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ABSTRACT One paramount challenge in multi-ion-sensing arises from ion interference that degrades the
accuracy of sensor calibration. Machine learning models are here proposed to optimize such multivariate
calibration. However, the acquisition of big experimental data is time and resource consuming in practice,
necessitating new paradigms and efficient models for these data-limited frameworks. Therefore, a novel
approach is presented in this work, where a multi-ion-sensing emulator is designed to explain the response
of an ion-sensing array in a mixed-ion environment. A case study is performed emulating the concurrent
monitoring of sodium, potassium, lithium, and lead ions, in a medium representative of sweat samples. These
analytes are relevant examples of sweat ion-sensing applications for physiology, therapeutic drugmonitoring,
and heavy metal contamination. It is demonstrated that calibration datasets output by the emulator explain
accurately the experimental response of polymeric solid-contact ion-selective electrodes, where root-mean-
squared error of 1.37, 1.44, 1.78, 2mV are obtained, respectively, for Na+, K+, Li+, Pb2+ sensor calibration
in artificial sweat. Besides, synthetic datasets of custom size are generated to train, validate, and evaluate
different types of multivariate regressors. A Multi-Output Support Vector Regressor (M-SVR) is proposed
as a compact, accurate, robust, and efficient multivariate calibration model. It features 13.22% normalized
root mean squares, and 20.29% mean root squares improvement compared to a simple linear regression
model. It is an unbiased estimator for medium to large datasets, and its average generalization error is
of 3.22%. Besides, M-SVRmodels have a lower computational complexity than single-output SVR or neural
network models, making them a suitable solution for memory and energy-constrained edge devices used for
continuous and real-time multi-ion monitoring.

INDEX TERMS Ion interference modeling, machine learning, multi-ion-sensing emulator, multivariate
calibration, multi-output support vector regressor.

I. INTRODUCTION
Potentiometric ion-sensors are increasingly applied in many
fields, leveraging progress in all-solid-state sensing and tech-
nology [1]. Namely, they are used for environmental mon-
itoring of pollutants [2], for agricultural soil analysis [2],
for water quality control [3], or for biomedical applications
such as physiology and healthcare monitoring [4], [5]. The
sensor consists in an Ion-Selective Electrode (ISE) coated
with a polymeric membrane that selectively entraps the
target analyte. Research efforts are focused on improving
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sensing technology and transduction mechanisms [6], but
ion interference is strongly limiting sensing performances
because of ISE intrinsic selectivity bounds [7]. Interfer-
ence arises from the electrolytes inherently constituting the
sample, whose composition could vary in a non-predictable
way with the environment. Besides, accurate ion-monitoring
becomes more intricate when the target electrolyte is
extremely diluted in the sample, the analyte concentration
being of the same order as sensor Limit Of Detection (LOD).

As a result, multivariate calibration, that consists in bind-
ing the multivariate response of the ion-sensing array to the
concentration of the target ions, is becoming less accurate.
To overcome ion interference and increase sensing accuracy,
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the concept of electronic tongue has been introduced. It is
a recent trend for which sensor arrays are coupled with
chemometric tools. [8] More precisely, it is defined by
IUPAC as ‘‘a multisensor system, which consists of a number
of low-selective sensors, and uses advanced mathematical
procedures for signal processing based on Pattern Recog-
nition and/or Multivariate data analysis—Artificial Neural
Networks (ANNs), Principal Component Analysis (PCA),
and so forth–.’’ [9] Several works are proposed in literature
where ANN architectures are coupled to sensor arrays in
order to determine simultaneously multi-ions in samples sub-
ject to ion interference [2], [10]–[17]. The quality of results
obtained with these black-box chemometric models depends
on the size and the representativeness of the training dataset.
Unfortunately, the acquisition of big data is time and resource
consuming in practice, entailing high labor costs of chemical
assays. Indeed, the datasets in the aforementioned works are
restricted to 15 up to 100 samples. Some approaches have
been proposed to cope with this data scarcity issue. Data
fusion techniques are used in [18] to extract relevant features
from data-limited ion-sensors, and generate synthetic sam-
ples from Cumulative Distribution Functions (CDFs) of the
concentration of the target ions, before feeding the training
set to different machine learning algorithms implemented for
ammonium ion measurement.

In this work, a novel approach is proposed, where a multi-
ion-sensing emulator is designed to explain the response of an
ion-sensor array subject to ion interference from a mixed-ion
sample. A compact version of the phase-boundary potential
model [19], that is valid for polymeric ISEs, is built at the
core of the emulator. Datasets of different size are generated
and fed to linear and non-linear regressors that are imple-
mented to improve sensing accuracy. A case study is carried
out, emulating the concurrent monitoring of sodium, potas-
sium, lithium, and lead ions, in an environment representative
of sweat samples. These ions are relevant examples of sweat
ion-sensing applications for physiology, therapeutic drug
monitoring, and trace heavy metal contamination. Namely,
the main minerals present in perspiration are sodium, potas-
sium, and calcium [20]. During physical exercise, a depletion
of sodium and potassium ions is observed [21]. An exces-
sive loss of these ions could lead to muscle cramps, dehy-
dration, or to hypokalemia and hyponatremia [22]. Besides,
sweat ion-sensing could be applied to therapeutic drug moni-
toring. For instance, lithium salts are administrated to people
suffering from bipolar disorder [23]. The therapeutic window
of the drug is narrow (0.8 − 1.5mM [24]), necessitating an
accurate and continuous lithiummonitoring. Moreover, some
trace heavy metals such as lead are present in sweat, but
in diluted amount (below 283µg/L). Nevertheless, massive
lead contamination from food, water, or the environment
could result in memory trouble, pain, numbness, or behav-
ioral problems [25], thus requiring an accurate lead monitor-
ing system.

The remainder of the manuscript is organized as fol-
lows. First, some related works on multivariate calibration

optimization in multi-ion-sensing are discussed in Section II
to highlight the challenges in data-constrained systems for
accurate and simultaneous monitoring of multi-ions. Then,
the multi-ion-sensing emulator is presented in Section III,
with the description of the compact phase-boundary potential
model that is at its core. The methodology carried out to
generate synthetic datasets out of the emulator is described in
Section IV. Next, the proposed Multi-output Support Vector
Regressor (M-SVR) is detailed in Section V. The results of
the case study are discussed in Section VI, and the conclu-
sions are reported in Section VII.

II. CHALLENGES AND RELATED WORKS
One of the main challenge in accurate ion-sensing arises
from ion interference, due to the background electrolytes
in the sample, that creates non-linearity in sensor response.
Moreover, in multi-ion-sensing, cross-interference is not neg-
ligible, and monitoring analytes that are diluted in the sample
is intricate. As a result, multivariate calibration is commonly
optimized by machine learning models. Some related works
on multi-ion-sensing are listed in Table 1, aiming mainly
at environmental, agriculture, and water quality monitoring.
Polymeric ISEs are fabricated and characterized, enabling the
monitoring of ions of interest, and in someworks, the tracking
of interfering ions as well. Then, synthetic training datasets
are acquired from the sensors. They are of relative small
size, considering the huge time and chemical resource needed
to acquire big data. Nevertheless, the calibration dataset
should be representative enough of real samples. Factorial
design, random design in the concentration range of the
target ions, or usage of CDFs of the concentration of the
ions are strategies implemented to obtain statistically relevant
synthetic training sets with a limited amount of samples.
The test sets are acquired either from real samples, or with
synthetic design procedures. Multivariate calibration is per-
formed mostly with feed-forward Back-Propagation Neu-
ral Network (BPNN) of one to three hidden layers, trained
with a Bayesian regularization algorithm. More complicated
architectures are investigated to incorporate a priori knowl-
edge from the sensors (charge balance, electrical conduc-
tivity constraints) [12], or genetic independent component
analysis [10], [11].

III. EMULATOR DESIGN FOR MULTI-ION-SENSING
The approach proposed in this work to overcome the data-
limited constraints in the training of chemometric tools
deployed for multivariate calibration is to design an emulator
of synthetic datasets, explaining the responses of polymeric
ISEs exposed to mixed-ions samples. First, the compact mod-
eling of ISE response is described, then the design of the
emulator is detailed.

A. MODELING OF INTERFERENCE IN ION-SENSING
In potentiometric sensing, ISEs are functionalized with an
ion-selective membrane that entraps the target ion. The elec-
trode transduces the thermodynamic activity of the target
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TABLE 1. Related works on multivariate calibration in multi-ion-sensing.

ion into an electric potential. The Open Circuit Potential
(OCP) between the sensing electrode and an inert reference
electrode, which has a stable potential, is measured under
quasi-zero current conditions [6]. Sensor calibration consists
inmapping themeasuredOCPwith the target ion activity. The
latter refers to the ability of the analyte to react with other
ions, and is related to the effective analyte concentration in
the sample by the activity coefficient. In the following, ion
activity is the chemical property of interest in the multivariate
calibration.

ISE response is usually described by the semi-empirical
Nicolsky-Eisenman model [26]. However, it is not very
accurate when ions of different charges are present in the
sample. Namely, large deviations from acquired sensor data
are observed in ion mixtures [27]. In this work, the phase-
boundary potential model is used to describe ion-sensor
response of a polymeric ISE in mixed-ion solutions. A com-
prehensive description of the model is presented in [19].
The hereunder analytical derivation is carried out to get a
compact ion-sensing model, highlighting the key parame-
ters explaining sensor output distortion due to ion interfer-
ence. An exhaustive derivation of the model is reported in
Appendix A. The phase-boundary potential model is based on
ion-exchange considerations at the sample/membrane inter-
face. Transmembrane ion fluxes are ignored in this model.
When the target ion is entrapped in the polymeric mem-
brane, an electrical potential is built up at the interface to
counter-balance the ion fluxes from the sample phase to
the membrane phase, and to preserve electroneutrality. The
phase-boundary potential at equilibrium for any ion j is
shown in (1). It is obtained by equating the electrochemical
potential in the membrane and sample phase, where 8 is
the electrical potential, ε0j is the standard potential of ion
j of valence zj, of activity aj(m) and aj(aq), in the mem-
brane and sample phase, respectively. s = RT

F ln 10 is the

Nernst slope.

EPB
def
= 8(m)−8(aq)

= ε0j +
1
zj
s log

(
aj(aq)
aj(m)

)
. (1)

Next, it is assumed that the membrane ionic strength is
unaltered during ion exchange. By applying membrane elec-
troneutrality, with multiple ions interacting with the mem-
brane phase (interfering ions),

10−zjEPB/s
∑
j

aj(aq) 10
zjE0

j /s = 1, (2)

where E0
j = ε0j +

1
zj
s log

(
1

aj(m)

)
is the apparent standard

potential of ion j. All interactions of ion j with the ionophore
of the membrane are embedded in aj(m). Then, the membrane
selectivity is quantified by the selectivity coefficient

logK pot
I ,J =

zI
s
(E0

J − E
0
I ). (3)

It represents how much the membrane is selective towards
a target ion I than an interferent ion J. Substituting (3) in
(2), the compact equation (4), as shown at the bottom of the
next page, is obtained, considering monovalent and divalent
ions in the sample. The contributions of the target ion I,
monovalent, and divalent interfering ions are put in evidence.
The selectivity coefficients could be seen as weighting factors
of the activity of interfering ions. Equation (4) is solved for
EPB, and yields (5) and (6), as shown at the bottom of the next
page, for a monovalent and divalent target ion, respectively.

An ideal Nernstian response is recovered if all interfer-
ing electrolytes have a null activity (no interferent), or if
∀j, log K pot

I ,j −→ −∞ (perfectly selective membrane).
The ion-selective membrane properties are embedded in the
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constant E0
I that could be seen as an offset potential inde-

pendent of aI (aq). The parameters to model ion interference
are reduced to the selectivity coefficients log K pot

I ,J , and the
activity of the interfering ions aJ (aq). Eventually, the OCP
between an ISE for target ion I, and the reference electrode is

EI = Kcell + EPB, (7)

where Kcell takes into account the constant potentials in
the galvanic cell, including reference electrode potential and
electrode contact potential drops.

B. MULTI-ION-SENSING EMULATOR
A Graphical Unit Interface (GUI) implementation of an ion-
sensor calibration curves emulator has been presented in [28].
Its main features are summarized in the following. The tool
allows for selecting generic monovalent or divalent primary
ions and interfering ions. The selectivity coefficients of the
ISEs are tunable, as well as the offset parameter that is fitted
from real ISE calibration curves. The phase-boundary poten-
tial model and Nicolsky-Eisenman model could be used to
output the calibration data, where a Gaussian noise equivalent
to sensor signal-to-noise ratio is added. The investigation
tool features parametric analysis of the impact of interferent
ion activity, and selectivity coefficient of an ISE towards an
interferent, in the distortion of the calibration curves due to
ion interference. Database of calibration curves from in-vitro
measurements could be loaded to compare the emulator out-
puts to real calibration data.

The investigation tool described previously is modified
into a synthetic dataset generator in order to produce the train-
ing dataset for the multivariate calibration models. The build-
ing blocks of the emulator are pictured in Fig. 1. The compact
phase-boundary potential model takes as input parameters the
selectivity coefficients of each target ion against each inter-
ferent, and the offset parameter encompassing membrane
composition. Both parameters are experimentally extracted
from real ISE calibration curves. The synthetic dataset is
obtained following a factorial design where the activity of
each constituent in the sample is discretized in L levels in the
detection range of the analyte, for the given application. The
constituents include the primary ions and the interfering ones.
The output of the dataset generator consists of calibration
curves of each sensor at discrete level points.

FIGURE 1. Building blocks of multi-ion-sensing emulator of Na+, K+,
Li+, and Pb2+ monitoring in synthetic sweat samples.

TABLE 2. OA18 (61 × 36).

IV. DESIGN OF SYNTHETIC DATASETS
A case study is performed to emulate simultaneous monitor-
ing ofNa+,K+, Li+, and Pb2+ in ion mixtures representative
of sweat samples. The methodology applied to design syn-
thetic training, validation, and test datasets are described.

The multi-ion-sensing emulator described in Section III
is used to generate synthetic OCP signals in controlled

10zI (E
0
I −EPB)/saI (aq)+ 10(E

0
I −EPB)/s

∑
j s.t. zj=1

(K pot
I ,j )

1
zI aj(aq)+ 102(E

0
I −EPB)/s

∑
j s.t. zj=2

(K pot
I ,j )

2
zI aj(aq) = 1. (4)

EPB = E0
I + s log

(
1
2

(
aI (aq)+

∑
j s.t. zj=1

K pot
I ,j aj(aq)

)
+

√√√√1
4

(
aI (aq)+

∑
j s.t. zj=1

K pot
I ,j aj(aq)

)2

+

∑
j s.t. zj=2

(K pot
I ,j )

2aj(aq)
)
. (5)

EPB = E0
I + s log

(
1
2

∑
j s.t. zj=1

(K pot
I ,j )

1
2 aj(aq)+

√√√√1
4

( ∑
j s.t. zj=1

(K pot
I ,j )

1
2 aj(aq)

)2

+ aI (aq)+
∑

j s.t. zj=2

K pot
I ,j aj(aq)

)
. (6)
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TABLE 3. Discrete levels of the activity of the seven constituents (activity × 1e− 3).

TABLE 4. Selectivity coefficients of platinum-nanostructured
solid-contact ISEs obtained from fixed-interference method.

mixed-ion samples, in an automated way. Four sensors for
Na+,K+, Li+, andPb2+monitoring are emulated in presence
of NH+4 , Ca2+, and Mg2+, that are the major ions constitut-
ing sweat samples [31]. The determination of ion mixture
combinations requires a multi-factorial design of synthetic
samples. In this work, the physiological range of activity of
each constituent is divided into six levels. It is a good trade-
off between capturing enough variability in the activity of the
ions, and avoiding to generate exponential number of sam-
ples. Indeed, a full-factorial design involves 67 ∼ 280′000
ion combinations. This amount is not reasonable. More-
over, a full-factorial design will produce a redundant dataset.
Therefore, Taguchi method is implemented to generate a rep-
resentative subset of all constituent combinations, leveraging
orthogonal arrays [32]. The L18(61 × 36) orthogonal array
used is reported in Table 2, where the factor C0 comprises
6 levels, and the 6 other factors have 3 levels. The columns
Ci are orthogonal, and orthogonality is preserved through col-
umn permutation. Thus,C0 could be permuted over the seven
constituents. RowR0 is redundant while permuting columns,
so it is removed. The activity of the seven constituents are
quantized over the physiological or therapeutic range of the
considered ions in sweat. The discrete levels of activities are
reported in Table 3. As for selectivity coefficients, they are
obtained from electrochemical characterization of polymeric
solid-contact ISEs. Fixed interference method is carried out
to compute the coefficients reported in Table 4, and the
full characterization of Na+, K+, Li+, and Pb2+ sensors is
published at [33]. The entire factorial-designed set is needed
to train the multivariate calibration model since it includes all
the statistical variability in the data that the regressor should
learn. Therefore, cross-validation procedure or splitting of

FIGURE 2. Weibull distribution (k = 1.25, b = 6) (blue), and discrete
levels of each constituent scaled to its respective activity range(red).

the training set is avoided. Consequently, validation and test
sets are designed independently. Random sampling in the
activity window of the ions of interest is the usual approach
adopted [2], [15]. In this work, the Weibull distribution is
used. Its Probability Distribution Function (PDF) is plotted
in Fig. 2, and it is defined as

f (x; k, b) =

{
b k xk−1exp(−b xk ), x ≥ 0,
0, x < 0,

(8)

where the scale and shape of the distribution are λ = b−1/k

and k , respectively. This PDF is chosen so as to generate
independent and identically distributed ion mixtures repre-
sentative of sweat samples for which the activity of each
constituent is around its nominal value, or rather in excess
in the sample (e.g. due to physical exercise for physiology).
In order to increase the robustness of the comparison between
multivariate regressors, five validation splits, of one-fifth of
the size of the training set each, are randomly generated
to emulate a cross-validation. Thus, chemometric models
are evaluated on each validation split, and the average and
standard deviation of the metrics are computed. The final
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validation of the model is performed on an additional test
set of similar size as a validation split. Furthermore, datasets
of different size are generated to assess the effect of dataset
scarcity on the chemometric models. One notices that if the
upper bound of the ion activity L5 in Table 3 is discarded,
there are 10 combinations of 3-level ion activity to config-
ure the orthogonal Table 2, allowing to tune the training set
size. As a result, training sets of 68 up to 680 samples are
generated following the aforementioned procedure.

V. MULTIVARIATE CALIBRATION MODELS
In this section, themultivariate calibrationmodels used in this
work are presented. In a multivariate calibration procedure,
the signals output by an array of sensors are processed by
a multivariate model that estimates the activity of selected
analytes constituting the sample. The chemometric model is
trained beforehand with OCP/activity observations, and is
then inferred to predict the activity of the analytes in unknown
samples [34]. For N observations, let X = {xn}n=1,··· ,N , with
xn ∈ RP, denote the tensor of OCP signals coming from P
ISEs, andY = {yn}n=1,··· ,N , with yn ∈ RM , denote the tensor
of activity of the M electrolytes of interest. The multivariate
calibration problem can be formulated as

Y = XW+ E, (9)

whereW is the tensor of regression coefficients, and E is the
error made in the prediction of the activity of the analytes.
It is an inverse calibration problem since the controlled vari-
ables (activity of the ions) are estimated taking the dependent
variables (OCP signals) as regressors.

A. TRADITIONAL LINEAR REGRESSION MODELS
Inverse least-squares regressor is the simplest first-order
model used in multivariate calibration. Contrary to classi-
cal least-squares regression, the activity of all electrolytes
constituting the sample do not need to be known during the
calibration phase. As a result, the tensor of activity of the
ions Y could be of any dimension M. The minimization
objective is

∀ m ∈ J1;MK, min
w∗,m

∥∥Xw∗,m − y∗,m
∥∥2
2 , (10)

where w∗,m and y∗,m are columns of W and Y, respectively.
Namely, the activity of each target ions is estimated indepen-
dently, ignoring cross-correlations. Hence, this multivariate
calibration model consists in multiple independent Ordinary
Least-Squares (OLS) regressions, or Multiple Linear Regres-
sion (MLR). Ŵ could be computed by least-squares mini-
mization of (10), or in a closed-form solution with the normal
equation

Ŵ = (XTX)−1XTY, (11)

where XTX must be invertible. This holds if X is a full-rank
matrix, or the columns ofX are uncorrelated. The application
of PCA to X will generate a matrix T that complies with
the latter constraint. Namely, OCP signals are decomposed in

a set of successive orthogonal components that explain amax-
imum amount of their variance. The resulting Principal Com-
ponent (PC) scores, denoted as T, are the new input tensor
variables. Combination of PCA and MLR refers to Principal
Components Regression (PCR). Furthermore, Partial Least-
Squares (PLS) regression is another popular chemometric
tool [35]. It constructs latent variables for X and Y by taking
into account the variance of X and the correlation between
factors excerpted from both tensors.
Linear regressors are traditionally used for univariate cali-

bration systems. However, in multivariate systems, and above
all, in presence of non-linearity due to ion interference, non-
linear regressors are privileged to increase multivariate cali-
bration accuracy. They are described in the following.

B. SINGLE-OUTPUT SUPPORT VECTOR REGRESSION
Support Vector Machines (SVMs) are prominent tools for
linear and non-linear input/output modeling, as it is the case
of multivariate calibration subject to ion interference [36].
Standard SVR models perform unidimensional regression of
the input tensor X to each output channel m, y∗,m. For non-
linear SVRs, X is implicitly mapped to a higher dimensional
feature space by a kernel function [37]. Thus, themodel learns
a linear function in the space induced by the kernel. Gaussian
Radial Basis Function (RBF) is a non-linear kernel commonly
used for whichX is mapped to an infinite dimensional Hilbert
space [38]. The primal formulation of SVR minimization
objective is

∀ m ∈ J1;MK, min
w∗,m,bm

1
2

∥∥w∗,m∥∥2 + C N∑
n=1

Lε(un,m),

with un,m = yn,m − (8(xn)Tw∗,m + bm). (12)

Lε is the Vapnik ε-insensitive loss function defined as
Lε(u) = max{0, |u|−ε}.8 is the non-linear function defining
the kernel function κ(xi, xj) ≡ 8(xi)T · 8(xj). C is a hyper-
parameter trading-off margin violations and minimization of
the distance ε from the support vectors to the SVR model.
In practice, a dual formulation of the SVR minimization is
used, where quadratic programming leveraging kernel formu-
lation yields a problem faster to solve.

C. PROPOSED MULTI-OUTPUT SUPPORT
VECTOR REGRESSION
In single-output SVR problems, the loss function L is an
L1-based norm, hence, it needs to take into account each of the
M dimensions independently which makes the solution com-
plexity grow linearly withM.Moreover, such unidimensional
model does not consider correlations between the output
columns. Hence, it is less robust to noise and non-linearity
in the dataset. In this work, a multivariate multi-output
SVR is implemented to consider correlations and non-linear
cross-relations between X and Y, enabling a concurrent
optimization of the regressor of each target ion activity.
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The objective function to minimize is

L(W,b) =
1
2

M∑
m=1

∥∥w∗,m∥∥2 + C N∑
n=1

L(un),

with un = ‖en‖2 s.t. en = yn − (WT8(xn)+ b). (13)

Iterative Reweighted Least-Squares (IRWLS) procedures
permit the use of an arbitrary cost function L. L2-based
norm cost functions are appealing since the constraints for
all M output dimensions could be considered into a sin-
gle error vector, contrary to L1-based Vapnik loss function
described previously that need to take into account all M
dimensions separately. As a result, IRWLS procedures yield
one-dimension support vectors, instead of M-dimension for
single-output SVRs. In this work, an IRWLS procedure
is implemented with the quadratic and differentiable cost
function

L(u) =

{
0, u < ε.

u2 − 2uε + ε2, u ≥ ε.
(14)

The proof of convergence of such SVM is demonstrated
in [39]. The IRWLS method is constructed by performing
a first-order Taylor approximation of the error function (14)
over the previous solution (W,b). A quadratic approximation
of the former expansion gives the weighted least-squares
minimization problem

L′(W,b) =
1
2

M∑
m=1

∥∥w∗,m∥∥2 + 1
2

N∑
n=1

anu2n + cste, (15)

where an =
C
ukn

d L(u)
du

∣∣∣
ukn
=


0, ukn < ε.

2C(ukn − ε)
ukn

, ukn ≥ ε.

The latter function is minimized with respect to (W,b).
It yields a linear system represented in matrix form as

∀m ∈ J1;MK,
[
K+ D−1a 1
aTK 1Ta

]
︸ ︷︷ ︸

H

[
wsol
∗,m
bsolm

]
=

[
y∗,m

aTy∗,m

]
,

(16)

where (K)ij = κ(xi, xj), a = [a1, · · · , an]T, (Da)ij =
aiδ(i − j). It is important to notice that the matrix H is
independent ofm, so it does not depend on the output channel.
The kernel function used is the Gaussian RBF. The pseudo-
code of the IRWLS procedure is reported hereunder.

IRWLS procedure is implemented in a quasi-Newton
approach, for which the errors ukn and an are recomputed
at each iteration k, so as the solution (Wsol,bsol) of the
reweighted least-squares problem. Each iteration has the
complexity of an OLS problem.

D. MULTI-LAYER PERCEPTRONS MODEL
Multi-Layer Perceptrons (MLP) models are commonly used
in complex multivariate calibration systems [2], [10]–[17].
MLP networks are built for the multivariate calibration of

Algorithm 1 Iterative Reweighted Least-Squares
Procedure
Input: OCP signal X, ions log-activity Y, kernel

function 8, kernel parameters param,
convergence tolerance tol, maximum number of
iterations max_iter

Output: Trained weightsW, trained bias b, number of
iterations k

/∗ Initialization ∗/
1 (W, b)← (0, 0); k← 0;
2 K← X mapped to kernel 8 ;
3 foreach n do
4 en← yn − (WTK∗, n + b); // residual error
5 ukn← ‖en‖;

6 {i}k← {n s.t. ukn ≥ ε; // support vectors
7 foreach i do
8 L(uki )← uk2i − 2uki ε + ε

2; // to compute L
9 ai←

2C(uki )−e
uki

; // to compute L′

/∗ Iterative procedure ∗/
10 while convergence tolerance is not reached and k <

max_iter do
11 (Wk, bk)← (W, b); Ek

←E; uk← u; {i}k← {i};
12 build H tensor and solve L′→ (Wso1, bso1);
13 update u, {i}, L, and L;
14 minimize L with descending direction step ηk;
15 compute next step solution[

Wk+ 1
(bk+1)T

]
=

[
Wk

(bk)T

]
+ ηk

[
Wsol
−Wk

(bsol − bk)T

]
;

16 recompute ai and update least-squares problem L′;
17 k← k + 1;

potentiometric sensors subject to ion interference in order
to benchmark the proposed M-SVR algorithm. The feed-
forward NN architecture implemented is illustrated in Fig. 3.
The input layer consists of four pass-through neurons that
relay the input features xn to the subsequent layers. The
features are either the OCP signals of the P = 4 ion-
sensors, or their PC scores after applying PCA. Two hidden
layers ofN1 andN2 units produce non-linear transformations
of the dataset, and the output layer predicts the activity of
the M = 4 target ions. The model parameters (weights and
bias) are trained with a back-propagation training algorithm
minimizing the mean-squared error loss function [40]. The
hyper-parameters of the MLP models are optimized with a
grid-search procedure. They are summarized in Table 5.

E. SOFTWARE AND HARDWARE
Data pre-processing pipeline and multivariate models are
implemented within a Python 3.7 environment. PCA algo-
rithm is implemented through a Singular Value Decompo-
sition (SVD) where LAPACK routine [42] is used. MLR
and OLS minimization problems are solved using SVD on
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FIGURE 3. Feed-forward neural network architecture for simultaneous
monitoring of sodium, potassium, lithium, and lead ions: the input
features (OCP signals or their PC scores) are fed to the passthrough
neurons of the input layer, then conveyed to two fully-connected hidden
layers of N1 and N2 number of units, respectively. The output layer
consists of four units with no activation function, providing the activity of
the target ions.

TABLE 5. Configuration and hyper-parameters of MLP model, optimizer,
and training procedure.

zero-mean and unit-variance X with LAPACK routine [42],
while PLS is implemented with Non-Linear Iterative Par-
tial Least-Squares (NIPALS) algorithm [43]. Single-output
SVR is constructed leveraging LIBSVM library that supports
quadratic programming [44]. As for MLP models, they are
implemented through Keras high-level API [45], with Ten-
sorFlow 2.0 deep learning library as computational back-
end. The experiments are run on a 2x Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz with 256GB RAM.

VI. RESULTS AND DISCUSSION
In this section, the results of the case study are presented. The
performance of the multi-ion-sensing emulator is assessed
and compared with calibration curves obtained from poly-
meric solid-contact ISEs. Then, the synthetic datasets gener-
ated by the tool are shown. Next, the multivariate calibration

FIGURE 4. Modeling OCP distortion due to: (a) ion interference aJ swept
from 0 to 1e− 3, with zI = 1, offset = 400 mV , zJ = 1, and log Kpot

I,J = −3;

(b) ISE selectivity log Kpot
I,J swept from −∞ to −1, with zI = 1,

offset = 450 mV , zJ = 1, and aJ = 10e− 6.

optimization with linear and non-linear regressors is dis-
cussed.

A. MULTI-ION-SENSING EMULATOR AND ION
INTERFERENCE MODELING
First, the ion-sensing emulator is used as investigation tool
to evaluate the effect of ion interference on ISE response.
Fig. 4 illustrates the impact of the two model parameters on
calibration curve distortion. Namely, the activity of the inter-
fering ion aJ , and the selectivity coefficient of the primary
ion I towards the interfering ion J, log K pot

I ,J . The background
potential offset in diluted analyte (log aI ← −∞) increases
with the activity of the interfering electrolyte, and this effect is
enhanced for a poorly-selective sensor. Moreover, the elbow
of the calibration curve highlighting the change of sensor
regime from flat OCP response (not detecting) to a Nernstian
behavior is extrapolated as the sensor lower LOD [46]. It is
shown that sensor lower LOD increases, the more the severity
of ion interference is high. This is critical if the lower LOD
reaches the physiological/therapeutic range of the target ana-
lyte. In practice a margin of 1 : 10 is needed between the
sensor lower LOD and the lowest activity of the primary ion
to be measured.

Next, the calibration curves generated by the emulator
are compared with OCP responses acquired from batch of
polymeric solid-contact ISEs in artificial sweat [33]. The
results are displayed in Fig. 5, where the measured cal-
ibration curves exhibit inter-sensor variability, mainly for
Li+ and Pb2+ sensors. The simulated OCP response is
computed by taking the same electrolyte background com-
position as the artificial sweat, and with the selectivity coef-
ficients of the corresponding polymeric solid contact ISEs
against the interfering ions. The offset parameter for each
primary ion is fitted to the in-vitro calibration data. Then,
the RMSE between the modeled and the experimental data
is computed, and yields, 1.37, 1.44, 1.78, 2mV , for Na+,
K+, Li+, Pb2+ sensors, respectively. As a result, the ion-
sensing model explains accurately polymeric ISE responses
subject to ion interference from artificial sweat background
electrolyte.
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TABLE 6. Prediction accuracy obtained by applying linear regressors to datasets of different size.

FIGURE 5. Comparison between the calibration curves output by the
ion-sensing emulator and the calibration curves acquired from batch of
polymeric solid-contact ISEs in artificial sweat. RMSE of 1.37, 1.44, 1.78,
2 mV are obtained for Na+, K+, Li+, Pb2+ sensors, respectively.

B. GENERATION OF SYNTHETIC DATASETS
The multi-ion-sensing emulator has been demonstrated to
model well ISE responses in nominal sweat background elec-
trolyte. Thus, in this section, the tool is used to generate
synthetic datasets following experimental design procedures
described in Section IV. Ten datasets Dataset_n of training
set size Ntrain = 68 · n (n ∈ J1; 10K) are generated. The
scarcest dataset is displayed in Fig. 6. The six levels of the
training set are clearly visible since it has been generated
through a factorial design. The composition of the valida-
tion and test sets is randomly designed in the same activity
range as the training set, resulting in samples intermingled
in between the factor levels. Emulated Na+-ISE calibration
data exhibits a Nernstian response since the physiological
range in sweat is large (above tens of mM). Conversely, Pb2+

is detected as metal traces (tens of µM ), so it is diluted in
the sample. The emulated potential response shows more

FIGURE 6. Dataset_1: Ntrain = 68, Nval,split1 = 17, Ntest = 17.

potential dispersion. As for Li+-ISE, the sensor has a good
selectivity towards the constituents (see Table 4), so it is less
affected by ion interference. It is not the case of K+-ISE that
is poorly selective, mainly towards Na+ that is a predominant
ion in the samples. This results in major OCP dispersion,
accentuated at lower aK+ . The same results are observed with
larger datasets. The apparent linear correlation between EX
and log aX that is observed in Fig. 6 suggests to compute
the correlation coefficients between the two variables, for
each ion, for the training set of the ten datasets. The results
are displayed in Fig. 7. The lower correlation in K+ and
Pb2+ channels is due to ion interference that is explained
by the larger potential dispersion at lower ion activity. The
correlation between sensor OCP and ion activity tends to
increase with larger datasets.

C. LINEAR REGRESSION MODELS
Prior to multivariate calibration, PCA is applied to the input
tensor X. Fig. 8 shows the scatter plots of the PC scores.

VOLUME 9, 2021 9



I. N. Hanitra et al.: Multi-Ion-Sensing Emulator and Multivariate Calibration Optimization by Machine Learning Models

FIGURE 7. Pearson correlation coefficient between EX and log aX for
Na+ (green), K+ (blue), Li+ (red), and Pb2+ (black) channels.

FIGURE 8. Scatter matrices of PCA scores for Dataset_1.

The whitened PC scores are uncorrelated and do not
present higher order dependence. Moreover, the explained
variance per PC yields 34.23%, 24.51%, 21.39%, and
19.87%, for PC1 to PC4, respectively. This indicates that all
the PCs are needed to explain the variance present in the input
tensor. It is important to underline that PCA is employed as
a pre-processing step, and not as a dimensionality reduction
technique (P = 4). Moreover, two metrics are introduced
to assess the accuracy of the regressors. The Normalized
Root Mean-Squared Error (NRMSE) and the Mean Relative

Error (MRE) are defined as

NRMSE =
100

ỹ

√√√√ 1
Ntest

Ntest∑
n=1

(
ỹn − ˆ̃yn

)2
, (17)

MRE =
100
Ntest

Ntest∑
n=1

|ỹn − ˆ̃yn|
ỹn

, (18)

where ỹ is the mean of the test set labels, ỹn and ˆ̃yn are the
true and predicted log-activity of the primary ions, respec-
tively. Normalized metrics are required to balance error con-
tributions from analytes highly concentrated (sodium ions),
and diluted analytes in the sample (lead ions). In addition,
the two metrics do not over-penalize outliers. NRMSE and
MRE are computed for each primary ion, but total NRMSE
and MRE of all four primary ions yield two compact model
performance measure that are used during training.

An analysis is carried out by applying MLR to X̃ =

{{PC1}, {PC1,PC2}, {PC1,PC2,PC3}, {PC1,PC2,PC3,
PC4}}}. The regressors are fitted to the training set and evalu-
ated on the validation splits. The total NRMSE decreases with
the dimension of the latent space. Likewise, PLS algorithm is
applied to the input tensor X, and the same factorial analysis
is performed, suggesting to use the four-dimension latent
space. Next, the fitted models are evaluated on the external
test set. It results that factorial decomposition with PCR and
PLS yield identical multivariate calibration accuracy when
the full latent space is used. When a reduced latent space
is used, PLS performs slightly better, as expected, since it
is a more compact model than PCR. The metrics achieved
by applying linear regressors on the ten datasets are reported
in Table 6. It could be seen that K+ and Pb2+ calibration
are the less accurate ones due to the non-linear distortion
added by severe ion interference. Besides, the metrics are
improving steadily with larger datasets, for the four target
ions. The metrics obtained with linear regression models are
used as benchmark for the subsequent non-linear multivariate
regressors implemented.

D. MULTIVARIATE CALIBRATION OPTIMIZATION
In this section, the non-linear multivariate calibration models
are compared to simple MLR model. Namely, SVR, the pro-
posedM-SVR, andMLPmodels are evaluated on the ten syn-
thetic datasets. A cross-validation grid-search on the model
hyper-parameters is carried out to identify the best models,
while limiting over-fitting. More explicitly, the models are
trained on the entire orthogonal training set, and evaluated
on five validation splits. The best model is retained and
evaluated on the external test set. ForMLPmodels, the hyper-
parameters space being wide, a coarse search is done before
refining the grid-search on relevant hyper-parameters space.
The results of multivariate calibration are displayed in Fig. 9.

We observe a clear improvement between linear regres-
sors and non-linear ones. For total NRMSE, there is an
average improvement of 16.27%, 13.22%, and 18.12%, and
an improvement of total MRE of 22.23%, 20.29%, and
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FIGURE 9. Total NRMSE and total MRE obtained by evaluating the best
multivariate calibration models on the test set of the ten synthetic
datasets.

FIGURE 10. Total NRMSE obtained while assessing multivariate
calibration models on five random validation splits and on a test set.

23.92%, for SVR, M-SVR, and MLP, respectively. The
accuracy improvement obtained with the proposed M-SVR
is satisfactory given the lower complexity of the proposed
model. Namely, M-SVR optimizes concurrently the calibra-
tion of the four channels with four-dimension support vectors.
Conversely, single-output SVR optimizes independently one
ion channel at a time with one-dimension support vectors,
therefore four times more support vectors than with M-SVR.
Besides, M-SVR is more robust to noise and correlation in
the dataset since it considers the four ion channels when con-
structing the model regression hyperplane. It is also observed
that with large datasets (more than 540 training samples),
M-SVR performs better than SVR and MLP regressors.

Next, the quality of the models is assessed by comparing
the scores obtained during the validation stage (metrics calcu-
lated with five validation splits of random samples) and the
scores obtained with the test set. The results are displayed
in Fig. 10. We observe that the generalization error is large

FIGURE 11. Total NRMSE obtained while applying PCA
pre-processing or not before multivariate calibration.

for the scarcest dataset, for which the models are more likely
subject to over-fitting. Overall, the generalization error is the
smallest for M-SVR with an average of 3.22%, while it is of
4.43% and 4.79%, for SVR and MLP models, respectively.

A further analysis is performed on the importance
of PCA pre-processing. The scores obtained while applying
PCAbefore themultivariate calibration, andwithout applying
PCA are reported in Fig. 11. It is added that the input tensor
X is scaled to zero-mean and unit-variance in both cases.
We observe that PCA does not influence the calibra-

tion accuracy for MLR and M-SVR, while improvement
is observed with SVR and MLP models. MLP regressors
are feature-based models, so the pre-processing of the input
tensor is essential to feed uncorrelated data to the network
model. SVR and M-SVR models are distance-based models,
so scaling the input tensor is the essential pre-processing step.

The predicted ion activity vs target values when applying
the optimal M-SVR model on Dataset_1 and Dataset_10 are
plotted in Fig. 12 and 13, respectively. The scatter points fall
along the 1:1 lines, with more dispersion for K+ and Pb2+

ions that are subject to severe ion interference. For Dataset_1,
the 95% confidence interval on the slopes of the model fit
contains 1 for Li+ and Pb2+ channels, and the intercepts
contain 0 except for Pb2+. These results are consistent with
the previous conclusion that M-SVRmodels are less accurate
with a scarcer dataset since themodel is slightly biased. As for
Dataset_10, the 95% confidence interval on the slopes of
the model fit contains 1, and the intercepts contain 0 for the
four channels. Therefore, M-SVR models applied to larger
datasets are accurate and unbiased estimators. The computed
coefficients of determination provide reliable information
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TABLE 7. Training parameters of the multivariate calibration models.

FIGURE 12. Scatter plot of predicted l̂og aX vs target log aX for Na+, K+,
Li+, and Pb2+ channel, by applying the optimal M-SVR model on
Dataset_1. The model fit and its 95% confidence interval are plotted,
where R2 is the coefficient of determination. The red plot is the 1:1 line.

about the variance in activity of the target ions explained by
the multivariate calibration models.

E. ANALYSIS OF MODEL COMPLEXITY
Model complexity is a paramount feature to consider prior to
deploying the multivariate calibration models onto memory
and energy-constrained edge nodes, for real-time ion predic-
tion. The trainable parameters of the multivariate calibration
models are reported in Table 7. MLR model has M · P = 16
trainable weights, independently of the size of the training
set, and OLS minimization has a complexity of O(NM2).
The complexity of SVR models is indicated by the number
of support vectors needed to build the regression hyperplane.
More accurate models are obtained with small ε, so most of
the training instances are used as support vectors. However,
M-SVR has four-dimension support vectors for each training

FIGURE 13. Scatter plot of predicted l̂og aX vs target log aX for Na+, K+,
Li+, and Pb2+ channel, by applying the optimal M-SVR model on
Dataset_10. The model fit and its 95% confidence interval are plotted,
where R2 is the coefficient of determination. The red plot is the 1:1 line.

instance since the four ion channels are considered simulta-
neously. On the contrary, four independent models are con-
structed with single-output SVR, explaining the four times
larger amount of one-dimension support vectors. Besides,
the complexity of IRWLS procedure is equivalent to an OLS
minimization per iteration. The number of iterations required
to reach convergence is reasonable, being less than 20. As for
MLP models, the complexity of the model is set by the
number of neurons in the model. The amount of wights and
bias to estimate during the training phase is quite large, and
tends to grow with larger training sets. The number of epochs
before early-stopping is also reported. It does not exceed
400 epochs for a training batch size of 32 samples.

The training runtime of the different models is measured
to compare the model complexity quantitatively. The models
are trained 100 times with the best hyper-parameters found
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FIGURE 14. (a) Training runtime and (b) prediction latency of multivariate
calibration models. * values divided by 1.

during grid-search. The results are displayed in Fig. 14.a.
The training runtime of MLR models is not reported since
it is constantly between 300 and 450µs. We observe that the
training runtime of SVR model is relatively fast for scarce
datasets, but it increases geometrically with the number of
training samples beyond 400 samples. Conversely, the train-
ing runtime of M-SVRmodels does not grow excessively and
remains below 8 s. As for MLP models, they are the longer to
train for scarce datasets, and the runtime grows steadily when
increasing the training set. The multivariate calibration mod-
els could be trained offline and we could deploy the trained
models directly onto edge devices for real-time ion moni-
toring. Consequently, the prediction latency of each model
is measured for 100 runs, and normalized by the number
of samples constituting the test set. The results are reported
in Fig. 14.b. The prediction latency is obviously the shortest
for MLRmodels. M-SVRmodels are compact models, so the
prediction latency is inferior to 20µs/sample. Conversely,
single-output SVR embed M dense models, explaining the
larger latency. Neural network models have the larger pre-
diction latency (scale divided by ten to fit onto the graph),
making these models the less suitable for real-time monitor-
ing applications.

VII. CONCLUSION
This work presents a novel approach for multi-ion-sensing
frameworks, where the accuracy of the multivariate calibra-
tion depends on the training dataset representativeness and
size. Namely, the response of ion-sensing arrays subject to ion
interference are explained by an ion-sensing emulator. The
parameters of the tool are experimentally determined from a
couple of in-vitro calibration curves acquired from polymeric
solid-contact ISEs, and from the selectivity coefficients of
the developed sensors. It is demonstrated that the calibration
curves output by the emulator fit with the calibration data
acquired in artificial sweat fromNa+,K+, Li+,Pb2+ sensors,
with RMSE of 1.37, 1.44, 1.78, 2mV , respectively. This
legitimates the use of the tool for generating synthetic datasets
of custom size, emulating multi-ion-sensing in sweat. There-
fore, the proposed approach circumvents the acquisition of
big calibration data that is highly expensive in terms of chem-
ical resource and time.

Then, the emulated datasets are fed to a multivariate and
multi-output SVR model. Multivariate calibration accuracy
is increased, with NRMSE improvements of 13.22%, and
MRE improvements of 20.29% with respect to a simple
MLR model. The generalization error is quite small, being of
3.22%, and the regressor is statistically unbiased for medium
to large datasets. The proposed model is more compact and
more robust than a single-output SVR that embeds an inde-
pendent regressor for each ion channel to predict. The latter
does not consider the correlations between output channels,
and above all, its computational complexity increases geo-
metrically with the training set size, for large datasets. The
proposed M-SVR model represents a robust, accurate, and
low-complexity solution for memory and energy-constrained
embedded devices, paving the way for continuous and real-
time multi-ion monitoring.

Eventually, the multi-ion-sensing emulator and multivari-
ate calibration models are designed in this work for biomed-
ical and healthcare monitoring in sweat. But the flexibility
of the tool enables its use for broader applications such as
environmental or water quality monitoring.

APPENDIX A
PHASE-BOUNDARY POTENTIAL MODEL
At equilibrium, the electrochemical potentials for any ion j,
of valence zj, in the sample and membrane phase are{

µj(aq) = µ0
j (aq)+ RTln(aj(aq))+ zjF8(aq)

µj(m) = µ0
j (m)+ RTln(aj(m))+ zjF8(m),

(A.1)

respectively, whereµ0
j is the standard chemical potential, aj is

the ion activity, and 8 is the electrical potential. Assuming
partition equilibrium of ion j between both membrane and
sample phases, µj(aq) = µj(m), one obtains the phase-

boundary potential defined as EPB
def
= 8(m)−8(aq),

EPB = ε0j +
1
zj
s log

(
aj(aq)
aj(m)

)
, (A.2)

where ε0j =
µ0
j (aq)−µ

0
j (m)

zjF
is the standard potential, constant

for a given ion. s = RT
F ln 10 is the Nernst slope. Then,

let us consider the ion-selective membrane composed of an
ionophore L of charge zL and concentration LT , and an ion-
exchanger R of charge zR and molar concentration RT . The
ionophore includes ion carriers that selectively transport ions
across the membrane. The ionophore forms complexes with
the target ion I as

I zj (m)+ nL
βn
−→ jLn, (A.3)

where βn is the complex formation constant. The interactions
between the ion-exchanger and the co-ions are neglected. The
charge balance in the ion-selective membrane yields

zRRT + zLLT +
∑
n

(nzL + zj)cjLn + zjcj(m) = 0, (A.4)

where each contributions are, from the ion-exchanger,
the ionophore, the complex formed with the target ion, and
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the free form of the target ion in the membrane, respectively.
c stands for compound concentration. The label (m) is added
to emphasize that it refers to the concentration of ion j in the
membrane and not in the sample phase. Inserting complex
formation constants βn and activity coefficients γ ,

zR RT + zL
aL
γL
+ zj

aj(m)
γj(m)

(
1+

∑
n
nzL+zj
zj

γj(m)
γjLn

βnanL

)
= 0.

(A.5)

Next, let us consider that multiple ions from the sample
phase (interfering ions) could interact with the membrane.
It is assumed that the activity of the uncomplexed ionophore
and the activity coefficient of the extracted ions remain
unaltered. This is valid for a polymeric membrane with an
ionophore in excess with respect to the ion-exchanger, and
considering that the membrane ionic strength is not changing
during ion exchange. (A.5) is summed over the ions extracted
from the sample phase into the membrane, and yields∑
j

zj
aj(m)
γj(m)

(
1+

∑
n
nzL+zj
zj

γj(m)
γjLn

βnanL

)
= −zRRT − zL

aL
γL
.

(A.6)

Then, an apparent standard potential for each ion j, E0
j ,

is introduced such that EPB = E0
j +

s
zj
log(aj(aq)). The

apparent standard potential is expressed as

E0
j = ε

0
j +

s
zj
log

(
−

zj
γj(m)

1+
∑

n
nzL+zj
zj

γj(m)
γjLn

βnanL
zRRT + zL

aL
γL

)
,

(A.7)

where the expression in the log is equal to 1
aj(m)

. (A.7) is
rewritten as

zj
kj

γj(m)

(
1+

∑
n

nzL + zj
zj

γj(m)
γjLn

βnanL

)
10−zjE

0
j /s

= −zRRT − zL
aL
γL
, (A.8)

where the free energy of ion transfer kj is defined as ε0j =
s
zj
log(kj). Moreover, aj(m) is extracted from (A.2) and sub-

stituted in (A.6), yielding∑
j

zj
γj(m)

kj

(
1+

∑
n

nzL + zj
zj

γj(m)
γjLn

βnanL

)
10−zjEPB/saj(aq)

= −zRRT − zL
aL
γL
. (A.9)

Inserting (A.8) in (A.9), one finds

10−zjEPB/s
∑
j

aj(aq)10
zjE0

j /s = 1. (A.10)

The selectivity coefficient of a membrane with target ion I,
with respect to an interfering ion J, is defined as

logK pot
I ,J =

zI
s
(E0

J − E
0
I ). (A.11)

Equation (A.11) is substituted in (A.10), and gives the com-
pact equation

10zI (E
0
I −EPB)/saI (aq)+ 10(E

0
I −EPB)/s

∑
j s.t. zj=1

(K pot
I ,j )

1
zI aj(aq)

+102(E
0
I −EPB)/s

∑
j s.t. zj=2

(K pot
I ,j )

2
zI aj(aq) = 1, (A.12)

limiting the sum expansion to monovalent and divalent ions.
Equation (A.12) is solved for EPB, with a second-order poly-
nomial equation formulation. For zI = 1,

EPB

= E0
I + s log

(
1
2

(
aI (aq)+

∑
j s.t. zj=1

K pot
I ,j aj(aq)

)

+

√√√√1
4

(
aI (aq)+

∑
j s.t. zj=1

K pot
I ,j aj(aq)

)2

+

∑
j s.t. zj=2

(K pot
I ,j )

2aj(aq)
)
,

(A.13)

while for zI = 2,

EPB

= E0
I + s log

(
1
2

∑
j s.t. zj=1

(K pot
I ,j )

1
2 aj(aq)

+

√√√√1
4

( ∑
j s.t. zj=1

(K pot
I ,j )

1
2 aj(aq)

)2

+aI (aq)+
∑

j s.t. zj=2

K pot
I ,j aj(aq)

)
.

(A.14)

APPENDIX B
SYNTHETIC DATASETS
The synthetic datasets generated are available at http://ieee-
dataport.org/documents/multi-ion-sensing-emulator.
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