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INSTRUCCIONES PARA LEER UNA TESIS

Tome aire, respire, camine hacia el estante, saque la tesis. Piense en lo que hizo el autor para

terminarla, póngase gafas, en caso de requerirlas, busque un sillón verde y tome asiento.

Deje la tesis a un costado, párese y apague la radio, la televisión, y piense de nuevo

en el autor. ¿Quién era? ¿Cómo vestía? ¿Le gustaba el café o la cerveza?

Prepárese un café y vuelva a la silla reclinable, esa que le gusta,

apoye sus pies y deje a un costado las alpargatas.

Hace calor, ¿cierto? Aún tiene que bajar las

escaleras para lavar la ropa, pero

deje eso para más rato, tome la tesis. Lea el nombre del autor y el título, piense sobre quién

decidió el título y quién decidió ese nombre para el autor, reflexione que no es de su gusto,

pero reconozca que su nombre tampoco es trascendente, y usted ni siquiera tiene título.

Sostenga la tesis por el lomo, firme, y ábrala, sienta el olor a nuevo, ¿le agrada? ¿A quién no?

Observe el número de página, avance y vea el total de páginas, ¿valdrá su tiempo? Retroceda

rápidamente al resumen, léalo. Para eso, atraviese la página verticalmente, de arriba a abajo,

¿o al revés? No importa, con tal que lo repita un par de veces, capturando las palabras que

considere relevantes, o mejor aún, los tecnicismos. Así al menos puede aparentar ser

interesante en su próxima tertulia, ¿no le parece?

Cierre la tesis, déjela sobre la silla, póngase las alpargatas,

párese y baje las escaleras, lave la ropa en agua fría,

¿con centrifugado o en programa delicado? Vea la hora.

Suba las escaleras, levante la tesis de la silla, recuéstese en el sillón verde, no se saque las

alpargatas. Ojee la tesis y repita el proceso del resumen, ¿lo recuerda? Bien, hágalo, pero esta

vez en páginas aleatorias, ¿no entiende? Busque en específico donde se explica eso que no

logra entender. Salte de página en página buscando el sentido, como en esa novela, ¿cómo se

llamaba esa novela? Esa en la que dedican un capitulo entero a divagar sobre jazz.

Cierre la tesis, párese, deje la tesis sobre la silla

y camine hacia la radio, préndala y busque una

estación de jazz. ¿Recuerda las palabras que leyó en la tesis?

Piense que son papeles desparramados en el piso, ¿eso le recuerda un urinario? Vaya al baño.

¿Será la hora? Baje las escaleras y retire la ropa de la lavadora,

cuélguela en el colgador del cuarto, que le de el sol de la ventana.

Es todavía temprano para salir a caminar.

Suba las escaleras, tome la tesis y vuélvala a meter en el estante.

Duración media de la lectura de una tesis: lo que toma un tren entre París y Marsella.





“Andábamos sin buscarnos, pero sabiendo que andábamos para encontrarnos”

— Julio Cortázar

Para Lucía
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Abstract
Dense granular flows ––debris or pyroclastic flows, avalanches, granular flows in heaps, silos

or rotating drums––are ubiquitous to many natural and industrial processes. Their grain

composition is often polydisperse, with particles differing in shape, size or density. In a phe-

nomenon called particle-size segregation, grains of different sizes are rearranged by the very

same mechanical forcing that generates the granular flow in the first place. If the flow’s rheol-

ogy is determined by grain characteristics and grain-grain interactions, a grain rearrangement

should change the flow’s rheology. Although recent constitutive relations for dense granular

flows and size segregation models are able to describe well their respective processes, the

interplay between rheology and particle-size segregation remains poorly understood. In this

dissertation, I present an experimental study that aims to describe the coupling between

rheology and particle-size segregation in dense granular flows. To address this objective,

experiments in three experimental setups were carried out: (i) a two-dimensional oscillating

shear cell, (ii) a three-dimensional oscillating shear box, and (iii) a three-dimensional conveyor

belt flume. In these three configurations, I focused on the experimental determination of bulk

species composition, segregation rates, velocity fields and the strain-rate tensor invariants. For

that, the Refractive Index Matching (RIM) and Particle Tracking Velocimetry (PTV) techniques

were intensively applied. In the two-dimensional shear cell, the rate and mechanism by which

a large particle (intruder) segregated were found to be determined by the particles’ size ratio,

its rotation, and the strain rate around it. A scaling law for the segregation flux function was

determined from the three-dimensional shear box single-intruder experiments. Four key

observations were made: the segregation rate scaled; (i) linearly to the shear rate, for small and

large intruders; (ii) linearly to the size ratio for a large intruder; and (iii) quadratically to size ra-

tio for a small intruder. Finally, (iv) all the intruders’ trajectories were well-fitted by a quadratic

law, a sign of a pressure-dependent segregation rate. For the mono- and bidisperse stationary

granular avalanches in the conveyor belt, I found two flow regions: a bulged-convective front

and a well-arranged layered tail. Independently of concentration, the time-averaged velocity

profiles were found to be Bagnold-like and segregation rate was found to be highest at the

front, where dilation and shear rate values were also high. All these experimental results

described a strong coupling between rheology and particle-size segregation, and ultimately

provided a segregation rate dependence on normal stresses, shear rate and size ratio.
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Zusammenfassung
Dichte körnige Strömungen ––Trümmer oder pyroklastische Strömungen, Lawinen, körni-

ge Strömungen in Haufen, Silos oder rotierenden Fässern––sind in vielen natürlichen und

industriellen Prozessen allgegenwärtig. Ihre Kornzusammensetzung ist oft polydispers, mit

unterschiedlicher Form, Größe oder Dichte der Partikel. In einem Phänomen, bezeichnet

als Partikelgrößentrennung, werden Körner unterschiedlicher Größe durch denselben me-

chanischen Antrieb neu angeordnet, der vor allem den körnigen Fluss erzeugt. Wenn die

Rheologie durch Kornmerkmale und Korn-Korn-Wechselwirkungen bestimmt wird, sollte

eine Kornumlagerung die Rheologie ändern. Obwohl die jüngsten Materialmodelle für dichte

körnige Strömungen und Größentrennungsmodelle ihre jeweiligen Prozesse gut beschreiben

können, ist es noch wenig bekannt, wie Rheologie und Partikelgrößentrennung zusammen

wirken. In dieser Dissertation stelle ich eine experimentelle Studie vor, die die Kopplung

zwischen Rheologie und Partikelgrössentrennung in dichten körnigen Strömungen beschreibt.

Dazu, wurden drei verschiedene Experimente durchgeführt: (i) eine zweidimensionale oszil-

lierende Scherzelle, (ii) eine dreidimensionale oszillierende Scherbox und (iii) ein dreidimen-

sionale Förderbandkanal. Diese drei Versuchen konzentrierten sich auf die experimentelle

Bestimmung der Zusammensetzung von Massenarten, der Trennungsraten, der Geschwin-

digkeitsfelder und der Invarianten der Dehnungsrate. Hierfür wurden die Refractive Index

Matching (RIM) und Particle Tracking Velocimetry (PTV) angewendet. In der zweidimen-

sionalen Scherzelle wurde die Geschwindigkeit und der Mechanismus, durch die sich ein

großes Teilchen (Eindringling) trennte, durch das Größenverhältnis der Teilchen, seine Rota-

tion und die Dehnungsgeschwindigkeit um sie herum bestimmt. Ein Skalierungsgesetz für

die Trennungsflussfunktion wurde aus den dreidimensionalen Scherbox-Einzeleindringling-

Experimenten bestimmt. Es wurden vier wichtige Beobachtungen gemacht, die Trennungsrate

normierte: (i) linear zur Schergeschwindigkeit für kleine und große Eindringlinge; (ii) linear

zum Größenverhältnis für einen großen Eindringling; und (iii) quadratisches Verhältnis zur

Größe für einen kleinen Eindringling. Schließlich (iv) waren alle Flugbahnen der Eindring-

linge durch ein quadratisches Gesetz gut beschrieben, ein Zeichen für eine druckabhängige

Entmischungsrate. Für die stationären körnigen Lawinen im Förderband fanden wir zwei Strö-

mungsbereiche: eine gewölbte-konvektive Front und einen übersichtlichen Schichtschwanz.

Unabhängig von der Konzentration waren die zeitlich gemittelten Geschwindigkeitsprofile

Bagnold-ähnlich und die Entmischungsrate an der Vorderseite am höchsten, wo auch die

Werte für Dilatanz und Schergeschwindigkeit hoch waren. Alle Resultate beschreiben eine

starke Kopplung zwischen Rheologie und Partikelgrößentrennung und zeigen letztendlich
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Zusammenfassung

eine Abhängigkeit der Trennungsrate von normalen Spannungen, Schergeschwindigkeit und

Größenverhältnissen.
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Résumé
Les écoulements granulaires denses ––laves torrentielles ou pyroclastiques, les avalanches, les

écoulements granulaires en tas, silos ou tambours––se retrouvent dans de nombreux processus

naturels et industriels. Ils sont composés de particules qui diffèrent par la forme, la taille ou la

masse volumique. Le phénomène appelé ségrégation granulaire correspond à une situation

où des grains de différentes tailles se séparent, et ceux de taille similaire se regroupent. Parmi

les questions ouvertes sur la rhéologie des écoulements granulaires, il y a l’interaction entre

dynamique des écoulements et ségrégation granulaire. Dans ma thèse, je présente une étude

expérimentale pour comprendre la relation entre rhéologie et ségrégation granulaire dans des

écoulements granulaires denses. Pour cela, j’ai mené des expériences dans trois configurations

expérimentales : (i) une cellule de cisaillement oscillatoire bidimensionnelle, (ii) une cellule de

cisaillement oscillatoire tridimensionnelle, et (iii) un tapis roulant tridimensionnel. Dans ces

trois dispositifs, je me suis concentré sur la détermination expérimentale de la composition de

l’écoulement, des taux de ségrégation, des champs de vitesse et des invariants du tenseur des

taux de déformation. Pour les expériences, j’ai utilisé de manière intensive les méthodes dites «

Refractive Index Matching » (RIM) et « Particle Tracking Velocimetry » (PTV). Dans la cellule de

cisaillement bidimensionnelle, j’ai étudié comment une grosse particule (intrus) se déplaçait

dans un milieu composé de petites particules de même taille. J’ai montré que la vitesse de

ségrégation dépendait du rapport de taille des particules, leur rotation et la déformation

autour d’elles. J’ai développé une fonction empirique qui détermine la vitesse de ségrégation

d’un intrus dans la boîte de cisaillement tridimensionnelle. Quatre observations clés en ont

été tirées : (i) la vitesse de ségrégation est directement proportionnelle au taux de cisaillement

(que l’intrus soit grand ou petit) ; (ii) elle dépendait du rapport de tailles entre intrus et milieu

environnant ; (iii) elle se présentait comme une fonction quadratique du rapport de tailles

lorsque les intrus étaient de petit diamètre ; et (iv) toutes les trajectoires des intrus sont

cohérentes avec une loi quadratique de ségrégation. Ce résultat est important parce que

cela montre que la ségrégation dépend de la pression locale. Pour les avalanches granulaires

stationnaires générées sur le tapis roulant, on a trouvé deux régions d’écoulement : un front

d’écoulement, présentant une forte courbure de la surface libre et qui est dominé par un

transport convectif, et une queue d’écoulement, qui se caractériser par des couches compactes.

Quelle que soit la concentration, les profils de vitesses moyennées dans le temps sont de type

Bagnold, et la vitesse de ségrégation est le plus élevée au niveau du front, où la dilatance

et le cisaillement de l’écoulement sont également élevés. Tous ces résultats expérimentaux

décrivent un couplage fort entre rhéologie et ségrégation granulaire, et fournissent finalement
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Résumé

une fonction de la vitesse de ségrégation qui dépend des contraintes normales, du taux de

cisaillement, et du rapport de tailles des particules.
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Riassunto
Flussi granulari densi ––flussi detritici o piroclastici, valanghe, flussi granulari in pile, silos o

fusti––si trovano in molti processi naturali e industriali. La loro matrice granulare è spesso

polidispersa, con particelle che differiscono per forma, dimensione o densità. In un fenomeno

chiamato segregazione granulare, grani di diverse dimensioni vengono riorganizzati dalla

stessa sollecitazione che genera il flusso in prima istanza. Sebbene i recenti progressi nella

reologia e nella segregazione abbiano descritto con successo i rispettivi processi, l’interazione

tra i due rimane scarsamente compresa. Questa tesi presenta uno studio sperimentale volto

a descrivere la relazione tra reologia e segregazione granulare in flussi granulari densi. Per

raggiungere questo obiettivo, si sono condotti esperimenti utilizzando tre diverse attrezzature:

(i) una cella di taglio oscillatoria bidimensionale, (ii) una cella di taglio oscillatoria tridimen-

sionale e (iii) un nastro trasportatore tridimensionale. In queste tre installazioni, lo studio è

stato focalizzato sulla determinazione sperimentale della composizione del flusso, velocità di

segregazione, campi di velocità e invarianti del tensore di deformazione. Per gli esperimenti,

sono stati utilizzati i metodi Refractive Index Matching (RIM) e Particle Tracking Velocimetry

(PTV). Gli esperimenti nella cella di taglio bidimensionale hanno evidenziato che la velocità e

il meccanismo con cui viene segregata una singola grande particella grande (intruso) sono de-

terminati dal rapporto tra i diametri delle particelle, dalla loro rotazione e dalla deformazione

nel loro intorno. Una funzione per il tasso di segregazione è stata determinata determinata

studiando la segregazione dei singoli intrusi nella cella di taglio tridimensionale. Sono state

fatte quattro osservazioni, il tasso di segregazione è direttamente proporzionale: (i) al tasso

di cutoff, per piccoli e grandi intrusi; (ii) al rapporto tra i diametri (particellari) per grandi

intrusi; e (iii) al quadrato il rapporto tra i diametri (particellari) per piccoli intrusi. Infine, (iv)

tutte le traiettorie degli intrusi si adattano bene a una legge quadratica, un’indicazione che la

segregazione dipende dalla pressione locale. Per le valanghe granulari stazionarie generate

sul nastro trasportatore, abbiamo identificato due regioni di flusso: un fronte convettivo spor-

gente e un retro compatto e stratificato. Indipendentemente dalla concentrazione, i profili

di velocità mediati nel tempo sono risultati di tipo Bagnoldiano e il tasso di segregazione

è risultato essere il più elevato nella parte anteriore, dove anche la dilatanza del flusso e il

taglio sono alti. Tutti questi risultati sperimentali hanno testimoniato una forte interazione

tra reologia e segregazione granulare, e infine hanno fornito una funzione per la velocità di

segregazione che dipende dalle sollecitazioni normali, dalla tassa di deformazione angolare e

dal rapporto tra i diametri (particellari).
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Resumen
Los flujos granulares densos ––flujos detríticos o piroclásticos, avalanchas, flujos granulares

en pilas, silos o tambores ––se encuentran en muchos procesos naturales e industriales. Su

matriz granular es a menudo polidispersa, con partículas que difieren en forma, tamaño o

densidad. En un fenómeno llamado segregación granular, los granos de diferentes tamaños

son reordenados por el mismo forzante que genera el flujo en primera instancia. Aun cuando

avances recientes en reología y segregación han logrado describir exitosamente sus respec-

tivos procesos, la interacción entre ambos sigue poco comprendida. En esta tesis, presento

un estudio experimental que tiene como objetivo describir la relación entre reología y la

segregación granular en flujos granulares densos. Para abordar este objetivo, llevé a cabo

experimentos en tres configuraciones experimentales: (i) una celda bidimensional de cizalle

oscilatorio, (ii) una celda tridimensional de cizalle oscilatorio y (iii) una cinta transportadora

tridimensional. En estas tres instalaciones, me centré en la determinación experimental de

la composición del flujo, las tasas de segregación, los campos de velocidad y los invariantes

del tensor deformación. Para los experimentos, utilicé intensivamente los métodos Refractive

Index Matching (RIM) y Particle Tracking Velocimetry (PTV). En la celda de cizalle bidimen-

sional, determiné que la velocidad y el mecanismo con el cual una partícula grande (intruso)

es segregada, estaban determinados por la razón de tamaño de las partículas, su rotación y

la deformación a su alrededor. Se definió una función para la tasa de segregación a partir de

intrusos segregando en la caja de cizalle tridimensional. Se hicieron cuatro observaciones, la

tasa de segregación es directamente proporcional: (i) a la tasa de corte, para intrusos pequeños

y grandes; (ii) a la razón de tamaño entre partículas para los intrusos grandes; y (iii) al cuadra-

do de la razón de tamaño para los intrusos pequeños. Finalmente, (iv) todas las trayectorias

de los intrusos se ajustaron bien a una ley cuadrática, una indicación de que la segregación

depende de la presión local. Para las avalanchas granulares estacionarias generadas en la

cinta transportadora, observé dos claras regiones en el flujo: un frente abultado y convectivo,

y una parte posterior compacta y ordernada en capas de partículas. Independientemente

de la concentración, se determinó que los perfiles de velocidad promediados en el tiempo

eran del tipo Bagnold y se encontró que la tasa de segregación era más elevada en el frente,

dónde la dilatancia y el cizallamiento del flujo eran también altos. Todos estos resultados

experimentales permitieron describir una fuerte interacción entre reología y segregación

granular, y finalmente proporcionaron una función para la tasa de segregación que depende

de los esfuerzos normales, la tasa de deformación angular y la razón de tamaño entre las

particulas.
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1 Introduction

“For it is natural for like to be affected by like and for things of the same kind to move towards

one another and for each of the shapes to be reorganized into a different complex and so

make another state.”

— DEMOCRITUS (SIMPLICIUS commentary on Physics)

1.1 Motivation

Grains and their movement have captured human curiosity and imagination for milennia.

Since antiquity, the observation of grains and their dynamics have prompted, arguably, some

of the most important scientific theories. A notable example is the one of Leucippus’ pupil

Democritus, who gave origin to atomism when he famously elucubrated that matter was

formed by solid indivisible grains. Matter had to be granular.

The ubiquity of granular materials could explain the origin of Democritus’ statements. From

clay and gravel to rice and salt, grains are present in a variety of natural environments and

industrial processes. A striking feature of granular materials is that a single grain behaves

differently than a group of them. While a single grain may generally behave as a solid, a

collection of grains exhibit various, even simultaneous, behaviors (e.g., Jaeger et al., 1996;

Ancey, 2007). Such behaviors are the result of mechanical forcings being transmitted, from

the bulk- to grain-scale, from macro to microscale. Therefore, not only global bulk properties

come into play, individual grain properties are also preponderant to characterize the eventual

response of the granular material to the forcing.

Democritus also affirmed that atoms moved and collided in a vacuum space, giving shape to

matter by rearranging according to their shape, order and posture (Leucippus and Democritus,

1999). Despite the fact that his statement aims to explain how the different types of matter

are formed, a grain-sorting mechanism seems instrumental to explain his reasoning. In fact,

polydisperse granular materials naturally segregate by their sizes, shapes or densities when

1



Chapter 1. Introduction

they flow (Ottino and Khakhar, 2000; Gray, 2018). If grains are fundamentally different, it

is to be expected that an arrangement of one type of them is different than another of a

different type. Therefore, grain rearrangement transforms the original material, modifying its

characteristics, ergo, the way it responds to mechanical forcings.

(a) 2018 mudslide in Chamoson, Valais, Switzerland.

©Maxime Schmid/Keystone.

(b) 2017 debris flow in Villa Santa Lucía, Aysén, Chile. ©La

Tercera.

(c) 2008 pyroclastic and debris flow in Chaitén, Aysén,

Chile. Modified from Gobierno de Chile CC BY 3.0 CL.

(d) 2019 debris flow in Fully, Valais, Switzerland. ©Bob

de Graffenried/LHE-EPFL.

Figure 1.1 – Examples of natural granular flows. The flows in the pictures are characterized by
a rapid mass movement that alters natural environments and may devastate entire villages,
as shown in (a)-(c). The commune of Chamoson has been affected by two debris flows in
a year, in (a): the debris flow of 2018 that displaced 700 m3 of material causing ∼1 MCHF
in damages. In (b) we distinguish two types of materials, easily identifiable by color, which
indicate some sort of polydispersity (Sernageomin, in Spanish). In (c) the Chaitén pyroclastic
flow was channelized by the Yelcho River and flooded the city, formed a beach and relocated
the outlet of the Yelcho River. In (d) I show one of the two small debris flows that happened
during August 2019 close to Fully. We see the flow spread in three separate currents (fingers)
characterized by larger blocks at the front and the sides.

Besides these philosophical thoughts, the study of granular flows is also motivated by natural

processes. The occurence of gravity-driven granular flows in nature has great consequences

2
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1.1. Motivation

on ecosystems and human activities (e.g., Ancey, 2007; Delannay et al., 2017). Debris flows,

avalanches and pyroclastic flows are important for sediment balance and geological processes,

but may also produce human casualties and heavy economic loss. Due to climate change, we

could expect an increment of debris flow and mudslide events, produced by more frequent

and intense sudden storms over erodible dry-soils (Stoffel et al., 2014). In the past decade,

mountain regions have been particularly affected by almost yearly events. In Chamoson,

Switzerland, two debris flows have happened in a timespan of 370 days (see Fig. 1.1a). Ac-

cording to the authorities, “a villager could witness 3 to 4 events in his life”, in two years many

have already fulfilled the quota1. With estimated damages of 20 MCHF and two casualties,

resilience to such devastating flows has become a priority for Swiss authorities in the face of

climate change2. In Chile, another mountainous country, debris flows also happen on a yearly

basis. Surprisingly, nowadays in that country you are more likely to die or lose your house in a

debris flow than in an earthquake. The Villa Santa Lucía town in southern Chile suffered an

earthquake and a debris flow in less than a year. While the earthquake produced no casualties

and the damage was minor, the debris flow razed the village and killed 21 people3. Clearly,

efforts to better understand granular flows must be made so that risk area identification, mass

movement determination and structural design are improved.

Size segregation plays an important role on the run-out of gravity-driven granular flows

(Kokelaar et al., 2014). Granular currents are likely to form blunt bulky fronts (Johnson et al.,

2012; Denissen et al., 2019), fingering instabilities (Pouliquen et al., 1997; Woodhouse et al.,

2012) and levees (Mangeney et al., 2007; Rocha et al., 2019) that determine final run-out

distance, velocity or channelization. Some of these phenomena have been found to be

influenced by grain-sorting, which redistributes particles locally (Gray, 2018). At a relatively

smaller scale, industrial granular mixing processes are particularly disturbed by particle

segregation. For instance, pharmaceutical and agroindustrial activities are known to report

economic losses due to inefficient mixing and reduced quality of their produce (Muzzio et al.,

2003; Furukawa et al., 2016). Contrarily to these industries, the mining industry profits from

size segregation to produce more stable and area-efficient stockpiles. The understanding of

size segregation phenomena could reduce industrial costs and improve debris flow resilience.

From kinetic theory to mixture-theory models, the dynamics of granular flows and particle-

size segregation have been intensively studied in the past decades. In recent years, the local

µ(I ) rheology appears to characterize a wide-range of flow configurations and materials under

a single parameter, the non-dimensional inertial number I (Ancey et al., 1999; MiDi, 2004;

Jop et al., 2006), similar to the Savage number S I 2 (Savage, 1984) or Coulomb number Co

(Ancey and Evesque, 2000). In similar fashion, the mixture-theory based convection-diffusion

equations of Gray and Thornton (2005) have been intensively used to describe size segregation

in various flow configurations and conditions (e.g., Thornton and Gray, 2008; Gray and Ancey,

1Lave torrentielle de Chamoson: décryptage d’un drame, L’illustré, August 23, 2019. in French
2New research centre to explore climate change and natural hazards in the Alpine region, Joint press release by

the Canton of Grisons, ETH Zurich and WSL. June 12, 2020.
3Aluvión Villa Santa Lucía, Servicio Nacional de Geología y Minería. in Spanish
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2011; Wiederseiner et al., 2011b; van der Vaart et al., 2015). Yet, a clear and quantifiable relation

between rheology and size segregation in granular flows remains unclear.

Even though no mathematical or physical description was given by Democritus, many of his

thoughts still serve as motivation for contemporary granular flow studies. The present thesis

is no exception. Based on experimental observations, I want to address some of the questions

that arise from the citation at the heading: what drives particles of the same kind to move

towards one another? how does this segregation movement affect the state of the granular

material or its rheology?

1.2 The rheology of dense granular flows

Governing equations

Consider a bulk of monodisperse grains flowing down an incline. For a bulk of density ρ, the

mass and momentum equations can be written as

∂ρ

∂t
+∇· (ρu) = 0, (1.1)

ρ
du

dt
=∇·σ+ρg, (1.2)

where u is the bulk velocity field, σ=−p1+τ is the Cauchy stress tensor, and g is the gravity.

p is the pressure, 1 is the identity tensor and τ is the deviatoric stress tensor. Note that if

we consider a constant solids volume fraction Φ and a grains intrinsic density ρ∗, so that

Φ= ρ/ρ∗, Eq. 1.1 is reduced to an incompressible velocity field ∇·u = 0 (Savage and Hutter,

1989; Gray, 2018).

To understand the origin and validity of the constitutive relations that determine the rheology

of granular flows, I must first refer to the different flow regimes encountered for these flows.

Flow regimes

Dense granular flows can occur in a variety of flow configurations (e.g., silos, chutes, inclines,

drums, etc.) and frictional conditions (Gray, 2001; Bertho et al., 2003; MiDi, 2004; Forterre

and Pouliquen, 2008). Furthermore, granular flows are known to show different mechanical

responses to stress. A bulk of grains will behave as a solid if it is at rest, whereas the very

same bulk will behave as a fluid if sheared enough or as a gas if agitated strongly (Campbell,

1990; Jaeger et al., 1996). In some cases, these differing behaviors can even be encountered

simultaneously (Ancey and Evesque, 2000; Gray and Ancey, 2011; Russell et al., 2019). Hence,

the determination of a constitutive relation for granular flows, valid for all granular materials
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and flow regimes, remains a challenging task.

As said, a dense bulk of cohesionless particles can exhibit various responses when subjected

to a mechanical forcing. Mainly, the response is determined by grain inertia and grain-grain

interactions, ranging from strong-frictional enduring contacts to highly-energetic instanta-

neous collisions (Campbell, 2006; Ancey, 2007). While some authors associate flow regimes to

state-like characteristics (Jaeger et al., 1996), other authors prefer to associate elastic or plastic

regimes to describe granular flows (Campbell, 1990; Goldhirsch, 2003). In this thesis I focused

on the former regime classification.

Three regimes have been primarily identified by several authors: (i) collisional or grain-inertia

regime, (ii) frictional or quasi-static regime, and (iii) frictional-collisional or transitional regime

(Savage, 1984; Ancey et al., 1999; Ancey, 2007).

In the collisional regime, also called rapid-flow or grain-inertia regime, the flow can be de-

scribed as very agitated or highly-sheared, with particle interactions dominated by instanta-

neous collisions (Bagnold, 1954; Savage, 1984; Campbell, 2006; Ancey, 2007). Since particle

movement is subjected to interparticle collisions, its movement is highly random and it re-

sembles molecular gas dynamics. Following that similarity, flows in this regime are usually

modeled using kinetic theory models (e.g., Lun et al., 1984; Jenkins and Richman, 1985; Gold-

hirsch, 2003; Mitarai and Nakanishi, 2005; Berzi et al., 2020). These models are based on

the concept of velocity fluctuations and granular temperature (Ogawa, 1978; Azanza et al.,

1999), and are heavily based on statistical mechanics. Despite recent efforts to extend the

application of kinetic theory models (Chialvo and Sundaresan, 2013; Berzi, 2014), usually

this theory struggles to model flows under strong frictional contacts or jamming, i.e., where

collisions are not the predominant grain-grain interaction.

The frictional, or quasi-static, regime is characterized by packed bulks that flow under very low

shear rates, where frictional contacts are predominant and jamming is frequently observed

(e.g., Savage, 1998; To et al., 2001; Silbert et al., 2002). In this regime, soil mechanics laws apply

to the plastic flowing behavior of the bulk, such as Coulomb’s law (Coulomb, 1773)

T = P tan ζ, (1.3)

where ζ is the friction angle of the granular material, P is the normal stress and T the shear

stress applied on the grains. This equation is an application of Mohr-Coulomb theory on

a group of cohesionless grains flowing past their failure (Bagnold, 1954; Savage, 1984) and

its usage has been translated to empirical constitutive laws for the transition between the

frictional and collisional regime (MiDi, 2004).

Between the previous two regimes, lies the frictional-collisional regime (Ancey and Evesque,

2000; Ancey, 2007) or transitional regime (Savage, 1984). In this regime, grain inertia is

dissipated through friction and collisions altogether, meaning that contact between particles
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Chapter 1. Introduction

may be initiated by a collision but it endures enough to create friction between grains. The

enduring contacts form stress networks at a rate that scales inversely to the bulk’s shear-rate,

γ̇−1. Despite being a transitional regime, arguably most of the dense granular flows mentioned

in §1.1 can be considered to lie in the frictional-collisional regime.

For the past few decades, the regime classification for dense granular flows has relied heavily

on dimensional analysis. Alongside the mentioned Coulomb’s law (Eq. 1.3), other non-

dimensional groups and empirical relationships have been keystones to determine constitu-

tive relations for dense granular flows in the frictional-collisional regime (examples on other

non-dimensional groups can be found in, Bagnold, 1954; Savage, 1984; Pouliquen, 1999; Ancey

and Evesque, 2000; MiDi, 2004; Andreotti et al., 2013).

In this work I focused on granular flows in the frictional-collisional regime (Ancey and Evesque,

2000; Ancey, 2007), which is in the transition of Savage’s (1984) regimes. This condition situates

my approach far from kinetic theory models and close to empirically-based constitutive

relations such as the µ(I ) rheology, to be detailed in the next subsection.

µ(I ) rheology

A large dataset of experiments and numerical simulations showed that dense granular flows in

various configurations could be described via the inertial number (MiDi, 2004)

I = γ̇d√
p/ρ∗

, (1.4)

where γ̇ is the shear-rate and d is the grains’ diameter. According to Ancey and Evesque

(2000), the frictional-collisional regime can be characterized by a non-dimensional ratio of

two time scales tp ∼
√
ρ∗d 2/p and tn ∼ γ̇−1. The relaxation time tp represents the time a

particle requires to travel its radius r due to the action of normal stresses. The other time scale

tn is given by the time a contact network endures. Therefore the time-scales’ ratio results in

the non-dimensional number Co = (tp /tn)2 = ρ∗r 2γ̇2/p, which is a precursor of I and also

similar to one of Savage’s (1984) non-dimensional parameters.

For uniform steady flows, as encountered in simple-shear flows, the friction coefficient µ can

only be a function of I , so Eq. 1.3 can be reduced to (Jop et al., 2006)

T =µ(I )P, (1.5)

for which µ(I ) can be determined empirically using the function suggested by Jop et al. (2006)

µ(I ) =µs + µ2 −µs

I0/I +1
, (1.6)
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1.2. The rheology of dense granular flows

where µs = tan θ1 and µ2 = tan θ2 are limiting values that set µ minimum and maximum

values at I → 0 and I →∞, respectively. I0 is a constant determined by the granular material

properties. Jop et al. (2006) also proposed a generalization of the µ(I ) rheology for three-

dimensional granular flows, for which the bulk stress tensor was defined as

σ=−p1+µ(I )p
D

I ID
, (1.7)

where 1 is the identity tensor, D is the strain-rate tensor and I ID its second invariant, or the

shear-rate. The strain-rate tensor was considered as (e.g., Timošenko and Goodier, 1988;

Andreotti et al., 2013)

D = 1

2

(∇u+ (∇u)T )
, (1.8)

where ∇u is the gradient of the velocity and T is the transpose. An effective viscosity can be

introduced as η=µ(I )p/(2I ID). With this generalization, the inertial number is redefined as

I = 2I IDd√
p/ρ∗

. (1.9)

An important result can be obtained for a uniform and steady flow of height h down a slope θ

incline using the inertial number definition. The Bagnold-like velocity profile, u ∼ h3/2, can be

retrieved from Eq. 1.2 by considering a hydrostatic pressure distribution p = ρg (h − z) cos θ

and Eq. 1.5 (MiDi, 2004)

u(z) = 2

3

I (θ)
√

g cos θh3/2

d

(
1− (1− z/h)3/2) , (1.10)

where I (θ) can be calculated using Eq. 1.6

I (θ) = I0
tan θ− tan θ1

tan θ2 − tan θ
. (1.11)

Despite the success of the µ(I ) rheology to capture a wide range of flow configurations, its

formulation is far from being definitive or complete. For instance, a couple of regularizations

for the µ(I ) function have been proposed to address its ill-posedness (Barker et al., 2015;

Barker and Gray, 2017; Heyman et al., 2017). In another aspect, most relevant for this thesis, I

was initially defined for a flow of monodisperse grains, i.e., I ∼ d (see Eq. 1.4). Dense granular

flows are known to be polydisperse in nature, composed by grains of a wide range of sizes,
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shapes or densities. The µ(I ) rheology does not include any polydispersity effects in d (Eq.

1.9). To my knowledge, only the works of Rognon et al. (2007) and Tripathi and Khakhar (2011)

have extended the µ(I ) rheology to include grains of different sizes, by considering a volume

or area averaged diameter of two grain species. Yet, and as I am about to discuss in the next

subsection, the role of polydispersity on the rheology of granular flows is far from understood.

1.3 Particle-size segregation

Whether it is their size, shape, composition or density, natural grains are different to each

other. This polydispersity, so inherent to granular materials, gives origin to grain-segregation

phenomena in granular flows. Even the slightest size difference can result in internal grain

movement that rearranges the bulk by its species. Grain sorting is usually produced by a

mechanical action that creates spacing or voids, which facilitates grain rearrangement that fills

the created volume gaps. While there are many mechanical forcings that lead to particle-size

segregation, shearing is an efficient forcing that is commonly produced by friction in natural

and industrial processes. In particular, particle-size segregation is frequently observed in

dense granular flows, which in counterpart sort them efficiently.

Shear-driven segregation mechanisms

Several size segregation mechanisms have been identified to affect granular materials, yet

most of them do not bear a significant effect for gravity-driven dense granular flows (Williams,

1976; McCarthy, 2009). Only two shear-driven segregation mechanisms have been identified

as crucial for these flows’ dynamics, the (i) kinetic sieving (Middleton, 1970), and (ii) squeeze

expulsion (Savage and Lun, 1988) mechanisms.

The kinetic sieving mechanism is yielded by the shear-induced relative movement of particle

layers. Large particle movement creates gaps through which smaller grains fall, thus sieved by

large particle movement.

The squeeze expulsion mechanism was initially described as a particle being squeezed out of

its own layer by surrounding grains (Savage and Lun, 1988). It is possible to see this mechanism

as a counterpart of kinetic sieving, whereas kinetic sieving produces a flux of small particles

towards the base of the flow, squeeze expulsion produces a flux of large particles towards the

bulk’s surface as a result of force imbalances.
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1.3. Particle-size segregation

Figure 1.2 – Sketches illustrating the shear-driven size-segregation mechanisms: (i) kinetic
sieving (Middleton, 1970), and (ii) squeeze expulsion (Savage and Lun, 1988). In (i), the smaller
red grains fall through gaps left beneath them by the large particles’ movement. In (ii), the
larger red particles are squeezed to the upper layers by the surrounding smaller particles.

These mechanisms are somehow tied, arguably through mass or net-flux continuity (Hill

and Fan, 2016; Jones et al., 2018; Gray, 2018), but their connection is still not clear. The

uncertainties come primarily from the squeeze expulsion mechanism. Its origin or the nature

of the forces that produce the mechanism are not well understood. Stress partitioning (Gray

and Thornton, 2005; Hill and Tan, 2014), force or pressure fluctuations (Staron, 2018), viscous

drag (van der Vaart et al., 2018b) or buoyancy-like forces (Guillard et al., 2016; Jing et al., 2020)

have been raised as plausible explanations for the occurrence of squeeze expulsion without

major consensus.

Convection-diffusion segregation model

For a bidisperse grain mixture of different species ν = {s, l }, representing small and large

particles, the species’ relative volume fractions φν must satisfy

∑
ν
φν = 1. (1.12)

This equation is sustained by a quasi-invariant Φ, which also meant ∇ · u = 0 in Eq. 1.1

(Gray, 2018). Equation 1.1 sets the base for the mixture-theory of Gray and Thornton (2005),

who presented a set of mass and momentum equations for each ν species that derived a

convective-diffusion model for a bidisperse grain mixture. Gray and Ancey (2011) extended

these equations to a polydisperse granular bulk using multicomponent mixture-theory to

model polydisperse particle-size segregation.
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Returning to a bidisperse case, Gray and Ancey’s (2011) equation for each ν species is written

as

∂φν

∂t
+∇· (φνu)+∇·Fν =∇· (D∇φν), (1.13)

where Fν are the segregation fluxes and D is the diffusion coefficient. The segregation fluxes

are gravity oriented and satisfy Fs =−Fl = F s g/|g| (Gray, 2018).

Segregation flux functions and asymmetric behavior

The properties and functional form of F s are decisive for the correct characterization of the

segregation processes. Bridgwater et al. (1985) proposed that segregation fluxes in a bidisperse

mixture were a cubic function of φν, which for F s would mean

F s =−qφs(1−φs)2, (1.14)

where q is the segregation rate. This cubic functional form satisfies F s = 0 for φs = {0,1}, a

condition first observed by Bridgwater et al. (1985) that satisfies a no-flux condition when

the bulk is monodisperse. Alternatively, Dolgunin and Ukolov (1995) proposed a quadratic

function for the segregation flux, expressed as

F s =−qφs(1−φs), (1.15)

which satisfies the condition already mentioned and noted by Bridgwater et al. (1985).

However, the segregation fluxes have an underlying asymmetric behavior. First observed

experimentally by van der Vaart et al. (2015), small and large particles have fundamentally

different segregation time-scales. In an attempt to describe this size-segregation asymmetry,

Gajjar and Gray (2014) suggested the following cubic function

F s =−q Aχφ
s(1−φs)(1−χφs), (1.16)

where χ ∈ [0,1] is a coefficient that determines the flux function skewness or asymmetry. Aχ

is a normalization factor to give this function the same segregation magnitude as that of the

quadratic flux function when χ = 0. The flux function of Gajjar and Gray (2014), and the

segregation velocities for small and large particles are plotted in Fig. 1.3. The asymmetry can

be seen in Fig. 1.3(b-c), the segregation velocity for a single small particle, represented by

φs = 0+ in (c), and a single large particle, represented by φs = 1− in (b), become different as χ
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1.3. Particle-size segregation

(red → blue) increases. Gajjar and Gray’s (2014) function has the particularity that it recovers

the functions of Bridgwater et al. (1985) and Dolgunin and Ukolov (1995) for χ= 0 and χ= 1,

respectively.

Figure 1.3 – (a) Segregation flux function of Gajjar and Gray (2014), and (b) the large (w l −w)
and (c) small (w s −w) particle segregation velocities as functions of φs and the asymmetry
parameter χ. For χ = 0 and χ = 1, Dolgunin and Ukolov’s (1995) quadratic and Bridgwater
et al.’s (1985) cubic functions are respectively recovered. All the functions have the same
segregation flux amplitude due to the normalization factor Aχ. The flux functions have an
inflection point φs

i n f = (1+χ)/(3χ) for χ= [1/2,1] (dashed white line in a) and large particles

segregate faster at φs
max = 1/(2χ) (dashed white line in b). Adapted from Gray (2018) with

permission of Prof. Nico Gray.

Despite the particularity of Gajjar and Gray’s (2014) function and the discovery of the segrega-

tion asymmetry, all the presented flux functions depend solely on φs as their main physical

variable. So far, no clear role has been attributed to other physical parameters that have been

found to determine faster or slower segregation rates. Important parameters, like the particles’

size ratio, or physical forcings, like pressure or shear are still absent in the definitions of q or

F s .
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1.4 Experimental techniques and methods

For this work, the main approach to study dense granular flows was experimental. Thus, I

provide an introduction to the techniques and methods that were most used for this thesis.

To avoid further redundancy with the main chapters of this thesis, the specific experimental

facilities and setups are presented and described in them.

Refractive index matching

Most granular materials are opaque, so the experimental observation of their flow dynamics

can pose several obstacles. Even if surface or wall measurements can already provide substan-

tial information about velocity or concentration fields, the suppositions to obtain such fields

are often strong and particular to the analyzed case (Sarno et al., 2016). Wall effects, singulari-

ties and the unclear relation between stress and strain makes internal direct measurements a

valuable asset.

Several high-end technologies –namely, electrical capacitance tomography, radiography, mag-

netic resonance imaging –have been used to obtain internal granular flow images or con-

centration fields (for examples or reviews on these techniques, see Zhu et al., 2003; Elkins

and Alley, 2007; Guillard et al., 2017). Despite the increasing precision and usage of these

technologies, their costs and implementation risks are still considerably higher than those of

simpler techniques, such as the Refractive Index Matching (RIM) technique (Dijksman et al.,

2012).

The RIM technique is based on a very basic principle: matching the refractive index nr of

the granular material to that of an interstitial fluid. In Fig. 1.4 we can see examples of the

RIM technique usage. The addition of a fluorescent agent allows the observation of dark

shapes when the mixture is exposed to a laser that excites the agent accordingly. As a result,

the observer visualizes the glass beads as dark circles that can be identified and traced (Fig.

1.4(b)).
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(a) RIM in a shear cell to visualize an opaque red in-

truder.

(b) RIM in a conveyor-belt flume with laser-induced

fluorescency.

Figure 1.4 – Refractive index match applied in: (a) a shear cell and (b) a flume. The left
image profits from the RIM technique to visualize an opaque bead immersed in a RIM bath
of transparent glass beads, ethanol and benzyl-alcohol. The right image uses laser-induced
fluorescency to observe the index-matched granular particles as dark circles that can be
identified and traced afterwards.

While straightforward, the technique is not free of difficulties. Possible matches are few, and

they often involve complex fluids with undesirable characteristics (Dijksman et al., 2012).

Another major difficulty to apply the technique successfully is the required precision. Differ-

ences of 2·10−4 between the grains and fluid indexes have been reported to significantly affect

image quality (Wiederseiner et al., 2011a). Therefore, enclosed and controlled environments

are highly recommended, since variations in temperature or humidity may increment the nr

differences above the mentioned threshold value.

The detailed reviews of Wiederseiner et al. (2011a) and Dijksman et al. (2012) explored many

combinations of materials that could be used for the RIM technique at a laboratory-scale.

A variety of plastics and glasses are presented as suitable candidates for a low refractive-

index match, among which glass has been used in recent studies on granular flows and size

segregation (van der Vaart et al., 2015; Sanvitale and Bowman, 2016; van der Vaart et al.,

2018a). To match the particles’ nr , Wiederseiner et al. (2011a) present various articles that

used different fluids or mixtures. Most of these studies use high viscosity or high density fluids,

such as glycerol, Triton X-100 or sodium iodide (e.g., Park et al., 1989; Chen and Fan, 1992;

Kapoor and Acrivos, 1995).

Despite the good results in terms of the refractive index match, viscous or dense fluids create

conditions that are not desirable for a flow that should resemble a dry granular flow. Viscous

fluids reduce interparticle friction and dense fluids increase buoyancy, which set the dynamics

far from the frictional-collisional regime (Ancey and Evesque, 2000; Ancey, 2007). To set a

negatively buoyant match with a low viscosity fluid that could reproduce the dynamics of

granular flows, van der Vaart et al.’s (2015) used a mixture of ethanol (nr = 1.3656) and benzyl-
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alcohol (nr = 1.5396). A wide range of refractive index value can be achieved with mixtures at

different concentrations a feature that, combined with a viscosity and density close to that

of water, makes them suitable candidates (Chen et al., 2012). Recently, Rousseau and Ancey

(2020) used this RIM mixture successfully to study turbulent flow through porous media.

Particle tracking velocimetry

Particle-imaging methods are low-cost and widely-used techniques in experimental fluid

mechanics (Adrian, 1991). Among these methods, the Particle Tracking Velocimetry (PTV)

technique, which is based on a Lagrangian approach, is broadly used to track particles in dense

granular flows (Jesuthasan et al., 2006). Even if these flows do have a high solid concentration,

the number of particles is comparatively lower than those observed in seeded flows for Particle

Imaging Velocimetry (PIV) measurements. More recently, PTV has been the default method to

obtain data from granular flows (Gollin et al., 2017).

Usually, PTV algorithms have two stages: identification of particles and tracing their trajecto-

ries. The particle identification process can be done using a wide range of techniques: binary

detection, pattern or feature tracer, functional convolution, Voronoï diagrams, among others

(e.g., Ohmi and Li, 2000; Capart et al., 2002; Gollin et al., 2017). Particle trajectories are then

calculated from the detected particles’ positions and radius. Similarly to the identification

techniques, there are plenty of tracking methods (e.g., Baek and Lee, 1996; Crocker and Grier,

1996; Capart et al., 2002).

Recent implementation of circle identification algorithms in Matlab made possible the access

to robust and proven spherical particle identification algorithms (MAT, 2019)1. This routine

uses a circular Hough transform to determine different phases (phase-coding) or radial his-

tograms centered at the different spatial image points (Atherton and Kerbyson, 1999; Davies,

2004). The open-source code of Crocker and Grier’s (1996), available on the internet for Matlab

and Python 2, presents a robust and simple way to correlate particle positions and has proven

to give good results for granular flows (e.g., Hill et al., 2003; Windows-Yule et al., 2020).

1.5 Objectives and research contributions

The main objective of this dissertation is to characterize experimentally the coupling between

size segregation and rheology in dense bidisperse granular flows.

From this broad objective, specific goals were drawn to address it:

• To characterize the relation between strain-rate and size segregation in dense granular

flows.

1Find circles using circular Hough transform - MATLAB imfindcircles
2Particle tracking using IDL, John C. Crocker and Eric R. Weeks
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• To understand the role of size ratio on the underlying asymmetry in size segregation

fluxes.

• To find a clear functional form for the segregation flux function, which depends on

physical parameters or flux variables.

• To model how flow and segregation affect each other in uniform and steady flow condi-

tions.

To achieve these goals, I present briefly three main contributions.

Dilation and shear rate roles in large particle segregation

A two-dimensional shear cell was used to study the segregation of a single large intruder.

Experiments with various intruder sizes were compared in terms of the measured strain-rate

around the intruder, its segregation rate, and its rotation velocity. The results showed that size

segregation depended on the strain-rate around the intruder, and for small size differences,

on the intruder rotation. Despite being a very specific technical contribution, the observed

differences in the way large particles segregate indicate a tight relation between segregation

rate and size differences. An implication of this contribution is that segregation could be

inhibited for small size differences if friction between grains is reduced so no rotation is

produced.

A scaling law for particle-size segregation

To determine the functional form for the segregation flux function F, we profited from the

boundary conditions of the flux function (Fig. 1.3). Whenφs = 0+ andφs = 1−, a single particle

characterizes its whole species. Moreover, the velocity of a single particle approximates to the

segregation rate. Based on this particular condition, we carried out experiments in a three-

dimensional shear cell. For the experiments, we used a single opaque intruder submersed

in a RIM mixture of transparent grains of different sizes. Different shear-rates and size-ratios

shed light on a dimensional analysis that gave us the functional form. We compared our

results to those of van der Vaart et al. (2015) and we identified that the size ratio was able to

explain physically the segregation asymmetry. This contribution has a direct importance for

size segregation models that could be translated to industrial applications.

Internal dynamics of stationary granular avalanches

To visualize how the rheology affects particle-size segregation, I carried out RIM experiments

in an inclined conveyor belt flume. This setup imposed steady and uniform flow conditions

for an experimental set of mono and bidisperse granular avalanches. The experimental results

were focused on the effects that velocity profiles and strain-rate had on particle concentra-

tions, segregation and recirculation. Interestingly, the results showed two flow regions for all

experiments: (i) a convective-dilated front, and (ii) a well-arranged layered tail. For bidisperse

avalanches, these two regions combined formed a breaking-size segregation wave structure
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whose length was controlled by the avalanche’s overall species concentrationΦs . Bagnold-like

velocity profiles were measured, which prove that an equivalent µ(I ) can be established for an

equivalent concentration-dependent diameter. The obtained results could be used to validate

or elaborate a rheology-segregation model employing travelling-wave solutions that mimic

the experimental flow conditions.

1.6 Dissertation outline

Besides this introductory chapter, this dissertation comprises three main chapters. Each

chapter elaborates on a contribution in the form of a research manuscript for publication.

The main body of this thesis ends with the concluding remarks, after which I present three

appendices on other relevant aspects of my work.

Chapter 2 provides an in-depth description of the two-dimensional shear cell experimental

setup and a literature revision on the segregation of large particles. In this chapter, the results

of the dilation and shear rate role on large particle segregation are presented and discussed.

Chapter 3 presents the scaling law for particle-size segregation. A state of the research on

particle-size segregation is presented, along with a description of the three-dimensional shear

cell setup. The experimental data set and results are presented with the corresponding analysis

and the determined scaling law. The data of van der Vaart et al. (2015) is used for comparison

and to validate the proposed functional form.

Chapter 4 describes the conveyor belt setup and the difficulties associated with its construction

process and usage. Experimental results of mono- and bidisperse experiments are presented,

to discuss the role of particle concentration in velocity fields, particle recirculation and segre-

gation of stationary granular avalanches.

Finally, Chapter 5 presents the conclusions and outcomes of the previous chapters and this

dissertation. The chapter finishes with a brief discussion on the potential outreach and

perspectives for future challenges on the subject.
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Doctoral candidate’s contribution

For this chapter, the candidate carried out the experiments, processed the images, did the

analyses and wrote the manuscript. General comments were received from Prof. Ancey and

Prof. Gray. The initial idea for the experiments was of Prof. Gray but the developments on

the strain-rate invariants and size ratio role on the mechanism were original ideas of the

candidate.

Abstract

We studied the segregation of single large intruder particles in monodisperse granular materi-

als. Experiments were carried out in a two-dimensional shear cell using different media and

intruder diameters, whose quotient defined a size ratio that ranges from 0.3 to 0.833. When

sheared, the intruders segregated and rotated at different rates, which depended on their size

ratio and depth. We observed greater dilation around the intruders when size ratios were

closer to zero, which in turn promoted a faster segregation. However, experiments with small

size ratios showed that intruder rotation was weak and local shear rates were low. On the

contrary, experiments with size ratios close to unity resulted in strong intruder rotation, high

local shear rates, and contraction below the intruder. Therefore, an intruder with a diameter

close to that of the medium also relies on rotation to segregate. We propose that large particle
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Chapter 2. Large particle segregation in sheared dense granular flows

segregation depends on local dilation and, to a lesser extent, the local shear rate. Based on our

observations we redefine large particle segregation as two well-defined processes dependent

on the size ratio and local strain rate.
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2.1 Introduction

Polydisperse granular materials naturally segregate according to their species’ size when

sheared. Grain size segregation generates or favors complex phenomena such as stratification

(Makse et al., 1997), fingering (Pouliquen et al., 1997; Woodhouse et al., 2012), levees (Iverson,

1997; Félix and Thomas, 2004), front bulging (Takahashi, 1981; Denissen et al., 2019) and

channelization (Mangeney et al., 2007; Kokelaar et al., 2014). Segregation processes affect geo-

physical flow characteristics (Delannay et al., 2017), mining extraction(Virčíková and Molnar,

1992), mixing in industrial or food processing (Shinbrot, 2004) and landforms (Makse, 2000).

Large-particle segregation, in particular, is of great importance in helping us to comprehend

debris-flow dynamics and to interpret geophysical flow deposits better (Gray and Kokelaar,

2010). In summary, studying particle-size segregation, and in particular how large grains

segregate, is key to understand the dynamics of granular matter (Gray, 2018).

A variety of mechanisms to segregate particles have been identified and studied for various

flow configurations (Bridgwater, 1976; Williams, 1976), with the segregation of large particles

called the Brazil nut effect in vibrated systems (Rosato et al., 1987). Simultaneously, the shear-

induced mechanisms random fluctuating sieving, also known as kinetic sieving (Middleton,

1970; Savage and Lun, 1988), and squeeze expulsion have been studied recurrently (Gray, 2018).

Experimental observations and numerical simulations have described the mechanics of the

kinetic sieving process precisely: this consists of small particles percolating through gaps

generated by the relative movements of particle layers. The origin and nature of the squeeze

expulsion mechanism, however, are not subject to a consensus. It was defined originally by

Savage and Lun (1988) as imbalances in the contact forces applied on an individual particle

which squeeze it out of its own layer into an adjacent one. Other authors have proposed that

the mechanism results from mass continuity or a net flux balance (Hill and Fan, 2016; Jones

et al., 2018). Therefore, a large particle will only rise if the surrounding voids are filled with

percolating smaller particles. This assumption may hold for certain cases, but small particle

percolation tends to be less pressure-dependent and segregation fluxes have been found to

be asymmetric (Golick and Daniels, 2009; van der Vaart et al., 2015; Jones et al., 2018). This

segregation flux asymmetry suggests that a connection between the two mechanisms may not

be direct or independent of the particles size ratio or the local particle concentration.

Efforts to explain why large particles segregate have been particularly intense in recent years.

Guillard et al. (2016) proposed a scaling to define a segregation force. They found that this

force was similar to a lift force and that it depended on stress distribution. However, Guillard

et al. (2016) did not address how a large intruder rises and how shear stress contributes to

segregation. To address the question of why large particles segregate, van der Vaart et al.

(2018b) proposed an analogy with the Saffman effect. They introduced a buoyancy-like force

that depends on the size ratio to answer this question. The origin of this granular Saffman

effect is similar to viscous drag, but in their work this drag is exerted by a granular flow.

Recently, Staron (2018) failed to observe any lift-like force under flow conditions similar to

those described by van der Vaart et al. (2018b). Staron (2018) concluded that force fluctuations
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around the intruder should be responsible for large particle segregation. Resistance is higher

towards a rigid fixed bottom, hence any force imbalance pushes the intruder upwards. An

analogy to a plunging object was proposed by Staron (2018), based on previous work by Hill

et al. (2005), to illustrate the previous sentence. The role of interparticle friction and rotation

in particle segregation was studied by Jing et al. (2017) through numerical simulations. Jing

et al. (2017) found that large particle segregation was supressed when interparticle friction

and rotation were negligible. They proposed that the rotation of a large particle is necessary

for its segregation.

Particle size segregation of a single large particle has been studied at the laboratory scale. The

work by van der Vaart et al. (2015) considered large particles segregating in a simple shear cell,

but their results focused on segregation flux asymmetry. Other studies measured lift and drag

forces acting over intruders in granular media (Ding et al., 2011; Guillard et al., 2014; Seguin

et al., 2016). These intruders were held fixed or moved artificially, so no direct relation could

be established between their results and the segregation of a single large particle.

To study the segregation of a large particle, we used a two-dimensional shear cell filled with

small particles, in which one large particle (the intruder) was placed. The cell configuration

imposed a flow condition different from those used by Guillard et al. (2016), van der Vaart et al.

(2018b) and Staron (2018). In our experiments, shear was constant in depth but oscillated

through time and the intruder moved freely towards the bulk free surface by the action of shear.

Particle trajectories and velocity fields were determined using particle tracking velocimetry and

interpolation routines, respectively. The strain rate tensor and its invariants were estimated

to reveal how the granular material responded to external shear, as done in previous studies

(Drescher and De Jong, 1972; Seguin et al., 2016). Various intruder and medium diameters

were used to shed light on the role of size ratio in large particle segregation.

2.2 Methods

Experiments were carried out in a 5 mm-thick, two-dimensional, shear cell consisting of two

parallel poly(vinyl chloride) (PVC) side-plates that rotated over axes located at their bases

(see Fig. 2.1). The PVC side-plates were corrugated and had a roughness that scaled to dm .

Cell width was set between W = 85 and 145 mm in ∆W = 15 mm steps. A granular material

between the plates was sheared by their cyclic movements. Since the side plates were parallel,

the externally imposed shear rate was independent of the depth but was periodic in time. The

external shear rate is expressed by

γ̇e (t ) = tan θmax ω|cos(ωt )|, (2.1)

where θmax = 15° was the plates’ maximum angle of inclination. The frequency ω = 2π/T

was given by the period T = 19.75 s. Both parameters were fixed at those values for all the

experiments.
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W ΔW= 15 mm

dm  

di

θ

H  

A

Figure 2.1 – Scaled schema of the 2D shear cell setup. dm is the diameter of the disks forming
the surrounding granular medium, di is the diameter of the intruder and A represents the
amplitude generated by the cyclic movement of the plates. Bulk height H = 19 cm and
maximum plate inclination θmax = 15° were the same for all experiments. Cell width W was
changed for each dm to maintain a fixed ratio of W /dm ≈ 14 for all experiments.

Simple shear cells or boxes have been used previously to study granular and segregation

processes (e.g., Scott and Bridgwater, 1976; Stephens and Bridgwater, 1978b; van der Vaart

et al., 2015)). Stephens and Bridgwater (1978b) observed that the percolation rates and

segregation mechanisms in simple shear cells were quite similar to those found in annular

shear cells.

A dry granular medium made of polyoxymethylene (POM) disks of diameter dm and an

intruder disk of the same material, but of a different diameter di , were placed between the

cell’s plates and glass panels. Three different disk diameters were employed as the surrounding

media: dm = 6, 8 and 10 mm. Only disks larger than the medium’s disk diameter were used as

intruders: di = 10, 12, 14, 18 and 20 mm. To quantify intruder rotation, a red dot was drawn

on the edge of the intruders circumference. Commercial POM has a density of 1.42 gr cm−3

and a Young’s modulus of 3000 MPa. According to Vaziri et al. (1988), the frictional coefficient

between POM cylinders sliding on each other at low velocities is 0.16.
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The single intruder was initially placed in the center of the cell at a height of 4 cm, measured

from the cell bottom to the lowest point of the intruder’s circumference. The cell was then

filled with the smaller disks up to a height of 19 cm, creating an effective bulk height of h = 15

cm over the intruder. This latter condition was maintained for all experiments.

Due to the characteristics of the cell, the appearance of the Janssen effect (Janssen, 1895)

was an initial concern. Experiments with narrow width W /dm ≈ 9 showed a slightly different

behavior, a constant segregation rate close to the cell’s bottom. A constant vertical velocity

of the intruder suggested that not only shear was constant with depth, pressure was also

constant on depth, hence affected by Janssen effect. To avoid this effect, W was incremented

for the present set of experiments. The variable and depth-dependent segregation rate of the

intruder during the entire experiment suggest that Janssen effect was negligible compared to

the previous narrower experiment.

2.2.1 Image acquisition and particle tracking

Experimental run-times ranged from 15 to 70 minutes. Each experiment was recorded using a

Basler acA2000-165uc camera at 4 frames per second. The position and radius of every POM

disk were determined using a circular Hough-transform algorithm available on Matlab (MAT,

2019). A particle tracking algorithm was used to correlate positions to trajectories (Crocker

and Grier, 1996). First, the intruder position ri = (xi , zi ) and its velocity ui = (ui , wi ) = ∂ri /∂t

were determined separately as functions of time t . Secondly, all particle positions rm and

trajectories were used to calculate particles velocities um . Finally, spatial interpolation of the

particles velocity at a certain time t enabled the calculation of the entire bulk’s velocity field u.

2.2.2 Intruder rotation

Red dot identification and tracking were done simultaneously to intruder tracking. The dot’s

position rd and movement, relative to the intruder’s position, were used to estimate the

intruder’s angular velocityΩi = 4rd ×ud /d 2
i . Since rotation had no preferential direction, we

were interested in the magnitude ofΩi so its norm was considered as relevantΩi = |Ωi |.

A conditional probability P (wi |Ωi ) = P (wi ,Ωi )/P (Ωi ) was calculated to quantify the occur-

rence of segregation and rotation. This probability was determined from a bivariate probability

distribution function (pdf) of the time series of the intruder’s vertical velocity wi and angular

velocityΩi . The bivariate pdf P (wi ,Ωi ) was calculated using Matlab’s mvnpdf function (MAT,

2019). The second probability distribution function, for Ωi alone, was determined using

Matlab’s pdf function.

22



2.3. Results

2.2.3 Strain rate tensor invariants

The strain rate tensor D = 1
2 (∇u +∇u

′
) was estimated from the velocity field u. A tensor

decomposition determined its first invariant, the dilation (Timošenko and Goodier, 1988;

Landau and Lifšic, 1999)

ID = 1

2
tr(D) = 1

2
(∇·u), (2.2)

which is proportional to the velocity field’s divergence. The strain rate tensor’s second invariant

was obtained from the deviatoric strain rate tensor

I ID =
(

1

2
tr(S2)

)1/2

, (2.3)

where S =−1
2 ID1+D is the deviatoric strain rate tensor. This second invariant is called the

shear rate (Andreotti et al., 2013). Both invariants were estimated from the velocity fields,

which themselves resulted in the fields ID = f (x, z) and I ID = f (x, z) for each time step.

To analyze the local strain rate around the intruder, we evaluated ID and I ID on the intruder’s

circumference. Based on the intruder’s position and diameter, we discretized the intruder’s

circumference in several perimeter arcs. Each arc represented a point for which the values of

ID and I ID were evaluated and extracted. This method allowed us to determine how dilated or

sheared the bulk was around the intruder.

2.3 Results

2.3.1 Vertical positions

The intruder’s position (see Fig. 2.2) and bulk’s velocity field were the first results obtained

from the images. Near the bottom, at the beginning of the experiment, segregation was

considerably slower than in upper regions. The closer the intruder got to the free surface, the

faster it moved. The intruder generally showed a non-linear, depth-dependent segregation

rate in all the experiments.

For all our results we used a size ratio defined as dm/di , the media diameter divided by the

intruder diameter. This definition provided a better fit to our results, than a di /dm definition,

and allowed us to contain its values within a well-defined range, i.e. between 0 and 1.

As shown in Fig. 2.2, the segregation rate q ≈ wi = d z/d t increased as dm/di tended to 0.

These findings also held for experiments using larger medium diameters (dm = 8 and 10 mm).

A laddering, almost step-wise ascent, was observed in these cases, especially in the dm = 10

mm medium experiments.
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All the intruders demonstrated oscillatory vertical movement. Indeed, due to the plates’ cyclic

movement, the intruders moved upwards and downwards when the bulk was sheared. This

movement could be interpreted as noise relative to an average vertical position during a cycle.

Cyclical vertical movement was observed throughout the entire experiment and exhibited

the same amplitude, independent of z. The magnitude of this movement did not change

between experiments, even when different intruder diameters were used, as shown in Fig. 2.2.

It is important to note that the bulk media were sheared cyclically, so the oscillatory vertical

movement was the result of the setup.

An exponential law was fitted to the intruder position (dashed lines, see Fig.2.2)

z(t ) = z0ebi t , (2.4)

where z0 is the initial vertical position of the intruder at the beginning of the experiment.

Initially, we tried to fit a quadratic law z(t) = at 2 + bt + c, but then the segregation rate

q ≈ d z/d t would have required a linear fit of the type 2at +b, which was not the case for our

experimental data. Based on the exponential fit, it was possible to collapse the results for the

experiments with dm = 6 mm (see Fig. 2.2(b)). This analysis was done under the supposition

that the bi parameters were a linear function of size ratio, i.e., bi = mb(1−dm/di ) in Fig.

2.2(a). The selected function was consistent with the no segregation condition, achieved when

dm/di = 1. To collapse our experimental data, we cleared t from Eq. (2.4) and wrote it as a

function of z. We replaced the bi coefficient by the regressed expression bi = mb(1−dm/di )

to obtain the function

F (z, z0,mb ,dm/di ) = ln z/z0

mb(1−dm/di )
. (2.5)

which scaled with t . The experimental results shown in Fig. 2.2 (b) are collapsed as function

of t . Despite we were not able to plot results independent of an experimental time-scale, we

show a function that represents well the size ratio dependence of the intruder’s segregation.

Because no kinetic sieving mechanism was observed using the 2D shear cell configuration,

we do not show any results on the percolation of small intruders through granular media

made of large disks (for details on this see A.1). We observed that when a single smaller

intruder was introduced into the cell, it did not percolate down through the bulk. Small disks

moved erratically on top of the upper layer until they found lateral gaps generated by the plate

roughness, which we considered biased. We removed these experiments from our results.

We estimated a final segregation time t f for each experiment. This was defined as the time

necessary for the intruder to rise from its initial position to the top layer of particles. We

normalized time t by t f and we normalized the vertical position z by the effective bulk height

h = 150 mm. Figure 2.3(a) shows all the normalized experimental results. Experiments with
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Figure 2.2 – Vertical position z as a function of time t for the intruders of di = 10, 12, 18 and 20
mm in the dm = 6 mm medium experiments. The dashed lines (R) show the exponential fits
(Eq. (2.4)) with the values of their respective bi coefficients. (a) Linear fit for bi as a function of
1−dm/di (r 2 = 0.989). (b) Experimental results collapsed using function F defined in Eq. (2.5),
mb = 0.003 correspond to the fitted parameter obtained from the linear regression of bi in (a).

size ratios close to 0 (turquoise • and �) tended to a linear ascent, hence a nearly constant

segregation rate. By contrast, experiments with size ratios close to 1 (green � and redF)

showed strong nonlinear behavior.

To visualize all the experiments as a function of an averaged segregation rate w i , we defined

this as the vertical distance h divided by t f . This ratio neglects the nonlinear behavior shown

in Fig. 2.2, so it is different from the instantaneous segregation rate q ≈ wi . Figure 2.3(b)

plots w i as a function of 1−di /dm . Experiments with size ratios close to 0 (turquoise • and �)

exhibited the fastest averaged segregation rates, whereas experiments with size ratios close to

1 (green � and redF) exhibited the slowest averaged segregation rates. Figure 2.3(c) shows t f

as a function of 1−dm/di . We did not observe a plateau for t f = f (1−dm/di ), which would

have indicated a constant relationship between the segregation rate and the size ratio. Neither

did we find a local minimum t f , which would have indicated a maximum segregation rate

for a certain value of dm/di . Our results showed a sharp increase of t f when dm/di tends

to 1, especially for the experiment with dm/di = 0.833. Despite, w i was expected to be non-

monotonic for dm/di , with a maximum around, e.g., 0.5 (Golick and Daniels, 2009), 0.58

(dl /ds = 1.7) Thornton et al. (2012) or 0.4 (dl /ds = 2.5) Thomas and D’Ortona (2018), it was

not the case for our bi-dimensional experiments in the range of 0.3-0.833 (dl /ds = 1.2-3.33).
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Chapter 2. Large particle segregation in sheared dense granular flows

Figure 2.3 – (a) Normalized vertical position z/h as a function of normalized time t/t f for
all experiments. (b) Average vertical velocity w i = h/t f as a function of size ratio 1−dm/di .
The dashed line (R) in (b) represents a linear fit w i = m(1−dm/di ), with m = 0.202 ms−1 (r 2 =
0.903). (c) Final times for the segregation of intruders t f as a function of size ratio 1−dm/di .
The dashed line (R) in (c) represents a curve fit using the expression t f = a/(1−dm/di ), with
a = 713.83 s (r 2 = 0.9).

2.3.2 Intruder rotation

Intruder rotation was observed as the bulk was sheared during each cycle. In some experi-

ments the intruder rotated more, especially when intruder sizes were close to those of the

media. Rotational movement did not tend towards any particular direction, and it was not

necessarily synchronized with plate movement. In some cases we observed that the intruder

upwards movement occurred simultaneously with its rotation.

Dot positions relative to the intruder’s position are shown in Fig. 2.4. The red dot on the

intruder’s circumference is plotted relative to the intruder position. Figure 2.4 shows that

intruder rotation was highest for size ratios close to 1. For example, the di = 10 mm intruder

surrounded by dm = 6 mm disks rotated around its center several times, which was reflected

by the fact that the red dot’s trajectory drew a complete circumference (Fig. 2.4 - top row,

left-hand panel). Whereas smaller intruders completed several revolutions, larger intruders

sometimes could not even complete one. A di = 20 mm intruder surrounded by dm = 6 mm

disks barely rotated. In this case the red dot was never oriented downwards or to the left of the

intruder’s center (Fig. 2.4 - top row, right-hand panel). Experiments using the dm = 10 mm

intruder showed the same tendency with one difference. In comparison, the same di = 20 mm

intruder dot covered more of the circumference: hence this behavior was size-ratio dependent.

These results indicated that in experiments with dm/di closer to 1, segregation relied much
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Figure 2.4 – Dot positions relative to the intruder’s position. Top row (left to right): experiments
using a dm = 6 mm medium, with di = 10, 12, 14, 18 and 20 mm intruders. Bottom row (left to
right): experiments using a dm = 10 mm medium, with di = 12, 14, 18 and 20 mm intruders.

more on rotation. The less active rotation observed in experiments with dm/di < 0.5 suggested

that they relied on other mechanisms to segregate. Results in Fig. 2.4 are for the whole runtime

of each experiment, a duration that was quite different and dependent on the size of the

intruder as seen in §2.3.1 . For shorter time intervals, for example the duration of the shortest

experiment, the trend is preserved. Smaller intruders rotated more than larger intruders

during equal time intervals.

We tracked these dots through time to measure rotation magnitudes. As explained in §2.2.2 we

estimated the intruder’s angular velocityΩi . Figure 2.5 shows thatΩi was slightly correlated to

vertical velocity wi = d z/d t which approximates to the segregation rate q . Another interesting

feature was the increasing values ofΩi as intruders rose to the surface. This increment was

especially relevant for size ratios tending to unity as seen in Fig. 2.5, where we saw higher

magnitudes forΩi and a tendency for even higherΩi values as the intruder approached the

free surface. We suspect that the higherΩi values reached at the end of the experiment were a

consequence of lower local confinement.
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Figure 2.5 – Left column: intruders’ angular accelerationΩi (left axis - blue line) and vertical
velocities wi (right axis, different colors) as a function of time t for experiments using the dm =
6 mm medium and intruders of diameters di = 10, 12, 14, 18 and 20 mm (size ratios dm/di =
0.6, 0.5, 0.429, 0.33 and 0.3). Right column: probability of wi given that Ωi , P (wi |Ωi ). Red
tones indicate a higher probability, with a maximum value of 0.4, and blue tones indicate a
lower probability, with minimum value of 0. The continuous white line draws the mean values
and the dashed white lines draw the mean values plus and minus standard deviations.

To illustrate the link between rotation and segregation, Fig. 2.5 plots their conditional proba-

bilities P (wi |Ωi ). As detailed in §2.2.2, P (wi |Ωi ) expresses the probability that the intruder

moved vertically upwards given that it rotated (Fig. 2.5 - right column). Experiments with

dm/di > 0.4 indicate higher probabilities that the intruder segregated given that it had rotated.

Conversely, when dm/di < 0.4, probabilities that the intruder segregated given it had rotated

were lower. For each run, the probabilities of having a certain Ωi value were averaged and

plotted (Fig. 2.5 - white lines over colormaps). These averages and deviations were calculated

to highlight the magnitude differences between runs with different size ratios. These results

confirmed that as size ratios approach to 0, intruders have lower probabilities of segregating
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given that they rotated, and their rotation was weaker than that observed for size ratios tending

to 1.

Figure 2.5 shows that, in general,Ωi showed greater variability for dm/di > 0.4 experiments.

The experiment with dm/di = 0.3 displayed the highest mean values for rotation, with a

maximum at Ωi ∼ 2.5 s−1. For the rest of the experiments, their maximum values for Ωi

decreased as size ratio decreased to 0, as well as their conditional probabilities.

2.3.3 Strain rate tensor invariants

The first and second invariants of the strain rate tensor were calculated according to §2.2.3.

A field of each invariant was obtained for each experimental time step. Since we also knew

the position of the intruder’s circumference, we extracted the values of ID and I ID around the

intruder’s circumference. As a result, the strain-rate tensor invariants IDi and I IDi along the

intruder’s circumference can be plotted as functions of the intruder’s arc angle φi . This angle

was measured counter-clockwise from the horizontal direction towards the right of the cell (3

o’clock). To represent the experimental results of IDi and I IDi , we took their time-averaged

values over the entire experiment.

Figure 2.6 shows the strain rate tensor invariants around the intruder’s circumference, using

both cartesian and polar coordinates (Fig. 2.6 - left and right column, respectively). In general,

the mean values for both invariants depended on the size ratio. A second general observation

was that IDi and I IDi were greatest on the upper half of the intruder’s circumference, in

accordance with the observed upward movement. The majority of the experiments showed

maximum values at π/2 and minimum values at 3π/2 for both invariants. In average, greater

values are found on the upper half the intruder and smaller values are found on its lower half.

These results showed that the intruder moved towards regions where IDi and I IDi were greater,

thus to the free surface.

Dilation IDi tended to be positive between 0 and π and negative elsewhere (contraction). For

dm/di = 0.833, the arc where IDi > 0 is particularly narrow (between π/8 and 3π/4). This

result suggests that for size ratios close to 1, gap formation was limited due to weak size

heterogeneity. On the contrary, for dm/di = 0.3, IDi is positive almost anywhere around the

intruder’s circumference. Grain movement creates dilation and segregation is enhanced.

This grain movement resulted in faster intruder velocity, a result shown in Fig. 2.3(b). The

contraction measured below the intruder, explains why large particles had difficulties to move

to the cell’s bottom.

Shear-rate magnitudes for each experiment depended on dm/di as well. By definition, the

values of I IDi were always positive, with its highest values observed between 0 and π, and

its local maximum also at π/2. Surprisingly, size ratios close to 1 showed higher I IDi values.

However, this observation was consistent with the argument that rotation and angular velocity

play a role in the segregation of large particles. Shear rate is related to angular deformation,

29



Chapter 2. Large particle segregation in sheared dense granular flows

which was observed experimentally by intruder rotation. The magnitudes of I IDi are of the

same order of magnitude as the average external shear rate γ̇e = 2.67×10−2 s−1 (Eq. 2.1). Even

though all the experiments shared the same externally imposed shear rate, I IDi was locally

distributed around the intruder’s circumference at values ranging between approximately

1.8×10−2 and 2×10−2 s−1 (Fig. 2.6). Also, the mean values of I IDi around the intruder’s

circumference are dependent on the size ratio. These mean values show differences of 6×10−3

s−1 between the experiments with size ratios of 0.833 and 0.3 (see Fig. 2.6 - redF and turquoise

•, respectively).

Figure 2.6 also presents two intermediate cases with dm/di = 0.5 for particle diameters of 6

and 10 mm, and intruders of 12 and 20 mm, respectively. Even though the size ratios are the

same, the values calculated for IDi and I IDi were different, with mean differences of 1×10−3

and 2×10−4 s−1, respectively. We think these differences were due to the plate roughness and

slightly different W /dm values.

Figure 2.6 – Left column. Time-averaged strain rate-tensor invariants for dilation IDi (top
row) and shear rate I IDi (bottom row), around the intruder’s circumference φi , with the
angle measured counter-clockwise from the horizontal direction towards the right of the
cell (3 o’clock). Colored areas represent values and their standard deviation. The gray area
represents contraction. Right column. Polar plots of the same strain rate-tensor invariants for
the experiments with dm = 6 (•) and 10 (F) mm media, and di = 12 (red) and 20 (turquoise)
intruders. Standard deviations were not plotted for all experiments for visualization purposes.

2.3.4 Segregation mechanism

Even though the squeeze expulsion mechanism was largely well-described by Savage and Lun

(1988), they provided no clear role for the particles’ size ratio. Our results in §2.3 suggest that
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segregation is caused by a combination of dilation and rotation that depends on size ratio

dm/di . Dilation was predominant for dm/di values closer to zero and segregation rates were

faster in these cases. Dilation faded as dm/di increased, but segregation still happened. For

dm/di tending to 1, rotation and shear rate became predominant, and they were significant

for segregation. For dm/di < 0.5, segregation rates were considerably higher; thus, dilation

was a much more effective sub-mechanism for segregation than rotation was. Nonetheless,

rotation’s contribution for relatively smaller intruders is still key for their segregation.

Two processes occur in an initially dense granular material that undergoes shear (see Fig. 2.7 -

first figure panels in both rows):

• If dilation ID around the intruder is large enough, surrounding particles entrain below

it. This small-particle entrainment may lift the intruder up, presumably through nor-

mal stress redistribution. This occurrence of entrainment does not depend solely on

dilation. All our experiments were subjected to the same shear rate I ID and effective

bulk height h, yet segregation rates differed (Fig. 2.3). Therefore, the second variable

controlling the entrainment should be dm/di . When dm/di < 0.5 it becomes easier for

disks surrounding the intruder to entrain. For dm/di close to unity, entrainment is less

frequent, due to weak gap generation, and the intruder usually remains in its place.

• Shear-induced dilation redistributes forces around the intruder. As a result, the intruder

may become interlocked with its neighbors. Normal stresses transmitted through the

intruder’s neighbors create a force network that restrains the intruder’s movement.

When shear continues to be applied, the interlocked particles move conjointly around

a pivot below them. Similarly to the first process, this rotational movement depends

on dm/di . Our results indicated higher rotation, a greater probability P (wi |αi ), and

higher local shear rates I IDi for dm/di > 0.5 (Fig. 2.5). A size ratio close to 1 indicates

that interlocking is likely to be occurring. It is plausible that slight size differences

between the intruder and the medium require fewer surrounding particles to lock-in the

intruder. However, our experiments showed that the probability of interlocking remains

low. Therefore, the segregation caused by this process is slower and less effective than

that caused by the first process.

2.4 Conclusions

A two-dimensional, oscillatory shear-cell was used to study the segregation of a large particle

intruder through a medium of smaller particles. The intruder’s position and rotation were

measured and tracked over time. We found that the segregation rate was a non-linear function

of time, dependent on the intruder’s depth and the size ratio dm/di . An increase in the size

ratio decreased the segregation rate. Intruder rotation, quantified in terms of angular velocity,

was found to be more frequent and intense, the close the size ratio is to 1. We conclude that

intruder rotation is a relevant mechanism in the segregation of large particles, in agreement
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Figure 2.7 – Scaled schema of the segregation of a single large intruder of di = 10 (top row) and
20 (bottom row) mm under the action of an external shear rate γ̇e . Top row. Rotation-based
mechanism. The bulk medium dilates with a magnitude ∆ (left panel) and creates a contact
network that locks-in the intruder (middle panel). Further shear generates intruder rotation
(represented by αi ) around the pivotal point C (right panel). Bottom row. Dilation-based
mechanism. The bulk medium dilates with a magnitude ∆ (both panels), generating gaps for
particles to slide beneath (right panel - dashed arrows).

with the proposition of Jing et al. (2017).

Using a different setup and flow configuration, we found the same segregation behavior as that

presented by several authors (Golick and Daniels, 2009; Wiederseiner et al., 2011b; Guillard

et al., 2016), large particles segregated, predominantly, towards regions where dilation was

greater. Complementarily, we found that for size ratios close to 1 shear rate becomes a relevant

variable for segregation. The shear-rate gradient causes the intruder to rotate, resulting in its

segregation; subsequently, a higher shear-rate produces a faster segregation of the intruder.

Even though we did not present stress measurements, we presented a plausible explanation

for the role of the local shear-stress gradient in the segregation of large particles.

Based on the observations presented here, we have suggested a detailed description of the

squeeze expulsion mechanism, the variables and the processes affecting it. The first process is

strongly dependent on dilation, whereas the second depends on rotation, i.e., represented by

the shear rate. Frustration of the rotation-based process depends on surrounding interparticle

contacts, which was observed for dm/di < 0.5 where the intruder needed more particles in
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close contact to interlock. We proposed that the occurrence of these processes, although

independent of each other, are highly dependent on the size ratio.

Supplementary images for segregation mechanisms

To better illustrate the segregation mechanisms for large particle segregation, two image

sequences from experiments are shown in this section.
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Chapter 2. Large particle segregation in sheared dense granular flows

Figure 2.8 – Image sequence of the dilation-dominant segregation mechanism. A 20 mm
intruder segregates upwards due to the squeezing action exerted by the surrounding 6 mm
particles, which entrain below the intruder.
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2.4. Conclusions

Figure 2.9 – Image sequence of the rotation-dominant segregation mechanism. A 10 mm
intruder segregates upwards due to the interlocking of surrounding 6 mm particles that create
a stress axis that locks and rotates the intruder, allowing the entrainment of the surrounding
particles.
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Abstract

Particles of differing sizes are notoriously prone to segregation in shear driven flows under

the action of gravity. This has important implications in many industrial processes, where

particle-size segregation can lead to reduced product quality, flow problems and longer

product development and start-up times. Particle-size segregation also readily occurs in

many hazardous geophysical mass flows (such as snow avalanches, debris flows and volcanic

pyroclastic flows) and can lead to the formation of destructive bouldery flow fronts and signif-

icantly longer run-outs. Although general theories exist to model particle-size-segregation,

the detailed functional dependence of the segregation flux on the shear-rate, gravity, pressure,
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Chapter 3. Scaling law for particle-size segregation in dense granular flows

particle concentration, grain-size and grain-size ratio is still not known. This paper describes

refractive-index matched oscillatory shear-cell experiments that shed light into the segrega-

tion velocity in the two extreme cases of (i) a single large intruder rising up through a matrix

of smaller grains, and (ii) a single small intruder percolating down through a matrix of large

particles. Despite the sometimes markedly different time scales for segregation in these two

situations, a unifying scaling law has been found that is able to collapse all the experimental

data over a wide range of shear rates and grain-size ratios. The resulting functional form is eas-

ily generalizable to intermediate concentrations, suggesting that this empirical law captures

the fundamental processes that determine the segregation velocity in general.

3.1 Introduction

Shallow granular free-surface flows (or granular avalanches) are one of the most common

particle transport mechanisms in industrial bulk solids handling processes. They form in

chute flows (Savage and Hutter, 1989; Gray et al., 1999), as well as in thin fluid-like layers at the

free-surface of heaps (Williams, 1968; Baxter et al., 1998; Fan et al., 2012), silos (Bates, 1997;

Schulze, 2008; Liu et al., 2019; Isner et al., 2020) and rotating tumblers (Gray and Hutter, 1997;

Hill et al., 1999; Khakhar et al., 2003; Schlick et al., 2015; Gilberg and Steiner, 2020). These high

density, gravity driven, shear flows are highly efficient at segregating particles by size. Despite

many years of research, particle size segregation continues to present considerable practical

problems in many industrial processes (Johanson, 1978; Isner et al., 2020). Sometimes the

segregation is useful, such as in the mining industry (Wills, 1979). However, in the bulk chemi-

cal, pharmaceutical, agricultural and food industries it is the single biggest cause of product

non-uniformity (Bates, 1997). This can lead to complete batches having to be discarded at

significant cost. In addition, the evolving local particle size-distribution may feedback on

the rheology of the bulk flow and cause unexpected flow problems (Pouliquen et al., 1997;

Pouliquen and Vallance, 1999; Baker et al., 2016) that are still poorly understood. Segregation

induced frictional feedback is also thought to play a vital part in the formation of bouldery flow

fronts (Pierson, 1986; Denissen et al., 2019) and static levees (Iverson and Vallance, 2001; Baker

et al., 2016; Rocha et al., 2019) in hazardous geophysical mass flows (such as snow avalanches,

debris flows and pyroclastic flows), which can significantly enhance their run-out.

In the avalanching region of these industrial and geophysical flows, small grains percolate

towards the base of the shearing layer and large grains rise towards the free-surface. Complex

interactions between the shear flow and an underlying static or slowly moving region of grains,

can lead to the development of amazing patterns in the deposit (e.g. Williams, 1968; Gray

and Hutter, 1997; Baxter et al., 1998; Hill et al., 1999). However, for a steady-state flow on a

fixed base, an inversely graded particle size distribution develops, with the large particles

concentrated at the top of the flow and the finer grains concentrated near the base. The

segregation occurs due to the combination of two processes; kinetic sieving (Middleton, 1970)

and squeeze expulsion (Savage and Lun, 1988). Essentially as the layers of grains shear past

one another they act as random fluctuating sieves, which preferentially allow small particles
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to percolate downwards into gaps that open up beneath them (known as kinetic sieving),

while all particles are squeezed upwards with equal probability (known as squeeze expulsion),

which maintains an approximately constant solids volume fraction (MiDi, 2004). This has

been termed gravity driven segregation (Gray, 2018) for short, to reflect the fact that gravity is

fundamental to the smaller grains falling into the gaps between the larger grains, and therefore

setting the direction for segregation. The grains also diffuse within the shear flow, which

produces a smoothly varying inversely graded particle-size distribution at steady-state (with

the large grains concentrated on top of the fines) rather than being sharply segregated.

The earliest continuum model for bi-disperse particle segregation was developed by Bridg-

water et al. (1985). It consisted of a spatially one-dimensional time-dependent advection-

diffusion equation, with a shear rate dependent segregation flux that shut off when the species

concentration reached zero and one hundred percent. The key elements of this theory are

still present in more recent multi-dimensional models that use either a quadratic (e.g. Savage

and Lun, 1988; Dolgunin and Ukolov, 1995; Khakhar et al., 2003; Gray and Thornton, 2005;

Thornton et al., 2006; Gray and Chugunov, 2006; Wiederseiner et al., 2011b; Gray and Ancey,

2011; Tripathi and Khakhar, 2013; Tunuguntla et al., 2014; Gajjar and Gray, 2014; Schlick et al.,

2015; Gray and Ancey, 2015; Xiao et al., 2016; Liu et al., 2019; Gilberg and Steiner, 2020) or

cubic (e.g. Gajjar and Gray, 2014; van der Vaart et al., 2015; Jones et al., 2018) small particle

concentration dependence in the segregation flux.

Wiederseiner et al. (2011b) filmed the spatially two-dimensional steady state segregation of

large black and small white particles through the side wall of a chute. By using a calibration

curve, they were able to determine the local small particle concentrations as the grains segre-

gated from a sharply segregated normally graded inflow (with all the small particles on top of

the large grains) to a fully developed inversely graded steady state. Wiederseiner et al. (2011b)

showed that by using the measured downslope velocity, and choosing appropriate constant

values for the segregation velocity magnitude and the diffusivity, it was possible to accurately

model the spatial development of the concentration using Gray and Chugunov’s (2006) theory.

Thornton et al. (2012) performed Discrete Particle Model (DPM) simulations in a periodic

box using bi-disperse mixtures of particles with different size ratios. The final steady-state

numerical results were then compared to the exact steady-state solution of Gray and Chugunov

(2006). In this solution the length scale for the transition between high concentrations of

large and small particles, is inversely proportional to the Péclet number for segregation. This

is defined as the flow thickness times the segregation velocity magnitude divided by the

diffusivity. Thornton et al. (2012) showed that the Péclet number increased with increasing

grain-size ratio and peaked at a value close to 8 at a grain-size ratio just below two. However,

Wiederseiner et al. (2011b) found experimental values of the Péclet number between 11 and

19 for similar size ratios. This discrepancy may be due to the coupling with the bulk velocity,

which was an exponential profile in Wiederseiner et al.’s (2011b) experiments, but will be

Bagnold-like (Silbert et al., 2001) in Thornton et al.’s (2012) simulations, since they are not

affected by sidewall friction.
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In order to better visualize the segregation in experiments, van der Vaart et al. (2015) performed

a series of refractive index matched particle-size segregation experiments in an oscillating

shear box. This has the advantage that the shear-rate is independent of depth, and the

flow field is explicitly prescribed rather than spontaneously developing in a chute flow. The

experiment was stopped after each complete oscillation and the three-dimensional particle-

size distribution was determined by scanning a laser sheet across the cell while taking a series

of photographs. From this extremely detailed data, van der Vaart et al. (2015) showed that

there was a fundamental asymmetry to particle size segregation. In particular, a single small

intruder will percolate down through a matrix of large grains much faster than a single large

intruder will rise up through a matrix of fines. This suggests that the segregation flux function

is not quadratic, but has a more cubic-like dependence on the small particle concentration

(Bridgwater et al., 1985; Gajjar and Gray, 2014; van der Vaart et al., 2015; Jones et al., 2018).

The annular shear cell experiments of Golick and Daniels (2009) also provide important

insights into the functional dependence of the segregation flux. The experiment was driven by

a moving bottom plate, but the top plate was also free to move vertically in response to the

pressure generated during the flow. Their experiments showed that there were subtle packing

effects, as a normally graded initial configuration mixed and then segregated into a final

inversely graded steady state. The ability of the grains to pack tighter together in a shearing

bi-disperse mixture caused the top plate to drop from its initial height, and then recover as

the particles segregated again. Intriguingly, Golick and Daniels (2009) showed that when a

weight was placed on the top plate the rate of segregation was dramatically decreased. This

suggests that the segregation velocity magnitude is pressure and/or solids volume fraction

dependent. This has been investigated further by Fry et al. (2019) using DPM simulations

of a confined shear flow. Their simulations suggest that the percolation velocity, and hence

the segregation velocity magnitude, is proportional to the reciprocal of the square root of the

pressure. It follows that segregation is suppressed in Golick and Daniels’s (2009) experiments,

when a weight in applied, because the pressure reduces the segregation rate while having no

effect on the diffusion.

A definitive form for the segregation flux function that makes sense of, and hopefully unifies,

all the observations is still lacking. It is clear that it is dependent on the shear-rate (Bridgwater

et al., 1985; Savage and Lun, 1988; May et al., 2010a; Fan et al., 2014), the pressure (Golick

and Daniels, 2009; Fry et al., 2019), gravity (Vallance and Savage, 2000; Gray and Thornton,

2005; Gray et al., 2006; Fry et al., 2019), the mean particle size (Fry et al., 2019; Chassagne et al.,

2020) and the particle size ratio (Savage and Lun, 1988; Gray and Thornton, 2005; Thornton

et al., 2012; Fan et al., 2014), as well as that it has a non-quadratic concentration dependence

(Bridgwater et al., 1985; Gajjar and Gray, 2014; van der Vaart et al., 2015; Jones et al., 2018).

However, there may also be additional functional dependencies on the friction of the grains

(Jing et al., 2017) and the evolving local solids volume fraction (Golick and Daniels, 2009;

Gilberg and Steiner, 2020).

This paper aims to shed further light on the functional form of the segregation flux by using
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refractive index matched shear cell experiments and dimensional analysis. §3.2 reviews the

governing equations and explains the rationale behind studying the extreme end states of

a single large, and a single small, intruder. §3.3 describes the experimental shear box and

the refractive index matching technique. §3.4 uses dimensional analysis and a series of key

observations to motivate a simple functional form for the flux. §3.5 and §3.6 compares the

theoretical large and small intruder trajectories to those measured in experiment, for a wide

range of shear rates and size ratios, and shows that the data can be collapsed using the same

non-dimensional coefficients. §3.7 shows that the theory quantitatively matches van der

Vaart et al.’s (2015) shear box experiments with a 50:50 mix of particles using the same non-

dimensional coefficients and the simplest possible function to map between the size ratio

dependence of the large and small intruders. §3.8 then concludes and makes some interesting

observations about the functional form of the segregation flux that is implied by the theory.

3.2 Bidisperse particle-size segregation

3.2.1 Governing equations

Consider a mixture of large and small particles whose pore space is occupied by an interstitial

fluid. Each of the constituents occupies a volume fractionΦν ∈ [0,1] per unit mixture volume,

where the constituent letters ν= l , s and f , refer to large particles, small particles and fluid,

respectively. It is also possible to define volume fractions of large and small particles per unit

granular volume

φl = Φl

Φl +Φs
, φs = Φs

Φl +Φs
. (3.1)

This is useful, because in many situations of practical interest the solids volume fraction

Φ=Φl +Φs does not change very much (Silbert et al., 2001; MiDi, 2004) and can therefore be

scaled out of the equations (Thornton et al., 2006). In this situation, the general form of the

bidisperse segregation equations for the volume fractions (concentrations) of the large and

small particles (see e.g. Gray, 2018) are

∂φl

∂t
+∇·

(
φl u

)
−∇·

(
fslφ

lφs g

|g |
)
=∇·

(
Dsl∇φl

)
, (3.2)

∂φs

∂t
+∇· (φs u

)+∇·
(

fslφ
sφl g

|g |
)
=∇· (Dsl∇φs) , (3.3)

respectively, where u is the bulk granular velocity field, fsl is the segregation velocity magni-

tude, g is the gravitational acceleration vector and Dsl is the diffusivity of the large and small

particles. Since by definition the concentration of large and small particles sum to unity

φl +φs = 1, (3.4)
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the sum of equations (3.2) and (3.3) imply that the bulk velocity field is incompressible

∇·u = 0. (3.5)

This is reasonable leading order approximation that is made in the incompressible µ(I )-

rheology (MiDi, 2004; Jop et al., 2006; Barker and Gray, 2017) for example. It should be noted,

however, that in reality there is some compressibility and indeed compressibility is needed to

make the rheology thermodynamically consistent (Goddard and Lee, 2018) and well-posed

(Barker and Gray, 2017; Schaeffer et al., 2019). In this paper, however, the solids volume

fraction is assumed to be equal to a constant uniform value ofΦ= 0.6.

3.2.2 Segregation fluxes and velocities

In (3.2) and (3.3) the large and small particle segregation fluxes are

F l =− fslφ
lφs g

|g | , (3.6)

F s =+ fslφ
sφl g

|g | , (3.7)

respectively. These are aligned with the direction of gravitational acceleration g to reflect the

fact that the downward percolation of small particles due to kinetic sieving is a gravity driven

process. In order to maintain bulk incompressibility there is a net reverse flow of large particles

towards the surface due to squeeze expulsion. In the absence of diffusion the segregation

velocity of the large and small particles relative to the bulk flow are

ûl = ul −u =− fslφ
s g

|g | , (3.8)

ûs = us −u =+ fslφ
l g

|g | , (3.9)

respectively. The summation constraint (3.4) implies that the segregation fluxes (3.6)–(3.7)

are zero when either of the phases is in a pure phase. If fsl is independent of φs and φl then

(3.4) implies that the large particle segregation flux is quadratic in φs and is symmetric about

φs = 1/2. Equation (3.8) shows that the corresponding large particle segregation velocity is

linear in φs and hence implies that the maximum segregation velocity is equal to fsl and

is attained when there is a single large grain at concentration φs = 1− (note the superscript

minus is used to show that the concentration is not 100% small particles, i.e. there is a large

intruder, but it does not significantly change the local concentration from unity). Similarly, the

small particle segregation velocity is linear in φl and the maximum segregation velocity equals

− fsl and is attained when there is a single small grain at concentration φs = 0+. The quadratic

large particle segregation flux function and the associated linear segregation velocities are

plotted in figure 3.1(a,b).
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Figure 3.1 – (a) Segregation flux functions and (b) the large and small particle segregation
velocities as a function of the small particle concentration φs (adapted from Gajjar and Gray,
2014; Gray, 2018). These assume that fl s = Aχ(1−χφs), where χ ∈ [0,1] and Aχ is a normal-
ization factor to give all the flux functions the same amplitude as the quadratic flux when
χ= 0 (red lines). The blue lines show the cubic flux model of Bridgwater et al. (1985) for χ= 1
and the green lines show the intermediate cases when χ = 0.2, 0.4, 0.6, 0.8. For χ ∈ [1/2,1]
these develop an inflection point at φs

inf = (1+χ)/(3χ) (circular markers a) and a group of large
particles rise fastest at φs

crit = 1/(2χ) (circular markers b). Sketches showing (c) the rapid per-
colation of a single small intruder in a matrix of large grains, (d) the slow rise of a single large
particle in a matrix of fine and (e) the faster rise of a group of large particles at intermediate
concentrations for a sufficiently skewed flux function.

Using shear box experiments van der Vaart et al. (2015) showed that there was an underlying

asymmetry to the particle-size segregation, i.e. a single small particle percolating down
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through a matrix of large particles moves much faster than a single large particle being

squeezed up through a matrix of fines. This is illustrated schematically in figure 3.1(c,d)

and is not captured in the simple quadratic flux model. Gajjar and Gray (2014) showed that

this asymmetry could, however, be captured by skewing the peak segregation flux towards

smaller concentrations of fine grains, as illustrated for a cubic flux function in figure 3.1(a). As

the peak of the large particle segregation flux moves to the left, the maximum downward small

particle segregation velocity (at φs = 0+) is progressively increased even though the maximum

amplitude of the flux function stays the same. As the cubic flux curves become skewed, the

large particle segregation velocity at concentration φs = 1− is progressively diminished below

that of the quadratic flux model. Moreover, as the skewness parameter χ rises above one half,

an inflection point develops in the flux function and the maximum segregation velocity of

large particles no longer occurs at φs = 1−, but at an intermediate concentration φs within

the range [1/2,1]. As a result a group of large particles will rise faster than an individual large

intruder as illustrated schematically in figure 3.1(d,e).

The theory shows that studying (i) a large intruder being squeezed up through a matrix of fine

particles and (ii) a small intruder percolating down through a matrix of large grains can yield

a considerable amount of information about the shape of the segregation flux function. A

series of single intruder refractive index matched shear box experiments have therefore been

performed in this paper.

3.3 Refractive index matched shear box experiments

3.3.1 Experimental apparatus

The shear box apparatus is shown in figure 3.2(a). It consists of two polyvinyl chloride (PVC)

rough lateral side plates that are able to pivot about two transverse steel rods, that are located

at their centres and bolted to glass panes at the front and back of the shear box. The top ends of

the PVC plates are attached to a steel bar that keeps the plates parallel and connects them to a

horizontally moving plunger driven by a rotational motor. The bottom of the sheared domain

is set by another PVC plate of length L = 4.5 cm that is free to move horizontally within slotted

grooves in the transparent front and back walls. As the top of the PVC side plates are driven

backwards and forwards the plates pivot about their centres and push the base plate from

side to side as shown in figure 3.2(b). The three PVC plates have a random stepped roughness

profile of average length 4 mm and depth 2 mm. To give structural stability the four corners

of the glass panes were screwed to steel spacer tubes to maintain the transverse separation

width W = 7 cm of the shear cell. The volume between the three PVC plates is filled to a height

h = 12 cm with a mixture of large and small borosilicate glass beads of diameter dl and ds ,

respectively. The whole cell is then submerged in a refractive index matched fluid to make the

semi-opaque intruder easy to identify and track. All the materials used to make the box were

selected to be compliant with the refractive index matching technique.

44



3.3. Refractive index matched shear box experiments

(a)
motorplunger
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z
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Figure 3.2 – (a) A photograph of the experimental apparatus showing the power supply, motor,
crank and plunger that drive the upper end of the pivoted parallel PVC plates from side to side.
The two pivot points are located in the middle of the sidewalls and one of them is indicated on
the photo. The base plate sits in a notched groove and is able to move freely from side to side
in response to the driving motion. The volume between the pivoted PVC plates is filled with a
granular material of thickness h that is composed of large and small borosilicate glass beads
with diameters dl and ds , respectively. The whole system is submersed in a refractive index
matched fluid of benzyl alcohol and ethanol that makes the majority of particles transparent,
allowing the position of the semi-opaque red intruder to be easily identified. (b) An image
sequence showing the rise of a large red intruder of diameter dl = 25 mm through a background
medium of small particles of diameter ds = 6 mm over a number of oscillatory cycles. The
small grains are just visible so it is possible to see the free-surface.
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Figure 3.2(b) shows that over a series of cycles the large red intruder is progressively squeezed

upwards until it reaches the top of the cell. To analyze this motion it is useful to define a

coordinate system Ox y z with the horizontal x-axis orientated in the direction of shear, the

horizontal y axis across the cell and the z axis pointing vertically upwards. Assuming that the

PVC plates are pivoted at a height z = zpivot their imposed horizontal displacement field is

x = (z − zpivot) sin(ωt ) tan(θmax), (3.10)

where ω is the frequency and θmax is the maximum angle of displacement of the sidewalls

measured from the vertical axis. Typically θmax ranges between 22.5◦ and 25◦ in the experi-

ments presented here. Assuming that the resulting velocity u within the granular material is

spatially uniform in each (x, y)-plane, the resulting velocity components are

u = (z − zpivot)ωcos(ωt ) tan(θmax), v = 0, w = 0, (3.11)

respectively. The shear-rate γ̇= 2||D || where ||D || =
√

1
2 tr(D2) is the second invariant of the

strain-rate tensor D = (∇u + (∇u)T
)

/2. For the imposed bulk velocity field (3.11) it follows that

the shear rate

γ̇=
∣∣∣∣du

dz

∣∣∣∣=ω|cos(ωt )| tan(θmax). (3.12)

This varies in time, but is spatially uniform throughout the shear cell. The average shear-rate

over one complete cycle is

γ̇m = ω

2π

∫ 2π
ω

0
γ̇d t = 2ω

π
tan(θmax). (3.13)

The motor which drives the oscillatory shear cell has a variable voltage input, so the applied

shear rate depends directly on the voltage and the amplitude of the crank connected to the

plunger.

3.3.2 Refractive index matching, image acquisition and particle tracking

Material nr ρ (g cm−3) η (cP) Supplier
Borosilicate glass 1.4726 2.2 NA Schäffer Glas
Benzyl alcohol 1.5396 1.044 5.474 Acros Organics
Ethanol 1.3656 0.789 1.2 Fisher Scientific

Table 3.1 – Refractive indexes nr , densities ρ, viscosities η and suppliers for the materials used
in the refractive index matched experiments.

The experiments rely on the refractive index matching (RIM) technique to make the intruder

visible. This is achieved by using transparent borosilicate glass beads for the background

media and submerging them in a mixture of benzyl alcohol and ethanol. A summary of the

material properties is given in table 3.1. A calibration procedure was required to get the right
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(a) (b)

Figure 3.3 – (a) Image showing the contrast between dry and wet conditions using the RIM
technique with transparent borosilicate glass beads and a mixture of benzyl alcohol and
ethanol. (b) Semi-opaque red intruder identified with the image analysis code.

index match. An Atago RX 5000 α refractometer was therefore used to measure samples of

the interstitial fluid. The initial mixture was based on the measurement tables of Chen et al.

(2012). Further adjustments to obtain the desired value of nr = 1.4726 were done by adding

small quantities of either ethanol or benzyl alcohol. A value of nr in between 1.471 and 1.472

were acceptable to clearly observe the intruder, a condition that improved for a period of

time due to the faster evaporation of ethanol. For the same reason, values over 1.473 were

undesirable despite an initially good match. The effect of the refractive index matching is

shown in figure 3.3(a) where a large red intruder can clearly be seen in the submersed lower

two-thirds of the image, but is completely obscured by the small particles in the dry upper

third of the image.

The RIM technique allows the intruder to be clearly seen throughout the experiment (fig-

ure 3.2b). Image acquisition was performed with a Basler acA2000-165uc camera positioned

in front of the shear box. Different frame rates were used for each experiment, but for most

experiments recording was done at 10 frames per second (fps). Particle identification was

done using the imfindcircles routine implemented in Matlab. The single-intruder tracking was

performed using the code of Crocker and Grier (1996). As well as tracking the opaque intruder

this code also helped to identify, and exclude, false intruders, which could occur when the

intruder size was close to that of the background medium. Figure 3.4 shows two space time

plots constructed by taking the vertical line of pixels through the centre of the intruder at each

frame and plotting them adjacent to one another. It is striking that for comparable size ratios

and shear rates the large intruder takes much longer to be squeezed up to the free-surface
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Figure 3.4 – (a) Space-time plot of a large intruder of diameter dl = 19 mm segregating upwards
in a medium of small particles of diameter ds = 6 mm subject to an average shear-rate γ̇m =
0.26 s−1 (taken from set 2 in table 3.2). The space time plot is made by plotting the vertical line
of pixels that passes through the centre of the large particle at each time. The intruder therefore
appears as a band of red, while the index matched interstitial fluid and the background
medium of small particles appear green. The trajectory of the centre of the large intruder as a
function of time is shown with the white dashed line. (b) Space time plot of small intruder
particle of diameter ds = 6 mm percolating down through a matrix of large particles of diameter
dl = 14 mm at a shear rate γ̇m = 0.34 s−1 (taken from set 4 in table 3.2). In this experiment
the background medium appears black while the intruder is orange. The intruder centre as a
function of time is shown with a white dashed line.

than the small intruder takes to percolate down to the base. It is also very significant that the

trajectories of the intruder centres are both curved.

3.3.3 Experimental data sets

A series of five sets of experiments were performed in order to understand the functional

dependence of the segregation velocity magnitude fsl . Sets 1 and 2 correspond to experiments

with a single large intruder rising through a medium of small particles. In set 1 the diameter of

the large and small particles are held constant and the shear-rate is varied, while in set 2 the
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diameter of the small particles and the shear-rate are held constant and the diameter of the

large intruder is changed. These sets represent experimental conditions where φ= 1−. Sets 3,

4 and 5 all relate to a small intruder segregating through a matrix of large grains, when φ= 0+.

In sets 3 and 4 the shear-rate is varied for two different small intruder diameters, while in set 5

the shear-rate is held constant and the small intruder diameter is changed. The experimental

conditions of all the sets are summarized in table 3.2.

Set Intruder dl (mm) ds (mm) R = dl /ds γ̇m (s−1)
1 Large 19 6 3.17 0.26

19 6 3.17 0.42
19 6 3.17 0.59
19 6 3.17 0.77

2 Large 10 6 1.67 0.26
12 6 2 0.26
19 6 3.17 0.26
25 6 4.17 0.26

3 Small 14 8 1.75 0.34
14 8 1.75 1.10
14 8 1.75 2.30

4 Small 14 6 2.33 0.34
14 6 2.33 0.63
14 6 2.33 0.87

5 Small 14 12 1.17 0.34
14 10 1.4 0.34
14 8 1.75 0.34
14 6 2.33 0.34
14 4 3.5 0.34

Table 3.2 – Diameters of the large particles dl , small particles ds , the size-ratio R = dl /ds and
average shear rates γ̇m for each experimental set 1–5. Sets 1-2 correspond to a single large
intruder rising through a matrix of small particles, whereas sets 3-5 correspond to a single
small particle percolating down through a matrix of large grains.

3.4 Preliminary interpretation of the data

3.4.1 Dimensional analysis

The experimental data is complex and contains a number of functional dependencies that

are hard to interpret without a clear initial hypothesis. It is therefore useful to consider

what dimensional analysis can say about the functional behaviour of the segregation velocity

magnitude fsl before presenting the results. For a dry bi-disperse mixture of large and small

particles, fsl is considered to be an output of the system. The inputs are the particle sizes dl

and ds , the intrinsic density of the grains ρ∗, the volume fraction of small particles φs = 1−φl

per unit granular volume, the solids volume fractionΦ, the bulk shear stress τ, the pressure p,
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gravity g and the shear-rate γ̇. This is a total of nine variables with three primary dimensions

(mass, length and time), so dimensional analysis implies that there are six independent non-

dimensional quantities

µ= τ

p
, I = γ̇d̄√

p/ρ∗
, Φ, P = p

ρ∗g d̄
, R = dl

ds
, φs , (3.14)

where µ is the friction, I is the generalized inertial number in which d̄ is the volume fraction

weighted average particle diameter

d̄ =φl dl +φsds , (3.15)

P is the non-dimensional pressure and R = dl /ds is the grain-size ratio. For a mono-disperse

system in the absence of gravity, only the first three non-dimensional variables in (3.14)

are relevant, and (3.15) reduces to the monodisperse particle diameter. It was this type of

dimensional analysis combined with observations from Discrete Particle Method (DPM)

simulations and experiments that led to the development of the incompressible µ(I )-rheology

(MiDi, 2004; Jop et al., 2006), which has advanced our understanding of the rheology of

monodisperse granular flows.

Dimensional analysis also provides a powerful way of interpreting the segregation experiments

in this paper. It is assumed that it is the combination of shear induced gravity driven percola-

tion (kinetic sieving) and squeeze expulsion (Middleton, 1970; Bridgwater et al., 1985; Savage

and Lun, 1988; Gray and Thornton, 2005; Gray, 2018) that generate the dominant mechanism

for segregation in dense granular flows. In particular, dimensional analysis implies that the

segregation velocity magnitude should scale as

fsl ∼ γ̇d̄ G (µ, I ,Φ,P,R,φs), (3.16)

where γ̇d̄ is chosen as a reference scale and G is an arbitrary function of the six non-dimensional

variables defined in (3.14). The five sets of experiments detailed in table 3.2 provide key obser-

vations that help to constrain the functional form of G .

3.4.2 Fundamental observations and resulting hypothesis

This paper makes four key assumptions based on the observations (a)-(d) below:- (a) Experi-

mental data sets 1, 3 and 4 imply that the segregation velocity magnitude fsl scales linearly

with the shear rate γ̇ for both large and small intruders. (b) Experimental set 2 implies that the

rise velocity of large intruders scales linearly with the particle size-ratio R, and since it nec-

essarily shuts off when R = 1 this implies that fsl scales linearly in (R −1) in the limit φs = 1−.

(c) Set 5 shows that in the limit φs = 0+ small intruders exhibit an approximately quadratic

dependence on (R −1) for large size ratios, but have the same linear dependence on (R −1), as

the large intruders, for small size ratios in the range [1,1.5]. (d) All of the data-sets in 1-5 show
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that the large and small intruders move along curved trajectories (see e.g. figure 3.4), with

slower percolation and rise rates deeper in the flow, where the lithostatic pressure is higher.

These trajectories are well approximated by quadratic curves. Since the pressure is lithostatic

in the shear cell, this suggests that fsl is proportional to 1/(C +P ), where the non-dimensional

constant C has been introduced to prevent a singularity when P = 0 at the free-surface.

The four key experimental observations (a-d) above suggest that the segregation velocity

magnitude can be written as

fsl =B γ̇d̄
F (R,φs)

C +P
, (3.17)

where B and C are non-dimensional constants and F is a function of R and φs . The particle

size-ratio dependence is encapsulated in F , which satisfies the limits

F (R,1−) = R −1, (3.18)

F (R,0+) = R −1+E (R −1)2, (3.19)

where E is another non-dimensional constant. A simple functional form that captures the

single large and small intruder cases (3.18) and (3.19) is

F = (R −1)+EΛ(φs)(R −1)2, (3.20)

where the functionΛ satisfies the constraints

Λ(0) = 1, and Λ(1) = 0. (3.21)

A very simple linear function forΛwill be investigated further in §3.7.

Substituting for the non-dimensional pressure P from the scaling (3.14) the segregation veloc-

ity magnitude can be written as

fsl =B
ρ∗g γ̇d̄ 2

C ρ∗g d̄ +p
F (R,φs). (3.22)

This formula captures the key processes of gravity, shear and pressure that drive kinetic sieving

and squeeze expulsion during the segregation of particles of different sizes and size ratios.

The local small particle concentration φs = 1−φl enters through the average grain-size (3.15)

and the nonlinear size ratio dependence (3.20), and automatically generates asymmetry in

the segregation flux functions. Equation (3.22) neglects any dependence on the friction of

the particles µ and the solids volume fractionΦ. Such dependencies may exist (see Jing et al.,

2017; Golick and Daniels, 2009), but they add an extra level of complexity that goes beyond

the scope of this paper. Since I = γ̇d̄/
√

p/ρ∗ is linear in the shear-rate γ̇, equation (3.22) can

be reformulated to have a linear inertial number dependence instead of a linear shear-rate

dependence. Importantly the experimental observation (a), above, implies that there is either

a linear shear-rate dependence or a linear inertial number dependence, but to leading order,

at least, other shear-rate or inertial number dependencies are not permitted.
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3.4.3 Effect of the interstitial fluid

Equations (3.17) and (3.22) take no account of the interstitial fluid that is present in the

experiments described in §3.3. Thornton et al. (2006) argued that for slow flows the dominant

effect of the fluid was to introduce a factor ρ̂ = (ρ∗−ρ f
∗)/ρ∗ in the segregation velocity, where

ρ
f
∗ is the intrinsic density of the fluid. This factor represents the relative density difference

between the grains and the fluid and slows the segregation-rate down as the density of the

fluid approaches that of the grains. In particular, it is able to explain the lack of particle size

segregation in density matched experiments with mixtures of particles and fluids (Vallance

and Savage, 2000). This factor will not explicitly be considered in this paper, since it is the

same in all experiments, but it may affect the assumed value of the non-dimensional constant

B.

3.4.4 Intruder trajectories

In the shear box the gravitational acceleration vector g points downwards parallel to the z axis,

i.e. g =−g k , where k is the unit vector in the z-direction. For the bulk velocity field defined in

(3.11) it follows from (3.8) that, in the absence of diffusion, the vertical velocity of the large

particles satisfies

w l = dz l

dt
= fslφ

s , (3.23)

where fsl is given by (3.22). For the case of a single large intruder, φs = 1−, and hence the

average particle size d̄ = ds . The large particle trajectory therefore satisfies the ordinary

differential equation (ODE)

dz l

dt
=B

ρ∗g γ̇d 2
s

C ρ∗g ds +p
F (R,1−). (3.24)

Substituting for F (R,1−) from (3.18) and assuming that the pressure in the grains is lithostatic

p = ρ∗gΦ(h − z), (3.25)

the ODE (3.24) reduces to
dz l

dt
=B

γ̇d 2
s (R −1)

C ds +Φ(h − z l )
. (3.26)

This is separable and can be integrated, subject to the initial condition that z l = z l
0 at t = 0, to

show that time is a quadratic function Z l of the vertical coordinate z l , i.e.

K l t =C ds(z l − z l
0)+ Φ

2

[
(h − z l

0)2 − (h − z l )2
]
=Z l (z l ), (3.27)

where the constant

K l =B γ̇d 2
s (R −1), (3.28)
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is different for each individual experiment. Note that ds andΦ, which arise in the definition

of Z l in (3.27), are the same for all the experiments in sets 1 and 2. The quadratic equation

(3.27) can be solved to give an explicit formula for the trajectory of the large intruder

z l = 1

Φ

[
C ds +Φh −

√
C 2d 2

s +2C dsΦ(h − z l
0)+Φ2(h − z l

0)2 −2ΦK l t

]
. (3.29)

An exactly analogous argument implies that at φs = 0+ the trajectory of a small intruder

satisfies the ODE
dzs

dt
=−B

γ̇d 2
l [(R −1)+E (R −1)2]

C dl +Φ(h − zs)
. (3.30)

This is also separable and can be integrated, subject to the initial condition that zs = zs
0 at

t = 0, to show that time is a quadratic function Z s of the vertical coordinate zs ,

K s t =−C dl (zs − zs
0)− Φ

2

[
(h − zs

0)2 − (h − zs)2]=Z s(zs) (3.31)

where the constant

K s =B γ̇d 2
l [(R −1)+E (R −1)2]), (3.32)

changes between experiments. In all the experiments in sets 3-5 the values of dl andΦ in the

definition of Z s are the same. The quadratic equation (3.31) can be solved to give an explicit

formula for the small intruder trajectory

zs = 1

Φ

[
C dl +Φh −

√
C 2d 2

l +2C dlΦ(h − zs
0)+Φ2(h − zs

0)2 +2ΦK s t
]

. (3.33)

A key test of this scaling argument and the fundamental assumptions (a)-(d) in §3.4.2 is

whether the intruder trajectories (3.29) and (3.33) are able to collapse all of the data with the

same choices of the non-dimensional constants B, C and E .

3.4.5 The role of particle diffusion

It is important to note that the intruder trajectories calculated in §3.4.4 implicitly assume

that there is no diffusion. In fact, experimental observations suggest that there is a significant

amount of self diffusion that leads to the intruders performing random walks around the

mean path. Utter and Behringer (2004) used a two-dimensional Couette cell to make detailed

experimental measurements of the self-diffusion in a monodisperse system of disks. They

concluded that the diffusion was anisotropic, but that to leading order the diffusivity was

proportional to γ̇d 2, where d was the particle diameter. The natural generalization of this

result to polydisperse systems is to replace the particle diameter with the mean particle

diameter (3.15) to give

Dsl =A γ̇d̄ 2, (3.34)

where A is a non-dimensional constant. Figure 9b in Utter and Behringer’s (2004) paper shows

that the tangential diffusivity implies A = 0.223, whereas the radial diffusivity implies A =
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0.108. The simulations in §3.7 adopt the lower value of A , because it is based on measurements

of the diffusivity made normal to the direction of shear, which is also the predominant direction

for diffusion and segregation in the shear box experiments. Note, that since d̄ = ds for a large

intruder and d̄ = dl for a small intruder equation (3.34) implies that there will be much more

diffusion, and hence variability, for the small intruder paths than for the large intruders.

3.5 Large intruder experiments

The segregation of a single large intruder is stable and robust, especially when the size ratio

is large. This is a reflection of the fact that, according to the diffusion scaling (3.34), the

underlying self diffusion within the small particle matrix is lower than for a large particle

matrix. Larger size ratio intruders also have a lot of contacts with the surrounding small grains,

which provides another mechanism for averaging the natural fluctuations. As a result the

large intruders only occasionally migrate to the PVC side plates, where they can become stuck

when the particle size ratio R is close to unity. To determine the values of B and C a global

least squares fit is made to all the large intruder trajectories in experimental sets 1 and 2. This

suggests that

B = 0.3744, and C = 0.2712. (3.35)

In practice, the constant C only changes the gradient of the trajectory close to the free-surface,

and this is least well constrained because the experimental free-surface is not clearly defined

at the particle scale. Good fits to the data can also be obtained by assuming C = 0, in which

case B = 0.3615. This is only a 3.45% difference. Setting C = 0 does, however, introduce a

pressure singularity at p = 0, which implies that the segregation velocity becomes infinite at

the free-surface. This singularity is not only unphysical, but causes difficulties in numerical

methods, so in the sections that follow C is assumed to take its global value defined in (3.35).

3.5.1 Variable shear rate for the large intruders

The experimentally measured position of a large 19 mm intruder in a matrix of small 6 mm

particles as a function of time is shown in figure 3.5, for four different shear-rates. These

experiments correspond to set 1 in table 3.2. The intruder struggles to segregate upwards

when it is close to the bottom of the cell, but once it moves past a few layers it segregates faster

and faster towards the surface. As a result the intruder trajectories all show a pronounced

curvature in time that are well-fitted by the quadratic curves derived in §3.4.4 using the

global value of C defined in (3.35). For each individual trajectory, equation (3.27) is fitted to

the experimental data by determining the constant K l that gives the best approximation.

Typically the fits were extremely good, with a coefficient of determination lying in the range

0.96–0.97. As the shear-rate γ̇m is increased the large intruder segregates to the surface faster

and therefore the time to reach the surface decreases, while the fitting constant increases. The

four values of K l are plotted as a function of γ̇m in the inset plot in figure 3.5, together with
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Figure 3.5 – Experimentally measured position of a 19 mm large intruder segregating through
a 6 mm matrix of small particles as a function of time, for four different imposed shear rates
γ̇m = 0.26, 0.42, 0.59 and 0.77 s−1. Darker red lines correspond to higher shear-rates. This data
corresponds to set 1 in table 3.2. For each case, equation (3.27) is fitted to the experimental
data to determine the constant K l assuming that the depth h = 12 cm and C = 0.2712 is given
by the global best fit to all the large intruder data. The fitted intruder trajectory in time (3.29) is
then plotted for each γ̇m with dashed lines for comparison. The coefficient of determination
ranges between 0.96 and 0.97 for the proposed fits. The inset shows the fitting constants K l

as a function of γ̇m . These points are closely approximated by the global best fit straight (red
dashed) line that passes through the origin (3.36), implying that fsl has a linear shear-rate
dependence.

the theoretical straight line passing through the origin defined in (3.28), i.e.

K l =Bγ̇md 2
s (R −1), (3.36)

where it is assumed that γ̇= γ̇m and B is given by the global value in (3.35). The points all lie

close to the straight line, although for this subset of data the global fit is not quite the best fit.

The data is, however, close to the global fit and is consistent with the fundamental assumption

(a) in §3.4.2 that the segregation velocity magnitude is linear in the shear-rate.
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3.5.2 Variable size ratio for the large intruders
zl

(m
)

t (s)

Figure 3.6 – Experimentally measured position of a large intruder of size dl = 10, 12, 19 and
25 mm (darker red lines correspond to larger intruders) in a matrix of 6 mm small particles as
a function of time, and at the same imposed shear-rate γ̇m = 0.26 s−1. This corresponds to set
2 in table 3.2. For each case, equation (3.27) is fitted to the experimental data to determine the
constant K l assuming that the depth h = 12 cm and C = 0.2712 is given by the global best fit
to all the large intruder data. The fitted intruder trajectory in time (3.29) is then plotted for
each size ratio R with dashed lines for comparison. The coefficient of determination ranges
between 0.93 and 0.98. The inset shows the measured constants K l as a function of R −1.
These points are well approximated by a global best fir straight (red dashed) line that passes
through the origin (3.36), implying that fsl has a linear dependence on R −1.

Figure 3.6 shows experimental set 2 (from table 3.2) in which both the shear-rate γ̇m = 0.26 s−1

and the small particle diameter ds = 6 mm are held constant, while the diameter of the large

intruder dl is varied. In this limit the average particle size d̄ = ds , but the size ratio R changes

between experiments. As the size ratio is increased the particles segregate faster and the time

for a particle to rise from the bottom to the top of the cell decreases. In each case the large

intruders describe curved trajectories in time as they rise through the cell. This implies that

near the bottom of the cell the segregation rate is considerably lower than close to the surface,

where the intruder moves notably faster. The intruder trajectories are all well approximated

by the quadratic curves derived in §3.4.4, although there is some evidence that the curves
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become more linear at high size ratios. The curves are fitted using a similar procedure to

§3.5.1, i.e. by determining the best value of the constant K l for each experiment using the

global value of C defined in (3.35). The fitted values of K l are plotted as a function of the size

ratio R −1 in the inset of figure 3.6. The points lie extremely close to the theoretical straight

line (3.36) that passes through the origin, indicating that the segregation rate magnitude fsl is

linear in R −1 even at high size ratios, as assumed in hypothesis (b) in §3.4.2.

3.5.3 Collapse of all the large intruder experiments

Z
l

(m
2

)

Bγ̇md 2
s (R −1)t (m2)

Figure 3.7 – The large intruder trajectories for varying shear rate γ̇m and size ratio R are
collapsed onto an approximately straight (dashed) 45 degree line by plotting the transformed
height Z l , defined in (3.27), against the scaled time Bγ̇md 2

s (R −1)t . The data corresponds to
all the cases in sets 1 and 2 in table 3.2. The inset plot shows the best fit values of the constants
K l for each of the experiments as a function of γ̇md 2

s (R −1). The red dashed line in the inset
has gradient B = 0.3744, i.e. the global best fit value of B. The colours of the points and the
lines are the same as those used in figures 3.5 and 3.6, where the legends are defined.

All the large intruder trajectory data from sets 1 and 2 can be collapsed by plotting the quadratic

function of the height Z l , defined in (3.27), as a function of scaled time Bγ̇md 2
s (R −1)t as

shown in figure 3.7. This collapse is based on equations (3.27) and (3.36), which imply that

Z l =Bγ̇md 2
s (R −1)t . (3.37)
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The mapped trajectories should therefore all lie on the 45 degree line shown in figure 3.7. All

the trajectories follow the right trend, but move slightly off the ideal straight line as they rise

up through the cell. Some variability is to be expected because the theoretical large intruder

trajectory completely ignores the effect of diffusion, which will generate random walks around

the average behaviour captured by the theory. Some of the variability is also likely to be

an artifact of the oscillatory shear cell, which moves through a maximum angle θmax before

reversing direction, rather than shearing in a consistent direction. This reduces the particle

rearrangements, somewhat, and creates brief interludes during which the large intruder

oscillates around a given level, before rising upwards again. As can be seen in figure 3.7 these

interludes create a horizontal offset in some of the shear-rate data, before the overall rise

continues along a line parallel to the 45 degree line. The inset image in figure 3.7 shows the

values of K l as a function of γ̇md 2
s (R −1). All the experimental points for variable shear-rate

and variable size-ratio lie close to the theoretical straight line implied by the global fit with the

values of B and C from equation (3.35). This confirms that hypotheses (a), (b) and (d), made

in §3.4.2, are able to collapse all the large intruder data, with the same constant values of B

and C .

3.6 Small intruder experiments

The small intruders typically percolate downwards much faster than the large particles segre-

gate upwards (as shown in figure 3.4) and it is anticipated that they will be subject to much

more diffusion than the large intruders, because the average grain size d̄ = dl > ds in the

diffusivity (3.34). In general, these combined effects result in the small intruders segregat-

ing much more erratically than the large intruders. Several experimental difficulties were

observed. The intruder could migrate towards the PVC side plates and become stuck, or get

stuck on top of a layer of well-packed large particles. Experimental data where the intruder

suddenly dropped down after being stuck for a large number of cycles was not considered to

be representative. Once again, such events are probably an artifact of the shear cell, which

reverses the direction of shear and has finite dimension. In flows where the shear is in a

consistent direction, layers of grains that are higher in the flow move faster than those beneath

them and provide a natural mechanism for the small intruders to find new gaps that they can

fall into, and hence prevent them from becoming stuck at a given level for a long period of

time. To ensure that representative data was collected, each experiment was repeated eight

times.

3.6.1 Variable shear rate for the small intruders

Figure 3.8 shows the trajectories of an 8 mm small intruder in a matrix of 14 mm large particles

for three different shear rates corresponding to set 3 in table 3.2. Three representative profiles

are plotted for each shear rate. The theoretical small particle trajectory is fitted to each curve

using the same value of C as in (3.35), and the average value of K s is then used to determine
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Figure 3.8 – Measured position of a 8 mm small intruder segregating through a 14 mm matrix of
large particles as a function of time for three different imposed shear rates γ̇m (darker turqouise
lines correspond to higher shear-rates). Three representative experimental profiles are plotted
for each experiment. This data corresponds to set 3 in table 3.2. For each case, equation (3.31)
is fitted to the data set and the value is then averaged over the three realizations to determine
K s , assuming the same value of C as in (3.35). The average fitted intruder trajectory (3.33) is
then plotted as a function of time for each γ̇m with dashed lines for comparison. The insets
show the fitting constant K s as a function of γ̇m . All the points are closely approximated
by a straight (dot-dashed) line that passes through the origin, implying that fsl has a linear
shear-rate dependence at moderate size ratios.

the overall fit. There is quite a lot of variability about the individual fits, as anticipated, but

the fitted trajectory captures the overall behaviour of the small intruders as they percolate

downwards. As the shear rate is increased the time taken for intruder to reach the bottom

of the cell decreases and K s increases. The values of K s are plotted in the inset graph in

figure 3.8 and show a clear linear dependence on the average shear rate γ̇m , consistent with

the theoretical line

K s =Bγ̇md 2
l

[
(R −1)+E (R −1)2] , (3.38)

implied by equation (3.32). The quadratic dependence on (R −1) in equation (3.38) suggests

that the segregation rate could be much larger for higher size ratios. To test this, and to

test that there is still a linear shear rate dependence, figure 3.9 shows how a 6 mm small
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Figure 3.9 – Measured position of a 6 mm small intruder segregating through a 14 mm matrix of
large particles as a function of time for three different imposed shear rates γ̇m (darker magenta
lines correspond to higher shear-rates). Three representative experimental profiles are plotted
for each experiment. This data corresponds to set 4 in table 3.2. For each case, equation (3.31)
is fitted to the data set and the value is then averaged over the three realizations to determine
K s , assuming the same value of C as in (3.35). The average fitted intruder trajectory (3.33) is
then plotted as a function of time for each γ̇m with dashed lines for comparison. The insets
show the fitting constant K s as a function of γ̇m . All the points are closely approximated
by a straight (dot-dashed) line that passes through the origin, implying that fsl has a linear
shear-rate dependence even at larger size ratios.

intruder percolates down through a matrix of 14 mm large particles at various shear rates.

This corresponds to a size ratio R = 2.333, which is not that much larger than R = 1.75 for

the previous experiments in figure 3.8, but the time taken to reach the bottom of the cell for

γ̇m = 0.34 s−1 is approximately a quarter of that when the size ratio was R = 1.75. Importantly,

however, the fitted values of K s still exhibit a linear dependence on γ̇m as shown in the inset

of figure 3.9. This observation suggests that the dramatic enhancement in the segregation rate

of the small intruders at large size ratios, can be modelled through an additional quadratic size

ratio dependence in the function F =F (R,φs) defined in (3.20) at low small particle volume

fractions.
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3.6.2 Variable size ratio for the small intruders
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Figure 3.10 – Experimentally measured position of a small intruder of size dl = 12, 10, 8, 6 and
4 mm in a matrix of 14 mm large particles as a function of time, and at the same imposed
shear-rate γ̇m = 0.34 s−1. This corresponds to set 5 in table 3.2. For each case, equation (3.31)
is fitted to the data set and the value is then averaged over the three realizations to determine
K s , assuming the same value of C as in (3.35). The average fitted intruder trajectory (3.33)
is then plotted as a function of time for each size ratio R with dashed lines for comparison.
The inset shows the fitting constants K s as a function of (R −1). At size ratios close to unity
the constants follow the same linear dependence on (R −1) as the large grains (red dashed
line), but for larger size ratios the constants K s become much larger. This is well fitted by the
quadratic size ratio dependence in equation (3.38) with E = 2.0957 (dashed blue line).

In order to determine the non-dimensional constant E in (3.38) a series of experiments were

performed at the same shear rate, but with variable size ratio. These correspond to set 5

in table 3.2 and are shown in figure 3.10. Fits to the three sets of data shown for each case

were performed in the same way as in §3.5.1 and the values of K s are shown in the inset of

figure 3.10. For size ratios close to unity the values of K s lie very close to the red dashed line,

corresponding to equation (3.38) with E = 0, using the same coefficients B and C that were

determined for the large intruders in (3.35). However, as the size ratio increases above R = 1.5

the values of K s depart markedly from this line. The additional quadratic dependence on

(R −1) in (3.38) is, however, able to capture the dramatic increase in the segregation velocity at
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large size ratios. A least squares fit to the data suggests that

E = 2.0957. (3.39)

3.6.3 Collapse of all the small intruder experiments

Z
s

(m
2

)

Bγ̇md 2
l

[
(R −1)+E (R −1)2

]
t (m2)

Figure 3.11 – The small intruder trajectories for varying shear rate γ̇m and size ratio R are
collapsed onto an approximately straight (dashed) 45 degree line by plotting the transformed
height Z s , defined in (3.31), against the scaled time Bγ̇md 2

l

[
(R −1)+E (R −1)2

]
t . The data

corresponds to all the cases in sets 1 and 2 in table 3.2. The inset plot shows the best fit values
of the constants K s for each of the experiments as a function of γ̇md 2

l F (R,0+). The red
dashed line in the inset has gradient B = 0.3744, i.e. the global best fit value of B. The colours
of the points and the lines are the same as those used in figures 3.8, 3.9 and 3.10, where the
legends are defined.

All the small intruder data from sets 3, 4 and 5 in table 3.2 and shown in figures 3.8–3.10 can

now be collapsed onto a single curve using the same coefficients B, C and E . This is achieved

by plotting the quadratic function of the height Z s defined in (3.31) as a function of the scaled

time Bγ̇md 2
l

[
(R −1)+E (R −1)2

]
t as shown in figure 3.11. This collapse is based on equations

(3.31) and (3.32), which imply that

Z s =Bγ̇md 2
l

[
(R −1)+E (R −1)2] t . (3.40)
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The mapped trajectories should therefore lie on the 45 degree line in figure 3.11. The collapse

for the individual trajectories is far from perfect for the reasons discussed at the beginning of

§3.6, which is to be anticipated, but they do follow the right general trend for a wide range of

shear rates and particle size ratios. The collapse is much more convincing when the individual

fitted values of K s are plotted against the theoretical line implied by equation (3.38), which

is shown in the inset of figure 3.11. All the measured points lie very close to the theoretical

straight line passing through the origin. This confirms that both the small intruder data (as

well as the large intruder data) can be collapsed for the same values of the non-dimensional

constants B, C and E and validates the preliminary hypotheses (a)-(d) made in §3.4.2.

3.7 Simulation of van der Vaart et al.’s (2015) experiment

The fully index matched experiment of van der Vaart et al. (2015), which was performed in a

similar shear cell to that in this paper, provides an important final constraint on the functional

form of F , since the particle-size distribution evolves through the complete range ofφs ∈ [0,1].

3.7.1 Summary of the equations and coefficients

In order to derive the governing equations, the particle-size distribution is assumed to be

spatially uniform in the x and y directions. Substituting the gravity vector g =−g k and the

velocity field (3.11) into (3.3) implies that the small particle segregation equation reduces to

∂φs

∂t
− ∂

∂z

(
fslφ

sφl
)
= ∂

∂z

(
Dsl

∂φs

∂z

)
, (3.41)

where fsl and Dsl are the segregation velocity magnitude and diffusivity, respectively. Substi-

tuting the lithostatic pressure (3.25) into (3.22) and cancelling ρ∗g , implies that

fsl =
Bγ̇d̄ 2F

C d̄ +Φ(h − z)
, (3.42)

where the size ratio dependence is encapsulated in

F = (R −1)+EΛ(φs)(R −1)2. (3.43)

The function Λ=Λ(φs) satisfies the constraints that Λ(0) = 1 and Λ(1) = 0. It describes the

effect of the size ratio at intermediate concentrations, and allows F to smoothly transition

from the linear (R −1) dependence of a single large intruder (3.18) to the quadratic (R −1)

dependence (3.19) for a single small intruder. The simplest possible form forΛ is the linear

law

Λ=φl = 1−φs , (3.44)

which will be investigated here. However, much more complicated functions are possible, so

long as they satisfy the constraints (3.21). As discussed in §3.4.5 the diffusivity is assumed to
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take the form

Dsl =A γ̇d̄ 2, (3.45)

where the non-dimensional coefficient A is determined by the experiments of Utter and

Behringer (2004). The other non-dimensional coefficients B, C and E have been determined

by the shear box experiments in this paper and all of them are summarized in table 3.3.

A = 1.08, B = 0.3744, C = 0.2712, E = 2.0957.

Table 3.3 – Non-dimensional coefficients B, C , E determined from the refractive index
matched shear cell experiments. Note that it is anticipated that in the absence of an in-
terstitial fluid the segregation rate will be enhanced (see §3.4.3), which increases the assumed
value of B. The non-dimensional coefficient A is taken from figure 9 of Utter and Behringer
(2004).

3.7.2 Non-dimensionalization and numerical method

In order to solve the system of equations (3.41)–(3.45) it is useful to non-dimensionalize the

equations using the same scalings as in van der Vaart et al. (2015), i.e.

t = T t̃ , z = hz̃ (3.46)

where T = 13 s is the period of one cycle and h = 0.087 m is the depth of the cell. It follows that

the segregation equation (3.41) can be written in the non-dimensional form

∂φs

∂t̃
− ∂

∂z̃

(
Srφ

sφl
)
= ∂

∂z̃

(
Dr

∂φs

∂z̃

)
, (3.47)

where the non-dimensional segregation rate and non-dimensional diffusivity are

Sr = T fsl

h
= Bγ̇T (d̄/h)2F

C (d̄/h)+Φ(1− z̃)
, (3.48)

Dr = T Dsl

h2 =A γ̇T (d̄/h)2, (3.49)

respectively. The period T = 2π/ω by definition. It therefore follows from (3.13) that the

average shear rate γ̇m times the period

γ̇mT = 4tan(θmax), (3.50)

where θmax = 30◦ in the experiments of van der Vaart et al. (2015). The mean value γ̇mT is used

to approximate γ̇T in (3.48) and (3.49). The non-dimensional segregation equation (3.47) is

solved subject to no flux conditions at the surface and the base of the cell

Srφ
sφl +Dr

∂φs

∂z̃
= 0, at z̃ = 0,1, (3.51)
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and the initial condition

φs =
{

1, z̃ > 0.5

0, z̃ ≤ 0.5,
(3.52)

so that all the small grains are above the large particles at the start of the experiment (van der

Vaart et al., 2015). A Galerkin finite element solver (Skeel and Berzins, 1990) is used to generate

the results. This method is conveniently coded in the pdepe routine in Matlab and has been

extensively tested in previous papers (Wiederseiner et al., 2011b; Gray and Ancey, 2011; van der

Vaart et al., 2015; Gray and Ancey, 2015). It should be noted, however, that this method fails

when C = 0, because in this case the segregation rate becomes unbounded at the free surface.

3.7.3 Asymmetric segregation flux functions

It is interesting to see what the consequences the empirically derived scaling law has for the

shape of the segregation flux function. The non-dimensional segregation equation (3.47)

implies that the non-dimensional segregation flux of large and small particles in the vertical

direction are

F̃ l = Srφ
sφl , (3.53)

F̃ s =−Srφ
sφl , (3.54)

respectively. Rather than being a non-dimensional constant (as in Gray and Thornton, 2005;

Gray and Chugunov, 2006), the non-dimensional segregation rate Sr is a function, whose

value varies locally in the flow, and which is given by (3.48).

Figure 3.12(a) shows a series of flux curves for different size ratios R, assuming that ẑ = 1/2,

ds = 4 mm and the non-dimensional coefficients in table 3.3. All the flux curves are asymmetric

and have an inflection point that lies to the right of the maximum. Qualitatively they look

similar to the cubic flux functions for χ> 1/2 illustrated in figure 3.1. Crucially, however, these

curves have been derived to quantitatively match experimental data and contain complex

functional dependencies on the shear rate, the local small particle concentration, the average

grain size, the grain-size ratio and the local pressure. In particular, as the grain-size ratio is

increased the amplitude of the flux function increases and both the local maximum and the

inflection point move to the left.

The increasing skewness with grain-size ratio encodes the idea that small intruders find

it increasingly easy to percolate downwards as the size ratio increases, whereas the large

intruders find it harder to segregate upwards when there are more contacts with neighbouring

small particles. The flux curves have this asymmetric behavior even when C = 0 and E = 0,

indicating that the scaling of the segregation rate on the mean particle diameter d̄ in (3.22) is

already sufficient to produce this effect. The flux curves look similar at other heights in the

flow and grow in amplitude as one approaches the free surface. When C 6= 0 there is an upper

bound for the amplitude at ẑ = 1, but when C = 0 the segregation flux becomes unbounded at
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(a) (b)
S

r
φ

s φ
l

w̃ s

w̃ l

Small Grains

Large Grains

φs φs

Figure 3.12 – (a) The non-dimensional segregation flux Srφ
sφl as a function of the small

particle concentration φs , for a range of grain-size ratios R = 1.5, 2, 2.5 and 3. The flux is
evaluated with h = 87 mm, T = 13 s, θmax = 30◦, ds = 4 mm and ẑ = 1/2, using the non-
dimensional coefficients summarized in table 3.3. The green markers show the position of
the maximum and the blue markers show the inflection point. (b) Shows the corresponding
non-dimensional large and small particle segregation velocities, w̃ l and w̃ s , as a function of
φ. The yellow markers show the position of the maximum large particle segregation velocity,
which occurs at intermediate concentrations.

the free surface, which is not desired.

3.7.4 Large and small particle segregation velocities

In the absence of diffusion the non-dimensional vertical velocity of the large and small parti-

cles are given by

w̃ l = Srφ
s , (3.55)

w̃ s =−Srφ
l , (3.56)

respectively. These are plotted in figure 3.12(b) for the same size ratios and parameters

as the flux functions in figure 3.12(a). For a given size ratio, the downward small particle

segregation velocity is an increasing function of the large particle concentration φl = 1−φs ,
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and therefore the maximum speed is attained at φs = 0+. Conversely, the large particles

have a local maximum segregation velocity at an intermediate concentration φs ∈ (0,1), with

the segregation velocity of a single large intruder at φs = 1− being at a much reduced rate,

compared to either the maximum large particle, or the maximum small particle, segregation

speed. Experimental measurements of the single intruder end states have been specifically

used in this paper to determine the scaling law for segregation, and hence the segregation rate

Sr . The particle velocities in these end states are therefore a close match to the experimental

data.

It is interesting to note that when C = 0, the ratio of the maximum percolation velocity of a

single small intruder to the rise velocity of a single large intruder at a given height ẑ0, satisfies

the simple relation

|w̃ s(0+)|
|w̃ l (1−)|

∣∣∣∣
ẑ=ẑ0

= Sr (0+)

Sr (1−)

∣∣∣∣
ẑ=ẑ0

= R2 (1+E (R −1)) . (3.57)

The remarkable equation relates two seemingly disparate ends of the flux curve with a simple

relation that is purely dependent on the particle size ratio R. It holds at all heights ẑ0 in the

flow, which implies that the trajectories of the particles are also related. In particular, it follows

from equations (3.27) and (3.31) that the ratio of the time tl for a large intruder to reach the

top of the cell, and the time ts for a small intruder to percolate down to the base, satisfies the

same law
tl

ts
= R2 (1+E (R −1)) . (3.58)

Even when C = 0.2712, and there is some dependence on the average grain size and the

position in the flow, equations (3.57) and (3.58) provide good approximations to the ratio of

the single particle intruder speeds and the ratio of intruder times, respectively.

3.7.5 Comparison to van der Vaart’s (2015) experimental data

Van der Vaart et al. (2015) used an earlier version of shear cell and the refractive index matching

technique to measure the evolution of the particle-size distribution in a 50:50 mix of 8 mm

and 4 mm particles that was initially in a normally graded configuration. To do this, the

shear was stopped after each complete cycle and the cell was scanned with a laser while a

series of photographs were taken. From these photos it was possible to determine the three-

dimensional particle positions after each cycle and hence to build up a picture of the evolving

particle size distribution in time. A space-time plot of the van der Vaart et al.’s (2015) small

particle concentration data is shown in figure 3.13(a).

Figure 3.13(b) shows a contour plot of the computed small particle concentration as a func-

tion of the non-dimensional depth and time, using the experimentally determined non-

dimensional coefficients in table 3.3. The simulations are in very good quantitative agreement

with the experimental data of van der Vaart et al. (2015). In particular, the simulations accu-

rately capture the time at which the first small grains reach the base of the flow, as well as the
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(a)

z̃

(b)

z̃

t̃

φs

Figure 3.13 – (a) Contour plot of van der Vaart et al.’s (2015) small particle concentration data
as a function of the non-dimensional depth z̃ = z/h and non-dimensional time t̃ = t/T , for
a 50:50 mix of large and small particles with h = 87 mm, T = 13 s, θmax = 30◦, ds = 4 mm and
dl = 8 mm. (b) Contour plot of the corresponding numerical results using the non-dimensional
coefficients summarized in table 3.3.

slightly later arrival of the first large grains at the top of the flow. The simulated concentration

is not in perfect agreement with experiment between t̂ = 20 and 60 non-dimensional time

units, but the results accurately capture the overall timescale for the large particles to rise to

the surface and the small particles to percolate down to the base. In particular, by t̂ = 120

non-dimensional time units the particle-size distribution is close to steady-state, with the

large particles concentrated in the top half of the cell, while the small grains are concentrated

in the bottom half. It should be emphasized that this excellent overall agreement is achieved

with the value of A determined from the experiments of Utter and Behringer (2004) and

the same non-dimensional coefficients B, C or E measured in this paper, together with the

simplest possible functional form forΛ.

3.7.6 Properties of the steady-state solution

A first order ordinary differential equation (ODE) for the steady-state concentration profile

can be formulated by assuming that the concentration is independent of time. Integrating the

non-dimensional segregation equation (3.47) with respect to z̃, applying the no flux condition
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(3.51) and cancelling the γ̇T (d̄/h)2 dependence yields

dφs

d z̃
=− (B/A )φsφl F (R,φs)

C (d̄/h)+Φ(1− z̃)
. (3.59)

This equation has some interesting properties. In particular, the non-dimensional coefficient

C is included in the theory primarily to remove the singularity in the segregation-rate at

the free-surface in the numerical method. When C = 0, equation (3.59) just depends on the

particle size ratio R, and is completely independent of d̄ and h. The thickness does enter in

the non-dimensionalization (3.46), so although the non-dimensional solution will be identical

for a fixed size ratio, the physical solution will be stretched vertically proportionately to h. As

a result, a flow of double the thickness will have steady-state concentration gradients that

are half as strong as another flow with the same size ratio. This is a highly non-intuitive

consequence of the combination of the scaling law (3.42) and the diffusivity (3.45), and is a

bold prediction of the resulting theory.

3.7.7 Exact steady-state solution for the case C = 0

In the case when C = 0, it is possible to derive an exact steady-state solution to (3.59). Substi-

tuting (3.43) and (3.44) into (3.59) and writing it as an ODE for ẑ = ẑ(φs) implies

−1

(1− ẑ)

d ẑ

dφs = AΦ

B(R −1)φs(1−φs)
[
1+E (1−φs)(R −1)

] . (3.60)

Using partial fractions the righthand side can be integrated to give the exact solution

z = 1−K (1−φs)−λ1 (1+E (1−φs)(R −1))λ2 (φs)λ3 , (3.61)

where K is a constant of integration and the coefficients λ1, λ2 and λ3 are

λ1 = ΦA

B(R −1)
, λ2 = ΦA E

B(1+E (R −1))
, λ3 = ΦA

B(R −1)(1+E (R −1))
, (3.62)

respectively. The average volume fraction of small particles in the cell is obtained by integrating

the area under the curveφs =φs(ẑ) between zero and unity. Since, this area is exactly the same

as the area under the curve ẑ = ẑ(φs) in the range φs = [0,1], it is easy to find the constant of

integration for any given average concentration of small particles in the cell.

3.7.8 Steady-state comparison to van der Vaart’s (2015) experiment

Figure 3.14 shows the predicted steady-state exact solution for the experiment of van der

Vaart et al. (2015), where K = 0.4041 for the initial 50:50 mix of particles. At t̂ = 221 non-

dimensional units the exact solution lies very close to the computed concentration profile

using the non-zero value of C = 0.2712 determined in this paper. In fact both the curves
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z̃

φs

ẑ

Pe

Figure 3.14 – Plot of the computed small concentration φs at t̃ = 221 non-dimensional time
units (red line) as a function of the non-dimensional depth, for h = 87 mm, T = 13 s, θmax = 30◦,
ds = 4 mm, dl = 8 mm and using the non-dimensional coefficients summarized in table 3.3.
The blue circles show the corresponding experimental data of van der Vaart et al. (2015)
between t̂ = 177 and 221 non-dimensional time units (cycles). The yellow curve shows the
exact steady-state solution (when C = 0) with a constant of integration K = 0.4041 for a 50:50
mix of particles as in van der Vaart et al.’s (2015) experiments. The inset image shows the
variation of the Péclet number with depth for the computed solution when C 6= 0.

lie very close to van der Vaart et al.’s (2015) experimental data between 177 and 221 cycles,

when the experiment is essentially in steady state (see fig. 3.14). Following Wiederseiner

et al. (2011b) and Gray (2018), the Péclet number for segregation is defined as the ratio of the

non-dimensional segregation-rate to the rate of non-dimensional diffusion, i.e.

Pe = Sr

Dr
= B(R −1)(1+E (1−φs)(R −1))

A (C (d̄/h)+Φ(1− ẑ))
. (3.63)

It provides a measure of the strength of the segregation relative to the diffusion. As opposed to

some earlier theories (see e.g. Gray and Chugunov, 2006; Wiederseiner et al., 2011b), which

had a constant Péclet number, the segregation model developed in this paper produces a

Péclet number that varies strongly with depth. This is due to the changing local grain-size

distribution and the decreasing lithostatic pressure distribution with increasing height. For the

computed solution (see inset fig. 3.14) the Péclet number starts at Pe = 5.74 at the base of the
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flow, rises to Pe = 18.86 at ẑ = 1/2 and then tends to a finite, but, large, value of Pe = 430 at the

top. Note that in the case when C = 0, the Péclet number will be similar over most of the range,

but the singularity in pressure at the free-surface implies that Pe →∞ at ẑ → 1. Since the

diffuse interface separating high concentrations of large particles from high concentrations of

fines, in figure 3.14, lies between ẑ = 0.4 and 0.6, the Péclet number Pe = 11.38 at the lower

end of this range and rises sharply to Pe = 37 near the top. As a result, the solution is much

more rounded and diffuse at the bottom, which is a defining feature of the current theory.

3.8 Conclusions

This paper uses the refractive index matching technique to make detailed measurements of

the trajectory of single intruders as they segregate through a matrix of differently sized grains

in an oscillatory shear cell . A wide range of shear-rates, grain-sizes and grain-size ratios have

been explored (as summarized in table 3.2) and four key observations have been made; (a) The

segregation velocity magnitude fsl scales linearly with the shear rate γ̇ for both large and small

intruders. (b) The rise velocity of large intruders scales linearly with size ratio R and shuts off

when R = 1. (c) The percolation velocity of the small intruders has a linear dependence on

(R −1) for size ratios close to unity, but develops a quadratic dependence at larger size ratios.

(d) On average the trajectories of both the large and small intruders describe quadratic curves

as they segregate through the cell.

These four observations combined with dimensional analysis suggest a simple functional

form (3.22) for the segregation velocity magnitude. When (3.22) is substituted into equation

(3.7) it implies that the small particle segregation flux

F s = Bρ∗γ̇d̄ 2

C ρ∗g d̄ +p

[
(R −1)+Eφl (R −1)2

]
φsφl g , (3.64)

is dependent of the shear-rate γ̇, the local mean particle size d̄ , the intrinsic density of the

grains ρ∗, the pressure p, the size ratio R , the gravitational acceleration vector g and the local

concentration of small particles φs = 1−φl . In particular, this segregation flux is able to col-

lapse all the intruder data collected in this paper using the same values of the non-dimensional

coefficients B, C and E . Moreover, when combined with the generalized diffusivity (3.34),

which is based on Utter and Behringer’s (2004) monodisperse Couette cell experiments, equa-

tion (3.64) can also quantitatively predict van der Vaart et al.’s (2015) index-matched shear cell

experiment at intermediate concentrations, without introducing any fitting parameters, as

shown in figures 3.13 and 3.14.

The non-dimensional coefficients C plays a small, but, very important role in the theory.

It is primarily introduced to remove the singularity in the segregation flux function (3.64)

when the pressure p is equal to zero at the free surface. In particular, this is vital for the

numerical method that is used to compute the results in figures 3.13 and 3.14. However,

it is sometimes useful to make the approximation C = 0 as it significantly simplifies the
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mathematical formulation, and allows an exact solution (3.61) to be derived for the steady-

state concentration distribution.

Particle-size segregation usually takes place in rapidly sheared free-surface flows, where

the pressure is lithostatic. Interesting, when the lithostatic pressure distribution (3.25) is

substituted into (3.64) the intrinsic density dependence and the magnitude of the gravitational

acceleration g = |g | cancels out to leave the segregation flux

F s = Bγ̇d̄ 2

C d̄ +Φ(h − z)

[
(R −1)+Eφl (R −1)2

]
φsφl ğ , (3.65)

where ğ = g /|g | is the unit vector in the direction of gravity. This implies that gravity sets the

direction for segregation, but it does not determine the time-scale for particles to segregate.

This is consistent with Savage and Lun’s (1988) statistical model for kinetic sieving and squeeze

expulsion, in which the shear-rate sets the timescale for segregation, as it determines the rate

at which small particles see gaps that they can percolate down into during the kinetic sieving

process. The independence of (3.65) on the magnitude of gravity g is an indication that the

timescale for a small particle to drop down through a gap under the action of gravity is short

compared to the time that it takes to find a gap to percolate down into.

The non-dimensionalized vertical component of the segregation flux function (3.65) is plotted

in figure 3.12(a). It is asymmetric in shape with an inflection point to the right of the maximum

amplitude, with a skewness that becomes more pronounced as the grain-size ratio is increased.

These asymmetric properties imply that for the same grain size ratio R, a single small particle

intruder percolates downwards faster than a single large intruder is squeezed upwards, as

shown in figure 3.12(b), and that this velocity asymmetry become more pronounced as the

grain-size ratio is increased. These seemingly disparate behaviours are unified by the remark-

ably simple formulae for the ratio of the intruder segregation speeds (3.57) and the ratio of the

intruder segregation times (3.58) at fixed size ratio R, which are both just dependent on the

grain-size ratio (assuming that C = 0).

The ability of the theory to match all the existing experiments that have been performed in the

oscillating shear cell, suggests that the new scaling law for segregation derived in this paper

might usefully be applied to other problems. In particular, the theory has the right pressure

dependence in the segregation and diffusion terms to allow suppression of segregation in

Golick and Daniels’s (2009) annular shear cell experiments, as well as in Fry et al.’s (2019)

DPM simulations. Further comparison is left to subsequent work, but potential users of

the theory should note that the value of B given in table 3.3 may need to be modified for

flows in air, to correct for the buoyancy induced by the refractive index matched fluid in our

experiments. According to Thornton et al. (2006) the presence of an interstitial fluid moderates

the segregation by a factor of ρ̂ = (ρ∗−ρ f
∗)/ρ∗, where ρ f

∗ is the density of the fluid. For the

densities given in table 3.1, this would imply an enhancement factor of 1.7 times B, for the

theory to apply to subaerial flows, i.e. a value of B = 0.6365. The value of B may also have to

be enhanced further, if the process of kinetic sieving proves to be more efficient in flows where
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the direction of shear is not constantly being reversed. However, it is believed that the overall

structure of the equations derived in this paper may find universal application to segregation

problems in other configurations and in the absence of an interstitial fluid.

73





4 A conveyor belt experimental setup
to study the internal dynamics of
granular avalanches
Tomás Trewhela1 and Christophe Ancey1

1 Laboratory of Environmental Hydraulics, École Polytechnique Fédérale de Lausanne, Lau-

sanne, Switzerland.

In preparation for Experiments in Fluids.

Doctoral candidate’s contribution

The candidate participated actively in the setup’s final stage of construction. The experiments,

analyses and figures for this chapter were done by the candidate. The chapter was entirely

written by the candidate, with editorial and structural comments from Prof. Ancey.

Abstract

We present a conveyot belt experimental facility to study the internal dynamics of stationary

and uniform granular avalanches. To visualize within the granular bulk of these avalanches and

determine their composition and velocity fields, we used the refractive index matching (RIM)

technique in combination with particle tracking velocimetry and coarse-graining algorithms.

In particular, RIM implementation posed various technical difficulties, hereby addressed, for

the design and construction of the conveyor belt setup. To test and give the experimental

setup a proof of concept, we carried out mono- and bidisperse granular avalanches in it. These

avalanches showed distinctive flow regions and structures: (i) a convective-blunt front, (ii) a

compact-layered tail and, in between them, (iii) a breaking size segregation wave structure.

We found that bulk strain-rate, measured in terms of its tensor invariants, varied significantly

between the flow regions and were bound to the flow characteristics. In terms of the flow

velocity fields, the interpolated profiles were well-adjusted to a Bagnold scaling, despite

considerable basal slip. We estimated a segregation flux field using recent developments on

particle-size segregation. Along with vertical velocity changes and dilation, segregation flux
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was markedly higher at the very front of the avalanche which suggests a connection between

flow rheology and grain segregation. Therefore, our experimental setup and results showed

potential for further theoretical developments on rheology and segregation coupled models.

4.1 Introduction

Conveyor belts are often used for granular material transportation in sediment extraction,

mineral processing or logistic centers (Standish et al., 1991; Álvarez-Valero et al., 2009; Pane

et al., 2019). In general, they can be described as mechanical rough-belts that drag materials

from one place to another. On laboratory-scale, these transportation belts are particularly

useful for long hydraulic sediment transport studies that require constant sediment inflow at a

flume’s inlet or sediment restitution (e.g., Armanini et al., 2005; Dhont and Ancey, 2018). If the

static friction coefficient between the belt and the transported grains is surpassed, a particle-

laden flow may be produced. Of course, such condition is undesirable in industrial processes

or the mentioned sediment feeding system, but it presents an opportunity to study granular

flows. For instance, a fine-tuned slip-drag condition could create a stationary granular flow,

that ressembles a flow moving downstream at the same speed it is being conveyed.

Granular flows propagation is commonly studied via dam-break or constant-flow-rate experi-

ments over very long channels to allow flow development (for a review on these and other type

of granular flow experiments, see Delannay et al., 2017). While simple and straight-forward,

the front development in these experiments is brief and unstable. The wavefronts are known to

accelerate, stabilize and then decelerate, hence traveling at a variable velocity that makes the

wavefront difficult to capture with a moving camera. Despite being a specific flow condition, a

steady quasi-static granular wavefront offers an ideal approach to study granular flows.

The internal dynamics of granular flows are crucial for their propagation. Internal changes

in pressure, grain-friction or composition produce relevant differences in run-out distances

(Roche et al., 2008; Mangeney et al., 2010; Kokelaar et al., 2014). This relevance has prompted

the development of several techniques to visualize and measure within the granular bulk.

Among the many techniques available for their use on laboratory-scale, the refractive index

matching (RIM) is relatively cheaper and simpler to implement compare to other sofisticated

techniques (Budwig, 1994; Wiederseiner et al., 2011a; Dijksman et al., 2012; Sanvitale and

Bowman, 2016). However, the visualization of the wavefront’s internal dynamics using RIM

can still be difficult. When the setup is not submersed, phase-separation, free-surface effects,

and bubbles pose problems for an image acquisition that is usually done fairly away from

the flow releasing point. To overcome most of these difficulties, it is advisable to submerge

the setup in the RIM fluid, but a very large amount of fluid may be required for long inclined

flumes, with the drawback of creating large unused fluid volumes when variable and high-

slope experiments are required (van der Vaart et al., 2018a). Another well known difficulty

for RIM implementation is the reduced number of possible matches for the technique. Fluid-

particle RIM candidates are quite limited for dry granular flow applications, due to the fluid’s
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properties (Wiederseiner et al., 2011a; Dijksman et al., 2012). Often, these fluids can be highly

viscous or very dense and may include chemicals that produce adverse effects on setup and

instruments. All of these difficulties must be considered in the design and construction of

experimental setups that want to be used with the RIM technique.

Conveyor belts have been used to study granular flows experimentally (e.g., Davies, 1990;

Perng et al., 2006; Martínez, 2008; Marks et al., 2017; van der Vaart et al., 2018a). Recently and

in particular, the articles of Marks et al. (2017) and van der Vaart et al. (2018a) focused on

particle-size segregation, a frequent phenomenon observable in granular media. Polydisperse

granular materials are prone to separate themselves by their particles’ sizes (Gray, 2018). In

granular flows over an incline, large particles are often encountered at the flow’s front and

surface, and small ones are more likely to be found at its tail and base (Johnson et al., 2012;

Gray, 2018). This inversely-graded arrangement is the reason for which, a stationary granular

flow condition with a well-defined front is particularly helpful to study size segregation, as it

could shed light on the relation between flow and segregation. In continuum-based models,

segregation fluxes are formulated as relative velocities between the bulk and its species (Gray

and Thornton, 2005; Gajjar and Gray, 2014; Trewhela et al., 2020a). Since conveyor belts create

a condition where the average bulk velocity in the flow direction is determined by the belt

velocity, the relative movement between grains at the front can be easily observed. Following

this simplified flow idea, Marks et al. (2017) carried out perpetual avalanche experiments in a

two-dimensional conveyor belt configuration to describe grain-size segregation processes.

However, strict two-dimensional configuration has shown to produce artifacts that are not

observed in three dimensional configurations, i.e., non-negligeable wall effects, convection

cells and restrictions for small particle percolation (Thomas and Vriend, 2019; Trewhela et al.,

2020b). (van der Vaart et al., 2018a) found mobility-feedback dynamics similar to those of

(Marks et al., 2017) but on a three-dimensional conveyor belt configuration. These recent

studies have also pointed-out pending challenges, such as the implication of breaking size

segregation waves in particle-size segregation theories (Gray, 2018), and intermediate or

reverse segregation (Thomas and D’Ortona, 2018).

In this paper we present a three dimensional conveyor belt experimental setup to study

stationary granular avalanches. This setup is a second version of the prototype used by van der

Vaart et al. (2018a). Our setup’s design addressed various technical difficulties, observed in

the previous prototype. Two experimental sets of mono- and bidisperse granular flows were

carried out to study perpetual granular avalanches. A qualitative and quantitative description

of the stationary granular flows, in terms of bulk’s composition, velocity profiles, strain-rate

tensor invariants and segregation flux, is provided as a proof of concept that this setup can be

useful to study granular flows dynamics and study size segregation phenomena.
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4.2 Theoretical framework

4.2.1 Granular flow equations

The flow of a granular material of intrinsic density ρ∗ down an incline can be described using

the mass and momentum equations

∂ρ

∂t
+∇· (ρu) = 0, (4.1)

∂(ρu)

∂t
+∇· (ρu⊗u) =∇·σ+ρg, (4.2)

where ρ =Φρ∗ is the bulk’s density at a constant solids volume fraction Φ, u is the velocity

field, ⊗ is the dyadic product, σ=−p1+τ are the Cauchy stresses and g is gravity. σ can be

decomposed by the pressure p, multiplied to the identity tensor 1, and τ the deviatoric stress

tensor.

A conveyor belt flow configuration, that creates a shallow, steady, uniform and inclined granu-

lar avalanche, simplifies Eq. 4.2 to its longitudinal and vertical components as

dτxz

dz
=−ρg sin θ, (4.3)

dσz

dz
= ρg cos θ, (4.4)

where θ is the inclination angle. We can integrate Eq. 4.3 and 4.4 for the case of a flow of height

h that satisfies a stress-free condition at z = h to obtain

τxz (z) = ρg sin θ (h−z), (4.5)

σz (z) =−ρg cos θ (h−z). (4.6)

Combining the found expressions with the µ(I ) constitutive relation τ=µ(I )σ we obtain that

µ(I ) = tan θ. Then, a relation between I and θ, derived from the empirical law of Jop et al.

(2006), can be used to calculate the inertial number

I = I0
tan θ−µ1

µ2 − tan θ
(4.7)

where I0, µ1 and µ2 are empirically-determined parameters. For this law to be valid, a steady-
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uniform flow is only achieved for µ1 < tan θ < µ2 for which the inertial number definition

(MiDi, 2004)

I = γ̇d√
σz /ρ

, (4.8)

where γ̇= |du/dz| is the shear rate and d is the particles’ diameter. This definition together

with Eq. 4.8 and the basal velocity condition u0 = ub for the belt velocity, yields a Bagnold-like

velocity profile

u(z) =−ub +
2I

√
g cos θh3

3d

{
1−

(
1− z

h

)3/2
}

(4.9)

where I is constant and calculated using Eq. 4.7. This theoretically-determined velocity profile

is characteristic for steady and uniform granular flows of monodisperse grains. However,

granular materials are usually polydisperse and as such, a bidisperse granular flow may exhibit

a different velocity profile due to segregation-induced grain rearrangement.

4.2.2 Size segregation equations

The internal dynamics of the stationary granular avalanches were studied in terms of size

segregation via a continuum approach, hence particles’ concentration and velocity fields. For

a bidisperse granular mixture of grains of different diameters, the volumetric concentrations

of the grains species satisfy

∑
ν
φν = 1, (4.10)

where φν is the partial volume fraction for each species ν= {s, l }, which are characterized by

a diameter dν. Then, the bidisperse size segregation equation for the ν species is described

according to (Gray, 2018)

∂φν

∂t
+∇· (φνu)+∇·Fν =∇· (Dsl∇φν), (4.11)

where u is the bulk velocity and Fν = fslφ
sφl g/|g| are the segregation fluxes, which are oriented

to the direction of gravity and satisfy

∑
ν

Fν = 1. (4.12)
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In a stationary regime and in the absence of diffusion we can simplify Eq. 4.11 to obtain

ul −u =− fsl (φs)φl ,

us −u = fsl (φs)φs ,
(4.13)

where fsl corresponds to a theoretical segregation flux function for large and small particles.

This function has been proposed to be cubic (Bridgwater et al., 1985), quadratic (Dolgunin

and Ukolov, 1995), asymmetric (Gajjar and Gray, 2014; van der Vaart et al., 2015) and highly

non-linear (Trewhela et al., 2020a). Most important is the asymmetric nature of the segregation

process, small particles segregate faster than their large counterparts, that has been described

theoretically and has been observed in both numerical and laboratory experiments (Gajjar

and Gray, 2014; van der Vaart et al., 2015; Jones et al., 2018).

For the present work we used the coarse-graining technique to obtain the bulk’s density ρ,

partial concentrations φν and velocity fields u from our discrete particle positions ri and

velocities ui . The velocity fields for each species uν were also computed. With these computa-

tions and other asumptions, we calculated fsl following the recent scaling law presented by

Trewhela et al. (2020a),

fsl =B
ρ∗g γ̇d 2

C ρ∗g d +p
F (R,φs), (4.14)

where B = 0.3744 and C = 0.2712 are two constants introduces and determined in their work.

F is a function that depends mostly on the size ratio R = d l /d s , for intermediate values of

φs , and will be considered to be equal to (R −1). γ̇ is the shear rate, d = d sφs +d lφl is the

concentration-averaged diameter and p = ρ∗gΦ(h − z)cos θ is the pressure, considered to be

lithostatic for a flow of height h. We derived an expression for d as a function of φs which

resulted in

d = Rd s
{

1−
(
1− 1

R

)
φs

}
= Rd sdφ. (4.15)

Therefore, by replacing the latter in Eq. 4.14 we determined a simplified segregation flux

function

f s =B
γ̇(Rd sdφ)2

C Rd sdφ+Φ(h − z)cos θ
(R −1), (4.16)

which could be entirely determined using our experimental images. The shear rate calculation

is detailed in the next subsection and was done with the notion of the strain-rate tensor
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invariants.

The usage of the scaling proposed by Trewhela et al. (2020a) was based on the fact that it

captures well the asymmetric nature of the size segregation process, where small particles

percolate at a different time-scale than the rise of large particles. Also, in their scaling, the

segregation time-scale is mainly set by shear rate γ̇ and it is affected by size ratio R and pressure

distribution p.

4.2.3 Strain-rate tensor invariants

Based on the velocity field u, the strain-rate tensor is defined as

D = 1

2
(∇u+ (∇u)T ), (4.17)

where T denotes the transpose. The first invariant of the strain-rate tensor, also called dilation,

can be calculated as

ID = 1

2
tr(D) = 1

2
(∇·u). (4.18)

A tensor decomposition determines the deviatoric strain-rate tensor S =−1
3 ID1+D useful for

the calculation of the second invariant of the strain-rate tensor,

I ID =
(

1

2
tr(S2)

)1/2

, (4.19)

where γ̇= 2I ID. Throughout this paper, references or discussions on the shear rate are also

referring to the strain-rate tensor’s second invariant.

4.3 Materials and techniques

4.3.1 Refractive index match

Most granular materials are opaque, a property that restricts their visualization to their bound-

aries. Even in cases where grains are transparent, refractive index differences between the

surrounding medium and the grains’ material obstruct the visualization within the granular

bulk. To overcome such natural restriction, a refractive index match between the grains’

material and the interstitial fluid can be achieved under controlled conditions, usually in a

laboratory environment. Such technique, called refractive index matching (RIM) has been

used to study not only granular flows, but fluid flows in general (Budwig, 1994; Li et al., 2005;
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Wiederseiner et al., 2011a; Dijksman et al., 2012; Bai and Katz, 2014; Clément et al., 2018;

Rousseau and Ancey, 2020).

For the present study we used a RIM mixture of borosilicate glass, and a fluid solution of

ethanol and benzyl-alcohol. Their refractive indexes, densities and suppliers, are detailed

in Table 4.1. Two additional RIM mixtures were initially considered for this study, but were

disregarded due to the interstitial fluids properties. The first alternative was a Triton X-100 and

poly(methyl methacrylate) (PMMA) match (see, Dijksman and van Hecke, 2010; Wiederseiner

et al., 2011a; Dijksman et al., 2012). We were discouraged to use it due to the fluid high viscosity

(η= 270 cP) and a low relative density between particles and fluid, ρ′ = (ρp −ρ f )/ρp = 0.102,

that restrained granular processes we were interested in. The second alternative was an

aqueous sodium iodide (see, Narrow et al., 2000; Bai and Katz, 2014; Clément et al., 2018)

and borosilicate glass mixture, but the interstitial fluid was too dense and the grains showed

positive buoyancy. After the evaluation of these alternatives, we committed to the borosilicate

glass, ethanol and benzyl-alcohol match, which was also recently used by Rousseau and Ancey

(2020). The viscosity of our mixture was substantially lower than Triton X-100’s, η≈ 3 cP, and

the density difference between borosilicate and the mixture was negative and sufficient to

replicate the physics of dry granular flows ρ′ ≈ 1.34.

Material nr ρ∗ Supplier

Borosilicate glass 1.4726 2.23 Schäfer Glas
Benzyl alcohol 1.5396 1.044 Acros Organics
Ethanol 1.3656 0.789 Fisher Scientific

Table 4.1 – Refractive indexes nr , intrinsic densities ρ∗ and suppliers of the materials used for
our RIM experiments.

An initial fluid mixture in a 35:65 weight proportion of ethanol and benzyl-alcohol, as reported

by Chen et al. (2012), was used as a first approximation to the desired refractive index of

the glass beads, i.e., nr = 1.4726 (Tab. 4.1). From this starting point, we tuned the refractive

index of the mixture by adding small volumes of either ethanol or benzyl-alcohol. The nr was

constantly measured during its fine-tuning with a Atago RX 5000 α refractometer in a 20 °C

temperature-controlled environment. However, a very precise value was unattainable, mainly

due to the large volume required for our experiments (≈ 40 l). For such a large volume, the

mixing process was done with a motorized mixer, therefore, this index-related difficulty was

related to the mixing and evaporation rates of the ethanol and benzyl-alcohol mixture. The

mixing process created sufficient heat and bubbles to enhance the evaporation rate of ethanol,

in comparison to that of benzyl-alcohol, which was lower. In addition, the creation of bubbles

carried vaporized ethanol to the surface. A lower mixing rate was not sufficient to solve the

problem, a low homogenization rate was enough to allow evaporation of ethanol that tended

to be at the surface due to its lower density. We sorted out all these difficulties by simplifying

our process. We aimed to obtain a lower refractive index than 1.4726, so that evaporation

would adjust the index to this value for us. Although this took the control of the refractive
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index away from us, the results were satisfactory and within a tolerance of 1.472±0.0005 the

match was enough.

4.3.2 Image acquisition

The RIM technique is often used for image acquisition and analysis. To visualize the granular

matrix, the matched granular-fluid mixture was mixed with Rhodamine 6G (Acros Organics),

a fluorescent agent. When exposed to a green laser sheet, the rhodamine was excited and

by contrast, the grains appeared to sight as black circles. This combination of instruments

and techniques is also referred as granular planar laser-induced fluorescence (PLIF) in the

literature (Sanvitale and Bowman, 2012, 2016).

We used a 4W Viasho laser with a wavelength λ= 532 nm to create the laser sheet. Images

of the laser-contrasted black circles were acquired with a Basler A403k camera and a 28 mm

Nikon lens mounted to it. Recording was performed at a fixed frame rate of 40 frames per

second for all experiments. The resolution for our images was of 2352x600 pixels.

4.3.3 Particle tracking and coarse-graining

The sequences of images that captured the moving black circles were analyzed using circle

identification and a particle tracking algorithm. The imfindcircles algorithm included in

Matlab 2019a was used to find circles of various sizes. After all particles positions were

determined for the entire image sequence, they were correlated using the tracking algorithm

of Crocker and Grier (1996) to obtain particle trajectories ri (x, z, t ) along time, hence particle

velocities ui (x, z, t ).

A recurrent issue when studying discrete particle flows is to translate punctual or step-wise

information to continuous profiles or fields that can be comparable to predictions of contin-

uum models. To overcome this issue, coarse-graining techniques have been used to translate

experimental and numerical results of discrete granular flows to continuum fields (e.g., Wein-

hart et al., 2012; van der Vaart et al., 2015; Tunuguntla et al., 2016). The advantages of the

coarse-graining technique are multiple (Goldhirsch, 2010), among them: (i) it is possible to

obtain continuous, smooth and differentiable fields and profiles, a particularly helpful feature

close to the boundaries; (ii) the used coarse-graining functions are required to be differentiable

and integrable so the obtained fields satisfy both mass and momentum conservation. For our

experimental analyses, we used a 4th degree Lucy polynomial (Lucy, 1977), which has been

used in discrete particle simulations (Tunuguntla et al., 2016).

4.4 The conveyor belt experimental setup

We designed and built a conveyor belt flume to study stationary granular flows, of which a

spatial scheme is shown in Fig. 4.1. This setup’s core consists in an enclosed aluminium flume
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Figure 4.1 – Diagram of the conveyor belt setup. The enclosed alumnium flume, shown at the
center, is closed by a rectangular windowed lid that allows the passage of the laser sheet from
above. 300 independent POM pieces form the rough conveyor-belt that circulate around the
flume with the guidance of grooves encarved into the front and back walls of the aluminium
flume. To the left, the slope θ control sets the vertical position of the flume’s left-end, along
with its right end and a sliding chariot where the fluid pump rests. At the flume’s left-end, on
top of it, the belt velocity is controlled by an electronic system (denoted as ub control in the
figure). Image acquisition is carried out by a Basler A403k camera placed at the front of the
flume. The camera was equipped with a Nikon 28 mm lens and a 532 nm filter.

of dimensions 141 cm length, 14 cm width and 42 cm height. A rectangular panel with a

glass window closes and seals the setup from above. This top glass window allows the laser,

attached to the flume, to iluminate the inside of the flume perpendicularly. Inside the flume,

two grooves carved on the front and back panels allow the movement of 300 independent

pieces that form the conveyor belt. The grooves create a circuit and guide these pieces to move

in the longitudinal direction of the flume and around four transversal aluminium rollers, one

pair located at each end of the aluminium flume. Both roller pairs are arranged vertically to

create walls that confine the granular material to a conveyed volume over the belt moving

pieces. This conveyed volume corresponds to the effective volume where the granular material

can be conveyed by the belt and it has dimensions of 104 cm length, 10 cm width and 15 cm

height. The front wall of the aluminium flume has a glass window to allow image acquisition

and visualization of the entire conveyed volume. At each end of the aluminium structure,

behind the roller pair, a mixer is located to aid fluid homogenization. Various valves, beneath

and on top of the setup, help the setup filling and emptying processes.

An analog electro-mechanical system sets the slope by moving vertically the flume’s left-end,
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its right-end moves simultaneously in the horizontal direction with the help of an attached

chariot. The slope can be set continuously and has a wide range of values but it cannot be

set completely horizontal. Very low or very steep slopes during operation are unadvised and

impractical, as particles could overflow the upper rollers and create mechanical issues.

Each independent piece of the actual belt is a polyoxymethylene (POM) half-cylinder screwed

to an aluminium band. The purpose of these assemblable pieces is to be able to change the

roughness of the belt by replacing the POM half-cylinders. For our experiments, we used a

uniform roughness given by half-cylinders of 4 mm radius. The pieces are put in between the

two grooves, one beside the next, and are kept in place by the compression the very same

pieces apply on each other while restrained vertically by the grooves.

A motor located behind the setup rotates the bottom-left roller, which has a geared wheel

that pushes the POM pieces between the grooves. Half of the pieces have two bolts beneath

them so that the dented wheel pushes them, hence moving the belt. Bolted and non-bolted

pieces are arranged alternatively to avoid the rupture of the dented wheel, the roller, or the

POM pieces. The motor speed is controlled with a dimmer switch that can set a continuous

range of values for the belt velocity ub . However, the belt’s velocity value is not directly given

by the analog controller, so for our experiments we measured it with a sensor that captures

the motor axis revolutions as a function of time. These measurements were used to calculate

ub with the radius of the dented wheel.

As the reader can infer from the previous description, the setup is quite complex and has

intrincated mechanisms. Multiple difficulties arose during the construction and testing stages.

While many of these were succesfully solved, other are pending challenges.

4.5 Experimental dataset

Exp. number d s d l Φs (%) θ (°) ub (cms−1)

1 (monodisperse) 6 - 100 15 8.16
2 (bidisperse) 6 14 90 15 7.74
3 (bidisperse) 6 14 80 15 7.76
4 (bidisperse) 6 14 70 15 8.24
5 (bidisperse) 6 14 60 15 7.62

6 (monodisperse) 8 - 100 15 7.94
7 (bidisperse) 8 14 90 15 7.69
8 (bidisperse) 8 14 80 15 8.09
9 (bidisperse) 8 14 70 15 7.82

10 (bidisperse) 8 14 60 15 8.16

Table 4.2 – Parameters of the experimental dataset. Φs is the overall small particle partial
concentration over the bulk, the slope θ and the measured speed of the conveyor belt ub .
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Figure 4.2 – (a) Bulk volumetric concentrationΦ, (b) longitudinal u and (c) vertical w velocity
fields at t = 229.25 s for Exp. 1 (see Tab. 4.2). Longitudinal distances are measured from the
right-end of the flume’s horizontal part. Two differring flow sections can be distinguished
from the images and separated at x ≈ -25 cm: (i) x . -25 cm, a well-arranged particle flow
flowing in layers, and; (ii) x & -25 cm, a convective-bulged front where particles recirculate.
The discontinuous lines correspond to (a) vertical or (b) horizontal profiles of the respective
velocity field, with values plotted with continuous white lines. These values are only shown to
illustrate relative fluctuations along the profiles and visualize their shape.

The presented conveyor belt was used to study the internal dynamics of granular flows under

two cases, mono- and bidisperse flows. Due to the particular flow configuration imposed by

the experimental setup, the granular flows were studied as stationary granular avalanches.

The experiments were characterized by their slope θ and belt velocity ub . Both were manually

set and controlled using the analog-electronic controls shown in Fig. 4.1. These controls were

not capable to set θ and ub to predetermined values, so we measured both parameters for

each experiment. θ was measured directly with an inclinometer over the flume, so we could

set it to the desired value beforehand. All the experiments were carried out with an inclination

of 15°. ub was measured with a sensor that captured the motor axis revolutions during the

experiment, so we could not adjust ub to a precise or default value. This restriction meant that

velocity was a result, measured from the experimental conditions and not a parameter that we

were able to set in advance. However, we could set a ub condition for all experiments using

the values marked in the analog ub control-knob. We set the knob approximately at a middle

speed in all experiments.

Two monodisperse experiments were initially carried out to determine a base state for later

comparison with bidisperse experiments. The granular materials used for these two runs was

a 6 kg bulk formed of borosilicate beads of either d s = 6 or 8 mm diameter (see Exps. 1 and

6 in Tab. 4.2). For these experiments, we determined bulk concentrations, velocity fields as
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functions of time. Afterwards, we time-averaged these fields to obtain general trends and

capture averaged processes that individual frames were not able to show.

The main body of experimental work consisted in eight quasi-stationary bidisperse granular

avalanches. To include large particles into the bulk, we replaced a partial weight of small

particles with large particles to keep the same weight for all experiments and only change

Φs . Therefore, general small particle concentration Φs ranged from 90 to 60%, with large

particle concentration varying complementarily, i.e.,Φl = 100−Φs . Since both species have

the same intrinsic material density ρ∗, the bulk general volume concentration remained the

same for all experiments. In addition to bulk concentrations and velocity fields, for bidisperse

experiments, local volume concentrations of small φs and large particles φl = 1−φs were

determined from the images using the coarse-graining technique (see §4.3.3).

Before data acquisition the experiment was set to meet a uniform and, if possible, stationary

flow condition. To set an experiment, we first prepared the granular bulk. Small and large

particles, in the case of a bidisperse experiment, were added in the desired proportion. After

the particles were weighted and added in the right proportion, they were put and mixed inside

the flume that rested horizontally. A horizontal position created no particle flow, that could

alter our mixed bulk, and facilitated the filling process. We were inclined to mix the bulk before

each experience to have an homogeneous and easily repeatable initial condition. The fluid

pump shown in Fig. 4.1 was used to fill the flume with the already refractive index matched

fluid. Only when we finished the filling process we inclined the flume and turned on the belt.

Once the quasi-stationary flow condition was achieved, we started the image acquisition.

Such flow condition was met when the flow height profile and the avalanche front did not

vary notably for several minutes. Image acquisition was performed for precisely 5 minutes,

capturing 12000 frames per run. An experiment was considered finished after the recording,

and then the flume was brought back to an horizontal position where we emptied it for the

next experiment preparation.

Due to the length of the flume and the selected d s for the experiments, the length of the

region of interest (ROI) for the image acquisition did not coincide to the flume’s length. Our

experimental images only captured ∼44 of the flume’s 104 cm length. We decided to focus

our acquisition on the flow’s front, at the right-end of the flume. Therefore, our experimental

results only present 42% of the whole bulk. A full-extension acquisition would have only

reduced our resolution, without gaining much knowledge on the front flow dynamics, since in

most experiments, recirculation of large particles was restricted to the frontmost third part of

the flume and the rest of the flow exhibited a similar behaviour to that of the ROI left boundary.

Despite this decision, we were still able to capture various phenomena.

4.5.1 Belt velocity

Ambiguously, ub could be interpreted as a parameter or a measurement. Although ub was set

analogously before the recording of the experiment, we saw that the value varied with θ, the
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load of the belt and the friction imposed by the pieces. As we described in §4.4, there were

many effects that could increase the motor’s exertion. Even if the conveyor belt ran smoothly,

we were not able to differentiate the degree of exertion between experiments. Instead of doing

a calibration of ub , that could led us to incorrect results if the exertion of the motor varied after

various experiments, we decided to measure the velocity directly after the desired stationary

regime was achieved.

The experimental dataset for this article is summarized in Table 4.2 and the measured ub values

are shown in its last column. Despite they were manually set, they did not vary immensely

(> 3%) with a mean value of 7.922 cm s−1 and a standard deviation of 0.225 cm s−1.

4.6 Results

4.6.1 Monodisperse experiments

Figure 4.3 – Normalized velocity profiles u∗b (Eq. 4.20) for 6 mm (a) and 8 mm (b) monodis-
perse experiments (Exps. 1 and 6 in Tab. 4.2). The profiles are plotted in grayscale from white
to black, from left to right of the captured region of the flow, respectively. In both plots, the
identity line is plotted using a segmented red line. To emphasize the change in basal slip,
the slip velocity usl i p is plotted in the inset of each subplot. The basal condition at the left-
and right-ends of the flow are plotted with a red circle and square, respectively, to show the
changes on basal slip conditions shown in the insets.

The monodisperse avalanches showed two distinctive flow sections. Towards the slope di-

rection, at the right-end of the flume, the flow exhibited a convective bulged region where

particles recirculated. Henceforth, this region will be addressed as the flow’s convective or di-

lated front. Towards the other end of the flume, particle flow transitioned into a well-arranged

structure of particle layers that moved on top of each other (layered flow). To illustrate these

flow regions, we show an experimental image taken at t = 229.25 s in Fig. 4.2. We plotted on

top of the experimental image: the bulk volumetric concentration, the longitudinal (in the

direction of the flow) velocity and vertical velocity fields. In Fig. 4.2 we can see in the back-
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ground the particle structures and a glimpse of the described flow sections can be observed.

Bulk concentration varies between the described regions in general. The front shows a more

diluted flow (Φ ≈ 0.3), whereas the tail is more concentrated (Φ ≈ 0.5). The flow’s height h

shows marked differences, height at the front reaches its maximum at h = 6 cm (∼ 10d s) while

at the back is close to 4 cm (∼ 7d s).

To highlight some sections of the velocity fields, we plotted profiles along the cartesian di-

rection (see continuous white plots in Fig. 4.2(a) and (b)). From the measured velocity fields

we observed a quasi-uniform behaviour for u, with particles at the top moving faster than

those at the bottom and an important basal-slip condition, which was to be expected. Vertical

velocity w profiles were notably less consistent along the flow, where we observed much more

vertical movement of particles in the flow’s front than in its back, where particle layers barely

moved on top of each other. It was possible to separate the two mentioned flow sections at x ≈
-25 cm, measured from the right-end of the horizontal section of the flume. Sudden changes of

w ∼ 4 cm s−1 marked the transition, a breaking point or barrier, from where particles started

to recirculate within the dilated front. Only particles that were tightly attached to the belt

managed to escape the convective front and, after reaching the left-end of the flume, were

reincorporated to the stationary avalanche.

Due to the quasi-steady nature of the velocity fields and the sufficiently long experimen-

tal runtime, averaged fields were calculated to quantify our general observations. When

time-averaged, the velocity fields became smoother and the ū profiles showed a consistent

behaviour along the longitudinal direction. In general, the horizontal velocity profiles ū(z)

showed Bagnold-like characteristics but subject to a strong basal slip. In Fig. 4.3 we show a

normalized velocity profile u∗b defined as

u∗b = ū −ub

uh −ub
(4.20)

where uh is the surface particle velocity at z = h, and ub is the measured belt velocity (see ub

in Tab. 4.2). Therefore, u∗b is the time-averaged velocity field u normalized to the velocity

difference between the belt and the surface, and it is plotted as a function of 1− (1− z/h)3/2

(Fig. 4.3). We considered this expression for the normalized velocity to show the influence

of basal slip us on the overall velocity profile, which declines as we approach z = h. Close to

the flow surface, most u∗b profiles adjust well to 1− (1− z/h)3/2, which is a characteristic of a

Bagnold-like profile (Bagnold, 1954; Silbert et al., 2001). In terms of longitudinal variation of

the profiles, we see that towards the front, basal friction increased and slip is at its minimum

(see Fig. 4.3 (a) and (b) insets). The observation is shown in Fig. 4.3, where darker profiles

adjust progressively better to the identity line (segmented red line in Fig. 4.3) as we approach

the flume’s right-end (x = 0).

We determined the strain-rate tensor invariants to quantify how dilated or sheared were the

two flow regions. In Fig. 4.4 we show the time-averaged dilation ID and shear rate I ID fields,
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Figure 4.4 – Strain-rate tensor invariants fields: (a) dilation ID and (b) shear rate I ID. The
vertical discontinuous lines corresponds to vertical profiles and the corresponding values of
the strain-rate tensor invariants are plotted with continuous white lines.

which corresponds to the averaged first and second invariants of the strain-rate tensor (as

detailed in §4.2.3). Our results indicate that the front is highly-sheared and dilated, with a

marked vertical gradient for ID and constant I ID at the very front. To the back of the front, ID

fluctuates around 0 and I ID shows a negative gradient towards the flow surface, with higher

values at the bottom as we would expect from the imposed boundary condition. Qualitatively,

dilation and shear are particularly higher in regions where flow height is high as well andΦ is

low, right at the convective-front. These observations are also related to low us values, as seen

in Fig. 4.3. A decrease on the basal slip could explain the front bluntness and dilation, due to a

more effective shear transmission from the belt to the bulk.

4.6.2 Bidisperse experiments

Despite the relative inclusion of more large particles, in terms of Φl , the avalanches main-

tained consistent bulk dynamics to those of monodisperse experiments, especially for low

large particle concentration experiments (Φl = 10-20%, i.e.,Φs = 90-80%). In lowΦl experi-

ments, the flow’s convective-front confines large particles within itself, restraining particle

recirculation. However, in experiments with higherΦl , the well-defined regions observed at

low concentrations and monodisperse experiments become less evident and other structures

emerge. Large particles are often dragged upstream, past the transition between the dilated-

front and well-arranged regions, and alter the structures before detailed. Nonetheless, when

we time-average the velocity and concentration fields, we observe the convective-front more

clearly. Large particle are still found predominantly at the surface and the front of the flow, as

a result of strong segregation flux in the middle of the bulk.

Figure 4.5 shows the time-averaged small particle concentration fields of our experiments.

As expected from size segregation, the time-averaged concentration fields show an inversely-

graded bulk towards the downstream-end of the flume. We can infer from Fig. 4.5 that

experiments with smaller d s , i.e., larger R, are more effective to confine large particles to the
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Figure 4.5 – Small particle concentration φs fields for: (a)-(d) Exps. 2-5 and (e)-(h) Exps. 7-10,
respectively. The small particle general weight concentration decreases from 90, (a) and (e), to
60%, (d) and (h). The white arrows represent the normalized velocity fields ū/max∀x,z ū and
w̄/max∀x,z w̄ .

Figure 4.6 – Segregation flux fsl for the Φ = 90 % experiment (Exp. 2, Tab. 4.2). fsl was
calculated using the scaling suggested by Trewhela et al. (2020a) and simplified in Eq. 4.14.

front of the flow. This confinement is due to a relatively faster segregation fsl for larger R. To

confirm this supposition we determined the segregation flux fsl with the scaling presented

in Eq. 4.14 (Fig. 4.6). For this calculation we supposed a hydrostatic pressure distribution,

the concentration and γ̇ = 2I ID fields determined from coarse-grained experimental data.

Results presented in Fig. 4.6 indicate that segregation flux is highest in the convective-front

region. This result is strongly tied to the shear-rate distribution shown in Fig. 4.4 for the

monodisperse case, since fsl ∼ γ̇. The high values of fsl at the front are still smaller compared

to the w values at the transition between flow regions, presented in Fig. 4.2 (w ≈ 4 cm s−1).

Nonetheless, w values at the front are of the same order of magnitude or close to those of fsl ,

an indication that segregation could influence general flow dynamics, a result also evident in

particle distribution and large particle recirculation (Fig. 4.5).

Large particle recirculation is observed in all the experiments, shown via normalized velocities,

ū j /max∀x,z ū and w̄/max∀x,z w̄ , in the form of white arrows (see Fig. 4.5). For R > 2, dilation
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has been found to be related to more efficient, hence faster segregation (Trewhela et al., 2020b),

resulting in large particles recirculating at the front of the flow. Our results for d s = 6 mm, i.e.,

R = 2.33, show that large particles are likely to be constrained to the dilated-front, seen in Fig.

4.5 (a)-(d). For the experiments with R = 1.66 in Fig. 4.5 (e)-(h), we observed a less marked

segregated state at the front, with lower large particle concentration a sign that large particles

were more homogeneously distributed.

Figure 4.7 – Normalized velocity profiles u∗ (see Eq. 4.21) for 6 mm (a)-(d) and 8 mm (e)-
(h) bidisperse experiments at different Φs . From Tab. 4.2, Exps. 2 through 5 correspond to
subplots (a) through (d), and Exps. 7 through 10 correspond to subplots (e) through (h). The
profiles are plotted in grayscale from white to black, from the left- to the right-end of the
captured flow region. In each plot, an identity line is plotted (dashed red line). All subplots
have an inset plot, where the us progression in the longitudinal direction of the flow is plotted.

Breaking size segregation waves were observed in all bidisperse experiments. We can infer

from Fig. 4.5 the breaking size segregation wave structure, similar to that observed by van der

Vaart et al. (2018a). Large particles at the surface and right-end of the flow, fell onto the very

front of the avalanche where they are overran by the flow and dragged back into the bulk.

Eventually, these large particles segregated and rose back to the surface onto the front. The

lens region (Gray and Ancey, 2009; Johnson et al., 2012; van der Vaart et al., 2018a), where large

and small particles were interchanged by the action of shear-induced segregation, is seen

in the middle part of the avalanche, between −40 < x <−10 cm for all cases. Concentration

gradients in this region indicate an apparent mixing, where large particles rise and small

particles percolate as a result of segregation. Our results also show that changes in the overall

particle concentration between different experiments induced variations in the characteristics

of the breaking size segregation waves. As we increased the overall large particle concentration,

the layer of large particles at the front became thicker and the lens region extended to the left

of the flow, disrupting the layered region described in §4.6.1.
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Normalized velocity profiles u∗ are shown in Fig. 4.7. These profiles are defined as

u∗ = ū −u0

uh −u0
, (4.21)

where u0 is the basal particle velocity at z = 0. This time, the profiles are normalized to the

vertical velocity difference uh −u0. This normalization is different than the one used in Fig.

4.3, where we used ub instead of u0 to highlight slip influence close to the belt. Despite this

difference in the normalization, the results shown in Fig. 4.7 follow the trend observed in the

monodisperse experiments. Slip is still substantial, with values that change along the flow

direction and that range from 40 to 80% of ub (see Fig. 4.7 insets). From Fig. 4.7 insets, we

infer that large particle concentration regularizes slip by reducing its longitudinal gradient.

Surprinsingly, the experiments with d s = 6 mm show an inversion of the us profile whenΦl is

incremented, a higher us was measured at the front of the flow forΦl > 10% experiments. This

result is not consistent with d s = 8 mm, which suggests that bed roughness has an important

role in shear transmission and should be considered for scalings.

A ratifying result is presented in Fig. 4.7, u∗ scales to h3/2, an indication of a Bagnold-like

velocity profile (Eq. 4.9) (Bagnold, 1954; Mitarai and Nakanishi, 2005). Even if this result could

have been expected, we found that profiles were consistent through the longitudinal direction

independent of flow height. Basal-slip tends to deviate the profiles, particularly close to the

belt, but far from the bottom the profiles are in agreement with the Bagnold-scaling. Average

particle concentration influences the results in terms of consistency, as discussed, whenΦl

was increased the slip throughout the base becomes less variable and the velocity profiles

aligned better to 1− (1− z/h)3/2.

4.7 Conclusions

We presented an enclosed conveyor-belt setup to study stationary granular avalanches. A set

of ten mono- and bidisperse experiments were carried out in the aforementioned conveyor-

belt setup. All the experiments exhibited a quasi-stationary behavior characterized by a

convective-front, at the right-end of the inclined flume, and a particle-layered region towards

the flume’s left-end. Our experimental results presented relevant granular flow characteristics

and structures, already discussed in the literature, such as: blunt fronts (Denissen et al., 2019),

breaking-size-segregation waves (Thornton and Gray, 2008; Gray and Ancey, 2009; Johnson

et al., 2012; van der Vaart et al., 2018a) and crystallization (Tsai and Gollub, 2004). Their

simultaneous appearance in our experiments entices to study their interplay and coupling.

Future studies could be supported by the fact that in our experiments, and despite of partial

particle concentration φν and size-ratio R , time-averaged velocity profiles scaled to h3/2. This

scaling is an indication of the Bagnold scaling, a characteristic of granular flows down an

incline (Silbert et al., 2001; Mitarai and Nakanishi, 2005), and could allow the usage of the

µ(I ) rheology to model our experiment dynamics (e.g., Jop et al., 2005). In that direction,
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the consistency of the velocity profiles suggests that an equivalent diameter, dependent on

dν and φν can be established to characterize the flow, as detailed in Eq. 4.15 (Tripathi and

Khakhar, 2011). Finally, this velocity scaling found in our experiments could serve as input

for a size segregation and granular avalanche coupled model as suggested by Gray and Ancey

(2009). We pointed in that direction with the calculation of the segregation flux fsl using the

recent scaling of Trewhela et al. (2020a). We found that fsl was high at the dilated-front region,

which was in agreement with the observed large particle recirculation and the appearance of a

breaking size segregation wave structure within the bulk. Further theoretical analysis must be

done to better understand how recent findings on particle-size segregation can explain the

observed phenomena.

Various velocity and slope conditions should be explored to identify similarities and differences

with the presented results. The influence of the belt’s roughness and the vertical boundaries,

created by the upper rollers, could be addressed but to eliminate their influence on the flow is

impractical for the moment and out of this article’s scope. We think that further work in that

direction would not change the significance of the presented experiments. Nonetheless, this

conveyor belt experimental setup has proven to be useful to visualize and study the internal

dynamics of granular flows.

Supplementary information: Setup-related difficulties

Plastic-fluid interactions

An important goal of this setup was to minimize, as much as possible, the fluid volume

and the exposure to harmful flammable vapors, hence the enclosed flume was devised. To

achieve this goal, the flume required proficient sealing to avoid leaks and spillage, which with

flammable fluids can be potentially dangerous. Although this goal seemed trivial, the usage of

non-conventional fluids created interactions with the setup’s components. Sealing had to be

done with plastics, but many of them chemically reacted when exposed to the ethanol and

benzyl-alcohol mixture. For example, acrylics like PMMA were rapidly dissolved and most

rubbers lost some of their elastic properties, fundamental for sealing, within a couple of hours

or days of exposure to the fluid.

Amid plastics, the already mentioned POM and polyvinyl chloride (PVC) resisted well the

long exposure to the fluid. We observed no important changes in their material properties.

However, and in general, these plastics are slightly porous and tend to absorb small amounts

of fluid when submersed for a long time. Even if absorption was very small, we noticed that

after long usage, friction between the belt and the sides increased to a point where it jammed

the motor. Not only friction was incremented, the compression between the POM pieces was

notably higher, which created desynchronization between pieces and wheel. To determine

how large was the fluid absorption, we measured length changes in two identical pieces of

differing materials.
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Figure 4.8 shows measurements of two submersed pieces: one made of POM and the other of

PVC. The measurements were made at different fluid-exposure times, reaching 600 hours of

submergence. To quantify the expansion, a relative dilation was calculated as

Relative dilation (%) = |Li −Li
0|

Li
0

, (4.22)

where Li (t) is the measured dimension in mm (i = 1,2,3 for length, width or height, respec-

tively) and Li
0 is the initially measured dimension in mm. We observed that the POM piece

swelled much more, and steadily, than its PVC counterpart. This swelling was sufficient to

explain the problems created to the experimental setup. An expansion of ∼1% in depth or

length, may seem harmless, but such expansion in all 300 pieces was equivalent to add three

extra pieces to the system. More than one extra piece was enough to desynchronize the dented

wheel, which ended up blocked by the bolts arriving on top of its teeth. Regarding side-friction,

it was consistently incremented by the extra compression, as a result of pieces expansion in an

already compressed belt system. As observed after long experiments, such friction was large

enough to gradually bring the motor to a halt.

Figure 4.8 – Measurements of relative dilation at different fluid-exposure times for identical
POM (red) and PVC (turquoise) belt pieces. Dimensions Li corresponds to i := 1 for length,
(a); 2 for width, (b); and 3 for height, (c). There were no stresses applied to the pieces.

In general, PVC expansion was less than half of the POM expansion. This difference, with

such serious consequences, prompted a change of the pieces’ material to PVC. This change is

not reflected in our results, since the whole experimental set for this article was carried out

with the POM pieces. Another feature of the used PVC is that it is more opaque than POM.

Its opaqueness reduced laser reflection close to the belt, hence improving image definition
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during acquisition.

Rubbers and silicones were required to seal joints and screwed pieces that needed to be

routinely retired between experiments. When exposed to the RIM fluid, normal rubber rapidly

looses elasticity and after long exposure it is partially dissolved. This dissolution bifolds into

leakage and fluid pollution, both prejudicial in terms of safety and costs. We essayed many

different types of rubbers and silicones with little to no success. To our knowledge, only Viton,

a fluoroelastomer, is adequate for o-rings or other rubber pieces. To seal the setup, common

silicone could not retain the fluid and was rapidly dissolved. The silicone LOCTITE SI 5910

proved to sustain the fluid exposure effectively for long periods without leakage.

Pollutants and filtering system

The conveyed pieces inevitably produces friction between them, the grooves and the rollers.

Most of the friction is against aluminium and the scraping releases a very fine black dust that

scatters around. Long running experiments are able to accumulate enough dust to visibly

detriment the transparency of the fluid, the laser is then obstructed and images loose quality.

To regain image definition and increase light intensity, we changed acquisition parameters

such as the gain, and/or reduced the lens’ focal ratio. Yet, the black dust would still increase to

a point where these improvements became futile.

A filtering system was devised to remove the dust from the fluid. We could have used a wet

sieving/filtering system, such as an available Retsch AS200, but we did not know the whole

composition of this system, and to not compromise it due to the fluid exposure, we decided to

try a simpler setup. A large reservoir would drip the fluid into a funnel with filtering paper of 40

µm. We were able to filter the fluid in approximately one day, which was a reasonable amount

of time to prepare the next experiment. With twice the amount of fluid, we could rotate the

fluid batches and maintain a controlled amount of dust that did not harm image quality. The

reduction of dust production, via improvements like stainless steel grooves, could certainly

enhance the setup performance and image quality but were not devised for this work.
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5.1 Summary of this thesis

In this thesis, I shed light on the coupling of flow rheology and grain sorting in dense granular

flows. I studied this connection through experiments in three different facilities: (i) a two-

dimensional shear cell (Chap. 2), (ii) a three-dimensional shear box (Chap. 3), and (iii) an

inclined conveyor belt (Chap. 4). Each setup gave me insights on how the particles’ size ratio,

dilation, shear rate, local concentrations and velocity profiles affected size segregation, and

vice versa. These variables and parameters were studied with the help of Refractive Index

Matching (RIM), Particle Tracking Velocimetry (PTV) and Coarse-Graining (CG) techniques,

which allowed me to visualize and determine the particles’ local concentrations and velocity

fields. The experimental facilities, techniques and methods used for this dissertation proved

to be reliable, robust and well-suited for my objectives.

In Chap. 2, we gave insights about the role of size ratio, defined in that chapter as the ratio

between the small particles’ and the large particle’s diameters d s/d l , and the strain rate

on large particles segregation. The Hele-Shaw configuration of the two-dimensional shear

cell facilitated a direct observation of the squeeze expulsion mechanism acting on a large

intruder (as introduced in §1.3 and referenced to Savage and Lun, 1988). Besides the intruder’s

vertical movement, its rotationΩi was measured and found to be dominant factor leading to

segregation when the intruder was slightly larger than the surrounding particles. This finding

was made through the calculation of conditional probabilities, i.e., the probability that the

intruder segregated given that it rotated P (wi |Ωi ). In parallel, the time-averaged strain-rate

tensor’s invariants around the intruder varied from one intruder size to another, but for the

same surrounding medium. While dilation ID was markedly high for an intruder with a large

size difference, shear rate I ID was low. Contrarily, for an intruder with a small size difference,

dilation ID was low and shear rate I ID was high. These results backed up the initial direct

observations made and suggested that the squeeze expulsion micromechanical origin must

be dependent on the size ratio. Two submechanisms were proposed: (i) a dilation-, and (ii) a

rotation-based mechanism for size ratio values (i) larger, and (ii) smaller than d s/d l = 0.5.
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A functional form for the segregation flux function fsl was obtained from simple shear experi-

ments in an oscillatory three-dimensional shear box. We carried out four experimental sets

that consisted in an opaque borosilicate glass intruder segregating through a RIM bulk made

of transparent beads of the same glass. These sets were defined by various shear rates γ̇ and

size ratios R = d l /d s conditions for two segregation cases: (i) a large intruder being squeezed

by smaller particles towards the surface, and (ii) a small intruder percolating through a matrix

of larger particles towards the bottom. Four key experimental observations were made to

determine the functional form of fsl :

i all intruders showed curved trajectories and were well-fitted by a quadratic law,

ii the segregation rate scaled linearly with γ̇ for both large and small intruders,

iii the segregation rate for large intruders scaled linearly with R −1,

iv the segregation rate for small intruders is affected by spontaneous percolation when R

becomes larger than 1.5, therefore it initially scaled linearly but tended to be a quadratic

function of R −1.

The efforts to collapse all small and large segregation rates gave us a final key observation:

the size ratio R was enough to explain the segregation asymmetry in our experiments, via a

concentration-averaged diameter d̄ = d sφs+d lφl . We used dimensional analysis to determine

that the small particle segregation flux can be expressed, unifying the definitions made in

Chaps. 1 and 3, as

F s = fslφ
sφl = Bρ∗γ̇d̄ 2

C ρ∗g d̄ +p

[
(R −1)+Eφl (R −1)2

]
φsφl , (5.1)

whose coefficients B = 0.3744, C = 0.2712 and E = 2.0957 were determined with our experi-

mental results.

Our functional form was used to successfully reproduce the results of van der Vaart et al. (2015)

for intermediate concentrations, which proves the scaling validity under other experimental

conditions. The proposed function is versatile enough to provide a physical parametrization

of particle-size segregation in terms of flow variables and parameters, while still capturing the

segregation asymmetry and previously-made formulations (i.e., the functions of: Bridgwater

et al., 1985; Dolgunin and Ukolov, 1995; Gajjar and Gray, 2014).

To study granular avalanches in steady and uniform conditions, I carried out RIM experiments

in an enclosed and inclined conveyor belt. To relate flow and bulk variables, I used particle

tracking velocimetry and coarse-graining to calculate the velocity and concentration fields of

mono and bidisperse experiments. These experiments were differentiated by their general

small particle concentrationΦs = 1−Φl and small particle diameter d s , hence their size ratio

R. Nonetheless, all the experiments were quasi-stationary and exhibited two clear regions:
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i a convective-bulged front, characterized by high dilation and high shear rate that con-

fined large particles within the region,

ii a layered tail, composed mostly of well-arranged layers of small particles that moved on

top of each other.

A transition between these regions was also observed: they were found to have a similar

structure than that of a breaking size segregation wave (Thornton and Gray, 2008; Johnson

et al., 2012; van der Vaart et al., 2018a).

In general, and despite the fact that the steady flows showed variable local species concen-

trations, their time-averaged velocity profiles were found to be Bagnold-like, i.e., u ∼ h3/2.

This scaling is a characteristic of monodisperse dense granular flows over inclined surfaces

that has been associated to the µ(I ) rheology (Silbert et al., 2001; MiDi, 2004; Mitarai and

Nakanishi, 2005). Finally, in Chap. 4, we were able to use the segregation flux scaling of Chap.

3 in a different flow configuration. The functional dependence on γ̇, φs and p, through a

hydrostatic pressure distribution, allowed the segregation flux direct calculation from the

analyzed particles’ images. fsl experimental results confirmed other remarks made on large

particle recirculation and the relation between high-dilation and high-segregation rate (raised

in Chap. 2).

5.2 Future perspectives

5.2.1 Outcomes

At a microscopic scale, I studied the size ratio and local strain-rate roles on large particle

segregation. These findings could provide a better understanding at the contact level and could

be useful for discrete numerical models of size segregation processes. A tangent outcome

of the strain-rate influence on large particle segregation is the friction role for small size

differences. In this case, frictionless large particles will struggle to segregate, since their

segregation mechanism relies more on a friction-induced rotation (Jing et al., 2017). This

point may have an application on mixing processes whose goal is to restrain segregation and

achieve homogeneous mixtures.

We developed a segregation scaling that has a wide range of applications for segregation

processes in nature and the industry. Even if the formulation is not complete, our proposed

functional form determined a clear dependence on a variety of physical variables that were

known to play a role but with no well-defined scales. This functional form also depends on

macroscopic variables or distributions that can be easily determined or set externally, a fact

that could be directly translated to industrial applications or natural flows. For instance, in a

gravity-driven debris flow, pressure and shear-rate distribution are usually assumed to have

well-known distributions, that are direct functional inputs to fsl .
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A conveyor belt facility was constructed and although it is undergoing modifications, it is

operational and could serve for further experimentation. Already a substantial amount of

experimental data was obtained and is also available for further use. This data can be used for

model validation and for the development of segregation-coupled flow models. Specifically,

the fact that the measured experimental velocity profiles were Bagnold-like promotes the idea

that a concentration-averaged diameter d̄ could be used to determine a bidisperse inertial

number.

5.2.2 Open challenges

Even if in this dissertation I provided relevant research on size segregation, there are plenty of

topics and challenges that are open for further developments. Here, I detail some propositions

that could be worth studying in the short- and long-term.

For shear cell experiments

As probably noted by the reader, the developments I made for the two-dimensional cell were

barely related to the segregation flux scaling proposed in Chap. 3. An analysis of the two-

dimensional intruders’ data could be done to validate the proposed scaling in this shear cell

configuration. For that purpose, three considerations must be taken into account: (i) the

appearance of artifacts due to the restrictive flow configuration, (ii) the bulk had no interstitial

fluid, and (iii) the particles’ material properties. These three aspects could affect the values of

B, C and E , but they should not affect the key experimental observations in Chap. 3.

I did not present any theoretical developments or models on the squeeze expulsion mecha-

nism. Recently, buoyancy-analog scalings have gained relevance in the literature (Guillard

et al., 2016; van der Vaart et al., 2018b; Jing et al., 2020), however, there is not much experimen-

tal data that sustains these scalings. Perhaps, a brief validation of these scalings could be done

with the available data presented in this dissertation.

To continue on the topic of large particle segregation, in this thesis I did not explore huge

size ratio values and their effect on size segregation. Reverse or restrained segregation has

been observed mostly in discrete elements method simulations (Thomas, 2000; Thomas and

D’Ortona, 2018; Jing et al., 2020). Besides the fact that my experiments did not show a decrease

in the segregation rates for very large size ratios, it seems simple to extend my experimental

results to a wider range of size ratios.

An intriguing, yet irrelevant result for the main body of this thesis, was found in the initial

experiments in the three-dimensional shear box. When I used a RIM mixture of acrylic beads

and Triton X-100, no particle-size segregation was observed for large intruders. In Appx. A.2, I

hypothesize that a combined effect of viscosity and buoyancy restrained segregation, which

could be a result of lubrication and the loss of friction. In that direction, experiments exploring

the role of the interstitial fluid on particle-size segregation could provide more functional
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5.2. Future perspectives

dependencies to the scaling presented in this thesis.

For other experimental configurations

The conveyor belt setup creates a very particular flow condition, a steady-uniform flow. Ex-

periments carried out under these flow conditions could motivate and validate a coupled

model that considers the mass and momentum conservation equations for the bulk, and the

convective-diffusive segregation equation with the proposed flux function. This proposition

could follow and extend the work of Gray and Ancey (2009). Conveniently to our experimental

flow condition, Gray and Ancey (2009) provided a traveling-wave solution that could now

include a generally-defined bidisperse inertial number I fed back by species redistribution

due to particle-size segregation. This feedback is given by the functional dependence of fsl

which reciprocally depends implicitly on the inertial number I .

The experiments made in the conveyor belt also showed an interesting phenomenon: a

stationary granular hydraulic jump or bore (Savage, 1979; Boudet et al., 2007; Johnson and

Gray, 2011; Edwards and Vriend, 2016), for experiments with a slope θ > 16°. The conveyor

belt’s configuration eases the jump visualization and analysis, which could elucidate its role

on segregation and motivate further theoretical developments.

Although it was not used for this thesis, we designed and developed an annular shear cell that

recently became operational. An explanation on the design and construction of this setup

is presented in Appx. B. RIM experiments in this annular shear cell could provide further

validation of the presented segregation scaling. In this setup, an upper pressure condition can

be imposed simultaneously to the flow, which has the particularity that the imposed shear rate

is continuous rather than oscillatory. For instance, a pressure-imposed flow condition could

provide better data to calibrate the C constant, which sets a condition for the segregation rate

close to the surface in Eq. 5.1.
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A Notes on experiments with restrained
particle-size segregation

A.1 Absence of the kinetic sieving mechanism in two-dimensional

experiments

In Chapter 2, I presented experiments that consisted in a large particle squeezed upwards

through a matrix of smaller particles. As mentioned in §2.3.1 I did not show results about

small particles’ segregation through a matrix of larger particles. In this section I elaborate on

the reasons why this may have happened and the consequences on similar two-dimensional

studies.

In a two-dimensional flow configuration, particles are basically disks that move in the plane. In

a dense particle flow configuration, disks are necessarily sustained by contacts with neighbors

or boundaries. Close contacts in a two-dimensional configuration are inherently different

than those in a three-dimensional configuration. In a tridimensional configuration a particle

can be supported by particles below that are slightly at the front or the back in the transverse

direction of the volume. This transverse offset creates additional gap possibilities for a small

particle to fall that are non-existent in a two-dimensional configuration. For a small disk

to percolate through two larger disks, separation must be created, hence for a moment the

support must shift from one neighbor to another. Percolation does not depends on existent

gaps but on the creation of them, which is more similar to the squeeze expulsion mechanism

rather than the kinetic sieving.

This artifact, particular for two-dimensional flow configurations, could present difficulties

when analyzing size segregation. First, the asymmetric behavior detailed by van der Vaart

et al.’s (2015) and further developed in chapter 3 may not be evidenced. Despite the experi-

ments in the 2D shear cell are under dry conditions, for which we should expect a higher value

for B, we also expect the parameter E to decrease or be null, since its appearance was purely

related to the case of a small intruder with R > 2 segregating through a matrix of large particles.

Second, this absence of kinetic sieving may only be observed for extreme concentration cases

where φs = 0+ and could be less relevant for higher concentrations.
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Appendix A. Notes on experiments with restrained particle-size segregation

Material nr ρ (g cm−3) η (cP) Supplier
PMMA 1.4912 1.18 NA The Plastic Ball Company
Triton X-100 1.492 1.07 270 Fisher Scientific

Table A.1 – Refractive indexes nr , densities ρ, viscosities η and suppliers for the PMMA - Triton
X-100 experiments.

Further research should be made in this matter to determine how valid is the extrapolation of

two-dimensional results to tridimensional ones. In addition this note could be important for

sorting or mixing processes that are transversally restrained, such as cigarette making or coin

sorting processes, for example.

A.2 Poly(methyl methacrylate) (PMMA) - Triton X-100 experiments

Initially, the experiments on the three dimensional shear box that served for Chapter 3 of this

dissertation were envisioned with a different RIM mixture. I saw many difficulties associated

to the ethanol and benzyl-alcohol mixture that did not exist with another available fluid:

Triton X-100. This fluid is not flammable and since its refractive index was very close to that of

Poly(methyl methacrylate) (PMMA), no index adjustment was required. In Table A.2 I present

the properties of PMMA and Triton X-100 for the RIM experiments in the three dimensional

shear box.

Under dry-conditions, an opaque PMMA intruder of di = 11.1 mm was able to segregate to

the top of a dm = 4.8 mm bulk after an approximate of 10 minutes. In such conditions, I

was unable to measure its position, so a refractive index matched fluid was fundamental to

visualize the intruder and measure segregation.

di (mm) dm (mm) R = d l /d s γ̇m (s−1) fps

6.4 11.1 1.75 0.26 40

4.8 11.1 2.33 0.26 40

3.2 11.1 3.25 0.26 40

11.1 4.8 2.33 0.26 40

Table A.2 – Experimental parameters for PMMA - Triton X-100 experiments. Intruder di and
media dm diameters, size ratios R, external shear rates γ̇m and image acquisition frame rate
per second (fps).

Unexpectedly, with Triton X-100 as the interstitial fluid, the intruder could not rise to the

top. I recorded images for more than an hour without substantial vertical movement of the

intruder. Intra-cycle vertical movement was observed but it was just the result of the periodic

cell movement, as expected. Inter-layer movement was not observed. Despite this result, I
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A.2. Poly(methyl methacrylate) (PMMA) - Triton X-100 experiments

completed the experimental set (Tab. A.2), whose remaining experiments were for a small

intruder segregating through a matrix of large particles. Segregation was observed but only

for large size ratios, R = d l /d s > 2. For experiments with a size ratio R < 3, partial- to null-

segregation was observed. In Figure A.1 I show that as the size ratio was decreased, segregation

became restrained. The intruder segregated completely to the bottom of the cell only for R =
3.5, for R = 2.3 segregation was partial and the larger intruder did not segregate at all, R = 1.8

in Fig. A.1.

Figure A.1 – Vertical positions of small intruders of diameter di = {3.2,4.8,6.3} mm segregating
through large particles of diameter dm = 11.1 mm. For these experiments, the granular
material was formed by an opaque PMMA intruder immersed in a bath of transparent PMMA
beads and Triton X-100.

Based on the opposite results obtained for the experiments under dry and wet conditions, I

hypothesized on the role of the interstitial fluid. The surrounding fluid may introduce two

effects that restrain the segregation process: (i) viscous and (ii) buoyant.

Viscosity lubricates frictional contacts and as I presented in this dissertation, grain-grain

friction is needed for the segregation of large particles (Chap. 2). One hypothesis is that Triton

X-100, with its high viscosity, lubricated the frictional contacts existent under dry-conditions.

With no strong friction between grains, it was impossible for the small particles to squeeze up

the large intruder.

The densities of PMMA and Triton X-100 are quite similar. In fact, these materials have been

used with other fluids for density- and refractive index-matched experiments (Wiederseiner

et al., 2011a; Andreini et al., 2013). Just a single particle immersed in Triton X-100 by itself

showed a weak negative buoyancy, sedimenting slowing to the bottom of the container. In the

small intruder experiments, the particle sedimentation was now inevitably obstructed by the

larger particles. When the size ratio was large, the particle could still percolate through the

matrix, but for size ratios closer to 1, the small intruder is subjected to the contact network.

Then, its segregation depends on the grain frictional contacts, which I said, were weak.

These observations give the viscous effects the initial upperhand to explain why segregation

was restrained in these experiments. Nonetheless, this is just an initial guess, far from definitive.
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Appendix A. Notes on experiments with restrained particle-size segregation

Further experiments could be made to shed light on the effect of gravity-reduced environments

and high-viscosity fluids on particle-size segregation.
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B Annular shear cell setup

B.1 Conception

Annular shear cells are commonly used to study granular flows (Carr and Walker, 1968;

Stephens and Bridgwater, 1978a; Savage and Sayed, 1984; Jasti and Higgs III, 2008; Koval

et al., 2009; Golick and Daniels, 2009; Guo and Campbell, 2016). These cells create a flow

condition that is quite appealing to study granular flows. Due to the cell radial symmetry

and under a constant shear rate, the flow is uniform and steady. However, this geometry may

present some disadvantages: (i) shear-banding and depth-dependent velocity decay (Tsai and

Gollub, 2005), and (ii) secondary-radial currents for high curvatures (Savage and Sayed, 1984).

Together with Prof. Christophe Ancey, we conceived the construction of an annular shear

cell to be used in my thesis. The initial design was based on previous studies that used

this geometry to study dense granular flows (in particular the shear cells of Tsai and Gollub,

2005; May et al., 2010b; Boyer et al., 2011). We considered most of this setup’s associated

advantages and difficulties, and adapted them to the fact that the setup had to be used for

RIM experiments. Therefore, the setup was envisioned to be a traditional cell, where the shear

would be imposed by an upper annular plate, as done by the cell of Tsai and Gollub (2005).

Another appealing feature of annular shear cells is the possibility to apply normal stresses by

pressing down with the upper annular plate, as shown by Boyer et al. (2011). Experiments at

different confining pressures could explore on the role of pressure in particle-size segregation,

therefore we defined that the upper annular plate would fulfill that role. With the upper-

boundary functionality well-defined, the lower boundary needed to ease the RIM technique

application. A large glass pane could serve as the cell’s bottom boundary and at the same time,

could allow the passage of a laser sheet or the image acquisition of the whole cell’s bottom. Fi-

nally, and due to our interest to study particle-size segregation on this cell, windows needed to

be placed at the sides of the cell. A full-depth window allows the determination of segregation

fluxes and concentrations using the Refractive Index Matching Scanning technique, already

used for the experiments of van der Vaart et al. (2015).
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Appendix B. Annular shear cell setup

B.2 Construction

The construction of the annular shear cell was carried out by the ENAC Technical Platform,

under the supervision of Mr. Michel Teuscher, Mr. Bob de Graffenried, Prof. Christophe Ancey

and myself. A diagram of the constructed annular shear cell is presented in Figure B.1.

The constructed annular shear cell consists in two separate poly-vinyl chloride (PVC) pieces

that are firmly screwed on top of a 60 cm large, 60 cm width and 2 cm thick glass pane. The

central PVC piece is a cylinder of Ri = 15 cm radius and Hs = 15 cm height. The external PVC

piece is a large block with a cylindrical space within of Re = 25 cm radius and Hs height as well.

Both pieces create a cross-section of 150 cm2 and a volume of 28745.64 cc (cubic centimeters).

As conceived, the shear is exerted by the rotation of an upper annular plate. This rotation is

controlled by a Beckhoff servomotor1 which has a gear-box that sets the rotational speed to a

range of 0-100 rpm. The upper annular plate’s vertical position is set by a 500-mm-step Zaber

linear stage2.

Three lateral acrylic-PVC windows were framed at the front and sides of the annular shear

cell (see Fig. B.1(a) dashed-dot green line). Due to the fact that the RIM fluid dissolves acrylic

components, the windows were built with two pieces:(i) an exterior acrylic piece attached to

a (ii) curved interior piece made of semi transparent PVC. This window design maximized

transparency without exposing the acrylic to the RIM fluid.

1Model: Beckhoff AM8131-0F02-0000
2Model: Zaber X-LRT0500BL-E08C-KX14N
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B.2. Construction

Figure B.1 – Diagram of the annular shear cell setup (rheometer). The setup is composed by
two separate pieces that form the annular cell (PVC cell in the diagram): a cylinder of Di = 30
cm diameter, and a PVC block with an inner cylindrical bassin of De = 50 cm diameter. The
height of both pieces is Hs = 15 cm and they are on top of an horizontal glass pane through
which the grains can be observed or iluminated via lasers. Three lateral windows are placed at
each side of the PVC cell to visualize the flow within the cell. An idealized flow visualization is
shown in (a) (green dashed-dot cutline), where a refractive index matched granular material is
observed as black circles due to laser induced fluorescency. The windows were devised so that
their lower boundaries correspond precisely to the bottom of the cell. In (b) (red dashed-dot
cutline), a top view of the annular shear cell is shown, with a green line representing a laser
passing perpendicularly through the cell. Finally, a cross-section of the entire annular cell is
presented in (c) (blue dashed-dot cutline). In this last view, we see the rotating system which
is placed vertically by a linear stage and rotated by a motor.
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