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ABSTRACT
Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical inter-
sections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings entirely—the resulting
“quasidiabatic” states are still coupled by smaller but nonvanishing residual nonadiabatic couplings, which are typically neglected. Here, we
propose a general method for assessing the validity of this potentially drastic approximation by comparing quantum dynamics simulated
either with or without the residual couplings. To make the numerical errors negligible to the errors due to neglecting the residual couplings,
we use the highly accurate and general eighth-order composition of the implicit midpoint method. The usefulness of the proposed method is
demonstrated on nonadiabatic simulations in the cubic Jahn–Teller model of nitrogen trioxide and in the induced Renner–Teller model of
hydrogen cyanide. We find that, depending on the system, initial state, and employed quasidiabatization scheme, neglecting the residual cou-
plings can result in wrong dynamics. In contrast, simulations with the exact quasidiabatic Hamiltonian, which contains the residual couplings,
always yield accurate results.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0046067., s

I. INTRODUCTION

The celebrated Born–Oppenheimer approximation,1 which
treats the electronic and nuclear motions in molecules separately,
is no longer valid for describing processes involving two or more
strongly vibronically coupled electronic states. A common approach
that goes beyond this approximation2–9 consists in solving the
time-dependent Schrödinger equation with a truncated molecu-
lar Hamiltonian that includes only a few most significantly cou-
pled10,11 Born–Oppenheimer electronic states.12–14 The “adiabatic”
states, obtained directly from the electronic structure calcula-
tions, are, however, not adequate for representing the molecular

Hamiltonian in the region of strong nonadiabatic couplings; in
particular, the couplings between the states diverge at conical inter-
sections,2,14–19 where potential energy surfaces of two or more adia-
batic states intersect.

Quasidiabatization, i.e., a coordinate-dependent unitary trans-
formation20–22 of the molecular Hamiltonian that reduces the mag-
nitude of the nonadiabatic vector couplings, rectifies this singularity.
The transformation matrix can be obtained by various qua-
sidiabatization schemes, of which a few representative examples
include methods based on the integration of the nonadiabatic cou-
plings23–33 or on different molecular properties34–40 and the block-
diagonalization41–44 or regularized diabatization45–47 schemes.

J. Chem. Phys. 154, 124119 (2021); doi: 10.1063/5.0046067 154, 124119-1

© Author(s) 2021

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0046067
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0046067
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0046067&domain=pdf&date_stamp=2021-March-25
https://doi.org/10.1063/5.0046067
https://orcid.org/0000-0002-1904-0059
https://orcid.org/0000-0002-2080-4378
mailto:seonghoon.choi@epfl.ch
mailto:jiri.vanicek@epfl.ch
https://doi.org/10.1063/5.0046067


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In systems with more than one nuclear degree of freedom,
the strict diabatization, which eliminates the nonadiabatic couplings
completely, is only possible if infinitely many electronic states are
considered.21,48 The best one can do for a general subsystem with
a finite number of electronic states is the above-mentioned qua-
sidiabatization in which the unitary transformation reduces the
magnitude of the couplings but does not remove them entirely.
However, it is a common practice to neglect these nonvanishing
“residual” couplings present in the exact quasidiabatic Hamilto-
nian and thus obtain an approximate quasidiabatic Hamiltonian,
whose additional benefit is a simpler, separable form convenient for
quantum simulations.

Here, we propose a general method that quantifies the impor-
tance of the residual couplings by comparing nonadiabatic simula-
tions performed either with the exact quasidiabatic Hamiltonian—
obtained through an exact unitary transformation of the adiabatic
Hamiltonian—or with the approximate quasidiabatic Hamiltonian,
which neglects the residual couplings. By definition and regardless
of the magnitude of the residual couplings, the results obtained with
the exact quasidiabatic Hamiltonian can serve as the exact bench-
mark, as long as the numerical errors are negligible.49 Therefore,
for a valid comparison, one needs a time propagation scheme that
can treat even the nonseparable exact quasidiabatic Hamiltonian and
that ensures that the numerical errors are negligible to the errors due
to neglecting the residual couplings. Among various integrators50–57

that satisfy both requirements, we chose the optimal eighth-order58

composition57,59–61 of the implicit midpoint method56,57,62 because
it also preserves exactly54 various geometric properties of the exact
solution.56,57

After presenting the general method in Sec. II, in Sec. III,
we provide realistic numerical examples in which we employ the
method to quantify the importance of the residual couplings in
nonadiabatic simulations of nitrogen trioxide (NO3)63–66 and hydro-
gen cyanide (HCN).41,67–69 Whereas the NO3 model was quasidi-
abatized with the regularized diabatization scheme,45–47 the block-
diagonalization scheme41–44 was employed in the HCN model. To
find out how the errors due to ignoring the residual couplings
depend on the sophistication of the quasidiabatization and on the
initial state, in Sec. III C, we compare the first- and second-order
regularized diabatization schemes45–47 on the model of a displaced
excitation of NO3.

II. THEORY
We begin by introducing the standard molecular Hamiltonian

H = TN + Te + V, where TN and Te are the kinetic energy oper-
ators of the nuclei and electrons and V is the molecular potential
energy operator. One may express the molecular Hamiltonian equiv-
alently as H = TN + He by defining the electronic Hamiltonian
He ∶= Te +V, an operator acting on the electronic degrees of freedom
and depending parametrically on the nuclear coordinates, described
by a D-dimensional vector Q. For each fixed nuclear geometry, the
time-independent Schrödinger equation,

He(Q)∣n(Q)⟩ = Vn(Q)∣n(Q)⟩, (1)

for He(Q) can be solved to obtain the nth adiabatic electronic state
|n(Q)⟩ and potential energy surface Vn(Q) for n ∈ N.

The adiabatic electronic eigenstates |n(Q)⟩, which depend on
the nuclear coordinates Q, form a complete orthonormal set and
can be employed to expand the exact solution of the time-dependent
molecular Schrödinger equation,

ih̵
∂

∂t
∣Ψ(Q, t)⟩ = H∣Ψ(Q, t)⟩, (2)

with Hamiltonian H as an infinite series

∣Ψ(Q, t)⟩exact =
∞

∑
n=1

ψad
n (Q, t)∣n(Q)⟩. (3)

Note that Eqs. (2) and (3) combine the coordinate representation for
the nuclei with the representation-independent Dirac notation for
the electronic states; ψad

n (Q, t) is the time-dependent nuclear wave-
function (a wavepacket) on the nth adiabatic electronic surface. The
Born–Huang expansion70 of Eq. (3) is exact when an infinite num-
ber of electronic states are included, but in practice, |Ψ(Q,t)⟩exact is
approximated by truncating the sum in Eq. (3) and including only
the most important S electronic states:10,11,13

∣Ψ(Q, t)⟩exact ≈ ∣Ψ(Q, t)⟩trunc ∶=
S

∑
n=1

ψad
n (Q, t)∣n(Q)⟩. (4)

For brevity, we shall omit the subscript “trunc” in |Ψ(Q,t)⟩trunc from
now on.

Substituting ansatz (4) into the time-dependent Schrödinger
equation (2) and projecting onto states ⟨m(Q)| for m ∈ {1, . . ., S}
leads to the ordinary differential equation

ih̵
d
dt
ψad
(t) = Ĥadψad

(t), (5)

expressed in a compact representation-independent matrix nota-
tion: bold font indicates either an S × S matrix (i.e., an electronic
operator) or an S-dimensional vector and the hat (̂ ) denotes a
nuclear operator. In particular, Ĥad is the adiabatic Hamiltonian
matrix with elements (Ĥad)mn = ⟨m∣H∣n⟩ and ψad(t) is the molec-
ular wavepacket in the adiabatic representation with components
ψad
n (t). Assuming the standard form TN = P̂2

/2M of the nuclear
kinetic energy operator, the adiabatic Hamiltonian matrix is given
by the formula2,4,14,21,71

Ĥad =
1

2M
[P̂21 − 2ih̵Fad(Q̂) ⋅ P̂ − h̵

2Gad(Q̂)] + Vad(Q̂), (6)

which depends on the diagonal adiabatic potential energy matrix
[Vad(Q)]mn ∶= Vn(Q)δmn, the nonadiabatic vector couplings
[Fad(Q)]mn ∶= ⟨m(Q)∣∇n(Q)⟩, and the nonadiabatic scalar cou-
plings [Gad(Q)]mn ∶= ⟨m(Q)∣∇2n(Q)⟩. The dot (⋅) denotes the dot
product in the D-dimensional nuclear vector space, and P is the
canonical momentum conjugate to Q. Note that, for simplicity, the
nuclear coordinates have been scaled so that each nuclear degree of
freedom has the same mass M and, therefore, M is a scalar.

In practice, the nonadiabatic scalar couplings Gad(Q) in Eq. (6)
are often neglected, but this approximation can cause significant
errors;72,73 for the adiabatic Hamiltonian to be exact, it must include
both Fad(Q) and Gad(Q). In Eqs. (3)–(6), one can freely choose
overall phases of the adiabatic electronic states because both |n(Q)⟩
and eiAn(Q)∣n(Q)⟩ [where An(Q) are coordinate-dependent phases]
are orthonormalized solutions of Eq. (1). In Ref. 49, we show how
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the choice of An(Q) affects the nonadiabatic couplings Fad(Q) and
Gad(Q); in contrast, Vad(Q) remains unaffected.

The nonadiabatic vector couplings can be re-expressed using
the Hellmann–Feynman theorem as

[Fad(Q)]mn =
⟨m(Q)∣∇He(Q)∣n(Q)⟩

Vn(Q) − Vm(Q)
, m ≠ n, (7)

accentuating the singularity of these couplings at a conical inter-
section3,20—a nuclear geometry Q0 where Vm(Q0) = Vn(Q0) for m
≠ n.2,14,19 Moreover, Meek and Levine74 pointed out that, unlike
the singularity of [Fad(Q)]mn, the singularity in the diagonal ele-
ments [Gad(Q)]nn of the nonadiabatic scalar couplings is not even
integrable over domains containing a conical intersection. Another
complication associated with conical intersections is the geomet-
ric phase effect: the sign change of the real-valued adiabatic elec-
tronic state |n(Q)⟩ when transported along a loop containing a con-
ical intersection.75–87 Although the geometric phase effect can be
effectively incorporated into nonadiabatic simulations in the adia-
batic basis by appropriately choosing the above-mentioned phases
An(Q) so that the states are single-valued,75–87 the numerically prob-
lematic singularity remains.49 Yet, both complications, namely, the
singularity of the nonadiabatic couplings and the geometric phase
effect, can be avoided simultaneously by transforming the adiabatic
Hamiltonian to the quasidiabatic basis,

∣n′(Q)⟩ =
S

∑
m=1
∣m(Q)⟩[S(Q)†]mn, (8)

and thus obtaining the exact quasidiabatic Hamiltonian,

Ĥqd-exact ∶= S(Q̂)ĤadS(Q̂)†

=
1

2M
[P̂21 − 2ih̵Fqd(Q̂) ⋅ P̂ − h̵

2Gqd(Q̂)] + Vqd(Q̂), (9)

where [Vqd(Q)]mn ∶= ⟨m′(Q)∣He(Q)∣n′(Q)⟩ is the nondiag-
onal quasidiabatic potential energy matrix, while [Fqd(Q)]mn

∶= ⟨m′(Q)∣∇n′(Q)⟩ and [Gqd(Q)]mn ∶= ⟨m′(Q)∣∇2n′(Q)⟩ are the
residual vector and scalar couplings, respectively. Note that the
molecular state |Ψ(Q, t)⟩ from Eq. (4) is independent of the choice of
basis because the transformation (8) from the adiabatic to quasidia-
batic electronic basis is accompanied by a simultaneous transforma-
tion,

ψqd
n (Q, t) =

S

∑
m=1
[S(Q)]nmψad

m (Q, t), (10)

of nuclear wavefunctions. The transformation matrix S(Q) is
obtained by any of the many quasidiabatization schemes,20–47 but
the magnitude of the residual nonadiabatic couplings depends on
the scheme. Following Ref. 21, we measure this magnitude with the
quantity

R[Fqd(Q)] ∶= ∫ ∥Fqd(Q)∥
2dQ, (11)

where

∥Fqd(Q)∥
2
∶= Tr[Fqd(Q)

†
⋅ Fqd(Q)]

= Tr[
D

∑
l=1

Fqd(Q)
†
l Fqd(Q)l] (12)

is the square of the Frobenius norm of Fqd(Q) [note that the eval-
uation of Eq. (12) involves both the matrix product of S × S

matrices and the scalar product of D-vectors]. Section S1 of the
supplementary material describes the numerical evaluation of
R[Fqd(Q)] in further detail.

It is well-known that, unless S is infinite or D = 1, in a gen-
eral system, no diabatization scheme yields the strictly diabatic states
[i.e., states in which the exact Hamiltonian (9) has zero residual
nonadiabatic couplings].21,48 The transformation by a finite S × S
matrix S(Q) can only lead to quasidiabatic states, which are cou-
pled both by the off-diagonal (m ≠ n) elements [Vqd(Q)]mn of the
quasidiabatic potential energy matrix and by the—perhaps small but
nonvanishing—residual nonadiabatic couplings.88 In practice, how-
ever, these residual couplings are often ignored in Eq. (9) in order to
obtain the approximate quasidiabatic Hamiltonian,

Ĥqd-approx ∶=
P̂2

2M
1 + Vqd(Q̂). (13)

Although the magnitude R[Fqd(Q)] itself may indicate
whether it is admissible to neglect the residual couplings, a much
more rigorous way to quantify the impact of this approximation
on a particular nonadiabatic simulation consists in evaluating the
quantum fidelity,89

F(t) ∶= ∣⟨ψqd-approx(t)∣ψqd-exact(t)⟩∣
2
∈ [0, 1], (14)

and distance,

D(t) ∶= ∥ψqd-approx(t) − ψqd-exact(t)∥ ∈ [0, 2], (15)

between the states ψqd-approx(t) and ψqd-exact(t), evolved with the
approximate and exact quasidiabatic Hamiltonians, respectively
[i.e., ψi(t) = exp (−iĤit/h̵)ψ(0) for i ∈ {qd-approx, qd-exact}]. The
more important the residual couplings, the smaller the quantum
fidelity and the larger the distance.

By both propagating and comparing the wavepacketsψqd-approx(t)
and ψqd-exact(t) in the same quasidiabatic representation, one avoids
contaminating the errors due to the neglect of the residual cou-
plings with the numerical errors due to the transformation between
representations. In fact, as long as it is numerically converged,
ψqd-exact(t) serves as the exact benchmark regardless of the size of
the residual couplings because the exact quasidiabatic and adiabatic
Hamiltonians are exact unitary transformations of each other.49

The exact quasidiabatic Hamiltonian from Eq. (9) cannot be
expressed as a sum of terms depending purely on either the position
or the momentum operator. Due to this nonseparable nature of the
Hamiltonian, we require an integrator that is applicable to any form
of the Hamiltonian. For example, the popular split-operator algo-
rithm61,90–92 cannot be employed. The wavepackets are, therefore,
propagated with the composition57,59–61 of the implicit midpoint
method,56,57,62 which, like the closely related trapezoidal rule (or
Crank–Nicolson method),62,93 works for both separable and non-
separable Hamiltonians, as long as the action of the Hamiltonian
on the wavepacket can be evaluated. Moreover, in contrast to some
other methods applicable to nonseparable Hamiltonians, the cho-
sen methods preserve exactly most geometric properties of the exact
solution: norm, energy, and inner-product conservation, linearity,
symplecticity, stability, symmetry, and time reversibility.54

For a valid comparison of the two wavepackets propagated
with either the exact or approximate quasidiabatic Hamiltonian, the
numerical errors must be much smaller than the errors due to omit-
ting the residual couplings. Owing to its exact symmetry, the implicit
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midpoint method can be composed using various schemes57–60 to
obtain integrators of arbitrary even orders of accuracy in the time
step;54,92 we compose the implicit midpoint method according to
the optimal scheme58 to obtain an eighth-order integrator. By using
this high-order integrator with a small time step, the time discretiza-
tion errors are kept negligible (see Sec. S2 of the supplementary
material).

III. NUMERICAL EXAMPLES
We now apply the method proposed in Sec. II to nonadia-

batic quantum simulations in the cubic E ⊗ e Jahn–Teller model of
NO3

63–66 and in the induced Renner–Teller model of HCN.41,67–69

Despite their reduced dimensionality, these two-dimensional
(D = 2) two-state (S = 2) models exhibit interesting dynamics64,69,94

due to the presence of strong nonadiabatic couplings; in particular,
Fad(Q) diverges at Q = 0, the point of intersection between the two
adiabatic potential energy surfaces.

In both models, doubly degenerate electronic states labeled
n = 1 and n = 2 are coupled by doubly degenerate normal modes
Q1 and Q2. We use “natural” units (n.u.) throughout by setting
k = M = h̵ = 1 n.u., where M is the mass associated with the degen-
erate normal modes (which differs from the electron mass used
in atomic units) and h̵ω = h̵

√
k/M is the quantum of the vibra-

tional energy of these modes. Whenever convenient, we express
the potential energy surface in polar coordinates: the radius ρ(Q)
∶=
√
Q2

1 + Q2
2 and polar angle ϕ(Q) ∶= arctan(Q2/Q1).

All numerical wavepacket propagations were performed with a
small time step of Δt = 1/(40ω) = 0.025 n.u. on a uniform grid of
N × N points defined between Ql = −Qlim and Ql = Qlim in both
nuclear dimensions: N = 64 and Qlim = 10 n.u. in the NO3 model,
while N = 32 and Qlim = 7 n.u. in the HCN model.

A. Jahn–Teller effect in nitrogen trioxide
Although the strictly diabatic Hamiltonian,

Ĥdiab =
P̂2

2M
1 + Vdiab(Q̂), (16)

does not exist in general, it may exist exceptionally and, in fact, is
used to define the Jahn–Teller model.45,63–66 In Eq. (16), the diabatic
potential energy matrix,

Vdiab(Q) = (
E0(Q) Ecpl(Q)

Ecpl(Q)∗ E0(Q)
), (17)

depends on the cubic potential energy E0(ρ, ϕ) ∶= kρ2/2 + 2αρ3 cos 3ϕ
and Jahn–Teller coupling,64

Ecpl(ρ,ϕ) ∶= f (ρ)e−iϕ + c2ρ2e2iϕ, (18)

where f (ρ) ∶= c1ρ + c3ρ3. In our nonadiabatic simulations of nitrogen
trioxide, we used the Jahn–Teller model of NO3 from Ref. 64 with
parameters α = −0.0125 n.u., c1 = 0.375 n.u., c2 = −0.0668 n.u., and
c3 = −0.0119 n.u. To simplify the following presentation, we rewrite
Ecpl(Q) as Ecpl(Q) = |Ecpl(Q)|e−2iθ(Q) using the mixing angle

θ(ρ,ϕ) ∶=
1
2

arctan
f (ρ) sinϕ − c2ρ2 sin 2ϕ
f (ρ) cosϕ + c2ρ2 cos 2ϕ

. (19)

Our previous study49 on a similar system showed that the exact
quasidiabatic and strictly diabatic Hamiltonians yield nearly identi-
cal results. Here, however, we intentionally avoid using the strictly
diabatic Hamiltonian as a benchmark and use it only to define the
model, in order that the approach and conclusions of this study are
applicable also to systems where the strictly diabatic Hamiltonian
does not exist21,48 (see Sec. III B for an explicit example of such a
system).

The adiabatic states in the Jahn–Teller model are obtained
by a process inverse to diabatization, i.e., by a unitary transfor-
mation of the strictly diabatic states using any matrix that diag-
onalizes Vdiab(Q). Following Refs. 45 and 63, we employed the
transformation matrix

T(Q) =
1
√

2
(
e−iθ(Q) e−iθ(Q)

eiθ(Q) −eiθ(Q)
). (20)

In the resulting adiabatic representation, the diagonal potential
energy matrix has elements V1(Q) = V+(Q) and V2(Q) = V−(Q),
where V±(Q) ∶= E0(Q) ± |Ecpl(Q)|. [Matrix elements of Vad(Q)
and Vdiab(Q) are plotted in Fig. 1]. Transformation (20) also yields
analytical expressions for the nonadiabatic vector couplings, 63,64

Fad(Q) = −i∇θ(Q)(
0 1
1 0), (21)

FIG. 1. Potential energy surfaces in the cubic E ⊗ e model of the Jahn–Teller
effect in NO3 in the vicinity of the conical intersection at Q = 0. (a) Elements V1(Q)
= V+(Q) (red) and V2(Q) = V−(Q) (blue) of the diagonal adiabatic potential energy
matrix; the two surfaces intersect (touch) at the point Q = 0. The diabatic potential
energy matrix consists of (b) the cubic potential energy surfaces E0(Q) on the
diagonal and (c) the off-diagonal complex couplings of magnitude |Ecpl(Q)|.
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and for the nonadiabatic scalar couplings,

Gad(Q) = −(
[∇θ(Q)]2 i∇2θ(Q)
i∇2θ(Q) [∇θ(Q)]2

). (22)

As expected, the nonadiabatic couplings diverge at the conical
intersection at ρ = 0 since the azimuthal component of Fad(Q) is
proportional to

ρ−1 ∂θ(ρ,ϕ)
∂ϕ

=
f (ρ)2

− 2c2
2ρ4
− c2ρ2f (ρ) cos 3ϕ

2ρ∣Ecpl(ρ,ϕ)∣2
ρ→0
ÐÐ→∞. (23)

In the cubic Jahn–Teller model, the regularized diabatization
scheme45–47 can be implemented analytically. The jth order adiabatic
to quasidiabatic transformation matrix,

S(Q) =
1
√

2

⎛

⎝

e−iθ
(j)
(Q) e−iθ

(j)
(Q)

eiθ
(j)
(Q)
−eiθ

(j)
(Q)

⎞

⎠
, (24)

is obtained simply by replacing θ(Q) with θ(j)(Q) in Eq. (20) for
T(Q): θ(1)(ρ, ϕ) ∶= ϕ/2 in the first-order scheme and

θ(2)(ρ,ϕ) ∶=
1
2

arctan
c1ρ sinϕ − c2ρ2 sin 2ϕ
c1ρ cosϕ + c2ρ2 cos 2ϕ

(25)

in the second-order scheme, while—in the cubic Jahn–Teller
model—the third-order quasidiabatization is already identical to the
strict diabatization, i.e., θ(3)(ρ, ϕ) = θ(ρ, ϕ). The quasidiabatization
yields the potential energy matrix,

Vqd(Q) ∶= S(Q)Vad(Q)S(Q)†

=
⎛

⎝

E0(Q) ∣Ecpl(Q)∣e−2iθ(j)(Q)

∣Ecpl(Q)∣e2iθ(j)(Q) E0(Q)

⎞

⎠
, (26)

residual vector couplings,

Fqd(Q) ∶= S(Q)Fad(Q)S(Q)† + S(Q)∇S(Q)†

= −i∇θ(j)− (Q)(
1 0
0 −1), (27)

and residual scalar couplings,

Gqd(Q) ∶= S(Q)Gad(Q)S(Q)† + 2S(Q)Fad(Q)∇S(Q)†

+ S(Q)∇2S(Q)†

= − i∇2θ(j)− (Q)(
1 0
0 −1) − [∇θ

(j)
− (Q)]

2
(

1 0
0 1), (28)

where θ(j)− (Q) ∶= θ(Q) − θ
(j)
(Q). The resulting magnitude of the

residual couplings in the first-order (j = 1) scheme is R[Fqd(Q)]
= 3.8 n.u.

The hermiticity of Hamiltonian (9) is broken on a finite grid
because the commutator relation [P̂,Fqd(Q̂)] = −ih̵∇⋅Fqd(Q̂) holds
only approximately unless the grid is infinitely dense. Yet, the her-
miticity of the Hamiltonian is essential for the norm conservation
(see Fig. S5 in Sec. S3 of the supplementary material), which, in turn,
is required for quantum fidelity F(t) and distance D(t) to be valid
measures of the importance of the residual nonadiabatic couplings.

To make the exact quasidiabatic Hamiltonian exactly Hermitian, we
re-express it as

Ĥqd-exact =
1

2M
[P̂1 − ih̵Fqd(Q̂)]

2 + Vqd(Q̂) (29)

using the relationship

Gqd(Q) = ∇ ⋅ Fqd(Q) + Fqd(Q)
2, (30)

which holds—exceptionally—for systems, such as the Jahn–Teller
model, that can be represented exactly by a finite number of states;
in general, Eq. (30) only holds when S→∞.

Another benefit of Hamiltonian (29) is the absence of Gqd(Q),
the evaluation of which represents the computational bottleneck in
realistic systems. Likewise, the equations of motion in the widely
employed Meyer–Miller approach95–98 can be simplified greatly72 by
starting from Hamiltonian (29) instead of Hamiltonian (9). These
two forms of the molecular Hamiltonian, however, are strictly equiv-
alent only if the electronic basis is complete.21,71 In generic systems,
in which the relation (30) does not hold and one is obliged to use the
original Hamiltonian (9) and evaluate Gqd(Q), the computationally
expensive evaluation of the second derivatives of electronic wave-
functions with respect to nuclear coordinates can still be avoided by
using the relation

Gqd(Q) = ∇ ⋅ Fqd(Q) −Kqd(Q), (31)

where [Kqd(Q)]mn ∶= ⟨∇m′(Q)∣∇n′(Q)⟩ requires only the first
derivatives of the quasidiabatic electronic states |n′(Q)⟩ introduced
in Eq. (8). In contrast to Eq. (30), relation (31) holds in arbitrary
systems and for finite S.

To analyze the importance of residual couplings in NO3,
we simulated, with either the exact or approximate quasidiabatic
Hamiltonian, the quantum dynamics following an electronic tran-
sition from the ground vibrational eigenstate of the ground elec-
tronic state Vg(Q) = −Egap + kρ(Q)2/2 with Egap = 11 n.u. (1 n.u.
of energy here corresponds to 0.2 eV ≈ 0.007 a.u.). Invoking the
time-dependent perturbation theory and Condon approximation,
we considered the initial state in the quasidiabatic representation
to be

ψ(Q, t = 0) ∶=
e−ρ(Q)

2
/2h̵

√
2πh̵

(
1
1), (32)

where we omitted (also will omit) the superscript “qd” on the
wavepacket for brevity.

Figure 2 shows that, in the nonadiabatic dynamics following
the vertical excitation of NO3, neglecting the residual couplings does
not significantly affect the wavepacket [compare panels (a) and (b)],
power spectrum I(ω) [panel (c)], or population P ad

1 (t) [panel (d)].
Even the fidelity F(t) [panel (e)] between the wavepackets propa-
gated either with or without the residual couplings remains close
to the maximal value of 1 until the final time tf . Section S4 of the
supplementary material further supports this conclusion by dis-
playing the time dependence of position ⟨ρ⟩(t), potential energy
⟨Vqd⟩(t), and distance D(t). In contrast, as we will see in Secs. III B
and III C, the residual couplings are much more significant in the
HCN model and in the displaced excitation of NO3.

In Sec. S5 of the supplementary material, we also analyze
the importance of the residual couplings for different Jahn–Teller
coupling coefficients and different initial populations.
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FIG. 2. Importance of the residual nonadiabatic couplings in the NO3 model from
Sec. III A. The figure compares the wavepackets and observables obtained with
either the exact (i = qd-exact) or approximate (i = qd-approx) quasidiabatic Hamil-
tonian. [(a) and (b)] Wavepackets propagated with (a) Ĥqd-exact from Eq. (9) and
(b) Ĥqd-approx from Eq. (13). Only the real part of the nuclear wavepacket in the
second (n = 2) electronic state is shown. (c) Power spectrum Ii (ω) obtained by
Fourier transforming the damped autocorrelation function. To emulate the broad-
ening of the spectral peaks, the autocorrelation function Ci (t) = ⟨ ψ(0)|ψ i (t)⟩ was
multiplied by the damping function d(t) = exp[(−t/tdamp)

2
] with tdamp = 17.5

n.u.. (d) Population P ad
1,i(t) ∶= ⟨ψ

ad
i (t)∣P1∣ψad

i (t)⟩ of the first (n = 1) adiabatic
electronic state; Pn ∶= |n⟩⟨n| is the population operator of the nth adiabatic state.
(e) Errors due to ignoring the residual couplings are measured by quantum fidelity
F(t) [Eq. (14)].

B. Induced Renner–Teller effect in hydrogen cyanide
The model of the induced Renner–Teller effect41,67–69 is more

realistic than the Jahn–Teller model from Sec. III A: In particular,
the strictly diabatic Hamiltonian (16) cannot be defined and rela-
tionship (30) does not hold. Nevertheless, similar to the Jahn–Teller
model, the nonadiabatic couplings between the adiabatic states are
singular at Q = 0.41 Since Eq. (30) does not hold in the induced
Renner–Teller model, the exactly Hermitian Hamiltonian (29) can-
not be used instead of Hamiltonian (9). Yet, even with Hamiltonian
(9), the norm is sufficiently converged in the grid density for the
quantum fidelity F(t) and distance D(t) to be valid (see Fig. S6 of
the supplementary material).

We follow Ref. 41, where the induced Renner–Teller model is
quasidiabatized with the block-diagonalization scheme, which min-
imizes the residual couplings locally (around Q = 0 in this model).21

The resulting quasidiabatic potential energy matrix,

Vqd(ρ,ϕ) = ( V+(ρ) V−(ρ)e−2iϕ

V−(ρ)e2iϕ V+(ρ)
), (33)

with V±(ρ) ∶= [V1(ρ) ± V2(ρ)]/2 depends on the adiabatic potential
energy surfaces V1(ρ) = Δ + Eh(ρ) − w(ρ) and V2(ρ) = Eh(ρ), where
Eh(ρ) ∶= kρ2/2 and w(ρ) ∶= (Δ2 + 2λ2ρ2

)
1/2. Analytical expressions

for the nonadiabatic couplings, Fad(Q) and Gad(Q), and adiabatic to
quasidiabatic transformation matrix S(Q) can be found in Ref. 41.
In our nonadiabatic simulations of hydrogen cyanide, we used the
induced Renner–Teller model of HCN from Refs. 41 and 67 with
parameters Δ = 1.11 n.u. and λ = 1 n.u. The residual vector and scalar
couplings41 are

Fqd(Q) = ivF(Q)(
1 0
0 −1) (34)

and

Gqd(ρ,ϕ) = 2(fF(ρ) − fG(ρ) −fG(ρ)e
−2iϕ

−fG(ρ)e2iϕ fF(ρ) − fG(ρ)
), (35)

respectively, where we have defined the D-dimensional (here, D
= 2) vector vF(Q) with components vF(Q)1 = −f F(ρ(Q))Q2 and

FIG. 3. Potential energy surfaces in the model of the induced Renner–Teller effect
in HCN in the vicinity of the Renner–Teller intersection at Q = 0. (a) The two adi-
abatic potential energy surfaces V1(Q) (blue) and V2(Q) (red) intersect (touch) at
the point Q = 0. The residual couplings (34) and (35) depend on plotted functions
f F (Q) [panel (b)] and f G(Q) [panel (c)].
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vF(Q)2 = f F(ρ(Q))Q1 and functions f F(ρ) ∶= [1 − w+(ρ)]/ρ2 and

fG(ρ) ∶= [
w−(ρ)

2ρ
]

2

− [
λ

2
√

2w(ρ)
]

2

+ [
λ2ρ

2w(ρ)2 ]

2

, (36)

with w±(ρ) ∶=
√
[1 ± Δ/w(ρ)]/2. The magnitude of the residual

couplings (34) is R[Fqd(Q)] = 0.37 n.u.; the adiabatic potential
energy surfaces and functions f F and f G are plotted in Fig. 3.

Similar to Sec. III A, we simulate the dynamics following an
electronic transition from the ground vibrational eigenstate of Vg(ρ,
ϕ) = −Egap + Eh(ρ) with Egap = 153 n.u. (1 n.u. of energy here cor-
responds to 0.09 eV ≈ 0.003 a.u.). Unlike their analogs in Sec. III A,
however, the two wavepackets, propagated with either the exact or
approximate quasidiabatic Hamiltonian, differ significantly [com-
pare panels (a) and (b) of Fig. 4]. Ignoring the residual couplings also
leads to large errors in the power spectrum I(ω) [panel (c)], popu-
lation P ad

1 (t) [panel (d)], and fast decay of quantum fidelity F(t)
[panel (e)]. In particular, the population obtained with the approxi-
mate quasidiabatic Hamiltonian cannot be trusted because, e.g., at t
= 169 n.u., the error ϵres-cpl[P ad

1 (t)] ∶= ∣P ad
1,qd-approx(t)−P

ad
1,qd-exact(t)∣

due to the neglect of the residual couplings is of the same order as
the range RPad

1
∶= P ad

1,max − P ad
1,min of the population in the whole

FIG. 4. Importance of the residual nonadiabatic couplings in the HCN model from
Sec. III B. [(a) and (b)] Wavepackets, (c) power spectrum, (d) population, and (e)
fidelity. See the caption of Fig. 2 for a detailed description of the content of the five
panels.

simulation interval: ϵres-cpl[P ad
1 (t)]/RPad

1
= 0.7. Note also that nei-

ther P ad
1 (t) nor F(t) is affected by the overall phases of the two

wavepackets, although a linearly growing overall phase difference
appears to be the main contribution to the change of the spectrum,
which is mostly shifted [see panel (c) of Fig. 4].

C. Displaced excitation of nitrogen trioxide
Although the excited states of NO3 from Sec. III A are bright

states, the coupled states modeled by the cubic E ⊗ e Jahn–Teller
Hamiltonian can sometimes be dark. A wavepacket might reach
such dark states at a nuclear geometry that is not the ground state
equilibrium (e.g., via an intersection with a bright state). Motivated
by this observation from Ref. 64, we consider the initial state (32)
displaced in both Q1 and Q2 by −0.8 n.u. Keeping all other parame-
ters fixed as in Sec. III A will allow us to analyze how the importance
of the residual couplings depends on the initial state and on the
quasidiabatization method used.

Figure 5 shows that, in contrast to the vertical excitation
from Sec. III A (analyzed in Fig. 2), ignoring the residual cou-
plings obtained by applying the first-order regularized scheme to

FIG. 5. Importance of the residual nonadiabatic couplings in the model of a dis-
placed excitation of NO3 from Sec. III C. As in Fig. 2, the molecular Hamiltonian
was quasidiabatized with the first-order (j = 1) scheme. [(a) and (b)] Wavepackets,
(c) power spectrum, (d) population, and (e) fidelity. See the caption of Fig. 2 for a
detailed description of the content of the five panels.
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the displaced excitation of NO3 affects both the wavepacket [com-
pare panels (a) and (b)] and observables significantly. Neither the
spectrum I(ω) [panel (c)] nor population P ad

1 (t) [panel (d)] is
obtained accurately with the approximate quasidiabatic Hamilto-
nian. For example, at t = 25 n.u., the error of the population is
almost half of the range of the population in the whole simulation
interval: ϵres-cpl[P ad

1 (t)]/RPad
1
= 0.4. The quantum fidelity [panel (e)]

decreases rapidly to F(tf ) ≈ 0.3 at tf = 50 n.u.
The residual couplings, however, can be made less important

by an improved quasidiabatization. One can reduce the magnitude
of the residual couplings from R[F(1)qd (Q)] = 3.8 n.u. to R[F(2)qd (Q)]
= 0.5 n.u. by employing the more sophisticated second-order regu-
larized diabatization scheme45–47 obtained by inserting θ(2)(Q) from
Eq. (25) into Eqs. (24) and (26)–(28). When this second-order
scheme is used, the errors of the wavepacket ψ(t), spectrum I(ω),
and population P ad

1 (t) due to the neglect of the residual couplings
all remain small (see Fig. 6); in particular, quantum fidelity F(t)
remains above 0.95 for all times until the final time tf = 50 n.u.
[see panel (e)]. {Note that the exact benchmark wavepackets [in
panels (a) of Figs. 5 and 6] propagated in the two different qua-
sidiabatic representations are slightly different not only because they

FIG. 6. Importance of the residual nonadiabatic couplings in the model of a dis-
placed excitation of NO3 from Sec. III C. The only difference from Fig. 5 is that the
molecular Hamiltonian is quasidiabatized with the second-order (j = 2) scheme.
[(a) and (b)] Wavepackets, (c) power spectrum, (d) population, and (e) fidelity. See
the caption of Fig. 2 for a detailed description of the content of the five panels.

are displayed in different representations but also because the initial
states are different—they have the same analytical form but in two
different quasidiabatic representations.}

IV. CONCLUSION
We have shown that the common practice of neglecting the

residual nonadiabatic couplings between quasidiabatic states can
substantially lower the accuracy of nonadiabatic simulations and
that the decrease in accuracy depends on the system, initial state, and
employed quasidiabatization scheme. One can, therefore, answer the
question posed in the title only after a careful analysis. In Sec. III,
we have provided several examples where the approximate quasidia-
batic Hamiltonian gives wrong results. Because it is potentially dan-
gerous to employ an approximation without evaluating its impact,
we have proposed a method to rigorously quantify the errors caused
by ignoring the residual couplings.

When the residual couplings are significant and cannot be
neglected, we suggest performing nonadiabatic simulations with the
rarely used exact quasidiabatic Hamiltonian (9), which not only is
analytically equivalent to the adiabatic Hamiltonian (6) but also
yields numerically accurate results regardless of the magnitude of
the residual couplings (as shown in Sec. S2 of the supplementary
material and in Ref. 49). Although the general applicability of the
exact quasidiabatic Hamiltonian depends on the availability of resid-
ual nonadiabatic couplings, these can be evaluated by employing
recently developed schemes99–103 even in rather complicated multi-
state systems involving multiple conical intersections (including
those between three electronic states104–108). In complex systems
where all practical quasidiabatization schemes lead to significant
residual couplings, propagating the wavepacket with the exact qua-
sidiabatic Hamiltonian would be particularly beneficial. Although
the nonseparable form of this Hamiltonian complicates the time
propagation, there exist efficient geometric integrators, such as the
high-order compositions of the implicit midpoint method used here,
which are applicable even to such Hamiltonians.

Last but not least, an accurate propagation of the wavepacket
with the exact quasidiabatic Hamiltonian would be extremely use-
ful for establishing highly accurate benchmarks in unfamiliar sys-
tems, where the impact of the residual nonadiabatic couplings on
the quantum dynamics simulations is not yet known.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the numeri-
cal evaluation of the magnitude of the residual couplings (Sec. S1),
demonstration of the negligibility of spatial and time discretization
errors (Sec. S2), conservation of geometric properties by the implicit
midpoint method (Sec. S3), time dependence of position, potential
energy, and distance (Sec. S4), and importance of the residual cou-
plings for different Jahn–Teller coupling coefficients and different
initial populations (Sec. S5).
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