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A B S T R A C T   

Limit-state analysis of soil-structure interacting systems is a classical problem in theoretical and applied soil 
mechanics. Usually, the capacities of both components are evaluated separately. However, it is well known that 
soil-structure interaction plays a major role in the actual behaviour at failure of such systems. Despite the 
complexity of a rigorous mathematical treatment of the problem, the limit theorems of the theory of plasticity 
and appropriate consideration of the failure modes of the structural element allow to address soil-structure 
interaction in a simplified manner. This study shows how the existing solutions for the bearing pressure and 
footing structural resistance can be coupled to evaluate the impact of the soil-structure interaction. Further, 
lower and upper bound solutions are developed for foundations that have a slender cross-section.   

1. Introduction 

Solutions to limit-state problems from the point of view of soil me
chanics generally consider the structural component as a rigid or 
perfectly flexible body, with a focus on the constitutive modelling of the 
interface and the soil (Rankine, 1857; Golder, 1942; Terzaghi, 1943; 
Meyerhof, 1951; Lundgren and Mortensen, 1953; Meyerhof, 1955; de 
Beer, 1970; Martin, 2005a; Zhu and Michalowski, 2005; Loukidis and 
Salgado, 2009). By contrast, the approach of structural mechanics fo
cuses primarily on the identification of structural failure modes for 
members subjected to simplified loading conditions (e.g. uniform, 
triangular) (Campana and Muttoni, 2010; Pérez Caldentey et al., 2012; 
Campana et al., 2014; Simões et al., 2016; Simões et al., 2016). 

Evidently, these simplifications are useful to limit the number of 
involved parameters and control the governing failure mechanisms in 
laboratory testing. However, little effort is made in attempting to 
combine the respective outcomes within a unified framework. 

Recently, rigorous limit-state solutions of soil-structure systems were 
presented for surface footings and cut-and-cover tunnels (de Buhan, 
2007; Plumey, 2007). These solutions consider the possibility of 
simultaneous failure within the structure and the soil, showing the great 
impact of mutual interactions on the actual performance of such 
systems. 

With the availability of modern software for limit analysis, e.g. 
(Limit State Ltd, 2019; Optum Computational Engineering, 2019), 
similar solutions can be directly obtained in many cases. However, 
analytical or semi-analytical solutions are fundamental to assess the 

validity of those results. They are useful also because structural failure 
modes sometimes fall outside the applicability of the theory of plasticity, 
e.g. shear failure of slender concrete beams without transverse rein
forcement. These modes cannot be captured by the aforementioned 
software for limit analysis and missing one of such failure modes might 
lead to catastrophic consequences. 

In this study, surface footings under centred vertical load were 
examined as a reference case. An attempt was made to define a unified 
framework for the analysis of the collapse load considering soil-structure 
interaction in a simplified manner. For this purpose, sections two to four 
review the main concepts of soil bearing capacity, contact pressure 
distribution, and shear capacity of concrete members without transverse 
reinforcement. The fifth section is dedicated to the soil-structure inter
action. It is shown that the knowledge of the three above-mentioned 
aspects can be combined in a useful way to obtain both quantitative 
and qualitative outcomes on the overall ultimate state of the foundation. 
New lower and upper bound solutions for combined failure were derived 
and extended to the three-dimensional case. 

It is believed that, apart from establishing a unified approach toward 
a more rational limit-state analysis for soil-structure interacting systems, 
this study might help in soil and structural mechanics education. 

2. Current practice for surface footings collapse analysis 

2.1. Bearing capacity of soils 

The maximum load, eventually expressed as average pressure, that a 
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mass of soil can sustain without producing uncontrolled settlements or 
without causing catastrophic damages to the superstructure is termed 
bearing capacity. This definition follows the interpretation of the collapse 
load given by Hill (1951) and Drucker et al. (1951) in the framework of 
the theory of plasticity. 

The type of failure of rigid footings resting on dense/compact soils 
(γ > 20 kN/m3

, γ: soil self-weight) is known as general shear failure 
(Terzaghi, 1943). This failure mechanism is depicted for strip footings in 
Fig. 1 (Lundgren and Mortensen, 1953). The plastically deformed soil is 
pushed outward and upward. Depending on the base roughness, footing 
breadth, and soil properties, a trapped elastic wedge might move 
downward as an extension of the footing (Lundgren and Mortensen, 
1953; Davis and Booker, 1971, 1973). 

The resistance of the soil is due to its apparent cohesion and the 
weight of displaced soil. In terms of average contact pressure pu = Qu/B, 
we can employ the classical Terzaghi’s form (Terzaghi, 1943): 
pu

c
= Nc +GNγ (1)  

where c is the apparent cohesion; G = 0.5γB/c is the dimensionless soil 
weight parameter (Cox, 1962), with B denoting the footing breadth, and 
Nc and Nγ the bearing capacity coefficients. For a weightless general soil 
or a purely cohesive soil, the exact value of Nc is given by the Prandtl 
solution (Prandtl, 1920): 

Nc = cotϕ(eπtanϕ Nϕ − 1) (2)  

where Nϕ = tan2(π/4+ϕ/2) is the flow value (Terzaghi, 1943), whereas 
for a cohesionless soil the exact value of Nγ is given by Martin (2004, 
2005b), and can be estimated with good accuracy through the older 
relation proposed by Meyerhof (1961): 

Nγ = (eπtanϕ Nϕ − 1)tan(1.4ϕ) (3) 

The exact solution for a general soil, pu/c, can be obtained with the 
software ABC (Martin, 2004). 

Solutions for rectangular footings were obtained empirically (Ter
zaghi, 1943; Meyerhof, 1951; Skempton, 1951; de Beer, 1970), with the 
limit equilibrium or limit analysis method (Meyerhof, 1951; Shield and 
Drucker, 1953; Shield, 1955; Michalowski, 2001; Salgado et al., 2004; 
Lyamin et al., 2007), and through incremental elastic–plastic constitu
tive laws (Michalowski and Dawson, 2002; Zhu and Michalowski, 2005; 
Gourvenec et al., 2006). They are generally expressed through shape 
factors that multiply the solution for strip footings. Experiments showed 
that, for a given footing breadth, the bearing capacity pu increases with 
an increasing aspect ratio B/L for saturated undrained clays (Skempton, 
1942; Skempton, 1951), and decreases with an increasing aspect ratio 
for dry sands (Meyerhof, 1948; Meyerhof, 1951; Hansen, 1961; de Beer, 
1961, 1970). 

2.2. Contact pressure 

The contact pressure distribution under a surface footing subjected to 
a centred vertical load is mainly a function of the footing rigidity, soil 
stiffness, and soil shear strength properties. A qualitative representation 
of pressure distribution for strip foundations is shown in Fig. 2. For 
comparison, the distribution over an elastic half-space is also drawn. 

In a purely cohesive soil, the contact pressure at failure is uniform 
under strip footings and increases slightly toward the footing centre 
under circular and rectangular footings (Hencky, 1923; Meyerhof, 1951; 
Shield, 1955). 

In a cohesionless soil, the shear strength at the footing edge is zero 
(unconfined soil element) and increases toward the footing centre. 
Therefore, the ultimate contact pressure follows a similar trend. The 
shape varies between triangular, parabolic, and ellipsoidal depending 
on the soil characteristics, and footing roughness and breadth (Terzaghi, 
1943; Taylor, 1948; Meyerhof, 1951; Smith, 2005; Loukidis et al., 2008; 
Saran, 2017). 

In a general cohesive frictional soil, the final distribution is a com
bination of the former. Whether it is closer to that of a purely cohesive or 
a cohesionless soil, it will depend on the parameters G and ϕ. 

2.3. Shear capacity of concrete members without transverse reinforcement 

The behaviour of a footing cross-section can be analysed through the 
theory for concrete members without transverse reinforcement. One- 
way shear resistance of concrete members without transverse rein
forcement is affected by load distribution and slenderness. This is usu
ally displayed with the help of the so-called Kani’s valley (Kani, 1964), 
where the shear capacity is plotted against the shear span ratio α = a/d 
(a: shear span, d: effective depth; cf. Fig. 3). This diagram identifies 
different regimes of shear carrying actions (Fernández Ruiz et al., 2015). 
The direct strut action governs deep beams (α < α1 ≈ 1) and the mem
ber can be analysed with the strut-and-tie or stress fields method (Marti, 
1985; Schlaich et al., 1987). In short span beams 
(α1 < α < α2 ≈ 2.5 − 3), the development of a critical crack within the 
compressive strut may limit the shear capacity. The modified stress 
fields theory (Vecchio and Collins, 1986), which accounts for the 
reduction of concrete compressive strength due to the transverse tensile 
strain, can be used to analyse these structural elements (Fernández Ruiz 
et al., 2015). The shear resistance of slender beams 
(α2 < α < α3 ≈ 5 − 8) is affected by both strain and size effects (Bazant 
and Kim, 1984; Muttoni and Schwartz, 1991). The critical shear crack 

Fig. 1. Failure mechanism of smooth and rough strip footings resting on a 
dense and compact soil. 

Fig. 2. Qualitative contact pressure distribution under isolated surface strip 
footings. Solid lines represent the distribution at failure, whereas dashed lines 
correspond to a state prior to collapse. 
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theory consistently accounts for both phenomena (Muttoni and 
Fernández Ruiz, 2008; Fernández Ruiz et al., 2015; Cavagnis et al., 
2018). For larger values of slenderness (α > α3), the bending resistance 
is the governing factor, and the classical Euler–Bernoulli beam theory 
can be employed (Schlaich et al., 1987; Pérez Caldentey et al., 2012). 

3. Effects of soil-structure interactions 

Based on the previous sections, it is clear that soil-structure inter
action plays a major role on the actual behaviour at failure of founda
tions. In this regard, a series of considerations can be drawn that either 
allow to take directly into account soil-structure interaction or help 
make decisions related to a higher level of performance. These consid
erations are presented in the following subsections. 

3.1. Deep beams 

Squat footings pertaining to the category of deep beams can gener
ally be considered rigid. Flexural cracking is limited and barely pene
trates within the compression field. These types of elements can be 
analysed without loss of accuracy with a simple strut-and-tie model by 
replacing the contact pressure with two equivalent concentrated loads 
acting at a quarter of the footing breadth (Schlaich et al., 1987; Kostic, 
2009) (uniform contact pressure). A proper consideration of the contact 
pressure distribution has little influence on the magnitude of the bearing 
capacity owing to the small value of the ratio B/d. 

In this case, the analysis is straightforward. The inclination of the 
direct strut with respect to the horizontal is expressed as follows: 

tanθc = 4
d − 0.5xc

B − b
≈ 4

d − 0.5xc

B
(4)  

where xc is the depth of the plastically compressed concrete. The force 
carried by the strut when the soil bearing capacity is fully mobilised is 
given by the following expression: 

C =
B

2sinθc
pu (5)  

3.2. Short span beams 

In footings characterised by a short span beam cross-section, flexural 
cracks may penetrate within the compression field transversely and 
reduce the concrete compressive strength. The theory of plasticity can be 
applied if a strength reduction factor that accounts for the transverse 
tensile strain is introduced (Vecchio and Collins, 1986; Muttoni et al., 

1996; Muttoni et al., 2011): 

fce = kcfcp (6)  

where fce is the effective concrete compressive strength, fcp is the con
crete equivalent plastic strength, and kc is the reduction factor. 

The influence of the pressure distribution increases with respect to 
the previous case and replacement with two concentrated loads is a very 
rough approximation. This is mainly due to the fact that kc evaluated at 
the location of the resultant strut is not a representative mean value of 
the whole compression field. 

As an example, the collapse load of a footing subjected to different 
pressure distributions was computed with the finite element software 
jconc (Fernández Ruiz and Muttoni, 2007), which is an automatic 
generator of plane stress elastic–plastic stress fields for reinforced con
crete members. The footing had constant depth, breadth B = 150 cm, 
effective depth d = 45 cm, flexural reinforcement ratio ρ = 1.12%, 
concrete compressive strength fcp = 30 MPa, null concrete tensile 
strength fct = 0, concrete Young’s modulus Ec = 30 GPa, steel yield 
stress fy = 500 MPa, and steel Young’s modulus Es = 205 GPa. Three 
pressure distributions were considered: (a) uniform, (b) triangular, and 
(c) external triangular, i.e. the pressure is zero at the footing centre and 
increases linearly toward the footing edges. Distribution (c) is not 
realistic, but it is useful to appreciate the influence of the strain effect. 
The results are shown in Fig. 4. Taking the collapse load of case (a) as a 
reference, its value increased by 48.9 % for case (b) and decreased by 
17.9% for case (c). Considering that the actual contact pressure distri
bution when the soil bearing capacity is reached is between case (a) and 
(b), its impact is considerable. 

Therefore, the analysis of short span footings by means of strut-and- 
tie models should be performed with a refinement of the equivalent 
concentrated load distribution, which replaces the contact pressure. 
Simplified methods such as those proposed in (Davis and Selvadurai, 
1996; Saran, 2017) might be used to redistribute the contact pressure 
more conveniently. In particular, the technique suggested in (Saran, 
2017) allows to consider lower load levels than the soil bearing capacity. 

Note that the assumption of uniform pressure is not on the safe side 
for highly cohesive and stiff soils loaded below their bearing capacity, 
because the contact pressure is minimum at the footing centre and 
maximum at the edges. 

3.3. Slender beams 

In Fig. 5, a generic slender footing subjected to a centred vertical load 
and uniform contact pressure shows the shear transfer mechanisms with 
the help of a strut-and-tie model (Pérez Caldentey et al., 2012). The total 
shear capacity is given by the following expression: 

VR = Vdir +Vchord +Vc (7)  

where Vdir is the contribution of the direct strut action, Vchord is the 
vertical component of the inclined compression chord, and Vc is the 
shear force that can be transferred across the critical shear crack. 

It is evident that the contact pressure distribution can have a 
considerable impact on the shear resistance, and thus on the overall 
bearing capacity as well. Experiments carried out on slender cantilever 
beams confirmed this point (Pérez Caldentey et al., 2012). Note that for 
constant depth members, the shear capacity can be as high as 80 % for 
triangular loading compared to uniformly distributed loading. For the 
latter, the inclination of the compression chord can lead to an increase of 
the shear force up to 30 % (Stefanou, 1983; Pérez Caldentey et al., 
2012). 

When the shear span ratio of the footing cross-section is between α1 
and α2, the foundation fails in shear by development of a critical crack. 
In this case, the member cannot be analysed by simply considering an 
equivalent homogeneous material characterised by a reduced 
compressive strength; the shear carrying mechanisms across the critical 

Fig. 3. Relative shear capacity versus shear span ratio. VR is the shear resis
tance, Vpl denotes the shear force that causes the yielding of the flexural rein
forcement and crushing of the concrete, a stands for the shear span, and d is the 
effective depth (maximum effective depth in a variable depth footing). The 
design method for each regime is indicated: SF stands for stress fields, MSF 
stands for modified stress fields, and CSC stands for critical shear crack theory. 
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crack must be explicitly taken into account. 
An experimental study on cantilever beams (Pérez Caldentey et al., 

2012) showed that the load over the region adir (Fig. 5), i.e. between the 
support and the section where the crack intercepts the flexural rein
forcement, is carried by direct strut action. It was suggested that 
adir ≈ 2.75d + b/2. Another experimental investigation (Cavagnis et al., 
2015) revealed that this distance can fall in the range d +

b/2⩽adir⩽2.6d + b/2. Thus, the shear force that must be transmitted 
through the critical shear crack is expressed as follows (cf. Fig. 5): 

VE,c =

∫ adir

B/2
p(ξ)dξ − Vchord(ξ = adir) (8) 

According to the critical shear crack theory, the shear capacity across 
the crack Vc is a function of the crack opening and roughness. The former 
is then supposed proportional to the strain evaluated at a specific critical 
section times the effective depth, and the latter can be expressed through 

the aggregate size. The failure criterion is a hyperbolic law (Muttoni and 
Fernández Ruiz, 2008): 

Vc

1[m]d
̅̅̅̅̅
fck

√ =
1/3

1 + 120∊d
/

ddg
(SI units : MPa,mm) (9)  

where fck is the characteristic compressive cylinder strength of concrete; 
∊ denotes the strain evaluated in the critical section at 0.6d from the 
outermost compressed fibre, assuming plane-deformed sections and 
linear elastic behaviour of concrete in compression (the tensile strength 
is neglected); ddg = 16 mm+dg with dg denoting the maximum aggre
gate size. The critical section is located at d/2 from the edge of the wall 
stressing the footing (ξcs = b/2 + d/2) and adir = 2.75d+b/2 (Pérez 
Caldentey et al., 2012). 

Recently, a power-law failure criterion was proposed to improve the 
accuracy at low strain (Cavagnis et al., 2018): 

Fig. 4. Elastic–plastic stress field (left column) and kc-value distribution (right column) at collapse for different contact pressure distributions.  

Fig. 5. Half of a slender footing with flexural reinforcement subjected to centred vertical load and uniform contact pressure. A strut-and-tie model (strut in dashed 
line and tie in solid line) shows the load transfer mechanisms. The critical shear crack is represented in grey. Adapted from (Pérez Caldentey et al., 2012). 
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Vc

1[m]d
̅̅̅̅̅
fck

√ =
k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∊sd
/

ddg

√ (SI units : MPa,mm) (10)  

where k is a constant that depends on the main mechanical and 
geometrical parameters (e.g. k = 0.019 for simply supported beams 
subjected to point load and k = 0.016 for simply supported beams 
subjected to distributed loading (Cavagnis, 2017)), ∊s is the strain in the 
flexural reinforcement at the location of the critical section, and ddg =

min{40 mm, 16 mm + dg}. In the case of cantilever beams, the critical 
section is located at a distance d from the axis of the support (ξcs = d) 
and it is assumed that adir = d. Owing to the application of the load on 
the tension face, adir might be extended (Cavagnis, 2017) (increased 
dowel action): 

Δadir = 0.2
(

B
2
− adir

)

= 0.1B − 0.2d

adir,tot = 0.1B + 0.8d
(11) 

Eqs. (9) and (10), shown graphically in Fig. 6, are related through the 
approximate relation ∊ ≈ 0.41∊s (Muttoni and Fernández Ruiz, 2008). 

Adopting reasonable assumptions and assuming typical reinforce
ment and partial safety factors employed in Switzerland (Muttoni and 
Fernández Ruiz, 2008), the hyperbolic law (9) leads to the following 
design formula: 

Vcd

1[m]d
̅̅̅̅̅
fck

√ =
0.2

1 + 0.0022d MEd
MRd

(SI units : MPa,mm) (12)  

where MEd and MRd are the design values of the acting bending moment 
and resisting bending moment, respectively, at the critical section. 
Similarly, a closed-form expression was obtained from the power law 
(10) (Cavagnis, 2017): 

Vcd

1[m]d
=

κ
γc

(

ρfck
ddg

acs

)1/3

(SI units : MPa,mm) (13)  

where γc denotes the partial safety factor for concrete strength (1.5 ac
cording to the Swiss code (SIA, 2013)), acs = MEd/VEd is the moment-to- 
shear ratio at the critical section, and κ is a parameter equivalent to k in 
(10). In the case of cantilever beams, κ takes the following form: 

κ =
1

1 − 0.15
(0.5+ 0.2α1/3

cs ) (14)  

with αcs = acs/d. 

Note that in both code-like equations, the location of the critical 
section was mainly calibrated against beams subjected to point or uni
formly distributed loading. However, it was shown that such a location 
is also representative for triangular loading (Pérez Caldentey et al., 
2012). Therefore, it is reasonable to assume that it remains represen
tative for general loading conditions, whereas the actual degree of ac
curacy remains unknown. 

Given that the structural resistance is governed by the shear capacity 
of the critical crack Vc, and that the latter and the acting shear force VE,c 

are affected by the loading conditions, the actual performance of these 
foundations is largely influenced by soil-structure interaction. Despite 
the theoretical exact contact pressure distribution is generally difficult 
to assess, it can be approximated by simple shapes (rectangular, trian
gular, parabolic, ellipsoidal, and trapezoidal), as mentioned above. 
Accordingly, acs may take the expressions given in Table 1. 

The shear capacity of the critical shear crack relative to the case of 
uniform contact pressure Vc/Vc,rect is plotted, according to the closed- 
form Eq. (13), against the moment-to-shear slenderness ratio αcs,rect in 
Fig. 7. The increase of Vc is maximum for the triangular distribution, 
reaching approximately 9 % to 10 %. Note that the actual increase of the 
structural bearing capacity VR is enhanced by the reduction of the shear 
force VE,c, which has to be transferred across the critical crack, and the 
increase of the direct strut action Vdir. 

Therefore, the influence of soil-structure interaction can be esti
mated in a simplified manner with the help of Table 1. The resulting 
evaluation procedure is as follows:  

• Check the soil average bearing capacity with (1)  
• Define the pressure distribution  
• Check the structural shear capacity Vc: 

– Compute VE,c with (8) 
– Compute acs with Table 1 
– Compute Vc either with (12) or with (13). If the former is used, 
compute the acting moment at the critical section as MEd =

acs
∫ ξcs

B/2 p(ξ)dξ  
• Check the direct strut capacity Vdir: 

– Compute Vdir =
∫ 0

adir
p(ξ)dξ 

– Check the flexural reinforcement and concrete with a strut-and- 
tie or stress fields model, according to the theory for deep or short 
span beams 

It should be emphasised that the shear resistance of the footing is 
affected by the strain level, which could be taken into account by 
adopting a contact pressure distribution that considers this aspect. 
Simplified contact pressure distributions as those proposed in this study 
that account for the strain level within the soil were proposed by (Saran, 
2017). 

In the case of surface rectangular footings, the above considerations 
hold only for the central region (in the length direction). Close to the end 
zones and for footings with high values of the aspect ratio B/L, i.e. close 

Fig. 6. Shear failure criteria based on the critical shear crack theory.  

Table 1 
Expressions for the computation of acs = MEd/VEd. The value of ξcs is equal to 
b/2+d/2 for the hyperbolic criterion and to d for the power law.  

Pressure distribution acs  acs/acs,rect  

rectangular 1
2
(B/2 − ξcs)

1 

triangular 1
3
(B/2 − ξcs)

0.67 

parabolic 3
8
(B/2 − ξcs)

0.75 

ellipsoidal 4
3π(B/2 − ξcs)

0.85 

trapezoidal 1
3

2ρp + 1
ρp + 1

(B/2 − ξcs)
a  0.67

2ρp + 1
ρp + 1   

a ρp = p(ξ = B/2)/p(ξ = ξcs)
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to 1, three-dimensional effects on the contact pressure distribution 
become more important. In those situations, similar conclusions can be 
drawn, though they are not detailed here. In fact, there are no physical 
reasons to reject such conclusions. Actual values can be obtained by 
extending the suggested contact pressure shapes into three dimensions. 

The above conclusions also apply qualitatively to concrete blocks 
loaded by a column. The governing structural failure is punching shear, 
which can be similarly investigated through the critical shear crack 
theory (Muttoni and Fernández Ruiz, 2008a; Muttoni et al., 2018). 

3.4. Very slender beams 

As the structural element becomes more deformable, the impact of 
the soil-structure interaction increases. In this section, outcomes ob
tained through the limit analysis method (Hill, 1951; Drucker et al., 
1951, 1952) for footings with a very slender cross-section (cf. Fig. 3) are 
presented. 

In the following, the soil is idealised as a perfectly rigid plastic 
isotropic homogeneous coaxial and associated continuum obeying the 
Tresca or Mohr–Coulomb yield condition. For simplicity, the terms 
Tresca/Mohr–Coulomb soil or material are used. The footing is a 
perfectly rigid plastic beam satisfying the normality condition in the 
space of generalised sectional stresses. 

3.4.1. Plane strain problem 
A combined failure mechanism for strip footings with limited flex

ural resistance was proposed by Plumey (Plumey et al., 2004; Plumey, 
2007). The geometry of such rupture figure, symmetric with respect to 
the centre line, is shown in Fig. 8 for a purely cohesive soil (left-hand 
side) and for a general cohesive frictional soil (right-hand side). The 
kinematics is defined by the angular velocity ω and the corresponding 
centre of rotation, identified by the angle θ0 and the distance x0. The 
indentation of the footing causes the mass of soil between the ground 
surface and the failure line to rotate as a rigid body around the centre of 
rotation. Internal energy dissipation occurs along the lines of soil ve
locity discontinuity, in the footing plastic hinge, and eventually at the 
soil-footing interface. For purely cohesive soils, footing roughness is 
taken into account through an adherent behaviour, i.e. the interface is 
idealised as an infinitely thin layer of a Tresca material characterised by 
a shear yield strength βc, where 0⩽β⩽1. For other soils, Coulomb 
interface friction characterised by the interface friction angle δ is 
assumed. The external power is due to the collapse load Qu and the soil 
self-weight. 

Fig. 7. Shear capacity of the critical shear crack Vc over the shear capacity of 
the critical shear crack for uniform pressure distribution Vc,rect, according to the 
closed-form Eq. (13), as a function of the moment-to-shear slenderness ratio 
αcs,rect = acs,rect/d. 

Fig. 8. Combined failure mechanism for plane strain conditions (Plumey, 
2007). Velocity discontinuity lines within the soil are either a circular arc or a 
logarithmic spiral. The plastic hinge is shown with a grey circle in the middle. 
of the footing. 

Fig. 9. Allowable stress field for combined failure in plane strain conditions 
(Plumey, 2007). 

Fig. 10. Upper and lower bounds to the collapse load of a strip footing resting 
on a Tresca material. The normalised bearing capacity is plotted against the 
dimensionless resisting moment μ = MR/(cB2). The plateau corresponds to the 
well-known value 2 + π. 
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Fig. 11. Upper and lower bounds to the collapse load of a strip footing resting on a cohesionless Mohr–Coulomb material. Left-hand side: upper bounds; right-hand 
side: upper and lower bounds. The normalised bearing capacity is plotted against the dimensionless resisting moment η = MR/(γB3). The values of the general shear 
failure (plateau) are taken from Martin (2005b). 

Fig. 12. Upper and lower bounds to the collapse load of a strip footing resting on a general Mohr–Coulomb material, ϕ = 30◦. First row: upper bounds; second row: 
black lines denote upper bounds whereas grey lines denote lower bounds. 
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Upper bounds were obtained by Plumey for Tresca and cohesionless 
Mohr–Coulomb soils,1 (Plumey, 2007) (Fig. 10 and 11), and by the 
authors for a general Mohr–Coulomb soil (Garbellini and Laloui, 2018) 
(Fig. 12). The curves of the bearing capacity are characterised by an 
increasing branch, corresponding to the combined failure, and by a 
plateau, due to the general shear failure (rigid footing). Here, in contrast 
to (Plumey, 2007; Garbellini and Laloui, 2018), the plateau for the 
Mohr–Coulomb soils (sand and general soils) was taken from the com
plete solution given by Martin (2005a). 

Note that the considered interface frictional behaviour for the upper 
bound solutions of the combined failure corresponds to a non-associated 
behaviour. However, the limit theorems are valid for frictional in
terfaces if the frictional forces are known, because they can be treated as 
surface tractions (Drucker and Prager, 1952; Drescher and Detournay, 
1993). Given that the relative velocity at the interface is constant, and 
owing to the symmetry of the problem, the interface energy dissipation 
over half-footing is (Chen, 1975; Plumey, 2007; Garbellini and Laloui, 
2018) 

Dδ = Ft |vt| =
Qu

2
tanδ |vt| (15)  

where Ft is the resultant frictional force, δ the interface friction angle, 
and |vt| the tangential relative velocity at the interface. 

A lower bound was also derived by Plumey for the case of a Tresca 
material (Fig. 10). The admissible stress field was obtained by applying a 
contact pressure p, admissible for the soil, over a reduced contact 
breadth Bc⩽B (Fig. 9) such that M(p,Bc)⩽MR. For the Tresca soil, such 
contact pressure is uniform and equal to pu = cNc = c(2 + π). 

A general formula for the lower bound of any pressure distribution 
can be obtained by considering half of the footing, the average pressure 
due to the general shear failure pu corresponding to a lower bound so
lution, the relative position of the resultant force of the actual contact 
pressure distribution ζ = a/Bc (Fig. 9), and the contact breadth ratio 
ζc = Bc/B. The solution can be expressed as follows: 

ζc =

̅̅̅̅̅̅̅̅̅
2MR

puζ

√

⩽1 (16a)  

Qu = puζcB (16b) 

The procedure consists in computing pu with (1), redistributing it in 
an admissible manner, e.g. with one of the simple shapes described in 
the previous section, and defining ζ (cf. Table 1). 

For the Tresca material, considering pu = cNc = c(2 + π), the 
dimensionless resisting moment μ = MR/(cB2), and ζ = 1/4, leads to 
the result obtained by Plumey: 

Qu

cB
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8(2 + π)μ

√
(17) 

For a frictional soil, pu is a function of the contact breadth (size ef
fect). Introducing the dimensionless resisting moment η = MR/(γB3), 
(16a) becomes, for a cohesionless Mohr–Coulomb material, as follows: 

ζc =

(
4η

Nγζ

)1/3

⩽1 (18)  

and the dimensionless bearing capacity is given by the following 
expression: 

2Qu

γB2 = ζ2
cNγ (19)  

The contact pressure distribution for smooth rigid footings is directly 
obtained with the method of stress characteristics (Larkin, 1968). It 
increases linearly from the footing edge to the centre. It was shown that 
the solution obtained in this way is complete (Martin, 2005a). Thus, a 
triangular distribution is a rigorous lower bound. Moreover, the trian
gular distribution corresponding to the smooth interface is a rigorous 
lower bound for any value of footing roughness according to the fric
tional limit theorems (Drucker, 1953). Improved lower bounds for rough 
bases can be obtained by considering the appropriate value of the 
bearing capacity factor Nγ. However, the distribution for rough footings 
cannot be obtained in the same way, owing to the presence of a non- 
plastic wedge beneath the base. Several authors suggested that the 
pressure distribution at collapse is parabolic (Terzaghi, 1943; Taylor, 
1948; Smith, 2005; Loukidis et al., 2008) or can be well approximated 
by a triangular shape (Meyerhof, 1951; Kumar, 2003; Saran, 2017). If a 
triangular distribution is assumed, the solution for a cohesionless 
Mohr–Coulomb material is obtained with ζ = 1/6 in (18) (Fig. 11), 
whereas for a parabolic distribution ζ = 3/16 (1/6 = 0.167 and 3/16 =

0.188). 
Shield (1955) obtained a rigorous lower bound to the uniform 

normal strip load for a weightless general Mohr–Coulomb soil. The 
corresponding solution for the combined failure is shown at the bottom 
row of Fig. 12. The solution is obtained as in the case of a Tresca ma
terial, but with Nc = Nc(ϕ). Such solution is an absolute lower bound 
because base roughness and soil self-weight increase the soil bearing 
capacity. 

For a ponderable Mohr–Coulomb material, the pressure at the instant 
of general shear failure is non-zero at the footing edge owing to the 
apparent cohesion, and then it increases in a linear or parabolic way 
toward the centre, as explained previously. Therefore, the computation 
of ζ requires the explicit knowledge of the contribution of the apparent 
cohesion and the soil self-weight to the bearing capacity, i.e. Nc and Nγ. 
However, when the principle of superposition is not adopted, such co
efficients vary for each combination of ϕ and G, and the solution is 
generally given as the ratio pu/c, or similarly, without specifying the 
individual contributions. Nevertheless, a lower bound solution can be 
obtained in a simple manner by using the superposition approach. It is 
known that the sum of the exact solutions of the collapse load of a purely 
cohesive soil and a cohesionless soil is a lower bound to the exact so
lution for the general Mohr–Coulomb soil (Terzaghi, 1943; Michalowski, 
1997; Bolton and Lau, 1993) 

Nc(ϕ, c, γ = 0)+GNγ(ϕ, c = 0, γ)⩽Nc(ϕ, c, γ)+GNγ(ϕ, c, γ) (20)  

where the bearing capacity factors are the exact ones. Owing to the fact 
that an exact solution is also a lower bound, it can be concluded that a 
lower bound estimate for a general soil can be obtained from the su
perposition approach and the two distinct exact solutions. 

The improved lower bound for the combined failure can be obtained 
by independently computing ζc for a weightless cohesive frictional 
material (ζcc) and for a ponderable cohesionless frictional material (ζcγ), 
and then taking the minimum. However, ζcc and ζcγ cannot be simply 
expressed as a function of the total resisting moment MR, as before. This 
would not guarantee an admissible bending moment when the contri
butions are summed. To ensure an admissible bending moment, it is 
assumed that the weightless and cohesionless soils respectively 
contribute to the bending moment by Mc and Mγ as follows: 

Mc = ρmMR
Mγ = (1 − ρm)MR

(21)  

Considering that μ = 2ηG for a general soil, the contact breadth ratio is 
expressed as follows: 

1 The objective function of the combined failure mechanism for a cohesion
less Mohr–Coulomb material was reviewed by the authors in view of a mistake 
in the derivation of the velocity field for the computation of the rate of energy 
dissipated at the soil-footing interface (Garbellini and Laloui, 2018). 
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ζc = min{ζcc, ζcγ}

ζcc =

(
2ρmμ
Ncζ

)1/2

⩽1

ζcγ =

(
2(1 − ρm)μ

GNγζ

)1/3

≤ 1

(22)  

and the dimensionless ultimate load is given by the following expres
sion: 

Qu

cB
= ζcNc + ζ2

cGNγ (23)  

The optimum is found by solving the following bounded maximisation 
problem: 

max
ρm

Qu

cB
0⩽ρm⩽1

(24) 

The problem was transformed in a minimisation problem by multi
plying the objective function times − 1. The L-BFGS-B algorithm (Byrd 
et al., 1995) implemented in SciPy (Virtanen et al., 2020) was used for 
the resolution. A triangular pressure distribution was considered for the 
soil-weight contribution. Some results are shown in Fig. 12 with grey 
lines. Note that the superposition approach, which considers interface 
friction and soil self-weight, provides a better lower bound, as expected. 

3.4.2. Three-dimensional problem 
A combined failure mechanism for footings with finite length sub

jected to a centred linear load can be obtained from that of a plane strain 

situation and considering an admissible velocity field (compatible and 
satisfying the normality condition) at the end faces. 

The footing is now modelled as a rigid plate which develops a plastic 
hinge along its centre line (Fig. 13 and 15). The kinematics remains a 
plane strain motion and is similar to the bi-dimensional case. 

The velocity field for a Tresca material is simply obtained by 
extending the bi-dimensional failure mechanism over the footing length 
L and considering the resulting velocity discontinuity surface at the end 
faces (Fig. 13). Hence, internal energy dissipation within the soil occurs 
on the cylindrical surface and on the end circular segments. The 
resulting objective function is expressed as follows (cf. Appendix A for 
the mathematical derivation): 

Qu

cB
=

2
ζ0

μ + ζ0Kc1 + ζ2
0Kc2

B
L

Kc1 = 2
(

π − 2θ0

cos2θ0
+ βtanθ0

)

Kc2 =
4
3

{
π − 2θ0

cos3θ0
−

tan3θ0

4

[

sin− 2(θ0

/

2) − cos− 2(θ0

/

2) + 4ln
cos(θ0/2)
sin(θ0/2)

]}

(25)  

where ζ0 = x0/B. The solution is found through the following bounded 
optimisation problem: 

min
ζ0 ,θ0

Qu

cB
ζ0 > 0

0 < θ0 < π

(26)  

which was solved numerically as before. The results for perfectly 
adherent footings (β = 1) are plotted for B/L = 0, 0.5 and 1 in Fig. 14. 
To the best of authors’ knowledge, the best upper bound for rectangular 
rigid footings was obtained by Salgado et al. (2004) with the limit 
analysis and finite element method. For the considered rectangular and 
square shapes, they obtained Nc = 6.02 and 6.22, respectively. For 
comparison, the complete solution for a perfectly adherent circular 
punch was obtained by Eason and Shield (1960) and is Nc = 6.05. The 
bearing capacity of a Tresca material increases with increasing aspect 
ratio B/L owing to the presence of hoop stresses (Hencky, 1923; 
Meyerhof, 1951). This is also observed in the combined failure. Note 
that this explanation for enhanced bearing capacity leads to the 
conclusion that it is maximum for circular footings (Skempton, 1951; 
Meyerhof, 1963). Thus, it is likely that Nc = 6.05 is an absolute upper 
bound to the bearing capacity of any rectangular indenter. 

Rigorous lower bound solutions can be obtained in the same way as 

Fig. 13. Combined failure mechanism in three dimensions for a 
Tresca material. 

Fig. 14. Upper bounds to the collapse load for perfectly adherent rectangular 
footings with finite flexural resistance resting on a Tresca half-space. 
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for strip footings. The pressure distribution is not uniform but increases 
slightly toward the footing centre. However, given that the bearing 
pressure increases with B/L, an absolute lower bound may be obtained 
assuming a uniform pressure distribution equal to c(2 + π). 

The geometry of the end failure surfaces for a Mohr–Coulomb ma
terial is more complex because the normality condition imposes an angle 
ϕ between the velocity vectors and the velocity discontinuity surface. 
Such a surface for a plane strain motion was derived by Garnier (1995) 
and is depicted in Fig. 15. The kinematics is similar to the previous cases, 
with velocity vectors parallel to the xy-plane. 

The objective function for a cohesionless Mohr–Coulomb soil is 
expressed as follows (refer to Appendix B for further details regarding its 
derivation): 

2Qu

γB2 =
2

1 − tanδtanθ0

(
2
ζ0

η + 2Kγ1ζ2
0 +

B
L

Kγ2ζ3
0

)

Kγ1 = −
f1

cos3θ0
+

tanθ0

6
−

tan3θ0

6tan2θh

Kγ2 = −
1

cos4θ0

∫ θh

θ0

(

e4(θ− θ0)tanϕ −
sin4θ0

sin4θ

)

sinh[(θ − θ0)tanϕ]cosθ dθ

(27)  

where f1 was derived by Chen (1975): 

f1 =
1

3(1 + 9tan2ϕ)
[(

3tanϕcosθh + sinθh)e3(θh − θ0)tanϕ − 3tanϕcosϕ − sinθ0
]

(28)  

Given that θh and θ0 are related through the implicit equation 
sinθhexp[(θh − θ0)tanϕ] − sinθ0 = 0 (Plumey, 2007), the optimisation 
problem is expressed as follows: 

Fig. 15. Combined failure mechanism in three dimensions for a Mohr–Coulomb material.  
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min
ζ0 ,θ0

2Qu

γB2

ζ0 > 0
{

0 < θ0 < π if δ = 0

0 < θ0 < tan− 1(1
/

tanδ) otherwise

(29) 

In (27), the integral was numerically evaluated with the scipy.inte
grate.quad function of SciPy and the optimisation was carried out as in 
the previous case. 

Results for perfectly rough interfaces (δ = ϕ), ϕ = 15◦ and 35◦ are 
given in Fig. 16. The bearing capacity for rectangular rigid footings is 
computed by multiplying the exact solution for strip footings (Martin, 
2005b) with the analytical expression of the shape factor derived by 

Fig. 16. Upper bounds to the collapse load for perfectly rough (δ = ϕ) rectangular footings with finite flexural resistance resting on a cohesionless Mohr–Coulomb 
half-space. 

Fig. 17. Upper bounds to the collapse load for perfectly rough (δ = ϕ) rectangular footings with finite flexural resistance resting on general Mohr–Coulomb 
half-spaces. 
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Lyamin et al. (2007), which is based on a weighted average of lower and 
upper bounds, and thus it is supposed to provide reasonable estimates of 
the exact solution. Note that the bearing capacity increases with 
increasing B/L for ϕ = 35%, whereas the situation is reversed for ϕ =

15◦. This seems inconsistent with respect to the experimental results 
previously mentioned, according to which the bearing capacity de
creases with decreasing L. The reason for this is twofold. First, the shear 
strength angle for conditions other than plane strains is lower (Meyer
hof, 1963). Second, finite element simulations showed that, for small 
values of ϕ, the mass of displaced soil reduces with increasing B/L (Zhu 
and Michalowski, 2005). This causes a reduction of the bearing capacity. 
The same was observed for higher values of the shear strength angle and 
dilatancy angles lower than ϕ, which is generally the case for real soils. 

To obtain a lower bound, the same approach of the plane strain 
problem can be adopted but with extension of the shape of the contact 
pressure distribution to three dimensions. In particular, the pressure 
must be zero over the entire perimeter of the footing. This actually 
produces a movement of the resultant pressure closer to the footing 
centre. 

In the case of general Mohr–Coulomb soils, the contribution of the 
cohesion to the internal energy dissipation must be added to the previ
ous solution. The objective function can be expressed as follows (cf. 
Appendix C): 

Qu

cB
=

1
1 − tanδtanθ0

[
2
ζ0

μ + K1ζ0 + 4
(

B
L

K2 − GK3

)

ζ2
0 −

B
L

GK4ζ3
0

]

K1 =
e2(θh − θ0)tanϕ − 1

cos2θ0tanϕ

K2 =
1

3cos3θ0

∫ θh

θ0

(

e3(θ− θ0)tanϕ −
sin3θ0

sin3θ

)

cosh[(θ − θ0)tanϕ]dθ

K3 = − Kγ1

K4 = −
Kγ2

2

(30)  

with the following optimisation problem: 

min
ζ0 ,θ0

Qu

cB
ζ0 > 0
{

0 < θ0 < π if δ = 0

0 < θ0 < tan− 1(1
/

tanδ) otherwise

(31) 

Results for perfectly rough interfaces, obtained in a similar way to 
the previous ones for G = 0.1 and 0.5, ϕ = 15◦ and 35◦, and B/L = 0 and 
0.5, are plotted in Fig. 17. A few rigorous upper bound solutions are 
available for the bearing capacity of finite length footings resting on 
general soils. The reason for this is that an optimum solution exists for 
any combination of the parameters G,ϕ, and B/L, which complicates to 
derive useful and simple analytical expressions or charts. Moreover, 
practitioners prefer the superposition approach owing to its conserva
tive character. The solutions for rigid footings retained here correspond 
to the upper bounds obtained by Michalowski (2001), who considered 
an advanced multi-block Prandtl-type failure mechanism. Note that, for 

the selected values of G, the bearing capacity increases with increasing 
B/L, similar to the case of a Tresca material. This is due to the fact that, 
as a rough estimate, a weightless material can be assumed for G < 0.1, 
whereas a cohesionless material can be assumed for G > 10 (Chen, 
1975). Therefore, the situation is closer to a weightless material. 

An absolute lower bound corresponding to a weightless soil and a 
smooth footing can be obtained with the admissible uniform contact 
pressure obtained by Shield (1955). Improved solutions require to take 
into account the soil self-weight and eventually the base roughness. The 
superposition approach can be adopted, as in the case of strip footings. 

4. Concluding remarks 

A general framework for the analysis of the bearing capacity of 
surface footings under centred vertical load considering soil-structure 
interaction was presented. The importance of considering both compo
nents, i.e. the ground and the structure, for a correct evaluation of the 
overall foundation resistance was emphasised. A simple procedure based 
on the knowledge of an approximate contact pressure distribution 
combined with the knowledge of the governing footing failure mode was 
shown to be a powerful tool for consistent foundation analysis and 
design. 

Detailed analyses of the bearing capacity problem of a surface 
footing with a very slender cross-section was carried out to show how 
the limit analysis method can be applied to general three-dimensional 
soil-structure systems. 

The evaluation of the footing bearing capacity assuming a uniform 
contact pressure distribution, regardless of the soil properties, is only 
justified for deep beam footings. 

Previous studies coincide on the fact that the contact pressure dis
tribution at the instant of general shear failure is closely approximated 
by one of the following simple shapes: uniform, triangular, ellipsoidal, 
and trapezoidal. This can be conveniently exploited to take into account 
the soil-structure interaction in a simplified manner. 

The concepts and techniques presented in this paper can be extended 
to shallow footings subjected to general loading conditions and to other 
soil-structure systems, such as retaining walls. 
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Appendix A. 3D combined failure mechanism on a Tresca material 

The external power resulting from the applied load, the rate of internal energy dissipation due to the plastic hinge, the interface adherence, and the 
lateral cylindrical surfaces are simply obtained by multiplying the expressions for the plane strain problem (Plumey, 2007) times the footing length L. 
The expression of interface dissipation is based on the assumption, verified a posteriori, that min{rcosθ0; B/2} = rcosθ0. 

The rate of energy dissipation due to plastic shearing at the end faces is given by the following expression (cf. Fig. 13): 

Dc2 = 4
∫ θ=π− 2θ0

θ=0

∫ ξ=r

ξ=l
dDc2 (A.1) 
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where l = rsinθ0/sin(θ0 +θ) (thick black line in Fig. 13) and and dDc2 = cvdA = cωξ2 dξdθ with dA the differential of the lateral end surface area (dark 
grey rectangle in Fig. 13). Dissipation Dc2 is expressed as follows: 

Dc2 =
4
3

cωr3
(

π − 2θ0 − sin3θ0

∫ θ=π− 2θ0

θ=0
sin− 3(θ0 + θ)dθ

)

(A.2)  

introducing MR = μcB2, r = ζ0B/cosθ0, and knowing that the following expressions are fulfilled: 
∫ θ=π− 2θ0

θ=0
sin− 3(θ0 + θ)dθ =

1
4
[
sin− 2(θ0

/
2) − cos− 2(θ0

/
2)
]
+ ln

cos(θ0/2)
sinθ0/2

(A.3)  

the objective function (25) is obtained. 

Appendix B. 3D combined failure mechanism on a cohesionless Mohr–Coulomb material 

As in the case of a Tresca soil, the solution is obtained by multiplying the expressions for the plane strain problem (Plumey, 2007) times L, and by 
adding the contribution of the end regions. For a cohesionless Mohr–Coulomb material, the latter participates in the external power of the gravity field 
Pγ. Considering only one quarter of the failure mechanism, the exercise consists in computing the rate of work done by the gravity force in the region 
z⩾L/2 (cf. Fig. 15). Considering the bounds of the integration variables: 

θ0⩽θ⩽θh
l(θ)⩽ξ⩽r(θ)
0⩽χ⩽z(ξ, θ)

(B.1)  

where 

l(θ) = r0sinθ0/sinθ
r(θ) = r0e(θ− θ0)tanϕ

z(ξ, θ) = ξsinh[(θ − θ0)tanϕ]
(B.2)  

Pγ is expressed as follows: 

Pγ

4
=

∫ θ=θh

θ=θ0

∫ ξ=r

ξ=l

∫ χ=z

χ=0
dPγ

=
1
4

ωγr4
0

∫ θh

θ0

(

e4(θ− θ0)tanϕ −
sin4θ0

sin4θ

)

sinh[(θ − θ0)tanϕ]cosθ dθ

(B.3)  

where the differential of the rate of gravitational work is dPγ = γωξ2cosθ dχ dξdθ. Finally, the objective function (27) is obtained by considering that 
r0 = ζ0B/cosθ0 and MR = ηγB3. 

Appendix C. 3D combined failure mechanism on a Mohr–Coulomb material 

The upper bound solution for the combined three-dimensional failure mechanism and a general Mohr–Coulomb soil is obtained from the plane 
strain solution (Garbellini and Laloui, 2018) and the three-dimensional solution for the cohesionless soil (Appendix B). The former is extended over the 
entire footing length. The formulation of the rate of work due to the gravity force for the end regions of the latter remains the same, and the 
contribution of the apparent cohesion to the internal energy dissipation Dc on the end faces is added. 

Given that velocity vectors make an angle ϕ with the discontinuity surface, the differential of energy dissipation is dDc = cωrcosϕdA, where the 
differential of surface area in cylindrical coordinates is expressed as follows: 

dA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
∂z
∂ξ

)2

+
1
ξ2

(
∂z
∂θ

)2
√

ξdξdθ

∂z
∂ξ

= sinh[(θ − θ0)tanϕ]

∂z
∂θ

= ξcosh[(θ − θ0)tanϕ]tanϕ

(C.1)  

Considering the integration variables θ and ξ as in Eq. (B.1), the contribution of the cohesion is given by the following expression: 

Dc

4
= cωcosϕ

∫ θ=θh

θ=θ0

∫ ξ=r

ξ=l

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cosh2[(θ − θ0)tanϕ]
(
1 + tan2ϕ

)√

ξ2 dξdθ

= cω r3
0

3

∫ θ=θh

θ=θ0

(

e3(θ− θ0)tanϕ −
sin3θ0

sin3θ

)

cosh[(θ − θ0)tanϕ]dθ

(C.2) 

Finally, by applying the principle of virtual velocities, rearranging the terms, and considering that r0 = ζ0B/cosθ0,MR = μcB2, and G = 0.5γB/c, 
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Eq. (30) is recovered. 
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