
condensate density (intensity of blue) around the impurity. The Feshbach
resonance with the bound impurity-BEC’s atom molecule is the position in
which the abrupt change from attractive to repulsive interaction occurs.

Figure 5.10: An impurity interacting with a quantum bath. The cartoon shows
impurity atoms (orange) in a Bose-Einstein condensate (BEC) (blue);
the intensity of the background color indicates the change in the BEC
density due to the presence of impurity atoms. The bound impurity-
BEC’s atom molecule shows the position of the Feshbach resonance.
Reproduced from [65].

The cross polariton interaction system may share similar polaron properties
of an atomic impurity interacting with a Bose gas, where the upper polariton
mode replaces the impurity atom, and the coherent population of lower
polariton is substituted for the Bose gas. In a recent theoretical paper [50],
the authors model, beyond the mean-field theory, the quantum impurity
picture with two- and three-point quantum many-body correlations. From the
experimental point of view, they model a pump-probe experiment: the pump
generates a Bose gas of a spin-up lower-polariton population, and the probe
brings either a lower or upper spin-down polariton impurity. They explore the
Feshbach and (cross) Feshbach resonances with the biexciton and triexciton
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molecular states to show the multipoint correlations’ emergence as splitting in
the impurity spectrum. With the experimental demonstration of cross Feshbach
resonance, we can go forward into quantum correlated polariton physics. We
envisage polariton systems with longer-lived Feshbach molecules to favor the
correlations and the experimental observation of the splitting in the impurity
spectrum. Also, extending the control of cross polariton interaction in a system
constitutes polaritons in an electron gas [51].

5.5.2 Generation of Entangled Photon Pairs

Different schemes for generating entangled photon pairs in semiconductors
have been the subject of several theoretical studies [48, 49, 67, 68]. The most
effective one relies on the generation of biexcitons by interbranch polariton
scattering. Despite the great interest attracted by non-classical light sources
for quantum information processing [69] and quantum cryptography [70] an
implementation via the biexciton in an optical microcavity is still pending.

The demonstration of the cross Feshbach resonance opens the way to im-
plement the generation of entangled photon pairs. The principle for their
creation is the following. A biexciton is generated by the scattering of one
lower and one upper polariton with opposite spins. It decays into two lower
polaritons with opposite momenta and spins, which emit an entangled photon
pair in polarization and momentum. This process is optimal at exciton-cavity
detuning comparable to the biexciton binding energy in which the energy of
the lower plus upper polaritons equalizes the biexciton energy. This is the
condition for the cross Feshbach resonance. Based on the theoretical prediction
for generating a pair of entangled photons [49], the proposed scheme is repre-
sented in fig. 5.11. Figure 5.11 illustrates the advantage of using interbranch
polariton scattering in the cross Feshbach resonance. The entangled photon
pairs leave the microcavity with a large momenta far away from the incoming
beams, which form the lower and upper polaritons at k = 0. This situation
will permit the entangled photon pairs to be isolated from the transmitted
laser beams on the microcavity.

The efficiency of this generation process of a pair of entangled photons with
opposite momenta and spins is determined in part by the rate of the scattering
process that generates a biexciton and, in the other part, by the dissociation
rate of the biexciton into two outgoing polaritons with opposite spins. From
the observation of the cross Feshbach resonance, we infer that the generation of
entangled photon pairs in semiconductor microcavities could be very efficient.
The depletion rate of the upper polariton-lower polariton scattering to the
biexciton corresponds to the relative change of probe transmission at the
upper polariton mode’s energy. We found that about 35% of the transmitted
probe photons were converted into biexcitons at the cross Feshbach resonance.
Different dissociation channels of the biexciton state were identified and
described in [71]. They have made a quantitative evaluation of the rate for
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Figure 5.11: Scheme for generation and detection of entangled photon pairs. At
the cross Feshbach resonance, in which the upper-lower polaritons
scattering is optimal, a pair of entangled photons is generated. The
arrows represent the cross-interaction processes. This figure is adapted
from [49]. Two avalanche photo detectors (APD) of D1 and D2 and
correlation measurement are represented.

each of the relevant channels and concluded that the dissociation into two
lower polaritons with opposite momenta was about equally probable to the
dissociation into two interface polariton modes; the dissociation efficiency
into a pair of one lower and one upper polariton being nearly two orders
of magnitude weaker. Assuming then that the dissociation of the biexcitons
is about equally distributed between pairs of lower polaritons and pairs of
interface polaritons [71], we estimate that one-half of the excited biexcitons
lead to outgoing pairs of entangled lower polaritons. The estimated flux of
entangled photon pairs is then about 1.7 × 108 pairs per cm2 per incident
pulse. The flux of outgoing entangled photon pairs is further reduced by
the square of the radiative efficiency of the lower polariton mode having a
large momentum (2.6 µm−1), which amounts to 7% when accounting for the
non-radiative scattering of polaritons by acoustic phonons [72]. Our estimation
of the generation rate (1.2× 107 pairs per cm2 per incident pulse) makes the
proposed scheme based on the cross-Feshbach resonance quite attractive for
the generation of entangled photon pairs in momentum and polarization.

By resonantly exciting the lower polariton modes at large momenta, in a
reversed generation scheme, outgoing upper and lower polaritons’ production
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becomes entangled in energy and polarization. This scheme’s main drawback
lies in a strongly reduced dissociation rate of the biexciton into pairs of
upper and lower polaritons, which is predicted to be smaller by two orders of
magnitude compared to the dissociation rate into lower polariton pairs [71].
This reduction is partially compensated by a higher radiative efficiency of a
pair of lower and upper polaritons at k = 0 (about 50%). To realize a bright
source of entangled photons, high radiative efficiency will also enhance the
photon pairs correlation’s visibility. It ultimately might favor the generation
system based on a pair of entangled photons in energy and polarization.





6
L O C A L I Z AT I O N I N P O L A R I T O N I C L AT T I C E S

In this chapter, we present coupled polaritons in a lattice landscape. By en-
gineering a periodic lattice of mesas on a two-dimensional microcavity, it is
possible to couple confined polariton modes of nearby mesas to establish an
optical lattice similar to the crystalline semiconductors’ electronic band struc-
tures. Such lattices can be patterned by employing conventional lithography
and etching techniques, which empower us to fabricate arbitrary potentials
with robust localization and adaptable nearest-neighbor coupling. On-chip
polaritons appeared as an excellent method to realize and study strong bosonic
nonlinearities (due to their excitonic part) beyond ultralow temperatures.

This chapter contains two separate studies on photonic localization in a
triangular lattice made of mesas. The first part is devoted to the localization
due to the breaking of translational symmetry in a regular lattice. In the second
part, we present localization by introducing controlled lattice disorder. We
start the chapter by describing the sample following by the experimental setup
used in both investigations. Next, the experimental sample characterization
with a theoretical model is presented. Then, we demonstrated the localization
of a photon lasing in the regular polaritonic lattice. Finally, disorder-inducing
localization is reported. We give the outlook with a conclusion eventually.The
content henceforth is adapted from the following papers [73, 74]. Some para-
graphs are reported (quasi-)verbatim.

• Localized Photon Lasing in a Polaritonic Lattice Landscape
M. Navadeh-Toupchi, F. Jabeen, D.Y. Oberli, and M.T. Portella-Oberli
Phys. Rev. Applied 14, 024055 (2020)

• Anderson localisation in steady states of microcavity polaritons
T.J. Sturges, M.D. Anderson, A. Buraczewski, M. Navadeh-Toupchi, A.F.
Adiyatullin, F. Jabeen, D.Y. Oberli, M.T. Portella-Oberli, and M. Stobińska
Scientific reports 9, 1–6 (2019)

6.1 sample and experimental setup

6.1.1 Sample

P
olariton confinement in reduced dimensionality structures causes
new characteristics. Several techniques were developed to trap
polaritons either by acting on the excitonic [75, 76] or pho-

tonic [38, 77] component. One possible way to engineer the potential where

41
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polaritons are created and confine them spatially is to change the thickness of
the cavity layer locally in so-called mesa structures [38]. The trap consists of a
mesa in the spacer layer, etched on the top of a microcavity spacer. This mesa
confines the cavity photon for sizes of a few microns in width, and typically
six nanometers in-depth. The quantization of the lower and upper polariton
modes in several states is caused by the lateral confinement [39].

The layout of the sample used to investigate is explained in fig. 6.1. The
sample is grown by molecular-beam epitaxy on a GaAs substrate. It is a
microcavity made with a GaAs λ-spacer layer, and two distributed Bragg
reflector (DBR) mirrors consisting of 20 (24) pairs of GaAs/AlAs layers for
the top (bottom) mirror. The spacer layer is patterned before the growth of
the second DBR of the cavity [39]. The triangular array is done through an
electron-beam lithography and etching process. The photon traps consist of
shallow mesas with a local elevation of 6 nm and a diameter of 2 µm at
the spacer layer’s surface. This potential leads to a local reduction of the
microcavity resonance frequency and a photonic confinement potential of 9

meV. The mesas are equally separated by a distance of 2.5 µm from the center
to center. The confined photon wave function penetrates the barrier, causing
evanescent photonic coupling between neighboring mesas, which induces a
photonic energy band structure. A single In0.04Ga0.96As As quantum well is
placed at the electromagnetic field’s antinode in the middle of the spacer layer.
The strong coupling between the exciton and photonic modes gives rise to a
band structure made of the upper and lower polariton bands corresponding to
a Rabi splitting of ΩR = 3.4 meV. The exciton energy is EX = 1.4814 eV. The
measured exciton-cavity detuning has a value of 1.5 meV; it is defined as the
energy difference between the lowest photonic band and the exciton at the
Brillouin zone center.

Figure 6.1: Schematic of the patterned sample. Schematic drawing of the sample
representing the patterned and epitaxial layer structure; DBR stands for
distributed Bragg reflector. The inset shows the mesa configuration.
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6.1.2 Experimental Setup

We excite the sample nonresonantly with a CW laser at 660 nm with a spot
size of either 25 µm or 3 µm measured as the full width at half maximum.
The experimental setup is shown in fig. 6.2. The laser beam is focused on the
top side of the sample utilizing a microscope objective (×50) with a numerical
aperture of 0.42. To increase the spot size, the laser is sent to an additional lens
placed at a distance for which its focal plane coincides with the back Fourier
plane of the microscope objective to reduce the laser spot size in the Fourier
plane. The laser beam is modulated at a 0.6 kHz frequency with a chopper
operating with a duty cycle of 6% to avoid the sample’s thermal heating.

The sample’s emission is collected in the reflection configuration with the
same objective used for the excitation; it is then focused with a 400 mm focal
length lens on a CCD camera for imaging in real space; the integrated emission
in energy results in a magnification of 100.

Figure 6.2: Schematic of the experimental setup. Layout of the experimental setup:
DM, dichroic mirror; M, mirror; L, lens. Movable parts (lenses and
mirror) are drawn with dashed lines.

The spectrally resolved emission is obtained either in the near field or
in the far-field by imaging the sample surface plane or the Fourier plane
of the microscope objective on the spectrometer’s entrance slit coupled to
a CCD camera. We measure the spatial and the momentum distribution
of the emission as a function of energy recorded along the x-direction and
the Γ− K direction in the Brillouin zone, respectively. The reciprocal space
imaging is used for accessing the polariton and photonic dispersion curves.
The experiments are performed with different excitation pump powers.

The sample is placed in a cryostat with a continuous-flow of liquid helium
operating at 4 K. The cryostat is mounted on a three-dimensional translation
stage for tuning its position, with a base structure conceived to reduce the
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vibrations and the thermal drifts. The helium dewar is kept suspended by
the optical table, which significantly reduces the sample’s vibrations from the
ground. To monitor the stability of the measurements, we image the sample
surface with the excitation laser spot on a CCD camera as described above.
We control then the stability of the laser-spot position concerning the mesa
pattern during the experiment. The sample remains stable without drifting
from its initial position during minutes, which is long enough for the typical
data acquisition time.

6.2 theoretical model

Since light and matter coupling form polaritons, both the photonic and the
excitonic part can be confined. The excitons are localized in the plane of the
quantum well. The excitonic effects such as exciton binding and oscillator
strength are enhanced in the reduced dimensions, as described in chapter 2.

Micropillars were proposed in the first design to confine the photonic part by
etching the microcavity after growth [37]. Weak coupling regime and polariton
lasing have been published in the before-mentioned structures [14, 78]. In this
dissertation, we confine the photonic part of the polaritons laterally by creating
a slightly thicker cavity on the spacer layer, which we call mesa. The thicker
cavity decreases the cavity photon energy and behaves as a trap for cavity
photons and, consequently, polaritons. Thanks to the low aspect ratio in mesas,
the lateral roughness and losses are less than the micropillars and allowing us
to reach sub-micron mesas (the subject of chapter 7 in this dissertation).

We use a simple tight-binding approach to describe the microcavity polariton
modes in a triangular lattice made of isolated mesas. As the lattice period is
larger than the mesa diameter, the coupling between next-nearest-neighbor
mesas is weak. We consider only the photonic modes with the lowest energies
in a single mesa: the lowest energy state (referred as the S-orbital mode)
has an angular momentum equal to zero; the next excited state is doubly
degenerate (referred as the two P-orbital modes), and is associated to an
angular momentum equal to one. The expressions for the energy dispersion
of the S and P photonic bands of the triangular lattice are, respectively, given
by [79, 80]
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ES
0 and EP

0 are the energies of the S and P photon modes of an isolated mesa:γ‖
and γ⊥ are the tunneling energies between nearest mesas associated with the P
orbitals oriented either parallel or perpendicular to the link direction; γS is the
tunneling energy associated with the coupling of S orbitals between nearest
mesas fig. 6.3; γ3 is the tunneling energy associated with the coupling between
Px and Py orbitals centered on nearest mesas; γ0, γ1 and γ2 are corrective
energies for the photonic modes in isolated mesas.

The dispersion relations of the photonic P bands are simply given by the
expressions for E1 and E2 along specific directions of the Brillouin zone, e.g.,
Γ− K for which ky is equal to zero or Γ−M for which kx is equal to zero. The
corresponding polaritonic S and P bands are obtained in the strong-coupling
limit between excitons and photons assuming the same Rabi-coupling energy
for the two photonic modes (S and P modes). The corresponding polariton
modes can be calculated as
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6.3 sample characterization

To characterize the sample emission in the strong- and weak-coupling regimes,
we perform the experiments by focusing the laser beam to a spot size of 25

µm. We measure the planar part of the microcavity’s photoluminescence at a
low excitation laser power of 10 mW in the far-field configuration. Figure 6.4
(a) displays the planar microcavity’s dispersion surrounding the sample’s
patterned region at a photon-exciton detuning of 8.4 meV. We observe the
2D lower polariton flat dispersion (mostly an excitonic mode) and the upper
polariton parabolic dispersion, which is mostly a photonic mode, over a range
in k-space going from −3 µm−1 to 3 µm−1, which is defined by the numerical
aperture of the microscope objective. We repeat the measurement at different
positions of the sample in order to vary the detuning between the cavity
photon and exciton energy; in fig. 6.4 (b), we plot the energy of the lower
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Figure 6.3: Tunneling between the nearest mesas. The sketch of nearest mesas
separated by the distance a in (a) and in (b) of the tunneling energies
between nearest mesas associated with the coupling of S orbitals (γs),
with the P orbitals oriented either parallel (γ‖) or perpendicular (γ⊥)
to the link direction; γ3 is the tunneling energy associated with the
coupling between Px and Py orbitals centered on the nearest mesas.

polariton (LP) and upper polariton (UP) at k = 0 varying the sample position.
From these experiments, we obtain exciton energy of Ex = 1.4814 eV and a
Rabi energy of ΩR = 3.4 meV by eq. (2.11).

We measure the photoluminescence of the patterned part of the sample
with different excitation laser power. The photoluminescence at low excitation
power gives directly in k space the image of the energy dispersion of the
polariton modes with the system in the strong coupling, which reveals the
LP and UP energy bands fig. 6.5 (a). The relaxation of polaritons results in
the population being distributed in the LP and UP energy S band with the
highest intensity emission from the LP band. The weak emission of UP at
higher energy originating from the P bands can be perceived. This feature is
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(a)

(b)

Figure 6.4: Characterization of the planar microcavity. (a) Dispersion of the planar
microcavity at cavity detuning of 8.4 meV with the excitonic-like lower
polariton (2D LP) and photonic-like upper-polariton (2D UP) dispersion.
(b) LP and UP energy at k = 0 measured at different cavity positions or
different cavity detuning.

better observed for UP bands because of the positive detuning of the sample.
Under high excitation power when the strong coupling breaks down, we
assess the energy dispersion of the photonic bands fig. 6.5 (b). We observe the
emission from the S and P photonic bands, which are formed, respectively,
by evanescent coupling of s and p photon states confined in the mesas. At a
higher energy, the emission from the two-dimensional photonic continuum is
perceived as a faint emission around 1.492 eV. The calculated polaritonic and
photonic S and P bands are plotted, respectively, in fig. 6.5 (a) and fig. 6.5 (b).
We use the following values of the parameters for the fittings: γS = 0.12 meV,
ES

0 − γ0 = 1.48370 eV, EP
0 − γ1 = 1.48781 eV, EP

0 − γ2 = 1.48803 eV, γ‖ =
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Figure 6.5: Triangular photonic lattice under nonresonant laser excitation with a
25 µm spot size. The emission spectra recorded along the Γ−K direction
of the Brillouin zone at excitation power of 5 mW (a) and 450 mW (b),
respectively, in the strong- and weak-coupling regime. The calculated
LP and UP S and P dispersion bands (photonic bands) are plotted with
solid lines (dashed lines). The intensity profile of the energy-integrated
emission measured in the strong- (c) and the weak- (e) coupling regime.
(d) Energy and linewidth of the S-band emission at k = 0 as a function
of pump power for the lower (black) and upper (red) polariton in the
regime of strong coupling and for the photon in the weak-coupling
regime. The linewidth of the modes is represented as an error bar. The
dotted (dashed) line indicates the exciton (S photon mode at k = 0)
energy.

0.40 meV and γ⊥ = 0.067 meV. However, the second P band is not observed
for still unclear reasons. It is worth mentioning that the tunneling energy
parallel to the link direction is much larger than the one perpendicular to the
link as expected from the more considerable overlap of the P orbitals aligned
along the link joining nearest mesas with respect to the P orbitals oriented
orthogonal to the link.

We obtain the intensity profiles of the polaritonic and photonic lattice
landscape by imaging in real space, the energy integrated emission of the
sample in the strong- fig. 6.5 (c) and weak-coupling fig. 6.5 (e) regimes,
respectively. The regular triangular patterned structure can be observed both in
the polaritonic and in the photonic lattice landscape. In fig. 6.5 (d), we plot the



6.4 localized photon lasing 49

energy of the LP and UP S-band emission at k = 0 as a function of pump power.
With increasing pump power, we evidence a blueshift of the LP, a redshift
of the UP, and a broadening of their linewidth (represented by error bars).
We eventually observe the shrinkage of the Rabi coupling and the photonic
mode dispersion’s emission, with its linewidth narrowing accordingly. These
findings evidence the features characterizing the breakdown of the exciton-
photon strong coupling. In nonresonant excitation, electrons and holes are
generated at high energy and relax down to form excitons and polaritons. The
exciton-exciton interactions induce decoherence, and accordingly, linewidth
broadening of polaritons [30]. The exciton oscillator strength weakens when
the carrier density is increased due to Coulomb screening and phase-space
filling [81]. These effects reduce the coherent coupling between exciton and
photon until its breakdown. We notice that the strong coupling persists in
the excitation area’s periphery, where the carrier density is much weaker.
Therefore, the photon dispersion’s measured linewidth appears broader than
in the case of the bare photonic emission.

6.4 localized photon lasing

A photonic crystal [82] is a periodically modulated structure with photonic
dispersion similar to the electronic band structure in a crystal presenting mul-
tiple bands separated by band gaps. In a crystal, the band curvature defines
positive and negative effective masses. The photonic dispersion shapes, in the
same way, determine the normal and anomalous dispersion. The photon dy-
namics can be controlled by the interplay between the dispersion, diffraction,
and the nonlinearity in these photonic systems [83]. In the lattice of evanes-
cently coupled waveguides, localized spatial solitons [84–87] are generated
when on-site nonlinearity balances the diffraction arising from linear coupling
among adjacent waveguides [84, 88]. Therefore, photonic bandgap systems’
dispersion, which relates the photon energy, and wave-vector of propagating
light, can be controlled. The realization of band-edge lasers [89–93] is possible
thanks to small group velocity near the Brillouin zone’s edge. The localization
of light can also be induced by locally perturbing the modulated structure’s
periodicity, which generates a defect state [82]. A two-dimensional photonic
crystal defect provides a resonant microcavity for achieving lasing [94–96].

The semiconductor microcavity forms the basis for flexible photonic plat-
forms where the engineered potential landscapes give rise to substantial
transport properties and appealing physics and applications [97]. The two-
dimensional polaritonic lattices [98] are periodically modulated microcavities
in transverse directions with translational invariance regarding the longitu-
dinal direction. The lower and upper polaritons’ dispersion corresponds to
a band structure separated by the Rabi coupling energy. Their dispersion is
composed of S and P bands, which originate from the spatial overlap of s and p
levels from polaritons confined in all three spatial directions on adjacent mesas.
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Polariton propagates in the transverse direction according to the energy-band
dispersion. The band structure has a strong influence on the polariton conden-
sation process. At the edge of the Brillouin zone with effective negative mass,
the repulsive polariton interaction with a spatially localized excitonic reservoir
produces an energy blueshift of the condensate into the gap, and it generates
a localized gap soliton state [99–101]. The localized condensate state can also
depend on the spatial position of the excitation [102]. In the regime of weak
coupling between excitons and photons, photonic resonator crystals using two-
dimensional coupled arrays of vertical-cavity surface-emitting lasers (VCSELs)
have led to a coherent supermode emission located at the edge of the Brillouin
zone [103–105]. The achievement of single-mode lasing was made possible by
introducing a defect cavity in VCSEL photonic structures [106–109].

Our approach to localize light is to induce a breakdown of the exciton-
photon strong coupling within a spatially limited region to destroy the pho-
tonic crystal symmetry. Inside this region, photonic modes’ energy is different
from those of the polariton modes outside of it. Thus, photon propagation
to the outer area is inhibited, inducing a self-trapping of light. We use the
scheme based on optically inducing a local breaking of the strong-coupling
regime of polaritons to generate the photonic lattice defect by quenching any
photon propagation outside this local region. The reduction of the losses by
propagation can facilitate a phase transition to photon lasing, as observed in
VCSELs. Due to the interplay between gain and propagation losses, the lasing
from localized photon modes can be favored as a hybrid patterned system of
photons and polaritons.

To establish the localization of photon lasing emission, we perform the
experiments by focusing the laser onto a spot size of 3 µm and by centering it
on top of a mesa. We measure the emission spectra of the sample in momentum
and real space for different excitation powers. Figure 6.6 displays the energy-
resolved emission in momentum and real space for four excitation powers
of 3 mW, 70 mW, 90 mW, and 130 mW. In Figure 6.7 (a), we plot integrated
emission intensity as a function of laser power, ranging from 1.478 eV to 1.490

eV. By increasing the excitation power, the system undergoes a succession of
two-phase transitions, first breaking the strong coupling of the exciton photon.
This can be observed by the polaritonic (fig. 6.6 (a)) and photonic dispersion
(fig. 6.6 (b)) when the system is in the strong- and weak-coupling regime,
respectively. Then the system evolves in the weak-coupling regime until it
finally attains the laser phase transition due to the onset of the stimulated
emission of photons into the cavity photon mode. This is observed by the
superlinear transition in the input-output light above the threshold power
Pth in fig. 6.7 (a). Two effects come into play with carrier density, the energy
blueshift of the exciton states due to the repulsive nature of the interactions
and the renormalization of the bandgap in reaching the Mott transition to
the phase transition from the exciton gas to electron-hole plasma [110]. The
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photon lasing takes place when the gain for the photon modes exceeds their
losses.

Figure 6.6: Emission spectra under nonresonant excitation with a 3 µm spot size.
The energy-resolved emission measured in momentum space along the
Γ− K direction (a)–(d) and the corresponding spectra measured in real
space along the x-direction (e)–(h) for four excitation powers: (a), (e) P
= 3 mW in strong coupling, (b), (f) P = 70 mW in weak coupling, (c),
(g) P = 90 mW, the lasing threshold power and (d), (h) P = 130 mW in
the lasing regime. The calculated energy dispersion of lower and upper
polaritons for the S and P bands (solid lines) and the corresponding
photonic bands (dashed lines) are plotted in (a)–(d).

In fig. 6.7 (b), we plot the emission’s energy as function of laser power at
k = 0 of the LP and UP modes in the strong-coupling case and the cavity
photon in the weak-coupling case. In the lasing regime, we plot the energy of
the confined lasing modes (fig. 6.6 (c) and (d)). We show the specific features
characterizing the three regimes with rising excitation power: the energy
renormalization of the LP and UP modes with their linewidth broadening in
the strong coupling, the linewidth narrowing of the photon-mode emission
across the weak-coupling regime, and three modes with a sharp linewidth
characterizing a laser emission. Also, a blueshift in the laser emission is
evidenced by the increasing pump power and the carrier density, which
originates from a decrease in the active region’s refractive index.

The different regimes’ characteristics are highlighted by the emission spec-
tra in momentum and real space in fig. 6.6 for different excitation powers,
respectively, in fig. 6.6 (a) – fig. 6.6 (d) and fig. 6.6 (e) – fig. 6.6 (h). The energy
dispersion of the LP and UP bands and that of the photonic bands are plotted,
respectively, in fig. 6.6 (a) for the strong- coupling regime and in fig. 6.6 (b) –
fig. 6.6 (d) for the weak- coupling regime, including the calculated polaritonic
and photonic S and P bands. In real space, the emission shows an extended
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Figure 6.7: Photon lasing in triangular polaritonic lattice under nonresonant ex-
citation with a 3 µm spot centered on top of a mesa. (a) Integrated
emission intensity as a function of excitation power. The lasing phase
transition is evidenced by the threshold in the power dependence (Pth).
(b) The emission energy at k = 0 of the lower (black) and upper (red)
polariton in strong coupling and of the cavity photon (red) in the weak
coupling; in the lasing regime, the energy of the confined lasing modes.
Their linewidth is represented as error bars. The dotted (dashed) hori-
zontal line is drawn at the exciton (photon) energy at k = 0.

distribution in the strong-coupling regime (fig. 6.6 (e)), which reveals the
propagation of polaritons outside the excitation region. In the weak-coupling
regime toward the laser phase transition, however, the spatial extension of the
emission decreases (fig. 6.6 (f) and fig. 6.6 (g)) and discrete photonic modes
eventually appear in k space (fig. 6.6 (c)). The laser emission emerges with
distinct modes, and ultimately the main emission arises at the edge of the Bril-
louin zone (fig. 6.6 (d)) like a gap soliton, the emission of which is becoming
localized mainly on one single mesa (fig. 6.6 (h)).

Near the edge of the Brillouin zone, the dispersion becomes anomalous
(negative band curvature); therefore, a self-defocusing nonlinearity is needed
to localize a mode. The carrier density generated by the pump excitation
I(r) induces a local change of the GaAs refractive index, n0 through the Kerr
effect: n(r) = n0 + n2 I(r). Inside the energy gap of GaAs, the Kerr coefficient
n2 < 0 is negative [111]; thus, when I(r) is increased, the local refractive
index decreases and hence an effect of self-defocusing occurs. Consequently, a
localized defect like state arises near the edge of the Brillouin zone. The local
reduction of the refractive index induces the energy blueshift fig. 6.7 (b) into
the bandgap fig. 6.6 (d). This confined gap state is known in photonic crystals
as a gap soliton.

We can identify two stages to the localization of the photonic modes: the
first one corresponds to the photonic defect’s creation, by the local breakdown
of the strong-coupling regime, which causes a self-trapping of the photons,
and the second one to the onset of lasing. In order to better evidence this
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Figure 6.8: The evolution of the emission’s spatial distribution under nonreso-
nant excitation at different powers. The 3 µm laser spot is on the mesa
at x=0.

sequential localization, we represent in fig. 6.8 the evolution of the emission’s
spatial distribution as the excitation power increases across the three regimes;
strong coupling, weak coupling, and lasing regimes. At the lowest excitation
power, the emission occurs over a large number of mesas distributed around
the central excitation spot (mesa at x=0). The expansion away from the excita-
tion spot corresponds to the polaritons’ expansion over a range, determined
by the polariton lifetime and the polaritons distribution in k-space. In the
intermediate power range corresponding to the weak-coupling regime, the
emission’s spatial distribution shrinks down as the excitation power is raised.
This shrinkage of the spatial distribution corresponds to the photonic defect’s
evolution within the region experiencing the weak coupling. At a power of 60

mW, still well below the lasing threshold power, one observes a drastic reduc-
tion of the emission intensity from all the mesas surrounding the excitation
spot, which evidences photons’ self-trapping. This is a manifestation of the
local increase of the photon density, which is largest next to the excitation spot.
In the last stage, as the power reaches the lasing threshold, the spatial extent
of the emission collapses onto the central mesa (the mesa at x=0 position).

The breaking of the strong-coupling regime inside a small excitation area
perturbs the lattice’s periodicity and generates a defect. The arrangement and
the number of mesas in this defect area define the extent of the photonic
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modes. The decrease of propagation losses outside this region favors the
increase of the photon density by spontaneous emission due to electron-hole
recombination, optimizing the buildup of the photon-mode gain. We validate
the photon lasing action’s dependence on the induced defect by controlling
the optical excitation position on the patterned sample experimentally.

The excitation position’s impact on the generation of the defect and the
lasing emission is evidenced in fig. 6.9. The number of mesas composing the
defect, which we outline in yellow in fig. 6.9 (a), fig. 6.9 (c), and fig. 6.9 (g), is
found to strongly depend on the position of the laser spot (identified as a red
circle). It lies either on top of a mesa (fig. 6.9 (a)) or among three (fig. 6.9 (c)) or
four (fig. 6.9 (g)) mesas. In fig. 6.9 (b), we display the spatial distribution of the
total emission intensity integrated in energy when the excitation spot is on top
of a mesa (corresponding to the conditions of fig. 6.6 (d) and fig. 6.6 (h)). the
predominant emission arises then from one mesa surrounded by six weakly
emitting mesas. The defect’s spatial shape involves seven mesas altogether, it is
the hexagon formed by the six nearest-neighbor mesas surrounding the mesa
from which most of the lasing-mode emission originates. We highlight the
defect extension by a hexagon that contains the mesas emitting in the weak-
coupling regime (fig. 6.9 (b)). In fig. 6.9 (d) and fig. 6.9 (h), we display the
spatial distribution of the total emission intensity similarly when the excitation
position is displaced off a mesa and is surrounded by either three (fig. 6.9 (d))
or four (fig. 6.9 (h)) mesas. We observe distinct emission patterns spread over
several mesas. We reproduce the emission zone and the mesas’ arrangement
involved in the defect formation by superposing the hexagons built from
the six nearest- neighbor mesas of each mesa constituting the group of three
(green) and four (blue) mesas in fig. 6.9 (c) and fig. 6.9 (g). Therefore, the
generated defect shapes differ from one to the others [fig. 6.9 (a), fig. 6.9 (c)
and fig. 6.9 (g)]. We represent in fig. 6.9 (d) and fig. 6.9 (h) the contour of the
defect zone with the emitting mesas inside.

We plot the corresponding measured energy of the lasing emission in mo-
mentum (fig. 6.9 (e) and fig. 6.9 (i)) and real (fig. 6.9 (f) and fig. 6.9 (j)) space,
for which the emission pattern of mesas in real space and their momentum
distribution can be associated. We can identify mainly two lasing supermodes
originating from the mesas’ coupling inside the defect region. From this
comparison, we infer that the defect’s configuration during its generation
ultimately defines the emission mode and its characteristic spatial distribu-
tion. With these results, we highlight the possibility of controlling the defect
geometry and, ultimately, the lasing mode.
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Figure 6.9: Photon lasing and the induced defect with the optical excitation’s po-
sition. Triangular photonic lattice representation with the excited area
for three different positions of the laser spot of 3 µm size: (a) excitation
on top of a mesa (red circle), (c) among three mesas (green triangle), and
(g) among four mesas (blue lozenge). The hexagons drawn in yellow
are composed of the excited mesas and their six nearest neighbors; they
define the region in which the defect is generated. (b), (d), (h) correspond
to the energy-integrated emission in real space. The emission spectra
are measured in momentum space along the Γ− K direction (e), (i), and
in real space along the x-direction (f), (j) for the excitation conditions
defined respectively in (c), (g). For the excitation condition defined in (a),
the spectra are shown in fig. 6.6 (d) and fig. 6.6 (h). Excitation power P =
130 mW. A red circle represents the position of the excitation spot. In (b),
(d), and (h), the defect is highlighted by the contour zone enveloping the
emitting mesas.
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6.5 anderson localisation in microcavity polaritons

The concept of Anderson localization [112] in solid-state physics predicts that
the electrons become immobile when located in a disordered lattice, and the
material behaves as an insulator instead of a conductor. The effect’s origin
is the interference among multiple electron scatterings by random defects in
the lattice potential. The extended electronic Bloch wave function alters to
an exponentially localized one if the randomness is strong enough [113]. A
similar phenomenon is predicted for multiple scattering of electromagnetic
waves; unlike electrons, photons do not interact with each other [114–118].

We present an experimental signature of the Anderson localization of mi-
crocavity polaritons under non-resonant excitation and provide a systematic
study of disorder strength dependence. We reveal a controllable localization
degree, characterized by the inverse participation ratio (IPR), by tuning the
positional disorder of interacting two-dimensional mesas’ arrays in a set of
eight triangular lattices with increasing levels of static disorder. The static
off-diagonal disorder is introduced by adding a random displacement to
each lattice site with maximum controllable amplitude. The localization is
characterized by the inverse participation ratio and is shown to increase as a
function of disorder strength monotonically. This constitutes the realization of
disorder-induced localization in a driven-dissipative system.

The sample is the same as discussed in section 6.1.1. To introduce an
off-diagonal disorder to the system, a random value offsets the cartesian co-
ordinates of the mesas in the range d[−δ, δ] where 0 ≤ δ ≤ 1 parameterizes
the amount of disorder, and d = 0.25 µm is the maximum possible displace-
ment for the maximum disorder δ = 1 (fig. 6.10). We consider eight different
disorder levels from δ = 0 to δ = 1 in evenly spaced steps.

We excite the system non-resonantly with a 660 nm CW laser, focused on 25

µm spot size. We measure the sample’s photoluminescence with a collection
lens of numerical aperture 0.42NA and image the real-space integrated energy
emission in a CCD.

The non-resonant excitation of the CW laser creates a reservoir of excitons
that feed the polariton population. From the photoluminescence images of
the perfect triangular arrays, fig. 6.11 (a), we see the confinement of polari-
tons predominantly within the mesas and an approximately homogeneous
distribution among them.

The positional disorder modifies the eigenstates of the system from Bloch
states towards spatially separated patches of localization. The effect of the
disorder on the localization, or clustering, of the polariton population, can be
seen in the photoluminescence images, fig. 6.11 (a–d).

To obtain a quantitative measure of the localization amount, we calculate the
inverse-participation ratio (IPR). The IPR has previously been used to quantify
Anderson localization in photonic systems [118] and is also applicable here. In
essence, it is a measure of inhomogeneity, and for a homogeneous distribution,
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Figure 6.10: Schematic of the triangularly patterned sample. (a) no disorder δ =
0 and (b) maximum disorder δ = 1 with the lattice vectors a1,2 =
(a/2)(1,±

√
3). (c) A side view of the sample with epitaxial layers,

DBRs, and the embedded quantum well (QW).

it is equal to unity. Thus, as Anderson localization’s onset causes some mesas to
contribute more significantly to the total photoluminescence, the IPR increases
also. To exploit this measure, we first normalize the data to account for the
Gaussian background fig. 6.12 and then calculate the average occupation
In =

∫
mesan

|ψ|2dr of each mesa (labelled by n). We then obtain the IPR as

I = N

(
N

∑
n=0

I2
n

)
/

(
N

∑
n=0

In

)2

(6.8)

Figure 6.11 (i) shows the percentage change in the IPR from no disorder
(δ = 0) to maximum disorder (δ = 1). We clearly see the increase in IPR with
increasing disorder δ, which signals the onset of localization. The error bars
correspond to the standard error after repeating the experiment on 12 different
regions sampled from a larger lattice for each disorder strength. Besides,
similar results have been reproduced for several different laser powers fig. 6.13.
We recover the same monotonic increase in IPR with the position disorder.

We successfully modeled the experimental results with a generalized Gross-
Pitaevskii equation [119] describing the evolution of the polariton wavefunc-
tion ψ(r, t)

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2m
+

ih̄
2
(RnR − γ) + h̄g|ψ|2 + V

]
ψ (6.9)

where m and γ are the effective mass and decay rate of the polaritons, g is
the strength of polariton-polariton interactions, R is the reservoir-polariton
exchange rate, and V(r) is the potential landscape defined by the lattice. The
reservoir nR(r, t) is described by the rate equation

∂nR
∂t

= −
(

γR + R|ψ|2
)

nR + P (6.10)
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Figure 6.11: Localization signature. Figures (a–d) show the real-space photolumi-
nescence images under weak (P = 75 mW) nonresonant excitation,
whereas figures (e–h) show the polariton density in the numerical
model. In both cases, the results are normalized to account for the
Gaussian pump distribution and the disorder levels are (a,e) δ = 0,
(b,f) δ = 0.284, (c,g) δ = 0.572, (d,h) δ = 1. In the absence of dis-
order we see a more homogeneous distribution among the mesas,
whereas disorder induces the onset of patches of localisation. Also
shown are plots that reveal how the IPR increases with disorder
for (i) experiment, and (j) theory. The polariton nonlinearity in (j) is
g = g0 = 2.4 × 10−3meV.µm2. The inset of (j) shows the result for
g = −g0 (blue dotted line), g = 0 (green dot-dashed line), g = g0
(red solid line), and g = 10g0 (black dashed line). The simulation pa-
rameters are m = 5× 10−5me, h̄R = 0.4meV.µm2, h̄γ = 0.5meV, h̄g =
2.4 × 10−3meV.µm2, V0 = 9meV, h̄γR = 2meV, and P0 = 2γRγ/R.
Here, V0 is the maxima of the trapping potential, which we model
as a radially symmetric sigmoid function for each mesa. In the experi-
mental figures the cavity-exciton detuning is 2 meV

Where γR is the decay rate of the reservoir. The reservoir is populated by the
continuous-wave pump P(r), which we model as a Gaussian with amplitude
P0. We use the Runga-Kutta method of fourth-order to evolve the dynamics
until a stationary solution is achieved (approximately 50 ps). In fig. 6.11 (e–h),
we show these simulations’ results for periodic and increasingly disordered
arrays. We can see the onset of patches of localization when a disorder is
introduced. We calculate the IPR using eq. (6.8) in much the same way as is
done for the experimental data and plot the results in fig. 6.11 (j). Despite the
fact that this model is to simulate a condensate, which is not the case in our
experiments, it qualitatively reproduces the experimental outcomes.
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Figure 6.12: Normalisation procedure. We show (a) experimental photolumines-
cence and (b) simulation results, exactly corresponding to those shown
in fig. 6.11. The top row shows the results before background renormal-
isation, whereas the bottom row exactly corresponds to the figure in
the main text. The insets show the background used.

In the inset of fig. 6.11 (j) we show calculations performed for different
polariton-polariton nonlinearities. The green dot-dashed line shows the linear
regime (g = 0). In the present experiment, we are working in a weak non-
linearity regime, which we model with a small g (g > 0) in the simulations
(solid red line). Nonetheless, we observe that the repulsive interaction acts to
suppress the localization; see the black-dashed line increasing the nonlinearity
ten-fold. Also, we show that attractive interaction (g < 0) acts to enhance the
localization (blue dotted line). Although a negative g is not possible with our
experimental setup, such a regime could be accessed with spinor condensates
tuned near the Feshbach resonance.

IPR as a function of disorder for several powers and detunings

We provide plots similar to Fig. 2(a) of the main text, for several powers. Crucially we recover the same monotonic increase in

IPR with positional disorder.

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.00 0.05 0.10 0.15 0.20 0.25
1.04

1.06

1.08

1.10

1.12

0.0 0.2 0.4 1.00.6 0.8 0.0 0.2 0.4 1.00.6 0.8 0.0 0.2 0.4 1.00.6 0.8

0.0 0.2 0.4 1.00.6 0.8 0.0 0.2 0.4 1.00.6 0.8 0.0 0.2 0.4 1.00.6 0.8

Supplementary Figure 2. IPR plots for a cavity-exciton detuning of 2meV. Error bars are the Standard Error of the

Mean (SEM). A straight line is fitted with the least errors method, weighted by 1/(SEM)2

Variation of IPR with parameters of Gross-Pitaevskii model

In Supplementary Fig. 3 we provide a systematic study of the dependence of the IPR on the other parameters of the Generalized

Gross-Pitaevskii model.
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and parameters as used in Fig. 2(b) of the main text. However in panels (a-f) we tune each of the shown parameters from 60%

to 140% of that value used in the main model. The varied parameters are given in units of those used in the main text,

explicitly: mA = 5⇥10
�5

me, h̄RA = 0.4meV.µm
2
, h̄gA = 0.5meV, h̄g = 2.4⇥10

�3
meV.µm

2
, VA = 9meV, h̄gRA = 2meV,

PA = 2gRg/R, d = 0.25nm, and L = 88µm.

2/4

Figure 6.13: IPR plots for different excitation powers. Error bars are the Standard
Error of the Mean (SEM). A straight line is fitted with the least errors
method, weighted by 1/(SEM)2.

In order to investigate the ability to tune the localization, we show in
fig. 6.14, the theoretical results performed by varying different parameters in
the polariton system.
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IPR as a function of disorder for several powers and detunings

We provide plots similar to Fig. 2(a) of the main text, for several powers. Crucially we recover the same monotonic increase in

IPR with positional disorder.
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Variation of IPR with parameters of Gross-Pitaevskii model

In Supplementary Fig. 3 we provide a systematic study of the dependence of the IPR on the other parameters of the Generalized
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Figure 6.14: IPR variation with parameters of Gross-Pitaevskii model. In figures
(a-f) we tune each of the shown parameters from 60% to 140% of that
value used in the main model. mA = 5 × 10−5me, h̄RA = 0.4meV ·
µm2, h̄γA = 0.5meV, h̄g = 2.4× 10−3meV.µm2, VA = 9meV, h̄γRA =
2meV, PA = 2γRγ/R, d = 0.25nm, and L = 88µm.

In conclusion, we demonstrate photon lasing’s realization integrated into a
polaritonic lattice for which the lasing mode can be optically controlled. The
scheme is based on the optical breaking of the translational symmetry through
the local transition from the strong- to the weak-coupling regime of the exciton-
photon system created inside a semiconductor microcavity patterned with a
triangular lattice of mesas. In this way, we demonstrate self-trapping of light
and localized photon lasing. The lasing modes originate from the photonic
confinement and photon propagation interplay, which can be controlled by the
excitation position. These results open the way for the realization of localized
mode lasers of chosen geometry, in which the shape of the generated defect
determines the lasing mode.

In the last part of the chapter, our results propose a signature of disorder-
induced localization in the steady states of driven-dissipative systems, a
regime entirely separate from the closed systems’ prototypical case. We believe
that the phenomenology stated here should be generally observable in other
driven-dissipative systems. In addition, since both polaritons and localization
are foreseen to have a high potential for applications in optoelectronic de-
vices and quantum information, respectively, such a robust and controllable
phenomenon could be of use in novel devices.
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6.6 perspectives

This chapter was devoted to studies on photonic localization in polariton lat-
tices landscape. Based on our findings, we would like to give some viewpoints
to new research on polariton localization physics.

6.6.1 Optically Controlled Photonic Defect

We demonstrate photon lasing’s realization integrated into a polaritonic lattice
for which the lasing mode can be optically controlled. The scheme is based on
generating a photonic defect by breaking the translational symmetry optically
through the local transition from the strong- to the weak-coupling regime of
the exciton-photon system.

These results open the way for the realization of localized mode lasers with
arbitrary geometry, in which the shape of the generated defect determines the
lasing mode.

Our scheme can also be extended to realize orbital angular momentum mi-
crolasers [120] integrated into a two-dimensional semiconductor honeycomb-
patterned microcavity. The emission chirality could be controlled by the po-
sition and polarization of the circularly polarized optical excitation, which
spin-polarized the gain medium. This can be controlled on the ultrashort
time scale imposed by the carriers’ time relaxation, which of the order of
picoseconds. Ultrafast switch and memory devices could be imagined using
this approach.

We show localization in a triangular lattice, which can be generalized to
other lattice configurations. However, the defect configuration will be modified
due to the mesas’ disposition that is part of the defect. For example, in a
hexagonal (rectangular) lattice, we can envision a defect as either a hexagon
(square), if the excitation is made in the center of one hexagon (square) or
kind of "Y" ("+") if the excitation sits on top of a mesa.

It is feasible to develop drop and add filters [121, 122] and dynamic pho-
ton pinning [123] using optically controlled defect cavities and line-defect
waveguides in two-dimensional polaritonic lattices. In the filters, propagating
photons along with a line defect (as a waveguide), are trapped by a single-
point defect optically created in a two-dimensional lattice when the photon
frequency matches the defect frequency. An optically generated defect can pin
traveling photons in a waveguide similar to a cavity. One might also conceive
the realization of PT (parity and time-reversal) symmetry breaking with local
optical control of gain and loss [124, 125].
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6.6.2 Exploration of New Physics with Disorder Localization

We present an experimental signature of the Anderson localization of micro-
cavity polaritons. We investigate the steady-state polariton distribution under
non-resonant excitation in triangular lattices with increasing levels of static
disorder.

To advance our work, it would be interesting to investigate the localiza-
tion of strongly interacting polaritons. For example, one could explore the
interplay between the disorder-induced localization seen herein and effects
such as nonlinear localization observed for strongly driven microcavities [126].
Moreover, with larger polariton densities, it may be possible to extract signa-
tures of many-body localization, which is roughly the persistence of Anderson
localization in the presence of many-body interactions.

Polaritonic Feshbach resonances can be used to control the strength and
character (attractive or repulsive) of the polariton interaction. It would be
useful to generate a spin-polarized polariton population and investigate the
antiparallel spin polariton population’s localization. The role of the interaction
on the disorder-induced localization can be considered in this way.

One could also explicitly examine the role of localization in driven-dissipative
systems for preserving the memory of initial conditions, for instance, by
preparing initially imbalanced population distributions with a highly inho-
mogeneous pumping, switching on a homogeneous pumping may influence
the persistence of the initial state. Different pump polarizations could also be
used to investigate the role of attractive and repulsive interactions in the effect
of memory.

Resonant excitations could be used to generate a coherent polariton popula-
tion. It would be appealing to shine the sample quasi resonantly with a large
spot size CW laser beam and use a small spot size laser to trigger the polariton
system in a bistable regime [10, 127]. The locally generated bistable area prop-
agates further through the structure. In this way, one will selectively access
the propagation and localization of polaritons in a given band. Using different
excitation angles, we can scrutinize the dispersion effect on the propagation
and localization of polaritons.

6.6.3 Polariton Multistability

We propose utilizing the spatial multistability [128] to study the propagation
and localization of polaritons in distinct energy bands. It will be possible
to examine the different spatial geometry in polaritons emission in separate
bands thanks to spatial multistability. For instance, in honeycomb lattices,
the real space polariton emission from the s-band and p-band correspond to
hexagonal and kagome geometry, respectively [98]. Furthermore, the s-band is
usually dispersive, and the p-band can become a flat band for which the states
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are localized. We can then alter the propagation of polaritons and induce their
localization in a multistable cycle.

We believe that the phenomenology reported here may open a new chapter
for basic science explorations and could have a high potential for applications
in optoelectronic devices and quantum information.





7
Q UA N T U M C O R R E L AT I O N S O F C O N F I N E D P O L A R I T O N S

Microcavity polaritons emerging from the strong coupling between cavity
photons and quantum well excitons are hybrid quasiparticles, which pro-
vide nonlinear behavior due to excitonic interactions. At the same time, the
photonic component allows studying their quantum correlations through
their emission to reach polariton blockade, for instance. The strong polariton-
polariton interaction is crucial to achieving this regime in which the presence
of one polariton blocks the entrance of a second one. One way to enhance
interactions is to confine polaritons strongly. This chapter is devoted to polari-
tons tightly confined in a quantum box. We start by giving an overview of the
photon blockade and the framework for the achievement of polariton blockade.
Next, we describe the engineered microcavity structures with sub-micron size
mesas for strong confinement of polaritons. Finally, we explain the experiment,
including a Hanbury Brown and Twiss (HBT) set up for measuring photon
correlations. We end the chapter with experimental results and conclusions.

7.1 polariton blockade

P
hoton blockade, proposed three decades ago [41], is a nonlinear
optical effect in which the photon-photon interactions medi-
ated by the nonlinear medium warrant that only one photon

exists in a single-mode cavity. The photon blockade effect was extended to
various schemes using a single intracavity atom by exploiting a multi-state
electromagnetic induced transparency [129–132] and using a two-state atom
coupled to a cavity mode [133, 134]. Photon blockade was experimentally ob-
served in the regimes of strong atom-cavity coupling [135] and a quantum dot
strongly coupled to a photonic crystal resonator [136–138], and in microwave
regime with a single superconducting artificial atom strongly coupled to a
transmission line resonator [139]. The effect is even generalized to the use of
matter waves instead of optical waves with the prediction of atom blockade
effect [140], in which only one atom could occupy the cavity mode.

Theoretically, it is predicted that when polaritons, these composite exciton-
photon quasiparticles, are confined in a small volume, the polariton-polariton
interaction could be sufficient to reveal polariton blockade [40]. In the po-
lariton blockade regime, a photon enters the cavity generating a polariton,
preventing other photons from entering and converting to new polaritons.
Different schemes were proposed to overcome the difficulty of attaining very
small volume confinement. One is to use a system of two-coupled modes.

65
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This unconventional photon blockade [141, 142] utilizes destructive quantum
interference between two paths, which cancels the probability of having two
photons in one of the modes. The other theoretical proposition is to use po-
laritonic Feshbach resonance [31, 47] in which the coupling between polariton
and biexciton plays a role in the blockage [143]. Very recently, two different
groups [144, 145] evidenced the first signs about strong interacting polaritons.
They used a semi-integrated fiber cavity; the fiber’s concave surface leads to
lateral confinement of 2µm diameter. They measured with this confinement
an antibunching of 0.95 of the transmitted light across the cavity. Neverthe-
less, these findings offer encouraging perspectives regarding the realization of
strongly interacting photonic systems; the demonstration of polariton blockade
has to be still provided.

The polariton interaction strength depends on the polariton confinement.
Stronger confinement favors an optimal overlap of the exciton wavefunctions,
enhancing the nonlinearity of polaritons since their excitonic content mediates
polariton interactions. The repulsive character of the polariton interactions
induces an energy blueshift of the polariton resonance. The polariton blockade
is possible when the photonic confinement volume is small enough to improve
the nonlinearity of polaritons in the regime in which the presence of one
polariton will block the resonant entering of a second one as the resonance
energy shifts by an amount of the order of the linewidth. The nonlinear
behavior of polaritons is due to their excitonic interactions; their photonic
component allows detecting their emission in the polariton blockade regime
as a single photon emitter.

The experiment’s principle to investigate polariton blockade and study
quantum correlations between polaritons is displayed in fig. 7.1. The funda-
mental polariton mode is resonantly excited by tuning the laser wavelength
across one-polariton state |1p〉 energy from red to blue detuning. The energy
renormalization brings the two-polariton state |2p〉 resonance to a higher
energy than twice the one-polariton state’s energy 2× |1p〉. When a photon
from the red detuned laser excites a polariton, a second photon cannot excite
the two-polariton state during the polariton lifetime. However, with the blue
detuned laser, a second photon can reach the two-polariton state. Therefore,
the probability of generating a second polariton in the former (latter) situation
is decreased (enhanced).

In order to characterize the polariton emission, the transmitted light is split
into two and is sent to a Hanbury Brown and Twiss (HBT) set up for measuring
photon correlations quantified by the behavior of the zero-delay second-order
coherence function g(2)(τ = 0). In a strong nonlinear regime, when the energy
is renormalized by an amount more considerable than the polariton linewidth,
by redshifted laser excitation, ideally, only a single photon will be emitted.
Therefore, in this regime, the emitted light will be strongly anti-bunched, and
the g(2)(τ = 0) = 0. The closer the measured value of the g(2)(τ = 0) to
zero gives the increase in the probability to generate only one polariton and,
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Figure 7.1: Polariton excitation ladder. The one-polariton mode |1p〉 is resonantly
excited. Due to polariton-polariton repulsive interaction, the polariton
energy renormalization ∆EP brings the two-polariton state |2p〉 to higher
energy than twice the energy of one-polariton state 2 × |1p〉. When
∆EP ≈ γP, with photon excitation red detuned, a second photon with
the same wavelength cannot excite |2p〉 state. However, with the blue
detuned photon, a second photon with the same wavelength can reach
the |2p〉 state. γP and γL are polariton linewidth and laser spectral
width.

therefore, the reduction in the probability to generate simultaneously two
polaritons. By considering only the lower polariton mode, the Hamiltonian in
the polariton basis reads [145]

H = h̄∆ωL p̂† p̂ +
Upp

2
p̂† p̂† p̂ p̂ + F(t) p̂† + F∗(t) p̂ (7.1)

The energy of the one-polariton state is h̄ωp and the lasing detuning is given
by ∆ωL = ωL − ωp. p̂ ( p̂†) is the polariton annihilation (creation) operator
p̂ = C ĉ + X x̂ in which C and X are the Hopfield coefficients that give the
photon and exciton fraction of the polariton. Upp = UX 4 is the strength of the
polariton-polariton interaction, and U is the strength of the exciton-exciton
interaction.

In a spatially confined mesa geometry, the interaction strength Upp is quan-

tified as Upp ∝
(
2r2)−1 showing an inverse proportionality with the lateral
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area of the photonic mode [40]. The second-order photon correlation function
at zero-delay is

g(2)(0) =
〈
ĉ† ĉ† ĉĉ

〉
〈ĉ† ĉ〉

=
1(

1 + 4
(
Upp/γp

)2
) (7.2)

which quantifies the ratio of having two photons on a single site. The figure of
merit of the anti-bunching is the ratio Upp/γp, where γp is the linewidth of
the polariton mode [146]. Therefore, strong polariton interaction strength and
narrow polariton linewidth are crucial to accomplish the polariton blockade.
Notably, strong confinement is necessitated, and it has been the principal
technical obstacle preventing a genuine regime of strong nonlinearity of
polaritons. We overcame this issue with the achievement of submicron-sized
mesas to confine polaritons laterally.

7.2 sample

Figure 7.2: SEM Image of the sample. Scanning electron microscope image of the
exposed pattern on the sample by electron beam lithography.

The sample was grown by molecular beam epitaxy. The microcavity is a
GaAs λ-cavity made of 24/20 pairs of GaAs/AlAs distributed Bragg reflectors
(DBR). A single In0.04Ga0.96As quantum well is placed at the antinode position
of the electromagnetic field in the middle of the microcavity. The spacer layer
is patterned before the growth of the second DBR of the cavity [39]. We have
used electron-beam lithography to write the patterned submicron-sized mesas.
A scanning electron microscope (SEM) image of the exposed structure on a
sample by electron-beam lithography is shown in fig. 7.2. The photon traps
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are mesas, which consist of 400 nm to 2 µm in diameter and local elevation of
20 nm high of the spacer layer. The mesa elevation leads to a local decrease of
the microcavity resonance and a photonic confinement potential of 30 meV.
The strong coupling between the exciton and the confined photonic mode
gives rise to a Rabi splitting of ΩR = 3.1 meV with the exciton energy of
EX = 1.47759 eV.

7.2.1 Characterization

We probe the spectral emission of the sample for different mesa sizes at several
detunings. We measure the luminescence of the sample under nonresonant
excitation in reflection configuration to characterize the mesas. The experi-
mental setup is displayed in fig. 7.3. The sample is placed in a cryostat with a
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Figure 7.3: Experimental setup. The 660 nm CW laser is used to excite the sample
nonresonantly. The broadband Ti:Sapphire pulsed laser is spectrally
narrowed by a pulse shaper and sent to excite the sample resonantly
at normal incidence. The mesa’s transmitted signal passes through a
real-space filter and is sent to the Hanbury Brown and Twiss (HBT)
detection scheme for photon correlation measurements. Photon events
are registered with time-correlated single-photon counting (TCSPC)
coincidences and electronics treated in real-time. DM, dichroic mirror;
M, mirror; L, lens; BS, beam spliter; D1 and D2, single-photon detectors.
Movable parts (lenses and mirror) are drawn with dashed lines.

continuous-flow of liquid helium at a cryogenic temperature of 4 K. In order to
measure the luminescence, we excite the sample on the top side nonresonantly
with a CW laser operating at 660 nm with a spot size of 3 µm, which is
larger than the mesa size to warranty homogeneous excitation of the mesa.
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The laser beam is focused through a x50 objective and numerical aperture
0.42NA. The sample’s emission is collected in reflection configuration with the
before-mentioned objective. In order to control the position of the excitation
and the stability of the measurements, the emission is focused with a lens of
400-mm focal length on a CCD camera, which results in a magnification of 100,
for imaging the sample surface with the excitation laser spot. The spectrally
resolved emission is obtained either in the near-field or in the far-field by
imaging the sample surface plane or the Fourier plane of the microscope
objective on the spectrometer’s entrance slit coupled to a CCD camera.

In order to excite the sample resonantly, a broadband Ti:Sapphire pulsed
laser is spectrally narrowed by a pulse shaper and focused on the back of
the sample at normal incidence with a x50 objective (0.5 NA). The emission
in transmission configuration is collected by a x50 objective (0.42NA) and
send either to the spectrometer or to the Hanbury Brown and Twiss (HBT)
detection part for the photon correlation measurements. The photon stream
is split into two by a 50/50 beam splitter, and each separated beams enter
in a fiber-coupled to a single-photon detector (ID Quantique 120) connected
to a coincidence counter. The detector has a quantum efficiency of 65% (at
840 nm) and timing jitter of 400 ps (at 650 nm) plus a dead time of 1 µs.
Since the APDs (avalanche photo detectors) have a much larger timing jitter
than the polariton lifetime, they cannot be used to measure under CW laser
excitation, so we excite the system with pulse-width similar to the polariton
lifetime. The normalized correlation function g(2)(0) is given by the ratio of the
coincidence number of the peak at τ = 0 to the average coincidence number
of the side peaks. We considered 20 consecutive periods around the zero
delay and used a binning time of 32 ps around each peak. The experiments
are performed with different excitation pump powers and laser detuning.
The cryostat is mounted on a three-dimensional translation stage with a base
structure conceived to reduce the vibrations and the thermal drifts. The helium
dewar is kept suspended by the optical table, which significantly reduces the
sample’s vibrations from the ground. The sample remains stable without
drifting from its initial position during minutes.

We display in fig. 7.4 the confined lower polariton’s ground state’s energy
for mesas with a diameter from 500 nm to 2 µm. The measurements were
done under nonresonant excitation and in real space. The pattern number
corresponds to a sample position at a given detuning between exciton and
two-dimensional cavity photon. Therefore, each mesa size has a different
cavity detuning at the same pattern position. We can observe the variation of
the polariton ground state energy for each mesa with detuning.

The emission spectrum from the 550 nm mesa (from pattern 3) is shown in
fig. 7.5. The ground state confined polariton resonance is located at 1.47631

eV, and its linewidth is 550 µeV. Due to the submicron-sized mesa, the precise
energy and linewidth of the confined polariton are challenging to be measured
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Figure 7.4: Lower polariton’s ground state’s energy of different mesas. Confined
lower polariton’s ground state’s energy for mesas with a diameter from
500 nm to 2 µm. The measurement is done under nonresonant excitation
in real space. Each pattern has the same structures but at a different
detuning. We are working on the 550 nm mesa from pattern 3. The red
line shows the exciton energy, which is EX = 1.47759 eV.

since the strong nonlinearity induces energy shift and, therefore, a broadening
in the measured linewidth.
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Figure 7.5: The emission spectrum of the 550 nm mesa. The emission spectrum of
the 550 nm mesa and corresponding LP, UP, and exciton energies under
nonresonant excitation of 10 µW.

We spectrally probe the lower and upper polariton resonance energy by mea-
suring a broadband pulse’s transmission spectrum. We observe the emission
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from the confined upper and lower polariton’s ground state and the emission
from lower polariton first excited state of the mesas in real space (fig. 7.6). The
broadening of the lower polariton’s ground state with a linewidth of 0.9 meV
accompanied by its asymmetric emission illustrates a large energy blueshift
due to polariton’s interaction.
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Figure 7.6: The emission of the 550 nm mesa with broadband laser excitation in
real space. The sample is resonantly excited with a 500 nW broadband
laser pulse (14 meV) centered at 1.47600 eV. The confined lower polari-
ton’s ground state is located at 1.47620 eV with 0.9 meV linewidth, and
the upper polariton state 3.25 meV over it. The lower polariton’s first
excited state is assigned to the bright emission line in the central part.
The extension of it outside the mesa corresponds to the emission from
the 2D lower polariton at 1.47733 eV.

In fig. 7.7, we demonstrate the lower polariton emission in real space when
excited resonantly by a spectrally narrowed laser pulse (170 µeV). In this
configuration, we excite only the lower polariton’s ground state at 100 nW. We
have measured the polariton linewidth of 240 µeV with a blueshift of 85 µeV.
Even at this low power, getting the exact linewidth is very challenging due to
the inevitable blueshift. To find the lower polariton’s ground state, we swept
the resonance with different laser wavelengths and specified the actual energy
to the one with a maximum blueshift, which is at 1.475925 eV. We send only
the emission from the ground state to the correlation measurement within this
condition, and we don’t have any background emission from 2D.
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Figure 7.7: The emission of the 550 nm mesa with narrowband laser excitation in
real space. The sample is resonantly excited with a 100 nW narrowband
laser pulse (170 µeV) centered at 1.47584 eV (840.04 nm). The confined
lower polariton’s ground state is at 1.475925 eV with 240 µeV linewidth.
The measured energy blueshift of the ground state with respect to the
laser is 85 µeV.

7.3 polaritons quantum correlation

The polariton correlations are examined through the zero-delay second-order
photon correlation function, as specified in eq. (7.2). In order to characterize
the polariton emission, the transmitted light is sent to a Hanbury Brown and
Twiss (HBT) setup (fig. 7.8) for measuring photon correlations quantified by
the behavior of the zero-delay second-order coherence function. In the HBT
experiment, the photon stream is split into two and sent to two detectors,
then the coincidences between the photons arriving on the two detectors are
measured. We can write the eq. (7.2) with a photon number operator as:

g(2)(0) =
〈
ĉ† (ĉĉ† + 1

)
ĉ
〉

〈ĉ† ĉ〉2
=

〈
n̂2〉− 〈n̂〉
〈n̂〉2 = 1 +

〈
(∆n̂)2〉− 〈n̂〉
〈n̂〉2 (7.3)

This representation gives an essential link between g(2)(0) and the photon
number distribution. The sign of the term

〈
(∆n)2〉− 〈n〉 depends on the pho-

ton number variance’s width. It is positive for super-Poissonian statistics and
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negative for the sub-Poissonian one. Consequently, this provides a benchmark
for classification of light according to photon statistics and the value of g(2)(0).

• g(2)(0) < 1 sub-Poissonian statistics (non-classical light)

• g(2)(0) = 1 Poissonian statistics (perfectly coherent light)

• g(2)(0) > 1 super-Poissonian statistics (chaotic or thermal light)

Photons Beam Splitter

Single-Photon 

Detector 1 

Single-Photon 

Detector 2

ND Filter

Counter

Figure 7.8: Scheme of the Hanbury Brown and Twiss experiment. The photon
stream is split into two arms by a beam splitter; measuring the photons’
coincidences arriving on two detectors gives the second-order coherence
function.

The second-order correlation function can be measured classically in terms
of intensity of the light beam at time t as

g(2)(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉 (7.4)

Since the number of counts registered on a photon-counting detector is pro-
portional to the intensity, we can rewrite the classical definition of g(2)(τ)
as [147]

g(2)(τ) =
〈n1(t)n2(t + τ)〉
〈n1(t)〉 〈n2(t + τ)〉 (7.5)

where ni(t) is the number of counts registered on detector i at time t.
For τ = 0, we can rewrite the equation by inserting photon annihilation and

creation operators for arbitrary photon number state |n〉

g(2)(0) =
〈
n
∣∣ĉ† ĉ† ĉĉ

∣∣ n
〉

〈n |ĉ† ĉ| n〉2
=

n2 − n
n2 = 1− 1

n
(7.6)

A single photon goes to one of the detectors. This suggests that we can obtain
the highly non-classical value of g(2)(0) = 0 for a single-photon source that
emits the photon number states of one.
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For the coherent state eq. (7.6) equals to one. This agrees with the fact that
the coherent light has the Poissonian statistics.

The thermal light or partially coherent light source are examples of light with
the super-Poissonian distribution. The super-Poissonian light is also named
bunched, considering photons’ simultaneous detections by two detectors of the
HBT setup. On contrast, sub-Poissonian light is associated with antibunched
photons, indicating that the photons tend to propagate separately.

7.4 experimental results

We use 550 nm diameter mesa for the confinement of polaritons to investigate
polariton quantum correlations. Considering the recent results from the two
groups [144, 145], an anti-bunching of 0.95 with lateral confinement of 2µm in
diameter, we might expect an enhancement of the nonlinearity Upp ∝

(
2r2)−1

of a factor of 16 by decreasing the lateral confinement diameter to 550nm by
a factor of 4. Using the value of Upp ≈ 13 µeV found in [145] we estimate in
our sample Upp ≈ 16× 13 µeV = 208 µeV. With this confinement, we could
attain high polariton nonlinearity, and we can estimate the figure of merit of
the anti-bunching Upp/γp ≈ 0.87 when we consider an overestimate value for
γp = 240 µeV. Therefore, we could expect the anti-bunching of g(2)(0) = 0.25.
The requirement to achieve the polariton blockade effect is that the nonlinearity
Upp exceeds the linewidth γp.

We consider the case of an applied optical field with frequency ωL close
to the frequency of the polariton mode ωp for the measurements of photon
correlation. The degree of antibunching or bunching is given by g(2)(τ = 0).
The dip and peak observation at τ = 0 address the antibunching and bunching,
respectively, at the zero-delay of the second-order coherence function. We use
a short laser pulse that reduces multiple excitations, which could occur if the
pulse duration exceeds the polariton lifetime. The disadvantage is that we
need to apply a large enough laser detuning to minimize the spectral overlap
of the laser pulse with the shifted resonance line when a second photon
attempts to enter the microcavity. This can reduce the measured bunching
and anti-bunching due to the lower overlap between the laser pulse and the
resonance state [144].

We have performed a thorough series of experiments with different power,
integration time, and laser detuning. We plot the normalized second-order cor-
relation function under resonant excitation with 100 nW power at λ = 839.6 nm
and λ = 840.5 nm in fig. 7.9 and fig. 7.10, respectively. The experiment’s
integration time is 300 s. We observe the expected behavior, a bunching
g(2)(τ = 0) = 1.35 by having ωL −ωp = +0.7 meV (fig. 7.9) and an antibunch-
ing g(2)(τ = 0) = 0.7 with ωL − ωp = −0.8 meV (fig. 7.10). Still, the results
are not replicable, and in most of the cases, we have a flat correlation function
(g(2)(τ = 0) = 1). There are some candidates to address the issue. The laser
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Figure 7.9: Second order correlation function at λ = 839.6 nm. The bunching
g(2)(0) = 1.35 behavior with 100 nW excitation. The error bars indi-
cate the square root of the number of coincidence events divided by the
mean value of the non-zero events.
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Figure 7.10: Second order correlation function at λ = 840.5 nm. The antibunching
g(2)(0) = 0.7 behavior with 100 nW excitation. The error bars indicate
the square root of the number of coincidence events divided by the
mean value of the non-zero events.

linewidth is not narrow enough, and the amount of energy blueshift is not
sufficient to overcome it. Using lower excitation powers, we should increase
the experiment’s integration time and the laser spot position’s stability on the
sample.
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In conclusion, we’ve been able to fabricate submicron mesa to confine
polaritons tightly and make characterization on different mesa sizes. We
performed correlation measurements of 550 nm mesa’s emission successfully.
We were able, even yet not conclusive, to see some appealing results with
our approach. These findings offer encouraging perspectives regarding the
demonstration of the polariton blockade. Moreover, the possibility to engineer
arrays of sub-micron sized mesas with the integration of strong nonlinearity
and efficient intersite tunneling opens the route to the realization of strongly
interacting photonic systems [146].
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C O N C L U S I O N

Those who subdued all the wisdom and excellency,
And shone as beacons among their betters,
Out of darksome night could find no way,
Only told a tale, then they fell asleep.

— Khayyam

T
he physics of polaritons has witnessed an enormous develop-
ment since the first observation of polaritons in a semiconductor
microcavity. The finding of Bose-Einstein condensation of po-

laritons in planar microcavity paved the way for studies of spatial coherence
and superfluidity with interacting bosons. Nowadays, the polaritonic commu-
nity focuses on studies of polariton gases confined in patterned potentials.
This approach emerged as an attractive route to study the interplay between
fundamental nonlinear, spin, and orbital phenomena in topological systems.
Two-dimensional lattices are attracting deep interest as a platform for simulat-
ing many-body effects.

In the first part of the dissertation, we concentrated on the fundamental
study of spinor polariton interaction across the two polaritonic branches, and
we demonstrate the polaritonic cross Feshbach resonance. This demonstration
will permit the control of the polariton interbranch scattering; it may also
initiate studies of many-body physics with polaron quasiparticles and lead to
entangled photon pairs generation via the biexciton state.

In the second part, we presented the research on the polaritonic lattices and
their fabrication. First, we show the photonic localization due to the breaking
of translational symmetry in a triangular lattice and the generation of localized
photon lasing for which the lasing mode can be optically controlled. These
results open the way for the realization of localized mode lasers of chosen
geometry, in which the shape of the generated defect determines the lasing
mode. In the second part, we manifest photonic localization by introducing
controlled lattice disorder. We believe that the observed phenomenon could
be generally achievable in other schemes of steady-state of driven-dissipative
systems. Furthermore, we expect that the demonstration of a controlled local-
ization in polaritonic structures could be used in novel optoelectronic devices
and quantum information.

Finally, in the last section, we investigated tightly confined polaritons in the
engineered microcavity structures with sub-micron size mesas. The analysis of
polariton correlations through the second-order correlation measurement aims
to approach the polariton blockade. Our results, even yet not conclusive for

79
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polariton blockade, show that we can fabricate with success those structures
to confine polaritons strongly. This finding offers promising perspectives
concerning the realization of strongly interacting photonic systems.

Although the research’s nature is fundamental, the studies presented in
this thesis will undoubtedly shed light on exciting features that could be
considered for future practical applications.



B I B L I O G R A P H Y

1. Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. The 2018 CO-
DATA Recommended Values of the Fundamental Physical Constants http:

//physics.nist.gov/constants. (Online; accessed 24.11.2020).

2. Hopfield, J. Theory of the contribution of excitons to the complex dielec-
tric constant of crystals. Physical Review 112, 1555 (1958).

3. Agranovich, V. Dispersion of electromagnetic waves in crystals. Sov.
Phys. JETP 10, 307–313 (1960).

4. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of
the coupled exciton-photon mode splitting in a semiconductor quantum
microcavity. Physical Review Letters 69, 3314 (1992).

5. Savona, V., Hradil, Z., Quattropani, A. & Schwendimann, P. Quantum
theory of quantum-well polaritons in semiconductor microcavities. Phys-
ical Review B 49, 8774 (1994).

6. Baumberg, J., Savvidis, P., Stevenson, R., Tartakovskii, A., Skolnick, M.,
Whittaker, D. & Roberts, J. Parametric oscillation in a vertical micro-
cavity: A polariton condensate or micro-optical parametric oscillation.
Physical Review B 62, R16247 (2000).

7. Savvidis, P., Baumberg, J., Stevenson, R., Skolnick, M., Whittaker, D.
& Roberts, J. Angle-resonant stimulated polariton amplifier. Physical
Review Letters 84, 1547 (2000).

8. Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory
of the angle-resonant polariton amplifier. Physical Review B 62, R4825

(2000).

9. Baas, A., Karr, J. P., Eleuch, H. & Giacobino, E. Optical bistability in
semiconductor microcavities. Physical Review A 69, 023809 (2004).

10. Amo, A., Liew, T., Adrados, C., Houdré, R., Giacobino, E., Kavokin, A. &
Bramati, A. Exciton–polariton spin switches. Nature Photonics 4, 361–366

(2010).

11. Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keel-
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131. Rebić, S., Parkins, A. & Tan, S. Polariton analysis of a four-level atom
strongly coupled to a cavity mode. Physical Review A 65, 043806 (2002).
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& Imamoḡlu, A. Ultrafast all-optical switching by single photons. Nature
Photonics 6, 605–609 (2012).

138. Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K. J., Hu, E. L.
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A. Towards polariton blockade of confined exciton–polaritons. Nature
Materials 18, 219–222 (2019).



92 bibliography

146. Carusotto, I. & Ciuti, C. Quantum fluids of light. Reviews of Modern
Physics 85, 299 (2013).

147. Fox, M. Quantum Optics: An Introduction (OUP Oxford, 2006).



C U R R I C U L U M V I TA E

personal data

Name Morteza NAVADEH TOUPCHI
Date of Birth December 1, 1990

email morteza@toupchi.com
LinkedIn linkedin.com/in/mortezatoupchi

education

2015 – 2020 Swiss Federal Institute of Technology (EPFL)
Lausanne, Switzerland
Ph.D. in Photonics

2013 – 2015 Sharif University of Technology
Tehran, Iran
M.Sc. in Physics

2009 – 2013 Sharif University of Technology
Tehran, Iran
B.Sc. in Physics

experience

Ph.D. Student/Research Engineer - LOEQ
2015 – 2020 –Layout design and manufacture of state of the art

confined cavity structures.
–Developing a repeatable process for fabrication of
below 1µm mesas on GaAs.
–Modeling and simulation of polariton’s interaction
in cavity QED.
–Characterization and optical spectroscopy.
–Cryogenic CW and pulsed laser experiments of
optoelectronic devices.
–Second-order coherence and correlation measure-
ment of single photons.

Master Student/Researcher
2013 – 2015 Theoretical study of Parity-Time symmetry and its

application in multilevel atomic systems to mitigate
loss in optical systems.

93



94 bibliography

skills

Laboratory Semiconductor and Silicon Photonics, Cleanroom
facilities, E-beam and photolithography, SEM and
Optical microscopy, Cryogenics.

Software Origin, Layout Editor, IPKISS, LabVIEW, Matlab,
Mathematica, Illustrator, AutoCAD.

Programming Python, C++, Data Analysis, Data visualisation.

honors

2015 Ranked 1st among Physics graduate students.

2013 Directly admitted to the Master program as an ex-
cellent student award.

2013 Exceptional talent scholarship of Iran’s national
elites foundation.

teaching experience

2015 – 2020 Optics III, Physics lab II and Physics lab III.

languages

Persian (Native)
English (Business Fluent - C1)
French (B1)
German (A2)



P U B L I C AT I O N S

Articles in peer-reviewed journals:

1. Navadeh-Toupchi, M., Jabeen, F., Oberli, D. & Portella-Oberli, M. Local-
ized Photon Lasing in a Polaritonic Lattice Landscape. Physical Review
Applied 14, 024055 (2020).

2. Sturges, T. J., Anderson, M. D., Buraczewski, A., Navadeh-Toupchi,
M., Adiyatullin, A. F., Jabeen, F., Oberli, D. Y., Portella-Oberli, M. T.
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