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Abstract

Abstract

Numerical models that can simulate coupled geometric instabilities in steel beam-columns
are required for the seismic assessment of certain steel moment-resisting frames. Reliably
simulating coupled instabilities requires that the steel material is precisely characterized
under inelastic cyclic straining. Full continuum finite element (CFE) models can be used
in this context, however, reduced order models are preferred for building-level simulations
because of their lower computational cost. Concentrated plasticity models are a typical
reduced order approach, although findings from recent full-scale experiments conducted on
steel beam-columns have highlighted their limitations in simulating component behavior.

The aim of this thesis is to propose accurate reduced-order simulation models for steel
beam-column components to simulate coupled buckling at a diminished computational
expense compared to full CFE approaches. This goal is achieved by using component macro
models that couple CFEs in critical regions with beam-column elements elsewhere. The
specific objectives related to the aim of this thesis are to: (i) advance the state-of-the-art in
constitutive modeling for structural steels subjected to earthquake-induced inelastic straining;
(ii) develop an efficient method of coupling beam-column and CFE domains that incorporates
torsion-warping; and (iii) develop general recommendations for modeling wide flange beam-
column components subjected to inelastic cyclic straining using the macro model.

This thesis developed a constitutive model for mild structural steels to improve upon the
initial yield behavior of a classic metal plasticity model by accounting for the discontinuous
yielding phenomenon. Constitutive model calibration methodologies were developed using
constrained optimization for the cases when the material’s cyclic behavior is known and when
it is unknown. Simulated geometric instabilities were shown to be sensitive to the constitu-
tive model’s input parameters in steel beam-columns of particular geometries subjected to
multiaxis loading. Coupling methods that included torsion-warping were developed using
multipoint constraint equations. Findings indicate that including torsion-warping in the cou-
pling formulation is critical for steel beam-columns that are susceptible to coupled local and
lateral-torsional instabilities. The proposed macro model is efficient for the investigated range
of steel beam-columns: it reduces computational cost metrics in benchmark CFE analyses
by around 50 %. It is also accurate, as the average error between benchmark CFE and macro
model analyses is only 3 %.

The advances in material modeling made by this thesis can be used to reduce the uncer-
tainty in steel component simulations. This enables analysts to better comprehend component
behavior through simulations and improves simulation-assisted design. Component models
that explicitly simulate geometric instabilities and material inelastic behavior at lower compu-
tational costs are important in probabilistic assessments and uncertainty quantification. They
may be especially useful, for example, in benchmarking concentrated plasticity models and in
the process of developing new structural systems.

Keywords: reduced-order models, earthquake loading, steel structures, beam-columns, geo-
metric instabilities, multiaxial plasticity, inverse problem, multipoint constraint equations,
torsion-warping.
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Résumé

Résumé

Les modèles numériques qui permettent de simuler les instabilités géométriques couplées
dans les poutres-poteaux en acier sont indispensables pour l’évaluation sismique de certaines
structures à charpentes métalliques. Afin de simuler les instabilités couplées de manière fiable,
il faut caractériser précisément le matériau en acier sous déformation cyclique inélastique.
Les modèles d’éléments finis continus (« Continuum Finite Element » ou CFE) peuvent être
utilisés pour accomplir ces tâches, cependant, leur coût computationelle dans le contexte
des évaluations probabilistes encourage l’utilisation d’approches de modélisation d’ordre
réduit. Les modèles de plasticité concentrés sont généralement préférés aux modèles CFE pour
cette raison, cependant, les résultats de récentes expériences en échélle réelle menées sur des
poutres-pouteaux en acier ont fait ressortir leurs limites dans la simulation des comportements
des composants.

Le but de cette thèse est de proposer des modèles de simulation d’ordre réduit précis
pour les composants poutres-poteaux en acier qui simule les instabilités géométriques cou-
plées à un coût computationelle réduit par rapport aux approches CFE complètes. Ce but
est atteint en utilisant des modèles-macro de composants qui couplent des CFE dans des
régions critiques avec des éléments de type poutre-poteau situés ailleurs. Les objectifs précis
liés au but de cette thèse sont les suivants : (i) faire évoluer l’état des connaissances en ce qui
concerne la modélisation constitutive des aciers de charpentes soumis à une déformation
inélastique résultant d’un séisme ; (ii) développer une méthode efficace qui permet le couplage
des domaines d’éléments de poutre-colonne et des domaines de CFE qui intègre le gauchisse-
ment par torsion; et (iii) rédiger des recommandations générales pour la modélisation des
composants poutre-poteau à ailes larges soumis à une déformation cyclique inélastique en
utilisant le modèle-macro.

Cette thèse a développé un modèle constitutif pour les aciers de construction afin d’amé-
liorer le comportement du rendement initial d’un modèle classique de plasticité du métal
grâce à la prise en compte du phénomène d’écoulement plastique discontinu. Les méthodes
calibration des modèles constitutifs ont été développées en utilisant l’optimisation sous
contraintes pour les cas où le comportement cyclique du matériau est directement connu
et pour ceux où il est inconnu. Les instabilités géométriques simulées se sont prouvées sen-
sibles aux paramètres de saisie du modèle constitutif dans les poutres-poteaux en acier de
géométries particulières sous une charge multiaxiale. Des méthodes de couplage incluant le
gauchissement par torsion ont été développées à l’aide d’équations de contraintes multipoints.
Les résultats montrent que l’inclusion de la torsion non-uniforme dans la formulation de
l’accouplement est essentielle pour les poutres-poteaux en acier qui sont susceptibles de
subir des instabilités de voilement et de déversement. Le modèle-macro proposé est efficace
pour la gamme de poutres-poteaux en acier examinée : il réduit d’environ 50 % les coûts
computationelle des analyses de référence CFE. Il est également précis, car l’erreur moyenne
entre les analyses de référence CFE et le modèle-macro n’est que de 3 %.

Les innovations réalisées par cette thèse dans le domaine de la modélisation des matériaux
peuvent être utilisées pour réduire l’incertitude dans les simulations de composants en acier.
Cela permettra aux analystes de mieux comprendre le comportement des composants grâce
à des simulations et à l’amélioration de la conception assistée par simulation. Les modèles
de composants qui simulent clairement les instabilités géométriques et le comportement
inélastique des matériaux à des coûts informatiques réduits sont importants pour réaliser des

v



Résumé

évaluations probabilistes et pour quantifier les incertitudes. Ils peuvent être particulièrement
utiles, par exemple, dans l’évaluation des modèles d’ordre réduit et dans le développement de
nouveaux systèmes structurels.

Mots clés : modèles d’ordre réduit, charges sismiques, structure en acier, instabilités géo-
métriques, plasticité multiaxiale, problèmes inverses, équations définissant les contraintes
multipoints, gauchissement par torsion, poutres-poteaux.
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1 Introduction

1.1 Nonlinear structural analysis in earthquake engineering

Earthquakes cause socioeconomic losses in buildings due to the cost to repair damage in

structural and nonstructural components, the inability to utilize buildings during repair time

(downtime), and the risk of casualties due to potential collapse. Controlling damage and

estimating potential losses can be done using the performance-based earthquake engineering

framework (Cornell and Krawinkler, 2000) given that the building’s response to earthquake

events can be accurately estimated. Physical experiments to predict the behavior of structures

and structural components are costly, thus engineers and researchers increasingly turn to

numerical models for simulating building behavior to seismic hazards. In this manner, nonlin-

ear structural analysis using the finite element method is integral to the performance-based

assessment of buildings subjected to earthquake loads.

Meaningful simulations require that the nonlinear simulation models accurately portray

the behavior of their representative components (e.g., beams, columns, the beam-to-column

web panel zone joint—shown in Figure 1.1). Beam and column components, that constitute

the focus of the thesis, are subjected to a combination of axial forces, shear forces, and

bending moments (multiaxis loading) due to applied gravity loads coupled with lateral drift

demands resulting from earthquake-induced displacement of the structure. Collectively, these

components are denoted as beam-columns. Critical regions in beam-columns are typically at

the component ends, due to the moment distributions that arise under lateral displacement

of the structure (see Figure 1.1). Components used in seismic design of steel structures

are mandated that such damage typically initiates through yielding and inelastic geometric

instabilities in these regions (CEN, 2005c; AISC, 2016a; Lignos et al., 2019). Accurately modeling

the geometric instabilities interacting with inelastic material behavior is therefore a necessity

for reliable nonlinear component simulations.
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and Lignos (2018a) and Engelhardt et al. (2000).
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1.2 Modeling steel components subjected to earthquake loads

Complex behaviors in beam-columns, in terms of both material nonlinearity and geometric

instabilities, need to be accounted for to accurately predict the behavior of components

subjected to multiaxis cyclic loading resulting from earthquakes. A brief overview of these

behaviors is provided to contextualize the problem; a thorough review of beam-column

behavior under multiaxis cyclic loading can be found in Lignos et al. (2019). Damage in the

form of strength degradation in seismically compact beam-columns subjected to lateral drift

demands typically initiates through inelastic local buckling at the components’ ends due to

the moment gradient present in these members (see Figure 1.1). Local instabilities may be

coupled with global instabilities, such as lateral-torsional buckling (LTB) and flexural buckling,

after further loading. Notably, LTB also leads to unloading-stiffness degradation in seismically

compact beam-columns. Modeling coupled local and global instabilities, as well as their

interaction, is therefore critical for steel beam-column components.

Yielding and instability phenomena are represented in different ways depending on the

class of numerical model. For instance, three classes of simulations models for structural com-

ponents are shown in Figure 1.1c. Concentrated plasticity models emulate nonlinear material

behavior and degradation in component strength/stiffness through zero-length elements at

pre-defined locations within the component. Continuum finite element (CFE) component

representations utilizing shell and solid elements are more general as they explicitly model

both the inelastic material behavior and its interaction with geometric instabilities throughout

the entire component. The component macro model approach lies between these two afore-

mentioned methods in terms of fidelity by explicitly modeling critical regions with solid/shell

elements and using beam-column elements elsewhere.

Concentrated plasticity approaches are used extensively in performance-based earthquake

engineering (FEMA, 2009; ATC, 2017b) owing to their lower computational cost compared to

CFE models. The low computational cost is beneficial in this context due to: (i) the number of

finite elements needed to model the entire structural system, (ii) the number of earthquake

records required to mitigate uncertainty in earthquakes themselves (Eads et al., 2013), (iii) and

the number of analyses required to obtain a statistical distribution of structural performance

(Vamvatsikos and Cornell, 2002). There are, however, a number of important limitations in

concentrated plasticity models that have been highlighted by recent experimental programs

on steel beam-columns (Ozkula et al., 2017; Elkady and Lignos, 2018a; Cravero et al., 2020;

Suzuki and Lignos, 2021). Addressing the limitations in the concentrated plasticity component

modeling approach for steel beam-columns, discussed in detail in Chapter 4, is a primary

motivation for the research conducted in this thesis. At the same time, it is desirable to reduce

the computational cost of full-CFE approaches for structural models to be better suited for

performance-based applications.
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One focus of this thesis is on the development of a beam-column macro modeling ap-

proach to match the fidelity of full-CFE models at a reduced computational cost. Component

macro models are defined by three features: (i) the specification of continuum element (i.e.,

shell or solid) domains used in the critical regions, (ii) the specification of beam-column

element domains used elsewhere, and (iii) the coupling between domains of continuum and

beam-column elements. A general procedure, proposed later in this thesis, provides recom-

mendations for these three features given beam-column components subjected to multiaxis

loading. One challenge in this regard is the a priori partitioning of components into domains

of continuum and beam-column elements. Furthermore, as will be introduced in Chapter 4,

there are limitations in existing methods (e.g., McCune et al. (2000); Song (2010); Ho et al.

(2010); Dassault Systèmes (2014); Liu (2016)) for coupling the continuum and beam-column

elements in a manner that includes torsion-warping present in wide flange beam-columns.

Including torsion-warping in the coupling formulation is found to be particularly important

for beam-columns susceptible to global instabilities such as lateral-torsional buckling.

1.3 Modeling structural steels subjected to earthquake-induced in-

elastic cyclic straining

Frequent reference has thus far been made to the inelastic nature of a beam-column’s response

to strong earthquake loads. The primary challenge in modeling structural steels subjected

to earthquake-induced inelastic cyclic straining is the uncertain nature of the inelastic strain

demands. Throughout this thesis, material behavior is represented mathematically using an

empirical constitutive modeling approach. In relation to the challenge of uncertain loading,

the selected empirical constitutive model, and its parameters, should be selected to accurately

represent the expected range of inelastic strain demands regardless of the loading history. This

issue was tackled by de Castro e Sousa et al. (2020) by calibrating a classic metal plasticity con-

stitutive model using several strain histories deemed representative of earthquake-induced

inelastic strain demands. The reader is directed to de Castro e Sousa et al. (2020) for infor-

mation regarding the sensitivity in the model calibration to the selected load protocols. The

benefit of this approach is that consistent constitutive model parameters are obtained even

in the face of parameter non-uniqueness frequently encountered in this domain (Cooke and

Kanvinde, 2015).

The overall procedure for determining material model parameters proposed in de Castro

e Sousa et al. (2020) is shown in Figure 1.2. A number of structural steel samples (coupons)

are extracted from the specified base material (e.g., a wide flange member or a plate). The set

of material coupons are subjected to a suite of uniaxial, strain-based loading protocols with

different characteristics deemed to be representative of monotonic and earthquake-induced

inelastic cyclic straining, an example is shown in Figure 1.3. Constitutive model parameters are
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then determined by solving the inverse problem of model calibration using all of the collected

stress-strain data for the given material. The objective function in this case is the difference

in accumulated squared strain energy between the model and experiment summed over all

available uniaxial tests for a given material. Consistent parameters, applicable over a wide

range of inelastic strains, tend to result from this procedure.

The classic metal plasticity Voce-Chaboche (VC) (Voce, 1948; Armstrong and Frederick,

1966; Chaboche et al., 1979) constitutive model was calibrated by de Castro e Sousa et al. (2020)

for structural steels using the aforementioned methodology. This material model is ubiquitous

for modeling structural steel components subjected to earthquake loading (see e.g., Fell et al.

(2009); Nip et al. (2010); Fogarty and El-Tawil (2015); Elkady and Lignos (2018b)). However, a

particular limitation in the VC model for simulating the inelastic behavior of structural steels

was revealed through this work. The initial yield stress is systematically underestimated by at

least 10–30 % using this constitutive model, although, for strains past around 0.02 the model

performs quite admirably in predicting the stress-strain behavior. Typical results are presented

in Figure 1.3 that depict the underestimation of the measured yield stress (most clear under

monotonic loading), as well as the reasonably good performance of the VC model for inelastic

cyclic loading. There is a need to further comprehend the origins of the discrepancy in yield

stress and the impact that it has on component simulations; furthermore, this behavior in the

constitutive model should be corrected without sacrificing accuracy in later loading cycles.

A limitation of the framework proposed by de Castro e Sousa et al. (2020) is the require-

ment of using several cyclic coupon tests to calibrate the material model parameters. Such

cyclic coupon tests are scarce, whereas standard tensile tests (ASTM, 2016b; ISO, 2019) are

commonplace. Therefore, a calibration method that can make use of standard tensile test

results to provide a reasonable estimate of a material’s behavior under cyclic loading is con-

sidered useful to model situations where the cyclic material behavior cannot be explicitly

known. This situation is frequently encountered in modeling laboratory experiments on steel

beam-columns subjected to multiaxis cyclic loading, such as those represented in Figure 1.1.

Therefore, there is a need for a physically-motivated methodology to calibrate constitutive

models under the condition of limited material information.

1.4 Aim and organization of the thesis

1.4.1 Aim and objectives

The overarching aim of this thesis is to propose reduced-order simulation models for steel

beam-column components that match the fidelity of full continuum finite element models at

a diminished computational expense. This work is motivated by findings from full-scale exper-

iments conducted on beam-columns that highlighted limitations in concentrated plasticity

models. Motivation for a computationally efficient approach comes from the intent to use
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these models in the context of performance-based earthquake engineering. Computationally

efficient modeling is achieved in this thesis using the component macro model approach to

explicitly represent inelastic material behavior and geometric instabilities in critical regions.

Within this paradigm, there is a need for an efficient method to couple beam-column and con-

tinuum element domains that accounts for torsion-warping. Reliable component simulations

require an updated material model that improves upon the initial yielding behavior of classic

metal plasticity models, and a calibration method that accounts for the frequent case when

there is limited information available regarding the material behavior.

The specific objectives related to the aim of this thesis are to:

1. advance the state-of-the-art in constitutive modeling for structural steels subjected to

earthquake-induced inelastic strain demands;

2. develop an efficient method of coupling beam-column and continuum element do-

mains that incorporates torsion-warping; and

3. develop general recommendations for modeling wide flange beam-column components

subjected to inelastic cyclic straining using the macro model concept.

The first objective is achieved by developing a new material model, and a coherent method-

ology for its calibration, that addresses the limitation in the VC model of underestimating the

initial yield stress without sacrificing accuracy in later inelastic loading cycles. A calibration

methodology based on constrained optimization is proposed for the cases where the cyclic

material behavior is known and when it is unknown. This objective is addressed first as the

proposed material model will be used in subsequent developments. The second objective

is achieved through new kinematic coupling methods that transfer torsion-warping defor-

mations between the beam-column and continuum element domains. The third objective is

achieved by incorporating the developed material model and coupling method into systematic

recommendations for the macro modeling of steel wide flange beam-columns.

1.4.2 Organization

This thesis is organized by articles. Chapters 2–6 have been, or are planned to be, submitted

to high-quality scientific journals. Each chapter is comprised of the preprint or postprint

version of an article; and in accordance with EPFL policy, the first page contains: the author

list, the thesis author’s contributions, and bibliographic information of published articles.

Each article’s abstract and keywords are also provided at the start of the chapter. References

cited in each chapter are contained in the bibliography at the end of the thesis. A notation list

is provided at the end of each chapter that corresponds to the specific chapter.

This thesis is thematically divided into two main parts. Part I addresses the first objective

stated above through the development of a new constitute model for structural steels and its

7
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calibration (Chapter 2). Part I also includes a novel method that was developed to calibrate

material models for cyclic loading when only limited data related to a standard tension test

is available (Chapter 3). Part I is mainly concerned with providing material-level results and

to highlight the sensitivity of simulations to material model input parameters in particular

beam-columns. Further outcomes from these chapters are shown later in the thesis (i.e., in

Chapter 6) by comparing simulations using the developments in Part I with beam-columns

experiments.

Part II addresses the second and third objectives related to the component macro model.

First, two new methods for coupling beam-column element and continuum element domains

are developed (Chapters 4 and 5). The best-fit MPC devised in Chapter 5 was developed

prior to the development of the warping-inclusive kinematic coupling (WIKC) proposed in

Chapter 4. However, the limitations found in the best-fit MPC motivated the WIKC method

developed in Chapter 4, and thus the WIKC method was instead used extensively for beam-

column macro modeling in this thesis. The presentation of Chapters 4 and 5 therefore follows

the chronological order of article submission. Afterwards, applications of the component

macro model are provided for beam-column components with wide flange cross sections

(Chapter 6). Part III of this thesis contains a chapter-by-chapter summary and conclusions, as

well as recommendations for future research that resulted from this work.
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A nonlinear isotropic/kinematic hardening
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manuscript.

Abstract: Numerical models of structural components that deteriorate primarily due to geometric

instabilities under multiaxis cyclic loading are sensitive to both the assumed geometric imperfections

and the nonlinear material model assumptions. Accuracy of the constitutive model is, therefore, a

desirable feature in finite element simulations. However, the classic Voce-Chaboche metal plasticity

model, ubiquitous in commercial finite element software, is found to underestimate the initial yield

stress in structural steels by about 10–30 % when calibrated to minimize the overall difference in strain

energy between the model and test data of load protocols representative of earthquake loading. This

chapter proposes a refined version of the Voce-Chaboche material model. When compared with the

original model, the updated one improves the prediction of the initial yield stress, can simulate initial

yield plateau behavior, and better estimates experimental cyclic stress-strain data. Constraints on the

model parameters are established, a calibration procedure is developed, and model parameters are

proposed for nine structural steels used worldwide. Source code for the material model is also made

publicly available. A case study demonstrates that steel component behavior is sensitive to subtle

differences in the material response that arise between the Voce-Chaboche and the proposed material

models.

Keywords: Constitutive model; Structural steel; Discontinuous yielding; Multiaxial plasticity; Earth-

quake loading; Nonlinear inverse problem; Geometric instabilities.
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Chapter 2. Constitutive modeling of structural steels: A nonlinear isotropic/kinematic
hardening material model and its calibration

2.1 Introduction

Experimental evaluation and accurate numerical modeling of structural components and

systems is necessary in the field of earthquake engineering to evaluate component behavior

under multiaxis cyclic loading. In steel structures, that form the basis of this work, paramet-

ric full-scale physical experiments would often require an inordinate amount of resources.

Furthermore, the complex interactions between nonlinear material behavior and the geo-

metric nonlinearities are challenging to study analytically. Numerical modeling in the form

of continuum finite element (CFE) analysis, in contrast, is a well established alternative to

investigate these problems in a so-called virtual testing environment (ATC, 2017a). A few

prevalent examples demonstrating the use of CFE analysis include modeling braces and brace

connections in concentrically braced frames (Fell et al., 2009; Hsiao et al., 2012), studying

geometric instability mechanisms in commonly used lateral load resisting systems (Imanpour

et al., 2016), extending results from full-scale steel wide flange column tests to a wide range of

column geometries and loading conditions (Fogarty and El-Tawil, 2015; Elkady and Lignos,

2015a, 2018b), and aiding the development of component modeling guidelines in support of

performance-based earthquake engineering (Lignos et al., 2019).

Accurately simulating the geometric instabilities and nonlinear material behavior is es-

sential to understanding the performance of components subjected to seismic demands

through CFE analysis. At the crux of this issue is the choice of initial geometric imperfections

to induce an appropriate geometrically nonlinear response, as well as the choice of a material

model that rigorously represents the material behavior. Geometric imperfections are typically

included by superimposing scaled elastic buckling modes found through eigenvalue analysis,

and the sensitivity of simulations to both the shape and amplitude of the imperfections has

been acknowledged (Schafer et al., 2010; Kalochairetis and Gantes, 2011; Elkady and Lignos,

2015a, 2018b; Ziemian et al., 2018; Cravero et al., 2020). None of these studies, however, have

investigated the sensitivity of steel component simulations to the choice of material model

and its parameters—this chapter works towards addressing these questions.

The employed material model should capture pertinent cyclic loading effects, notably

the Bauschinger effect, cyclic hardening, and ratcheting (Sowerby et al., 1979; Cofie and

Krawinkler, 1985; Hassan and Kyriakides, 1992; Kaufmann et al., 2001). Cyclic softening is

another effect observed in particular steels (Hassan and Kyriakides, 1992), however, this effect

is not present in the mild structural steels that are the focus of this research. Mild steels are,

hereafter, defined as steels that contain less than 0.3 % carbon by mass. The constitutive

model combining the nonlinear isotropic hardening law proposed by Voce (1948) to model

cyclic hardening with the nonlinear kinematic hardening law of Chaboche et al. (1979) to

model the Bauschinger effect and ratcheting, herein the Voce-Chaboche model, is ubiquitous

in commercial finite element software.
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2.1. Introduction

In the context of earthquake loading, constitutive models for mild structural steels should

be able to closely replicate the material’s behavior regardless of the load history to account

for the effect of ground motion uncertainty on the structural response. de Castro e Sousa

et al. (2020) addressed this issue by calibrating the Voce-Chaboche model using data sets of

5–10 uniaxial round-bar coupon tests subjected to distinct cyclic strain histories deemed to be

representative of earthquake loading by Suzuki (2018). The reader is directed to de Castro e

Sousa et al. (2020) for a detailed discussion of alternative calibration methods. The calibration

method of de Castro e Sousa et al. (2020) also reveals that there is an inherent issue in the

Voce-Chaboche model for the modelization of mild structural steels in this context.

The issue in the Voce-Chaboche model for mild steels is related to the discontinuous

yielding phenomenon (Hall, 1970; Lubliner, 2008), and manifests itself in an underestimation

of the initial yield stress with the aforementioned methodology. de Castro e Sousa et al. (2020)

demonstrate that the overall difference in accumulated strain energy between the model and

the test data is minimized by sacrificing accuracy in the initial yield stress to better predict

the behavior in further plastic loading cycles. Their study suggests that the model’s optimal

initial yield stress underestimates the experimentally measured yield stress by around 10–

30 % depending on the data set considered, the reason for this will be discussed shortly.

Note that there is no discernible bias in the underestimation based on the steels’ yield stress,

manufacture provenance, or chemical composition for the sets of structural steels investigated

by de Castro e Sousa et al. (2020). The underestimation of the initial yield stress should

be addressed in an effort to investigate the sensitivity of steel components to the choice of

material model and its input parameters.

The objective of this chapter is to propose an Updated Voce-Chaboche (UVC) material

model that better estimates the initial yield stress for structural steels without reducing the

fidelity in later loading cycles. Improvement in the prediction of the yield stress at the material

level has implications for the extent of member yielding, and subsequently the simulated

geometric instabilities in components — both these aspects are demonstrated later on in

this chapter through a case study. In turn, accurate predictions of member buckling are

important when simulating structures at limit states where such component deterioration is

expected. A refined isotropic hardening rule is proposed to achieve this goal, and constraints

on the material model parameters that form the sufficient condition to ensure instantaneous

hardening of the material model are established. These constraints are considered to be

essential for the proper use of the proposed material model for structural steels. A calibration

procedure is also proposed that, in combination with the parameter constraints, is general

and agnostic with respect to the material model, i.e., no further engineering heuristics are

introduced. Finally, we demonstrate that steel components subjected to mulitaxis cyclic

loading may be highly sensitive to the material model assumptions. A case study utilizing a

steel wide flange column model under compressive axial load coupled with cyclic lateral drift

13
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Figure 2.1 – Uniaxial 2 % increasing strain amplitude cyclic coupon test on S355J2+N steel
and its best-fit Voce-Chaboche model prediction. Experiment data from Grigoriou and Lignos
(2017).

demands demonstrates that seemingly small changes in the material model parameters can

have a significant influence on the simulation results.

2.2 Limitation of the Voce-Chaboche model for mild steels

The Voce-Chaboche material model underestimates the yield stress in mild structural steels as

a compromise to reduce the overall difference in accumulated strain energy between stress-

strain data and the model prediction for cyclic loading histories. This issue is illustrated using

data from a cyclic uniaxial 2 % increasing strain amplitude test on S355J2+N steel (CEN, 2005d)

with a nominal yield stress of fy = 355 MPa (experimental data from Grigoriou and Lignos

(2017)). Test data true stress-strain relations are shown along with the best-fit Voce-Chaboche

model prediction in Figure 2.1a. Best-fit in the context of this chapter is defined as the set of

parameters that minimizes the accumulated squared area, i.e., squared strain energy, between

the experiment and the model prediction. This error is represented by the shaded region in

Figure 2.1b restricted on the first few cycles of loading in Figure 2.1a. Notice that the initial

yield stress of the test data is underestimated by the model to better match the stress-strain

history in subsequent cycles, which tend to present a lower elastic limit with smooth plastic

hardening. Consequently, the error is primarily focused in the first loading cycle due to the

mismatch of the yield stress. The observation that the initial yield stress is greater than in

ensuing cycles, seen in the light of J2 plasticity, implies that the size of the yield surface

diminishes after initial plastic straining.

The reduction in the elastic limit after the initiation of plastic straining is attributed to

interstitial carbon and nitrogen atoms in the crystal lattice (Cottrell and Bilby, 1949; Hall, 1970;

Lubliner, 2008). These atoms concentrate in the tension field surrounding dislocations, form-

ing a so-called atmosphere, initially locking the dislocations into place (Haidemenopoulos,

14



2.2. Limitation of the Voce-Chaboche model for mild steels

Figure 2.2 – Schematic illustration of initial structural steel material response to cyclic loading.

2018). The yield plateau is the strain range characterized by the growth of Luders bands due to

the successive stripping of dislocations from their atmospheres as deformation progresses. A

typical stress-strain response for mild structural steels including the plateau region is shown

schematically in Figure 2.2. The Luders strain, εL , denoting the end of the yield plateau, is

observed to be around 2 % strain in mild steels (Lemaitre and Chaboche, 1990). No plateau is

observed upon further loading or immediate reloading once the accumulated plastic strain is

greater than the Luders strain. However, a secondary upper yield point is observed if sufficient

time is provided for the reformation of atmospheres, this is known as the strain-ageing effect

(Hall, 1970; Lubliner, 2008).

The solid load path in Figure 2.2 represents immediate loading up to the second excursion

of the test depicted in Figure 2.1a. The dashed loading path in this figure represents the

expected behavior if the test was unloaded for a period (on the order of days) then reloaded

in tension. Note that the secondary upper yield point formed after ageing exceeds the stress

upon immediate reloading. Consideration of the strain ageing effect is potentially critical

in studying main-shock/after-shock problems where the steel material has time to age after

initial plastic straining, however, this subject is outside the scope of the present chapter.

In Figure 2.1a, the difference between the initial plateau yield stress, σy,0, and the reduced

yield stress upon immediate reloading in compression, σ(1)
y is highlighted. Progression of

the size of the yield surface, σy , for mild steels undergoing the same loading path is shown

schematically in Figure 2.3 with respect to the equivalent plastic strain, εp
eq . The initial decrease

in size from ε
p
eq = [0,εmi n] is intended to simulate the stripping of dislocations from their

atmospheres, the later increase after this range accounts for cyclic hardening due to increasing
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Figure 2.3 – Schematic illustration of the yield surface progression for structural steels.

dislocation densities (Lemaitre and Chaboche, 1990).

We propose a refined material model that accounts for the reduction in the size of the

yield surface in mild structural steels by modifying the Voce isotropic hardening rule. The

isotropic hardening rule used in Voce (1948) is defined in Equation 2.1,

σy =σy,0 +Q∞
(
1−exp

[
−bεp

eq

])
, (2.1)

where σy,0 is the initial yield stress, and Q∞, b are material parameters that define the mag-

nitude and rate of isotropic hardening, respectively. The Voce isotropic hardening rule is

monotonically increasing and cannot represent the sort of behavior shown in Figure 2.3.

Therefore, parameters will be added to this isotropic hardening rule that impose an initial

decrease in the size of the yield surface. The following section discusses the formulation of the

proposed material model followed by its numerical implementation and calibration.

2.3 Proposed material model

The proposed material model follows a classic small-strain, rate independent plasticity for-

mulation (Simo and Hughes, 1998). Geometrically nonlinear problems should be addressed

at the material level through an objective integration algorithm as described in Simo and

Hughes (1998), however, this discussion is excluded here for brevity. Some notation used in

this chapter is established here for clarity before proceeding with the description of the model.

Scalar quantities are not bolded (e.g., a). Bold, serif symbols are first-order tensors (vectors)

or second-order tensors (e.g., b), and capitalized, bold, sans-serif symbols are fourth-order

tensors (e.g., C). The second-order identity tensor is 1, the fourth-order symmetric identity
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2.3. Proposed material model

tensor is I, and the fourth-order deviatoric unit tensor is Idev —definitions for each are provided

in the Notation section at the end. Contraction on two indices is b : b =∑
i
∑

j bi j bi j ; the tensor

product is b ⊗b = bi j bkl ; the deviatoric part of a tensor is dev [b] = Idev : b; and the 2-norm is

always used, i.e., ‖b‖ =
p

b : b.

2.3.1 Constitutive equations

This chapter proposes an Updated Voce-Chaboche model denoted the UVC model. The UVC

model uses an additive decomposition of the strain tensor, ε, defined in Equation 2.2,

ε= εe +εp , (2.2)

where εe is the elastic strain tensor and εp is the plastic strain tensor. The elastic stress-strain

relation is provided in Equation 2.3,

σ=C :
(
ε−εp)

, (2.3)

whereσ is the stress tensor, and C is the isotropic tensor of elastic moduli. A precise definition

of C is provided in the Notation section at the end. The von-Mises yield condition is used in

Equation 2.4 for the yield function f ,

f =
√

(dev [σ]−dev [α]) : (dev [σ]−dev [α])−
p

2/3σy

= ‖ξ‖−
p

2/3σy ≤ 0, (2.4)

where α is the overall backstress, ξ = dev [σ]−dev [α] is the deviatoric relative stress, and

σy is the yield stress of the material. In accordance with the principle of maximum plastic

dissipation (Simo and Hughes, 1998), the flow rule in Equation 2.5 associated with J2 plasticity

is

ε̇p =λ ξ

‖ξ‖ =λn, (2.5)

where the over-dot indicates the time derivative, λ is the consistency parameter (equivalent

to the time derivative of the plastic multiplier), and n = ξ/‖ξ‖ is the unit normal to the yield

surface in deviatoric stress space. For the associative flow rule, the equivalent plastic strain is

defined by Equation 2.6,

ε̇
p
eq =

p
2/3λ. (2.6)

Armstrong and Frederick (1966) defined the nonlinear kinematic hardening rule in Equa-

tion 2.7 for a single backstress component k,

α̇k =
p

2/3Ck ε̇
p
eq n −γk ε̇

p
eqαk , (2.7)
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where Ck and γk are the parameters associated with the magnitude and rate of backstress

component k, respectively. Chaboche et al. (1979) later proposed to use a summation of

Nk backstress terms as an improvement to the Armstrong-Frederick rule so that the overall

backstress defined in Equation 2.8 is

α=
Nk∑

k=1
αk . (2.8)

We propose an update to the isotropic hardening rule to account for the decrease in the

initial yield stress for mild structural steels,

σy =σy,0 +Q∞
(
1−exp

[
−bεp

eq

])
−D∞

(
1−exp

[
−aεp

eq

])
, (2.9)

where D∞ and a are material parameters that define the magnitude and rate of the decrease

in the initial yield stress. As previously discussed, Equation 2.9 is valid for immediate un-

loading/reloading of the material. The novelty in the proposed model is that the additional

term is able to account for the discontinuous yielding phenomenon without leading to a loss

of accuracy in later loading cycles by initially reducing the yield surface. This behavior is

accomplished through the modification to the isotropic hardening rule and by imposing the

proposed constraints on the parameters to enforce nonsoftening behavior. Such a consid-

eration is paramount when calibrating the model using multiple load protocols in an effort

reduce uncertainty in the predicted material behavior when subjected to random strain histo-

ries. Additionally, the term is incorporated in a smooth functional form without any discrete

imposition of loading stages. Note that the original Voce-Chaboche model can be recovered

by simply setting D∞ = 0 and a 6= 0, where a 6= 0 is required for numerical reasons in the

algorithmic implementation.

Numerous other models exist in the literature for modeling mild structural steels, a nonex-

haustive list includes Ohno (1982), Cofie and Krawinkler (1985), Yoshida and Uemori (2002),

Ucak and Tsopelas (2011), Mahan et al. (2011), Budaházy and Dunai (2013), and Hu et al.

(2018). Most of the reviewed models have a multi-surface formulation, and are not discussed

further as the simplicity of the algorithmic implementation for isotropic/kinematic hardening

is preferred. The model of Budaházy and Dunai (2013) has a multi-linear isotropic hardening

component to simulate the upper yield stress and plateau, and dynamically updates the ma-

terial parameters depending on the applied load for uniaxial stress states, however, a single

set of parameters for all loading scenarios is preferred for its simplicity. The two nonlinear

isotropic/kinematic hardening models of Ucak and Tsopelas (2011), Hu et al. (2018) share

common features with the UVC model. Notably, both models include a term similar to the

D∞ term of the proposed model. The highlighted differences with the UVC model are that

these two models consider distinct plateau and hardening phases, the term similar to D∞ only
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2.3. Proposed material model

provides cyclic softening in the plateau region, and the constraints on the set of parameters

are not as general as those discussed later in this chapter because parameter bounds are tied

to a particular steel material.

2.3.2 Numerical implementation

The numerical implementation of the proposed material model follows two parts: first, so-

lution of the consistency condition to determine the stress for a given strain increment, and

second, production of the consistent tangent moduli for use in an iterative nonlinear finite

element analysis procedure.

Solution to the consistency condition

The return mapping (implicit backward-Euler) time integration algorithm is implemented to

provide the stress for given strain states (Simo and Hughes, 1998). Notions of plastic loading

and elastic unloading are represented by the Karush-Kuhn-Tucker complementary conditions

in (2.10),

λ≥ 0, f ≤ 0, λ f = 0. (2.10)

These conditions establish the elastic-predictor-plastic-corrector methodology, whereby if

the assumed elastic trial state violates the yield condition then plastic loading is active. The

algorithm is implemented as a strain driven problem (Simo and Hughes, 1998), i.e., let t ∈
[0, t1, . . . ,T ] ⊂ R be the discretized time interval of interest. At time tn , we assume that the

total strain, plastic strain, and internal variables are known. If plastic loading is activated, the

objective is to solve for the increment in the plastic multiplier, ∆λ= ∫ tn+1
tn

λdt , that constrains

the stress state to the yield surface.

Figure 2.4 illustrates the algorithmic counterpart to the consistency condition that arises

for multiaxial stress states with a von Mises yield potential in the π-plane (i.e., radial return

mapping). Satisfying this condition for ∆λ is equivalent to finding the orthogonal projection

of the trial stress state onto the hardened yield surface (Simo and Hughes, 1998). In this figure,

s tr i al is the deviatoric trial stress at the start of a particular increment, n :∆α is the increment

in kinematic hardening,
p

2/3σy is the equivalent yield stress, and 2µ∆λ is the reduction in

the magnitude of

Starting at time tn , Equation 2.11 represents the algorithmic consistency condition to be

solved at time increment tn+1,

g (∆λ) =
∥∥∥ξtr i al

n+1

∥∥∥−(√
2

3
σy,n+1 +2µ∆λ+nn+1 :∆α

)
= 0, (2.11)

where ∆α =αn+1 −αn . The consistency condition for the time step tn+1 is solved through

19



Chapter 2. Constitutive modeling of structural steels: A nonlinear isotropic/kinematic
hardening material model and its calibration

Figure 2.4 – Schematic illustration of the radial return mapping algorithm.

iterations over i using Newton’s local method (Bierlaire, 2015),

∆λ(i+1) =∆λ(i ) − g (∆λ(i ))

D g (∆λ(i ))
, (2.12)

where the linearization of Equation 2.11 is provided in Equation 2.13,

D g (∆λ) = ∂g (∆λ)

∂∆λ
=−2µ

(
1+ H ′

n+1 +K ′
n+1

3µ

)
. (2.13)

The kinematic and isotropic hardening moduli for multiaxial loading are respectively defined

by Equations 2.14 and 2.15,

H ′
n+1 =

∑
k

(
Ck ek,n+1

)−√
3

2
nn+1 :

∑
k

(
γk ek,n+1αk,n

)
, (2.14)

K ′
n+1 =Q∞b exp

[
−bεp

eq,n+1

]
−D∞a exp

[
−aεp

eq,n+1

]
, (2.15)

where

ek,n+1 = exp
[
−γk

(
ε

p
eq,n+1 −ε

p
eq,n

)]
. (2.16)

For multiaxial loading, Equation 2.12 is iterated until a tolerance of
∣∣g (∆λ)

∣∣< 10−10 is satisfied.

Full details of the radial return mapping procedure, along with efficient algorithms for uniaxial,

multiaxial and plane-stress, are provided by the authors in Hartloper et al. (2019b).
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2.3. Proposed material model

Consistent tangent moduli

The elastoplastic tangent moduli consistent with the return mapping algorithm (Simo and

Hughes, 1998) are now provided for the case of plastic loading. For brevity, only the final result

is shown, details of the derivation can be found in Hartloper et al. (2019b). The consistent

elastoplastic tangent moduli is defined by the fourth-order tensor Cep
n+1 in Equation 2.17,

C
ep
n+1 = κ (1⊗1)+2µθ1

(
I− 1

3
1⊗1

)
−2µθ2 (nn+1 ⊗nn+1)+2µθ3 (nn+1 ⊗∆α) , (2.17)

where

θ1 = 1− 2µ∆λ∥∥ξtr i al
n+1

∥∥ , θ2 =
(

1

β
+ nn+1 :∆α

θ3

)
− (1−θ1) , θ3 =

1

β
∥∥ξtr i al

n+1

∥∥ , (2.18)

and

β= 1+ K ′
n+1 +H ′

n+1

3µ
. (2.19)

A symmetric approximation of the tangent moduli is used since the last term in Equa-

tion 2.17 is asymmetric, therefore,

C
ep
s ym.,n+1 =

1

2

((
C

ep
n+1

)T +C
ep
n+1

)
. (2.20)

Hopperstad and Remseth (1995) show that using a symmetric approximation preserves the

quadratic convergence of the global Newton solution procedure. This result suggests that

the symmetric approximation leads to an overall reduction in both computer memory use

and the number of computations required since symmetric matrix storage and solvers can be

employed.

Validation

The proposed material model is implemented in the nonlinear finite element software Abaqus

(Dassault Systèmes, 2014) and the Open System for Earthquake Engineering Simulation

(OpenSees) (McKenna, 1997) for multiaxial, plane-stress, and uniaxial stress states. User sub-

routine files (UMATs) for Abaqus, and C++ source code with compiled dynamic link libraries

(.dlls) for OpenSees are made publicly available (Hartloper, 2019). The implementations are

validated by comparing the response of several finite element models using the UMAT and

NDMaterial with equivalent models using the built-in nonlinear isotropic/kinematic model in

Abaqus v6.14 (Dassault Systèmes, 2014). In all these validation cases, the updated isotropic

hardening rule of the proposed material model is neglected by simply setting D∞ = 0 and

a = 1 (the choice of a = 1 is made for simplicity as long as a 6= 0). Material properties repre-

sentative of a ASTM A992 Gr. 50 steel (nominal fy = 345 MPa) are assumed for all analyses:

E = 179800 MPa, ν= 0.3, σy,0 = 318.5 MPa, Q∞ = 100.7 MPa, b = 8.0, D∞ = 0.0 MPa, a = 1.0,
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C1 = 11608.2 MPa, γ1 = 145.2, C2 = 1026.3 MPa, γ2 = 4.7. Only two cases are provided in this

chapter for brevity, but several more validations are provided in Hartloper et al. (2019b).

A unit cube model subjected to biaxial loading demonstrates that the material model im-

plementation is accurate when compared with the built-in Abaqus v6.14 material model. Unit

cube models consisting of a single fully-integrated brick element (Abaqus: C3D8, OpenSees:

SSPbrick) are subjected to two biaxial stress states in Abaqus and OpenSees. Results from both

the implemented multiaxial UMAT (“UVC.MA (UMAT)”) and the implemented multiaxial

NDMaterial (“UVC.MA (NDM)”) are compared with the results from the built-in nonlinear

isotropic/kinematic model in Abaqus v6.14 (“Abaqus”). Comparisons of the results are shown

in Figures 2.5a and 2.5b. Both implementations agree with the built-in Abaqus results to

the level of machine precision, highlighting the accuracy of the implemented radial return

mapping procedure and the consistency of the tangent moduli with the material response.

The material model implementations are also accurate and efficient for component level

simulations. The plane stress implementation is validated by modeling a cantilever column

using shell elements (S4R) in Abaqus. The column cross section is a W360X122 (W14X82 in U.S

customary units), a constant compressive axial load equal to 20 % of the axial yield strength is

applied, and the symmetric cyclic load protocol from Chapter K of AISC (2016a) is applied at

the column top. The column model is developed according to the recommendations in Elkady

and Lignos (2018b). For further details on the modeling procedure, loading, and boundary

conditions see Hartloper et al. (2019b). Figure 2.6 shows that there is a negligible difference

in the moment-rotation between the models using the built-in material (“Abaqus”) and the

implemented material (“UVC.PS (UMAT)”). These differences are attributed to accumulated

errors that arise from a difference in the number of required iterations between the two

models (UVC.PS UMAT: 4231, Abaqus: 8583). The model run using the UVC.PS UMAT requires

approximately 50 % less iterations than the one using the built-in material model, likely

because large plastic strain increments can be converged by the implemented UMAT, whereas

the built-in material model reduces the time step to achieve convergence. Vis-a-vis the above

discussion, the implemented UMAT is more efficient than the built-in Abaqus v6.14 material

model in this case.

2.3.3 Constraints on the parameter space to ensure nonsoftening

Constraints on the parameter space are necessary because an incorrect choice of parameters

for the proposed material model may violate the instantaneous strain-hardening behavior

of mild steel materials. Establishing a nonnegative tangent modulus for all plastic strain

values, e.g., perfectly-plastic or strain-hardening materials, is used as the starting point for

the derivations in this section. This condition is first developed for uniaxial stress states.

Afterwards, this condition is shown to enforce uniqueness of the elastoplastic boundary value

problem for all stress states.
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Figure 2.5 – Results from the material model unit cube validation studies.
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Figure 2.6 – Results from the material model column validation study.
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Uniaxial loading

The algorithmic tangent modulus for a uniaxial stress state is given in Equation 2.21 (Simo

and Hughes, 1998),

C ep
u = E

(
K ′

u +H ′
u

)
E +K ′

u +H ′
u

, (2.21)

where E is the elastic modulus, and the kinematic and isotropic hardening moduli are respec-

tively defined for uniaxial loading by Equations 2.22 and 2.23,

H ′
u =

∑
k

(
Ck − sign[σ−α]γkαk

)
, (2.22)

K ′
u =Q∞b exp

[
−bεp

eq

]
−D∞a exp

[
−aεp

eq

]
. (2.23)

If K ′
u +H ′

u ≥ 0, the tangent modulus in (2.21) is nonnegative since E is a positive parameter.

Therefore, we just seek to impose the condition K ′
u +H ′

u ≥ 0 since the case −(
K ′

u +H ′
u

)≥ E is

ignored because we desire a nonsoftening response.

The value of K ′
u +H ′

u may be less than zero if the D∞ and a parameters in the isotropic

hardening rule are not properly chosen. Ensuring C ep
u ≥ 0 is further complicated by the

path-dependency of the kinematic hardening term. A key result used to resolve the path-

dependency is that the least tangent modulus is found if the strain is monotonically increasing

in tension or compression. This fact is shown in Figure 2.7 that illustrates the tangent modulus

for monotonic tensile (solid line) and cyclic tension/compression loading histories (dashed

line) using Equation 2.21. The peaks and plateaus in the tangent modulus of the cyclic loading

history shown in this figure correspond to elastic unloading/reloading. In turn, the plateaus

are followed by a gradual decrease in the value of C ep
u to the limit of monotonic loading with

further plastic straining. From Equation 2.7, the monotonic tensile loading provides the lower-

bound tangent modulus at all points because reversal in the loading direction decreases the

value of α, thereby increasing the the value of H ′
u in Equation 2.22. It follows that the material

is nonsoftening under uniaxial loading for all strain histories if the minimum of the monotonic

tangent modulus is restricted to be always nonnegative.

Monotonic tensile/compressive loading from an initial state of zero plastic strain is used

as a starting point to develop the parameter constraints. Under these two assumptions, the

uniaxial kinematic hardening modulus is defined by Equation 2.24,

H ′
u,mono =

∑
k

(
Ck exp

[
−γkε

p
eq

])
, (2.24)

while the isotropic hardening modulus is unaffected by this assumption. Replacing Equa-

tion 2.22 with Equation 2.24 in Equation 2.21, the constraint that defines nonsoftening behav-
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Figure 2.7 – Tangent modulus of the proposed material model subjected to monotonic and
cyclic loading histories.

ior is provided in Equation 2.25,

ĝ = D∞a exp
[
−aεp

eq

]
−Q∞b exp

[
−bεp

eq

]
−

∑
k

(
Ck exp

[
−γkε

p
eq

])
≤ 0. (2.25)

This constraint implies that the gain in tangent modulus from isotropic and kinematic harden-

ing outweighs the loss from the D∞ term.

Constraint ĝ defined in Equation 2.25 is still challenging to impose due to its dependency

on ε
p
eq . Two relatively simple constraints that do not depend on ε

p
eq are developed through

an additional assumption that a > b is placed on the isotropic hardening rate parameters.

The assumption a > b implies that the reduction in yield surface associated with the D∞
term occurs faster than the increase in the yield surface due to cyclic hardening associated

with Q∞. This realization is supported by tests on mild steel coupons, and is implied by the

behavior shown in Figure 2.3. The relation a > b is not directly imposed as a constraint to keep

the UVC model for more general applications (e.g., for materials exhibiting cyclic softening),

however, the calibration results shown later verify this assumption. The two constraints are

now presented and afterwards they are proven to provide a nonsoftening response regardless

of the applied loading.

Constraints proposed in Equations 2.26 and 2.27 are sufficient to ensure hardening of the

material for all feasible strain histories:

g1 = ĝ
∣∣
ε

p
eq=0 =−Q∞b −

∑
k

(Ck )+D∞a ≤ 0, (2.26)

g2 =
∂ĝ

∂ε
p
eq

∣∣∣∣∣
ε

p
eq=0

=Q∞b2 +
∑
k

(
Ckγk

)−D∞a2 ≤ 0. (2.27)

Note that the constraints g1 and g2 are defined in their standard form (i.e., g ≤ 0) to be

compatible with standard optimization algorithms in anticipation of the calibration procedure
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to follow. Constraint g1 ensures that C ep
u ≥ 0 when ε

p
eq = 0, and constraint g2 ensures that

∂C ep
u /∂εp

eq ≥ 0 when εp
eq = 0. These constraints are interpreted to mean that g1 ensures that

the initial tangent modulus is nonnegative, and g2 ensures that the tangent modulus is initially

increasing.

A rigorous evaluation of g1 and g2 follows two arguments based on the relationship

between the magnitude of the rate parameter a to the rate parameters γk . In what follows,

a > b is always assumed to reduce the number of possible minima to C ep
u (Hartloper et al.,

2019b). The first argument is based on the assumption that a ≥ maxγk . In this case it can

be shown that there is one root to C ep
u and it is a local maximum of Equation 2.21 (Hartloper

et al., 2019b). Therefore, the minimum of C ep
u occurs as εp

eq →∞; however, since C ep
u → 0 as

ε
p
eq →∞, the tangent modulus is always nonnegative. Accordingly, if C ep

u ≥ 0 when ε
p
eq = 0,

the material is always nonsoftening when a ≥ maxγk .

The second argument is based on the assumption that a < maxγk . In this case, there

are either zero or two roots to C ep
u (Hartloper et al., 2019b). For zero roots, C ep

u > 0 for all

ε
p
eq > 0. For two roots, it can be shown that the minimum occurs at a plastic strain less than

the maximum, i.e., εr,mi n < εr,max , where C ep
u takes local minimum and maximum values at

εr,mi n and εr,max , respectively. The minimum is avoided for physically permissible values of

ε
p
eq if the slope of the tangent modulus, ∂C ep

u /∂εp
eq , is initially greater than zero. This result

follows from Equation 2.6 since εp
eq ≥ 0 by definition. Therefore, if C ep

u > 0 and ∂C ep
u /∂εp

eq > 0

when εp
eq = 0, the material is always hardening when a < maxγk .

The above arguments prove that constraints g1 and g2 ensure nonsoftening for monotonic

uniaxial loading. Since monotonic loading gives the lower-bound of C ep
u , we conclude that

these constraints ensure nonsoftening for all uniaxial load histories. Specification of these

two constraints is only possible if the parameters D∞ and a are added to the original Voce-

Chaboche model, otherwise more than two roots to ∂C ep
u /∂εp

eq may exist. Constraints g1 and

g2 will later be used in the identification of material parameters based on uniaxial coupon

tests.

Multiaxial loading

Uniaxial results are extended for multiaxial loading based on classical uniqueness of the

elastoplastic initial boundary value problem. The condition for uniqueness in Equation 2.28 is

that the second-order work density is nonnegative (Simo and Hughes, 1998),

σ̇ : ε̇= ε̇ :Cep : ε̇≥ 0, (2.28)

where Cep is the fourth-order tensor of continuum elastoplastic tangent moduli. The uniaxial

interpretation of Equation 2.28 to be true for all strain histories is that C ep
u ≥ 0 (i.e., nonsoft-

ening), and for multiaxial loading that the tensor of elastoplastic tangent moduli is positive
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semidefinite. We now make use of the property that positive semidefinite matrices have

nonnegative eigenvalues to show that condition (2.28) is satisfied for multiaxial loading.

Neilsen and Schreyer (1993) provide two key results. First, that the minimum eigenvalue

of Cep does not depend on the direction of loading for a von Mises yield condition and an

associative flow rule. Second, that the sign of the minimum eigenvalue of Cep is equal to the

sign of the combined hardening modulus (i.e., the sum of kinematic and isotropic moduli).

Therefore, K ′
u + H ′

u ≥ 0 implies that Cep is positive semidefinite for the proposed material

model since the minimum eigenvalue is nonnegative. Nonsoftening in the uniaxial stress state

enforced by the constraints defined in Equations 2.26 and 2.27, therefore, also enforces the

uniqueness condition in Equation 2.28 for multiaxial loading.

2.4 Calibration of material model parameters

2.4.1 Methodology

Model parameters are ideally calibrated from several markedly different load protocols for

material models to be representative of material response under random strain histories. The

inverse problem of determining the model parameters is stated as a constrained minimization,

where the objective is to minimize the difference between the material model prediction and

the test data, and the constraints impose that the material model is at no point softening. A

gradient-based optimization approach using algorithmic differentiation is found to be most

effective for similar problems (de Castro e Sousa et al., 2020), therefore a similar strategy is

utilized herein.

The minimization problem to be solved is defined in (2.29),

minimize
x ∈Rn

f (x) (2.29a)

subject to g (x) ≤ 0, (2.29b)

where x = [
E ,σy,0,Q∞,b,D∞, a,C1,γ1, . . . ,CNk ,γNk

]
is the vector of n parameters for the UVC

model under uniaxial loading, f (x) : Rn → R is the objective function, and g (x) : Rn → Rm

is a vector valued function of constraints (i.e., there are m constraints defined). The goal of

the proposed calibration procedure is to find the set of material parameters x that is a local

minimum of the objective function and satisfy the nonsoftening constraints.

The objective function defined in Equation 2.30 is in keeping with the definition in de

Castro e Sousa et al. (2020),

f (x) =
NT∑
j=1

∫ ε∗j
0

(
σmodel

j

(
ε j ; x

)−σtest
j

)2
dε∗∫ ε∗j

0 dε∗
, (2.30)
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where NT load histories are considered, σmodel
j

(
ε j ; x

)
is the stress from the UVC model given

strain history ε j and parameters x , σtest
j is the stress recorded in the uniaxial test j , and ε∗ is

the accumulated strain

ε∗j =
∫ t j

0

∣∣ε̇ j
∣∣dτ. (2.31)

The objective function f (x) represents the total squared-area between the model prediction

and test data normalized by the total accumulated strain for several tests (see the shaded

region in Figure 2.1b for a single test). Constraints to impose nonsoftening are considered for

the proposed model, g (x) = [
g1, g2

]
defined by Equations 2.26 and 2.27. The parameter space

is further limited to x > 0 to obtain physically meaningful results and to ensure convergence

of the return mapping algorithm.

Problem (2.29a) is solved in multiple steps because it is challenging to obtain a solution due

to the nonlinearity of the constraints and the indefiniteness of the Hessian of f (x) (de Castro

e Sousa et al., 2020). Numerical testing reveals that solving the problem (2.29a) subjected to

(2.29b) directly is not practical, and that the solution time can be significantly reduced by using

an appropriate starting point (Hartloper et al., 2019b). The first step is to solve the problem

(2.29a) using the Voce-Chaboche model (i.e., without D∞ and a) following the methodology

in de Castro e Sousa et al. (2020). The starting point to the Voce-Chaboche model is chosen as

a perfectly plastic material with nominal elastic modulus and initial yield stress. All hardening

parameters are initially set to 10−1 to represent the perfectly plastic conditions. Once the

solution point using the Voce-Chaboche model has been found, the added parameters that

constitute the UVC model are set to D∞ = 10−1 and a = 200, and this point is denoted as xi ni .

The choice of a is made on the observation that the Luders strain is typically around 2 % strain

for mild steels, corresponding to a ≈ 230 for 99 % saturation of D∞.

The second step is to solve problem (2.29a) subjected to (2.29b) with the UVC model

starting from xi ni using the nonlinear interior point trust-region optimizer (NITRO) algorithm

described in Byrd et al. (1999) and implemented in the Python package Scipy (Jones et al.,

2018). The NITRO algorithm is found to be the most efficient when compared to alternative

constrained trust-region (Conn et al., 2000; Bierlaire, 2015) and sequential quadratic program-

ming methods (Bierlaire, 2015). An additional benefit of this algorithm is that solution points

can be found starting from infeasible starting points. Solution points are defined by the local

minima of the objective function. Minima are defined by the first-order necessary condition,

∥∥∇∇∇ f (x)
∥∥< εtol , (2.32)

and the second-order necessary condition that the Hessian of f (x) is positive definite. The

symbol ∇∇∇(·) in (2.32) is the gradient operator, and the tolerance is initially defined as εtol =
10−8. Even starting from xi ni , obtaining a solution to Problem (2.29) to 10−8 is challenging

due to the aforementioned nonconvexity of the objective function and nonlinearity of the
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constraints. Experience shows that satisfactory solutions can be found by successively relaxing

the tolerance from 10−8 to 10−2 after 300 iterations, then finally to 5×10−2 after a further 1000

iterations. The aforementioned calibration procedure is implemented in the open-source

Python package RESSPyLab (de Castro e Sousa et al., 2019).

2.4.2 Summary of results for structural steel materials

Definition of metrics

Metrics are defined to quantify the model fit and hardening characteristics of each steel

material. The quality of fit is defined by the ϕ̄ metric in (2.33) that represents the model error

normalized by the total squared-area under all the stress-strain curves in the data set,

ϕ̄=

√√√√√√ f (x)×

 NT∑
j=1

∫ ε∗j
0

(
σtest

j

)2
dε∗∫ ε∗j

0 dε∗


−1

. (2.33)

A value of ϕ̄= 0 indicates a perfect fit, and increasing values indicate decreasing qualities of fit.

The following metrics are defined in terms of the equivalent plastic strain assuming

monotonic loading for a fixed set of parameters. Total increase in stress due to hardening is

described by the metric (2.34),

σhar d

(
ε

p
eq

)
=Q∞

(
1−exp

[
−bεp

eq

])
+

∑
k

Ck /γk

(
1−exp

[
−γkε

p
eq

])
, (2.34)

the ratios of isotropic and kinematic contributions to the total hardening are respectively

defined by the metrics (2.35) and (2.36),

ρi so

(
ε

p
eq

)
=

Q∞
(
1−exp

[
−bεp

eq

])
σhar d

(
ε

p
eq

) , (2.35)

ρki n

(
ε

p
eq

)
=

∑
k Ck /γk

(
1−exp

[
−γkε

p
eq

])
σhar d

(
ε

p
eq

) . (2.36)

A value of ρki n = 1 (ρi so = 0) indicates that there is only kinematic hardening present in the

material. The total stress at a particular value of εp
eq is defined by (2.37),

σtot al

(
ε

p
eq

)
=σy,0 +σhar d

(
ε

p
eq

)
−D∞

(
1−exp

[
−aεp

eq

])
, (2.37)
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and the ratio of stress at saturation to the initial yield stress is given in (2.38),

ρyi eld

(
ε

p
eq

)
=
σtot al

(
ε

p
eq

)
σy,0

. (2.38)

A value of ρyi eld = 2 would indicate that the stress at the chosen value of εp
eq is twice the initial

yield stress.

All the above metrics can be evaluated at any particular εp
eq value. The choice of saturation

(i.e., εp
eq →∞), indicated by the sat superscript, is made for convenience and to compare with

de Castro e Sousa et al. (2020). However, the choice of εp
eq ≈ 0.15 could be more representative

of the ultimate material behavior.

Results and discussion

Parameters for the UVC model based on twelve sets of coupon tests on mild structural steels

from Europe, North America, and Japan are provided and evaluated in this section. Nine

steel materials are included in this database. These steels can be classified as either carbon

structural steels (e.g., S355J2+N, A992 Gr. 50, A500 Gr. B, BCP325, BCR295), or high-strength

low-alloy structural steels (e.g., S460NL, S690QL) according to ASTM (2018). The high yield

point (HYP) steel is a mild steel for structural applications where the yield stress is enhanced

through a thermomechanical control process and grain refinement (Suzuki et al., 2008; Kanno,

2016; Suzuki, 2018). The steel material type, nominal yield stress, load protocols used for

calibration, and evaluation metrics for all the data sets are summarized in Table 2.1. Up to

ten different strain-based load protocols deemed to be representative of strain histories in

steel components subjected to earthquake loading are utilized for each material based on the

suggestion in Suzuki (2018). Definitions for the load protocols are found in de Castro e Sousa

et al. (2020).

Parameters for the twelve data sets are provided in Table 2.2, note that the identification

(ID) number for all the steel materials in this table are in correspondence with Table 2.1.

Table 2.3 collects the yield stress measured using the 0.2 % offset method for each dataset

(averaged over all tests in each set), along with the σy,0 values and error metric values ϕ̄ for the

Voce-Chaboche and UVC models. This table shows that the UVCσy,0 is only 4 % different from

the average measured yield stress, while the Voce-Chaboche σy,0 is 17 % different from the

average measured yield stress. A 4 % difference in the initial yield stress is notable accuracy,

especially considering the discontinuous nature of the stress in the plateau region measured

by the 0.2 % offset method. Furthermore, the UVC model leads to a relative reduction in the

normalized error metric by about 20 % on average compared to the Voce-Chaboche model.

The proposed UVC material model provides a better fit of the test data, a better estimation

of the initial yield stress, and better approximates the initial plateau found in mild carbon steels
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when compared with the Voce-Chaboche model. Several key points are now highlighted using

the Voce-Chaboche model parameters from ten of the same data sets in de Castro e Sousa

et al. (2020) as a basis for comparison. Goodness of fit for all the load histories considered is

shown in Figures 2.8 and 2.9 for data sets from the flange and web of an HEB500 section that

were tested as a part of the current study (IDs 3 and 4 in Table 2.1). In each of these figures, VC

is the Voce-Chaboche model prediction. Results from two data sets are shown here for brevity,

but comparisons of the remaining data sets are provided in Hartloper et al. (2019b). Although

differences between the original and updated models may seem entirely insignificant, in all

these figures notice that the plateau yield stress is closely predicted by the updated material

model, whereas the same is not true for the original model. A case study later demonstrates

that there is a significant impact on the prediction of wide flange column post-peak behavior

despite the closeness between the two material predictions.

Values of the ratio of isotropic-to-total hardening, ρsat
i so , in Table 2.1 show that mild carbon

structural steels have a higher ratio of isotropic hardening than the high-strength low-alloy

steels. The ρsat
i so metric is around 25–40 % for the mild carbon structural steels (e.g., S355J2+N,

A992 Gr. 50), and is negligible for high-strength steels (e.g., ρsat
i so = 0 for S690QL). One exception

to this observation is the BCR295 data set that does not exhibit cyclic hardening because the

coupons were sampled from the corners of a cold-pressed hollow structural section. Recalling

that isotropic hardening is a reflection of the amount of cyclic hardening exhibited by the

physical material, these results suggest that high-strength steels do not exhibit much cyclic

hardening. This finding is in agreement with that of de Castro e Sousa et al. (2020) for the

original Voce-Chaboche model, and is visually confirmed by the plots of stress-strain data for

the S690QL steel (Hartloper et al., 2019b).

Comparing the UVC and Voce-Chaboche models, there is a larger portion of isotropic

hardening in the updated model, and the total stress at saturation is similar. The value of ρsat
i so

varies between 20–25 % for S355J2+N and A992 Gr. 50 steels in de Castro e Sousa et al. (2020)

for the Voce-Chaboche model. Ratios of isotropic-to-kinematic hardening tend to be higher in

the UVC model since Q∞ is increased to compensate for the negative effect of D∞. Comparing

σsat
tot al from Table 2.1 with their equivalent values in de Castro e Sousa et al. (2020), there is

an average of 1 % difference between the two models across all the comparable material data

sets. These two results suggest that although the composition of total hardening is different

between the two models, the ultimate stress at saturation is comparable.

A reduction in the yield surface is observed in all of the evaluated materials, and the

magnitude of Q∞ seems to be roughly equal to that of D∞ for the carbon steels (apart from

BCR295 due to cold working). Isotropic hardening parameter Q∞ is greater than D∞ in

seven out of the twelve data sets for the updated material model. These results imply that

the decrease in the yield surface due to discontinuous yielding is roughly balanced by the

increase due to cyclic hardening. The magnitude of D∞ is itself significant for all the data sets,
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Table 2.1 – Summary of steel material database and metrics for the proposed material model.

ID Material fy,n Ref LP ϕ̄ σsat
tot al σsat

har d ρsat
yi eld ρsat

i so ρsat
ki n

[MPa] [%] [MPa] [MPa]

1 S355J2+N
50 mm plate

355 1 1–10 6.33 701.93 462.91 2.11 0.26 0.74

2 S355J2+N
25 mm plate

355 1 1–10 6.53 681.02 475.97 2.01 0.28 0.72

3 S355J2
HEB500 flange

355 3 1,2,5,6,9 3.96 636.59 417.72 2.02 0.33 0.67

4 S355J2
HEB500 web

355 3 1,1–3,5–9 5.65 548.55 333.94 1.64 0.42 0.58

5 S460NL
25 mm plate

460 1 1,3–7,9,10 5.46 818.32 515.76 1.86 0.19 0.81

6 S690QL
25 mm plate

690 1 1,3–7,9,10 6.20 896.50 343.41 1.31 0.00 1.00

7 A992 Gr.50
W14X82 web

345 2 1,2,5,6,9 5.21 643.27 407.93 1.70 0.30 0.70

8 A992 Gr.50
W14X82 flange

345 2 1,2,5,6,9 4.76 786.49 548.72 2.10 0.26 0.74

9 A500 Gr.B
HSS305X16

315 2 1,2,5,6,9 4.99 832.57 558.90 2.57 0.41 0.59

10 BCP325
22 mm plate

325 2 1,2,5,6,9 3.89 662.04 399.96 1.80 0.28 0.72

11 BCR295
HSS350X22

295 2 1,2,5,6,9 5.21 996.09 687.18 2.42 0.00 1.00

12 HYP400
27 mm plate

400 2 1,2,5,6,9 4.67 797.99 452.81 1.76 0.14 0.86

Notes: Steels 1–6 are European, 7–9 are North American, and 10–12 are Japanese;

HSS = hollow structural section; fy,n = nominal yield stress;

LP = load protocols tested, see de Castro e Sousa et al. (2020) for definitions;

Ref: 1-Grigoriou and Lignos (2017), 2-Suzuki (2018), 3-Conducted as a part of this study.

indicating that there is some reduction in the yield surface even in high strength steels, e.g.,

S690QL steel. Although this material does not visually exhibit discontinuous yielding or cyclic

hardening (i.e., Q∞ ≈ 0), the fact that D∞ > 0 suggests that interstitial impurities may still play

a role in restricting dislocation movement that diminishes with increasing accumulated plastic

strain. Applications of the proposed material model to other steels that contain a reduction in

the yield surface, e.g., due to cyclic softening, is left for future investigations.

2.4.3 A note on the number of backstresses

At least two backstresses are necessary to adequately model the kinematic hardening observed

in mild steels using the UVC model. One backstress is found to be insufficient to represent
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Table 2.2 – Proposed material model parameters for structural steels.

ID E σy,0 Q∞ b D∞ a C1 γ1 C2 γ2

[GPa] [MPa] [MPa] [MPa] [MPa] [MPa]

1 185.97 332.18 120.48 8.14 93.15 261.75 21102.00 173.60 2300.60 10.42

2 197.41 338.80 134.34 14.71 133.75 229.25 26242.00 199.04 2445.30 11.66

3 192.13 315.04 138.01 11.36 96.16 223.66 18587.84 257.31 1351.98 6.52

4 199.68 334.94 139.32 14.07 120.33 274.73 28528.03 315.17 2569.45 24.68

5 187.61 439.20 97.35 14.02 136.64 226.40 26691.00 188.75 2892.40 10.44

6 188.63 685.39 0.11 0.11 132.30 285.15 34575.00 185.16 3154.20 20.14

7 210.74 378.83 122.63 19.74 143.49 248.14 31638.00 277.32 1548.60 9.04

8 191.02 373.72 141.47 15.20 135.95 211.16 25621.00 235.12 942.18 3.16

9 191.21 324.09 228.02 0.11 50.41 270.40 17707.00 207.18 1526.20 6.22

10 178.61 368.03 112.25 10.78 105.95 221.92 20104.00 200.43 2203.00 11.76

11 178.74 412.21 0.09 0.09 103.30 212.83 20750.59 225.26 1245.04 2.09

12 189.36 454.46 62.63 16.57 109.28 145.74 13860.00 141.61 1031.10 3.53

Note: ID column corresponds to Table 2.1.

Table 2.3 – Comparison of yield stresses and normalized error metrics for the UVC and Voce-
Chaboche (VC) models.

ID fym,a σUV C
y,0 σV C

y,0 Error, fy UVC Error, fy VC ϕ̄UV C ϕ̄V C Error, ϕ̄

[MPa] [MPa] [MPa] [%] [%] [%] [%] [%]

1 339 332 271 2 18 6.33 6.37 -1

2 358 339 265 5 22 6.53 6.70 -3

3 305 315 246 3 22 3.96 4.63 -14

4 350 335 252 4 25 5.65 6.16 -8

5 446 439 359 1 18 5.46 6.32 -14

6 714 685 603 4 12 6.20 7.95 -22

7 386 379 339 2 10 5.21 7.01 -26

8 393 374 318 5 15 4.76 7.31 -35

9 343 324 301 6 7 4.99 6.86 -27

10 380 368 306 3 17 3.89 5.05 -23

11 392 412 346 5 16 5.21 8.38 -38

12 463 454 376 2 17 4.67 5.31 -12

Avg. - - - 4 17 - - -19

fym,a = average yield stress for each data set;

σV C
y,0 and ϕ̄ taken from de Castro e Sousa et al. (2020);

Error, fy UVC = |σUV C
y,0 − fym,a |/ fym,a ; Error, fy VC = |σV C

y,0 − fym,a |/ fym,a ;

Error, ϕ̄= (
ϕ̄UV C − ϕ̄V C

)
/ϕ̄V C .
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Figure 2.8 – Comparison of test data and model predictions for the S355J2 HEB500 flange data
set.
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Figure 2.9 – Comparison of test data and model predictions for the S355J2 HEB500 web data
set.
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the kinematic hardening, leading to irrational estimates of other parameters (Hartloper et al.,

2019b). There is little improvement in ϕ̄ when three backstresses are used, echoing the results

from de Castro e Sousa et al. (2020) for the original Voce-Chaboche model. Two backstresses,

therefore, provide an optimal mix of accuracy and efficiency, while adequately representing

the kinematic hardening observed in the test data.

2.5 Finite element analysis case study and implications

The sensitivity of CFE models to their initial material model assumptions is explored in this

section through a parametric study. The evaluation is established by comparing the response

of two column models with identical geometric characteristics: one using the Voce-Chaboche

model, and the other with the UVC model. Variations in the material model parameters as well

as the imperfections are considered in this study to conclude whether the differences in the

observed behavior consistently arise between simulations carried out with the two material

models.

The parametric study focuses on the simulated performance of an HEB500 cross section

(similar to a W610X217, or W24X146, in North America) of 7000 mm length subjected to

multiaxis loading. Relevant geometric characteristics of this column are provided in Table 2.4.

In this table, A is the cross-sectional area, h is the section depth, b is the flange width, tw

is the web thickness, t f is the flange thickness, h1 is the clear distance between flanges, Lb

is the column unbraced length, iz is the radius of gyration in the weak axis, and λ̄LT is the

lateral-torsional buckling slenderness calculated according to Eurocode (CEN, 2005a). This

cross section satisfies the Eurocode Class 1 criteria for the applied compression and bending

(CEN, 2005a), and the AISC highly ductile classification criteria (AISC, 2016a). However, the

column has relatively large member slenderness indicated by its Lb/iz value, and is susceptible

to lateral-torsional buckling (LTB) coupled with plastic local buckling since Eurocode indicates

that inelastic LTB should occur when 0.4 < λ̄LT < 1.2.

2.5.1 Modeling procedure

Column models for the HEB500 column are developed following the guidelines in Elkady

and Lignos (2018b) using the software Abaqus v6.14 (Dassault Systèmes, 2014). Adequacy

of these guidelines for similar cross-sections has been established through validations with

several columns (Elkady and Lignos, 2018b) and success by the first and third authors in

winning a recent blind analysis competition (NIST/ATC, 2018). The models are comprised

of quadrilateral reduced integration shell elements (S4R) with a mesh size of approximately

25 mm. Residual stresses are considered in the model based on the Young (1972) stress distri-

bution since de Castro e Sousa and Lignos (2017) suggests that this distribution is adequate

for HEB500 cross-sections.
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(a) CFE model (b) Mode 1 (c) Mode 5 (d) Mode 6

Figure 2.10 – Continuum finite element model and elastic buckling modes for the HEB500
column case study.

Two material data sets are chosen to be consistent with the HEB500 cross section. Param-

eters constituting Material Set 1 are chosen as the S355J2+N 25 mm plate data set because

the plate thickness best matches the flange and web thickness of the HEB500 section given

the existing data. Material Set 2 is based on material tests conducted as a part of the present

study using 12 and 20 mm diameter round bar coupons (diameter in the reduced section of 6

and 10 mm, respectively) from the web and flange of an HEB500. A second set of parameters is

used to establish confidence that the results of this case study hold for multiple data sets. Ma-

terial parameters for the Voce-Chaboche model are provided in Table 2.5 using the procedure

in de Castro e Sousa et al. (2020), and parameters for the UVC model are taken from Table 2.2.

Loading and boundary conditions on the column models are as shown in Figure 2.10a.

Rigid-body constraints are applied to the nodes at the top and base of the CFE models to avoid

stress concentrations in these regions; all loads and boundary conditions are then applied at

the centroid of the cross section. Fixed-end boundary conditions are assumed and the same

constant compressive axial load is applied to all models based on 20 % of the axial load at

first yield, Aσy,0, where A is the nominal area and σy,0 is taken as the value from the updated

material model for the S355J2+N 25 mm plate data set from Table 2.2. The symmetric cyclic

lateral displacement history from Chapter K of AISC (2016a) is applied at the column top after

the application of the gravity load as depicted in Figure 2.10a. Default convergence criteria

in Abaqus v6.14 is used with automatic time-stepping, however, outputs are generated at the

exact same analysis times to make the analyses as comparable as possible.
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Table 2.4 – Cross section properties of an HEB500, 7000 mm length.

A [mm2] h [mm] b [mm] tw [mm] t f [mm] h1/tw b/2t f Lb/iz λ̄LT

23900 500 300 14.5 28 26.9 5.4 72.7 1.0

Table 2.5 – Original Voce-Chaboche model parameters for the case study material sets.

Material E σy,0 Q∞ b C1 γ1 C2 γ2

[GPa] [MPa] [MPa] [MPa] [MPa]

S355J2 HEB500
flange

191.85 245.50 119.77 8.67 14019.86 205.39 1247.05 4.45

S355J2 HEB500 web 198.39 251.74 118.43 10.85 17876.51 236.30 2582.61 24.01

S355J2+N
25 mm plate

191.52 265.29 104.44 11.63 12997.99 99.52 1560.41 7.35

Geometric imperfections

Geometric imperfections are included to induce LTB and local buckling by scaling and su-

perimposing relevant elastic buckling modes (Elkady and Lignos, 2018b). These geometric

imperfections are determined by first applying the axial load, then applying a lateral force and

conducting an elastic eigenvalue buckling analysis in Abaqus. Modes 1 and 2 corresponding

to LTB, and modes 5 and 6 corresponding to local buckling are visually selected. Modes 1,

5, and 6 are shown in Figure 2.10—note that mode 2 is simply the inverse of mode 1. Both

modes 1 and 2 are applied independently to the model to consider the random nature of

imperfections that could induce LTB in either of the two directions.

For the purpose of this parametric study, geometric imperfections with amplitudes below

the manufacturing limits, e.g., CEN (1993), are applied to the column models. The imper-

fection amplitudes are based on the mean and standard deviation of previously measured

imperfections. Five scale factors are considered for both the LTB and local buckling modes,

aµ, aµ±σ and aµ±σ/2, where a is the scale factor, subscripts µ and σ denote the mean standard

deviation of the measurements, respectively. The derivation of the imperfection scale factors

is now discussed.

Twist measurements from ten full-scale steel columns featuring cross-sections similar to

the present study are used to deduce the LTB imperfections scale factors (Elkady, 2016; Elkady

and Lignos, 2018a). LTB imperfection scale factors are related to the measured angles of twist

through Equation 2.39,

aLT B =
θappl i ed

θr e f
, (2.39)

where aLT B is the scale factor applied to modes 1 or 2, θappl i ed is the intended rotation at

column mid-height based on the measured imperfections, and θr e f is an estimate of the

mid-height rotation for modes 1 and 2 from the buckling analysis. Note that Elkady (2016)
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recorded the initial rotational imperfection at the column top, therefore, the values at mid-

height are assumed to be one-half of the values reported at the top. The reference twist angle

corresponding to the imperfections in modes 1 and 2 are deduced using (2.40) based on the

rotation of the web about its centerline,

θr e f = arcsin

[
2uw

h − t f

]
= 0.004 rad, (2.40)

where uw is the displacement of the web from the HEB500 model at mid-height due to buckling

mode 1. Equation 2.40 is evaluated considering that uw ≈ 1.0 mm due to the normalization

of buckling modes in Abaqus. The mean twist for the LTB imperfection is calculated as

0.006 rad, and the standard deviation is 0.005 rad (Elkady, 2016). The scale factors for the LTB

imperfections based on the mean and standard deviation using Equation 2.39 are provided in

Table 2.6.

Measurements from six European steel wide flange sections are used to deduce the local

imperfection scale factors. Local imperfection scale factors are related to the measured flange

and web imperfections through Equation 2.41,

al oc =
∆appl i ed

∆r e f
, (2.41)

where aloc is the scale factor applied to modes 5 and 6, ∆appl i ed is the intended local imper-

fection amplitude, and ∆r e f = 1.0 mm is the maximum nodal displacement from modes 5 and

6. Hartloper and Lignos (2019) report the mean measured web imperfections amplitude as

h/300 and the standard deviation as h/1017. From the same study, the mean measured flange

imperfection amplitude is b/250, and the standard deviation is b/466. The mean measured

values are consistent with European manufacturing limits (CEN, 1993) as well as those pro-

posed by Elkady and Lignos (2018b). The scale factors for the local imperfections based on the

mean and standard deviation using Equation 2.41 are provided in Table 2.6.

2.5.2 Parametric study and results

Both the material properties and geometric imperfections are varied to investigate the consis-

tency of the divergence in buckling modes. With this parametric study we vary the geometric

imperfections within expected ranges for common steel profiles. This approach intends to

show that if, for a range of variations in the geometric imperfections, there is a consistent

divergence in the column behavior for different material models, then it can be reasonably

concluded that the accuracy of the material model is the principal cause of the divergence. A

total of 15 comparisons are conducted for each material set in which the geometric imper-

fection scale factors are varied equally for the columns using both the Voce-Chaboche and

UVC models. Parameters from two material sets are chosen for a total of 30 comparisons. The
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parametric study follows three steps for the Material Set 1 (S355J2+N, 25 mm plate). First, five

comparisons are made using the imperfection scale factors given in Table 2.6 varying the LTB

imperfection mode 1 with constant local imperfection geometry. Second, five comparisons

are made in similar fashion but varying LTB mode 2 with constant local imperfection geometry.

Third, five comparisons are made varying the local imperfection scale factors for modes 5 and

6 based on Table 2.6, with constant LTB imperfection mode 1 geometry. The same three steps

are then carried out using Material Set 2 (S355J2 HEB500 flange and web).

Results from the parametric study indicate that while the pre-peak responses of the simu-

lations are similar, there is a consistent divergence in the simulated buckling modes between

the two columns that use different material representations. A comparison of the column

base moment - chord rotation for Material Set 2 and all imperfections at mean amplitude

is shown in Figure 2.11a. Typical deformed shapes observed from the analyses using the

Voce-Chaboche and UVC material models are shown in Figures 2.11b and 2.11c, respectively.

The similarity in the pre-peak responses between the two models may seem counterintuitive

as the largest difference in material appears in the initial yield stress. However, the initial

hardening of the Voce-Chaboche model is increased to compensate its lower initial yield stress

so the overall pre-peak component response is relatively similar. Significant differences in the

component behavior only arise in this case study after strength deterioration due to buckling

in the component has occurred.

Divergence in the component simulations arises primarily due to the difference in initial

yield stress between the two material models. Observe in Figures 2.11b and 2.11c that the

extent of yielding along the column length from the ends, or plastic hinge length, is around

three times greater when the Voce-Chaboche material model is used. Yielding is shown visually

in these figures as the light gray regions. At the first excursion to -4 % chord rotation, the spread

of plasticity is almost up to 80 % of the column half-length for the Voce-Chaboche model,

whereas this value is only around 30 % for the UVC model. The long plastic hinge lengths

in the model with the Voce-Chaboche material significantly reduce the torsional stiffness

of the column. In-turn, this allows for the initiation of lateral-torsional buckling. Similar

observations are made in Elkady and Lignos (2018a) with respect to full-scale wide flange

column tests.

The increased initial yield stress of the UVC model does not allow for such a long plastic

hinge length to form. Lateral-torsional buckling does not occur in this case, and deterioration

in strength and stiffness is due to local buckling followed by column twisting. This case

study shows that columns with relatively high member slenderness ratios (e.g., Lb/iz > 90)

can be sensitive to the difference in initial yield stress because these members are prone to

experiencing coupled local and lateral-torsional buckling. Such components are, therefore,

sensitive to the choice of material model parameters.

Consistency in the difference between simulated component responses is evaluated to
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Table 2.6 – Imperfection scale factors for lateral-torsional and local buckling modes.

Imperfection Mode Basis of Imperfection Scale Factor

µ−σ µ−σ/2 µ µ+σ/2 µ+σ
Lateral-torsional Buckling Modes (1, 2), aLT B 0.24 0.83 1.40 2.00 2.59

Local Buckling Modes (5, 6), al oc 0.53 0.87 1.20 1.54 1.87

Note: µ-mean of measurements, σ-standard deviation of measurements.

assess if the aforementioned sensitivity holds for different material parameters and imper-

fection geometries. Results from the parametric study are compiled in Table 2.7 in terms of

an error metric defined by Equation 2.42 that measures the relative difference in moment

between the two analyses over the common load history,

Em = ‖MUV C −MV C‖
‖MV C‖

×100, (2.42)

where M is the discrete vector of column base moment up-to the last common time increment

between the two analyses, and the subscripts denote the analyses using either the Voce-

Chaboche (VC) or UVC material model. In Table 2.7, the columns with “VM” indicate the

imperfection modes with varied amplitude (e.g., VM1 means that the amplitude of mode 1 is

varied, VM56 means that the amplitudes of modes 5 and 6 are varied), and the columns with

“CM” indicate the imperfection modes with constant mean amplitude.

Results from the parametric study in Table 2.7 suggest that the difference in base moment

over the load history is up to about 20 %. Values in this table of around 15–20 % are the

analyses where different buckling modes are observed, while the one value of 6.7 % (Material

Set 1, µ+σ local buckling imperfection amplitude) is a case where the same buckling modes

are observed. In this specific case, the response is similar because there is a relatively large

local imperfection applied that leads to primarily local buckling even for the column model

with Voce-Chaboche material model. The majority of error metrics in Table 2.7 falling into the

15–20 % range, in conjunction with the observed shift in instability models, underscores the

high sensitivity of component behavior to minor differences in simulated material response.

These results support that a divergence in buckling modes is the most probable outcome

when the two different material models are employed, given the assumed member geometry,

material properties, and imperfections in this study.

2.6 Discussion of results, limitations, and future work

Through this work the proposed material model has been calibrated using multiple tests for

each steel material in an effort to better represent the material’s response to random strain

histories, such as those expected in steel components during earthquake loading. Using
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Table 2.7 – Summary of the error metric from the parametric case study.

VM Scale Error Metric [%], Material Set 1 Error Metric [%], Material Set 2

VM1, CM56 VM2, CM56 CM1,VM56 VM1, CM56 VM2, CM56 CM1, VM56

µ−σ 17.5 17.6 19.8 21.3 22.6 15.5

µ−σ/2 18.7 18.8 19.6 24.5 22.6 24.2

µ 19.0 18.9 19.0 23.6 25.3 23.6

µ+σ/2 19.3 19.2 17.6 22.8 21.0 22.4

µ+σ 19.3 19.3 6.7 21.1 20.7 16.3

Notes: VM = Varying Mode, CM = Constant Mode(s), all the constant modes at mean scale factor.

µ-mean of measurements, σ-standard deviation of measurements.
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Figure 2.11 – Column base moment - chord rotation and column model deformation modes
at the first excursion to -4 % chord rotation. Bottom figures: yielding shown in light gray.
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this method, the proposed material model has been shown to improve the predicted stress-

strain behavior over the classic Voce-Chaboche model for all the data sets considered. This

comes as a result of the model’s ability to initially reduce the yield surface while maintaining

nonsoftening behavior. The same comparisons cannot yet be made with other structural steel

material models referenced in this chapter because the authors consider that meaningful

comparisons can only be made when evaluating the same set of data and error measures.

Through an investigation of the component-level sensitivity to material model assump-

tions, this chapter shows that seemingly minute differences in the material-level response

can be magnified in the component-level response. This difference is mainly attributed to

the difference in the initial yield stress parameter between the classic Voce-Chaboche and

proposed models. The case study in this chapter demonstrates that this difference in initial

yield stress may have a significant impact on simulated column instability modes. This result

is notable because, to the authors’ knowledge, such a result regarding CFE component-level

sensitivity has not yet been investigated for the structural steel constitutive models referenced

in this chapter.

The above considerations notwithstanding, one limitation of this work is that no rigorous

assertation can presently be made on whether the modifications to the Voce-Chaboche mate-

rial model result in more accurate representations of component level responses compared to

test data. Assessing the relative merits of different modeling approaches in component level

experiments, though, requires test data where the material properties are fully known (i.e.,

several uniaxial or multiaxial coupons have been tested with different loading protocols for

both the flange and web), the geometric imperfections in the member have been measured,

and the residual stresses in the section are known. To the authors’ knowledge, to date, such

data do not exist for any full-scale steel column test. Conducting experiments in the future that

include the data noted above is considered essential to assess and validate the material level

sensitivity that has been postulated in this chapter. The component-level sensitivity uncovered

in this study is very likely to depend on the component under consideration, therefore, this

matter should also be investigated for other steel components. Finally, the proposed model

does not consider time-dependent effects (i.e., strain rate effects, strain ageing). These effects,

including their impact on pre- and post-peak component behavior, should be addressed in

the future.

2.7 Conclusions

Prior work (de Castro e Sousa et al., 2020) shows that calibration of the Voce-Chaboche material

model parameters consistently underestimate the initial yield stress in mild steels when the

calibration method is based on minimizing the difference in strain energy across multiple tests

that include strain demands deemed representative of those expected in steel components
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subjected to earthquake loading. This issue can be attributed to the permanent decrease in

the yield stress because of the discontinuous yielding phenomenon present in these metals.

In this chapter we propose an Updated Voce-Chaboche (UVC) nonlinear isotropic/kinematic

hardening material model as well as its calibration methodology. The main outcomes are

summarized as follows:

• Constraints on the parameters of the UVC model are essential to ensure a hardening

response consistent with the behavior of mild steels. Two constraints are formulated to

ensure nonsoftening behavior regardless of the steel material.

• The material model implementation is validated in commercial and open-source finite

element analysis programs Abaqus (as UMATs) and OpenSees (as a UniaxialMaterial

and NDMaterials) for uniaxial, plane-stress, and multiaxial stress states. The code is

made publicly available (Hartloper, 2019).

• Parameters for the UVC material model are provided for a database of nine structural

steels used in North America, Japan, and Europe. The initial yield stress is increased by

17 % using the UVC model over the Voce-Chaboche model. A 19 % relative improvement

in the overall material model accuracy is found when compared to the Voce-Chaboche

model. The full calibration procedure of the UVC model is made available in the open

source Python package RESSPyLab (de Castro e Sousa et al., 2019).

• At least two backstresses are necessary for the UVC model to accurately represent the

behavior of the investigated steel materials. One backstress leads to an underfitting of

the kinematic hardening component.

• Results from the conducted parametric study suggest that the simulated geometric

instabilities in steel wide flange columns that arise under multiaxis loading are sensitive

to the material model and input parameters for the studied column geometry.

• Findings from the case study should be supported by full-scale tests where the im-

perfections, residual stresses within the cross section, and material characteristics are

fully quantified beforehand to reliably evaluate the effect of material initial conditions.

Furthermore, effects that influence the hardening mechanisms and spread of plasticity

within the plastic hinge length of columns, such as the rate of applied loading, should

also be explored in the future by means of large-scale physical testing.

2.8 Data availability

Some or all data, models, or code generated or used during the study are available in a

repository or online in accordance with funder data retention policies. This includes: the code

used for the calibration procedure available in RESSPyLab (de Castro e Sousa et al., 2019); the
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2.10 Notation

The following symbols are used in this chapter:

a = Isotropic hardening rate parameter for yield surface reduction;

a(·)
(·) = Buckling mode scale factor for geometric imperfections;

b = Isotropic hardening rate parameter for cyclic hardening;

C = κ1⊗1+2µIdev , fourth-order tensor of elastic moduli;

Cep = Fourth-order tensor of elastoplastic moduli;

Ck = Kinematic hardening magnitude for k’th backstress;

D∞ = Isotropic hardening magnitude for yield surface reduction;

Em = Case study error metric;

ei = First-order standard basis tensor;

ek = Update to kinematic hardening;

f = von Mises yield function;

f (x) = Objective function in minimization problem;

g (x) = Vector of constraint functions;

g (∆λ) = Equation for the consistency condition in radial return mapping;

ĝ , g1, g2 = Constraints to ensure nonsoftening;

H ′ = Kinematic hardening modulus;

I = 1/2
(
δi kδ j l +δi lδ j k

)
ei ⊗e j ⊗ek ⊗el , fourth-order sym. identity tensor;

Idev = I−1/31⊗1, fourth-order deviatoric identify tensor;

K ′ = Isotropic hardening modulus;

M = Discrete base-moment history vector;

NT = Number of load protocols used in calibration;
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n = Unit vector-field normal to the yield surface;

Q∞ = Isotropic hardening magnitude for cyclic hardening;

T = End of time interval;

t = Time variable;

x = Parameter vector for the proposed material model (uniaxial);

α = Second-order total backstress tensor;

γk = Kinematic hardening rate parameter for k’th backstress;

∆λ = Increment in the plastic multiplier;

δi j = Kronecker delta;

εtol = Tolerance in optimization problem;

ε = Second-order strain tensor;

εe = Second-order elastic strain tensor;

εp = Second-order plastic strain tensor;

εL = Luders strain;

ε
p
eq = Equivalent plastic strain;

ε∗ = Accumulated absolute strain;

κ = Bulk modulus;

λ = Consistency parameter (time derivative of plastic multiplier);

µ = Shear modulus;

(·)µ/σ = Mean/standard deviation for imperfections;

ξ = Second-order relative stress tensor;

ρ = Hardening metrics;

σ = Second-order stress tensor;

σy = Yield stress;

σy,0 = Initial yield stress;

ϕ̄ = Normalized calibration error metric;

1 = δi j ei ⊗e j , second-order identity tensor; and

(̇·) = Time derivative.
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Chapter 3. Cyclic metal plasticity model parameters with limited information: A
constrained optimization approach

3.1 Introduction

Seismic response of steel structures to extreme events is often nonlinear in nature. The sources

of the nonlinearity can be classified mainly into two categories: (1) material and (2) geometric.

Without accurate material and geometric properties, reliable physics-based modeling of the

hysteretic response of a component or sub-assembly can not be established. Consequently,

their impact at the system level can be the source of accumulated errors that may lead to

misleading conclusions of overall structural performance. Yet, all too often are structural

steel’s nonlinearities oversimplified or all together overlooked. In situations where material

and geometric nonlinearities strongly interact (e.g., open-section beam-columns), it has been

shown that such oversimplifications can lead to distinct member failure modes (Hartloper

et al., 2019a).

Accurate material modeling depends both on the constitutive model and on the ability to

obtain its characteristic input parameters. Solving inverse problems, however, are marred with

nonuniqueness issues (Cooke and Kanvinde, 2015), i.e., a different set of parameters can yield

the same overall material response for a particular loading history– c.f. e.g., Figure 3.1. This

feature can significantly hamper modeling efforts in situations where loading histories differ

from the calibrated cases. For earthquake applications this is naturally an issue of concern due

to the stochastic character of seismic action. To mitigate this problem, a methodology has been

proposed to calibrate parameters to a rich set of protocols that are representative of seismic

loading (de Castro e Sousa et al., 2020). While this approach shows promise, obtaining test

data can be challenging since it can be costly both in terms of the number of specimens and

of specialized testing equipment in order to achieve high compressive strains. Furthermore,

there are situations, like the performance assessment of existing steel structures (CEN, 2005c;

ASCE, 2017), where collecting the required amount of samples may be challenging. Given

that there is a need for accurate material modeling, on one hand, and that the ability to carry

out extensive testing campaigns may be restricted, on the other hand, a way to use limited

test information, such as monotonic tensile tests, is of particular interest to the research and

practice communities.

Most of steel’s mechanical design characteristics are typically obtained by tensile tests.

These tests are both common and standardized (ASTM, 2016b; CEN, 2001), meaning they are

relatively economical and the testing methodology is established. Their main shortcoming,

however, is that they can not depict how the material would behave under cyclic loading.

Importantly, the extent of the Bauschinger effect and isotropic versus kinematic hardening

saturation levels are information that cannot be derived solely from monotonic loading.

This chapter proposes addressing this challenge by determining material parameters from a

specific tensile test but that, at the same time, satisfy some a priori knowledge pertaining to

its cyclic properties. It is envisioned that this a priori knowledge should be directly related to
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(c) A992Gr.50, tensile (Load Protocol 1)
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(d) A992Gr.50, variable amplitude (Load Protocol 9)

Figure 3.1 – Comparison of stress-strain using the S355J2+N 50 mm plate and A992 Gr. 50
W14X82 flange data sets: test data (Test); VC model 2 backstresses, all load protocols used in
calibration (All LP); and naive calibration using only a tensile test (Tensile-Naive).
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the steel grades’ general material characteristics, e.g., its microstructure (in its grain size and

crystalline structure) or its chemical composition. As will be shown more concretely in the

methodology and results sections, different steel grades commonly present different ratios of

isotropic to kinematic hardening, a behavior believed to be closely related to the material’s

grain refinement (Bouaziz et al., 2008).

The interpretation of material parameters is inextricably tied to the chosen model repre-

sentation. Herein, two materials models are used: (1) the Voce-Chaboche (VC) (Voce, 1948;

Chaboche et al., 1979) and (2) an Updated Voce-Chaboche (UVC) (Hartloper et al., 2021a).

Both are part of the rate independent, J2 plasticity framework, but differ on their hardening

rules - the isotropic, in particular. The first is a widely used material model in the context of

nonlinear analysis of steel structures (c.f. e.g., Fell et al. (2009), Araújo et al. (2017), Elkady and

Lignos (2018b)). Among its most important features is its ability to adequately capture cyclic

loading behavior with exponentially saturating hardening laws. The second builds upon the

VC by adjusting the material response to more accurately capture the discontinuous yielding

phenomenon present in mild steels (Lubliner, 2008). Both models aim at representing physical

mechanisms that lead to work hardening - e.g., the Bauschinger effect through the kinematic

hardening representation. However, the interpretation of material parameters through these

models should only be made if they can be determined in a reliable and consistent manner.

The approaches made in de Castro e Sousa et al. (2020) and Hartloper et al. (2019b)

are focused toward consistency of the parameters obtained for the VC and UVC models,

respectively. Therein, unconstrained optimization procedures, based on Newton Trust-Region

(NTR) framework, are presented that are able to navigate the non-convex parameter search

space both efficiently and reliably, given a diverse set of strain-based load protocols. The

parameters obtained for each of these models, with those methodologies, are considered

to be intrinsic to the material since they are both reliable and physically motivated. While

differences between steel production batches are to be expected, the hypothesis is made that

certain behavioral aspects are directly transferable between materials of the same grade; that is

to say that, specific material parameters might be different but, for example, ratios of isotropic

to kinematic hardening should remain largely of the same magnitude for a given steel grade.

This chapter concerns itself with answering mainly one question: can parameter optimiza-

tion of a single tensile test, holding constant characteristic material ratios for cyclic loading,

return satisfactory stress-strain responses for a wide range of cyclic load protocols? There

is a pressing need for an answer to this question. Consider, for example, Figure 3.1 which

depicts test results for two load protocols (Figure 3.1a /3.1c- monotonic; Figure 3.1b/3.1d -

cyclic variable amplitude)1. On top of the test results, two uniaxial VC model responses for

the tests’ strain histories are also depicted, whose parameters are determined with (1) a wide

range of cyclic load protocols and (2) naively with only the tensile test data. It can be seen that,

1load protocol designations can be consulted in de Castro e Sousa et al. (2020)
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3.2. Methodology

although the parameters perform similarly in the tensile case, the tensile fitting’s response

deviates largely from the variable amplitude response. Naive tensile-only calibrations do not

perform well when simulating cyclic loading because monotonic tensile tests do not contain

information regarding the Bauschinger effect nor cyclic hardening, therefore, it can be taken

for granted that naively using a tensile test to calibrate a cyclic material model is an inadequate

approach. Since it has been shown that even small differences in a material model can have a

disproportionate effect on the overall member behavior and influence simulated geometric

instabilities (Hartloper et al., 2019a), this aspect may be crucial in the accuracy of structural

responses in the nonlinear regime.

To address the problem stated above, an approach is proposed in this chapter that makes

use of (1) material performance metrics and (2) a constrained optimization procedure using

the developed metrics in order to solve for the corresponding model parameters . Their

efficacy is evaluated by using appropriate error metrics. Additionally, comparisons are made to

material model performance using parameters from known databases for nominally identical

materials. It is shown that the proposed method outperforms a “naive” optimization, and

is on-or-above par with the use of relevant parameters from databases, for the case-study

addressed herein. Details for the approach are given in the Methodology section. After, results

of the application of the methodology to a number of materials are presented and a discussion

of those results is given in the subsequent section. The chapter concludes with a brief section

summarizing the main outcomes of this research.

3.2 Methodology

A solution to the problem of determining a set of constitutive model parameters representative

for cyclic loading using only a tensile test is proposed in this section. The workflow of the

proposed methodology is shown in Figure 3.2 applied to structural steel materials. The

workflow consists of three stages for a given steel material: Stage 1: determine the a priori

cyclic hardening characteristics of the material for a set constitutive model, Stage 2: use this

a priori information to inform the model calibration using only a tensile test, and Stage 3:

validate the results.

In Stage 1, the metrics to quantify the behavior of steel materials subjected to cyclic load-

ing, and the associated constraints, are proposed. An existing database of uniaxial cyclic tests,

denoted as the Root dataset, is used to calculate the bounds in these constraints for selected

materials through established calibration methods (Hartloper et al., 2019b; de Castro e Sousa

et al., 2020). In Stage 2, the constraints are used with tensile tests to form a constrained opti-

mization problem using this limited data. The solution to this minimization problem yields

the constitutive model parameters that match a tensile test with cyclic loading information

embedded. In Stage 3, an assessment of the methodology is made by comparing the predicted
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Figure 3.2 – Workflow of proposed methodology applied to structural steel materials.

steel material response using the tensile-only parameters with uniaxial coupon tests from the

Root dataset in addition to a separate dataset (denoted the Validation dataset) to avoid bias in

the results.

3.2.1 Database of steel materials

As shown in Figure 3.2, data regarding the cyclic and tensile behavior of steel materials is

required at each step of the process, therefore, a database of such information is a necessary

starting point. An existing database of uniaxial tensile tests on structural steel materials, in

combination with several uniaxial cyclic tests conducted on round-bar coupons, is utilized in

this chapter (Grigoriou and Lignos, 2017; Suzuki, 2018; Hartloper et al., 2021a). This database

contains the original data used in the authors’ research in the domain of inverse problems

and is thus coined the Root dataset. A further description of the database, including the

definitions of the cyclic load protocols used, is provided in de Castro e Sousa et al. (2020). In

brief, the strain-based load protocols are cataloged numerically into 10 different histories that

are deemed to be representative of strain histories in steel frame structural components when

subjected to earthquake loading. In total, nine sets of different steel materials (some materials

having multiple samples) are included in the database, as summarized Table 3.1.

The Root dataset (Table 3.1) is largely comprised of low-carbon (or mild) low-alloy struc-

tural steels that are commonly used in Europe (e.g., S355J2 and S355J2+N), North America

(e.g., A992 Gr. 50 and A500 Gr. B), and Japan (e.g., BCR295 and BCP325) (CEN, 2005d; ASTM,

2016a, 2018). These mild steel materials are the focus of this study. Other materials included
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Table 3.1 – Overview of the Root material database.

ID Material Source Tested Bya Load Protocols fy,n
b fu,n

c

[MPa] [MPa]

1 S355J2+N 50 mm plate 1 1–10 355 470–630

2 S355J2+N 25 mm plate 1 1–10 355 470–630

3 S355J2 HEB500 flange 3 1,2,5,6,9 355 470–630

4 S355J2 HEB500 web 3 1,1–3,5–9 355 470–630

5 S460NL 25 mm plate 1 1,3–7,9,10 440 540–720

6 S690QL 25 mm plate 1 1,3–7,9,10 690 770–940

7 A992 Gr.50 W14X82 web 2 1,2,5,6,9 345 450d

8 A992 Gr.50 W14X82 flange 2 1,2,5,6,9 345 450d

9 A500 Gr.B HSS305X16 2 1,2,5,6,9 315 400d

10 BCP325 22 mm plate 2 1,2,5,6,9 325 490–610

11 BCR295 HSS350X22 2 1,2,5,6,9 295 400–550

12 HYP400 27 mm plate 2 1,2,5,6,9 400 490–640

a 1: Grigoriou and Lignos (2017), 2: Suzuki (2018), 3: Hartloper et al. (2021a).
b: nominal yield stress, c: nominal tensile stress, d: minimum value.

in Table 3.1 are high-strength low-alloy steels (S460NL and S690QL) (CEN, 2019b,a), and a

high-performance steel that is manufactured with a thermomechanically controlled process

and grain refinement (HYP400) (Suzuki et al., 2008) that are of emerging interest in structural

earthquake engineering. However, only a single set of tests is available for each of these

materials, and therefore, the hardening characteristics of these materials cannot be reliably

established at this time. Informative results for these materials are included for use in future

work that may expand on the present study.

3.2.2 Definition of the constitutive models

Implementation of the VC and UVC models has already been extensively described in the

literature (Hartloper et al., 2019b; de Castro e Sousa et al., 2020), therefore, only pertinent

details are covered herein for brevity. The model implementation outlined in this section is

specific to uniaxial stress states owing to the nature of the data included in the previously

described database.

Both the VC and UVC models use a von Mises yield condition, φV M ,

φV M := |σ−α|− (σy,0 +K ) ≤ 0, (3.1)

whereσ is the uniaxial stress,α is the backstress defining the kinematic hardening component,

σy,0 is the initial yield stress, and K is the isotropic hardening. The isotropic hardening rule

53



Chapter 3. Cyclic metal plasticity model parameters with limited information: A
constrained optimization approach

defined in the UVC model is

K =Q∞
(
1−exp

[
−bεp

eq

])
−D∞

(
1−exp

[
−aεp

eq

])
, (3.2)

where ε̇p
eq = |ε̇p | is the equivalent plastic strain, Q∞ is the magnitude of isotropic hardening at

model saturation, b is the associated rate parameter, D∞ and a are parameters to account for

discontinuous yielding in structural steels. The over-dot indicates the derivative with respect

to time. The parameter D∞ imposes an initial reduction in the yield surface that saturates

quickly when the rate parameter a is properly chosen. Isotropic hardening in the classic VC

model is attributed to Voce (1948), and is simply recovered by removing the D∞ term from

Equation 3.2. Removal of this term is the only difference in the hardening rules between the

VC and UVC models.

Both of the material models employ the nonlinear kinematic hardening rule proposed by

Chaboche et al. (1979) based on the work of Armstrong and Frederick (1966). The Chaboche

hardening rule is α = ∑Nk

k αk , where αk are backstress components, k = 1,2, . . . , Nk . Each

component is defined by the Armstrong-Frederick rule for uniaxial loading,

α̇k = sign[σ−α]Ck ε̇
p
eq −γkαk ε̇

p
eq , (3.3)

where Ck is the magnitude of contribution to the total backstress for component k, and γk is

the corresponding rate parameter. In this chapter, the backstress rate parameters are defined

such that γ1 > γ2 > ·· · > γNk .

Two constraints on the set of UVC parameters are required for modeling structural steels

(Hartloper et al., 2019b); they are denoted g1 and g2, and are respectively defined as

g1 :=−Q∞b −
∑
k

Ck +D∞a ≤ 0, (3.4)

g2 :=Q∞b2 +
∑
k

Ckγk −D∞a2 ≤ 0. (3.5)

These two constraints are sufficient conditions for the set of UVC model parameters to lead to

a non-softening stress-strain response, therefore, they are considered an essential component

of the UVC model for structural steels. Constraints (3.4) and (3.5) do not apply to the VC

model.

Considering the uniaxial stress state, the addition of the elastic modulus, E , completes the

set of parameters. The set of parameters for the VC and UVC models are respectively

xV C = [
E ,σy,0,Q∞,b,C1,γ1, . . . ,CNk ,γNk

]
,

54



3.2. Methodology

and

xUV C = [
E ,σy,0,Q∞,b,D∞, a,C1,γ1, . . . ,CNk ,γNk

]
.

3.2.3 Definition of the inverse problem

Following de Castro e Sousa et al. (2020), an objective function is defined that represents the

error in the model prediction based on the squared strain energy. The objective function

f (x) :Rn →R is

f (x) =
NT∑
j=1

∫ ε∗j
0

(
σmodel

j

(
ε j ; x

)−σtest
j

)2
dε∗∫ ε∗j

0 dε∗
, (3.6)

where σmodel
j

(
ε j ; x

)
is the predicted model stress given a strain history ε j and parameters x ,

σtest
j is the stress recorded in the uniaxial test j , and ε∗ is the accumulated strain

ε∗j =
∫ t j

0

∣∣ε̇ j
∣∣dτ. (3.7)

Note that Equation 3.6 is defined for NT load histories allowing for multiple cyclic tests to be

used in the calibration simultaneously.

We seek the set of parameters that minimizes the defined objective function, i.e., the

inverse problem of parameter calibration is posed as the constrained minimization problem

minimize
x ∈Rn

f (x) (3.8a)

subject to g (x) ≤ 0, (3.8b)

where g (x) : Rn → Rm is a vector valued function of m constraints given n parameters in x .

These constraints are an essential component of the proposed methodology as they embed

characteristics of the material subjected to cyclic loading into just a single tensile test.

3.2.4 Definition of the constraints to embed cyclic loading information

Metrics are proposed to characterize the behavior of structural steels subjected to cyclic

loading. These metrics should be derived from tests that are representative of the expected

loading conditions of the material. In the context of the current chapter, the load protocols

should be consistent with the expected inelastic strain demands in steel components under

earthquake loading. Constraints on these metrics are then defined to embed this information

into the calibration process when only a tensile test is used.
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Material hardening metrics

The metrics defined herein are consistent with those used in de Castro e Sousa et al. (2020)

to quantify the isotropic and kinematic hardening found in structural steels. Given a set of

parameters for either the UVC or VC models, the following metrics are defined in terms of the

equivalent plastic strain assuming monotonic loading from an initially strain free state. This

assumption is necessary to define metrics independent of the strain history for the kinematic

hardening component because the time-integration of Equation 3.3 is not a monotonically

increasing function under cyclic loading. Where applicable, the metrics for the VC model are

calculated neglecting D∞ and a.

The total increase in stress due to combined isotropic and kinematic hardening is de-

scribed by the metric

σhar d

(
ε

p
eq

)
=Q∞

(
1−exp

[
−bεp

eq

])
+

∑
k

Ck /γk

(
1−exp

[
−γkε

p
eq

])
, (3.9)

and the ratio of isotropic-to-total hardening is defined by the metric

ρi so

(
ε

p
eq

)
=

Q∞
(
1−exp

[
−bεp

eq

])
σhar d

(
ε

p
eq

) . (3.10)

A value of ρi so = 1 indicates that there is only isotropic hardening present in the material, and

ρi so = 0 indicates purely kinematic hardening (e.g., in high-strength steels). The total stress at

a particular value of εp
eq is defined by

σtot al

(
ε

p
eq

)
=σy,0 +σhar d

(
ε

p
eq

)
−D∞

(
1−exp

[
−aεp

eq

])
, (3.11)

and the ratio of total stress to the initial yield stress is defined as

ρyi eld

(
ε

p
eq

)
=
σtot al

(
ε

p
eq

)
σy,0

. (3.12)

A value of ρyi eld = 2 would indicate that the stress at the chosen value of εp
eq is twice the initial

yield stress. In this chapter, all the metrics are defined at their saturation value, εp
eq →∞, this

is indicated by the sat superscript, e.g., ρsat
i so =Q∞/

(
Q∞+∑

k Ck /γk
)
.

A further metric is introduced relating the rates of kinematic and isotropic hardening. This

metric quantifies the rates at which the different hardening components saturate assuming

monotonic loading, and is defined as

ργ1b = γ1

b
. (3.13)
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If ργ1b > 1 this indicates that the kinematic hardening saturates at a lower equivalent plastic

strain than the isotropic hardening under monotonic loading. A metric is proposed to define

the rate of saturation for various kinematic hardening components if more than one backstress

is specified in the constitutive model:

ργ1γ2 =
γ1

γ2
. (3.14)

This constraint is necessary to prevent duplication of the backstress rate terms, for instance, if

γ1 = γ2, then essentially the two-backstress model reduces to a one-backstress model. This

issue arises because there is not enough information in a single tension test to differentiate

the kinematic hardening components since a near-perfect fit can be obtained with a single

component (see Figures 3.1a and 3.1c). Whereas, this same issue only appears to occur after

four backstresses are included when the full set of load protocols are used in the calibration

effort (de Castro e Sousa et al., 2020).

An additional metric is proposed for the UVC model that specifies the ratio of the initial

reduction in the yield surface to the total hardening at saturation. More specifically,

ρD

(
ε

p
eq

)
=

D∞
(
1−exp

[
−aεp

eq

])
Q∞

(
1−exp

[
−bεp

eq

])
+∑

k Ck /γk

(
1−exp

[
−γkε

p
eq

]) . (3.15)

Another possible constraint is to specify the ratio between D∞ and Q∞, however, this con-

straint is not valid for steels with very low isotropic hardening (e.g., high strength steels). This

is also common in the case of cold-forming, such as in the corners of press-bent products.

Constraints on the hardening metrics

Constraints are imposed on each of the metrics described in the previous section for use in

the constrained minimization problem. All the constraints are posed as bound constraints in

the standard form specified in (3.8b), therefore, two constraints are defined for the lower and

upper bound of each metric, g i n f and g sup , respectively. Each of the following constraints

consists of a metric, ρ, and a constant that specifies the lower/upper bound of the metric,

c i n f /sup .

In total, there are ten constraints specified assuming a maximum of two backstresses in
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the constitutive model:

g i n f
yi eld := c i n f

yi eld −ρsat
yi eld ; g sup

yi eld := ρsat
yi eld − c sup

yi eld ; (3.16a)

g i n f
i so := c i n f

i so −ρsat
i so ; g sup

i so := ρsat
i so − c sup

i so ; (3.16b)

g i n f
γ1b := c i n f

γ1b −ργ1b ; g sup
γ1b := ργ1b − c sup

γ1b ; (3.16c)

g i n f
γ1γ2

:= c i n f
γ1γ2

−ργ1γ2 ; g sup
γ1γ2

:= ργ1γ2 − c sup
γ1γ2

; (3.16d)

g i n f
D := c i n f

D −ρsat
D ; g sup

D := ρsat
D − c sup

D ; (3.16e)

The constants in each of (3.16a)–(3.16e) depend on the constitutive model (e.g., VC or UVC,

including the number of backstresses assumed), and the equivalent plastic strain used in

computing the corresponding metrics (e.g., at saturation). Both these factors should be

consistent with the calibration at hand when computing the constants.

3.2.5 Proposed calibration procedure

The optimization problem (3.8a) subjected to (3.8b) is solved with the NITRO algorithm (Byrd

et al., 1999) as implemented in Scipy (Virtanen et al., 2020). The NITRO algorithm requires

an initial starting point, and is an iterative method where the stopping point for a local

minimum is determined by the first- and second-order necessary conditions (i.e., the norm of

the objective function’s gradient is less than a specified tolerance, and the objective function’s

Hessian is positive definite). Gradients and Hessians required in this algorithm are computed

using algorithmic differentiation, as previous studies have demonstrated the efficacy of this

approach when combined with gradient-based optimization methods (Hartloper et al., 2019b;

de Castro e Sousa et al., 2020).

The use of a minimization algorithm requires an initial starting point. Two starting points

are used in this study to assess if similar optimal parameters are obtained from different

initial conditions. The first starting point, denoted as SP1, is feasible with respect to the

constraint set. To generate SP1, an initial set of parameters is chosen that represents an elastic

perfectly-plastic material as assumed in de Castro e Sousa et al. (2020); this set is then modified

according to Algorithm 1 so that the initial point is feasible with respect to the constraints.

The basis for this algorithm is to set the parameters such that the constraints are set to their

mean of the upper and lower bound values. The second starting point, SP2, is a potentially

infeasible point that is just the set of parameters leading to a nearly perfectly-plastic response

(SP1 prior to applying Algorithm 1).

With reference to Stage 2 of the workflow shown in Figure 3.2, the proposed procedure for

calibration of the VC and UVC model parameters using only a tensile test is as follows:

1. Specify the constraints:
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(a) VC model: The constraint vector, g (x), is composed of constraints (3.16a)–(3.16c)

regardless of the model and number of backstresses. Constraints defined in (3.16d)

are added if two backstresses are considered.

(b) UVC model: The constraint vector, g (x), is composed in the same manner as the

VC model for either one or two backstresses. Additionally, g1 and g2 are added to

ensure non-softening of the material.

2. Set the material cyclic hardening metric constraint bounds: The bounds on the con-

straints are defined using the minima and maxima of relevant metrics from prior cali-

brations on similar materials using relevant cyclic loading histories. The metrics used

to establish the bounds should match the employed material model and number of

backstresses for the constraints to be meaningful.

(a) VC model:

• One backstress: c i n f
yi eld , c sup

yi eld , c i n f
i so , c sup

i so , c i n f
γ1b , c sup

γ1b ,

• Two backstresses: VC model one backstress, additionally c i n f
γ1γ2

, c sup
γ1γ2

(b) UVC model:

• One backstress: VC model one backstress, additionally c i n f
D , c sup

D

• Two backstresses: VC model two backstresses, additionally c i n f
D , c sup

D

3. Select the starting point: The starting point is intended to represent a material with

nominal elastic and yield properties, and a nearly-perfectly plastic behavior. Nominal

values for the elastic modulus and yield stress are selected as En = 200 GPa and fy,n =
355 MPa for all materials in this study.

(a) VC model:

• One backstress: xV C
SP2 = [En , fy,n ,1,1,1,1]

• Two backstresses: xV C
SP2 = [En , fy,n ,1,1,1,1,1,1]

(b) UVC model: Note that the initial value for “a” is set to 200 to approximately reach

99 % saturation of D∞ at 2 % strain (typical plateau strain in mild steels).

• One backstress: xUV C
SP2 = [En , fy,n ,1,1,1,200,1,1]

• Two backstresses: xUV C
SP2 = [En , fy,n ,1,1,1,200,1,1,1,1]

4. (Optional) Make the starting point feasible: If desired, Algorithm 1 can be applied to

xV C
SP2 / xUV C

SP2 so that the starting point satisfies the hardening metric constraint bounds.

The basis of this algorithm is to set the material properties to the average of the relevant

bounds. The feasible starting point is denoted xV C
SP1 / xUV C

SP1 .
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5. Determine the optimal set of parameters: The minimization, Problem (3.8), is solved

using the NITRO algorithm starting from SP1 or SP2 with a tolerance on the convergence

criteria of 10−8 and a maximum of 600 iterations. Note that the solution point typically

converges to a local minima within 200 iterations for the steel materials examined in

this work (on average, approximately 5 minutes on a desktop computer with a 4 GHz

processor), therefore, the 600 iterations is deemed to be adequate.

Algorithm 1 Generate a feasible starting point with respect to g yi eld , gi so , gγ1b , gγ1γ2 .

1: ρsat
yi eld ,av g ← 0.5×

(
c i n f

yi eld + c sup
yi eld

)
2: ρsat

i so,av g ← 0.5×
(
c i n f

i so + c sup
i so

)
3: ρsat

γ1b,av g ← 0.5×
(
c i n f
γ1b + c sup

γ1b

)
4: ργ1γ2,av g ← 0.5×

(
c i n f
γ1γ2

+ c sup
γ1γ2

)
5: γ2,0 ← γ1,0/ργ1γ2,av g

6: C1,0 ←−γ1,0σy,0,0
(−1+ρi so,av g

)(−1+ρyi eld ,av g
)

7: Q∞,0 ←C1,0ρi so,av g /
(
γ1,0

(−1+ρi so,av g
))

8: b0 ← γ1,0/ργb,av g

3.2.6 Metrics used for procedure evaluation

Referring to Stage 3 of the proposed workflow shown in Figure 3.2, the normalized form of the

objective function is used to assess the accuracy of the proposed calibration procedure using

only a tensile test. The normalized error metric is

ϕ̄=
√

f (x)

Etot al
, (3.17)

where the total normalized strain energy of all the considered tests in a data set is

Etot al =
NT∑
j=1

∫ ε∗j
0

(
σtest

j

)2
dε∗∫ ε∗j

0 dε∗
. (3.18)

The metric ϕ̄ represents the error in strain energy calculated over the entire data set (i.e.,

tensile and cyclic tests), normalized by the total strain energy of all the tests.

Consistency between sets of parameters is evaluated using the ξ2 metric defined in de

Castro e Sousa et al. (2020). This metric is computed between two sets of parameters xbase

and xsample as

ξ2 =
(
xsample −xbase

)T ∇∇∇xx f (xbase )
(
xsample −xbase

)
Etot al

, (3.19)

where ∇∇∇xx f (xbase ) is the Hessian of the objective function for a given data set evaluated at
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the local minimum of f (x), xbase . The ξ2 metric represents the normalized increase in the

minimum value of the objective function when choosing xsample instead of xbase . If this

increase is insignificant, then the two sets of parameters are said to be consistent.

3.2.7 Validation of the results

The main objective of this chapter is to answer the question of whether calibrations of single

tensile tests, constrained by cyclic material characteristics, will yield satisfactory responses

for a wide range of cyclic protocols. Here, the proposed tensile-only calibration procedure is

satisfactory if the results out-perform, in the ϕ̄-sense for all LPs, parameters derived for other

materials using all available load protocols. The satisfactory condition defined above reflects

the common situation where a modeler selects input model parameters from a nominally iden-

tical steel grade that have been calibrated in a prior study for an entirely different production

batch. For instance, parameters from de Castro e Sousa et al. (2020) for a hot-rolled HEB500

section of S355J2 ( fy = 355 MPa) steel may be selected to model an IPE300 section from a

different production heat of the same steel grade. In this hypothetical situation, we would

like to demonstrate that, on average, there is less error in the ϕ̄-sense by using the proposed

tensile-only calibration with a supplied tensile test than using alternative parameters from the

same steel grade.

Since the cyclic characteristics are obtained a priori, validation of the proposed methodol-

ogy is done using data sets of S355J2 steel that are separate from the database summarized

in Table 3.1 to avoid bias in the results. The characteristics are derived from the Root dataset

(see Figure 3.2) and used to analyze steel materials from another set, coined the Validation

dataset. The Validation dataset consists of tests conducted on round-bar coupons of S355J2

steel (with same group of ten uniaxial cyclic load protocols) sampled from two alternative

sources: (1) the web of an IPE300 hot rolled profile and (2) the flange of the same IPE300.

The proposed calibration procedure described above is subsequently applied to estimate the

model parameters using a single tensile test. Comparisons are then made to parameters that

would be obtained if all available load protocols were used, as well as using the parameters

from Tables 3.2 and 3.6 for S355 steels calibrated from the Root dataset.

3.3 Results

The methodology proposed in the previous section is applied to the database of steel materials

summarized in Table 3.1. Results for the VC material model are presented first, followed by

the UVC model. In all cases, discussion of the results is delayed to the Discussion section.
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3.3.1 Voce-Chaboche model results

Constraint bounds

Bounds on the metrics used to form the constraints defined in (3.16a)–(3.16d), i.e., the c values,

are calculated using the parameters obtained for mild structural steels. As mentioned in the

Methodology section, only the S355J2(+N), A992 Gr. 50, and BCP325 steels are utilized for

the tensile-only calibration because these materials are consistent in terms of their nominal

chemical compositions and yield/tensile stresses (see Table 3.1) (CEN, 2005d; ASTM, 2016a).

The other materials included in Table 3.1 are excluded from the metric bounds, and the

tensile-only calibration is not conducted. The materials are excluded on the basis that: (1)

they are high-strength low-alloy steels (e.g., S460NL and S690QL), (2) are cold worked from the

corners of hollow structural sections (e.g., A500 Gr. B and BCR295), or (3) were manufactured

with a thermomechanically controlled process and grain refinement (e.g., HYP400). However,

parameters and hardening metrics using all available protocols are provided for each material

in the Root dataset for use in future research.

Parameters for the VC model with one and two backstresses computed using the method-

ology in de Castro e Sousa et al. (2020) are recorded for all the Root materials in Table 3.2. The

material hardening metrics computed for the subset of mild steels are summarized in Table 3.3,

and a summary of the metrics can be viewed graphically in Figure 3.3. Most importantly, ob-

serve that the computed metrics in Table 3.3 depend on the number of backstresses included

in the model, therefore, a separate set of bounds are used for either one or two backstresses.

Notice that there is an increase in the ratio of kinematic hardening when two backstresses

are included in the model, this is because the kinematic hardening is more accurately repre-

sented by two backstress components, thus increasing its relevance and magnitude. The total

hardening, σsat
tot al , is also greater when two backstresses are included. The reason for this is

that γ1 in the one-backstress model is greater than γ2 in the two-backstress model, therefore,

the two-backstress model saturates at a much greater plastic strain than the one-backstress

model. This issue could be addressed by evaluating this metric at a finite equivalent plastic

strain value, but for simplicity, this is not taken into account herein. As for the initial yield

stress, comparing the σy,0 values in Table 3.2 with the nominal yield stresses in Table 3.1, the

VC model values are close to, but consistently lower than, the nominal yield stress values. This

is a known issue with the VC model for structural steels, and is the motivation behind the

development of the UVC model (Hartloper et al., 2019b).

Low coefficient of variation (CoV) values for the metrics imply consistency across the

steel materials, thereby providing an indication of the link between the physical material

properties and the proposed hardening metrics. Results in Figure 3.3 suggest that a reasonably

low variance in all metrics is found for the VC one-backstress model, while this variance is

significantly larger for the ρsat
yi eld and ργ1b metrics of the two-backstress model. Furthermore,
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the metric ργ1γ2 applicable to the VC two-backstress model does not appear to be reliable

given that the CoV is slightly lower than 90 %. Recall, however, that this constraint should be

considered to avoid duplication of the γk parameters when two backstresses are used in the

tensile-only calibration.

The constraint bounds applicable to mild steels contain the minima and maxima of

the metrics in Table 3.3 for S355J2(+N), A992 Gr. 50, and BCP325 steels. For the VC one-

backstress model, these bounds are: 1.5 ≤ ρsat
yi eld ≤ 2.5, 0.35 ≤ ρsat

i so ≤ 0.50, and 2.25 ≤ ργ1b ≤
3.25. Similarly, the bounds used in this study for the VC model and two backstresses are:

1.75 ≤ ρsat
yi eld ≤ 2.3, 0.15 ≤ ρsat

i so ≤ 0.30, 8.5 ≤ ργ1b ≤ 25.0, and 13 ≤ ργ1γ2 ≤ 92.

Tensile-only calibration results

Bounds on the metrics are used to establish the constraint vector g (x) used in the proposed

calibration procedure (Stage 2, Figure 3.2) for the subset of Root data. Results for the tensile-

only calibration of the seven selected steel materials are provided in Table 3.4. The normalized

error metric values, ϕ̄, in Table 3.4 are evaluated using the parameters in this table along with

all the available load protocols for each steel material. Similarly, the values of the ξ2 metric

are calculated using Equation 3.19 with xbase taken from Table 3.2 for the full data calibration

(the base), and xsample taken from Table 3.4 for the tensile-only calibration (the sample).

The results in Table 3.4 suggest that there is no benefit in this approach to use two versus

only one backstress in terms of the value of the error function—in fact it is worse to use two

backstresses. Also, if one takes the threshold value of ξ2 = 5 % discussed in de Castro e Sousa

et al. (2020), these results show that the tensile only parameters are inconsistent with those

retrieved from a calibration a full set of load protocols. The implications of these findings are

further expounded in the Discussion section.

The influence of the two starting points is shown in Figure 3.5 for the S355J2+N 50 mm plate

data set, and similar results hold for the other data sets although they are not shown herein.

The convergence criteria at each iteration of the NITRO algorithm is shown in Figure 3.5a,

and the results imply that the starting point does not have a major influence on the rate of

convergence for the algorithm. Furthermore, the convergence criteria of 10−8 for Problem (3.8)

are satisfied in all but one case (S355J2+N 25 mm plate). In this case, the exit convergence

criterion value was about 10−5 after 600 iterations. The plot of the objective function value at

each iteration, Figure 3.5b, indicates that the same level of error is reached regardless of the

starting point. The reason is that the model parameters also converge to the same value for

both SP1 and SP2, as shown in Figure 3.5c that tracks the model parameters at each iteration.

Therefore, the chosen starting points do not appear to be influential on the obtained solution

point in this calibration procedure.
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Validation

Data sets of uniaxial coupon tests conducted on samples from the flanges and web of an

IPE300 profile of S355J2 steel are used as the Validation set for our proposed tensile-only

calibration. The results of the validation are summarized in Table 3.5 via the ϕ̄ metric. Values

of the ϕ̄ metric in this table are computed using all available load protocols for the IPE300

flange/web, and parameters that are either: (1) calibrated using the methodology in this

chapter using only the tensile test of the IPE300 flange or web data sets (tensile-only), or (2)

calibrated using all available load protocols of other S355J2(+N) steel materials. For instance,

the error computed across the entire IPE300 flange dataset using the parameters from the

IPE300 tensile-only calibration is ϕ̄= 10.53 %, while the error computed using the parameters

from the S355J2+N (50 mm plate) dataset is ϕ̄= 11.25 %. The implications of these results will

be discussed shortly.

Figure 3.6 is provided to compare the level of fit between different options for selected

tests from the IPE300 flange data set. Material model predictions in these figures are com-

puted with the parameters from the VC 1-backstress model tensile-only calibration using

the IPE300 flange (“Tensile”), and the VC 2-backstress model parameters calibrated to the

S355J2 HEB500 flange data (“HEB500-Flange”). For the case shown in Figure 3.6, the proposed

tensile-only calibration leads to results that are in closer agreement with the test data regard-

less of the load protocol. Moreover, a stark contrast is apparent between the poor results of

the “naive” approach, where no information is used to guide the tensile-only calibration (see

Figure 3.1b/3.1d), and the reasonably good results shown in Figure 3.6c when the proposed

methodology is employed.

3.3.2 Updated Voce-Chaboche model results

Constraint bounds

The same materials and methodology as discussed above for the VC model is applied to the

UVC model to derive appropriate bounds of the model’s material performance metrics. UVC

material model parameters are provided in Table 3.6 for one and two backstresses, and the

hardening metrics are summarized in Table 3.7. A summary of the metrics can also be viewed

in graphical form in Figure 3.3.

Many observations regarding the link between the calibration results and the physical

material properties made for the VC model also apply to the UVC model. However, a quick

review of the obtained metrics shows a significant dispersion in the ratios in the material

metrics ρsat
i so and ρsat

D when only one backstress is included in the UVC model (see Figures 3.3b

and 3.4b). The later metric essentially measures the decay in isotropic hardening stress with

respect to the other hardening components of the model, and the accuracy of this parameter
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is crucial to the UVC functioning as intended since it is the main differentiator with respect

to the VC model. Furthermore, considering that these two metrics cannot be defined with

precision, the initial hypothesis that these metrics are an intrinsic property of the material

cannot be made with any degree of confidence when only one backstress is included in the

UVC model. It follows, then, that it is pointless to pursue analyses with one backstress using

the UVC model. This is not the case, however, for the two backstress condition, where ρsat
D

and ρsat
i so are defined within a narrow CoV range.

Following the above argument, the recommended bounds used in this study to assess

tensile-only calibrations for the UVC model are based solely on a two-backstress model. For

the steels in question (S355J2(+N), A992 Gr. 50, and BCP325) these are: 1.8 ≤ ρsat
yi eld ≤ 2.1,

0.25 ≤ ρsat
i so ≤ 0.30, 13.0 ≤ ργ1b ≤ 20.0, 15.0 ≤ ργ1γ2 ≤ 30.0, and 0.2 ≤ ρD ≤ 0.3.

Tensile-only calibration and validation results

In contrast with the VC model, UVC tensile-only parameters are not presented herein. The

reason for this decision follows from the results in Table 3.8 for the validation of the UVC two-

backstress model. This table indicates that, in terms of the error metric ϕ̄, the performance of

the tensile-only parameters is significantly worse than using the parameters from a different

steel from a database derived with full load protocols (i.e., using any of the two-backstress

parameter sets from Table 3.6). For example, the error in the IPE300 web data set is around

ϕ̄= 25 % when the proposed tensile-only calibration procedure is used with the UVC model,

while the error is around ϕ̄= 10–18 % using the parameters calibrated from other data sets.

Poor results of the UVC tensile-only calibration are apparent in Figure 3.7: despite matching

the tensile test, the other cyclic load protocols are not accurately represented by the model

predictions. These results demonstrate that UVC tensile-only calibrations, even with two

backstresses, are inadequate with the methodology and data presented herein, and should

not be used when parameters from a material with a similar microstructure are available.

3.4 Discussion

The methodology presented in this chapter assumes a strong link between physical material

response and the parameters used in its representation by a material constitutive model. This

assumption is crucial in order to obtain accurate cyclic model responses by performing a

constrained optimization with limited information (in this case a tensile-only test of a material

sample). From the results presented in the previous section, it was shown that while precise

performance metrics can be found for the material models under analysis (VC with one

backstresses, and UVC with two backstresses), when these metrics are used in the constrained

optimization with tensile-only test data, the results are not universally satisfactory. In fact, the

poor performance of the UVC under these conditions leads to the inescapable conclusion that
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Table 3.2 – Voce-Chaboche material model parameters with one and two backstresses obtained
using the full data sets.

ID ϕ̄ E σy,0 Q∞ b C1 γ1 C2 γ2

[%] [GPa] [MPa] [MPa] [MPa]

1 8.21 177.54 296.62 123.26 7.17 6501.83 27.90 - -

6.31 184.98 270.96 107.22 5.97 14327.30 115.12 1771.06 7.56

2 8.49 182.11 285.67 125.79 11.80 6801.09 29.78 - -

6.57 191.52 265.29 104.45 11.63 12997.99 99.51 1560.41 7.35

3 6.02 186.13 272.57 132.55 9.10 3738.39 28.95 - -

4.63 191.85 245.50 119.77 8.67 14019.86 205.39 1247.05 4.45

4 7.38 193.82 275.65 104.97 14.29 8437.43 62.41 - -

6.86 200.39 265.46 103.29 11.18 11996.11 104.79 627.33 1.14

5 8.02 172.85 376.44 106.09 11.08 6857.43 23.44 - -

6.18 185.86 358.93 68.04 10.02 14202.40 104.22 2259.11 8.01

6 7.56 184.88 607.47 0.50 0.58 15648.17 60.98 - -

7.29 184.70 602.64 0.48 0.55 16107.81 78.81 937.51 6.32

7 7.78 194.55 328.83 101.76 16.73 5159.90 38.80 - -

6.23 207.32 299.86 88.30 13.96 14878.98 166.00 1424.51 8.57

8 7.69 178.64 324.68 127.20 11.89 3943.98 30.59 - -

5.75 189.95 292.75 110.54 9.71 15142.58 170.54 1117.53 5.86

9 7.72 180.57 321.68 36.64 0.94 3995.53 24.59 - -

5.43 191.39 286.87 24.08 0.84 11934.29 160.01 1585.62 7.71

10 6.67 173.87 325.05 103.34 8.75 5945.26 32.19 - -

4.88 177.92 306.09 94.16 5.81 11613.11 122.00 1744.03 8.29

11 7.75 173.46 355.97 0.56 0.60 5135.19 44.95 - -

6.24 177.88 329.13 0.57 0.61 12773.06 196.86 1746.22 11.96

12 7.02 187.13 401.29 44.20 9.64 5758.71 38.19 - -

5.22 189.35 376.22 29.12 6.41 13711.66 139.70 1147.15 4.59
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Table 3.3 – Voce-Chaboche hardening metrics with one and two backstresses obtained using
the full data sets.

One Backstress Two Backstresses

ID ρsat
yi eld ρsat

i so ργ1b ρsat
yi eld ρsat

i so ργ1b ργ1γ2

1 2.20 0.35 3.89 2.72 0.23 19.27 15.22

2 2.24 0.36 2.52 2.69 0.23 8.56 13.55

3 1.96 0.51 3.18 2.91 0.26 23.70 46.13

4 1.87 0.44 4.37 3.90 0.13 9.37 92.16

7 1.71 0.43 2.32 2.15 0.26 11.89 19.37

8 1.79 0.50 2.57 2.33 0.28 17.56 29.12

10 1.89 0.36 3.68 2.31 0.24 21.00 14.72

Avg. 1.95 0.42 3.22 2.72 0.23 15.91 32.90

StD. 0.19 0.06 0.73 0.54 0.05 5.52 26.46

CoV.[%] 9.49 14.76 22.61 20.05 19.44 34.72 80.44

Table 3.4 – Voce-Chaboche tensile test only calibration with one and two backstresses using
the NITRO algorithm and SP1 for mild steels.

ID ϕ̄ ξ2 E σy,0 Q∞ b C1 γ1 C2 γ2

[%] [%] [GPa] [MPa] [MPa] [MPa] [MPa]

1 12.4 13.5 206.38 298.28 201.10 7.10 4692.07 23.07 - -

14.31 37.0 199.38 308.79 60.68 1.79 5183.37 15.21 0.01 1.17

2 12.4 14.4 200.40 299.99 193.89 8.15 4861.80 25.00 - -

13.65 44.0 200.87 311.37 82.02 1.96 5380.87 16.67 0.04 1.28

3 9.5 10.9 220.12 300.02 157.51 3.07 2018.60 6.90 - -

18.05 20.9 200.00 289.05 55.60 0.41 3081.98 9.85 0.16 0.76

4 11.5 7.5 204.86 290.20 118.20 6.23 3078.12 14.02 - -

19.01 37.5 200.00 291.16 77.46 1.09 3666.21 12.24 0.69 0.94

7 8.68 4.6 200.95 356.51 104.04 6.90 2999.91 15.53 - -

14.97 7.4 200.00 357.10 60.84 0.54 3619.24 13.25 0.91 1.02

8 10.1 9.3 200.15 339.64 114.86 5.61 2690.49 12.61 - -

19.45 13.0 200.00 331.53 78.09 0.51 3656.42 12.51 0.81 0.96

10 10.5 12.1 212.62 353.76 114.24 6.21 2965.99 13.98 - -

14.30 10.2 200.00 352.67 81.40 0.51 3662.68 12.33 1.33 0.95
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Table 3.5 – Results from the validation of the tensile test only calibration methodology with
one and two backstresses, using the VC model for mild steels.

Calibration Material Load Protocols Model IPE300 flange IPE300 web

Data Set ϕ̄,[%] ϕ̄,[%]

Validation S355J2 (IPE300 flange) Tensile only VC, 1bk 10.53 -

Validation S355J2 (IPE300 web) Tensile only VC, 1bk - 11.82

Validation S355J2 (IPE300 flange) Tensile only VC, 2bk 18.31 -

Validation S355J2 (IPE300 web) Tensile only VC, 2bk - 19.92

Validation S355J2 (IPE300 flange) All available VC, 2bk 5.46 6.94

Validation S355J2 (IPE300 web) All available VC, 2bk 6.03 6.26

Root S355J2+N (50 mm plate) All available VC, 2bk 11.25 11.86

Root S355J2+N (25 mm plate) All available VC, 2bk 10.71 11.50

Root S355J2 (HEB500 flange) All available VC, 2bk 16.91 18.36

Root S355J2 (HEB500 web) All available VC, 2bk 11.99 13.64

Table 3.6 – Updated Voce-Chaboche full data set calibration with one and two backstresses for
mild steels.

ID ϕ̄ E σy,0 Q∞ b D∞ a C1 γ1 C2 γ2

[%] [GPa] [MPa] [MPa] [MPa] [MPa] [MPa]

1 8.18 177.51 327.15 128.25 7.86 37.28 203.33 6572.34 28.32 - -

6.33 197.41 338.8 134.34 14.71 133.75 229.25 26242.00 199.04 2445.30 11.66

2 8.43 182.96 330.42 146.77 13.72 67.20 133.57 6962.12 30.65 - -

6.53 185.97 332.18 120.48 8.14 93.15 261.75 21102.00 173.60 2300.60 10.42

3 5.81 186.17 304.96 153.96 12.13 59.91 98.68 4044.49 32.44 - -

3.96 192.13 315.04 138.01 11.36 96.16 223.66 18587.84 257.31 1351.98 6.52

4 7.00 193.91 341.22 454.07 34.70 419.75 56.92 8907.58 66.38 - -

6.61 199.68 334.94 139.32 14.07 120.33 274.73 28528.03 315.17 2569.46 24.68

7 7.43 194.62 376.35 623.86 38.46 574.87 51.64 5690.09 44.29 - -

5.21 210.72 378.83 122.63 19.74 143.49 248.14 31638.00 277.32 1548.60 9.04

8 7.53 178.75 360.64 195.99 20.52 113.60 74.36 4425.80 36.83 - -

4.76 191.02 373.72 141.47 15.20 135.95 211.16 25621.00 235.12 942.18 3.16

10 6.51 173.95 360.85 123.00 12.50 60.74 127.27 6193.34 34.44 - -

3.89 178.61 368.03 112.25 10.78 105.95 221.92 20104.00 200.43 2203.00 11.76
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Table 3.7 – Metrics for the Updated Voce-Chaboche full data set calibration with one and two
backstresses.

One Backstress Two Backstresses

ID ρsat
yi eld ρsat

i so ρsat
γ1b ρsat

D ρsat
yi eld ρsat

i so ρsat
γ1b ρsat

D ργ1/γ2

1 1.99 0.36 3.60 0.10 2.11 0.26 21.33 0.20 16.67

2 1.93 0.39 2.23 0.18 2.01 0.28 13.53 0.28 17.08

3 1.72 0.55 2.68 0.22 2.02 0.33 22.65 0.23 39.49

4 1.49 0.77 1.91 0.71 1.64 0.42 22.39 0.36 12.77

7 1.47 0.83 1.15 0.76 1.70 0.30 14.05 0.35 30.66

8 1.56 0.62 1.80 0.36 2.10 0.26 15.47 0.25 74.44

10 1.67 0.41 2.76 0.20 1.80 0.28 18.60 0.26 17.05

Avg. 1.69 0.56 2.30 0.36 1.91 0.30 18.29 0.28 29.74

StD. 0.19 0.17 0.73 0.25 0.18 0.05 3.66 0.06 20.26

CoV. [%] 11.28 31.00 31.87 68.39 9.43 17.20 20.01 20.04 68.14

Table 3.8 – Results from the validation of the tensile test only calibration methodology with
two backstresses for the UVC model.

Calibration Material Load Protocols Model IPE300 flange IPE300 web

Data Set ϕ̄,[%] ϕ̄,[%]

Validation S355J2 (IPE300 flange) Tensile only UVC, 2bk 19.80 -

Validation S355J2 (IPE300 web) Tensile only UVC, 2bk - 24.69

Validation S355J2 (IPE300 flange) All available UVC, 2bk 4.94 6.35

Validation S355J2 (IPE300 web) All available UVC, 2bk 5.59 5.42

Root S355J2+N (50 mm plate) All available UVC, 2bk 10.86 11.31

Root S355J2+N (25 mm plate) All available UVC, 2bk 10.19 10.69

Root S355J2 (HEB500 flange) All available UVC, 2bk 16.42 17.86

Root S355J2 (HEB500 web) All available UVC, 2bk 10.40 12.19
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Figure 3.3 – Relevant model metrics forσy ≈ 355 MPa materials based on parameters calibrated
with all available load protocols.

70



3.4. Discussion

1 2 3 4 7 8 10 1 2 3 4 7 8 10

Material ID

0

50

100

150
ρ
γ
1
γ
2

VC; 2Back

CoV=86.9%

UVC; 2Back

CoV=73.6%

(a)

1 2 3 4 7 8 10 1 2 3 4 7 8 10

Material ID

0.00

0.25

0.50

0.75

1.00

1.25

ρ
s
a
t

D

UVC; 1Back

CoV=74.2%

UVC; 2Back

CoV=21.6%

(b)

Figure 3.4 – Relevant model metrics forσy ≈ 355 MPa materials based on parameters calibrated
with all available load protocols. (Cont.)

it should not be used for calibrations under limited information. This is not the case for the

VC model– some nuances notwithstanding .

The results depicted in Table 3.4 for the VC show persistently that tensile-only calibra-

tions with two backstresses underperform, in error-metric terms (ϕ̄), the model with a single

backstress. One key observation in this Table is that the second backstresses parameters are

close to zero, meaning that the model response is close to a single-backstress condition. A

probable cause for this result is the significant dispersion in the ργ1γ2 performance metric

in Table 3.3 and depicted in Figure 3.4a, since it is the only metric that relates both back-

stresses. Furthermore, the consistency of the solutions, as measured by ξ2 metric with respect

to the parameters calibrated with all available load protocols, is significantly worst than the

one-backstress case. Moreover, the results from the validation dataset shown in Table 3.5

show overwhelmingly that the tensile-only two-backstress VC, underperforms models with

parameters unrelated to the specific sample, i.e., taken from another (Root) dataset. All-in-all,

these findings seem to indicate that there just isn’t enough information in a tensile test to

accurately provide two-backstress VC model parameters and that, under conditions in which

the modeler is faced with a single tensile-only test, it is preferable to use known database

parameters rather than attempting to calibrate a two-backstress VC model. This conclusion,

however, does not hold for the one-backstress VC model.

The one-backstress VC model performance, shown in Tables 3.4 and 3.5, suggests that

error levels are typically smaller than the two-backstress tensile-only VC model. Moreover,

in the validation cases the one-backstress model performs at error levels on or above par

with respect to known two-backstress database parameters established with many more load

protocols (the recommended VC calibrations strategy of de Castro e Sousa et al. (2020)). These

results seem to indicate that a limited information calibration procedure with a one-backstress
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Figure 3.5 – Evolution of the constrained optimization solution based on the different starting
points using the S355J2+N 50 mm data set.
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Figure 3.6 – Comparison of stress-strain using the S355J2 IPE300 flange data set: test data (Test),
VC 2Back Root dataset calibration (HEB500-Flange), and proposed tensile-only calibration
with the VC model (Tensile).
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Figure 3.7 – Comparison of stress-strain using the S355J2 IPE300 flange data set: test data (Test),
UVC 2Back Root dataset calibration (HEB500-Flange), and proposed tensile-only calibration
with the UVC model (Tensile).
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VC model is, in fact, a suitable approach to modeling material response when only monotonic

test data is available. Indeed it could be said, also with respect to the UVC results, that the

simplest model is the one that performs best under limited information conditions.

Why, then, should one find the possibility of using a single test result to calibrate a material

model worthwhile? The main advantage of using the constrained optimization procedure

advocated in this chapter, instead of using known database parameters, is that it diminishes

the uncertainty related to the steel making process. Consider, for instance, using database

parameters for S355J2 taken from an HEB500 flange and applying them to an S355J2 IPE300

flange. The results in Table 3.5 show that an error of ϕ̄= 16.91 % is obtained, whereas if the

tensile-only IPE300 flange test is used, one obtains an error ϕ̄= 10.53 %. This suggests that,

although the materials are “theoretically” the same, variations in manufacturing conditions

(e.g., differences between production batches or profile rolling schemes) can affect a material’s

cyclic response and that the methodology presented herein can mitigate this effect.

The facts above notwithstanding, if a modeler can have access to a material’s cyclic re-

sponse using multiple load protocols, the modeler should not hesitate in using them (de

Castro e Sousa et al., 2020). The accuracy of the parameters obtained using multiple load

protocols is substantially better than the alternatives (constrained optimization or established

material databases). This can also be seen in Table 3.4, where mid-single-digit errors are

obtained if a two-backstress solution with all available load protocols is used. Moreover, it

should be noted that, although satisfactory results are obtained using the one-backstress VC

model tensile-only method, the values of ξ2 > 5 % in Table 3.4 indicate that the parameters are

inconsistent with those obtainable from more protocols – c.f. de Castro e Sousa et al. (2020)

for details on the 5 % bound. In other words, the proposed method is acceptable only in

situations where limited information is available on the material at hand, but it is not without

its shortcomings.

Another disadvantage of this methodology is the fact that best-fit is only achieved with

a one-backstress solution for the VC model. The feature restricts the possible shapes of

the hardening material, which in certain applications may reveal crucial. Here, care should

be taken on the range of plastic strains to which the model is to be applied. For instance,

hardening slopes play a significant role in localization problems and, as such, this approach is

likely not suitable in studying cases like ultra low cycle fatigue of materials where significant

plastic strains ranges coupled with damage occurs. It should be stated, in fact, that the most

suitable cases to use in this approach would be cases where nominal strains (as opposed to

strain riser regions, such as sharp geometry changes or welds) are fairly bounded (between

-5/+5 % plastic strains, the range of most cyclic calibration tests).

Lastly, it should be noted that the best-fit constrained optimization method presented

herein is geared toward obtaining better cyclic material properties than otherwise obtained

with a tensile test or from existing databases, which may not directly translate itself to a
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"best-fit" component behavior. The material will be better characterized (as shown above),

but how this relates to a better hysteretic response on the component side is a different

issue. Component behavior depends not only on material characteristics, but also on how

these interact with other features like its slenderness, geometric imperfections or residual

stresses and demand histories. As such, one can only point out to the component modeler

that some care should be taken with regards to the sensitivity of the component response to

material parameters, because cases can arise where different failure modes can be triggered

as a function of the material response (Hartloper et al., 2019a).

3.5 Conclusions

This chapter presented a methodology to obtain material model parameters under limited

information conditions. The models discussed herein are the Voce-Chaboche (VC) and an

Updated Voce-Chaboche (UVC) in the context of structural steel applications. Limited infor-

mation conditions can arise when one intends to study the behavior of steel structures under

large amplitude cyclic loading, but knowledge of the employed steel material is restricted to

a single tensile test. A procedure is proposed herein that allows the calibration of material

parameters taking into account its cyclic properties with a single monotonic test using a con-

strained optimization scheme. This procedure has been incorporated into the open-source

Python library, RESSPyLab de Castro e Sousa et al. (2019), which is made publicly available.

The following conclusions can be made from this work:

• The definition of adequate material cyclic-performance metrics is an essential part

in the constrained optimization procedure. Metrics are proposed herein that relate

typical ratios of isotropic to kinematic hardening and their rates in order to inform the

constrained optimization procedure;

• The number of backstresses used in the kinematic part of the models plays a significant

role in the accuracy of tensile-only parameter estimates;

• The UVC model does not provide satisfactory results in parameter estimates in the

tensile-only constrained optimization, regardless of the number of backstresses em-

ployed;

• The VC model with two backstresses does not provide satisfactory estimates of material

response for tensile-only calibrations with the constraints presented herein. More data

can however motivate different constraints;

• The VC model with one backstress, however, yields satisfactory results and is the recom-

mended material model if a modeler is faced with a situation where tensile-only data is

available.
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3.6. Data availability

It should be underscored that this methodology is a best-fit approximation in limited

information cases. Whenever possible, material testing taking into account multiple load

protocols should, nevertheless, be used.

3.6 Data availability

Some or all data, models, or code generated or used during the study are available in a

repository or online in accordance with funder data retention policies (de Castro e Sousa et al.,

2019).

3.7 Acknowledgments

The authors recognize and are grateful for the financial support of this study by the Nippon

Steel Corporation, internal grants from École Polytechnique Fédérale de Lausanne (EPFL),

as well as an exploratory grant from EPFL’s School of Environmental, Architectural and Civil

Engineering, and the Swiss National Science Foundation (Project No. 200021_188476). Any

opinions, findings, and conclusions or recommendations expressed in this chapter are those

of the authors and do not necessarily reflect the views of sponsors.

3.8 Notation

The following symbols are used in this chapter:

a = isotropic saturation rate parameter associated with D∞;

b = isotropic saturation rate parameter associated with Q∞;

Ck = kinematic stress parameter for the k-th backstress;

c = constant in hardening metric constraint;

D∞ = isotropic differential stress at saturation for discontinuous yielding;

E = Young’s modulus;

Etot al = total normalized strain energy in stress-strain data;

f (x) = objective function in minimization problem with vector variable x ;

g = constraint on hardening metric;

Q∞ = isotropic differential stress at saturation;

γk = kinematic saturation rate parameter for the k-th backstress;

ε = uniaxial true strain;

ε∗ = error-metric strain;

ε̇
p
eq = equivalent plastic strain;

ξ2 = consistency distance metric;

ρ = constitutive model hardening metric;

σ = uniaxial true stress;
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σy,0 = initial yield stress;

ϕ = error function;

ϕ̄ = normalized error function;

φV M = Von Mises yield criterion;

∇∇∇x f (x) = gradient of function f with respect to vector variable x ; and

∇∇∇xx f (x) = hessian of function f with respect to vector variable x .
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Abstract: A warping-inclusive kinematic coupling method to be used in finite element analysis of

members featuring wide flange cross-sections is proposed in this chapter. This coupling method is

used in mixed-dimension macro models that combine continuum and beam-column elements to

reduce the computational cost of purely continuum finite element models. The proposed coupling

method, utilizing either linear or nonlinear constraint equations, is implemented and validated in a

commercial finite element software; the source code is made publicly available. Case studies indicate

that including warping in the coupling formulation is critical for components that may experience

coupled local and lateral-torsional buckling. Also highlighted is the potential of macro models to

reduce the total degrees-of-freedom by up-to about 60 %, and computational memory use by up-to

around 80 %, while retaining solution fidelity for beam, column, and panel zone components in steel

moment-resting frames. The case studies show that the linear constraint equation formulation may

not be suitable for all problems, however, it may still yield acceptable results as long as the level of

twisting is insignificant and lateral-torsional buckling is not critical.

Keywords: Continuum finite element analysis; Steel structures; Nonlinear geometric instabilities;

Kinematic coupling; Beam-columns.
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4.1 Introduction

4.1.1 Background

Simulation-based infrastructure design against natural hazards, such as earthquakes, relies

heavily on the development of representative models of various fidelities (Krawinkler et al.,

2006). Additionally, numerical models are necessary to evaluate the vulnerability of buildings

and bridges and the social vulnerability of populations in at-risk communities (Deierlein

and Zsarnóczay, 2019). Within the scope of steel structures subjected to earthquake hazards,

geometric instabilities are a significant source of structural damage, therefore, modeling this

effect is a necessity. Models that simulate nonlinear geometric instabilities in steel structures

under cyclic loading can be divided into three main categories of increasing fidelity and

complexity: (a) point hinge models (concentrated plasticity); (b) distributed plasticity models

(commonly using fiber beam-column elements); and (c) continuum finite element (CFE)

models. Although fracture can be critical for steel components, the focus of this chapter is

mainly on models simulating component-level strength and stiffness deterioration due to

local and/or member instabilities (member and lateral torsional buckling), as well as their

interaction.

Point hinge models are placed at predefined locations of anticipated plasticity along

a member. Concentrated plasticity models are known to be computationally efficient for

parametric nonlinear analyses of metal structures (e.g., Ibarra and Krawinkler (2005)), and

do not suffer from spurious localization issues during component deterioration. Sivaselvan

and Reinhorn (2000) and Ibarra et al. (2005) proposed hysteretic models that capture the basic

modes of cyclic deterioration in steel components, namely strength, post-peak strength and

unloading stiffness deterioration. Others (Lignos and Krawinkler, 2011; Lignos et al., 2019)

have proposed ad hoc modifications to the Ibarra et al. model’s hysteretic rules in an effort to

properly describe the hysteretic behavior of steel members.

Point hinge models have become the main workhorse in collapse-risk assessment studies

(FEMA, 2009; NIST, 2010), however, they exhibit considerable limitations. First, their cali-

bration requires large component datasets (Lignos and Krawinkler, 2013) that may not be

always available. Second, point hinge models do not capture coupled geometric instabilities,

and the effects of residual stresses on steel structures (Mathur et al., 2012). Third, the above

approaches do not consider varying axial loads and bi-directional loading effects, nor do

they capture axial shortening that may be influential in estimating earthquake induced losses

(Elkady et al., 2020). These are major drawbacks, considering the findings from recent full-

scale experimental studies (Suzuki and Lignos, 2015; Ozkula et al., 2017; Elkady and Lignos,

2018a; Cravero et al., 2020), along with corroborating CFE analyses (Elkady and Lignos, 2015a;

Fogarty and El-Tawil, 2015; Elkady and Lignos, 2018b; Wu et al., 2018).
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The capability of standard flexibility- (Spacone et al., 1996) and displacement-based (Mari,

1984) fiber-based beam-column elements to simulate the inelastic behavior of steel and

composite-steel structures is well established (Hajjar et al., 1998; Sivaselvan and Reinhorn,

2002). Numerical accuracy, for a viable computational expense, can be achieved by prop-

erly selecting the number of fibers to discretize the cross section (Kostic and Filippou, 2012).

Standard fiber beam-column elements employ the plane-sections-remain-plane assumption

that is violated by torsion warping present in wide flange steel profiles. Theoretical develop-

ments have been proposed to address this challenge for fiber-based beam-column elements

(Le Corvec, 2012; Di Re et al., 2018). Inclusion of the warping component is critical for eval-

uating wide flange steel components subjected to torsion and those that are susceptible to

lateral-torsional buckling.

Continuum finite element component models are currently the only viable way to provide

insights into complex instability interactions prior to global and partial structural collapse

(Miyamura et al., 2015; Stoakes and Fahnestock, 2016; Wu et al., 2018). CFE models are

also suitable for detailed studies of critical regions of metal structures (Kalochairetis and

Gantes, 2011; Elkady and Lignos, 2015a, 2018b; Fogarty and El-Tawil, 2015; Araújo et al., 2017).

Furthermore, it is acknowledged that CFE simulations can serve as benchmarks for theoretical

developments of advanced fiber beam-column elements, and for the further development of

advanced experimental techniques (Whyte et al., 2016).

A current difficulty in employing CFE models in structural analysis is that they are com-

putationally expensive for multiple nonlinear dynamic analyses of structures. Reducing the

computational expense of simulation models in aforementioned studies (Miyamura et al.,

2015; Wu et al., 2018) would be beneficial to increase the number of structural configurations

and ground motions that can be investigated within any time-frame. Such a consideration is

particularly important in, e.g., incremental dynamic analysis (Vamvatsikos and Cornell, 2002),

in which the computational complexity is further increased through the number of intensity

levels analyzed for each ground motion. There is a clear need to reduce the computational

demands from CFE component models while retaining the solution fidelity of this modeling

approach. To achieve this goal, methods to reduce the associated computational cost in CFE

simulations should be further developed.

The approach advocated in this chapter is to employ a mixed-dimension component

macro model, that combines domains of 1D beam-column elements with continuum do-

mains comprised of 2D shell or 3D solid elements. Here, the dimensionality of the element

refers to the number of dimensions used to parametrize the element geometry: 1D elements

are lines, 2D elements are surfaces, and 3D elements are volumes. The mixed-dimension

macro model idea is illustrated in Figure 4.1a that shows the beam-column (Ω1) and con-

tinuum (Ω2) element domains for a wide flange cross section. Macro models can capture

material plasticity and local instabilities in the continuum domains, while maintaining the
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computational efficiency of beam-column elements. A chief issue in mixed-dimension macro

models, and the focus of this chapter, is that there is a need to select an accurate coupling

method between the beam-column and continuum domains that is also computationally

friendly.

4.1.2 Review of coupling methods

Coupling between the beam-column and continuum domains is typically accomplished

through one of two means: the transition element approach, or the multipoint constraint

(MPC) approach. One-dimension-to-continuum transition elements have been developed

by Wagner and Gruttmann (2002), and were later extended by Chavan and Wriggers (2004) to

include warping, and Koczubiej and Cichoń (2014) further extended these elements to the

total Lagrangian formulation. More recently, Sadeghian et al. (2018) developed transition

elements between 1D beam-column elements and 2D membrane elements for the analysis of

reinforced concrete members. One limitation of transition elements is that they are typically

less efficient than MPC approaches due to the proliferation of elements that connect all the

nodes across both domains at the interface. Further limitations of transition elements include

a proclivity to locking, and the need to treat such effects (Ho et al., 2010).

The MPC coupling approach specifies constraint equations among the relevant degrees

of freedom (DOFs) between the two domains on the beam-column/continuum interface.

The MPCs that form the coupling between domains can be implemented through any com-

mon constraint method (e.g., elimination, Lagrange multipliers, and the penalty method).

Mixed-dimension MPC coupling methods have been developed by Monaghan et al. (1998)

for coupling beam-column and solid domains by balancing the work done on the interface of

each region. McCune et al. (2000); Shim et al. (2002) expanded on Monaghan et al. (1998)’s

formulations to generalize for 1, 2, and 3D coupling. The notable limitations of this method are

that linear constraint equations are enforced (i.e., the dependent DOFs have a linear relation

to the independent DOFs), and that deformations due to warping are not transferred between

the beam-column and continuum domains. Ho et al. (2010) proposed a multi-dimensional

coupling for use with explicit time integration methods. Warping and shear deformations are

not included in this method, and the reliance on explicit time integration limits the applica-

bility of this approach. Song (2010) developed coupling between Timoshenko beam-column

elements and 3D solid elements using transformation matrices. Again, warping was not in-

cluded, and only linear material behavior and small deformations are considered. The lack of

warping transfer between the two domains limits the applicability of any coupling method for

components experiencing to nonuniform torsion or susceptible to lateral-torsional buckling.

Kinematic coupling constitutes another class of MPC methods. In this method, displace-

ment and/or rotation continuity of a dependent region of continuum element nodes is en-

forced based on the displacements and rotations of an independent beam-column node.
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Existing formulations (Dassault Systèmes, 2014; Liu, 2016) fall under the category of kinematic

coupling as they enforce displacement continuity in static problems, and a mixture of veloc-

ity and displacement continuity in dynamic problems. Liu (2016) showed the capability of

kinematic coupling utilizing nonlinear constraint equations for solving problems involving

finite-rotations. However, torsion warping is again absent in these formulations. Incorporating

warping into kinematic coupling, and studying the effect of doing so, are two aims of this

chapter.

4.1.3 Chapter objectives

Component models that mix elements of varying fidelity have been used previously in the

assessment of steel structures (see e.g., Tada et al. (2008), Krishnan (2010), Sreenath et al.

(2011), Imanpour et al. (2016)), however, such studies have not focused on the effect of the

coupling method between the different domains. Further investigation into this matter is

necessary to develop accurate and efficient modeling recommendations for a wide range

of steel beam-column components. The main issues apparent in the reviewed coupling

methods are that transition elements that include warping may not be computationally

efficient when compared with the MPC approach, and that existing MPC approaches do not

consider warping that can be critical for beam-columns susceptible to coupled local and

lateral-torsional buckling. Furthermore, nonlinear constraint equations should be should be

employed for modeling collapse limit states often of interest in earthquake engineering.

An MPC kinematic coupling method that includes torsion warping is proposed to ad-

dress the aforementioned considerations. This chapter focuses on answering the following

questions: What is the effect of warping-inclusive coupling on simulation results? When

are formulations with linear constraint equations acceptable? What are the computational

benefits of the component macro model approach? Linear and nonlinear versions of the

proposed coupling method are implemented; the proposed coupling method is found to be

easily compatible with existing finite element analysis software typically used in practice. A

series of computational case studies are then used to evaluate each of questions posed above

using the proposed MPC formulation and an existing coupling method that is available in

commercial software.

4.2 Proposed coupling method

4.2.1 Beam-column element kinematics

A coupling strategy for beam-column and continuum elements requires an understanding

of the governing element kinematics. The beam-column kinematics used herein are based

on a line of centroids and a set of cross section planes that rotate about each of the centroid
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Figure 4.1 – Mixed-dimension component macro model concept for wide flange cross sections.

points, see e.g., Simo and Vu-Quoc (1991). Following this reference, a warping function is also

defined on the cross section to incorporate out-of-plane torsion warping. Each beam-column

element node is assumed to have three displacement DOFs, three rotation DOFs, and one

torsion warping DOF.

Beam kinematics are defined by material points, denoted xb
mp , where the subscript indi-

cates that this is a material point and the superscript indicates the beam-column element. The

position of any material point in the cross section defined by the beam element formulation is

as follows:

xb
mp (ξ,η,ζ) = x(ζ)+ξn1(ζ)+ηn2(ζ)+w(ζ)ψ(ξ,η)t (ζ), (4.1)

where ζ is the coordinate along the element centerline, ξ and η are the distances measured

along the n1, n2 axes in the undeformed configuration, x(ζ) is the position of the centroid

along the centerline in the undeformed configuration, w(ζ) is the warping amplitude, ψ(ξ,η)

is the warping function, and t (ζ) is the axis in the direction of the cross section normal. The

representation of these parameters is shown in Figure 4.2a for a wide flange profile, and leads

to the limits of 0 ≤ ζ≤ L, −b f /2 ≤ ξ≤ b f /2 and −d/2 ≤ η≤ d/2, where L is the member length;

b f is the flange width; and d is the full cross section depth. The first term in Equation 4.1 is

the position of the cross section with respect to the centerline, the second and third terms

represent the cross section plane spanned by n1 and n2, and the fourth term is the out-of-plane

deformation due to torsion warping.

Only wide flange sections are considered within the scope of this chapter, however, the

proposed coupling method may be used with other cross-sections provided that the warping

function is readily available at each point on the cross section. The warping function used in

this chapter is based on elastic homogeneous thin-walled open cross-sections, and for wide

flange cross-sections can be simply defined as (Chen and Atsuta, 2008)

ψ(ξ,η) = ξη. (4.2)
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Figure 4.2 – Schematic wide flange cross section and mixed-dimension domains.

87



Chapter 4. Warping-inclusive kinematic coupling in mixed-dimension macro models for
steel wide flange beam-columns

4.2.2 Nonlinear definition of the constraint equations

The kinematic coupling method proposed in this chapter is composed of constraint equations

that relate the beam-column and continuum domains, as defined in Figure 4.2b. The beam-

column domain is Ω1, the continuum domain is Ω2, and the interface between these two

domains is Γ. The proposed coupling method stipulates that the beam-column node is

coupled to the three displacement DOFs of the continuum nodes on the interface, therefore,

coupling of rotation DOFs in the continuum domain are neglected (e.g., in shell elements).

This method is referred to as the Warping-Inclusive Kinematic Coupling, or WIKC, herein, and

can be identified as an enhancement to kinematic coupling methods, for instance, in Abaqus

(Dassault Systèmes, 2014). Each of the constraint equations are a function of seven variables

owing to the seven DOFs of the beam-column node, and in total 3N equations are defined for

N continuum nodes.

First, the constraints for a single continuum node are presented without warping, and

afterwards the warping term is included. The nonlinear, rigid-body coupling constraint

equations without warping are written succinctly in matrix-vector form for a single node as

uc = ub +Rbl − l , (4.3)

where uc is the vector of continuum displacements, ub is the vector of beam-column node

displacements, l is the link vector that relates the continuum node initial position to the beam-

column node initial position, (l = xc −xb , xc is the initial position of the continuum element

node, and xb is the initial position of the beam-column node, as shown in Figure 4.2a). The

term Rbl is the link rotated into the deformed configuration by the rotation matrix Rb . The

definition of each of these variables is shown in Figure 4.2b, and the deformed configuration

is shown in Figure 4.2c.

The rotation matrix, Rb , is formed from the rotation vector of the beam-column node,φb ,

using the well-known Rodrigues formula (Rodrigues, 1840):

r =
∥∥∥φb

∥∥∥, r =φb/r, (4.4a)

Rb = cos[r ]I + (
1−cos[r ]

)
r r T + sin[r ][r ]×××, (4.4b)

where I is the 3×3 identity matrix, and [r ]××× is the skew-symmetric matrix formed from r , i.e.,

[r ]××× =


0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (4.5)

Including warping, the constraint equations that constitute the warping-inclusive kine-
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matic coupling method become

uc = ub +Rbl − l +ψwb Rb t , (4.6)

where ψ is the warping function evaluated at ξ and η of the node, wb is the value of the

warping DOF at the beam-column node, and the term Rb t is the orientation of the local t -axis

in the deformed configuration. Finally, the standard, or homogenous, form of the constraint

equations is

f := uc −ub −Rbl + l −ψwb Rb t = 0. (4.7)

4.2.3 Linearized constraint equations

Linearized constraint equations are necessary for implementation of the coupling in a non-

linear incremental-iterative analysis (e.g., Newton-Raphson). The key components of the

linearized constraint equations are the constraint coefficient matrices, A1 and A2, that are

based on the standard form of the constraint equations. These two matrices are the coeffi-

cients of the beam-column and continuum nodes, respectively, from the linearized constraint

equation. Linearizing Equation 4.7, A1 and A2 are defined in Equation 4.8 as follows:

δ f = A1δuc + A2


δub

δθb

δwb

= 0, (4.8)

where δθb is the linearized rotation vector. Carrying out the linearization, the following

expression is obtained:

δ f = δuc −δub −Rbl ×××δθ−ψwbRb t ×××δθ−ψRb t δwb , (4.9)

where, for any rotation field, δ
(
Rbl

) = δθ×××Rbl (see, e.g., Sec. 1.3.1 of Dassault Systèmes

(2014)). Additionally in Equation 4.9, the term δl = 0 because this vector is considered to

be constant throughout the analysis (i.e., deformation of the cross section due to Poisson’s

effect is neglected). From Equation 4.9, the A1 matrix related to the displacement s of the

beam-column node is equal to the identity matrix, I , since all the coefficients are equal to

unity. Collecting the remaining terms in Equation 4.9, and using the matrix definition of the

cross-product, the A2 matrix of dimension 3×7 becomes

A2 =
[

Adi sp
2 , Ar ot

2 , Aw ar p
2

]
=

[
−I , −[

Rbl +ψwbRb t b]
×××, −ψRb t

]
. (4.10)

To close, a few remarks are made regarding A2:

• The [Rbl ]××× term can be interpreted as forces acting at the continuum node due to
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bending/(pure)torsion acting on the beam-column node in the current deformed con-

figuration.

• The [ψwbRb t ]××× term can be interpreted as a nonlinear effect of warping that arises

because of the displacement component in the local t -axis between the continuum and

beam-column nodes.

• The coupling method is nonlinear because the Ar ot
2 and Aw ar p

2 matrices depend on the

current rotation Rb , therefore, the A2 matrix needs to be re-computed at each iteration

in the analysis.

• Force, moment, and bi-moment equilibrium are satisfied at the interface considering

that the forces, moments, and bi-moment acting on the interface beam-column node

are determined through the constraint coefficient matrix A2. For example, Adi sp
2 =−I

implies that the beam-column node forces are equal to the sum of the forces acting

on each continuum element node; Ar ot
2 implies the moments will be equal to the

continuum node forces multiplied by the rotated link vector plus the nonlinear effect

due to warping; and Aw ar p
2 implies that the bi-moment will be equal to the warping

function multiplied by the force in the direction of Rb t .

Linear Coupling Method

A linear version of the WIKC method is derived for use in evaluating linear coupling meth-

ods. The linear constraint coefficient matrix, Al i n , can be recovered from Equation 4.10 by

considering the current configuration always equal to the initial configuration. This is done

by replacing −[
Rbl +ψwbRb t

]
××× with −[l ]××× in Ar ot , and replacing −ψRb t with −ψt in Aw ar p .

With these considerations, the linear version of the A2 matrix becomes

Al i n
2 =

[
−I , −[l ]×××, −ψt

]
. (4.11)

The governing linear constraint equations can be recovered by applying A2 to the vector of

beam-column DOFs, and considering that l3 = 0 as the continuum and beam-column nodes

are assumed to be in the same plane initially:

uc = Al i n
2


ub

φb

wb

⇒ uc =


ub

1 −φb
3η,

ub
2 +φb

3ξ,

ub
3 +φb

1η−φb
2ξ+ξηwb

 . (4.12)
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4.3 Case studies

A series of case studies are investigated in this chapter to: (a) validate the proposed WIKC

method, illustrate the importance of including warping in the constraint equations, (b) assess

the applicability of the linear coupling method, (c) and highlight the computational efficiency

of the proposed macro models. To achieve these objectives, four computational models are

compared for each of the cases described in subsequent sections: (1) a full-shell model that

represents the continuum “benchmark” analysis (denoted as Full-shell); (2) a beam-shell

macro model using a “built-in” kinematic coupling formulation that does not transfer warping

across the interface (denoted as Macro Built-in); (3) a beam-shell macro model using the

proposed nonlinear WIKC (denoted as Macro Warping); and (4) a beam-shell macro model

using the proposed linear WIKC (denoted as Macro Lin. Warping). All of the computational

work in this chapter is carried out using Abaqus v6.14 (Dassault Systèmes, 2014). Both the

linear and nonlinear versions of the WIKC method are implemented in Abaqus using MPC user

subroutines; the source code, instructions for use, and examples are available in Hartloper

(2020). The following sections provide a description of the case studies, their links with

practical applications, and a set of general modeling recommendations. Afterwards, the

results for each case are presented and discussed.

4.3.1 Case studies overview

The case studies investigated in this chapter are summarized in Table 4.1. This table gives a

brief description of the primary mode of deformation, the components and their respective

cross-sections, and the stability of the anticipated equilibrium path. The objectives of Case

Study 1 are to demonstrate the error in the elastic torsional stiffness of mixed-dimension

macro models when warping is not included in the coupling formulation, and to identify the

limits of the proposed macro model approach when twisting is significant. Case Studies 2–4

demonstrate the implications of this issue in the context of steel components subjected to

cyclic loading. These examples are based on structural components in steel moment-resisting

frames (MRFs), subjected to both quasi-static and dynamic loading, as shown schematically

in Figure 4.3. Through these four case studies, the proposed macro model approach and

coupling method are evaluated for main structural components in steel MRFs.

Case study 1: Nonuniform torsion

Case Study 1 is based on a seminal experiment conducted by Farwell and Galambos (1969)

using a 6×6-25 beam of ASTM-A36 (nominal fy = 250 MPa) steel subjected to a central torque.

The geometric properties of the 6×6-25 beam are provided in Table 4.2, and a schematic

of the test set-up is provided in Figure 4.4. The test consists of a steel beam fixed against
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rotation at the ends but free to warp. A torque is applied at the center of the beam through

the circular loading plate. The beam ends are assumed to be restricted in axial displacement

due to friction at the beam end supports, as this condition provides the best match with the

test data. For this reason the centroid of the beam is considered as axially fixed at the ends.

The equilibrium path in Case Study 1 is stable (i.e., no buckling occurs) as the beam is only

subjected to torsion. The continuum lengths are nominally chosen as LΩ2 = 0.25L = 482.5 mm

at both member ends for the macro models.

Case study 2: Interior subassembly

Case Study 2 focuses on an interior subassembly, in this case represented by the DBBW speci-

men tested by Engelhardt et al. (2000) as a part of the SAC1 Program (FEMA, 2000). The beams

in the subassembly have a W36X150 cross section, and the column is a W14X398, dimensions

of the components are provided in Table 4.2, and a schematic of the subassembly is shown

in Figure 4.5b. This table also includes the normalized LTB slenderness per CEN (2005a),

the ratio of unbraced length to weak-axis radius of gyration (Lb/ry ), and the limiting length

for inelastic LTB (Lr ) per ANSI/AISC 360-16 (AISC, 2016b). The material for all components

is ASTM A572 Gr. 50 steel ( fy = 345 MPa). The beams have roller supports near the ends

and lateral supports at the ends, and a cyclic displacement-controlled load is applied at the

column top. The column bottom is pinned, and the top is fixed against out-of-plane displace-

ments and has a flexible torsional support that is modeled with a stiffness equivalent to two

1.5 m W14X150 beams. Both beam-to-column connections include radius-cut reduced beam

sections (RBS), and the subassembly was designed with a balanced panel zone concept that

leads to yielding in the panel zone and buckling in the RBS region, therefore, the equilibrium

path is designated as unstable. Based on observations of the Full-shell model, the continuum

lengths are chosen to be approximately 400 mm greater than the extend of the RBS cut-out in

the beams (LΩ2 = 1300 mm), and approximately 400 mm greater than the beams on both sides

for the column (LΩ2 = 1700 mm).

Case study 3: Quasi-static collapse-consistent loading of first-story column

Case Study 3 focuses on a typical first-story column with a relatively compact cross section

(b f /2t f = 5.92, h/tw = 33.2), in this case represented by the C5 test carried out by Elkady

and Lignos (2018a). The column cross section is a W24X146, with a length of 3.9 m, the

geometric properties are summarized in Table 4.2. The column is not critical for LTB since

λ̄LT < 0.4. A unidirectional collapse consistent load protocol (Suzuki and Lignos, 2020) is

applied in the strong axis of the column (uy ), and a constant compressive 20 % of the measured

axial yield load is applied at the column top (−Fz ), as illustrated in Figure 4.5c. Rotations

1Joint venture between the Structural Engineers Association of California (SEAOC), the Applied Technology
Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe)
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Table 4.1 – Overview of the case studies.

Case Study ID Description Component(s) Material Equilibrium Path

Case 1 Nonuniform torsion Beam: 6×6-25 A36 Stable
Case 2 Interior

subassembly
Column: W14X398,
Beam: W36X150

A572 Gr. 50 Unstable

Case 3 First-story column,
quasi-static loading

Column: W24X146 A992 Gr. 50 Unstable

Case 4 First-story column,
dynamic loading

Column: W24X94 A992 Gr. 50 Unstable

and displacements are fixed at the column base, and a rotationally flexible boundary in the

strong axis is assumed at the column top by synchronizing φx with uy . The basis of the

flexible boundary is to obtain an inflection point at z = 3/4L when the column is elastic,

representative of first-story columns in steel moment-resisting frames (Elkady and Lignos,

2018a). The equilibrium path is classified as unstable because local buckling is observed in

the test, thereby causing cyclic deterioration in strength and stiffness. The continuum lengths

are chosen as LΩ2 = 0.25L = 900 mm at both member ends for the macro models to capture

the local buckling at the member ends.

Case study 4: Column nonlinear response history analysis

Case Study 4 focuses on an equivalent single-degree-of-freedom type representation of a

typical first story column. The column selected for this example is based on the interior first-

story column in a prototype four-story steel MRF designed for urban California (Elkady and

Lignos, 2015b). The column cross section is a W24X94 with a length of 5500 mm, the geometric

properties are summarized in Table 4.2, and a schematic of the model is provided in Figure 4.5d.

The criticality of including warping in the coupling formulation is demonstrated in this case

since the column has a typical cross section and is susceptible to inelastic lateral-torsional

buckling (λ̄LT > 0.4).

All displacements and rotations are fixed at the column bottom, and out-of-plane displace-

ments and all rotations are fixed at the column top. A constant axial load corresponding to

20 % of the expected axial yield strength of the cross section (Fz = 1300 kN) is applied at the

top of the column, and the Northridge 1994 Canoga Park record is applied to the base of the

column (ag ,y ). The first-mode period of the target prototype structure is about 1.5 s (Elkady,

2016), therefore, the mass of the column is chosen such that the first-mode period is equal to

1.5 s. This procedure results in a mass of 766.5 s2N/mm, and 2 % mass proportional damping

is assumed. A frequency analysis is conducted to validate the computed mass and the results

are presented later. The shell lengths are chosen as LΩ2 = 0.3L = 1650 mm at both member

ends for the macro models to capture the coupled buckling along the member length.
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Figure 4.3 – Schematic view of prototype frame and overview of Case Studies 2, 3, and 4.

4.3.2 Nonlinear finite element modeling approach

Modeling guidelines for the Full-shell models are based on those of Elkady and Lignos (2018b),

and the macro models are then adapted from the full-shell models. A later section also

includes a methodology for generating and imposing imperfections for continuum mechanics

problems containing an unstable equilibrium path, and afterwards a summary of the model

and imperfection properties is provided for all the case studies.

Numerical details of the analyses carried out in Abaqus v6.14 are outlined for clarity.

Implicit time integration is used for both the quasi-static and dynamic problems. The system

of equilibrium equations is solved using Newton’s method with double precision. The default

convergence criteria of 0.5 % on the relative force and moment residuals is used for all analyses.

Based on Elkady and Lignos (2018b), four-node reduced integration shell elements (S4R)

are used in the continuum domains. The Abaqus enhanced hourglass stiffness control is used

(Dassault Systèmes, 2014), and five Simpson integration points are used throughout the shell

thickness. A mesh size of <25 mm is used in the continuum domains where buckling may

occur, and the element size is relaxed in the column of Case Study 2 since only yielding of the

panel zone occurs. Linear, two-node beam-column elements with torsion warping (B31OS)

are used in the beam-column element domains. These are displacement-based beam-column

elements with a single integration point at the center of the element, and 7-DOFs at each node.

Cross section properties and forces are evaluated in these beam-column elements at five

integration points in each flange, and five integration points along the web (Dassault Systèmes,

2014). A minimum of four beam-column elements are used in eachΩ1 domain so that possible
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member buckling can be captured in the macro model. Extents of the beam-column and shell

element domains, i.e., the length LΩ2 in Figure 4.1a, are provided for all the cases in Table 4.3.

The Voce-Chaboche (VC) nonlinear kinematic/isotropic hardening material model native

to Abaqus v6.14 is used in all the beam-column and shell domains to represent the ASTM

A992 Gr. 50 and ASTM A572 Gr. 50 materials subjected to cyclic straining. Consistent model

parameters for the A992 Gr. 50 steel are taken from de Castro e Sousa et al. (2020). VC model

parameters for the A572 Gr. 50 steel are calibrated using the tensile-only approach of de

Castro e Sousa et al. (2021) using the SAC average stress-strain curve (Engelhardt et al., 2000).

Employed parameters for both materials are provided in Table 4.4, where a Poisson’s Ratio

of ν = 0.3 is always assumed. One limitation of the employed Abaqus v6.14 beam-column

elements is that only one material may be specified for the element. The flange material

properties are assumed throughout the beam-column domains because yielding is primarily

expected to occur in the flanges due to the axial stress gradient from bending. Residual stresses

are not considered in any of the numerical models because the beam-column elements in

Abaqus v6.14 do not allow for residual stress variations through the cross section, this issue is

discussed later in the Limitations section.

Modeling exceptions for case study 1

The following exceptions to the aforementioned guidelines are made for Case Study 1: the

mesh size is slightly smaller than that recommended by Elkady and Lignos (2018b) due to

the smaller cross section dimensions, and an increased number of quadratic beam-column

elements (B32OS) are used in Ω1. The increased elements and additional integration point

along the length are required to capture the yielding throughout the member, whereas this

is not necessary for the other case studies since yielding is focused at the member ends in

the continuum domains. Furthermore, a beam-column element only model (denoted “Full-

beam”) is used in this case study to compare a beam-column element only model with a shell

element only model. An exception is also made for the ASTM-A36 material properties in this

case study: a piece-wise isotropic hardening model is used to represent this steel material

since only monotonic loading is applied. The parameters for the ASTM-A36 material are

E = 213400 MPa, ν= 0.3, σy,0 = 285 MPa and hardening defined by 289 MPa at εp = 0.01329

and 876.2 MPa at εp = 0.094 as assumed in Pi and Trahair (1995).

4.3.3 Imperfection methodology

Imperfections are critical when geometric instabilities are expected in nonlinear analysis prob-

lems (Galambos, 1998; Ziemian, 2010; AISC, 2016b), for this reason, care is taken in describing

the approach used to apply imperfections. Member out-of-straightness and out-of-plumbness

imperfections are deemed critical for flexural buckling modes, and local flange and web im-
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Table 4.2 – Wide flange member geometry used in the analysis cases.

Case Section d b f t f tw Lb b f /2t f h/tw Lb /ry λ̄LT
b Lr

[mm] [mm] [mm] [mm] [mm] - - - - [m]

1 6×6-25 152 151 12.2 8.0 1930 6.20 16.0 50 0.20 10.7
2 W14X398 465 442 72.4 45.0 3708 2.92 6.44 34 0.15 41.8
2 W36X150 912 305 23.9 15.9 3962 6.37 51.9 63 0.31 7.7
3 W24X146a 627 325 27.1 17.6 3900 5.92 33.2 51 0.29 10.2
4 W24X94 617 230 22.2 13.1 5500 5.18 41.9 109 0.50 6.4

a: measured d ,b f , t f , tw . b: λ̄LT =
√

Zx fy /Mcr

Mcr =C1π
2E Iy /(ky L)2

√
(ky /kw )2Iw /Iy + (ky L)2G It /(π2E Iy ), C1 = 2.55, ky = 0.5, kw = 1.0

Table 4.3 – Case study macro model and imperfection parameters.

Case Study ID LΩ2 ∆shel l Shell Type Nbeam Beam Type Lbw θt wi st
[mm] [mm] [mm] [%rad]

Case 1 482.5 <20 S4R 8 B32OS - -
Case 2, column 1700 <50 S4R 4 B31OS - -
Case 2, beams 1300 <25a S4R 6 B31OS 686 -
Case 3 800 <25 S4R 4 B31OS 752 0.05
Case 4 1650 <25 S4R 4 B31OS 740 0.6
a: <25 mm in the RBS region, <50 mm elsewhere.

1930 mm
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Figure 4.4 – Details of the nonuniform torsion test, reproduced from Farwell and Galambos
(1969).
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Figure 4.5 – Schematic representations of the illustrative examples (extruded view of shell
domains shown).

perfections are deemed critical for local buckling modes. Twisting imperfections are also

considered to be critical for modes associated with lateral-torsional buckling. Flexural buck-

ling modes are not critical in the analyses examined herein, and therefore, out-of-straightness

and out-of-plumbness imperfections are not considered.

Typically, imperfections may be included by applying scaled buckling modes from elastic

eigenvalue analysis to the geometrically perfect model (Fogarty and El-Tawil, 2015; Elkady and

Lignos, 2018b; Cravero et al., 2020). One issue with this typical method is that the similitude

between the full-continuum and macro models is not guaranteed because the presence of

the beam-continuum interface will influence the computed buckling modes. Using the exact

same imperfections in the full-shell and macro models is considered important to remove

a potential source of bias when comparing the two modeling approaches. An alternative

method is proposed in this study to derive local imperfection geometries that are applied

directly to the shell domains. This proposed method also addresses an anticipated challenge

of applying geometric imperfections to members in system-level simulation studies where the

member buckling modes may not be available for each individual component.

The proposed imperfection method, implemented in the Python package pywikc (Hart-

loper, 2020), defines a local imperfection geometry according to elastic plate buckling theory.

The shape of the imperfection is defined as a function of the buckling wavelength, Lbw , and

the maximum imperfection amplitude. The buckling wavelength is determined using elastic

eigenvalue buckling analysis of the component, and the maximum imperfection amplitude is

based on previous studies and measurements of wide flange cross-sections (Hartloper and

Lignos, 2019). First, the imperfection shapes are defined, then methods for obtaining the
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maximum amplitudes and Lbw are defined.

Equations describing the buckled shape along the width of the flanges and web are adapted

from Hill (1940) and Haaijer (1956). The mathematical model for the half-flange plate is shown

in Figure 4.6. A uniform compressive stress, σ, is assumed to act along the two fixed edges,

while one edge is free and the other edge has a rotational restraint (RR) from the web. The

shape along the flange width in the n1 direction is described by

vξ(ξ̃) = ξ̃+ ε

2a3

(
ξ̃3 +a1ξ̃

4 +a2ξ̃
3 +a3ξ̃

2) , (4.13)

where a1 =−4.963, a2 = 9.852, a3 =−9.778, ε is the relative restraint per unit width provided

by the web, and ξ̃= ξ/(b f /2). The model for the web plate is similar to that of the flange, but

both unloaded edges have a rotational restraint due to the flanges. The shape along the width

of the web in the n2 direction is

vη(η̃) = πε

2

(
η̃2 −0.25

)+ (1+ε/2)cos
(
πη̃

)
, (4.14)

where ε is the relative restraint per unit width provided by the flanges, and η̃ = η/(d − t f ).

The shape of both the flange and web plates in the t direction is needed to complete the

imperfection. A function is defined to represent a single buckling wave that satisfies the fixed

boundary conditions at the loaded edges, a suitable function is

vζ(ζ) = sin2[πζ/Lbw ]. (4.15)

The final buckled shape is obtained by multiplying vξ with vζ for the flange, and vη with vζ

for the web. The complete buckled shape for the flange is shown in Figure 4.6b. Contours of the

two functions vξ and vζ are shown projected onto the axes to give a sense of the effect of these

functions on the imperfection geometry. The normalized vector of the flange imperfection is

obtained from Equations 4.13 and 4.15:

v f (ξ̃,ζ) = vξ(ξ̃)vζ(ζ)

max[vξ(ξ̃)vζ(ζ)]
n2. (4.16)

The normalized vector of the web imperfection is obtained from Equations 4.14 and 4.15:

vw (η̃,ζ) = vη(η̃)vζ(ζ)

max[vη(η̃)vζ(ζ)]
n1. (4.17)

The max is used in these equations so that the maximum imperfection amplitude can easily

be made equal to a pre-specified value.

Finally, local imperfection fields for the entire member are defined through v f l ang e and
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vweb :

v f l ang e =
a f v f

(
ξ̃,ζ

)
if 0 ≤ ζ≤ Lbw

−a f v f
(
ξ̃,ζ− (L−Lbw )

)
if L−Lbw ≤ ζ≤ L

(4.18a)

vweb =
aw vw

(
η̃,ζ

)
if 0 ≤ ζ≤ Lbw

−aw vw
(
η̃,ζ− (L−Lbw )

)
if L−Lbw ≤ ζ≤ L

(4.18b)

where a f is the maximum flange imperfection amplitude, and aw is the maximum web

imperfection amplitude. The different cases in these equations lead to an anti-symmetric in-

plane local imperfection pattern at the bottom and top of the member, i.e., the imperfection

is “in-wards” at one end and “out-wards” at the other. This mode is chosen on the basis

of recommendations validated with beam-column experiments (Suzuki and Lignos, 2015;

Elkady and Lignos, 2018a; Cravero et al., 2020), and also agrees with expected cross section

imperfections due to the hot-rolling process and manufacturing (e.g., welding) (CEN, 1993;

ASTM, 2016a). Figure 4.7b illustrates the anti-symmetric buckling pattern applied to an

analysis model, and Figure 4.7c shows the local buckling pattern present at the base of a

W24X84 column subjected to 20 % axial load and a symmetric cyclic lateral loading history.

The local buckling wavelength, Lbw , of the local imperfections is unknown through the

aforementioned procedure, and is determined in this study by matching with elastic eigen-

value buckling analysis in Abaqus. The length Lbw is chosen as the wavelength of the end-most

local buckle present in a local buckling dominated mode. This end-most wavelength is deemed

to be critical because local buckling is known to initiate at the member ends due to the moment

gradient in columns subjected to lateral loads (Elkady and Lignos, 2018a). A local buckling

dominated mode from eigenvalue analysis is shown in Figure 4.7a with the proposed method

for applying local imperfections in Figure 4.7b.

The last ingredient of the local imperfections are the maximum amplitudes a f and aw .

The local imperfection amplitudes are based on the compatible minimum of d/300 and

b f /250 that have been used in prior studies based on measured imperfections (Hartloper and

Lignos, 2019), and are similar to those in Elkady and Lignos (2018b). Compatibility in this

proposed method is defined by maintaining the 90 degree angle between the flange and web

plate centerlines, therefore, only one of the maximum amplitudes a f or aw will be reached

depending on the section geometry. Note that these imperfection amplitudes are below the

tolerances set forth in standards such as (CEN, 1993; ASTM, 2016a).

Local imperfections are incorporated into to the simulation models by applying the imper-

fection fields, Equations 4.18a and 4.18b, to the continuum domains. This method generates

a set of nodal perturbations that can be easily applied to the initially perfect geometry. The

computation of the local imperfection geometries has been implemented by the authors in

the Python package pywikc for wide flange cross-sections (Hartloper, 2020).
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Table 4.4 – Case study Voce-Chaboche material model parameters.

Material E σy,0 Q∞ b C1 γ1 C2 γ2

[GPa] [MPa] [MPa] - [MPa] - [MPa] -

A572 Gr.50a 207.34 352.01 61.60 8.96 2305.55 20.15 - -
A992 Gr.50 Flangeb 179.75 318.47 100.72 8.00 11608.17 145.22 1026.33 4.68
A992 Gr.50 Webb 182.97 339.18 77.52 9.29 8716.08 118.47 1182.05 5.22
a: calibrated as a part of this study, b: from de Castro e Sousa et al. (2020).

Twisting imperfections, occurring due to base plate welding, have typically been applied

similarly to local imperfections by applying a scaled buckling mode, or the nodal perturbation

could be specified directly. In the context of beam-shell macro models, however, the twisting

imperfection cannot be applied as an initial geometric imperfection in Abaqus because only

initial displacements can be specified to the nodes. This is an issue because the twisting

imperfection is specified about the member centerline, and therefore, the beam-column

element centerline only has a rotation, and does not have a displacement.

Similitude between the full-shell and macro models is obtained in this case by applying a

torque at the center of the model that leads to a twist equivalent to those measured in full-scale

experiments, similar to the notional load concept (AISC, 2016b). Twist magnitudes measured

in Elkady (2016) are used as a basis of expected amplitudes. The average twist magnitude

measured at the column top was 0.6 %rad, the minimum was 0.0 %rad, and the maximum

was 1.5 %rad. Torques are applied that lead to a mid-height twist equal to half the top twist

assuming that initial angle of twist is constant along the member. Concentrated torques

are simple to apply to the beam-column elements by ensuring a node exists at the center of

the beam-column domain, and a distributed coupling in Abaqus v6.14 is used to apply the

concentrated torque to the full-shell models in a region around the mid-height of the member.

The imperfection parameters for all the components included in the case studies are

provided in Table 4.3. For the beams in Case Study 2, v f l ang e and vweb are applied to the entire

RBS region (Lbw = 686 mm) with an offset equal to the distance from the beam end to the start

of the radius cut. For Case Studies 3 and 4, the length of the local buckling wave was found to be

around 1.2d . The twisting imperfection in Case Study 3 is based on the measured value, while

the twisting imperfection in Case Study 4 is chosen near the maximum of the measured values

in Elkady and Lignos (2018a). Finally, no imperfections are included in components with

stable equilibrium paths because geometric instabilities are not expected, thereby diminishing

the importance of imperfections (Galambos, 1998; Gantes and Fragkopoulos, 2010; Ziemian,

2010).
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Figure 4.6 – Representations of the flange imperfection model.

(a) Selected local buckling mode, eigenvalue analysis

(b) Local imperfections applied to the model (scaled 100x)

(c) Local buckling of a W24X84 (4 %SDR)

Figure 4.7 – Imperfections for a 5500 mm length W24X94 analysis model with a 20 % axial load
ratio, and (c) reference experimental results from Elkady and Lignos (2018a).
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4.4 Case study results

Results in the form of component behavior and computational effort are reported for each

of the case studies. Computational effort in each case is measured in three possible ways:

the total number of DOFs in the model, the amount of memory required to run the analysis,

and the number of iterations required throughout the analysis. The total number of DOFs is

representative of the size of the problem being solved, and is correlated to the effort required

to solve each iteration of the Newton-Raphson method. The memory required represents

a base-line requirement to run the numerical model. The number of iterations required is

indicative of the rate of convergence; the rate of convergence can be used to validate the

implementation of the WIKC method, and is a major factor in the total analysis time. Direct

measurements of the analysis time are not given herein because they are highly dependent

on the computational system used to solve the problem, whereas the included metrics are

independent of the utilized system.

4.4.1 Case study 1: Nonuniform torsion results

Torque-twist responses of the finite element models along with the physical data is shown

in Figure 4.8. From Figure 4.8a, it is clear that the Full-shell model captures the component

behavior throughout the entire load path, while the other modeling options may only be

accurate in the initial loading stages (see Figure 4.8b). The Macro (Warping) model with

nonlinear WIKC begins to lose accuracy with respect to the Full-shell model after a twist of

around 0.25 rad because the Abaqus beam-column elements are only valid for small angles of

twist (Dassault Systèmes, 2014), as seen in the Full-beam model response as well. Results in

Figure 4.8b also indicate that the linear WIKC method is viable for components that experience

twists of up-to around 0.05 rad. In the context of steel MRF components, the maximum

observed twist in full-scale experiments on wide flange columns is in the neighborhood of

0.10 rad (Elkady, 2016; Elkady and Lignos, 2018a), therefore, the Macro (Warping) model

employing the nonlinear WIKC at beam-continuum interfaces should be suitable for most

applications, while the linear version presents a limitation in this regard.

A notable divergence is found in the elastic torsional stiffness of the Macro (Built-in) model

compared with the other options, as the elastic torsional stiffness is computed to be 226 kN-

m/rad and this quantity is around 90 kN-m/rad for the Full-shell model. Differences in the

elastic stiffnesses is clearly visible in Figure 4.8b. The built-in kinematic coupling in Abaqus,

that does not transfer warping, creates a warping-fixed boundary in the continuum domains

at the interface, this in-turn leads to the increase in the torsional stiffness. This issue will have

later implications in the response of steel MRF components subjected to cyclic loading.

Accuracy of the coupling method can also be assessed in this case by comparing the

von Mises equivalent stress distributions at the interface shell elements in Figure 4.9 near the
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(a) Full loading history (b) Zoom on initial loading

Figure 4.8 – Comparison of applied torque versus twist angle for models of the Farwell and
Galambos (1969) test.

point of yielding (Mz = 11.25 kN-m). The stress distribution of the Macro (Warping) model is

closer to the Full-shell model when compared with the Macro (Built-in) model, particularly in

the web elements. The rate of convergence is also important for validating the implementation

of the proposed WIKC method and to assess the overall computational effort required. To

this end, a plot of the total number of iterations in the analysis with respect to the applied

torque is provided in Figure 4.10. This figure shows that the convergence rate of the Macro

(Warping) model is comparable to the Full-shell model up to the point of divergence between

these models at around 12 kN-m.

4.4.2 Case study 2: Interior subassembly results

The overall subassembly behavior in terms of story drift ratio (SDR = column tip displacement

/ initial column length) and column tip load is shown in Figure 4.11. The Full-shell model

is able to capture reasonably well the pre- and post-peak behavior of the subassembly, note

that the relative error in the maximum absolute column tip load is around 2 % between the

Full-shell and Test Data. There is also good agreement between the Full-shell model unloading

stiffness and the test data prior to the last cycle of loading, indicating that the Full-shell

model is able to capture the progression of local buckling in the RBS region and twisting of

the beams and column. This observation is reflected by the apparent match between the

post-test deformed shapes found in the Full-shell model and the experiment itself, as shown in

Figure 4.12. Certain features of the test data are not replicated by the model (e.g., the apparent

stiffening of the test response in cycles after 2 %SDR), although, this is attributed to boundary

condition effects that are not fully captured by the model, as this particular test was stopped

after the cycles to 5 %SDR due to damage in the lateral support system (Engelhardt et al., 2000).
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Figure 4.9 – Comparisons of the von Mises equivalent stress (units of MPa) for the interface
shell elements in the nonuniform torsion models at Mz = 11.25 kN-m.
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Figure 4.10 – Iteration count for the nonuniform torsion test.

The angle of twist predicted by the Full-shell model at the column bottom is approximately

0.12 rad at the final excursion to -5 %SDR, and the beam angle of twist is approximately

0.22 rad (see also Figure 4.12), indicating that torsional effects are expected to be significant.

The Full-shell model is also able to capture the panel zone behavior of the subassembly, as

show in Figure 4.13a, although the peak shear rotation is slightly overestimated.

The Macro (Built-in) and Macro (Warping) models are compared with the Full-shell model

in Figures 4.11b and 4.11c. Both models predict reasonably well the Full-shell model’s response,

although, the Macro (Built-in) model overestimates the overall unloading/reloading stiffness

after the initiation of beam twisting due to the increased torsional stiffness of the beams

and column. Additionally, the Macro (Warping) model is able to represent the Full-shell

model panel zone behavior, as indicated in Figure 4.13b. Note that results for the Macro (Lin.

Warping) model are not shown for this case, as convergence issues were experienced for this

model due to the linear coupling formulation.

The memory and DOF requirements for Case Study 2 are provided in Figure 4.14. This

figure plots the memory required by the analyses normalized by the requirement of the Full-

shell model, and similarly with the total DOFs in the models. Results are shown for the Macro

(Warping) model only, however, they are very similar for the Macro (Built-in) model barring

differences of around 1 % in the DOF and memory requirements that may be attributed to

the use of a user subroutine in Abaqus v6.14. For Case 2, a reduction in the number of DOFs

required is around 55 %, and the reduction in memory required is around 48 %.

4.4.3 Case study 3: Quasi-static collapse-consistent loading of first-story column

results

Column reaction moments at the base without the second-order contribution, Mcol , are

reported herein. For clarity, Mcol = Mtot al − MPD , where Mtot al is the total base reaction

moment, and MPD = uy Fz is the second-order moment about the column base. The SDR

is computed as SDR = (utop
y −ubase

y )/L0, and axial shortening is reported as a percent of the
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(a) Test and Full-shell model

Differences in
stiffness due
to warping

(b) Full-shell and Macro (Built-in) models

(c) Full-shell and Macro (Warping) models

Figure 4.11 – Comparisons of the DBBW overall subassembly behavior. Test Data retrieved
from Engelhardt et al. (2000).
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(a) Test Data

(b) Full-shell model

Figure 4.12 – Comparison of post-test deformed shapes from the DBBW subassembly. Test
Data photo used with permission from Engelhardt et al. (2000).

(a) Test and Full-shell model (b) Full-shell and Macro (Warping) models

Figure 4.13 – Comparisons of the DBBW panel zone behavior. Test Data retrieved from
Engelhardt et al. (2000).
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Figure 4.14 – Computational resource requirements for Case Studies 2, 3, and 4 normalized by
the Full-shell values.

initial length, uz /L0.

The column moment vs. story drift ratio (SDR) is plotted in Figure 4.15 including the test

data and comparisons between the Full-shell model and different macro models. Relative

error between the maximum absolute moment of the Full-shell and test data is around 7 %,

indicating the models’ ability to capture the initial flexural yielding behavior of the steel

material and initiation of local buckling in the column. Furthermore, agreement of the

loading/unloading stiffness between the Full-shell results and Test Data indicates that the

progression of local buckling is reasonably well captured by the Full-shell model. Computation

of the column response is also validated through the deformed shape of the column models at

the excursion at +10 %SDR with a photograph from the test at the same point in Figures 4.16a

and 4.16b. Agreement between the deformed shapes and the test results is notable. The

maximum angle of twist observed in this test and finite element analyses is around 0.10 rad in

the last loading excursion, although the effect of torsion is not significant in this case as the

problem is dominated by local buckling (Elkady and Lignos, 2018a).

Each of the macro modeling options are also compared individually with the Full-shell

model in Figure 4.15. In this case that the strength/stiffness deterioration is dominated by

local buckling, there are no significant differences between the Full-shell and macro model

responses in terms of moment-rotation throughout the entire loading history, regardless

of the coupling method. Despite the agreement in overall component behavior, the stress

at the interface may be significantly in error with the linear coupling method, as noted in

Figure 4.16e. The number of DOFs in the model and the computer memory demands are
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extracted from information provided by the Abaqus analysis and presented in Figure 4.14

above the label “Case 3”. A savings of around 60 % in the number of DOFs is obtained by the

macro models since around 2/3 of the total length is modeled with beam-column elements,

and the memory savings is around 80 % in this case (see Figure 4.14).

4.4.4 Case study 4: Column nonlinear response history analysis results

Modal frequencies determined through eigenvalue analysis of the four W24X94 models are

provided in Table 4.5, Mode 1 is the primary lateral mode of deformation, and Mode 3 is

the twisting mode provided for comparison purposes. In all cases the first mode period is

approximately equal to 1.5 s validating the assumed mass. The Mode 3 frequency of the Macro

(Built-in) model is around 50 % larger than the Full-shell frequency because of the difference

in elastic torsional stiffness. Note that the linear WIKC model’s Mode 1 and Mode 3 frequencies

are consistent with the Full-shell model.

The SDR, column base moment, and axial displacement as a percentage of the initial

column length are provided with respect to the applied ground motion time in Figure 4.17.

The point at which the column loses load carrying capacity is evident as the slopes of the SDR

and axial displacement approach −∞. The Full-shell model point of collapse is reasonably

well computed by the Macro (Warping) model, as evident in Figure 4.17, however, the same

cannot be said for the Macro (Built-in) model.

In contrast with Case Study 3, divergence in the response of the Macro (Built-in) and

Macro (Lin. Warping) models from the Full-shell model is found in Case Study 4. Divergence

at the point indicated in Figure 4.17 stems from the computation of different buckling modes:

the W24X94 Macro (Built-in) and Macro (Lin. Warping) models deforms in a primarily local

buckling mode, while the Full-shell and Macro (Warping) model have a coupled buckling

response, as shown in Figure 4.18. Differences in the buckling modes subsequently leads

to differences in the column base moment responses, as highlighted in Figure 4.17, while

the Macro (Warping) model agrees well with the Full-shell model until near the point of the

loss of load carrying capacity. The W24X94 column Full-shell model stress distribution is

also reasonably well predicted by the Macro (Warping) model as indicated by comparing the

von Mises stress contours in Figure 4.18. Computational resource demands of the column

models are summarized in Figure 4.14 with respect to the Full-shell model. The number of

DOFs are reduced by around 40 % are obtained for the W24X94 macro models compared to

the Full-shell model, and the memory requirements are reduced by around 75 %.
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Figure 4.15 – Results from the W24X136 quasi-static analyses. Test Data retrieved from Elkady
and Lignos (2018a).

Table 4.5 – Frequencies for selected modes of the W24X94 column.

Model Mode 1 (Lateral) Mode 3 (Twisting)
Freq. [Hz] E f s [%] Freq. [Hz] E f s [%]

Full-shell 0.667 - 1094 -
Macro (Built-in) 0.668 0.15 1661 51.83
Macro (Warping) 0.668 0.15 1109 1.37
Macro (Lin. Warping) 0.668 0.15 1118 2.19

E f s =(Full-shell - Macro) / Full-shell.
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(a) Test Data (b) Full-shell (c) Macro (Built-in)
(d) Macro
(Warping)

(e) Macro
(Lin. Warping)

Figure 4.16 – Deformed shapes from the W24X146 quasi-static analyses at 11 % SDR. von Mises
equivalent stress profile shown on the deformed shape, red regions indicate yielding. Test
Data photo used with permission from Elkady and Lignos (2018a).
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Figure 4.17 – Results from the W24X94 column nonlinear response history analyses.
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(a) Full-shell (b) Macro (Built-in) (c) Macro (Warping) (d) Macro (Lin. Warping)

Figure 4.18 – Deformed shapes from the W24X94 column nonlinear response history analyses
at t = 4.5 s. von Mises equivalent stress profile shown on the deformed shape, red regions
indicate yielding.

4.5 Discussion of results

4.5.1 Macro model accuracy

Case studies investigated in this chapter show that, as long as the coupling between beam-

column and continuum elements can account for all relevant mechanical phenomena, the

component macro models represent well the Full-shell model. This statement is made with

regards to parameters that have been identified as critical in collapse simulations of steel

frame buildings (Ibarra and Krawinkler, 2005), such as a component’s: pre-peak stiffness, peak

strength, and post-peak stiffness. These results indicate that the macro models can replicate

the Full-shell model’s initiation and progression of local and lateral-torsional buckling, as

well as the progression of axial shortening. This is true even in the complex case of coupled

local and lateral-torsional buckling. Therefore, component macro models can be used to

address the limitations outlined in the introduction for concentrated and distributed plasticity

approaches provided that a suitable coupling method is used, and the component deformation

is within the range of its constitutive elements.

More specifically, from the cases investigated, there is little-to-no difference between

the different coupling methods when computing the pre-peak response and initiation of

local instabilities in wide flange beam-column components subjected to axial load and/or

lateral drift demands. However, the influence of warping in the constraint formulation is

paramount in the case of nonuniform torsion and coupled buckling mechanisms due to the
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increase in torsional stiffness found using the Abaqus v6.14 built-in coupling. The stiffness

increase is a result of the warping-fixed boundary enforced on the continuum domains, as

seen in the results of case studies, as well as the Mode 3 frequency in Table 4.5 for the W24X94

column. The increase in torsional stiffness decreases the member’s proclivity to LTB, this

in-turn leads to the divergence in buckling modes between the Macro (Built-in) and Macro

(Warping) models in the W24X94 dynamic analyses, as shown in Figure 4.7. Differences of

stiffness in the descending portion of the post-peak response, such as the ones shown in

Figure 4.11b for the Macro (Built-in) model, are critical in collapse simulations (Ibarra and

Krawinkler, 2005), alternatively, this stiffness is well predicted by the Macro (Warping) model

in Figure 4.11c. An initial recommendation based on the results presented in this chapter is

that a warping-inclusive coupling method should be used for beam-column components that

have a significant torsional load, or that have a normalized LTB slenderness λ̄LT > 0.4 that is

considered susceptible to inelastic LTB according to CEN (2005a).

From an accuracy point of view, it appears that if torsion is not dominant in the component

response and there is no coupled buckling, the choice of coupling method is not influential

in the column post-peak region. This result suggests that including warping in the coupling

can be neglected for beam-column components if λ̄LT ≤ 0.4. Furthermore, linear coupling

methods are found to be acceptable under the following conditions: local buckling is dominant

in the member response, the lateral deformation is below 10 %SDR, and the angle of twist

does not exceed 0.10 rad. If torsion is dominant, the linear coupling method may be used as

long as the angle of twist does not exceed 0.05 rad (see Figure 4.8b). The linear WIKC method

can also be employed in eigenvalue analyses, as supported by the results of the frequency

analysis in Table 4.5.

4.5.2 Macro model computational efficiency

Results of the computational resource metrics shown in Figure 4.14 illustrate that the number

of DOFs in the macro models are reduced in approximate proportion to the ratio LΩ1 /L for

single components. For instance, the number of DOFs are approximately 2/3 for the W24X94

macro models compared to the Full-shell model in Figure 4.14 since 1/3 of the length is

modeled with beam-column elements. This ratio of 2/3 is increased for the W24X94 analyses

owing to the increased beam-column domain length. The memory savings are expected to be

larger than the DOF savings, although the relationship is not clear, as elements of the square

matrices need to be saved in addition to state variables for each element. For these reasons,

the memory reduction using component macro models in Case Study 2 is less pronounced

than the other cases, potentially due to the increased complexity and number of constraints

present in this model to form the subassembly.

In the context of frame analysis, additional computational savings can be gained if the

macro model approach is applied selectively depending on the desired level of modeling
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fidelity and available computational resources. For instance, the macro model approach

could be useful to model the torsion induced on columns due to buckling of beams with RBS

connections, as well as first-story columns that experience deterioration in capacity-designed

MRFs. This selective approach focuses the computational effort where it is most useful, while

lower fidelity component models (i.e., concentrated and distributed plasticity approaches)

can be used elsewhere in the structural model. Furthermore, the number of iterations required

for convergence of the Macro (Warping) model appears similar to the Full-shell and Macro

(Built-in) models, see Figure 4.10. Therefore, the reduced number of DOFs in macro models

is expected to also reduce the required CPU time compared to full-shell models. Finally, the

linear WIKC method may lead to issues with global convergence in certain nonlinear problems.

The linear WIKC method is, therefore, not computationally advantageous in these cases, and

is recommended only if the nonlinear method is unavailable.

4.5.3 Limitations

The following limitations uncovered through this study are stated:

• Residual stresses have not been included in the beam-column elements used in this

study. This limitation could be addressed using a beam-column element formulation

such as in Lamarche and Tremblay (2011). Residual stresses may influence the Wagner

constant (Trahair, 1993; de Castro e Sousa and Lignos, 2017), that in-turn, could sub-

stantially reduce the torsional stiffness of beam-columns. This reduction may be critical

for slender members as it further increases their susceptibility to LTB.

• The limitation of using beam-column elements is that local deformations cannot be

captured in the beam-column domains, therefore, the length of the continuum domains

need to be chosen appropriately a priori. This challenge has yet to be addressed because

the extent of local instabilities in the member depends on the primary mode of deterio-

ration (e.g., local buckling, lateral-torsional buckling, flexural buckling) that is ultimately

influenced by the member geometry, material properties, initial imperfections, loading,

and boundary conditions.

• The results presented herein are for shell elements in the continuum domain only, solid

elements have not yet been investigated by the authors. However, the proposed coupling

method is valid for these elements since only the displacement DOFs of the continuum

domain are coupled with the beam-column element domain.

4.6 Conclusions

Continuum finite element models address the limitations in available concentrated and

distributed plasticity component models for steel wide flange beam-columns, however, they
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may be computationally expensive in the context of earthquake engineering analysis. Mixed-

dimension macro models employing 1D beam-column and 2D/3D continuum elements are

promising to reduce this computational expense. A review of existing coupling methods

highlights that there is a need for a multi-point constraint method that also incorporates

torsion warping. In this chapter, we propose a warping-inclusive kinematic coupling (WIKC)

formulation to transfer warping deformations between the beam-column and continuum

element domains. The beam-shell macro models used in this study reduce the model degrees-

of-freedom by up-to around 60 % and the computational memory requirement by up-to

around 80 % compared to their full-shell counterparts, while retaining the solution fidelity of

full-continuum finite element models even for coupled local and lateral-torsional buckling.

The main conclusions drawn from this chapter with respect to steel wide flange beam-

columns and subassemblies are as follows:

• Including warping in the coupling formulation may be critical in accurately estimating

the full-continuum model failure mode and, therefore, should be included for general

use. This is especially true for components subjected to nonuniform torsion, or that are

susceptible to coupled local and lateral-torsional instabilities, i.e., if λ̄LT > 0.4.

• A nonlinear, finite-rotation constraint formulation appears to be necessary for nonlinear

problems, and there does not appear to be any computational advantages offered by

the linear coupling method. Linear, small-rotation coupling methods appear to be

acceptable for eigenvalue analyses, as well as problems not dominated by torsion if: (i)

LTB is not critical, (ii) the angle of twist is less than 0.10 rad, and (iii) the column drift is

below 10 %. If twisting is the dominant mode of deformation, the angle of twist should

remain below 0.05 rad if a linear coupling method is employed.

• The macro model approach leads to a reduction in the DOFs and memory usage propor-

tional to the ratio of the beam-column element domain length to the total component

length. The macro model approach does not appear to negatively affect the rate of

convergence compared to the full-continuum model, therefore, the computational time

savings are expected be a function of the DOF reduction.

Macro model parameters (e.g., proportion of continuum domain, mesh discretization,

imperfections, etc.) need to be calibrated in a future study based on the member geometry,

boundary conditions, material properties, and loading. Such guidelines will allow for the

practical use of component macro models in frame simulations.

4.7 Data availability

Some or all data, models, or code that support the findings of this study are available from the

corresponding author upon reasonable request.
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4.9 Notation

The following symbols are used in this chapter:

A1, A2 = constraint coefficient matrices;

b f = flange width;

(·)b = beam quantity;

(·)c = continuum quantity;

d = wide flange section depth;

f = constraint equations for a continuum node;

I = 3×3 identity matrix;

L = member length;

l = link vector;

n1,n2 = cross-sectional plane vectors;

R = rotation matrix;

t = cross-sectional normal vector;

t f = flange thickness;

tw = web thickness;

u = nodal displacement vector;

v = nodal initial imperfection vector;

w = warping DOF;

x = nodal position vector;

δ(·) = infinitesimal quantity;

Γ = beam-continuum interface;

ξ = distance along n1 axis;

θ = infinitesimal nodal rotation vector;

η = distance along n2 axis;
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ψ = warping function;

φ = nodal rotation vector;

ζ = distance along n3 axis;

Ω1 = beam-column element domain;

Ω2 = continuum element domain; and

[(·)]××× = matrix representation of cross-product.
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5.1 Introduction

Simulation models that incorporate material nonlinearity and geometric instabilities are

increasingly important for the design and analysis of infrastructure. For instance, finite

element models that account for nonlinear geometric effects can be used in the stability

design and evaluation of members (CEN, 2005b; AISC, 2016b), particularly if a closed-form

expression for the member’s critical load is not readily available (Ziemian and Abreu, 2018;

Ziemian et al., 2018). Furthermore, nonlinear finite element analysis has long-since been an

integral tool in the performance-based assessment and design of infrastructure (Krawinkler

et al., 2006). Performance-based assessments entail a probabilistic approach due to the

uncertain nature of natural hazards—see e.g., Vamvatsikos and Cornell (2002); Zareian and

Krawinkler (2007). The computational complexity of performance-based assessments is

therefore increased due to the number of simulations that must be run for any given case.

Thus, the need for a computationally friendly modeling approach is warranted in this context.

Concentrated plasticity and continuum finite element (CFE) modeling approaches are two

possible numerical representations used in state-of-the-art analysis of buildings for resisting

natural hazards (Deierlein and Zsarnóczay, 2019). Mathematical models for steel moment-

resisting frames (MRFs) based on the concentrated plasticity approach, for instance, are

generated using beam-column elements combined with zero length elements that represent

regions of anticipated nonlinear component behavior, as shown schematically in Figure 5.1.

The concentrated plasticity modeling approach is oftentimes favoured owing to its compu-

tational simplicity, however, it has several limitations for steel beam-column components

as discussed in Hartloper et al. (2021b). These limitations can be addressed by using a CFE

model, as illustrated in Figure 5.1, constructed with either 2D shell or 3D solid elements (the

following nomenclature is used herein: 1D elements are lines, 2D elements are surfaces, and

3D elements are volumes). Continuum finite element models overcome the limitations of

the concentrated plasticity approach by explicitly modeling material nonlinearity and its

interaction with geometric instabilities. The downside of using CFE models is the increase

in computational complexity in the form of the number of degrees-of-freedom and memory

requirements to run the model.

One promising method for curtailing the expense of CFE component models, while re-

taining their fidelity, is through the use of mixed-dimension approaches. Mixed-dimension

models are used, for example, in predicting the fatigue life of off-shore oil platforms (Knezevic

et al., 2019) and the seismic performance of steel frame structures (Imanpour et al., 2016).

This modeling approach is useful in these contexts because it explicitly simulates local effects,

such as stress concentrations and local geometric instabilities, in the continuum element do-

mains as well as interactions between local and member (i.e., lateral-torsional and/or flexural

buckling) instabilities. Component models combining elements of mixed dimensions (i.e.,
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Figure 5.1 – Schematic representation of steel moment-resisting frame and potential compo-
nent model idealizations.

1D and 2D elements) are herein denoted as “Macro models”, as depicted in Figure 5.1. In

particular, the focus of this chapter is narrowed to macro models with applications to steel

beam-columns. Such components are well suited to use mixed-dimension models because the

beam and column component behavior is well represented by classic beam theories, and the

locations of local geometric instabilities under the applied multiaxis loading are well-known

(Newell and Uang, 2008; Suzuki and Lignos, 2015; Ozkula et al., 2017; Elkady and Lignos,

2018a).

A mixed-dimension coupling method that can represent the relevant deformations oc-

curring within the member is essential to the development of accurate macro models for

steel beam-columns. This chapter focuses on the use of multipoint constraints (MPCs) to

couple the domains of differing dimensions. Prior studies have proposed MPC formulations

through a variety of different means, see e.g., McCune et al. (2000); Ho et al. (2004); Dassault

Systèmes (2014); Liu (2016). However, a limitation in the aforementioned MPC formulations

for coupling beam-column and continuum element domains in steel beam-columns is that

torsion-warping is not considered. However, torsion-warping significantly affects the tor-

sional stiffness of members featuring wide flange cross sections (i.e., including H- or I-shaped

cross sections). Accurately estimating the torsional stiffness is important for predicting the

behavior of steel beam-columns that are primarily subjected to torsional loads or that may be

susceptible to lateral-torsional buckling.

The problem investigated in this chapter is how to couple beam-column and continuum

element domains in a manner that: (1) is computationally efficient by introducing the least

number of constraint equations, and (2) includes torsion-warping. To address this problem,

a best-fit formulation is proposed based on matching two sets of point clouds. Point cloud
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matching is a well-studied problem in several domains, such as the Wahba problem (Wahba,

1965) in the field of spacecraft attitude dynamics, determining the orientation and translation

of sets of points in the field of computer vision (Horn, 1987), and more recently determining

best-fit corotational frames for 3D continuum finite elements (Mostafa and Sivaselvan, 2014).

This chapter is organized as follows. First, constraint equations are proposed using the

best-fit method. These constraint equations are tailored to wide flange cross sections that

are set as the scope for this work. The main novelty of the current work is the formulation of

the MPC equations as a point cloud transformation problem, and the inclusion of torsion-

warping into this framework. Second, the constraint coefficient matrix is derived for use in the

nonlinear finite element analysis context. Third, simulation-based examples are provided to

validate the proposed coupling method. Lastly, the results from this overall methodology are

discussed, its limitations are presented, and prospects for future research are stated.

5.2 Development of the multipoint constraint equations

The following steps are used to develop the constraint equations: (1) the assumed beam

kinematics are described to provide a basis for the development of the coupling equations;

(2) the best-fit coupling concept is introduced, then linked with the beam kinematics; and (3)

specific constraint equations, including one for warping, are formulated using the proposed

best-fit approach.

5.2.1 Beam kinematics

The beam-column element kinematics in the coupling formulation are based on a line of

centroids, a plane that rotates about each point on the centroid, and an out-of-plane torsion-

warping component—see e.g., Simo and Vu-Quoc (1991). Each node in the beam-column

element is assumed to have three displacement degrees of freedom (DOFs), three rotation

DOFs, and a warping DOF.

Kinematics of the beam-column element are provided by the equation for xmp , in which

the subscript mp indicates the material-point. The material points are defined by

xmp (ξ,η,ζ) = x̄(ζ)+ξn1(ζ)+ηn2(ζ)+w(ζ)ψ(ξ,η)t (ζ), (5.1)

where ζ is the coordinate along the beam centerline in the deformed configuration, ξ and

η are the distances measured along the n1, n2 axes in the deformed configuration, x̄(ζ) is

the position along the beam centerline, w(ζ) is the warping amplitude, ψ(ξ,η) is the warping

function, and t (ζ) is the axis in the direction of the cross section normal in the deformed

configuration. Essentially, the kinematics specify a plane spanned by n1 and n2, with a normal

vector t and centered at x̄(ζ). The representation of these parameters is shown in Figure 5.2a.
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The torsion-warping function for elastic, thin-walled, wide flange cross sections is (Chen and

Atsuta, 2008):

ψ(ξ,η) = ξη. (5.2)

As stated above, Equation 5.1 is formulated in the deformed configuration. Two other

configurations are used in this coupling methodology: the reference and initial configurations,

all of which are shown schematically in Figure 5.3. The reference configuration, identified

by the prescript r(·), is used to compute cross-sectional properties that remain constant

throughout the analysis. The initial configuration, identified by the prescript 0(·), is the initial

position and orientation of the model. The coupling method, to now be proposed, specifies

transformations from the initial to deformed configurations.

t
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Figure 5.2 – Division of component into domains and beam-column element kinematics.

5.2.2 Best-fit coupling approach

First, the best-fit concept is motivated, and afterwards this idea is used to develop the coupling

constraint equations. The approach is motivated by considering a plane of best-fit that

minimizes the sum of orthogonal distances between the plane and a set of points in 3D. The

location of the plane of best-fit is defined by a point on the plane and the orientation is defined

by the vector normal to the plane—mimicking the kinematic assumptions of a beam-column

element. With reference to Figure 5.4, the coordinates of N continuum nodes on the interface

Γ (see Figure 5.2b) are denoted by the set X = {xk }N
k=1, where xk are the coordinates of the

k-th node. These nodes could be generated, for example, by the shell discretization shown in

Figure 5.2c. If a node lays exactly on the best-fit plane, the equation t · (xk − x̄) = 0 is satisfied,

where t is the unit normal to the plane, and x̄ is any point on the plane. The orthogonal

distance between a point xk that rests outside of the plane is then defined as rk = t · (xk − x̄).

The best-fit plane is defined as one that minimizes the sum of squared distances rk over
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Figure 5.3 – Schematic representation of an wide flange cross section in the reference, initial,
and deformed configurations.

all the points in the set X . The associated error term E (x̄ , t ) is defined as

E (x̄ , t ) =
N∑

k=1
r 2

k =
N∑

k=1
t T Y t (5.3a)

=
N∑

k=1
y T

k

(
t t T )

yk , (5.3b)

where yk = xk − x̄ and Y = yk y T
k . The best-fit solution to the plane fitting problem is obtained

by minimizing Equation 5.3b with respect to x̄ :

−2
(
t t T ) N∑

k=1
yk = 0. (5.4)

For a non-trivial solution, the error is minimized with respect to x̄ when
∑N

k=1 yk = 0, therefore,

x̄ = 1/N
∑N

k=1 xk . This condition implies that the best-fit plane contains the centroid of the

point cloud, this point is denoted x̄ . Furthermore, applying the Rayleigh-Ritz theorem (Gallier

and Quaintance, 2020) to Equation 5.3a, the error term E is minimized when t is equal to t̃ ,

where t̃ is the normalized eigenvector associated with the minimum eigenvalue of Y . The

plane of best-fit to a set of points is, therefore, defined by the centroid of these points and the

eigenvector t̃ (Horn, 1987).

5.2.3 The link with beam kinematics

Relating beam-column element kinematics to the coupling problem: if the beam-column

centerline initially coincides with the centroid of the point cloud, then the cross-sectional

plane is exactly defined by the plane of best-fit if warping is neglected. The translation of
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Figure 5.4 – Visualization of the plane of best-fit for wide flange cross sections.

a beam-column node on Γ should then be equal with the translation of the centroid, and

the orientation of this beam-column node should be equal to the orientation of the plane of

best-fit. As warping is orthogonal to the cross-sectional plane, the orthogonal distance of a

point to the plane becomes r̃k = t · (xk − x̄)+wψk , where w is the warping amplitude and ψk

is the warping function evaluated at xk . The squared error with warping is defined as

Ẽ (x̄ , t ) =
N∑

k=1
r̃ 2

k =
N∑

k=1
y T

k

(
t t T )

yk +2wψk rk +w2ψ2
k . (5.5)

Minimizing this error will allow the determination of the best-fit plane to include the deforma-

tions due to torsion-warping.

An important assumption to include torsion-warping is that there is a bi-symmetric

discretization of continuum nodes on the interface. A bi-symmetric discretization is defined

such that for all nodes xk (ξ,η) there exist complementary nodes xl (−ξ,η) and xm(ξ,−η), where

k = l = m is only possible at ξ = η = 0. Considering the symmetric discretization of nodes,

it follows from Equation 5.2 that
∑

k ψk = 0 when evaluated over all the nodes. This result is

denoted as the antisymmetry of the warping function under a bi-symmetric discretization, or

just “antisymmetry of the warping function”. The physical interpretation of this property is

that the axial-force resultant is equal to zero when integrating the axial stresses due to torsion

warping over the respective cross section.

The best-fit problem can now be stated with warping. First, minimizing the error (5.5)
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with respect to x̄ ,

∂

∂x̄

(
N∑

k=1
y T

k

(
t t T )

yk +2wψk rk +w2ψ2
k

)
= 0 (5.6)

⇒−2
(
t t T ) N∑

k=1
yk −2w t

N∑
k=1

ψk =−2
(
t t T ) N∑

k=1
yk = 0. (5.7)

Note that antisymmetry of the warping function is used above. In this case, the centroid of

the material points including warping is the centroid of the points without warping. Now,

minimizing the error function with respect to rk ,

∂

∂rk

(
N∑

k=1
r 2

k +2wψk rk +w2ψ2
k

)
= 0 (5.8)

⇒
(

N∑
k=1

rk

)
+w

(
N∑

k=1
ψk

)
= 0, (5.9)

again, antisymmetry of the warping function makes the last term in (5.9) equal to zero. This

result implies that the best-fit plane is independent of the torsion warping deformations.

Intuitively, this conclusion follows from the observation that the residuals due to warping

deformations cancel each other out when calculating the plane of best-fit.

The plane of best-fit to the deformed set of nodes is shown in Figure 5.4. In this figure,

the initial configuration is subjected to a rotation about the 0n1 axis in combination with a

warping deformation. Residuals in this figure are represented by the dashed (negative warping

deformation) or solid lines (positive warping deformation) between the best-fit plane and the

deformed points. Notice that each positive residual has a negative counterpart, therefore the

best-fit plane coincides with the rotated section without warping deformations. The rotation

from the initial to deformed configurations is defined by φ̃—determining this rotation is the

crux of the best-fit coupling problem.

5.2.4 Best-fit multipoint constraint equations

Equations are now proposed to relate the interface beam-column element node to the in-

terface continuum element nodes. The beam-column and continuum element domains are

defined as Ω1 and Ω2, respectively, and the interface between the two domains is denoted

as Γ. A schematic representation of these domains is provided in Figure 5.2b for wide flange

cross sections. Beam-column and shell element discretization of these domains is shown

in Figure 5.2c, this figure also shows a schematic of the point cloud generated by the shell

element nodes along Γ.

The interface beam-column node DOFs are treated as dependent, and the interface con-

tinuum nodes are treated as independent DOFs to introduce the least number of constraint
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equations. The constraint equations are posed in a nonlinear form as

u∗
b = f

(
Uc

)
, (5.10)

where u∗
b = [ub ,φb , wb]T are all the beam-column node DOFs, and f

(
Uc

)
are the nonlinear

constraint equations dependent on the displacements of the continuum nodes, Uc = {uk }N
k=1.

In Equation 5.10, the DOFs are defined in the global coordinate system with respect to the

e1,e2,e3 axes. Only the displacement DOFs of the continuum element nodes are considered

in the formulation, therefore any continuum element nodal rotations are neglected (e.g., in

shell elements).

Multipoint constraint equations are proposed based on the following ideas established

in the previous section: (1) the beam-column node is initially located at the centroid of

the interface continuum nodes, and the displacement of the beam node follows that of the

centroid of the continuum nodes; (2) the rotation of the beam-column node matches the

rotation of the best-fit plane; and (3) torsion-warping is determined based on the residuals

between the interface continuum nodes and the plane of best-fit. Three MPC equations are

specified to constrain the beam-column node to the centroid of the continuum nodes, three

equations are specified to constrain the rotation of the beam-column node to the rotation

of the plane of best-fit, and one equation is specified to constrain the warping amplitude to

account for the residuals between the continuum nodes and the plane of best-fit. Altogether,

this formulation necessitates seven equations to couple the seven beam-column node DOF to

the 3N continuum node displacement DOFs.

The displacement constraint equations are

f1−3 := ub = ū (5.11)

where ub is the displacement of the beam node, ū is the displacement of the centroid of the

continuum nodes. The rotation constraint equations are

f4−6 :=φb =φ[
q̃

]
, (5.12)

where φb is the rotation of the beam node, q̃ is the rotation quaternion representing the

orientation of the best-fit plane, andφ [·] indicates the conversion from the quaternion repre-

sentation to the Euler angle representation. A quaternion representation arises naturally from

the eigenvectors of a 4×4 eigenvalue problem that represents the rotation from the initial to

deformed configurations (Horn, 1987; Mostafa and Sivaselvan, 2014). Computing the rotation

from an eigenvector is considered integral to the best-fit MPC formulation as it renders the

procedure computationally simple.
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Finally, the warping constraint equation is

f7 := wb = 1

Nψ

∑
k∈kψ

1

ψk
t · (xk − R̃

(0xk + ū
))

(5.13)

where wb is the warping amplitude of the beam node, xk are the locations of the continuum

nodes in the deformed configuration, 0xk are the locations of the continuum nodes in the

initial configuration, Nψ is the number of non-zero warping function evaluations, ψk is the

warping function evaluated at node k, t is the normal to the cross-sectional plane, and R̃ is the

rotation matrix from the initial to the deformed configuration of the best-fit plane. Indices of

the non-zero warping function evaluations are defined as the set kψ = {k |ψk ∈ψ,ψk 6= 0}, and

the number of non-zero evaluations is defined as the cardinality of set kψ (Nψ = card
[
kψ

]
).

Equation 5.13 for the warping amplitude is derived from the average of the residuals from the

plane fitting procedure.

Equations 5.11 to 5.13 specify transformations between the initial and deformed config-

urations, as shown schematically in Figure 5.3. The initial configuration is the undeformed

cross section in its initial position and orientation in any space of the user’s choosing. The

deformed configuration is found by applying a translation then a rotation denoted by R̃ to the

initial configuration. Additionally, the reference configuration is a convenient space defined

by the authors in order to establish basic operations on the interface. It can be found from the

initial configuration by applying a translation to the origin and the rotation 0RT .

Orientation of the reference configuration

The orientation of the reference configuration is computed relative to the initial configuration

through the matrix 0RT . The basis for obtaining 0RT is that the reference configuration,

[rn1, rn2, rt ], is aligned with the global reference frame, [e1,e2,e3] = I3,3 where I3,3 is the 3×3

identity matrix (see Figure 5.3). Therefore, the initial configuration is defined as [0n1, 0n2, 0t ] =
0R I3,3 = 0R . From this, the reference configuration is simply obtained from applying 0RT to

the initial configuration.

The matrix 0R is computed through Equation 5.3a. First, a set of points C = {ck } = {0xk −
0x̄}N

k=1 is defined to represent the relative positions of the interface continuum nodes in

the initial configuration. Second, the orientation of the initial configuration is found by

computing the eigenvalues and eigenvectors of the 3×3 matrix Y = [c1, . . . ,cN ][c1, . . . ,cN ]T .

The eigenvector associated with the minimum eigenvalue is the rt axis, the eigenvector

associated with the maximum eigenvalue is the 0n2 axis, and the remaining eigenvector is the
0n1 axis. Third, the orientation of the axes is set such that a right-handed coordinate system is

formed. Details for this procedure are provided in Section 5.11.

The ordering of the eigenvalues noted above implies that 0t is the orientation of the best-fit

plane that contains 0x̄ in the initial configuration. The ordering of axes 0n1 and 0n1 is made
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according to the moments of inertia for the cross section in this best-fit plane. Essentially,

the ordering assumes a wide flange cross section; and that I1 > I2, where I1 and I2 are the

moments of inertia about each axis of the cross section in the best-fit plane. This assumption

will hold for most practical cases, however, the axes can easily be defined in a different manner

for the cases that it does not hold.

Computation of the optimal rotation quaternion

The method stated in Mostafa and Sivaselvan (2014) is used to formulate and solve for the

best-fit plane’s rotation. The rotation quaternion, q̃, is defined by the rotation from the initial

to deformed configurations. First, the set of points D = {dk } = {xk − x̄}N
k=1 is defined for the

relative positions of the interface continuum nodes in the deformed configuration. Second,

the matrix defining the eigenvalue problem to be solved to obtain the cross-sectional plane’s

rotation is

B =
∑
k
βT

k βk , (5.14)

where ck = 0xk − 0x̄ has been previously defined, and the matrix β = LEFTQUAT
(
[0,d T

k ]
)−

RIGHTQUAT
(
[0,c T

k ]
)
. The operations LEFTQUAT and RIGHTQUAT, clarified in Section 5.11, are

the matrix representations of left- and right-side multiplication of a rotation quaternion

(Mostafa and Sivaselvan, 2014). Finally, the optimal rotation quaternion, q̃, is the eigenvector

associated with the minimum eigenvalue of B . An important distinction between determining

q̃ from B and the eigenvalue problem in Equation 5.3a is that the former gives the rotation,

while the later gives the orientation.

Rotation quaternion to Euler angle conversion

A conversion from a rotation quaternion to an Euler angle representation is required in

Equation 5.12. The method used is the same as the one provided in Abaqus v6.14 (Dassault

Systèmes, 2014). The procedure to extract the rotation angle from the rotation quaternion

defined by q= [
q0, q T

]
is given by

φ
[
q

]= ∥∥φ∥∥ q∥∥q
∥∥ , (5.15a)

∥∥φ∥∥= 2arctan

(∥∥q
∥∥

q0

)
. (5.15b)

The real part of the quaternion q is q0 and the imaginary part is q T = [
q1, q2, q3

]
.
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5.3 Application of the best-fit constraint equations for nonlinear fi-

nite element analysis

The constraint coefficient matrix, A, where u∗
b = AUc is used to relate the beam-column and

continuum element DOF within the global system of equations. The constraint coefficient

matrix is required to account for the constraints within the context of an incremental-iterative

solution method for nonlinear finite element problems. For instance, the unconstrained

global system of equations can be defined in an unconstrained, partitioned form as
Knn Knc Knb

Kcn Kcc Kcb

Kbn Kbc Kbb




Un

Uc

u∗
b

=


Pn

Pc

Pb

 , (5.16)

where the DOFs n are not involved in the constraint, the DOFs b correspond to the dependent

beam-column element node, and the DOFs c correspond to the independent continuum

element nodes.

Constraints u∗
b = AUc are now imposed on the system (5.16). The symmetric, constrained

system of equations (Abel and Shephard, 1979) can be defined as
Knn Knc +Knb A 0

Kcn + AT Kbn Kcc +Kcb A AT Kbb

0 Kbb A −Kbb




Un

Uc

u∗
b

=


Pn

Pc + AT Pb

0

 . (5.17)

In the current context, the constraint coefficient matrix is comprised of three submatrices,

A = [Adi sp , Ar ot , Aw ar p ]T that correspond to the interface beam-column node’s displacement,

rotation, and warping DOFs, respectively. The respective dimensions of the matrices are:

3×3N , 3×3N , and 1×3N .

It is common to employ the rigid body assumptions to formulate linearized constraint

equations to apply the nonlinear constraints in the context of nonlinear finite element analysis

solution procedures (Abel and Shephard, 1979). The use of linearized constraint equations

implies that each submatrix in the constraint coefficient matrix is computed as
(

Ai j
)

k =(
∂ fi /∂u j

)
k , where fi are the constraint equations that impose rigid body motion, and u j are

the DOFs of the interface continuum node k. However, this method leads to stress distributions

in the interface continuum elements that are substantially incorrect when used with the

proposed best-fit approach. The proof of this statement is shown through the derivation of

the linearized constraint equations, alongside a simple example to highlight its effect, at the

end of this chapter in Section 5.12.

An alternative method, denoted “the nodal force method” is developed to define the

constraint coefficient matrix. The use of this alternative method overcomes the limitation
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5.3. Application of the best-fit constraint equations for nonlinear finite element analysis

of using the linearized equations to define A. The nodal force method is based on the in-

terpretation that AT plays the role of distributing forces from the beam-column node to the

continuum nodes in (5.17). For instance, see the term AT Pb on the right-hand side of the

system of equations that accomplishes this task. Later examples demonstrate that the nodal

load method leads to stresses in the interface continuum elements of macro models that are

in fair agreement with full continuum models so long as the assumptions used to derive the

method are satisfied.

5.3.1 Overview of the nodal load method for computing the constraint coefficient

matrix

The nodal load method is based on beam mechanics and the idea that AT redistributes the

forces and moments applied to the interface beam-column node to the interface continuum

nodes. Coefficients of the AT matrix are computed by assuming that a unit load is acting

on each beam-column node DOF and determining the resulting forces on the continuum

element nodes. Only the work-conjugate related to displacements (i.e., forces) acting on the

continuum element nodes are required within this framework because only independent

displacement DOFs are included in the constraint formulation. The forces acting on each

continuum node are determined by integrating the stresses from each unit load over the

corresponding nodal area. Beam mechanics implied by the kinematics in Equation 5.1 are

used to relate the loads and stresses.

The reference configuration is used to compute the stresses in the nodal load method.

The stress in the reference configuration, rτi (ξ,η), at any point along the interface Γ for a load

applied in beam-column DOF i is defined by

rτi (ξ,η) = rτ̄i (ξ,η) rpi , (5.18)

where the prescript r(·) in (5.18) indicates that all these quantities are defined in the reference

configuration, τ is the stress tensor, τ̄(ξ,η) is a stress factor, and rpi represents unit loads in

DOF i . For any DOF, the resulting traction vector on the cross section is then defined as

rv (ξ,η) = rτ(ξ,η) rt . (5.19)

The traction vectors are then integrated over an area to obtain a force vector.

The main effort of the nodal force method is to define the stress factors that relate stresses

acting on the interface continuum element nodes to the loads applied on the beam-column

element node. For instance, stresses on the continuum interface due to torsion applied on

the beam-column node are shown in Figure 5.5a. The τ31 and τ32 components of the stress

tensor are computed on the cross section as a function of a unit torque, the traction vector is
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rt

rp6

rt

rn1

rn2

rτ6
31

rτ6
32

(a) Shear stresses on the cross section due to an applied torque

Δf

Δw

tf

tw

rn1

rn2

(b) Tributary areas

Figure 5.5 – Nodal stresses due to an applied beam-column load and the nodal tributary areas.

computed from the stress tensor, and the stresses are then integrated over each nodal area to

obtain a force. A representation of the nodal areas, with respect to a centerline shell element

discretization, are shown in Figure 5.5b for a wide flange cross section. The parameters t f

and tw are the flange and web thicknesses, respectively; the parameters ∆ f and ∆w are the

mesh sizes for the flange and web, respectively. The symmetric cross section discretization

established earlier implies that the distances ∆ f and ∆w are consistent for all the flange and

web elements.

Stresses and their resultants are grouped into axial stresses and shear stress. The axial

stresses are induced by axial forces, bi-axial bending, and torsion-warping; shear stresses

are induced by bi-axial shear forces and torsion. The summation of all nodal forces derived

through this method must satisfy force, moment, and bi-moment equilibrium. Given the

reference and global coordinate systems defined in Figure 5.3, the work conjugates to the

beam-column nodal loads, pi , are the beam-column nodal DOF (u∗
b )i (i = 1, . . . ,7). As the

constraint coefficient matrix is derived in the reference configuration, transformations from

the reference to deformed configurations are necessary (see Figure 5.3), and will be discussed

upon completion of the description in the reference configuration.

5.3.2 Axial force, bi-axial bending, warping

The coefficients in AT related to axial stresses are computed based on the beam-column

segment approach presented Chen and Atsuta (2008). The axial stress component in the stress

tensor for a continuum node k, rτ̄i
33,k , is computed for loading in each DOF i = 3,4,5,7 from

the section deformations and the stress-strain relation:

rτ̄i
33,k =C ep

k ρT
k usec

i . (5.20)

132
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In this equation, C ep
k is the uniaxial tangent modulus at node k, the cross section vector,

ρk , is defined for each interface continuum node as ρk = [
1,ηk ,−ξk ,ξkηk

]T , and the section

deformations usec
i are computed by solving

K sec usec
i = pi . (5.21)

The section deformation vector contains the axial strain, curvatures, and warping due to the

applied load pi , where p are load vectors with component i equal to unity, and all others

equal to zero. Definition of the cross section stiffness matrix, K sec , remains.

The interface continuum elements are herein assumed to exhibit an isotropic elastic

response; this may be a significant limitation in certain scenarios, as discussed later in the

Limitations section. With the elastic material assumption, i.e., C ep
k = E , the section stiffness

matrix is

K sec = E
∑
k

ak ρkρ
T
k . (5.22)

The diagonal terms in K sec are: E A, where A = ∑
k ak is the area of the cross section; and

E I1,E I2,E Iw , where I1, I2, Iw are the moments of inertia and the warping constant for the

cross section. Bi-symmetry of wide flange cross sections implies that the off-diagonal terms

are equal to zero when the material is elastic (Chen and Atsuta, 2008).

5.3.3 Bi-axial shears

From elementary beam theory (Gere, 2004), a shear stress factor rτ̄2
32(η) =Q(η)/t (η) is defined

for wide flange sections for a unit shear force applied in the direction of the strong axis, and a

constant moment of inertia. Again, the assumption of an elastic material behavior is made.

Here, t(η) is the part’s thickness and Q(η) is the first moment of area. Recall that the stress

factor rτ̄2
32(η) represents the 3,2-component of the shear stress (see Figure 5.5a) due to a shear

force applied in beam-column node DOF 2.

Considering η ∈ [−d/2,d/2] measured from the centroid of the cross section,

rτ2
32(η) =

1/tw
(
0.25b f t f (d +d1)+0.5tw (0.5d1 −η)(0.5d1 +η)

)
if web

1/b f
(
0.5b f (0.5d −η)(0.5d +η)

)
if flange,

(5.23)

where d1 = d −2t f . The shear stress factor is computed from the normalized stress as

rτ̄2
32,k = 1

V2

rτ2
32(ηk ), (5.24)

where the total shear force is V2 = ∑
k ak

rτ2
32(ηk ). The distributions of the 3,2-component

is shown in Figure 5.6. Strong axis shear also leads to the 3,1-component in the flanges.

Considering a constant moment of inertia and a unit shear force, the maximum shear stress
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Figure 5.6 – Sample assumed elastic shear stress distribution (d = 110, b f = 100, tw = t f = 10).

factor is
rτ̄2

31,max = 1

V2

b f (d − t f )

4
, (5.25)

where hcl = h − t f is the centerline depth of the section. Since the distribution is linear, linear

interpolation is used between 0 at the flange tips and rτ̄2
31,max based on the flange node

locations to obtain the value of rτ̄2
31,k for flange node k.

Now considering a shear force applied in the weak axis (DOF 1), the shear stress is

rτ1
31(ξ) =


b2−4(ξ)2

8 if flange
2b2t f +t 2

w (h−2t f )
8h1

if web (along centerline).
(5.26)

The distribution is shown in Figure 5.6, the darker shaded region in the center are the values

on the web. Again, a normalization is used to get the stress factor:

rτ̄1
31,k = 1

V1

rτ1
31(ξk ), (5.27)

where V1 =
∑

k ak
rτ1

31(ξk ).

5.3.4 Torsion

Forces acting on the continuum nodes due to torsion on the beam-column node are deter-

mined by assuming a rigid link between the beam-column node and each continuum node.

This assumption is made because the actual shear flow is circuitous throughout the cross

section unde torsion loading (Gere, 2004). As a result, integrating the shear stress over each

nodal area for shell elements will give a resultant near to zero at most points on the cross

section. The approach taken here is that the shear force applied to each node is proportional
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5.3. Application of the best-fit constraint equations for nonlinear finite element analysis

to the distance between the node and the centroid, and is perpendicular to the vector from

the centroid to the node.

The shear stress factor in the reference configuration due to torque is computed as

rτ̄6
k = [rτ̄6

31,k , rτ̄6
32,k ]T = ak

1

I3

[−ηk ,ξk
]T∥∥[

ξk ,ηk
]∥∥ ·

∥∥[
ξk ,ηk

]∥∥= 1

I3
ak

[−ηk ,ξk
]T , (5.28)

where the polar moment of inertia for the cross section is computed in a discrete manner as

I3 = ∑
k ak

∥∥[
ξk ,ηk

]∥∥2. The division by I3 is used to satisfy the equilibrium conditions for a

unit torque.

5.3.5 Definition of the nodal forces in the deformed configuration

This section establishes how the stress resultants in the nodal force method are transformed

from the reference to the deformed configurations. First, the local coordinate system in

considered in the reference configuration. The resultant force vector is derived assuming that

the stress is constant over the tributary area of each node:

rsi =
∫

a rτi j (ξ,η)rt j d = a rτi j
rt j , (5.29)

where the i , j indices take values of 1,2,3, or in the matrix convention

rs = a rτrt . (5.30)

Note that specification of an individual node k is suppressed until the end of this derivation to

simplify the notation.

Forces and displacements for each node must be calculated and assigned with respect to

the deformed configuration, therefore,

s = a RT rτRt . (5.31)

The rotation tensor R in Equation 5.31 should be interpreted as the relation between the

local coordinate system of the cross section and the global coordinate system. Note that the

rotation matrix recovered from the optimal rotation quaternion transforms the vector 0t to t ,

therefore, the following relation is very important,

R = (
R̃ 0R

)T
. (5.32)

Recall that 0R transforms rt to 0t . For simplicity, quantities are defined with respect to R , and

towards the end the relation (5.32) is substituted.

The stress tensor is left in the local reference coordinates since the nodal force method
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operates in the reference configuration. The stress tensor of each node is now related to the

DOF of the beam node through the stress factors and the vector of applied loads,

rτ= rτ̄ rP , (5.33)

Note that the dimensions of rτ̄ are 3×3×7, and P is dimension 7. Substituting the weights, rτ̄,

into Equation 5.31 and bringing rP into the deformed configuration,

s = a RT rτ̄T P Rt , (5.34)

where T is the transformation of dimensions 7×7 represented by the matrix

T =


RT 03,3 03

03,3 RT 03

0T
3 0T

3 1

 , (5.35)

where 03,3 is a 3×3 matrix of zeros, 03 is a vector of 3 zeros.

Two key observations regarding the structure of T in (5.35) are made. First, the warping

amplitude is defined locally based on the direction of t , and therefore is not rotated. The

physical interpretation is that the stress from warping is always acting in the direction of t

regardless of the definition of any axes. Second, the displacement, rotation, and warping DOFs

can be rotated independently of each other due to the diagonal structure of T .

A method to define the constraint coefficient matrix, A, in the deformed configuration

making use of Equation 5.34 is now outlined. Equation 5.34 is written in indical notation to

assist in understanding the necessary computations,

si = a Ri k
rτ̄m

kl TmnPnRl j t j , (5.36)

and Rl j t j = rtl is the normal to the cross section in the deformed configuration that is known.

In (5.36), the indices i , j ,k, l take values of 1,2,3, and m,n take values of 1,2, . . . ,7. The proce-

dure is simplified by first computing the resultant of the stress traction vector in the reference

configuration for each DOF by contracting τ̄m
kl

rtl :

rSm
k = a rτ̄m

kl
rtl ⇐⇒ rS = [

a rτ̄1 rt , . . . , a rτ̄7 rt
]

. (5.37)

rS is a 3x7 matrix where each column is the matrix-vector product of the traction vector

for DOF i and rt times the tributary of the node. Now considering the rest of the terms in

Equation 5.34,

Si j = Ri k
rSkmTm j ⇐⇒ S = RT rS T , (5.38)
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where all the quantities are known. Using Equation 5.32 again,

S = R̃ 0R rS T , (5.39)

recalling that up to this point the specific reference to a node has been suppressed. Finally,

the correspondence between the submatrices of the constraint coefficient matrix and Equa-

tion 5.39 is (
AT )

k = (S)k , (5.40)

where the k subscript is added to denote the continuum node.

5.4 Summary of the best-fit coupling method

For fast global convergence, the beam node displacement predicted by the constraint coeffi-

cient matrix applied to the continuum node displacements, i.e., Adi spUc , should agree with

ub . To enforce this consistency, the displacement ub in (5.11) is computed as

ub = ū = Adi spUc . (5.41)

This formulation creates a dependence of ub on the orientation of the cross section since

Adi sp depends on R̃ via Equation 5.39. The rotation, in-turn, depends on the position of

the centroid, creating a nonlinear relation between the centroid displacement and optimal

rotation.

This nonlinear relation is addressed through an iterative procedure to determine the

centroid displacement termed “inner iterations”. For the first inner iteration, the centroid

position is determined using the mean of the shell nodes (i.e., 1/N factor), this position is

used to get an initial estimate of the optimal rotation. Further inner iterations use Adi sp

based on the nodal force method including the rotation of the cross section determine the

centroid position. Inner iterations are ended when the difference in consecutive centroid

displacements is less than a prescribed tolerance, in this case set to 10−8. This procedure

typically converges after three iterations.

For clarity, the entire best-fit MPC coupling procedure for wide flange cross sections is

summarized using pseudocode in Algorithm 2. The detailed algorithm, along will supporting

procedures, is provided in Section 5.11.
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Algorithm 2 Summary of the best-fit MPC coupling method.

1: Compute the reference configuration

2: Compute the nodal areas and cross-sectional properties

3: Compute the nodal forces in the reference configuration

4: Set initial Adi sp

5: while centroid displacements not converged do . Inner iterations

6: Compute the centroid displacement

7: Compute the optimal rotation

8: Update Adi sp

9: end while

10: Calculate the warping amplitude

11: Transform the nodal forces into the deformed configuration

12: Calculate the constraint coefficient matrix

13: Assign the exact values of the beam DOF using the constraint equations

5.5 Evaluation of the best-fit coupling method

Two case studies are used to evaluate the proposed best-fit coupling method. For this purpose,

the proposed method was implemented using the user MPC subroutine in Abaqus v6.14

(Dassault Systèmes, 2014). The complete source code is provided by the authors (Hartloper,

2021). Descriptions and results are provided for the example; a discussion of the results

follows.

For clarity and transparency in simulations, implicit static analysis in Abaqus v6.14 with

double floating-point precision is used for both case studies. Nonlinear geometric transforma-

tions are assumed (NLGEOM = ON in Abaqus). The nonlinear equilibrium equations are solved

using the full-Newton method, and the Abaqus default convergence criteria of 0.5 % on the

relative residuals is used.

5.5.1 Example 1: Elastic cantilever subjected to large deformations

Description

The first example is an elastic cantilever subjected to large deformations. The purpose of this

example is to validate the implementation of the proposed coupling method for problems

in which the interface elements remain elastic. The beam cross section dimensions are:

d = 110 mm, b f = 100 mm, t f = tw = 10 mm, and the length of the cantilever is 2000 mm.

Elastic material properties are assumed with modulus of elasticity E = 200 GPa and Poisson’s

ratio ν= 0.3. The model is subjected to a displacement boundary condition at the free end

of δX =−1000 mm, δY = 1000 mm, and δZ = 100 mm, resulting in a maximum displacement

magnitude of δ= 1418 mm. The displacement boundary is selected to induce loading in every
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DOF of the interface beam-column node. The basic model is shown in Figure 5.7a with the

overall tip displacement, δ, and the magnitude of the reaction force at the fixed end, F . Results

are evaluated using the magnitude of the reaction force at the fixed end.

Four model variants are evaluated: the “Full-shell Model”, comprised of shell elements;

the “Full-beam Model”, comprised of only beam-column elements; the “KC Model” macro

model employing the built in kinematic coupling in Abaqus; and the “BF-MPC Model” macro

model employing the proposed best-fit MPC coupling. For both macro models, the beam-

column and shell element domains are evenly divided into 1000 mm length. For all models,

linear (four-node), reduced integration shell elements (S4R in Abaqus) are used to model the

continuum domain. The default of five section points are used throughout the shell thickness.

Quadratic, open-section beam-column elements (B32OS in Abaqus) are used to model the

beam-column domain. Two S4R elements are used per half-flange, and four in the web; the

element aspect ratio is kept at approximately unity along the beam length. The individual

B32OS element length is set at 100 mm. A rigid-body constraint is used at the free-end to apply

the displacement boundary condition at the centroid of the Full-shell model.

Results

Tip displacement and reaction force results from the cantilever example are shown in Fig-

ure 5.7b, the resulting deformed shape is shown in Figure 5.7a superimposed on the initial

shape. The overall force-displacement response of the two macro models (BF-MPC Model

and KC-Model) are nearly identical. Good agreement between the macro models and the

Full-shell model in terms of reaction force and tip deformation is also apparent. The differ-

ences between the macro models and the Full-shell Model are attributed to the beam-column

and shell element formulations, as the macro model response lies between the Beam-column

Model and the Full-shell Model. This result validates the theory established in this chapter for

the best-fit coupling method under the applied loading.

The stresses in the interface shell elements are also reported for the Full-shell Model,

KC Model, and BF-MPC Model in Figure 5.8. Each bar in these plots represents the average

axial or shear stress computed from the five section points in each shell element on the

interface (see Figure 5.2a). In terms of axial stresses, the built-in kinematic coupling (KC)

and proposed best-fit MPC (BF-MPC) models perform similarly when compared with the

Full-shell Model (see Figures 5.8a and 5.8b). However, in terms of shear stresses, there is a

notable improvement over the built-in kinematic coupling when the best-fit MPC is employed

as depicted in Figures 5.8c and 5.8d. This result implies that shear stresses are not correctly

transferred between the domains when a kinematic coupling such as the one in Abaqus v6.14

is employed.
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Figure 5.7 – Results from the elastic cantilever model subjected to a large deformation. Figure
(a) shows the Full-shell model (left) and BF-MPC model (right).

5.5.2 Example 2: Inelastic beam subjected to nonuniform torsion

Description

The primary motivation for the implementation of the best-fit MPC is the recognition that

coupling methods that do not include warping lead to an incorrect torque-twist response for

wide flange cross sections. This issue is demonstrated by comparing the built-in Abaqus v6.14

kinematic coupling with test data. Furthermore, we show that the proposed best-fit MPC

coupling method addresses this issue in the elastic domain, although limitations become

apparent once the interface elements exhibit yielding.

Experimental data is taken from a beam subjected to non-uniform torsion tested by

Farwell and Galambos (1969). A schematic of the set-up is shown in Figure 5.9a. The specimen

has a wide flange cross section (6×6-25) with a depth of d = 152.4 mm, a flange width of

b f = 150.9 mm, a flange thickness of t f = 12.2 mm, a web thickness of tw = 8.0 mm, and a

length of 1930 mm. The beam is supported at both ends by the reaction columns that restrict

twisting and axial displacements, but allow the specimen to warp. A torque is applied at

the center of the beam through a circular loading plate that is rotated using two hydraulic

cylinders, the schematic of the load plate profile is inset in Figure 5.9a to show the resulting

torque, MZ and twist, θZ . A total torque of MZ = 25 kN.m is applied at the center of the finite

element models.

The same four models discussed earlier (Full-shell, Beam-column, KC, and BF-MPC) are

used for this example problem as well. Additionally, another macro model is used with a

warping-inclusive kinematic coupling (WIKC) (Hartloper et al., 2021b), denoted the “WIKC

Model”. The WIKC Model has a similar formulation to the built-in kinematic coupling in

Abaqus v6.14, but is able to transfer torsion-warping deformations as well. The length of
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Figure 5.8 – Interface shell element stress distributions for Full-shell, and macro models with
built-in Abaqus kinematic coupling (KC) and the proposed MPC (BF-MPC). Values extracted
from the final state of Example 1.
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the continuum element domain is nominally selected as 0.25L at both ends for the three

macro models. The beam-column domain is modeled with ten B32OS elements, and four

S4R elements are used in each half-flange and eight in the web. The material properties are

E = 213400 MPa, ν= 0.3, initial yield stress σy,0 = 285 MPa, with linear isotropic hardening

defined by 289 MPa at a plastic strain of εp = 0.01329 and 876.2 MPa at εp = 0.094 (Pi and

Trahair, 1995).

Results

The initial and deformed shape at the end of the analysis are shown for the BF-MPC model in

Figure 5.9b, torque-twist results are provided in Figure 5.9c. The average axial stress in the

interface continuum elements is shown at an applied torque of MZ = 104 kN.m in Figure 5.9d.

The most notable result shown in Figure 5.9c is that the macro model utilizing the built-in

Abaqus kinematic coupling (KC Model) does not correctly predict the elastic torsional stiffness.

This is a because torsion-warping deformations are not transferred at the interface with the

built-in Abaqus formulation. All the other models give a good prediction of the test data

in the elastic domain. Agreement in the axial stress for the BF-MPC model, as shown in

Figure 5.9d, demonstrates that the proposed coupling method adequately transfers torsion-

warping deformations.

The beam-column, BF-MPC, and WIKC Models all diverge from the Full-shell Model and

test data after around 0.25 rad twist. This is attributed to a limitation in the Abaqus v6.14

beam-column elements in that they are valid for angles of twist up to about 0.2 rad (Dassault

Systèmes, 2014). Yielding initiates at a torque of around MZ = 9 kN.m (θZ ≈ 0.10 rad at this

point). The BF-MPC model can converge increments up-to around 0.50 rad twist even though

the coupling formulation assumes the interface shell elements remain elastic, although the

global Newton iterations do not converge after this point (model non-convergence). This may

not be a major limitation in beam-columns, as full-scale tests on wide flange beam-columns

suggest that the maximum measured twisting angle is around 0.10 rad at relatively large lateral

drift demands associated with incipient collapse (Elkady and Lignos, 2018a). However, note

that the model employing the WIKC method (Hartloper et al., 2021b) can converge increments

in which the interface is inelastic. Moreover, it captures the elastic torsional stiffness of the

beam-column under discussion correctly.

5.6 Discussion and limitations

The proposed best-fit MPC achieves the objectives set forth, namely: (1) it couples beam-

column and continuum element domains utilizing the least number of constraint equations,

and (2) it incorporates torsion-warping into the coupling formulation. The best-fit coupling

method is validated for simple, large-deformation problems through Example 1. The ability of
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Figure 5.9 – Test setup schematic and results from the Farwell and Galambos (1969) nonuni-
form torsion test.
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the proposed coupling to transfer torsion-warping deformations is demonstrated in Example 2.

Furthermore, comparisons of the interface element shear and axial stresses in Example 1,

shown in Figure 5.8, demonstrate that the proposed best-fit approach leads to a better agree-

ment with the Full-shell model over the kinematic coupling approach in Abaqus v6.14 in this

case. The use of assumed elastic stress distributions appears to be beneficial for transferring

shear stresses between domains, so-long as the interface continuum elements remain elastic.

The proposed best-fit MPC utilizes seven equations regardless of the number of interface

continuum nodes, whereas kinematic coupling methods require at least 3N equations to

couple the two domains. Reducing the number of constraint equations reduces the effort

required to impose them (e.g., reduces the number of equations when a Lagrange multiplier

method is used (Bathe, 1996)). The trade-off is that additional computations are performed in

the best-fit MPC to solve the over-determined problem in a least squares manner and the use

of an assumed stress distribution. As this chapter focuses on the formulation of the coupling

method, a detailed investigation into the computational efficiency of the proposed best-fit

MPC with alternative methods is considered outside the scope of this work.

The elastic stress distribution for determining the constraint coefficient matrix is consid-

ered to be a limitation of the proposed coupling method when there is yielding in the interface

continuum elements. This issue is highlighted in the results of Example 2 as the BF-MPC

model cannot converge many increments after the continuum elements on the interface begin

to yield (see Figure 4.8). As the location of the interface is determined by the modeler, this

limitation becomes significant in problems where regions of expected yielding go beyond than

the location of interface. As such, the WIKC method (Hartloper et al., 2021b) may be advanta-

geous in these cases. Furthermore, the proposed best-fit MPC coupling method may be more

suitable for nonlinear elastic problems, such as those encountered in the simulation-assisted

design for determining the stability of members, particularly when twist is involved (Ziemian

and Abreu, 2018; Ziemian et al., 2018) or in cases where reduced order models are employed

for asset evaluation that require a sufficient level of fidelity (Knezevic et al., 2019).

Overcoming the challenge of an assumed elastic interface has a few key components left

for future research. First, the effective tangent modulus for each nodal area would have to be

known in the computation of the constraint coefficient matrix. This value would replace the

elastic modulus in, e.g., Equation 5.20, when computing the nodal forces. Second, the con-

straint equations, i.e., Equations 5.11–5.13, would be applied on the increment of deformation

rather than their total value. This consideration is necessary as a result of equilibrium and the

definition of the tangent modulus, and is explained as follows.

As yielding occurs under an increasing load, the modulus will reduce from its elastic

value to a lower one as governed by the relevant constitutive law. Therefore, under stress

gradients, this will result in a reduction of continuum nodal forces in yielded regions under

increasing loading, as the nodal force is now proportional to the tangent modulus. Since AT

144



5.7. Summary and conclusions

governs the force distribution based on the total force applied to the beam-column node

(see Equation 5.17), this results in an unloading in yielded regions on the continuum side of

the interface. The issue is that yielding does not cause unloading, but rather a reduction in

the increment in force. To address this, the constraint should be applied on the increment

of deformation (and force), rather than the total deformation, as it is currently posed in

Equations 5.11–5.13. An efficient formulation to impose the incremental MPC equations

remains a challenge itself as classic constraint methods tend to operate on the total nodal

forces and deformations (see Equation 5.17).

5.7 Summary and conclusions

Seven constraint equations are proposed as a part of a novel best-fit MPC for beam-to-

continuum element coupling of members featuring wide flange cross sections. This formula-

tion makes a link between beam-column element kinematics and fitting a plane-of-best-fit to

a point cloud. The rotation of the best-fit plane is efficiently computed from the solution to a

4×4 eigenvalue problem. Analysis conducted in this chapter provides the basis for a method

to deduce the warping amplitude within the proposed framework. Pre-computed elastic stress

distributions are used to form the constraint coefficient matrix within the context of nonlinear

finite element analysis. The proposed method is implemented as a user MPC in Abaqus v6.14,

and the source code is made publicly available (Hartloper, 2021). Two examples are used to

validate the method for coupling beam-column and shell elements.

The main conclusions are as follows:

• The proposed method is validated for nonlinear finite element problems coupling beam-

column and shell elements. Thus, the objectives set at the outset of (1) using the least

number of constraint equations, and (2) including torsion-warping, are satisfied.

• The proposed method can improve the interface stress distribution under certain load-

ing conditions over other methods (e.g., the built-in kinematic coupling method in

Abaqus v6.14).

• Global Newton iterations may not converge after the elements on the interfaces begin

to yield due to the assumed elastic stress distributions. While this may be a limita-

tion in certain problems of interest, the proposed method could still be used in the

context of simulation-assisted design for stability problems (Ziemian and Abreu, 2018;

Ziemian et al., 2018). Further work is required to make the method amenable to inelastic

interfaces.
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5.8 Data availability

Some or all data, models, or code generated or used during the study are available in a

repository or online in accordance with funder data retention policies. This includes the

code for the proposed coupling method and imperfection generation Hartloper (2021). Some

or all data, models, or code that support the findings of this study are available from the

corresponding author upon reasonable request. This includes the finite element models used

in the case studies.
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5.10 Notation

The following symbols are used in this chapter:

A =∑N
k=1 ak = cross-sectional area;

A = constraint coefficient matrix;

ak = tributary area for interface continuum node k;

b f = section flange width;

C = {ck }N
k=1 = {rxk − rx̄}N

k=1 continuum node relative coordinates, ref. config.;

D = {dk }N
k=1 = {xk − x̄}N

k=1 continuum node relative coordinates, def. config.;

d = total section depth;

ei = unit vectors for the global reference frame;

pi = unit load vectors acting on beam-column node DOF i ;

f = constraint equations;

I1, I2, I3 = second moments of area (inertia), polar moment of inertia;

Iw = and warping constant;

K sec = cross section stiffness matrix;

N = number of interface continuum nodes;

n1,n2 = vectors spanning the cross section plane;

Q1(η),Q2(ξ) = first moments of area;

q= [q0, q T ] = rotation quaternion;

R = rotation matrix;

s = nodal force vector;
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T = transformation matrix for the interface beam-column loads;

t = vector normal to cross-sectional plane;

t f = section flange thickness;

tw = section web thickness;

Uc = {uk }N
k=1 = interface continuum element nodal displacements;

u∗
b = [ub ,φb , wb]T interface beam-column nodal DOFs;

usec = cross-sectional deformations for axial stress;

v = stress traction vector;

w = warping amplitude;

X = {xk }N
k=1 = continuum node coordinates;

xmp,b(ξ,η) = material point, beam-column element;

x̄ = centroid of continuum nodes;

δ(·) = infinitesimal quantity;

Γ = beam-column and continuum element interface;

rk = residual from best-fit plane at node k;

ξ = distance along n1 axis;

θ = infinitesimal rotation vector;

∆ f ,∆w = distance between adjacent flange and web nodes, respectively;

τ = stress tensor;

τ̄ = stress factor;

η = distance along n2 axis;

ψ(ξ,η) = warping function;

φ = rotation vector;

ζ = distance along the n3 axis;

Ω1 = beam-column element domain;

Ω2 = continuum element domain;

(·)b = refers to beam-column element domain;

(·)c = refers to continuum element domain;
r(·) = refers to reference configuration;
0(·) = refers to initial configuration; and

(̃·) = refers to best-fit quantity.

5.11 Algorithms

Algorithms 3 and 4 are provided to clarify the best-fit coupling method. The Abaqus user MPC

subroutine that implements these algorithms is provided by the Authors at Hartloper (2021).

The formulation of the 4×4 eigenvalue problem in Algorithm 3, and the supporting procedures

LEFTQUAT and RIGHTQUAT in Algorithm 4 are based on methods provided in Mostafa and
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Sivaselvan (2014). The supporting procedure ROTMAT in Algorithm 4 is based on a method

provided in Horn (1987).
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Algorithm 3 Detailed best-fit MPC coupling method using the nodal force method.

1: inputs:

• 0X : The set of continuum nodes in the initial configuration, size 3×N.

• Uc: The set of continuum nodal displacements, size 3×N.

• N: The number of continuum nodes.

• h, b f , t f , tw: The cross section dimensions.

2: outputs:

• ub, φb, wb: The beam-column node DOF values.

• A: The constraint coefficient matrix for the continuum nodes, size 7×3N.

3: 0x̄ ← mean
[

0X
]

4: C ← {0xi − 0x̄}N
i=1

5: 0R ← iniConfig(C )

6: Compute the nodal tributary areas, ak and cross-sectional properties {A, I1, I2, Iw }

7: Compute the nodal forces in the reference configuration

8: Adi sp = 1/N I3×3N

9: while ‖ūl − ūl−1‖/‖ūl‖ < 10−8 do . Until convergence of the centroid position

10: ūl ← 01×3

11: for k ∈ [1,2, . . . , N ] do

12: ūl ← ūl + Adi sp
k uk

13: end for

14: x̄ ← 0x̄ + ūl

15: D ← {xi − x̄}N
i=1

16: B ← 04×4

17: for k ∈ [1,2, . . . , N ] do . See Mostafa and Sivaselvan (2014)

18: β← leftQuat
[[

0,Dk,1,Dk,2,Dk,3
]]−rightQuat

[[
0,Ck,1,Ck,2,Ck,3

]]
19: B ← B +βTβ

20: end for

21: i ← argmin eigenvalue[B ]

22: q̃← eigenvector[B ]i

23: Extract φ̃ from q̃ using Equation 5.15a

24: R̃ ← rotMat
[
q̃

]
25: Update Adi sp using R̃ and the nodal forces

26: end while

27: ū ← ūl

28: Calculate w using Equation 5.13

29: Rotate the nodal forces into the current deformed configuration using Equation 5.39

30: Set the active DOF for the beam node

31: for k ∈ [1, . . . , N ] do

32: Set the active DOF in the shell node k

33: Assign the Ak submatrix from the nodal forces

34: end for

35: ub ← ū; φb ← φ̃; wb ← w
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Algorithm 4 Supporting procedures.

1: procedure leftQuat(q)

2: inputs:

• q: A quaternion, q= [
q0, q T

]
3: outputs:

• Ql: The left-hand matrix representation, size 4×4

4: Ql ←
[

q0 −q T

q q0I3×3 + q̂

]
. (̂·) is the skewsymmetric matrix operator

5: end procedure

6: procedure rightQuat(q)

7: inputs:

• q: A quaternion, q= [
q0, q T

]
8: outputs:

• Qr : The right-hand matrix representation, size 4×4

9: Qr ←
[

q0 −q T

q q0I3×3 − q̂

]
10: end procedure

11: procedure iniConfig(C)

12: inputs:

• C: Relative initial position of the shell nodes, size 3×N

13: outputs:

• 0R: The orientation of the initial configuration

14: A ←CC T

15: w ← eigenvectors[A]; d ← eigenvalues[A]

16: rt ← wi , i = argmind; rn2 ← w j , j = argmaxd

17: rn1 ← dk . The remaining eigenvalue

18: if rnT
1 (rn2 ××× rt ) > 0 then . Ensures a right-handed coordinate system

19: 0R ← [rn1, rn2, rt ]

20: else

21: 0R ← [rn1, rn2,−rt ]

22: end if

23: end procedure

24: procedure rotMat(q)

25: inputs:

• q: A quaternion, q= [
q0, q1, q2, q3

]
26: outputs:

• R: The rotation matrix representation, size 3×3

27: R ←


1−2

(
q2

2 +q2
3

)
2
(
q1q2 −q0q3

)
2
(
q1q3 +q0q2

)
2
(
q1q2 +q0q3

)
1−2

(
q2

1 +q2
3

)
2
(
q2q3 −q0q1

)
2
(
q1q3 −q0q2

)
2
(
q2q3 +q0q1

)
1−2

(
q2

1 +q2
2

)


28: end procedure
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5.12 Linearized constraint equations

The first part of this appendix presents key results for the linearized constraint equations.

The second part shows a simple example that highlights the limitations of using the direct

linearization of the constraint equations to define the constraint coefficient matrix.

5.12.1 Derivations

The linearized constraint equations are δu∗
b = FδUc , where the matrix of partial derivatives, F ,

takes the form

F =


F di sp

F r ot

F w ar p

=


∂ f1−3

∂Uc
∂ f4−6

∂Uc
∂ f7

∂Uc

 , (5.42)

where F di sp , F r ot , and F w ar p correspond to the displacement, rotation, and warping DOFs,

respectively. The matrices define
(
Fi j

)
k =

(
∂ fi

∂u j

)
k

for all the continuum nodes included in the

MPC where i is the constraint equation corresponding to beam-column DOFs (i = 1,2, . . . ,7),

and j are the displacement DOFs ( j = 1,2,3) corresponding to the particular continuum node

k.

Displacement constraints

Linearizing Equation 5.11, noting that ū = x̄ − rx̄ and δUc = δX , results in

δ f1−3 = δub −
(
∂ū

∂Uc

)
δUc (5.43)

= δub −
(
∂x̄

∂X
− ∂rx̄

∂X

)
δUc = δub −

(
∂x̄

∂X
−0

)
δUc (5.44)

= δub −1/N stack [I3]T δUc , (5.45)

where N is the number of shell nodes, stack [I3]T is a 3× 3N matrix of the repeated iden-

tity matrix, X = [
xT

1 , xT
2 , . . . , xT

N

]T
is a 3N ×1 vector of the location of the shell nodes in the

deformed configuration, Uc is the vector of displacements defined similarly to X , and δ(·)
denotes infinitesimal quantities. Therefore, F di sp = 1/N stack [I3]T .

Rotation constraints

From Equation 5.12, with the notation φ̃=φ[
q̃

]
we have

φb = φ̃. (5.46)
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Linearizing this constraint (see e.g., Dassault Systèmes (2014)),

δθb = δθ̃⇒ δθb −δθ̃ = 0, (5.47)

where θ is an infinitesimal rotation. The rotation quantities in Equation 5.47 are rotation

vectors, however, the best-fit procedure operates on quanternions. For small angles of rotation,

the linearization of the rotation constraint is greatly simplified because the difference between

the two angle representations is only a scalar factor of two Hughes (2004):

δθ̃ = 2Im
[
δq̃

]
, (5.48)

i.e., the small-angle rotation vector is the imaginary part of the linearized eigenvector. With

this consideration, the main effort of the direct linerization of the rotation constraint equations

is to relate the linearized eigenvector to the infinitesimal continuum node displacements.

The procedure used herein is based on Mostafa and Sivaselvan (2014), for brevity only the

final result is stated here:

δ f4−6 = δθ̃−F r ot δUc = 0, (5.49)

where

F r ot = Im
[
[[q̃]]R

]
G(D) (I3N −PT ) , (5.50)

where Im
[
[[q̃]]R

]
is imaginary part of the right-hand matrix representation of quaternion q̃

(i.e., RIGHTQUAT[q̃] in Section 5.11), G(D) represents the instantaneous rotation of the motion

δD computed using (27) in Mostafa and Sivaselvan (2014), and the matrix of the position of

the shell nodes relative to their centroid in the deformed configuration is defined as D,

D = X − stack [x̄] (5.51)

= (I3N −PT ) X , (5.52)

D is a 3N x1 vector, I3N is the 3N x3N identity matrix, and PT = 1/N tile [I3] tile is a 3N x3N

matrix of repeated 3x3 identity matrix multiplied by 1/N .

Warping Constraint

Restating the warping constraint equation,

f7 (wb , X ) = wb −
1

Nψ

∑
k∈kψ

1

ψk
t · (xk − R̃

(rxk + ū
))= 0, (5.53)
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Now linearizing this constraint,

δ f7 =
∂ f7

∂w
δw + ∂ f7

∂X
δX = 0

= δw −F w ar pδUc = 0, (5.54)

where F w ar p is the matrix of coefficients of δX in Equation 5.54. This matrix represents the

instantaneous change in the warping amplitude given a change in the nodal displacement.

The final result is

F w ar p = 1

Nψ

∑
k∈kψ

(
1

ψk

rt T ∂R̃T

∂X
xk +

1

ψk

rt T R̃T ∂xk

∂X

)
, (5.55)

where ∂R̃T

∂X is the linearized rotation matrix.

5.12.2 Example

The same cantilever model geometry, boundary conditions, and mesh as described in Exam-

ple 1 (Section 5.5.1) is used. However, in this case, only an axial displacement is applied to

the free end of δZ =−100 mm (uniform uniaxial tension). A new macro model is considered

where A is defined using the linearized constraint equations, i.e., Adi sp = F di sp , Ar ot = F r ot ,

Aw ar p = F w ar p , rather than through the nodal force method. This model is named “BF-MPC

Model (Lin. Eq.)”.

The average interface shell element axial stress results are shown in Figure 5.10, and

compared with the results from the Full-shell model. Notice that the stress is not uniform in

the BF-MPC Model (Lin. Eq.) since a uniform load is applied to each node due to the 1/N factor

in F di sp (see Equation 5.45). However, the flange tip nodes, for example, should receive half

the load as the interior flange nodes because they represent half the area. Therefore, an area

weighting is required for loads applied in DOF 3, as is done through the nodal force method.

This problem is most severe when shear loading is applied, as in reality, the flange only receives

around 5 % of the total shear force under strong axis load (see the stress distribution τ32 in

Figure 5.6).
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Figure 5.10 – Average axial stress in the interface elements under uniaxial tension when the
direct linearization is used in the MPC formulation, values in MPa.
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Abstract: Continuum finite element (CFE) models with a reduced computational cost that can ex-

plicitly simulate material inelasticity and coupled geometric instabilities under multiaxis loading are

essential for a number of applications in earthquake and structural engineering. This chapter proposes

recommendations for mixed-dimension component macro models as a method to reduce the compu-

tational burden of full CFE models for structural wide flange beam-columns. These guidelines are built

on objective error metrics and recent advances in material modeling for structural steels. The value

of detailed physical material and component information is highlighted throughout this study; we

suggest that such data be collected in future testing programs to further improve the state-of-the-art

in component simulations. New detailed modeling recommendations (e.g., finite element sizes and

imperfection amplitudes) are made to better model the initiation and progression of local buckling

for cyclic and monotonic loading, compared to existing approaches. Shell element models are also

found to have equivalent accuracy to solid element models for the range of beam-columns investigated.

Simulations show that there is an average of 3 % difference in moment-rotation between the full CFE

and macro model simulations, while the number of degrees-of-freedom and memory requirements

are reduced by about 50 %. Through these recommendations, a validated macro model approach

is presented for steel wide flange beam-columns that increases the computational efficiency while

retaining the solution fidelity of full CFE models.

Keywords: Reduced-order models; Finite element analysis; Coupling; Geometric instabilities; Calibra-

tion; Multiaxial plasticity.
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multiaxis loading

6.1 Introduction

6.1.1 Background

Research conducted over the past decade has lead to a solid understanding of steel wide

flange beam-column behavior under axial loading coupled with multiaxis lateral loading. A

state-of-the-art review on the behavior of these components can be found in Lignos et al.

(2019). Important features of note are that flexural strength degradation typically initiates

through inelastic flange/web local buckling at the member ends, and later may couple with

member twisting and lateral-torsional buckling (LTB). Axial shortening is a consequence of

this process that could potentially impact economic loss estimations in steel frame structures

in the aftermath of earthquakes (Elkady et al., 2020). Therefore, simulation models that can

represent material nonlinearity combined with coupled buckling modes are imperative for

modeling steel frame structures subjected to earthquake loading.

Conventional concentrated plasticity (Sivaselvan and Reinhorn, 2000; Ibarra et al., 2005;

Lignos and Krawinkler, 2011; Lignos et al., 2019) or fiber-based (Spacone et al., 1996; Le Corvec,

2012; Di Re et al., 2016; Sideris and Salehi, 2016) models have been preferred in the past for

nonlinear structural analysis owing to their simplicity and computational efficiency. These

approaches come with a number of limitations for modeling steel beam-column components

as discussed in Hartloper et al. (2021b). Alternatively, a continuum finite element (CFE)

approach using shell or solid elements can be used to overcome these limitations. For example,

CFE models can be used for performance-based seismic evaluation and design (Krawinkler

et al., 2006), to investigate new structural design concepts, and to research the behavior of

critical components within structures (NIST, 2011). The cost in CFE component models is

related to the computational expense, in terms of model degrees-of-freedom and computer

memory, compared to conventional component modeling methods.

Computational efficiency is desired because multiple analyses need to be run for each

structure to obtain statistical information regarding a structure’s performance (Vamvatsikos

and Cornell, 2002), and to account for the effect of record-to-record uncertainty (Eads et al.,

2013). Thus, there is a need to keep the fidelity of CFE approaches, if possible, but at the same

time reduce their computational expense. Recently, a mixed-dimension component macro

model approach has been advocated by Hartloper et al. (2021b) that mixes beam-column

elements with continuum finite elements in critical regions of the component. In this manner,

the cost of a purely CFE approach is reduced, while its solution fidelity is retained.

Herein, mixed-dimension component macro models are defined as finite element models

that combine elements of varying dimensionality. Dimensionality is measured by the repre-

sentation of the element: 1D elements are lines (e.g., beam-column elements), 2D elements

are surfaces (e.g., shell elements), and 3D elements are volumes (e.g., solid elements). This
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Figure 6.1 – Component macro model representation for beam-columns with wide flange
sections subjected to multiaxis cyclic loading. Photo in 6.1a from Elkady and Lignos (2018a).

component modeling approach is shown schematically in Figure 6.1 where 1D beam-column

elements are combined with 2D shell or 3D solid elements. The macro model is therefore

established by: (a) parameters that define the finite element model within the continuum

and beam-column domains (e.g., material model, element type, element size, etc.), (b) the

selection of the continuum length, LΩ2 , and (c) the method of coupling between the different

domains.

Specification of the coupling between domains above was addressed through the warping-

inclusive kinematic coupling (WIKC) method (Hartloper et al., 2021b). This work demon-

strated the importance of including torsion-warping in the coupling formulation for members

with wide flange cross sections. However, further research is required to generalize the macro

model approach. The necessary tasks in this regard are to specifically define the modeling

guidelines, and to specify the a priori division of the component into continuum and beam-

column domains. For this purpose, a review of existing guidelines for the CFE modeling of

wide flange beam-column components is provided herein to identify potential gaps in the

current state-of-the-art.

6.1.2 Review of existing modeling recommendations for steel wide flange beam-

columns subjected to multiaxis cyclic loading

Recommendations for the continuum finite element modeling of wide flange steel beam-

columns are based on a non-exhaustive list from different sources (Newell and Uang, 2008;

Gantes and Fragkopoulos, 2010; Elkady and Lignos, 2015a; Fogarty and El-Tawil, 2015; Araújo

et al., 2017; Elkady and Lignos, 2018b; Wu et al., 2018; Ziemian et al., 2018; Hartloper et al.,

2021b). All of the noted CFE modeling approaches share a few common characteristics: linear

shell elements are employed, a nonlinear isotropic/kinematic hardening material model
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is utilized, and a combination of local and/or global imperfections may be used to induce

geometric instabilities. Aspects from these guidelines will be used as a starting point for the

recommendations developed in this study. A variety of member tests have been used in the

evaluation and calibration of these guidelines, however, several key experiments on beam-

column components have been conducted since their development (Suzuki and Lignos, 2021;

Ozkula et al., 2017; Elkady and Lignos, 2018a; Cravero et al., 2020). The above experiments

constitute a great source of information to better assess modeling recommendations under a

variety of loading and geometric conditions.

6.1.3 Modeling structural steels subjected to inelastic cyclic straining

Strain demands, idealized in Figure 6.1, are expected to be erratic in steel beam-column

components subjected to earthquake loads. Defining constitutive model parameters given the

uncertainty in earthquake events is, therefore, a primary issue within this context. Notably, the

selected constitutive model and its parameters should be reliable for the expected ranges of

inelastic stress-strain demands present in beam-column components. Methods for calibrating

material models in this context (Cooke and Kanvinde, 2015; de Castro e Sousa et al., 2020)

have contributed to the body of knowledge regarding constitutive modeling of structural steels

for earthquake-induced inelastic strain demands. The impact of the discontinuous yielding

phenomenon (Hall, 1970; Lubliner, 2008) on component behavior is also better understood

(Hartloper et al., 2021a). Additionally, methods were recently developed to calibrate material

model parameters for cyclic loading with limited information regarding the material response

(de Castro e Sousa et al., 2021). These advances in material modeling techniques can be

utilized to enhance the aforementioned component modeling guidelines.

6.1.4 Objectives

Computationally efficient methods for modeling steel beam-columns subjected to multiaxis

cyclic loading that can represent material inelasticity and coupled geometric instabilities

are required for earthquake and general structural engineering applications. Hartloper et al.

(2021b) proposed a framework for component macro models of beam-column components

based on a few individual tests. General macro modeling recommendations utilizing this

framework can now be developed using data from a range of steel beam-column components.

The aim of this chapter is to provide systematic guidelines that satisfy this need for steel

wide flange beam-columns under multiaxis loading. Further motivation for this study is

provided by recent advances in material modeling and calibration for structural steels, as well

as the increased availability of tests that can be used to evaluate these guidelines. With regards

to this aim, three main objectives have been identified:

1. provide recommendations for full-continuum modeling of wide flange beam-columns
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considering a larger pool of tests and updated material modeling techniques;

2. provide macro modeling guidelines to match the fidelity of the full-continuum models;

and

3. assess the computational savings for beam-column components using the macro model

approach.

Novel aspects of this study are the development of modeling guidelines on the basis of quan-

tifiable metrics, and the proposal of generalized macro model guidelines for steel members

subjected to axial loading coupled with lateral drift demands. This research is expected to

be valuable to both researchers and practicing engineers for developing CFE models of steel

frame buildings at a reduced computational expense.

The chapter is organized as follows. First, the methodology used to complete each of these

objectives is provided. Second, results from the finite element simulations are presented and

the modeling guidelines are established in support of the main aim. Third, notable outcomes

and limitations of the study are discussed. Finally, a summary of the findings is provided along

with the primary conclusions.

6.2 Methodology

6.2.1 Approach

The scope of work conducted in this chapter is summarized in a box depicted in Figure 6.2.

Modeling guidelines require definitions for each of the parameters provided in the box. The

four labeled parameters will be defined in this study, while the remaining ones have been

established in prior work. Continuum finite element model parameters are calibrated to test

data to establish a benchmark. Afterwards, the macro model parameters are calibrated to the

simulated CFE model response. This methodology is proposed to achieve the overall aim that

macro models match the fidelity of full CFE (i.e., full-solid or full-shell) models.

Objective error metrics based on a component’s moment-rotation response and axial

shortening are used to assist the determination of the modeling parameters. Moment-rotation

and axial shortening are considered to be important measures of beam-column component

behavior because frame stability is largely dependent on the axial and flexural strength of its

members. Therefore, three error metrics are proposed that measure these quantities: (i) an

energy metric (εe ), (ii) a peak-strength metric (εs), and (iii) an axial shortening metric (εa);

these are represented in Figure 6.3. The energy metric measures the overall closeness between

two sets of moment-rotation data. The peak strength metric indicates how accurately the

finite element model can predict the initiation of flexural strength deterioration. The axial

shortening metric indicates how well the model simulates the evolution of axial shortening of

the component throughout the imposed loading history.
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COMPONENT MACRO MODEL GUIDELINES

COMPONENT CONTINUUM MODEL GUIDELINES

• Geometry, loads, B.Cs.

• Residual stresses

• Material modeling

• Continuum element discretization

• Initial imperfections

-Defined by problem

-Young (1972)

-Hartloper et al. (2021a), de Castro e Sousa et al. (2021)

1. Determined in this study

2. Determined in this study

• Coupling method

• Beam-column element discretization

• Extent of continuum domain(s)

-Hartloper et al. (2021b)

3. Determined in this study

4. Determined in this study

Figure 6.2 – Organization of the steel wide flange column modeling guidelines proposed in
this study.

The energy error metric is computed as the normalized, squared accumulated energy

bounded between the two results:

εe
(
θ∗, M1, M2

)=√
1

E1

∫
(M2 −M1)2 dθ∗, (6.1)

where M1 and M2 are the total base moment reaction histories from two cases being compared,

θ is the chord rotation, θ∗ is the absolute accumulated chord rotation history, and E1 =∫
M 2

1 dθ∗ is the total squared-energy of the “reference/benchmark” case. For this and other

metrics, the (·)1 subscript denote the “reference/benchmark” values, and the (·)2 subscript

denote the “compared” values. No distinction is made between θ∗1 and θ∗2 since all data are

evaluated at the same deformation increments. This metric is computed up to and including

the first excursion with |θ| < 0.11 rad to avoid uncertainty in test data that may arise due to

experimental control at large deformations. The error in peak flexural strength is

εs
(
M1, M2

)= |max M2 −max M1|+ |min M2 −min M1|
|max M1 −min M1|

. (6.2)

The error in axial shortening is

εa(δaxi al ,1,δaxi al ,2) =
∥∥δaxi al ,2 −δaxi al ,1

∥∥∥∥δaxi al ,1
∥∥ , (6.3)

where δaxi al ,(·) is the axial shortening history of the considered case. Axial shortening is

computed as the extension in the chord: δaxi al ,(·) =
√
δ2

x,(·) +δ2
y,(·) + (L+δz,(·))2 −L. Similar to

εe , this metric is truncated at the first excursion with chord rotation past 11 %rad.
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Figure 6.3 – Schematic representation of the error metrics for: peak-strength (εs), energy (εe ),
and axial shortening (εa).

6.2.2 Description of test data

Experimental data is required to calibrate and validate the accuracy of full-continuum model-

ing guidelines. Test data is taken from Suzuki and Lignos (2021), Elkady and Lignos (2018a),

and Cravero et al. (2020). These tests were extracted from a larger set of data collected by

Elkady et al. (2018); Lignos et al. (2019) as detailed information regarding the measured mem-

ber dimensions, boundary conditions, chord rotations, base moments, and axial shortening

are available. Data that are not known in all cases consist of the initial geometric imperfections

and residual stresses due to hot rolling and fabrication process of the test specimens. Mate-

rial data for most of these tests largely consist of only standard tensile coupon tests (ASTM,

2016b), however, detailed material information exists for a few specimens; this matter will be

discussed in detail below. In total, the database consists of 34 tests on wide flange columns as

summarized in Table 6.1.

All selected tests are fixed at the column base, but have differing top boundary conditions

(Top B.C.). Specimens from Suzuki and Lignos (2021) and Cravero et al. (2020) were tested in

a cantilever configuration (Free), whereas specimens from Elkady and Lignos (2018a) were

tested with either a fixed top boundary (Fix), or a rotational boundary (Rot) that simulates the

flexible conditions of a first-story steel MRF column (target inflection point at 3/4L). Three

types of lateral load protocols were considered: monotonic (Mon.), symmetric-cyclic (Sym.),

and collapse-consistent (C-C); the definitions of each can be found in the cited literature. The

majority of tests were conducted with unidirectional lateral loading (Uni.), and three with

bidirectional loading (Bi.). Most specimens were tested with constant axial load (Con.), but

variable axial loading (Var.) was also present to characterize the behavior of end columns in

steel MRFs exhibiting dynamic overturning effects.

The non-dimensional slenderness for lateral-torsional buckling in Table 6.1 is computed

161



Chapter 6. Mixed-dimension modeling of steel wide flange beam-columns under
multiaxis loading

according to Eurocode 3 Part 1-1 (CEN, 2005b) as:

λ̄LT =
√

Zx fym/Mcr , (6.4)

where Zx is the plastic section modulus for the strong axis, fym is the measured yield stress;

and

Mcr =C1π
2E Iy /(ky L)2

√
(ky /kw )2Iw /Iy + (ky L)2G It /(π2E Iy ), (6.5)

where G is the shear modulus, Iy is the weak-axis moment of inertia, Iw is the warping

constant, It is the torsional moment of inertia, the reduced length factors are ky = 0.5, and

kw = 1.0. The value of C1 accounting for the moment distribution throughout the component

is taken from Bureau (2008) depending on the top boundary condition (i.e., 2.55 if fixed, 2.57

if rotational, 1.77 if free). The column P/Pym is the ratio of the compressive axial load to the

measured axial yield strength, values with 0.xx±0.yy have a constant load ratio of 0.xx and a

transient component of 0.yy. The following range of slenderness and axial load parameters are

considered: 0.19 ≤ λ̄LT ≤ 0.38, 5.9 ≤ b f /2t f ≤ 8.1, 20 ≤ h/tw ≤ 44, and constant compressive

component 0.15 ≤ P/Pym ≤ 0.75. Definitions of the cross-sectional parameters are set in

Figure 6.1. The cantilever specimens have a naturally smaller length (and λ̄LT ) than those with

fixed or rotational top B.C. as they represent only the lower portion of the column from the

inflection point to the fixed base. Everything considered, the assembled dataset considers a

reasonably wide range of cross sections and axial loads, in addition to different lateral load

protocols and boundary conditions.

6.2.3 Nonlinear finite element modeling guidelines

Procedures for defining the modeling guidelines, summarized in Figure 6.2, are now provided

in detail. Afterwards, the results from the applied methodology will be presented. For clarity, all

simulations in this study are conducted using implicit static analysis with double-precision in

Abaqus v6.14 (Dassault Systèmes, 2014). The nonlinear equilibrium equations are solved using

the full-Newton method, nonlinear geometric transformations are considered (NLGEOM=ON),

and the Abaqus default convergence criteria is always used.

Geometry, loads, boundary conditions, and residual stresses

Finite element models are constructed to represent each specific test. Values for the length and

cross-sectional dimensions are always specified as the measured values for all the specimens

in the dataset. Column boundary conditions and loading are applied as shown in Figure 6.4.

In all cases, all DOFs are restrained at the column base. The torsional and weak-axis rotations

are restrained at the top (θY = 0, θZ = 0); warping is also restrained at the top. With reference

to Figure 6.4, the “Free” condition corresponds to θX unrestrained, the fixed condition corre-
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Table 6.1 – Wide flange column test database used in this study. Top B.C.: Free = cantilever
configuration, Fix = fixed, Rot = rotational B.C.. Mon. = Monotonic, Sym. = Symmetric cyclic,
C-C = Collapse-consistent; Dir. = Lateral loading direction: Uni. = Unidirectional, Bi. =
Bidirectional. λ̄LT from Equation 6.4.

Investigator Name Cross Top Lateral Dir. λ̄LT h/tw b f /2t f P/Pym

Section B.C.

Suzuki W-6-34-M-C W14X53 Free Mon. Uni. 0.25 28.13 6.24 0.30
and W-6-34-S-C W14X53 Free Sym. Uni. 0.25 28.57 6.28 0.30
Lignos W-6-34-C1-C W14X53 Free C-C Uni. 0.25 27.30 6.27 0.30
(2021) W-6-34-C1-V W14X53 Free C-C Uni. 0.25 27.69 6.28 0.15±0.35

W-6-34-C2-C W14X53 Free C-C Uni. 0.25 28.01 6.26 0.30
W-6-34-C2-V W14X53 Free C-C Uni. 0.25 27.69 6.22 0.15±0.35
W-8-34-S-C W14X61 Free Sym. Uni. 0.20 29.72 8.10 0.31
W-8-34-C1-C W14X61 Free C-C Uni. 0.20 29.53 8.14 0.31
W-8-34-C1-V W14X61 Free C-C Uni. 0.20 28.74 8.02 0.15±0.35
W-6-25-S-C W14X82 Free Sym. Uni. 0.19 20.84 5.98 0.31
W-6-25-C1-C W14X82 Free C-C Uni. 0.19 19.53 5.98 0.30
W-6-25-C1-V W14X82 Free C-C Uni. 0.19 20.43 5.93 0.15±0.35

Elkady C1 W24X146 Fix Sym. Uni. 0.28 30.54 6.08 0.20
and C2 W24X146 Fix Sym. Uni. 0.28 30.37 6.10 0.50
Lignos C3 W24X146 Rot Sym. Uni. 0.28 30.72 6.12 0.20
(2018a) C4 W24X146 Rot C-C Uni. 0.28 30.54 6.08 0.20

C5 W24X146 Rot C-C Uni. 0.27 29.85 6.00 0.20
C6 W24X146 Rot Sym. Bi. 0.27 29.57 5.93 0.21
C7 W24X84 Rot Sym. Uni. 0.38 43.05 6.06 0.20
C8 W24X84 Rot C-C Uni. 0.38 43.05 6.06 0.20
C9 W24X84 Rot Sym. Bi. 0.38 43.68 6.06 0.20
C10 W24X84 Rot C-C Bi. 0.38 43.40 6.06 0.20

Cravero W-8-34-M-C-30 W14X61 Free Mon. Uni. 0.19 27.04 7.83 0.30
et al. W-8-34-M-C-50 W14X61 Free Mon. Uni. 0.19 27.81 7.91 0.50
(2020) W-8-34-C1-C-50 W14X61 Free C-C Uni. 0.19 26.17 7.76 0.50

W-8-34-S-V-30 W14X61 Free Sym. Uni. 0.19 27.48 7.94 0.30±0.45
W-6-25-M-C-30 W14X82 Free Mon. Uni. 0.19 21.21 5.91 0.30
W-6-25-M-C-50 W14X82 Free Mon. Uni. 0.19 21.41 5.92 0.50
W-6-25-S-C-50 W14X82 Free Sym. Uni. 0.19 20.61 5.92 0.50
W-6-25-S-C-75 W14X82 Free Sym. Uni. 0.19 22.06 5.93 0.75
W-6-27-M-C-30 W16X89 Free Mon. Uni. 0.19 26.50 5.94 0.30
W-6-27-M-C-50 W16X89 Free Mon. Uni. 0.19 24.35 5.98 0.50
W-6-27-S-C-50 W16X89 Free Sym. Uni. 0.19 26.50 5.99 0.50
W-6-27-S-V-50 W16X89 Free Sym. Uni. 0.19 25.92 5.90 0.50±0.25
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Figure 6.4 – Column boundary conditions, applied loading, and base reaction moment.

sponds to θX = 0, and the rotational condition corresponds to a specified value of θX at each

point in the loading history. For unidirectional lateral loading δX = 0, and for bidirectional

loading the values of δX are specified.

As the actual residual stresses are unknown, residual stresses are applied to the models

based on the Young (1972) distribution as this was found to be the best match for other

rolled members (de Castro e Sousa and Lignos, 2017). Residual stresses are implemented

into the finite element models by specifying an initial stress in the elements. For beam-

column elements, the uniaxial material model, UVCuniaxial, from Hartloper et al. (2021a)

was modified in this study to include an initial stress based on the Young (1972) distribution.

The use of this modified material model addresses the limitation in Hartloper et al. (2021b) that

the residual stress definition should be consistent between the beam-column and continuum

domains in macro models. The source code for the modified uniaxial material model is made

available online (Hartloper, 2019).

Material modeling

Two different material models are used in this study. The first model is the classic Voce-

Chaboche (VC) model after Voce (1948); Armstrong and Frederick (1966); Chaboche et al.

(1979), and the second model is an updated Voce-Chaboche (UVC) model proposed in Hart-

loper et al. (2021a). In brief, these models have a von Mises yield condition and combine

nonlinear isotropic and kinematic hardening rules to represent the material behavior under

inelastic cyclic straining; implementation details can be found in the cited literature. An

additional term in the UVC model, along with parameter constraints, is intended to simulate

the effects of discontinuous yielding in structural steels. The primary benefit of the UVC

model over the VC model is that it provides a better estimate of the material’s initial yield
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stress, with equivalent accuracy in subsequent inelastic loading cycles. A prior study by the

authors suggests that even a minor improvement in estimating the material behavior may

have a fairly significant impact on the simulated inelastic response (Hartloper et al., 2021a).

Therefore, it is desirable to use the UVC model, provided that there is sufficient data to reliably

estimate the corresponding material model parameters.

A defining feature of the finite element analyses conducted in this study is that material

parameters are fully determined directly from material tests that correspond to the actual

column test under consideration. Obtaining model parameters directly from the correspond-

ing material diminishes the uncertainty in the model regarding the material behavior. The

reduced uncertainty in the material behavior is considered essential in determining unknown

parameters in the modeling guidelines with a greater confidence. The use of accurate material

information distinguishes the proposed guidelines from those in prior studies.

Material data for beam-columns in the dataset is divided into two categories: specimens

where only uniaxial tension tests are available (31 specimens), and specimens where additional

uniaxial cyclic tests have also been conducted (3 specimens). The uniaxial cyclic material tests

correspond to those described in de Castro e Sousa et al. (2020) and Hartloper et al. (2021a).

This material information allows for a high-quality calibration of the constitutive model for

cyclic and monotonic loading. The three specimens with this known data are the W14X82

columns (W-6-25-S-C, W-6-25-C1-C, and W-6-25-C1-V) tested by Suzuki and Lignos (2021).

Three different approaches are taken for determining the material parameters depending on

the available material data and applied lateral loading:

• For columns with cyclic material data (3 tests, “full information”): the parameters corre-

spond directly to the “A992 Gr. 50 W14X82 flange/web” dataset reported in Hartloper

et al. (2021a). Therefore, parameters for the UVC model are taken directly from this

reference.

• For columns subjected to monotonic lateral loading (7 tests, “full information”): the

UVC model parameters are calibrated to the available tensile coupon tests using the

procedure in Hartloper et al. (2021a). This is considered valid as inelastic cyclic straining

does not occur under monotonic lateral loading.

• For the remaining column tests (24, “limited information”): the calibration procedure

described in de Castro e Sousa et al. (2021) is used for the cases where only a tension test

is available, but cyclic material behavior is expected. This methodology imposes bounds

on the material parameters that are deemed to be representative of the established

material response to cyclic loading.

The publicly available Python library RESSPyLab (de Castro e Sousa et al., 2019) is used for all

the required material model parameter calibrations.
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Approaches 1 and 2 are considered “full information” because they either: (a) consist

of several heterogeneous (diverse loading protocols) uniaxial coupon tests that allow for

the manifestation of cyclic material parameters, or (b) the cyclic behavior of the material is

inconsequential for tests subjected to monotonic loading. For this reason, the test database

is divided into two sets: (I) the calibration data set consisting of the three column tests

under Approach 1 plus two tests from Approach 2 (5 total); and (II) the validation data set

consisting of the remaining data. Full-continuum modeling guidelines (see Figure 6.2) are

primarily determined using the calibration dataset. The determined parameters are then used

to simulate the response of columns within the validation dataset to propose and evaluate new

modeling guidelines. The evaluation based on the validation set is believed to be unbiased

because each analysis is “blind” in the sense that no information apart from what has been

previously established is used in modeling these tests.

Finite element discretization

Both shell and solid element models are investigated in this study. Models are comprised of

either linear, reduced-integration shell elements (S4R in Abaqus) with enhanced hourglass

stiffness; or quadratic, reduced- integration solid elements (C3D20R in Abaqus). Element sizes

for both of these options are based on a mesh convergence study conducted on representative

cases. For shell and solid elements, an initial mesh is selected as 50 mm, with an aspect ratio

of approximately 1-to-1. This initial size of 50 mm is then subsequently reduced by half to

25 mm, 12.5 mm, and 6.25 mm (shell only). Convergence to the true finite element solution is

determined through the normalized difference in energy bounded by the moment-rotation

curve. Tests subjected to cyclic lateral loading are selected for the mesh sensitivity as cyclic

loading induces greater local curvatures than found in components subjected to monotonic

loading. This factor is important as strains tend to be concentrated in regions of local buckling,

for this reason, it is also important to conduct the mesh convergence study on a model with

initial geometric imperfections.

Linear beam-column elements with torsion-warping (B31OS in Abaqus) are specified in

the beam-column element domain of macro models. The number of beam-column elements

is selected based on the number required to properly model flexural buckling. The model is

initially divided into two elements, then the number of elements is successively doubled until

convergence of the solution is obtained.

Initial geometric imperfections

The approach from Hartloper et al. (2021b) is adopted for including imperfections that are

critical in the initiation of geometric instabilities. The evolution and coupling of instabilities

are assumed to be captured by the finite element model itself (e.g., the later development of a
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Figure 6.5 – Local and global imperfection shapes and parameter definitions.

second local buckling wave). Local and global initial geometric imperfections are specified by

perturbing the initial positions of nodes in the finite element model according to pre-selected

imperfection geometries. A twisting imperfection is also applied, as discussed in Hartloper

et al. (2021b), by applying a torque (Mz in Figure 6.4) at the center of the tests by Elkady and

Lignos (2018a) based on the measured initial twist angle.

The local imperfection shapes applied to the model are based on plate buckling theory,

whereas global imperfections are based on flexural buckling of columns, as shown in Figure 6.5.

The selected initial imperfection shapes are in agreement with international standards (CEN,

1993; JISC, 2014; ASTM, 2016a) as well as imperfections measured during manufacturing

(Katayama et al., 1998) as they acknowledge web camber and flange out-of-squareness present

in wide flange profiles. Local imperfections are defined by the local imperfection wavelength,

Lbw , and the amplitude as a function of the scale factor α. The global imperfection is defined

by the amplitude as a function of the scale factor β—the length being automatically fixed by

the member itself. Therefore, two parameters are defined in the modeling recommendations

for local imperfections (Lbw and α), and one parameter for global imperfections (β).

The general procedure used to determine these three parameters is as follows: (1) select a

suitable range of values for each parameter, (2) conduct a finite element analysis given each

parameter value and compute the corresponding error metric value, and (3) base the parame-

ter selection on the set that leads to the lowest energy error metric. The local imperfection

parameters (Lbw and α) are treated as a set and independently of the global imperfection

parameter (β). The following paragraphs outline the ranges of parameters selected and the

cases used in determining the values.

The range of local imperfection wavelength values is based on prior analytical and nu-

merical results. Analytical equations for plastic buckling in a structural steel design context

can be first attributed to Haaijer (1956) who used a single flange model. These early findings

were built upon by Lay (1965); Lay and Galambos (1967) who used a semi-empirical method

in conjunction with a torsional buckling model for flanges in wide flange cross sections. The
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Lay equation for computing the wavelength is

Lbw = 2 ·0.713b f
t f

tw

(
tw (d −2t f )

b f t f

)1/4

, (6.6)

where the 2-factor accounts for two half-wavelengths for buckling under a moment gradient

(Lay and Galambos, 1967). The Lay equation has been used extensively in this field (Kemp,

1985; Gioncu and Petcu, 1997; D’Aniello et al., 2012). Objections to the Lay equation have

been raised in Möller et al. (1997), who used a yield-line model to establish the yielded length

as tan55◦ ·b f ≈ 1.43b f . Kolwankar et al. (2018) found 1.5b f as the average wavelength through

finite element analysis.

The range for Lbw includes the minimum and maximum of aforementioned studies for

the local buckle wavelength. The maximum is defined by the Lay equation, as the mean of

this equation mapped over the sections in Table 6.1 is 2.3b f . Therefore, the final set of values

investigated are Lbw = {1.0,1.5,1.8,2.0} ·b f , and additionally based on the Lay equation. In

total, five values of Lbw will be assessed for each simulation.

The local imperfection amplitude is defined as a function of the scale factor, α, and the

baseline imperfection amplitude. This baseline value is selected as the average maximum

measured imperfection (Hartloper and Lignos, 2019; Hartloper et al., 2021b). Therefore, the

scale factor α operates on the flange amplitude of a f = b f /(α ·250), and web amplitude of

aw = d/(α ·300). The effect of modifying the local imperfection scale factor,α, on the moment-

rotation from finite element simulations is shown in Figure 6.6. These results are for a column

subjected to constant axial load and monotonically increasing lateral displacement at the

column tip. As α increases, the flange/web local buckling mode is delayed due to the smaller

imperfection, thus increasing the pre-peak plastic rotation of the column. Flange-only local

buckling occurs if no imperfection is included, in this case, the overall component behavior is

non-deteriorating until very large lateral drift demands, thereby compromising the accuracy

of the predictions.

The local imperfection scale factor is investigated in terms of orders of magnitude: α=
{1.0,10.0,100.0, i n f }, where α = i n f is the case where no local imperfections are applied.

Joint combinations of Lbw and α are applied to all specimens in the “calibration dataset”,

for a total of 100 analyses (five specimens, five Lbw values, four α values). Only local imper-

fections are applied to the cantilever models (i.e., Top B.C. = Free for all specimens in the

calibration dataset) because member buckling modes are not deemed to be critical due to the

low member slenderness ratios (e.g., λ̄LT < 0.2). Only Lbw and α are unknown in modeling

the calibration dataset tests since the material parameters can be treated as “known” and no

global imperfections are applied to these cantilevers.

The global imperfection amplitude, ag = L/(β ·1500), is investigated in a manner similar to

α after both the local imperfection parameters have been determined. The range assessed is
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Figure 6.6 – Effect of local imperfection amplitude on full-shell CFE results for the W-8-34-M-
C-50 test (W14X61, P/Pym = 0.5). Test data and photo from Cravero et al. (2020).

β= {−1,1,10,100, i n f }, where β= i n f corresponds to no imperfection, and β=−1 is a global

imperfection with amplitude L/1500 in the reverse direction shown in Figure 6.5. The selection

ofβ=−1 is used to evaluate the effect of applying a global imperfection in the reverse direction

with the maximum considered amplitude given the expectation that this effect diminishes

as β approaches −i n f . Tests by Elkady and Lignos (2018a) are used to evaluate the effect of

global imperfections on columns subjected to multiaxis loading.

Determination of the continuum length in macro models

The final parameter to determine is the continuum length for macro models, LΩ2 , defined in

Figures 6.2 and 6.7. The general discretization into continuum and beam-column domains is

shown for the cantilever and full-length tests in Figure 6.7. One critical region is modeled at

the base of cantilever columns because local buckling only occurs near this location due to the

associated moment gradient. Local buckling may also occur at the top end in columns with

fixed and rotational top boundary conditions. For these members, a length of LΩ2 is assumed

at both the top and base of the member.

Recommendations for defining LΩ2 are based on error metrics computed between sim-

ulated full-continuum and macro model responses given that the accuracy of the former is

established on comparisons with data from physical experiments. There are two competing

objectives in determining LΩ2 that need to be considered. First, lowering LΩ2 is expected

to reduce the computational effort; second, increasing LΩ2 is expected to reduce the macro

model error compared to the full-continuum models. Therefore, recommendations for LΩ2

are based on the smallest continuum length that leads to an acceptable error between the full-
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LΩ2

L

LΩ2 LΩ2

L

Figure 6.7 – Modeling of critical regions for full-length (Top B.C. = Fixed or Rot; left) and
cantilever (Top B.C. = Free; right) members. Photos from Elkady and Lignos (2018a) and
Cravero et al. (2020).

continuum and macro models. Hereinafter, acceptable errors are defined when the average

error is less than 5 % and no individual error is larger than 10 %. The investigated values are

LΩ2 = {2.0,3.0,4.0,5.0} ·b f .

Hartloper et al. (2021b) found that a longer continuum length is required when modeling

columns susceptible to inelastic LTB. As inelastic lateral-torsional buckling is likely not critical

in members with λ̄LT < 0.4, and the maximum value of λ̄LT is 0.38 in Table 6.1, fictitious

cases are considered with increased LTB slenderness. For this purpose, the C5 (L = 3.9 m,

P/Pym = 0.2, W24X146, collapse-consistent loading), C7 (L = 3.9 m, P/Pym = 0.2, W24X84,

symmetric-cyclic loading), and C8 (L = 3.9 m, P/Pym = 0.2, W24X84, collapse-consistent

loading) tests are modeled with extended length. The C5 column is extended to 5.5 m (new

λ̄LT = 0.37), while the C7 and C8 columns are extended to 5 m (new λ̄LT = 0.47). The first case

acts as a control since λ̄LT < 0.4, whereas the other two cases are to assess if an increase in LΩ2

is required when λ̄LT > 0.4. The top boundary is treated as fixed for these additional cases.

6.3 Results

6.3.1 Material calibration

Results from the tensile coupon fitting using the procedure from de Castro e Sousa et al. (2021)

for the VC model are provided in Table 6.2. In this table: E is the elastic modulus, ν is Poisson’s

ratio, σy,0 is the initial yield stress, Q∞ is the magnitude of isotropic hardening at model

saturation, b is the isotropic hardening rate term, C1 is the kinematic hardening magnitude for

backstress 1, and γ1 is the rate term associated with backstress 1. For brevity, the UVC model

parameters for the monotonic tests are not shown herein, nor the parameters from Hartloper

et al. (2021a) for the W14X82 sections from Suzuki and Lignos (2021).

Predictions of the stress-strain response from the UVC and VC models are shown in
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Table 6.2 – Results from the calibration of the Voce-Chaboche model using only tensile tests.

Investigator Section σy,0 Q∞ b C1 γ1
[MPa] [MPa] [MPa]

Suzuki and W14X53-F 356.45 97.16 7.30 2962.48 16.42
Lignos (2021) W14X53-W 373.98 112.96 4.38 2065.41 9.85

W14X61-F 354.93 97.08 9.17 3721.22 20.64
W14X61-W 374.59 95.29 6.70 2668.69 15.08

Elkady and W24X146-Fa 387.44 90.36 6.53 2466.65 14.70
Lignos (2018a) W24X146-Wa 392.57 89.85 5.61 2106.30 12.63

W24X146-Fb 340.41 88.56 8.64 3198.93 19.45
W24X146-Wb 355.08 83.99 8.14 2855.69 18.31
W24X84-F 322.72 98.89 9.60 3968.36 21.61
W24X84-W 304.85 112.43 9.13 4290.86 20.55

Cravero W14X61-F 339.52 178.25 1.86 1388.18 4.19
et al. (2020) W14X61-W 344.74 181.00 1.58 1197.41 3.56

W14X82-F 368.67 214.14 3.23 2244.95 10.48
W14X82-W 395.09 133.47 3.30 1840.38 7.42
W16X89-F 340.61 162.62 2.45 1663.12 5.51
W16X89-W 361.34 189.71 1.68 1328.60 3.77

-F: Flange, -W: Web. E = 200 GPa and ν= 0.3 assumed for all.
a C1–C4, b C5 and C6.

Figure 6.8. The UVC model parameters are determined using the full dataset for the A992 Gr. 50

(i.e., nominal fy = 345 MPa) material in Hartloper et al. (2021a) from a W14X82 cross section.

The VC parameters determined using the tensile-only (VC, tensile) method from de Castro e

Sousa et al. (2021) are shown in these figures for illustrative purposes. The VC model calibrated

using the tensile-only method performs reasonably well in predicting the cyclic behavior in

this case apart from two notable issues. First, results in Figure 6.8 demonstrate that the VC

model tends to underestimate the initial yield stress and the stress up-to around 2 %strain

because it does not account for the discontinuous yielding phenomenon. Second, the VC

model response shown here does not adequately represent the smooth yielding observed

under cyclic loading because only one backstress can reasonably be used in the tensile-only

calibration procedure (de Castro e Sousa et al., 2021).

6.3.2 Mesh convergence

Selected results from the mesh convergence study are shown in Figures 6.9 and 6.10 for shell

and solid element models, respectively. Shell element model results are based on the W-6-

25-C1-C test (W14X82, collapse-consistent protocol, constant P/Pym = 0.3) whereas the solid

element model results are based on the W-6-25-S-C test (W14X82, symmetric cyclic protocol,

constant P/Pym = 0.3) (Suzuki and Lignos, 2021). These figures display the relative difference

in the total energy under the moment-rotation curve of sample element sizes compared to

the smallest element size evaluated. For instance, the difference in total energy between the

Shell-6 (nominal element size of 6.25 mm) and Shell-12 (nominal element size of 12.5 mm)
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Figure 6.8 – Comparison of A992 Gr. 50 (W14X82 flange) material stress-strain and material
model responses using the UVC and VC models. UVC calibrated with tensile and cyclic tests;
VC calibrated using only a tensile test. Material data from Suzuki and Lignos (2021).

is around 3 % at the end of the simulation, while the difference between the Shell-6 and the

Shell-25 (nominal element size of 25 mm) is more than 10 %. The moment-rotation response

from these models is also shown in Figure 6.9. A mesh size of 12.5 mm (Shell-12) is deemed

adequate for convergence to the true finite element solution. Thus, the 12.5 mm shell element

mesh is selected for use throughout this study.

Four different solid element meshes are displayed in Figure 6.10, where the label “Q”

indicates the use of quadratic, reduced-integration elements. The Solid-Q25 model (nominal

element size of 25 mm) is similar to the Solid-Q25-1 model, but Solid-Q25-1 only has one

element through the flange thickness. Note that a minimum of two elements are required

through the web thickness for symmetry of the model. Results shown in Figure 6.10 imply

that the governing factors for the solid element modes are the nominal element size and

the discretization of the k-area (i.e., the fillet region between the flange and web shown in

Figure 6.10) radius. The nominal element size is important because a sufficient number of

elements is required along the member’s length, the web depth, and flange width to reliably

simulate the onset of local buckling. The finite element results suggest that a reasonably

accurate discretization of the k-area curvature provides a more accurate estimation of the

cross-sectional stiffness. A difference of around 7 % between the Solid-Q12 (nominal element

size of 12.5 mm) and Solid-Q50 (nominal element size of 50 mm) models is observed, thus

the Solid-Q50 is rejected for further analyses. The number of elements through the flange

thickness is found to have a fairly negligible effect, thus for efficiency reasons, the Solid-Q25-1

model is selected for use throughout this study.

Beam-column element mesh convergence results are shown in Figure 6.11 based on the

flexural buckling test by Lamarche and Tremblay (2011). Eight B31OS elements are found to

be sufficient for convergence of the finite element solution, or four elements per half-length of

the member. For macro model purposes, the following formula is used to define the number
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Figure 6.9 – Shell element mesh convergence results (E = ∫
Mdθ∗) based on the W-6-25-C1-C

test (W14X82, collapse-consistent, P/Pym = 0.3) by Suzuki and Lignos (2021).

of elements per half-length of the member:

nbeam = ceil
[
4 · (1−LΩ2 /L∗)

]
, (6.7)

where ceil[(·)] is the ceiling function, L∗ = L/2 for members in double-curvature, and L∗ = L for

members in single-curvature (e.g., cantilevers). Equation 6.7 ensures that there are between

1–4 (2–8 for members in double-curvature) beam-column elements per half-length in macro

models depending on the ratio of the continuum length to the total length of the member.

This result agrees with the four B31OS elements selected for macro models in Hartloper et al.

(2021b).

6.3.3 Determination of initial geometric imperfections

Local imperfection: shell element models

Results for the full-shell initial geometric imperfection calibration are summarized as a

heatmap in Figure 6.12. Each square in this figure represents the average metric of the

results from the five simulations in the calibration dataset (W-6-34-M-C, W-8-34-M-C-50,

W-6-25-C1-C, W-6-25-C1-V, W-6-25-S-C) at a given α and Lbw value. The minimum average

energy metric is for the combination Lbw = 1.5b f and α= 100 (εe = 0.14), thus, it is selected as

the best combination of local initial geometric imperfection parameters. This result implies

that the overall moment-rotation energy metric difference between simulation and tests is

only 14 % over the entire history. Figure 6.13 is provided to give a sense of this level of error.

Note that this combination of α and Lbw also minimizes the peak-strength (εs = 0.06) and

axial shortening (εa = 0.09) errors.
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Figure 6.10 – Solid element mesh convergence results (E = ∫
Mdθ∗), relative to the Solid-Q12

model, based on the W-6-25-S-C test (W14X82, symmetric-cyclic, P/Pym = 0.3) by Suzuki and
Lignos (2021).

F, δ

Figure 6.11 – Beam-column element mesh convergence results based on Specimen 1 flexural
buckling test by Lamarche and Tremblay (2011).
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The largest errors in the full-shell simulations occur when α= 1.0 (i.e., a f = b f /250) or

α= i n f (no imperfection), see Figure 6.12. At α= 1.0, the simulation results underestimate

the test results for the modeling conditions described earlier, implying that the specified

initial geometric imperfections appear to be too large (see Figure 6.6). At the α= i n f end, the

simulation results overestimate the test results because the flange/web local buckling mode

is not triggered. However, a value of α = 100 implies a local imperfection with amplitudes

based on a f = b f /25000 and aw = d/30000. This finding represents a physically unlikely

result, as measurements on European cross sections have shown that local initial geometric

imperfections have a mean amplitude on the order of, e.g., a f = b f /1000 (Hartloper and

Lignos, 2019). Therefore, the authors are of the opinion that the imperfection amplitude be

treated as a numerical factor tied the proposed modeling approach; the interpretation of this

result in the context of the study is substantiated in Section 6.4.2.

Local imperfection: solid element models

A similar procedure as used for shell element models is carried out for the solid element

model, under the assumption that Lbw is independent of the element type. Therefore, the

value of Lbw = 1.5b f is also selected for the solid element models based on the preceding

section. In this case, the average energy error (εe ) is found to be minimized when α= 10, as

shown in Figure 6.14. This plot shows the average metric values for the calibration dataset for

Lbw = 1.5b f and the varying α values. The result α= 10 for solid element models compared to

α= 100 for shell element models is attributed to the inclusion of the k-area that is not present

when a shell element discretization is employed. These results will be discussed in detail in

Section 6.4.2.

Global imperfection

For beam-columns subjected to multiaxis loading tested by Elkady and Lignos (2018a), the

influence of the assumed global imperfection amplitude on shell element model results is

shown in Figure 6.15 through the proposed error metrics discussed earlier. Fixed values of

α= 100 and Lbw = 1.5b f are used in these simulations. The influence of the assumed global

imperfection on the simulated deformations, compared with experimental results, is shown

in Figure 6.16. Looking at the side view, the “same direction” local buckling pattern is defined

by the flanges buckling “inwards” at both ends, and the “opposite direction” is defined by one

end buckling “inwards” and the other “outwards”.

Without data regarding the local and global imperfections in the members, a decision was

made to neglect global imperfections in shell element models for the purpose of this study. The

main reason for this decision is the observation that local imperfections are sufficient for the

adequate shell-element simulation of the given experimental responses. This is attributed to
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Figure 6.12 – Full-shell model average error metric results from the calibration data set (each
square is the average of five tests).
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Figure 6.13 – Sample results from the full-shell calibration dataset with Lbw = 1.5b f and
α= 100 (solid = Test, dashed = Full-shell).
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Figure 6.14 – Full-solid model average error metric results from the calibration data set (average
of five tests). εe = energy metric, εs = peak-strength metric, εa = axial shortening metric.

geometric instabilities being initiated through local buckling that, later coupled with inelastic

twisting/LTB, govern each component’s response. Additionally, same-direction local buckling

observed in shell element models with β= 1 leads to a conflict with the observed deformation

in tests (Figure 6.16). However, global imperfections are retained for solid element models

because the simulated deformed shapes match with the tests using a global imperfection

amplitude scale factor of β = 1. This result is attributed to the larger local imperfection

amplitude present in solid element models in connection with the explicit modeling of the

k-area.

6.3.4 Summary of full-continuum modeling guidelines and simulation of the val-

idation dataset

Full-shell and full-solid element modeling recommendations determined throughout the

previous sections are summarized in Table 6.3 for the employed mesh discretization and

imperfection parameters (see Figure 6.2 for other parameters). These recommendations are

now evaluated using simulation results of the 29 tests contained in the validation dataset

discussed earlier. Voce-Chaboche model parameters used in modeling the validation dataset

are contained in Table 6.2. The full-CFE modeling recommendations are assessed through the

error metrics computed between the test data and “blind” simulation results that follow.

In assessing the results, the error metrics are found to be sensitive to the ratio of applied

axial load (P/Pym). For this reason, the validation dataset is split into two categories: tests

with moderate axial load ratio (maximum P/Pym < 0.5), and tests with very high axial load

ratio (minimum P/Pym ≥ 0.5). The error metrics computed between full CFE simulations and

test data in the validation set are summarized in Table 6.4. These errors are largely found to

178



6.3. Results

-1 1 10 100 inf

Global Imperfection Scale, β

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
et

ri
c

V
a
lu

e

Avg. εe

Avg. εs

Avg. εa
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Table 6.3 – Summary of full-continuum modeling parameters determined in this study for
modeling columns under multiaxis loading with properties in the ranges of: 0.19 ≤ λ̄LT ≤ 0.38,
5.9 ≤ b f /2t f ≤ 8.1, 20 ≤ h/tw ≤ 44, 0.15 ≤ P/Pym ≤ 0.75.

Item Shell-domain value Solid-domain value

Element type Linear, reduced-integration Quadratic, reduced-integration
Mesh size 12.5 mm 25.0 mm
Local imperfection scale factor α= 100 α= 10
Global imperfection scale factor No imperfection β= 1

Table 6.4 – Error metric results from the validation dataset for full-shell and full-solid models
as a function of model type and axial load.

Model Axial Load Energy Peak strength Axial shortening
Avg. µLN σLN Avg. µLN σLN Avg. µLN σLN

Full-shell P/Pym < 0.5 0.23 -1.52 0.35 0.07 -2.93a 0.70a 0.24 -1.60 0.63
Full-solid P/Pym < 0.5 0.26 -1.47 0.46 0.07 -2.86 0.67 0.28 -1.42 0.57
Full-shell P/Pym ≥ 0.5 0.35 -1.24 0.61 0.14 -2.04 0.34 0.29 -1.76 1.26
Full-solid P/Pym ≥ 0.5 0.32 -1.24 0.45 0.16 -1.91 0.38 0.29 -1.80 1.25

Notes: a = does not pass Lilliefors test for log-normality.

be log-normally distributed based on a Lilliefors test with a statistical significance of 0.05;

the mean (µLN ) and standard deviation (σLN ) of the associated log-normal distributions are

provided in Table 6.4. These statistical parameters can be used in the future, for example,

to compare the proposed modeling recommendations with alternative approaches assessed

using the same pool of experimental data, which have been made publicly available. Average

error metric results are also summarized in a graphical format in Figures 6.17a and 6.17b. Plots

comparing the test and simulated moment-rotation and axial shortening response from the

full-shell models are provided in Figure 6.18. These figures give a sense of the goodness-of-fit

for the simulation results by showing the “worst” (highest εe ) and “best” cases (lowest εe ).

Across both moderate and very-high axial load sets, the shell element models perform

equivalently to the solid element models in terms of the average error metrics. Slightly higher

error metrics in the solid element models are attributed to the coarse approach used to

determine the imperfection scale factors, however, differences on the order of 2 % error are

practically considered negligible. In terms of the computational expense, however, shell

element models are superior. For instance, in the C1 column (W24X146, L = 3.9 m), the

number of DOFs is reduced by around 15 % using a shell element model compared to a solid

element model (shell: 200982, solid: 238785) and the memory requirement is reduced by

around 80 % (shell: 938 MB, solid: 4470 MB). Only macro shell models are considered going

forward in this study, as shell models have just been shown to provide overall equivalent

performance to solid element models at significantly reduced computational cost.
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Figure 6.17 – Average error metric results from the simulation of the validation dataset. Values
above each bar are the mean and standard deviation of the associated log-normal distribution.

6.3.5 Macro model continuum length calibration results

As highlighted previously, only macro shell models are considered due to their efficiency

compared to solid element models. Modeling of the shell domains follows the recommenda-

tions in Table 6.3, and the number of beam-column elements is set according to Equation 6.7.

Thus, the only remaining parameter to be determined is the continuum domain length, LΩ2 .

Simulations based on all 34 tests in the dataset are considered in the calibration of LΩ2 .

Results for the calibration of LΩ2 are summarized in Table 6.5 based on the average error

metrics; this table shows that the average error is indifferent when LΩ2 ≥ 3.0b f . Moment-

rotation and axial shortening plots are provided in Figures 6.19 and 6.20 at different values

of LΩ2 . These plots indicate the near perfect agreement between the full-shell and macro

models at an average energy metric error of 3 %. The energy errors from all the 37 simulations

are shown as a histogram in Figure 6.21a for LΩ2 = 3.0b f . The two cases with an energy error

over 10 % (C8 and C8-5m with extended length) can be controlled by increasing the length

LΩ2 . LΩ2 values of 6.0b f are considered to reduce the error below 10 % in these two instances.

The two cases are notable due to their comparatively high non-dimensional lateral-torsional

slenderness. It is, therefore, proposed to divide the recommendations for the continuum

element length into two categories:

LΩ2 =
max

[
3.0b f ,0.25(2L∗)

]
if λ̄LT < 0.4

max
[
6.0b f ,0.30(2L∗)

]
if λ̄LT ≥ 0.4;

(6.8)

recall that L∗ = L/2 for members in double-curvature, and L∗ = L for members in single-

curvature (e.g., cantilevers) because two shell domains of length LΩ2 are used at the member

ends in the case of double-curvature bending, and one domain when the member is in single

curvature (i.e., cantilevers). These guidelines essentially specify that half of the member
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Figure 6.18 – Representative full-shell model results from the “blind” analysis of tests in
the validation dataset (solid = Test, dashed = Full-shell). High values of εe represent worse
predictions of moment-rotation.
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Table 6.5 – Error metric results for macro-shell models as a function of continuum length
(LΩ2 ).

LΩ2 Energy Peak strength Axial shortening
Avg. µLN σLN Avg. µLN σLN Avg. µLN σLN

2.0b f 0.08 -2.98 1.07 0.01 -5.32 0.91 0.06 -3.44 1.13
3.0b f 0.03 -3.85 1.00 0.00 -6.27 1.01 0.03 -4.10 1.06
4.0b f 0.03 -3.89 1.02 0.00 -6.58 1.09 0.03 -4.19 1.18
5.0b f 0.03 -4.10 1.15 0.00 -6.86 0.99 0.03 -4.40 1.22

should be modeled with shell elements, while the other half can be modeled with beam-

column elements. If these guidelines are followed, the average error between macro- and

full-shell models is only 3 % and no individual error is over 10 %. The histogram of individual

errors using Equation 6.8 is shown in Figure 6.21b. Consideration for columns with λ̄LT > 0.4

is important, for example, in multi-tiered brace frames (Imanpour et al., 2016) where (1)

the axial load can be significant due to the brace demands and (2) the columns may reach

lateral-torsional slenderness ratios of λ̄LT > 0.4.

The energy and axial shortening errors shown in Figures 6.21a and 6.21b are found to

follow a log-normal distribution, as verified using the Lilliefors test at a significance level

of 0.05. The log-normal distributions’ means and standard deviations are shown in these

plots. The exponential of the log-normal mean is an estimation of the median of the data, i.e.,

exp
[
µLN

] = exp[−3.88] = 0.02 implies that half the macro model simulations have an error

compared with their full-shell counterparts less than 2 %.

Computational efficiency of the macro model approach is measured through two metrics:

the number of DOFs in the model, and the memory requirements. The first metric indicates

the complexity of the problem, and therefore, the effort to complete each iteration of the finite

element solution. The second metric represents a baseline requirement to run the simulation

on a given computer system. Bar plots for these two metrics are provided in Figure 6.22 based

on the Abaqus output for each simulation model. All the values in these plots are normalized

by the DOFs and memory of the associated full-shell model. We conclude that modeling

wide flange beam-columns components using 50 % length as shell and 50 % length as beam-

column elements correlates with a 50 % reduction in both DOFs and memory requirement at

the member level.

6.4 Discussion

6.4.1 Influence of constitutive modeling

The quality of the proposed finite element modeling recommendations for predicting the

behavior of beam-columns that were physically tested appears to be strongly related to the
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Figure 6.19 – Simulation with lowest error at LΩ2 = 3.0b f between the macro and full-shell
models (solid = Full-shell, dashed = Macro-shell).
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Figure 6.20 – Simulation with highest energy error (εe = 0.075) at LΩ2 = 4.0b f between the
macro and full-shell models (solid = Full-shell, dashed = Macro-shell).
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quality of material data. For instance, the energy error metric is nearly doubled from 14 % in

the calibration set to 24 % in the validation set (see Figures 6.13 and 6.18). Fundamentally, the

only difference between these two sets of data is knowledge regarding the material behavior.

This nearly doubling of the error between tests and simulations can be seen as the cost

of having limited material data when modeling a wide flange steel beam-column. These

results are further evidence that the tensile-only calibration method should only be used for

simulating the hysteretic response of wide flange beam-columns subjected axial load coupled

with lateral cyclic drift demands if the full material data are not available (de Castro e Sousa

et al., 2021).

Another consequence of the tensile-only calibration methodology is the underestimation

of material strength up to strains of around 2 % using the VC model. For instance, material

test data and model predictions are shown in Figure 6.23. The VC model calibrated using

the tensile-only method (“VC, tensile-only”) lies below the test data until around 2 % (i.e.,

underestimates the material strength). Underestimating the material strength is expected to

lead to an underestimation of pre-buckling component behavior, as material is continuously

yielded up-to this point due to hardening. A lower initial yield stress can also affect the

simulated buckling mode as shown in Hartloper et al. (2021a). Finally, the error in peak-

strength appears to be uniform considering tests with moderate axial load (calibration: εs =
0.06, validation: εs = 0.07), however, it is notably higher under very high axial loads (εs = 0.14).

This observation, along with generally higher errors in the very high axial load set, implies that

simulations with very high axial loading (i.e., P/Pym ≥ 0.50) are more sensitive to the accuracy

of the material model.

Two avenues of future research are proposed in-light of the importance of material model-

ing revealed by the preceding discussion. First, the Authors recommend that suites of uniaxial

cyclic coupon tests, such as those in de Castro e Sousa et al. (2020), be conducted to cali-

brate model parameters alongside future component testing programs. Such information

is important because full knowledge of the material’s behavior under cyclic loading allows

for a better understanding of the component’s behavior through continuum finite element

analysis. Second, additional material testing is required to increase the overall knowledge

of structural steel materials subjected to inelastic cyclic loading. Such information can be

quantified in terms of hardening metrics, for instance, as done in de Castro e Sousa et al.

(2021). This knowledge can be used to define a general material behavior when the specific

material properties cannot be known (i.e., in design scenarios), and to quantify uncertainty in

materials’ cyclic behavior, as has been done for tensile loading (see e.g., Braconi et al. (2013)).

6.4.2 Comparison of shell and solid element modeling

Full-shell and full-solid models provide nearly equivalent accuracy for modeling the tests used

in this study, as shown by the error metric results in Figure 6.17. A major consideration in this
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Figure 6.23 – Material results and Voce-Chaboche (VC) model predictions for specimens C1–C4
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from Table 6.2.

equivalence is the reduction of local imperfection amplitudes in shell models by a factor of

ten compared to solid element models. This is particularly evident in Figure 6.14, as the peak

strength metric increases at α= 100 for solid element models indicating that the initiation

of local buckling is delayed because of a too small imperfection. As previously established, a

likely explanation for the lower imperfection amplitude in shell element models is that they

do not include the fillet-radius of the k-area, whereas, this region is explicitly modeled by

solid elements. The k-area, defined by k1 in Figure 6.24, is critical because it decreases the

local plate slenderness of the flange and web and increases the local torsional restraint in

this area. For instance, the length b f /2−k1 in solid element models is approximately 20 %

smaller than b f /2− tw /2 in shell element models for a W24X84 section. The lack of the k-area

in shell element models increases their proclivity to local buckling and, as such, the optimal

local imperfection amplitude for shell element models has more of a model-fitting nature,

rather than reflecting a precise physical magnitude. Given this modified local imperfection

amplitude, shell element models are still an extremely useful computational tool as they can

model beam-column components with equivalent accuracy to solid element models at a

reduced computational cost.

The optimal local imperfection amplitude for solid element models of aw = d/(10 ·300)

(α = 10) is explained by two factors. First, the local imperfections are assumed to have a

shape that is congruent with the expected local buckling pattern. Second, the baseline local

imperfection amplitudes, b f /250 and d/300, are specified based on the maximum amplitude

of known measured cases. Altogether, these conditions lead to a worst-case scenario for

the local imperfection shape, location, and amplitude—an upper bound to the degrading

response. It thus seems reasonable that experimental cases would fall below the worst-case

simulated response; it is in this context that the imperfection amplitudes are reduced by a

factor of 10. Such assumptions regarding the imperfections are necessary in this study because

measurements of the actual imperfections were not made for any of the tests in Table 6.1.
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Figure 6.24 – Zoom on k-area of a W24X84 section to highlight the difference between solid
and shell element discretizations.

Following the above discussion, it is anticipated that the direct use of measured imperfections

is most accurate when combined with a solid element model because the k-area is explicitly

modeled and abides by the physical conditions of the problem.

The absence of an explicit consideration of the k-area region can induce important dis-

crepancies between simulated and experimental responses in shell element models (see

Figure 6.16). This discrepancy is believed to be related to model shortcomings, rather than

solely due to the lack of knowledge of the actual imperfections in tests, as the recommended

imperfection amplitudes for shell element models are significantly below baseline magni-

tudes. Faced with these model shortcomings within the range of specimens assessed in this

study, a modeler may make a compromise when using shell element models by either: (a)

excluding global imperfections or significantly diminishing their scale; or (b) increasing the

local imperfection amplitude (e.g., by setting α = 1) and sacrificing accuracy in problems

where instabilities initiate through local buckling. Option (a) is used in this study since the

global imperfection has a negligible influence on the metric outcomes for the simulated cases

investigated in this study (see Figure 6.15) and the measured imperfections are unavailable for

the suite of tests examined herein. It is made explicit that this approach should not be used for

members where strength degradation initiates through flexural buckling (for example, but not

limited to, braces and columns subjected to only axial loading) or when the expected behavior

is completely unknown to the modeler. While this shortcoming can be avoided altogether

by using a solid element model instead of a shell element model, this comes at an important

increase to the computational cost.

The discussed shell element model shortcomings may become significant in the assess-

ment of first story end columns within tall steel MRFs subjected to long period ground motions.

Under these conditions, end columns experience maximum compressive axial load demands

of P/Pym ≥ 0.50 (i.e., defined as very high in this study) for more than few seconds due to

dynamic overturning effects combined with lateral drift demands (Akcelyan, 2017; Suzuki and
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Lignos, 2020). The aforementioned conditions imply that such columns may be susceptible

to flexural buckling or coupled local and flexural buckling, in which cases the global imper-

fection may become influential in predicting the component’s response. Appropriate shell

element modeling recommendations for beam-columns subjected to these loading conditions

motivates further physical experimentation to better comprehend their behavior.

6.4.3 Comparison to existing modeling guidelines

The guidelines for full-shell models summarized in Figure 6.2 and Table 6.3 contain a few

important differences when compared with existing guidelines identified in the introduction

(Newell and Uang, 2008; Fogarty and El-Tawil, 2015; Araújo et al., 2017; Elkady and Lignos,

2018b; Wu et al., 2018). The first difference is the recommendation for material modeling. An

approach often used to define the VC model parameters is to use the measured yield stress

from a tensile test in conjunction with cyclic hardening parameters from representative tests

on the same steel grade. This approach is denoted as “VC, measured σy,0” in Figure 6.23,

with the parameters σy,0 = 414 MPa (Elkady and Lignos, 2018a), C1 = 3378 MPa, γ1 = 20,

Q∞ = 90 MPa, and b = 12 (Elkady and Lignos, 2018b). The “VC, measured σy,0” prediction

clearly overestimates the tested stress-strain at all points because the VC model does not

account for the yield plateau region (i.e., the effects of discontinuous yielding). Modelers

should be cognizant that, for the VC model, which has been largely used to date, using the

measured yield stress in combination with cyclic hardening parameters calibrated to other

coupon tests leads to an overestimation of the tensile stress-strain response. Correcting the

initial yield stress is motivation to use, e.g., the UVC model (Hartloper et al., 2021a) in-place of

the VC model, and conducting cyclic coupon tests to calibrate its parameters.

The second difference is that the shell element size proposed in the current study is smaller

than the 20–25 mm proposed elsewhere (Fogarty and El-Tawil, 2015; Araújo et al., 2017; Elkady

and Lignos, 2018a; Wu et al., 2018). Element size is important because models built from

displacement-based finite elements are overly stiff when the element size is large compared

to the size corresponding to the true finite element solution (Bathe, 1996). For instance,

the flexural strength shown in Figure 6.9 converges to a lower-bound value as the mesh size

decreases (i.e., the model’s stiffness decreases as the element size decreases). An appropriately

small element size is important to capture the initiation and progression of local buckling

and the residual plastic curvature effect (Lee and Lee, 1994) that occurs after the initiation of

yielding. This is especially important for cyclic loading because the residual plastic curvature

acts as an imperfection upon loading in the opposite direction and local buckling compounds

with each cycle.

The third difference is that a smaller local imperfection amplitude is recommended com-

pared to the a f ,pr i or = b f /250 proposed in, e.g., Araújo et al. (2017) and Elkady and Lignos

(2018a). The smaller imperfection amplitude used herein is a product of: (a) calibrating con-
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stitutive model parameters in a way that does not overestimate the material’s stress-strain

response, and (b) using an element size based on results from the mesh convergence study

shown in Figure 6.9. Increasing the element size and overestimating the material strengths

tends to increase a finite element model’s flexural strength and stiffness, therefore, a larger

imperfection amplitude appears to be required under these conditions. This justifies the

recommendations of prior studies (Elkady and Lignos, 2018b). As already discussed, the

proposed imperfection amplitude in solid-element models of a f = b f /2500 accounts for the

assumptions on the local imperfection geometry, and the amplitude in shell-element models

of a f = b f /25000 also accounts for the fact that the k-area is not explicitly modeled.

The effect of using a larger imperfection amplitude is most notable when modeling beam-

columns subjected to monotonic lateral loading and constant axial load, e.g., see the α= 1

result in Figure 6.6. Simulated results with α= 1 are vastly different from the test data. Similar

simulation results are expected in this case even if the element size is increased because

monotonic tests are observed to be less sensitive to this parameter. The Authors are of the

opinion that these observations regarding the element size and imperfection amplitude were

made possible through recently developed methods for calibrating constitutive models to

reduce the uncertainty in the material behavior (de Castro e Sousa et al., 2020; Hartloper et al.,

2021a; de Castro e Sousa et al., 2021). Furthermore, the guidelines proposed in this study are

considered to be general as they unify the modeling of beam-columns subjected to monotonic

and cyclic lateral loading.

6.4.4 Recommendations for component macro models

Macro model guidelines are fully defined for the tests in Table 6.1 by: the selection of critical

regions shown in Figure 6.7, continuum domain modeling guidelines proposed in Table 6.3,

residual stresses according to Young (1972), the number of beam-column elements in Equa-

tion 6.7, and the continuum length, LΩ2 in Equation 6.8. Conditioned that these guidelines

are followed, for the cases investigated, the average energy error between full-shell and macro-

shell models is 3 %, the error in peak-strength is 0 %, and the error in axial shortening is 2 %.

Perfect agreement in the peak-strength between the macro and the full-shell models indicates

that the pre-peak behavior and initiation of local bucking is fully captured by the macro model.

These conclusions are stated regardless of the member’s geometry, axial load ratio, direction

of lateral loading, and employed loading protocol. The component macro model approach is

generalized through these recommendations for simulating steel wide flange beam-columns

subjected to multiaxis loading.

An alternative to the macro model approach is to use a full-continuum approach and

increase the element size outside of the critical regions. In this case, Equation 6.8 may be used

to determine the extent of the critical regions in which a fine mesh is to be used. In this light,

the macro model is considered to provide an upper bound on the reduction in computational
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cost in terms of DOFs and memory use. A detailed study regarding the grading of element

sizes is required to provide general recommendations if this alternative method is used, and is

therefore, left for future research.

6.4.5 Limitations

The most notable limitation in this study is the lack of test data available for calibration of the

full-continuum guidelines. The lack of test data for calibration is, in-part, rooted in the lack

of cyclic material data corresponding to beam-column tests. For this reason, we suggest that

cyclic coupon data, such as that summarized in de Castro e Sousa et al. (2020), be collected in

future tests. It is also acknowledged that the recommendations in this chapter apply to the

ranges of parameters that are contained in Table 6.1. Although it was not shown in this study,

the guidelines are expected to hold for other components, as evidenced by the subassembly

macro model simulation in Hartloper et al. (2021b). Moreover, the reliability of modeling

recommendations could be increased through further calibration with tests where the material

behavior, residual stresses, and initial geometric imperfections are all known, where these

tests consist of a wide array of geometries, boundary conditions, and applied loading. Other

limitations that can be explored and clarified through additional research are the effects of

loading rate (i.e., considering rate-dependent plasticity) and the influence of uncertainty in

defined parameters on the component and structural responses.

6.5 Summary and conclusions

Recommendations to construct mixed-dimension macro model of steel wide flange columns

subjected to multi-axis cyclic loading are proposed in this chapter. Three objectives were met

in support of this aim. First, guidelines for full-continuum (shell and solid) finite element

models were proposed. These guidelines are summarized in Figure 6.2, where parameters

determined in this study are provided in Table 6.3. Second, guidelines for a mixed-dimension

macro model were proposed using shell and beam-column elements. The beam-column ele-

ment mesh recommendations are contained in Equation 6.7, and the length of the continuum

domain is contained in Equation 6.8. Third, the computational efficiency of the proposed

macro model approach was identified, as summarized in Figure 6.22.

The main conclusions are summarized as follows:

• Reducing the element sizes of current modeling recommendations is deemed to be

critical in unifying the accuracy in predicting cyclic and monotonic component-level

tests. A linear shell element size of 12.5 mm is recommended for the members evaluated

in this study. This element size is smaller than used in previous studies.

• Shell element models that predict test results with the least error have a local imperfec-
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tion amplitude that is two orders of magnitude below the maximum permissible ampli-

tude set by international manufacturing standards. This result is primarily attributed to

the omission of the k-area in shell element models. Continuum finite element models

constructed with quadratic solid elements perform well with imperfection amplitudes

close to measured values under the proposed modeling assumptions because they

explicitly model the k-area. Therefore, solid element models are expected to provide the

best accuracy if measured imperfections are used.

• Tests with well-defined material information were predicted with an overall accuracy of

14 % (calibration dataset), tests with lower-quality material information were predicted

with an overall accuracy of 24 % (validation dataset). High-quality material data is

deemed fundamental to improve modeling accuracy and is recommended to be in-

cluded when testing structural steel components to further improve the state-of-the-art

in predictive modeling of steel beam-columns.

• For macro models to maintain the fidelity of full-continuum models, a shell-domain

length corresponding to 25 % of the entire member length is recommended for beam-

columns with λ̄LT < 0.4. A shell-domain length corresponding to 30 % of the entire

length is recommended for members with λ̄LT ≥ 0.4.

• Following these recommendations, the macro model approach can reduce the com-

putational effort, in terms of memory and degrees of freedom, by around 50 %. The

average error between the full-shell and macro models is only 3 %. These observations

hold regardless of the beam-column’s geometry, loading, and boundary conditions.

6.6 Data availability

Some or all data, models, or code generated or used during the study are available in a reposi-

tory or online in accordance with funder data retention policies. This includes: the code used

for material calibration (de Castro e Sousa et al., 2019); the code for the constitutive models

(Hartloper, 2019); and the code for the warping-inclusive kinematic coupling (Hartloper,

2020).

Some or all data, models, or code that support the findings of this study are available from

the corresponding author upon reasonable request. This includes the finite element models

used to generate the results of this study and the beam-column test data.
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6.8 Notation

The following symbols are used in this chapter:

a f = maximum local imperfection amplitude at the flange tip;

aw = maximum local imperfection amplitude at the web center;

b = rate of isotropic hardening;

b f = flange width;

C1 = magnitude term for backstress 1;

d = section depth;

E = elastic modulus;

fym = measured yield stress;

h = inner web depth;

It = torsion constant;

Iw = warping constant;

Iy = moment of inertia about weak axis;

k1 = distance from center of web to flange toe of fillet;

L = component length;

Lbw = wavelength for global local imperfection;

LΩ2 = length of the continuum element domain;

L∗ = L/2 for members in double-curvature, L for members in single curvature;

M = base moment;

P = applied axial force;

Pym = measured axial yield strength;

Q∞ = magnitude of isotropic hardening at model saturation;

t f = flange thickness;

tw = web thickness;

Zx = plastic section modulus about strong axis;

α = scale factor for local imperfection amplitude;
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β = scale factor for global imperfection amplitude;

γ1 = rate of kinematic hardening for backstress 1;

δaxi al = axial shortening;

εa = axial shortening metric;

εe = energy metric;

εs = peak-strength metric;

ε = true strain;

θ = chord rotation;

θ∗ = accumulated chord rotation;

λ̄LT = lateral-torsional slenderness;

µLN = mean of log-normal distribution;

ν = Poisson’s ratio;

σ = true stress;

σLN = standard deviation of log-normal distribution; and

σy,0 = constitutive model initial yield stress.
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7 Conclusion and future work

7.1 Summary of work completed in this thesis

The thesis is first summarized on a chapter-by-chapter basis. Each chapter summary includes

a brief motivation for each study, pertinent results, and the main conclusions. The expected

impact of the work carried out in this thesis is then stated and recommendations are provided

for future research building on this thesis.

7.1.1 Chapter 2: Constitutive modeling of structural steels: A nonlinear

isotropic/kinematic hardening material model and its calibration

Calibrating the Voce-Chaboche (VC) material model in a consistent manner reveals that the

VC model systematically underestimates the initial yield stress in structural steels by at least

10–30 %. This underestimation is attributed to the discontinuous yielding phenomenon in

these materials. An updated Voce-Chaboche (UVC) material model is proposed in this chapter

to address this issue by modifying the isotropic hardening rule of the VC model. Moreover,

sufficient conditions are derived and imposed on the UVC parameters to impose a non-

softening response regardless of the applied inelastic strain demands. A consistent calibration

procedure is developed for structural steels subjected to earthquake-induced inelastic cyclic

straining. The material model implementation is validated in commercial and open-source

finite element analysis programs for uniaxial, plane-stress, and multiaxial stress states. The

code is made publicly available through Hartloper (2019).

The main conclusions are summarized as follows:

• Parameters for the UVC material model are provided for a database of nine structural

steels commonly used in North America, Japan, and Europe. The initial yield stress

is increased by nearly 20 % using the UVC model over the VC model. A 19 % relative

improvement in the overall material model accuracy is found when compared to the VC
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model. The full calibration procedure of the UVC model is made publicly available in

the open source Python package RESSPyLab de Castro e Sousa et al. (2019).

• At least two backstresses are necessary for the UVC model to accurately represent the

behavior of the investigated steel materials. One backstress leads to an underfitting of

the kinematic hardening component of the constitutive material law.

• Results from the conducted parametric study suggest that the simulated geometric

instabilities in steel wide flange beam-columns that arise under multiaxis loading are

sensitive to the material model and input parameters for the studied column geometry.

• Findings from the presented case study should be supported by full-scale tests where

the imperfections, residual stresses within the cross section, and material characteristics

are fully quantified beforehand to reliably evaluate the effect of material initial condi-

tions among other considerations. Furthermore, effects that influence the hardening

mechanisms and spread of plasticity within the plastic hinge length of beam-columns,

such as the rate of applied loading, should also be explored in the future by means of

large-scale physical testing.

7.1.2 Chapter 3: Cyclic metal plasticity model parameters with limited

information: A constrained optimization approach

Information on the cyclic behavior of structural steel materials is fairly scarce, while standard

tensile tests are ubiquitous. Material parameters calibrated in a consistent manner reveal

that metrics representing the behavior of structural steel materials under inelastic cyclic

straining are fairly consistent between several mild steels. A framework is developed to

calibrate constitutive model parameters using only standard tension tests in the case that

cyclic material tests are not available. This framework uses constrained optimization to impose

the a priori hardening information on the constitutive model parameters. The procedure is

incorporated into the publicly available, open-source Python library, RESSPyLab (de Castro e

Sousa et al., 2019).

The main conclusions are summarized as follows:

• The definition of adequate material cyclic-performance metrics is an essential part

in the constrained optimization procedure. Metrics are proposed herein that relate

typical ratios of isotropic to kinematic hardening and their rates in order to inform the

constrained optimization procedure.

• The number of backstresses used in the kinematic part of the models plays a significant

role in the accuracy of tensile-only parameter estimates.
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• The UVC model does not provide satisfactory results in parameter estimates in the

tensile-only constrained optimization, regardless of the number of backstresses em-

ployed.

• The VC model with two backstresses does not provide satisfactory estimates of material

response for tensile-only calibrations with the constraints presented herein. More data

can however motivate different constraints.

• On the other hand, the VC model with one backstress yields satisfactory results when

its parameters are calibrated through the proposed methodology. Therefore, this is the

recommended material model if a modeler is faced with a situation where only standard

tension test data is available.

7.1.3 Chapter 4: Warping-inclusive kinematic coupling in mixed-dimension

macro models for steel wide flange beam-columns

Component macro models are proposed as a method to reduce the computational complexity

of full continuum finite element (CFE) component models. A review of multipoint constraint

(MPC) methods for coupling beam-column and continuum element domains reveals that

an MPC coupling method that includes torsion-warping is required. The warping-inclusive

kinematic coupling (WIKC) method is developed by enhancing a kinematic coupling method

with torsion-warping for members featuring wide flange cross sections. The WIKC method is

implemented in Abaqus v6.14 using a user defined MPC; open-access source code provided

(Hartloper, 2020). Results, validated with test data, demonstrate that the fidelity of CFE models

can be maintained at reduced computational expense for isolated beams and columns as well

as beam-to-column subassemblies under both static and dynamic multiaxis cyclic loading.

The main conclusions are summarized as follows:

• Including warping in the coupling formulation may be critical in accurately estimating

the full-continuum model failure mode and, therefore, should be included for gen-

eral use. This is especially true for components subjected to nonuniform torsion, or

that are susceptible to coupled local and lateral-torsional instabilities, i.e., if the non-

dimensional lateral torsional slenderness is λ̄LT > 0.4.

• A nonlinear, finite-rotation constraint formulation appears to be necessary for nonlinear

problems, and there do not appear to be any computational advantages offered by the

linear coupling method. Linear, small-rotation coupling methods seem to be acceptable

for eigenvalue analyses, as well as problems not dominated by torsion if: (i) lateral-

torsional buckling (LTB) is not critical, (ii) the angle of twist is less than 0.10 rad, and

(iii) the column lateral drift ratio is below 10 %. If twisting is the dominant mode of
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deformation, the angle of twist should remain below 0.05 rad if a linear coupling method

is employed.

• The macro model approach leads to a reduction in the DOFs and memory usage propor-

tional to the ratio of the beam-column element domain length to the total component

length. The macro model approach does not appear to negatively affect the rate of

convergence compared to the full-continuum model, therefore, the computational time

savings are expected be a function of the DOF reduction.

7.1.4 Chapter 5: Best-fit constraint equations for coupling mixed-dimension

simulation models with wide flange cross sections

A new MPC method is developed to couple beam-column and continuum element domains.

Seven constraint equations are proposed that couple the degrees-of-freedom of a dependent

beam-column element node with the independent interface continuum element nodes. The

proposed equations makes a link between the kinematics of a beam-column element and the

procedure for fitting a plane-of-best-fit to a point cloud. Analysis conducted in this chapter

provides the basis for a method to deduce the torsion-warping amplitude within the proposed

framework. Elastic stress distributions determined through beam mechanics are used to form

the constraint coefficient matrix within the context of nonlinear finite element analysis. The

proposed method is implemented as a user MPC in Abaqus v6.14, and the source code is

made publicly available (Hartloper, 2021). Two examples are used to validate the method for

coupling beam-column and shell elements.

The main conclusions are summarized as follows:

• The proposed method is validated for nonlinear finite element problems coupling beam-

column and shell elements. Thus, the objectives set at the outset of (1) using the least

number of constraint equations, and (2) including torsion-warping, are satisfied.

• The proposed method can improve the interface stress distribution under certain load-

ing conditions over other methods (e.g., the built-in kinematic coupling method in

Abaqus v6.14).

• Global Newton iterations may not converge after the elements on the interfaces begin

to yield due to the assumed elastic stress distributions. While this may be a limita-

tion in certain problems of interest, the proposed method could still be used in the

context of simulation-assisted design for stability problems (Ziemian and Abreu, 2018;

Ziemian et al., 2018). Further work is required to make the method amenable to inelastic

interfaces.
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7.1.5 Chapter 6: Mixed-dimension modeling of steel wide flange beam-columns

under multiaxis loading

Macro models for steel beam-column components are defined by parameters such as: the

mesh discretization in each domain, the initial geometric imperfections important in the

modeling of geometric instabilities, and the proportion of the continuum element domain to

the beam-column element domain. General recommendations for the definitions of these

parameters allows for the practical use of macro models in frame simulation studies. Rec-

ommendations for constructing component models of steel wide flange beam-columns are

developed in this chapter on the basis of advancements in constitutive modeling and cou-

pling developed in earlier chapters. These recommendations are developed and validated

using comparisons with data from physical experiments on steel beam-columns. Accuracy in

predicting physical component behavior is measured in this study through objective metrics,

the recommended modeling parameters are those that lead to minimal errors.

The main conclusions are summarized as follows:

• Reducing the element sizes of current modeling recommendations is deemed to be

critical in unifying the accuracy in predicting cyclic and monotonic component-level

tests. A linear shell element size of 12.5 mm is recommended for the members evaluated

in this study. This element size is smaller than used in previous studies.

• Shell element models that predict test results with the least error have a local imperfec-

tion amplitude that is two orders of magnitude below the maximum permissible ampli-

tude set by international manufacturing standards. This result is primarily attributed to

the omission of the k-area in shell element models. Continuum finite element models

constructed with quadratic solid elements perform well with imperfection amplitudes

close to measured values under the proposed modeling assumptions because they

explicitly model the k-area. Therefore, solid element models are expected to provide the

best accuracy if measured imperfections are used.

• Tests with well-defined material information were predicted with an overall accuracy of

14 % (calibration dataset), tests with lower-quality material information were predicted

with an overall accuracy of 24 % (validation dataset). High-quality material data is

deemed fundamental to improve modeling accuracy and is recommended to be in-

cluded when testing structural steel components to further improve the state-of-the-art

in predictive modeling of steel beam-columns.

• For macro models to maintain the fidelity of full-continuum models, a shell-domain

length corresponding to 25 % of the entire member length is recommended for beam-

columns with λ̄LT < 0.4. A shell-domain length corresponding to 30 % of the entire

length is recommended for members with λ̄LT ≥ 0.4.
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• Following these recommendations, the macro model approach can reduce the com-

putational effort, in terms of memory and degrees of freedom, by around 50 %. The

average error between the full-shell and macro models is only 3 %. These observations

hold regardless of the beam-column’s geometry, loading, and boundary conditions.

7.2 Impact and future research topics

The overarching aim of this thesis was to propose reduced-order simulation models for steel

beam-column components that match the fidelity of full continuum element models at a

diminished computational expense. On the path to achieve this goal, constitutive modeling of

structural steels subjected to earthquake-induced inelastic strain demands was made more

accurate compared to the classic Voce-Chaboche model through the development of an

updated material model; and two new methods for coupling beam-column and continuum

element domains that include torsion-warping were developed. The fidelity of CFE component

models is maintained at a reduced computational cost through the proposed component

macro model approach that makes use of the updated material model and warping-inclusive

kinematic coupling method. The proposed macro model is efficient for the investigated range

of steel beam-columns, as it reduces memory requirements and the number of degrees-of-

freedom of benchmark CFE analyses by around 50 %. It is also accurate, as the average error

between the benchmark CFE and macro model analyses is only 3 %.

The advances in material modeling developed in this thesis can be used to reduce the

uncertainty in steel component simulations related to material behavior. Reducing this

uncertainty allows analysts to better understand influential modeling parameters, to better

comprehend component behavior through simulations, and to better predict component

behavior for simulation-assisted design. The development of numerical models that can

explicitly simulate coupled geometric instabilities and material inelastic behavior at a lower

computational cost is important in scenarios where multiple analyses are required, such

as probabilistic assessments and uncertainty quantification. This may be especially useful,

for example, in performance-based assessment and design, in benchmarking lower-fidelity

simulation models, in the process of developing new structural systems for buildings, and

to motivate innovation in high-performance steel materials to target specific performance

objectives. The aforementioned impacts of this thesis all ultimately support the objectives of

improving the safety and cost efficiency of buildings subjected to earthquake loading.

The contributions of this thesis are further expounded upon through the following research

topics.
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7.2.1 Finite element model validation through detailed physical experiments on

beam-columns

As highlighted throughout this thesis, there is a need for detailed physical component test-

ing for the purpose of further validating and improving upon finite element models of steel

beam-columns. For instance, in Chapter 2, the importance of future physical experiments for

validating the differences between simulation models that employ either the VC or UVC mate-

rial models is stated. In Chapter 6, the importance of physical experiments for expanding on

the range of parameters is outlined, particularly members with relatively high lateral-torsional

slenderness in terms of λ̄LT . The need for experiments with measured initial geometric imper-

fections and residual stresses is apparent for further evaluating the proposed macro model

recommendations. Furthermore, the time-dependent behavior of structural steel materi-

als (i.e., strain rate effects and strain ageing) have thus-far been neglected in finite element

simulations conducted in this thesis.

Potential research aims related to these needs are to conduct physical experiments on steel

beam-column components to better validate finite element models, and to better comprehend

the influence of time-dependent effects on steel beam-column component behavior through

component and material testing. Component tests with known data regarding the geometry,

initial geometric imperfections, material, and residual stresses may be used to provide insight

into potential gaps in the state-of-the-art for steel beam-column simulations. Meanwhile,

strain rates under real-time loading conditions and the strain ageing present in structural steel

materials may influence yielding stress on the order of 10 % (Fujimoto et al., 1978; Lamarche

and Tremblay, 2011). Both the aforementioned effects warrant investigation as Chapter 2

showed that simulated geometric instabilities may be sensitive to changes in the initial yield

stress within this margin. The influence of strain ageing may be particularly important for

studying mainshock/aftershock series in earthquake engineering where the material has time

to age. Addressing these research topics can improve numerical models for steel beam-column

components, and ultimately leads to more reliable simulations of steel structures.

7.2.2 Advancing the development of fiber-based reduced-order models

The computational complexity of performance-based earthquake engineering due to it prob-

abilistic nature has been highlighted throughout this thesis. The macro model proposed

in this thesis is estimated to reduce computational costs for beam-column components by

around 50 %, however, for certain applications users may desire an even more efficient ap-

proach. For this reason, a future aim may be to further reduce the computational effort of

the macro model proposed in this thesis while still simulating nonlinear material behavior

and coupled geometric instabilities. One potential method of achieving this goal is to develop

a fiber-based beam-column element that represents strength and stiffness degradation in
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steel beam-columns due to coupled geometric instabilities. Computationally, this approach

is promising as fiber-based models are expected to result in less degrees-of-freedom and

integration points than the continuum elements used in critical regions of macro models.

Strength degradation in fiber-based beam-column elements could be represented through

analytical equations in a similar manner to Möller et al. (1997) who developed a model for

cruciform sections subjected to monotonic axial loading. Analytical equations to predict

local inelastic geometric instabilities in steel beam-columns subjected to multiaxis loading

require significant evolution to accomplish this task. Additionally, issues arising from strain

localization as well as mesh dependency in the post-peak response should be carefully ad-

dressed. Through this proposed research, further lowering the computational cost would

be beneficial for probabilistic assessments, such as those in performance-based earthquake

engineering. Furthermore, analytical equations for local inelastic instabilities would also

prove useful to inform design guidelines for high-performance steel materials for which the

current semi-empirical equations are not fully satisfactory (Galambos et al., 1997).

7.2.3 Frame simulation studies

Frame simulations within the performance-based earthquake engineering framework are

typically conducted using concentrated plasticity component models. Such simulations come

with the limitations of concentrated plasticity component models outlined in Chapter 4. The

natural extension of the research conducted in this thesis is to study steel frame structures

subjected to earthquake loading using the proposed macro model instead of a concentrated

plasticity model. Potential aims of a frame simulation study could be to benchmark existing

concentrated plasticity methods of constructing structural models, and to investigate the

sensitivity of engineering demand parameters (EDPs) to model variables that cannot be easily

assessed using a lower-fidelity modeling approach.

A methodology for modeling steel frame structures evolving from the recommendations

in Chapters 4 and 6 is required to achieve the aforementioned aims. The realization of this

methodology entails several research objectives. For instance, macro models for beam-to-

column subassemblies in steel frame structures should be further validated with experimental

data using the framework established in Chapter 6. Additionally, recommendations are

required for factors such as the influence of composite action in the beams of moment-

resisting frames due to the presence of the concrete floor slab (El Jisr et al., 2020), and the

incorporation of the gravity load supporting system in the macro modeling context (Elkady

and Lignos, 2015b). Recommendations are also required to account for the inherent damping

in buildings that is not explicitly represented in a typical structural model (e.g., due to non-

structural components in buildings, friction within bolted connections, etc.).

Finally, additional methods to increase the computational savings when modeling frames

can be explored. As discussed in Chapter 4.5.2, the macro model can be applied selectively
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7.2. Impact and future research topics

depending on the desired level of fidelity in particular regions (e.g., for first-story columns),

whereas it may be possible to model the rest of the frame using a lower fidelity approach.

Selective application of the macro model could be further improved through an adaptive

meshing strategy (see e.g., Molinari and Ortiz (2002)) to determine where to place continuum

element domains throughout the analysis only as they are needed. Such an adaptive meshing

strategy may dramatically decrease the overall computational cost while retaining solution

accuracy.

One interesting impact of using the proposed macro model in frame simulations is to

benchmark existing concentrated plasticity modeling approaches. Benchmarking existing

approaches is important in understanding the efficacy of these models for risk and loss as-

sessment. Furthermore, the influence of effects that are not explicitly modeled by current

concentrated plasticity approaches, such as axial shortening (Elkady et al., 2020), can be

directly accounted for using the proposed macro model approach. In terms of sensitivity

analyses, studies such as Ibarra and Krawinkler (2005); Liel et al. (2009); Vamvatsikos and Fra-

giadakis (2010) have shown that the most influential parameters in the prediction of structure’s

response up-to collapse are those associated with components’ strength/stiffness degradation.

The use of the macro model allows for uncertainty in structural performance to be quantified

through parameters that conventional beam-column elements cannot easily incorporate into

the degrading response; examples being: the material hardening characteristics, the initial

geometric imperfections, and the residual stresses. Uncertainty quantification is important to

determine how the most sensitive parameters can be best controlled to improve the safety

and cost-efficiency of designs through the use of, for example, high-performance materials,

novel structural systems, and improved construction practices.
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