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Abstract

Image restoration reconstructs, as faithfully as possible, an original image from a potentially degraded
version of it. Image degradations can be of various types, for instance haze, unwanted reflections, optical
or spectral aberrations, or other physically induced artifacts. Among the most fundamental restoration
tasks is additive denoising, but also image inpainting and super-resolution. Denoising recovers an original
image from an observed version containing a noise component over the image signal. It has significant
theoretical importance as various problems can be reduced into a denoising problem, or reformulated to
use a denoising solution. It also has significant practical importance due to its widespread use in imaging
pipelines. Inpainting recovers image areas that are completely lost. Super-resolution increases the resolution
of an image; in other words, it reconstructs an image with an effectively higher sampling rate and a
larger-cutoff acquisition low-pass filter. To this end, it requires both effective deblurring and interpolation
operations when viewing the problem from a spatial perspective.

The available methods for image restoration can be divided into two main categories; the classic
restoration methods and the more recent deep neural network based approaches. With the advancement of
deep learning, neural networks pushed the previous performance limits in image restoration, often at the
expense of interpretability and reliability. Here, reliability means fidelity to the original image data. Classic
image restoration is based in part on data fidelity and in part on priors that are manually designed, with the
weighing between them also being manually chosen. Even though the distinction is often lost in the final
output, the hallucinations induced by the prior are generally controllable and can be intuitively analyzed.
This is, however, no longer the case with deep neural networks. These networks implicitly learn a prior
and learn to be faithful to the original data, through the thousands or more of their hidden weights. Hence,
control and interpretability over the contribution and nature of data fidelity and prior components are lost.

In this thesis, we analyze denoising and super-resolution networks in the frequency domain to gain
further understanding over how image components and their inter-relations are learned and manipulated by
the deep networks. Based on the obtained insights, a stochastic masking approach is presented to improve
the learning. We also present a theoretical framework to evaluate a network’s performance in learning the
statistically optimal data fidelity and the optimal prior in a designed experimental setup. This framework
is then generalized for denoising real image data by incorporating internal noise level estimation. Lastly,
we present a framework that generalizes various families of classic restoration methods based on explicit
optimizations and that can incorporate learned network priors. The framework also accounts for learning
the fusion weights that balance between data fidelity and a learned prior, rather than a manually designed
heuristic. As the framework enables us to disentangle these two components, the fusion weights are explicit,
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and structurally given per pixel. These weights could benefit both the interpretability and the various
downstream applications.

Keywords: image restoration, image denoising, learned priors, data fidelity, deep neural networks,
convolutional neural networks, overfitting.
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Zusammenfassung

Bildrestaurierung rekonstruiert ein Originalbild aus einer potenziell degradierten Version so originalgetreu
wie möglich. Bildverschlechterungen können unterschiedlicher Art sein, z. B. Dunst, unerwünschte
Reflexionen, optische oder spektrale Aberrationen oder andere physikalisch bedingte Artefakte. Zu
den grundlegendsten Restaurierungsaufgaben gehören additive Entrauschung, aber auch Inpainting und
Super-Auflösung. Entrauschung rekonstruiert ein Originalbild aus einer beobachteten Version, welche eine
Rauschkomponente über dem Bildsignal enthält. Da verschiedene Probleme auf ein Entrauschungs-Problem
reduziert werden können, oder in abgeänderter Form durch Entrauschung gelöst werden können, ist
diese von signifikanter theoretischer Bedeutung. Sie hat auch eine grosse praktische Relevanz, da sie
in Bildverarbeitungspipelines weit verbreitet ist. Inpainting stellt Bildbereiche wieder her, die komplett
verloren sind. Super-Resolution erhöht die Auflösung eines Bildes; mit anderen Worten rekonstruiert sie
ein Bild mit einer effektiv höheren Abtastrate und einem Aufnahme-Tiefpassfilter mit grösserem Cutoff.
Betrachtet man das Problem aus einer räumlichen Perspektive, sind zu diesem Zweck sowohl effektive
Entschärfungs- als auch Interpolationsoperationen erforderlich.

Die verfügbaren Methoden zur Bildrestaurierung können in zwei Hauptkategorien unterteilt werden: die
klassischen Restaurierungsmethoden und die neueren, auf tiefen neuronalen Netzwerken basierenden Ansät-
ze. Mit dem Fortschritt von Deep Learning haben neuronale Netzwerke die bisherigen Leistungsgrenzen bei
der Bildrestauration verschoben, oft auf Kosten von Interpretierbarkeit und Zuverlässigkeit. Zuverlässigkeit
bezeichnet hier die Treue zu den ursprünglichen Bilddaten. Die klassische Bildrestauration basiert einerseits
auf Datentreue und andererseits auf Priors, die manuell entworfen werden. Die Abwägung zwischen ihnen
wird ebenfalls manuell gewählt. Auch wenn die Unterscheidung im Resultat oft verloren geht, sind die durch
den Prior induzierten Halluzinationen im Allgemeinen kontrollierbar und können intuitiv analysiert werden.
Dies ist bei tiefen neuronalen Netzwerken jedoch nicht mehr der Fall. Letztere lernen implizit, durch ihre
unzähligen versteckten Gewichte, einen Prior und den Originaldaten treu zu bleiben. Die Kontrolle und
Interpretierbarkeit über den Anteil und die Art der Datentreue und der Prior-Komponenten gehen deswegen
verloren.

In dieser Doktorarbeit analysieren wir Entrauschungs- und Superresolutions-Netzwerke im Fre-
quenzbereich, um ein besseres Verständnis darüber zu erlangen, wie Bildkomponenten und deren
Zusammenhänge von tiefen Netzwerken gelernt und manipuliert werden können. Basierend auf den
gewonnenen Erkenntnissen wird ein stochastischer Maskierungsansatz vorgestellt, welcher das Lernen
verbessert. Des weiteren stellen wir einen theoretischen Rahmen vor, um die Fähigkeit eines Netzwerks zu
evaluieren, die statistisch optimale Datentreue und Priors in einem Testversuch zu erlernen. Anschliessend
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verallgemeinern wir diesen Rahmen für die Entrauschung von realen Bilddaten, indem wir eine interne
Rauschpegelschätzung einbeziehen. Schließlich stellen wir ein Framework vor, das verschiedenste Familien
klassischer Restaurationsmethoden, welche auf expliziten Optimierungen basieren, verallgemeinert und
welches gelernte Netzwerk-Priors einbeziehen kann. Das Framework beinhaltet auch das Lernen der
Fusionsgewichte, das ein Gleichgewicht zwischen der Datentreue und dem gelernten Prior herstellen, anstatt
eine manuell entworfene Heuristik zu verwenden. Da das Framework es erlaubt, diese beiden Komponenten
zu entflechten, sind die Fusionsgewichte explizit und strukturell pixelweise gegeben. Diese Gewichte
können sowohl der Interpretierbarkeit als auch nachgelagerten Anwendungen zugutekommen.

Schlüsselwörter: Bildrestauration, Bildentrauschung, gelernte Priors, Datentreue, tiefe neuronale Netz-
werke, neuronale Faltungsnetzwerke, Überanpassung.
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J , K, M , N Counting/dimension size variables
δk1 Kronecker delta
rI , rO, rω, rM , rC Radius values away from the DC component in DCT
δ, δI , δO Offsets sampled from a half-normal distribution
ε Very small constant value
R+ Real positive numbers
x̂ Estimator of x
x̄ Mean value of x
S Gaussian-setup signal-to-noise ratio
f(·), g(·), g−1(·) Functions
DT Training dataset
|| · ||2 `2 norm
|| · ||1 `1 norm
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Symbol Description
N (µ, σ2) Normal distribution with mean µ and standard deviation σ
L, Lf , LG Loss functions used in network training
θP , θN , θ1, θ2 Network parameter weights
F (·), F̂ (·) Fusion function and its estimator
C Multi-input concatenation
� Pixel-wise or element-wise multiplication
β Fusion weight
f ′, f ′′ Manipulation functions
ψd Data fidelity penalty term
ψp Prior information penalty term
T Signal transformation
fj First-order derivative filters
⊗ Filter application, e.g. convolution
G Generative network
G1, G2 Sub-network parts
l Network layer index
v Vector coordinates, for a dictionary space
D Dictionary
d(·, ·) Distance function
z1, ..., zN Latent codes
α1, ..., αN Adaptive channel weights
xinv Generative inversion of x
φ Pixel-wise fusion map
span(·) Spanning set
ρ Loss-balancing scalar
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Chapter 1

Introduction

1.1 Overview

Our experience in the physical world is governed by observations that are either sensed or induced. Along
with these observations, there exists a set of often implicit models or rules. Whether these rules can be
reasoned from an absolute truth and trusted without an appeal to innate nature or a deity [32], or without
the need for an oracle that is external to the physical world [97], or whether any rules can even be truly
separated from empirical observation [61], can turn into philosophical dilemmas. Drawing the frontiers
between observation on one side, and the associated reasoning and assumed rules on the other side, is indeed
not an obvious task.

Nevertheless, we can assume that the worth of the union of the two can theoretically be lower bounded
by the worth of the best between them. From a theoretical point of view, even a ‘set of observations’ (if we
perceive rules from an empiricist’s perspective), combined with a current observation, can only be as bad as
the restriction to only the current observation. This can be reasonably assumed, as the former case could be
reduced to only the current observation through omission, at least in theory. It is therefore reasonable to use
the former scenario, where the many previous observations can be translated into a form of rules or data
models.

The physical world is a stochastic space, at least relative to our current imperfect observation, modeling,
and inference capabilities. We can also consider it to be a noisy space, at least in relation to our imperfect
observation and sensing capabilities. Therefore, observations are not always perfectly reliable, and models,
even if assumed to be perfectly accurate, remain non-deterministic and cannot guarantee the accuracy of all
consequent deductions. To navigate through this system and to reach conclusions that are as accurate as
possible, we constantly juggle between our current observations and the models we previously had in mind,
hence the associated name: priors. For humans, such models are not even necessarily derived thoroughly
nor without bias, are not always in connection with our conscious mind processes, do not always reflect
empirical evidence accurately, and are not necessarily well updated through time [5]. The exact frontier and
interplay between observation-based reasoning and deduction, and the prior-based counterpart remains an
open question, indeed a psychological or neuro-scientific one.
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This frontier is, however, at the heart of imaging and image restoration methods. Imaging and image
restoration can hardly be dissociated. Imaging is concerned with observing or scanning something physical
to obtain visual information about it, in the form of images in the general sense (different number of spatial,
temporal, or spectral dimensions). This scanning can be carried out for instance with visible light as in
the human visual system, with other electromagnetic radiation, or with electrons. However, this scanning
is less than perfect. For this reason, imaging and image restoration go hand in hand, where the latter
corrects the shortcomings of the former. It is in image restoration that the interplay between observation-
based information, which we call data fidelity, and prior-based information, is key. We first discuss image
restoration and then dive into the interplay of the two types of information.

The purpose of image restoration is to fill the shortcomings of imaging systems. These shortcomings
can be caused by the physical world itself, haze, rain, or other "occlusions", or by the physical limitations
of the scanning medium, for instance, light scattering, or reflections for visible light. They can also be
caused by the capture system, the optics, or the measurement hardware. We formulate these shortcomings
in imaging in the form of deterministic or stochastic degradation models over an ideal image. The task of
image restoration is then to undo the effects of the degradation models, thus restoring the ideal image from a
degraded observation of it. For the fundamental task of additive image denoising, the degradation model
that takes an ideal image y and turns it into the observed image x is a simple addition of a noise component
n. The degradation model is thus formulated as y = x+ n, and the objective of the restoration task is to
obtain x, or equivalently n, from y. Prior information can take the form of a statistical model that governs
n, but also any statistics over any component of x. In this setup, the data-fidelity component enforces our
estimate solution for x to be to a certain degree related to y, and the prior component leads our estimate to
be more in accordance with the assumptions we make over x and n. When n is statistically close to zero, it
is intuitive that data fidelity is crucial. In fact, y is itself already a strong candidate estimator of x. On the
contrary, when n is close to infinite, the observation provides close to zero information on x. In this case,
our estimator should rely on its prior information (prior to having made the observation) to obtain its best
guess for x. In between these two extremes, the interplay between the two components is less intuitive, and
so is their optimal combination to obtain a final restoration estimate. The factors affecting this interplay are
the quality of our observation y, which is directly related to the strength of the noise n for image denoising,
and the quality of our prior information. We discuss these concepts more thoroughly in the remainder of the
thesis, but we note here that they extend to other restoration tasks and that they emerge in the various image
restoration algorithms in the literature.

Classic restoration methods most often implement their priors through different heuristics and assump-
tions derived experimentally from data. These priors are based on assumptions such as the presence of
multiple similar patches in an image, or certain statistical distributions observed over image gradients.
These methods then enforce their priors either directly through optimizations or indirectly as an effect of
their algorithmic design. In recent years, artificial neural networks achieved remarkable progress in tasks
such as image restoration. They derive their prior rules internally by observing and training over a large
amount of data and are then able to make inference upon a novel observation. The nature of these networks,
however, makes it similarly complex to analyze their inner-workings and the way they learn and manage the
observations, or their data fidelity, and the learned data models, or learned priors. In this thesis, we study
and build upon the interplay between these two aforementioned key components in image restoration.
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Related work for the different topics is presented in each chapter. In the following section, we discuss the
literature that is common across all the chapters, specifically the related work on denoising. In Section 1.3,
we present basic background on anti-aliasing filtering that is relevant to the first chapter of the thesis.

1.2 Related Work on Denoising

Denoising is among the most fundamental of image restoration tasks because it is very important from
an application perspective and due to its importance from a theoretical point of view. We address image
denoising in each of the three following chapters in this thesis and, for readability, we group the common
related work in this section. A denoising method is described as being blind if it is applicable to unknown
variable test noise levels. A model is described as being universal if it consists of a single network or a
single module for addressing all test cases, which is in contrast with approaches that store a multitude of
sub-modules out of which one is selected depending on the current test input. We list a set of denoisers with
their corresponding characteristics in Table 1.1 and discuss them further in the following paragraphs. The
list includes our proposed BUIFD and BIGPrior methods that are presented in Chapter 3 and Chapter 4,
respectively.

Classic image denoisers, such as PURE-LET [86] (specifically aimed at Poisson-Gaussian denoising),
KSVD [2], WNNM [56], BM3D [29], and EPLL [165] (designed for Gaussian denoising), have the limitation
that the noise level needs to be known at test time, or at least estimated [50]. Recent learning-based denoisers
outperform the classic ones on Gaussian denoising [6, 103, 150]. But they require knowledge of the noise
level [152] or even train multiple models for different noise levels [79, 151], which means that multiple
models need to be pre-trained and stored. For instance, the recent method [151] that generalizes to image
restoration tasks is a non-universal non-blind denoiser, where 25 denoising networks are used for noise
levels below 50, and even training parameters are chosen based on the noise level. Similarly, the work of
Remez et al. [105], which reaches PSNR results on par with the state of the art, is another non-universal
non-blind example. To use better priors, images are first classified into a set of classes, and every single
class has its specific deep network. The method is also not blind and is trained per noise level. Zhang et
al. [153] present a universal non-blind network for multiple super-resolution degradations by denoising,
deblurring, and by super-resolving images. They report that, though a blind version is more practical, their
blind approach fails to perform consistently well because it cannot generalize.

For a model to work under blind settings and adapt to any noise level, a common approach is to train the
denoiser network while varying the training noise level [6, 103, 150]. Having to know the exact noise level
is indeed a serious limitation in practice for denoisers, and having to know it ahead of time, before training,
is even more limiting. It is also a limitation, for example, when denoising images with a spatially varying
noise level [152]. Another approach to avoiding both limitations, as presented in Chapter 3, is to predict the
noise level, internally per pixel.

Other recent methods, for real-image denoising such as microscopy imaging [158], learn image statistics
without requiring ground-truth samples. This is practical because ground-truth data can be extremely
difficult and costly to acquire in, for instance, medical applications. Noise2Noise [80] learns to denoise
from pairs of noisy images. The noise is assumed to be zero in expectation and decorrelated from the signal.
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Denoiser Blind Universal Learning Deep network Formulated prior Decoupled terms
BM3D [29] 7 3 7 7 7 7

KSVD [2] 7 3 3 7 3 7

WNNM [56] 7 3 7 7 3 7

EPLL [165] 7 3 3∗ 7 3 7

DnCNN [150] 3 3 3 3 7 7

IRCNN [151] 7 7 3 3 7 7

UNLNet [79] 7 7 3 3 7 7

RIDNet [6] 3 3 3 3 7 7

FFDNet [152] 7 3 3 3 7 7

BUIFD [45] 3 3 3 3 7† 7

BIGPrior [44] 3 3 3 3 3 3

Table 1.1 – Representative non-comprehensive list of various image denoising methods and their different
characteristics. A denoiser is blind if it does not require noise-level information at test time. And it is
universal if the same model or algorithm is applied irrespective of the input. A denoiser involves learning
when it trains, a priori on data, to obtain a dictionary or network weights. Classic methods are in the upper
half of the table and do not rely on deep networks. A denoiser has a formulated prior if the prior is explicitly
optimized and known, rather than indirectly induced through the nature of the denoiser or implicitly learned
by a network. The denoiser has decoupled terms when the information related to data fidelity and to the
prior are explicitly given. ∗ For the denoising version of the EPLL method that produces the best results, a
Gaussian mixture model is learned from training data. † Although our architecture is designed to internally
push the network towards a Gaussian pixel prior, it is not explicitly enforced.

Therefore, unless the network memorizes it, the noise would not be predicted by it, and hence would be
removed [80, 131]. Noise2Self [9], which is a similar but more general version of Noise2Void [72], also
assumes the noise to be decorrelated, conditioned on the signal. The network learns from single noisy
images, by learning to predict an image subset from a separate subset, again with the assumption that the
noise is zero in expectation. Although promising, these two methods do not yet reach the performance of
Noise2Noise.

1.3 Technical Background on Anti-aliasing

For completeness, in this section, we present some basic background on the anti-aliasing filtering necessary
before downsampling a signal, and we focus on Gaussian kernels. The downsampling operation carried
out over a signal, as we mention in Chapter 2, can cause a generally irreversible mixing of the frequency
components of that signal in the final output. This mixing is referred to as aliasing. Avoiding or reducing this
aliasing requires pre-filtering with a low-pass filter before downsampling, in order to suppress the frequency
components that would result in this undesirable mixing. We look into the frequency-domain low-pass
filtering for the commonly used one-dimensional Gaussian kernel

g(x) =
1√

2πσ2
e−

x2

2σ2 , (1.1)
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where σ is the standard deviation. The Fourier transform G(f) of the Gaussian kernel is then given by

G(f) = e
− f2

2/σ2 . (1.2)

If we set p ∈ [0, 1] as the maximal accepted attenuation threshold, in the frequency region that is to be
filtered to limit the effect of aliasing, and if we let the filtered region be delimited by [fc,+∞] for a low-pass
filter with cutoff fc, then under these conditions we need

σ >

√
−2 ln (p)

fc
, (1.3)

for the filter to be within the acceptable attenuation margin. σ being by convention positive, and fc being
imposed by the downsampling rate and Nyquist’s theorem. We note that, as the Gaussian kernel’s spectrum
is not band-limited, the kernel cannot be sampled with a sufficiently small period for faithful reconstruction.
For discrete images, different approximate discrete versions of a Gaussian blur kernel can be obtained by
direct sampling or local integration. However, the choice of σ is still dictated by the downsampling rate in
order to avoid, or significantly attenuate, the aliasing problem. The value of σ needs to be large enough to
avoid or significantly attenuate the effect of aliasing, and its value is proportional to the downsampling rate
(both of which are inversely related to the cutoff frequency).

In our experiments, we construct the discrete Gaussian filters with different standard deviations through
the direct sampling of the corresponding continuous Gaussian functions. Other low-pass kernels are also
used in the bicubic downsampling or in obtaining the real low-resolution images. The low-pass filter in
the physical imaging domain is the point spread function (PSF) of the imaging system. The PSF is related
to the lens and the aperture but also to the captured wavelength and to the depth of the point source in
the scene [40]. It therefore varies from image to image, even within the same capture system, and is often
modeled by a Gaussian kernel.

The main points, which are directly relevant to Chapter 2, are summarized as follows.

• A more severe blur, translated for instance into a larger standard deviation of the Gaussian kernel,
erases a larger part of the high-frequency components but also has some attenuation effect on the low
frequencies.

• A blind super-resolution method should be able to restore different ranges of high-frequency bands,
because the different unknown degradation kernels affect different frequency components.

1.4 Contributions

In Chapter 2, we analyze, through the frequency domain, the elements that are preserved by the restoration
networks from the observed data and the elements that are hallucinated with the learned prior. We investigate
the nature of this prior that we show is a frequency conditional reconstruction that reflects the training
degradation model. We also present a regularization technique that improves the robustness of the network’s
learning. Compared with the literature, this chapter provides novel insights and interpretations on the
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underlying learning of the analyzed deep restoration networks. More specifically, we show that given an
image with a range of low-frequency components, the networks hallucinate high-frequency components
either by overfitting the training degradation model (hence dismissing the input conditioning) or by doing
proper conditioning on the low frequencies. The networks achieve this proper conditioning after training
with another contribution of this chapter, namely, our stochastic frequency masking regularization. Our
approach enables the networks to avoid overfitting, to learn to perform a more general restoration, and hence
to outperform the state-of-the-art results on various image super-resolution and denoising tasks.

In Chapter 3, we analyze under our pre-defined theoretical denoising setup the optimality of deep neural
network learning, and we look into its generalization strength. We show that, by guiding the network internally
into learning the statistically optimal prior, the generalization strength improves. We also demonstrate that,
although not necessarily accurate for the real world, our design can be applied to the real-image denoising
problem. In this chapter, we add to the literature a novel analysis and insights about the optimality potential
and generalization of deep denoising. More specifically, we show that a network is able to reach the
statistically optimal performance for a known, although simple, image prior. And we also show that it fails
to directly generalize to data beyond its training experience. We also contribute a method that, building on
our previous theoretical formulation, proposes an explicit internal learning of the noise level to regularize
the interplay between data fidelity and learned prior inside the network. Our novel architecture improves the
denoising performance over state-of-the-art additive Gaussian denoisers.

Lastly in Chapter 4, we present a general framework where we decouple the contributions of the data
fidelity and the (learned) prior terms. A neural network is used for extracting prior information, which is then
combined with a data fidelity term that relates through a bijection to the observed data. The combination
weight is also learned, hence enabling a doubly adaptive fusion of the terms. Indeed it is adaptive, per
input, both to the quality of the observation and to that of the learned prior. The framework we present also
forms a generalization of large families of classic methods, as we discuss in the thesis, and it structurally
provides a pixel-wise map that reveals the contribution of the prior-based hallucination to the final result.
Our framework also improves the restoration performance on different tasks and consistently outperforms
that of the underlying generative network inversion restoration.
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Chapter 2

Frequency-Domain Study of
Super-Resolution and Denoising Networks

In this chapter, we look into the internal learning mechanism of deep restoration networks. Our objective is
to gain a better understanding of the inner-workings of the networks, in terms of the treatment of observed
data and of the learning and application of internal data priors. We also improve the robustness of that
underlying learning mechanism.

Super-resolution and denoising are ill-posed yet fundamental image restoration tasks. Under blind
settings, the degradation kernel and/or the noise level are unknown. This makes restoration even more
challenging, notably for learning-based methods, as they tend to overfit to the degradation seen during
training. It is, however, unclear how this overfitting, and generally the restoration learning, can be formulated.

We present an analysis, in the frequency domain, of degradation-kernel overfitting in super-resolution and
introduce a conditional-learning perspective that extends to both super-resolution and denoising. Building
on our formulation, we propose a stochastic frequency masking of images used in training to regularize
the networks and to address the overfitting problem. Our technique improves state-of-the-art methods on
blind super-resolution with different synthetic kernels, real super-resolution, blind Gaussian denoising, and
real-image denoising.

Our code and models are made publicly available at https://github.com/majedelhelou/SFM
This work is published in the European Conference on Computer Vision (ECCV), 2020. [46]
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Figure 2.1 – Overview of Stochastic Frequency Masking (SFM). In the central mode, two radii values
are sampled uniformly to delimit a masking area, and in the targeted mode, the sampled values delimit a
quarter-annulus away from a target frequency. The obtained mask, shown with inverted color, is applied
channel-wise to the discrete cosine transform of the image. We invert back to the spatial domain to obtain
the SFM image that we use to train SR and denoising networks.

2.1 Introduction

Image super-resolution (SR) and denoising are fundamental restoration tasks widely applied in imaging
pipelines. They are crucial in various applications, such as medical imaging [81, 100, 115], low-light
imaging [21], astronomy [11], satellite imaging [12, 127], and face detection [57]. However, both are
challenging ill-posed inverse problems. Recent learning methods, based on convolutional neural networks
(CNN), achieve restoration performance better than classic approaches, both in SR and denoising. CNNs are
trained on large datasets, sometimes real [164] but often synthetically generated with either one kernel or a
limited set [134, 159]. They learn to predict the restored image or the residual between the restored target
and the input [69, 150]. However, to be useful in practice, the networks should perform well on test images
with unknown degradation kernels for SR, and unknown noise levels for denoising. Currently, they tend to
overfit to the set of degradation models seen during training [39].

We investigate the SR degradation-kernel overfitting with an analysis carried out in the frequency domain.
Our analysis reveals that an implicit conditional learning occurs in SR networks, specifically, the learning of
residual high-frequency content given low frequencies. We additionally show that this result also extends
to the denoising problem. Building on our insights, we present Stochastic Frequency Masking (SFM): it
stochastically masks frequency components of the images used in training. Our SFM method (Figure 2.1) is
applied to a subset of the training images to regularize the network. It encourages the conditional learning to
improve SR and denoising networks, notably when training under the challenging blind conditions. It can be
applied during the training of any learning method, and has no additional cost at test time.
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Our experimental results show that SFM improves the performance of state-of-the-art networks on blind
SR and blind denoising. For SR, we conduct experiments on synthetic bicubic and Gaussian degradation
kernels, and on real degraded images. For denoising, we conduct experiments on additive white Gaussian
denoising and on real microscopy Poisson-Gaussian image denoising. SFM improves the performance of
state-of-the-art networks on each of these tasks.

In this chapter, our contributions are summarized as follows. We present a frequency-domain analysis
of the degradation-kernel overfitting of SR networks and highlight the implicit conditional learning that,
as we also show, extends to denoising. We present SFM, a novel technique that regularizes the learning of
SR and denoising networks by only filtering some training data. It enables the networks to better restore
frequency components and to avoid overfitting. We empirically show that SFM improves the results of
state-of-the-art learning methods on blind SR with different synthetic degradations, real-image SR, blind
Gaussian denoising, and real-image denoising on high noise levels.

2.2 Related Work

Super-resolution. Depending on their image priors, SR algorithms can be divided into prediction mod-
els [113], edge-based models [20], gradient-profile pior methods [122] and example-based methods [51].
Deep example-based SR networks hold the state-of-the-art performance. Zhang et al. propose a very deep
architecture based on residual channel attention in order to further improve these networks [159]. It is also
possible to train in the wavelet domain to improve the memory and time efficiency of the networks [163].
Perceptual loss [64] and GANs [76, 134] are used to mitigate blur and to push the SR networks to produce
more visually pleasing results. However, these networks are trained using a limited set of kernels, and
studies have shown that they have poor generalization to unseen degradation kernels [54, 116]. To address
blind SR, which is degradation-agnostic, recent methods propose to incorporate the degradation parameters,
including the blur kernel, into the network [116, 151, 153, 154]. However, these methods rely on blur-kernel
estimation algorithms hence have a limited ability to handle arbitrary blur kernels. The most recent methods,
namely IKC [54] and KMSR [164], propose kernel estimation and modeling in their SR pipeline. However,
it is hard to gather enough training kernels to cover the real-kernel manifold, while also ensuring effective
learning and avoiding that these networks overfit to the chosen kernels. Recently, real-image datasets were
proposed [19, 157] to enable SR networks to be trained and tested on high- and low-resolution (HR-LR)
pairs that capture the same scene but at different focal lengths. These datasets are also limited to the degra-
dations of only a few cameras and cannot guarantee that SR models trained on them would generalize to
unseen degradations. Our SFM method, which builds on our degradation-kernel overfitting analysis and
our conditional learning perspective, can be used to improve the performance of all the SR networks we
evaluate, including those that estimate and model degradation kernels.

Denoising. We refer the reader to Section 1.2 for related work on the image denoising problem. We
note that by regularizing the conditional learning defined from our frequency-domain perspective, our SFM
method improves the high noise level results of all tested denoising networks, notably under blind settings.

One example that uses frequency bands in restoration is the method in [7]: it defines a prior based on a
distance metric between a test image and a dataset of same-class images used for a deblurring optimization.
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The distance metric computes differences between image frequency bands. In contrast, we apply frequency
masking on training images in order to regularize deep restoration networks, and to improve performance
and generalization. Spectral dropout [68] regularizes network activations by dropping out components in the
frequency domain in order to remove the least relevant, whereas SFM regularizes training by promoting the
conditional prediction of different frequency components through masking the training images themselves.
The work most closely related to ours is a recent method proposed in the field of speech recognition [99].
The authors augment speech data in three ways, one of which is in the frequency domain. It is a random
separation of frequency bands, which splits different speech components to enable the network to learn them
one by one. A clear distinction with our approach is that we do not separate input components in order that
they are each individually learned. Rather, we mask targeted frequencies from the training input to strengthen
the conditional frequency learning, and we indirectly simulate the effect of a variety of kernels in SR and
noise levels in denoising. The method we present is, to the best of our knowledge, the first frequency-based
input masking method for regularizing SR and denoising training.

2.3 Frequency Perspective on SR and Denoising

2.3.1 Super-Resolution

Preliminaries

Downsampling, a key element in modeling SR degradation, can be well explained in the frequency domain
where it is represented by the sum of shifted and stretched versions of the frequency spectrum of a signal.
Let q be a one-dimensional discrete signal, e.g., a pixel row in an image, and let z be a downsampled
version of q with a sampling interval T . In the discrete-time Fourier transform domain, with frequencies
ω ∈ [−π, π], the relation between the transforms Q and Z of the signals q and z, respectively, is given by
Z(ω) = 1

T

∑T−1
k=0 Q((ω + 2πk)/T ). The T replicas of Q can overlap in the high frequencies and cause

aliasing. Aside from complicating the inverse problem of restoring q from z, aliasing can create visual
distortions. Therefore, before downsampling, low-pass filtering is applied to attenuate if not to completely
remove the high-frequency components that would otherwise overlap.

These low-pass filtering blur kernels are applied through a spatial convolution over the image. The set of
real kernels spans only a subspace of all mathematically possible kernels. This subspace is, however, not
well-defined analytically and, in the literature, is often limited to the non-comprehensive subspace spanned
by 2D Gaussian kernels. Thus, many SR methods model the anti-aliasing filter as a 2D Gaussian kernel, in
an attempt to mimic the point spread function (PSF) of capturing devices [37, 114, 140]. In practice, even a
single imaging device results in multiple kernels, depending on its settings [40]. For real images, the kernel
can also be different from a Gaussian kernel [39, 54]. The essential point is that the anti-aliasing filter causes
the loss of high-frequency components, and that this filter can differ from image to image.
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Figure 2.2 – (a) Overview of our experimental setup, with image border colors corresponding to the plot
colors shown in (b,c). We train two versions of the same network on the same degradation kernel (FLP1

anti-aliasing filter), one without and one with SFM, and we test them using FLP2 . (b) Average PSD (power
spectral density) of HR images in green fill, with a green curve illustrating a typical natural-image PSD
(α = 1.5 [130]). The pink fill illustrates the average PSD of the low-pass filtered LR test images (∗shown
before downsampling for better visualization). In red fill is the average PSD of the restored SR output image.
The blue-dashed circle highlights the learning gap due to degradation-kernel overfitting. (c) The same as (b),
except that the output is that of the network trained with SFM. The results are averaged over 100 random
samples.

Frequency Visualization of SR Reconstructions

SR networks tend to overfit the blur kernels used in the degradation for obtaining the training images [153].
To understand this phenomenon, we analyze in this section the relation between the frequency-domain
effect of a blur kernel and the reconstruction of SR networks. We carry out the following experiment with a
network trained with a unique and known blur kernel. We use the DIV2K [1] dataset to train a 20-block
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RRDB [134] x4 SR network with images filtered by a Gaussian blur kernel called FLP1 (standard deviation
σ = 4.1), shown in the top row of Figure 2.2(a). Then, to analyze the potential network overfitting, we run
an inference on 100 test images that are filtered with a different Gaussian blur kernel called FLP2 (σ = 7.4),
shown in the bottom row of Figure 2.2(a).

We present a frequency-domain visualization in Figure 2.2(b). The power spectral density (PSD) is
the distribution of frequency content in an image. The typical PSD of an image (green curve) is modeled
as 1/fα, where f is the spatial frequency, with α ∈ [1, 2] and varying depending on the scene (natural
vs. man-made) [18, 49, 129, 130]. The 1/fα trend is visible in the PSD of HR images (green fill). The
degraded LR test images are obtained with a low-pass filter on the HR image, before downsampling, and
their frequency components are mostly low frequencies (pink fill). The SR network outputs contain high-
frequency components restored by the network (red fill). However, these frequencies are mainly above 0.2π,
which is the range that was filtered out by the kernel used in creating the training LR images. The low-pass
kernel used in creating the test LR images filters out a larger range of frequencies; it has a lower cutoff than
the training kernel (the reverse case is also problematic and is illustrated in the following paragraph). This
causes a gap of missing frequency components not obtained in the restored SR output; it is illustrated with a
blue-dashed circle in Figure 2.2(b). The results suggest that an implicit conditional learning takes place in
the SR network; we expand further on this in the following section. The results of the network trained with
50% SFM (masking applied to half of the training set) are shown in Figure 2.2(c). A key observation is that
the missing frequency components are predicted to a far better extent when the network is trained with SFM.

We further vary the training degradation kernel FLP1 and the testing degradation kernel FLP2 , and we
repeat the same experiment. In Figure 2.3, we present our frequency visualization, with networks trained
and tested using different degradation kernels, with and without 50% SFM. For the SR networks trained
without our proposed SFM, the restored SR output images from the networks (red fill) have gaps of missing
frequency components when the testing degradation kernel has a cutoff frequency lower than the training
degradation kernel (larger Gaussian standard deviation). As explained in Section 2.3.1, when the testing
degradation kernel actually has a cutoff larger than the training degradation kernel, the SR networks trained
without SFM reconstruct redundant frequency components in the restored SR output (instead of a gap,
we see a very clear surplus over the ground-truth PSD). This is shown in the plots below the diagonal of
Figure 2.3. The missing and the redundant frequency components are largely resolved by the same network
architecture trained with SFM (light blue fill).

Implicit Conditional Learning

As we explain in the Preliminaries of Section 2.3.1, the high-frequency components of the original HR images
are removed by the anti-aliasing filter. If this filter is ideal, it means that the low-frequency components are
not affected and that the high frequencies are removed perfectly. We propose that the SR networks implicitly
learn a conditional probability

P
(
IHR ~ FHP | IHR ~ FLP

)
, (2.1)

where FHP and FLP are ideal high-pass and low-pass filters, applied to the high-resolution image IHR,
and ~ is the convolution operator. The low- and high-frequency ranges are theoretically defined as [0, π/T ]

and [π/T, π], which is the minimum condition (largest possible cutoff) to avoid aliasing for a downsampling
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Figure 2.3 – Frequency visualization of SR reconstructions with different training and testing degradation
kernels. We use the same experimental settings as in Section 2.3.1. We train a 20-block RRDB [134] x4
SR network with images filtered by different Gaussian blur kernels, one at a time; and we evaluate it with
three different Gaussian blur kernels. Results are averaged over 100 random samples. We can see that SFM
improves the SR reconstructions, as the PSD of the restored images is closer to the ground-truth than without
SFM, and follows the average PSD power law [18, 49, 129, 130]. SFM largely resolves the gap of missing
frequencies when the test kernel has a frequency cutoff lower than the training kernel (plots above the
diagonal). SFM also resolves the issue of redundant frequency components restored when the test kernel has
a frequency cutoff value larger than the training kernel (plots below the diagonal). Furthermore, we note that
SFM slightly improves even the methods trained and tested on the same degradation kernel (the three plots
on the diagonal).
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rate T . The components of IHR that survive the low-pass filtering are the same frequencies contained in the
LR image ILR, when the filters F are ideal. In other words, the frequency components of IHR ~ FLP are
those remaining in the LR image that is the network input.

The anti-aliasing filters are, in practice, not ideal, which results in (a) some low-frequency components of
IHR being attenuated, and (b) some high frequencies surviving the filtering and causing aliasing. Typically,
the main issue is the first issue (a), because filters are chosen in a way that removes the visually disturbing
aliasing at the expense of attenuating some low frequencies. We analyze this practical case with non-ideal
anti-aliasing filters in the following: With the downsampling filters being non-ideal, a frequency-domain
trade-off imposes itself. Some high frequencies are not completely removed and/or some low/mid frequencies
are attenuated. In practice, aliasing is removed as it is very visually disturbing; and this is done at the cost
of losing some information in the low-frequency range. We define FLPo to be a practical non-ideal low-
pass filter. The underlying conditional probability distribution, needed to recover the missing information,
becomes

P
(
IHR − IHR ~ FLPo | IHR ~ FLPo

)
, (2.2)

where the frequency components of (IHR ~ FLPo ) are those remaining in the low-resolution input image.
We note here the similarity with the residual learning introduced in [150]. The difference relative to the
ideal-filter case is that (1− FLPo ) no longer corresponds to an ideal high-pass filter. Nonetheless, we can
separate the frequency components of the residual image IHR − IHR ~ FLPo =

(IHR − IHR ~ FLPo ) ~ FLP + (IHR − IHR ~ FLPo ) ~ FHP , (2.3)

where again FHP and FLP are complementary ideal high-pass and low-pass filters. We note two properties
of the filters, first,

FLPo ~ FLP = FLPo , (2.4)

which is true for any anti-aliasing filter FLPo that completely removes aliasing effects and for any ideal
low-pass filter FLP , and second,

FLPo ~ FHP = 0. (2.5)

The proof of Equation (2.4) becomes straightforward when translated into the frequency domain, where
the convolution becomes an element-wise product. Indeed, FLP is an ideal filter that does not affect
low frequencies and completely removes high frequencies. Also, FLPo removes aliasing hence removes
all high frequencies (above π/T , for a downsampling rate T ). Effectively, applying FLP on FLPo only
removes the high frequency values which are already zero. The proof of Equation (2.5) can be derived, using
Equation (2.4) and the fact that filters are ideal, as follows

FLPo ~ FHP = FLPo ~ (1− FLP ) = FLPo − FLPo = 0. (2.6)

By expanding Equation (2.3) and using Equation (2.4) and Equation (2.5), we can derive that IHR− IHR~
FLPo =

IHR ~ FLP − IHR ~ FLP0︸ ︷︷ ︸
low−freq residual

+ IHR ~ FHP︸ ︷︷ ︸
high−freq

. (2.7)

The interesting result is the separation between low-frequency components and high-frequency ones, as we
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assume that they are conditionally independent (conditioned on IHR ∗ FLPo ). With this assumption, we can
factorize Equation (2.2) into the two factors{

P
(
IHR ~ FLP − IHR ~ FLP0 | IHR ~ FLPo

)
P
(
IHR ~ FHP | IHR ~ FLPo

)
.

(2.8)

We first note that this also leads us to an implicit conditional distribution for predicting the high frequencies

P
(
IHR ~ FHP | IHR ~ FLPo

)
, (2.9)

which is the same as Equation (2.1) except for the conditional term. Indeed, instead of learning to predict
the high-frequency components given the low-frequency ones, the network is given a degraded version of
the low frequencies. The network must learn to predict the residual of the degraded low frequencies

P
(
IHR ~ FLP − IHR ~ FLP0 | IHR ~ FLPo

)
. (2.10)

Although the target components predicted through the distribution in Equation (2.9) are the same, irrespective
of the degradation kernel FLPo , the target residual predicted through the distribution in Equation (2.10)
depends on this kernel. Hence, the network trained using this degradation kernel could overfit and always
produce the same residual, irrespective of the degradation of the test image. This issue is illustrated in
Figure 2.3. In Figure 2.3, the networks that are tested on images degraded with a kernel that removes more
frequencies than the training kernel do not predict the missing frequency components (plots above the
diagonal). Inversely, the networks tested on images degraded with a kernel that removes fewer frequency
components end up adding residual frequency components that are already in the input image (plots below
the diagonal). The former can be visualized as gaps of missing frequencies, and the latter can be seen as an
addition of redundant frequency components (Figure 2.3).

Therefore, even with non-ideal filters, there is still conditional and residual learning components to
predict a set of high-frequencies. These frequencies are, however, conditioned on a set of low-frequency
components potentially attenuated by the non-ideal filter we call FLPo . This filter fully removes aliasing
artifacts but can affect the low frequencies. Hence, the distribution can be defined by the components

P
(
IHR ~ FHP | IHR ~ FLPo

)
, P

(
IHR ~ FLP − IHR ~ FLP0 | IHR ~ FLPo

)
. (2.11)

This can again be observed through our results in Figure 2.2. The SR network trained with degradation kernel
FLP1 (σ = 4.1 in our experiment) restores the missing high frequencies of IHR that would be erased by
FLP1 . However, this is the case even though the test image is degraded by FLP2 6= FLP1 . As FLP2 (σ = 7.4)
removes a range of frequencies wider than FLP1 , not predicted by the network, these frequencies remain
missing. We observe a gap in the PSD of the output, highlighted by a blue-dashed circle. This illustrates the
degradation-kernel overfitting issue from a frequency-domain perspective. We also note that these missing
frequency components are restored by the network trained with SFM.
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Figure 2.4 – Natural image PSD follows a power law as a function of spatial frequency. The plotted examples
follow a power law with α = 2 [130] and additive WGN (σ2 = 3 on the left, and σ2 = 10 on the right). The
resulting SNR in the noisy image is exponentially smaller the higher the frequency, effectively causing a
high frequency loss. The higher the noise level, the more frequency loss is incurred, and the more similar
denoising becomes to our SR formulation.

2.3.2 Extension to Denoising

We highlight a connection between our conditional learning proposition and denoising. As discussed in
Section 2.3.1, the average PSD of an image can be approximated by 1/fα. The Gaussian noise samples
added across pixels are independent and identically distributed. The PSD of the additive white Gaussian
noise is uniform. Figure 2.4 shows the PSD of a natural image following a power law with α = 2, that of
white Gaussian noise (WGN), and the resulting signal-to-noise ratio (SNR) when the WGN is added to the
image. The resulting SNR decreases proportionally to 1/fα.

The relation between SNR and frequency shows that with increasing frequency, the SNR becomes
exponentially small. In other words, high frequencies are almost completely overtaken by the noise, whereas
low frequencies are much less affected by it. And, the higher the noise level, the lower the starting frequency
beyond which the SNR is significantly small, as illustrated by Figure 2.4. This draws a direct connection
to our SR analysis. Indeed, in both applications there exists an implicit conditional learning to predict lost
high-frequency components, given low-frequency ones that are less affected.

So far, we have analyzed the power spectral density functions of white Gaussian noise and of natural
images to draw a parallel between denoising and our super-resolution formulation. Now, we discuss the PSD
in the case of additive Gaussian noise and Poisson noise. In the presence of Poisson-Gaussian noise, i.e.,
both additive Gaussian and Poisson noise components, the measured pixel intensity y at pixel i is given by

y[i] = x[i] + nP (x[i]) + nG, (2.12)

where x[i] is the noise-free signal at pixel i, nG is a noise sample taken from a Gaussian distribution with
standard deviation tied to the Gaussian noise level, and nP (λ) is a noise sample from a Poisson distribution
with mean λ from which we subtract λ. This means that (x[i] + nP (x[i])) ∼ P(a · x[i]) [50], for some
a > 0.

The additive Gaussian noise samples are modeled as independent and identically distributed with zero
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mean [137]. Hence, the corresponding PSD is uniform and depends only on the noise level (the samples are
taken from a Gaussian stochastic process of length equal to the number of pixels, they are uncorrelated and
have zero mean). The PSD can be calculated from the co-variance function and is equal to σ2 where σ is the
standard deviation of the Gaussian distribution. The additive Poisson noise is, however, not necessarily white
with a uniform PSD. The different Poisson noise samples are taken from different probability distributions.
Together with the clean signal, (x[i] + nP (x[i])), they are taken from a Poisson distribution with mean
a · x[i] that varies with i. The Poisson noise components, signal aside, have zero mean. The auto-correlation
function for the noise (referred to as n in what follows) is

Rn(∆) = E[n[i]n[i+ ∆]] =

{
E[n[i]2],∆ = 0

E[(y[i]− x[i])(y[i+ ∆]− x[i+ ∆])], o.w.,
(2.13)

and we condition then run expectation on x for both terms (entire x vector). The first terms leads to the
variance of n[i] conditioned on x, whose conditional distribution is a Poisson distribution of mean ax[i] but
that is zero-shifted. After running the expectation over x we have aE[x[i]] = aE[x]. The second term then
becomes

E[(y[i]− x[i])(y[i+ ∆]− x[i+ ∆])] = Ex[x[i]x[i+ ∆]] + ...

Ex[−x[i]E[y[i+ ∆]|x]− x[i+ ∆]E[y[i]|x] + E[y[i]y[i+ ∆]|x]],
(2.14)

which, because y instances are independent conditioned on x, and because E[y[i]|x] = ax[i], leads to

Rn(∆) = aE[x]δ(∆) + [Rx(∆)− aRx(∆)− aRx(∆) + a2Rx(∆)](1− δ(∆)), (2.15)

where δ(·) is the Dirac delta function. Taking the Fourier transform on both sides, we obtain that the SNR is
given by

Sx(f)

aE[x] + (1− a)2Sx(f)− (1− a)2E[x2]
, (2.16)

where f is the frequency and Sx(f) is the PSD of x. This shows that, although to a lesser degree than
with purely Gaussian noise, the SNR goes to zero at higher frequencies as the PSD of x itself goes to zero.
And we lastly also note that in the case of strong Poisson noise, the Poisson component can itself be well
approximated by a Gaussian [50], with the error decreasing with the increasing strength of the Poisson
component.

2.4 Stochastic Frequency Masking (SFM)

2.4.1 Motivation and Implementation

The purpose of SFM is to improve, whether for SR or denoising, the networks’ prediction of high frequencies,
given lower ones. We achieve this by stochastically masking high-frequency bands from some of the training
images in the learning phase, in order to encourage the conditional learning of the network. Our masking is
carried out by transforming an image to the frequency domain using the Discrete Cosine Transform (DCT)
type II [3, 120], by multiplying channel-wise with our stochastic mask, and lastly by transforming the image
back (Figure 2.1). Specifically, we use the discrete cosine transform DCT type 2, also called DCT-II. The
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DCT-II of a one-dimensional discrete signal q of length N is defined by

z[k] =

√
2

N

N∑
j=1

q[j]
1√

1 + δk1
cos
( π

2N
(2j − 1)(k − 1)

)
, (2.17)

where δk1 is the Kronecker delta [3, 120]. The inverse is obtained by swapping j and k, as the DCT is
orthogonal. The two-dimensional DCT is obtained by applying the DCT along the first dimension then
along the second, and it forms the basis of the JPEG compression standard [132]. The DCT-II of a length-N
discrete sequence is equivalent to the DFT of a sequence of length 2N , created by mirroring the original
length-N sequence to avoid DFT artifacts [87]. Such artifacts are due to the fact that the signal is assumed
to be circulantly continuous by the DFT. We mediate this issue by using the DCT-II that we adopt in our
proposed method.

We define frequency bands in the DCT domain over quarter-annulus areas, in order to cluster together
similar-magnitude frequency content. Therefore, the SFM mask is delimited with a quarter-annulus area
by setting the values of its inner and outer radii. We define two masking modes, the central mode and the
targeted mode.

In the central mode, the inner and outer radius limits rI and rO of the quarter-annulus are selected
uniformly at random from [0, rM ], where rM =

√
a2 + b2 is the maximum radius, with (a, b) being the

dimensions of the image. We ensure that rI < rO by permuting the values if rI > rO. With this mode, the
resulting probability of a given frequency band rω to be masked is

P (rω = 0) = P (rI < rω < rO) = 2

(
rω
rM
−
(
rω
rM

)2
)
, (2.18)

meaning the central bands are the more likely ones to be masked, with the likelihood slowly decreasing for
higher- or lower-frequency bands. In the targeted mode, a target frequency rC is selected, with a parameter
σδ. The quarter-annulus is delimited by [rC − δI , rC + δO], where δI and δO are independently sampled

from the half-normal distribution f(δ) =
√

2/
√
πσ2δe

−δ2/(2σ2
δ ), ∀δ ≥ 0. Therefore, with this mode, the

frequency rC is always masked, and the frequencies away from rC are increasingly less likely to be masked,
with a normal distribution decay.

We use the central mode for SR networks and the targeted mode with a high target rC for denoisers
(Figure 2.1). The former has a slow probability decay that covers wider bands, whereas the latter has an
exponential decay adapted for targeting specific narrow bands. In both settings, the highest frequencies
are most likely to be masked. The central mode masks the highest frequencies in SR, because central
frequencies are the highest ones remaining after the anti-aliasing filter is applied. It is also worth noting
that SFM simulates the effect of different blur kernels by stochastically masking different frequency bands.
Blur kernels are typically defined spatially through convolution. They are defined inside RK×K for kernels
with support K. Synthesizing all possible kernels in this space is computationally impractical. It is also
not sensible because realistic kernels form only a sub-space of RK×K that is, however, not well-defined
analytically. Translating a blur kernel to the frequency domain, for instance with the DCT, provides a dissected
view of the kernel’s effect. A kernel acts in a multiplicative manner over every frequency band. Therefore,
the effect of applying a certain blur kernel can be distributed into a basis of independent multiplications on
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(a) Input (σ = 2.9) (b) RCAN [159] (c) ESRGAN [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN+SFM (h) IKC + SFM

Figure 2.5 – Cropped SR results (x4) of different methods (top row), and with our SFM added (bottom row),
for image 0844 of DIV2K. The visual quality improves for all methods when trained with SFM (images best
viewed on screen).

every frequency component. If we segment frequency components into a set ofM bands, then ∀ε ∈ R+, ∃M
large enough such that the absolute error of approximating the kernel function with a set of constant steps
of equal width is < ε (limit of a Riemann sum to a Riemann integral). Hence, we can simulate the effect
of different kernels, through a finite set of M steps in the frequency domain, with a controllable trade-off
between accuracy and computation. We approximate this filtering effect in a binary way (our multiplicative
step values are 0 or 1), with our SFM, by stochastically masking different frequency bands. Therefore, SFM
uses a spanning set for the space of degradation kernels, which improves generalization to unknown kernels.

2.4.2 Learning SR and Denoising with SFM

We apply SFM only on the input training data. For the simulated-degradation data, SFM is applied in the
process of generating the LR inputs. We apply SFM on HR images, before applying the degradation model
to generate the LR inputs (blur kernel and downsampling). The target output of the network remains the
original HR images. For real images where the LR inputs are given and the degradation model is unknown,
we apply SFM on the LR inputs and keep the original HR images as ground-truth targets. Therefore, the
networks trained with SFM do not use any additional data relative to the baselines. We apply the same SFM
settings for all deep learning experiments. During training, we apply SFM on 50% of the training images,
using the central mode of SFM, as presented in Section 2.4.1. Ablation studies with other rates are in our
Supplementary Material. We add SFM to the training of the original methods, with no other modification.
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Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [159] 29.18 23.80 24.08 23.76 23.35 22.98 22.38 22.16 21.86 21.72
RCAN+SFM 29.32 24.21 24.64 24.19 23.72 23.27 22.54 22.23 21.91 21.79
IKC [54] 27.81 26.07 26.15 25.48 25.03 24.41 23.39 22.78 22.41 22.08
IKC+SFM 27.78 26.09 26.18 25.52 25.11 24.52 23.54 22.97 22.62 22.35
RRDB [134] 28.79 23.66 23.72 23.68 23.29 22.75 22.32 22.08 21.83 21.40
RRDB+SFM 29.10 23.81 23.99 23.79 23.41 22.90 22.53 22.37 21.98 21.56
ESRGAN [134] 25.43 21.22 22.49 22.03 21.87 21.63 21.21 20.99 20.05 19.42
ESRGAN+SFM 25.50 21.37 22.78 22.26 22.08 21.80 21.33 21.10 20.13 19.77

Table 2.1 – Single-image SR, with x4 upscaling factor, PSNR (dB) results on the DIV2K validation set.
RCAN, RRDB and ESRGAN are trained using bicubic degradation, and IKC using Gaussian kernels
(σ ∈ [2.0, 4.0]). Kernels seen in training are shaded gray. The training setups of the networks are presented
in Sec. 2.5.1, and identical ones are used with SFM. We note that SFM improves the results of the various
methods, even the IKC method that explicitly models kernels during its training improves by up to 0.27dB
with SFM on unseen kernels.

When training for additive white Gaussian noise (AWGN) removal, we apply SFM on the clean image
before the synthetic noise is added. When the training images are real and the noise cannot be separated
from the signal, we apply SFM on the noisy image. Hence, we ensure that networks trained with SFM do
not utilize any additional training data relative to the baselines. In all denoising experiments, and for all of
the compared methods, we use the same SFM settings. We apply SFM on 50% of training images, and use
the targeted mode of our SFM (ablation studies including other rates are in our Supplementary Material).
We use a central band rC = 0.85 rM and σδ = 0.15 rM . As presented in Section 2.4.1, this means that
the highest frequency bands are masked with high likelihood, and lower frequencies are exponentially less
likely to be masked the smaller they are. We add SFM to the training of the original methods, with no other
modification.

2.5 Experiments

2.5.1 SR: Bicubic and Gaussian Degradations

Methods. We evaluate our proposed SFM method on state-of-the-art SR networks that can be divided into
three categories. In the first category, we evaluate RCAN [159] and RRDB [134]; they are networks that
target pixel-wise distortion for a single degradation kernel. RCAN employs a residual-in-residual structure
and channel attention for efficient non-blind SR learning. RRDB [134] employs a residual-in-residual dense
block as its basic architecture unit. The second category covers perception-optimized methods for a single
degradation kernel and includes ESRGAN [134]. It is a version of the RRDB network that uses a GAN
for better SR perceptual quality and obtains the state-of-the-art results in this category. The last category
includes algorithms for blind SR. We experiment on IKC [54], which incorporates into the training of the
SR network a blur-kernel estimation and modeling to explicitly address blind SR.

Setup. We train all the models by using the DIV2K [1] dataset. It is a high-quality dataset commonly used
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Dataset and upscaling factor
RealSR [19] SR-RAW [157]

Method x2 x3 x4 x4 x8
RCAN‡ [159] 33.24 30.24 28.65 26.29 24.18
RCAN 50% SFM 33.32 30.29 28.75 26.42 24.50
KMSR [164] 32.98 30.05 28.27 25.91 24.00
KMSR 50% SFM 33.21 30.11 28.50 26.19 24.31
IKC [54] 33.07 30.03 28.29 25.87 24.19
IKC 50% SFM 33.12 30.25 28.42 25.93 24.25

Table 2.2 – PSNR (dB) results of blind image super-resolution on two real SR datasets, for the different
available upscaling factors. ‡RCAN is trained on the paired dataset collected from the same sensor as the
testing dataset.

for single-image SR evaluation. RCAN, RRDB, and ESRGAN are trained with the bicubic degradation; and
IKC with Gaussian kernels (σ ∈ [0.2, 4.0] [54]). For all models, 16 LR patches of size 48× 48 are extracted
per training batch. All models are trained using the Adam optimizer [70] for 50 epochs. The initial learning
rate is set to 10−4 and decreases by half every 10 epochs. Data augmentation is performed on the training
images that are randomly rotated by 90◦, 180◦, 270◦, and flipped horizontally.

Results. To generate test LR images, we apply bicubic and Gaussian blur kernels on the DIV2K [1] validation
set. We also evaluate all methods trained with 50% SFM, following Section 2.4.2. Table 2.1 shows the PSNR
results on x4 upscaling SR, with different blur kernels. Results show that the proposed SFM consistently
improves the performance of the various SR networks on the different degradation kernels, even up to
0.27dB on an unseen test kernel for the recent IKC [54] that explicitly models kernels during training.
We improve by up to 0.56dB for the other methods. With SFM, RRDB achieves comparable or better
results than RCAN, while RCAN has double the parameters of RRDB. Sample visual results are shown in
Figure 2.5.

2.5.2 SR: Real-Image Degradations

Methods. We train and evaluate the same SR models as the networks we use in Section 2.5.1, except
for ESRGAN and RRDB; because ESRGAN is a perceptual-quality-driven method and does not achieve
high PSNR, and RCAN outperforms RRDB according to our experiments in 2.5.1. We also evaluate on
KMSR [164] for the real SR experiments. KMSR collects real blur kernels from real LR images to improve
the generalization of the SR network on unseen kernels.

Setup. We train and evaluate the SR networks on two digital zoom datasets: the SR-RAW dataset [157] and
the RealSR dataset [19]. The training setup of the SR networks is the same as in Section 2.5.1. Note that we
follow the same training procedures for each method as in the original papers. IKC is trained with Gaussian
kernels (σ ∈ [0.2, 4.0]) and KMSR with the blur kernels estimated from LR images in the dataset. RCAN is
trained on the degradation of the test data; a starting advantage over other methods.

Results. We evalute the SR methods on the corresponding datasets and present the results in Table 2.2. Each
method is also trained with 50% SFM, following Section 2.4.2. SFM consistently improves all methods
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Test noise level (standard deviation of the stationary AWGN)
10 20 30 40 50 60 70 80 90 100

DnCNN-B [150] 33.33 29.71 27.66 26.13 24.88 23.69 22.06 19.86 17.88 16.35
DnCNN-B + SFM 33.35 29.78 27.73 26.27 25.09 24.02 22.80 21.24 19.46 17.87
Noise2Noise [80] 32.67 28.84 26.61 25.02 23.76 22.69 21.74 20.88 20.11 19.41
Noise2Noise + SFM 32.55 28.94 26.84 25.31 24.11 23.05 22.14 21.32 20.61 19.95
Blind‡ N3Net [103] 33.53 30.01 27.84 26.30 25.04 23.93 22.87 21.84 20.87 19.98
N3Net + SFM 33.41 29.86 27.84 26.38 25.19 24.15 23.20 22.32 21.51 20.78
Blind‡ MemNet [125] 33.51 29.75 27.61 26.06 24.87 23.83 22.67 21.00 18.92 17.16
MemNet + SFM 33.36 29.80 27.76 26.31 25.14 24.09 23.09 22.00 20.77 19.46
RIDNet [6] 33.65 29.87 27.65 26.04 24.79 23.65 22.25 20.05 18.15 17.09
RIDNet + SFM 33.43 29.81 27.76 26.30 25.12 24.08 23.11 22.08 20.74 19.17

Table 2.3 – PSNR (dB) results on BSD68 for different methods and noise levels. SFM improves the various
methods, and the improvement increases with higher noise levels, supporting our hypothesis. We clamp test
images to [0,255] as in camera pipelines. Denoisers are trained with levels up to 55 (shaded in gray), thus
half the test range is not seen in training. ‡Re-trained under blind settings.

on all upscaling factors, pushing the state-of-the-art results by up to 0.23dB on both of these challenging
real-image SR datasets.

2.5.3 Denoising: AWGN

Methods. We evaluate different state-of-the-art AWGN denoisers. DnCNN-B [150] learns the noise residual
rather than the final denoised image. Noise2Noise (N2N) [80] learns only from noisy image pairs, with
no ground-truth data. N3Net [103] relies on learning nearest neighbors similarity, to make use of different
similar patches in an image for denoising. MemNet [125] follows residual learning with memory transition
blocks. Lastly, RIDNet [6] also does residual learning, but uses feature attention blocks.

Setup. We train all methods on the 400 Berkeley images [91], typically used to benchmark denoisers [24,
112, 150]. All methods use the Adam optimizer with an initial learning rate of 10−3, except for RIDNet
that uses half that rate. We train for 50 epochs and synthesize noise instances per training batch. For blind
denoising training, we follow the settings initially set in [150]: noise is sampled from a Gaussian distribution
with standard deviation chosen at random in [0, 55]. This splits the range of test noise levels into levels seen
or not seen during training, which provides further insights on generalization. We also note that we use a
U-Net [107] for the architecture of N2N as in the original work. For N2N, we apply SFM on top of the
added noise, to preserve the particularity that N2N can be trained without ground-truth data.

Results. We evaluate all methods on the BSD68 [108] test set. Each method is also trained with 50% SFM
as explained in Section 2.4.2 and the results are in Table 2.3. SFM improves the performance of a variety of
different state-of-the-art denoising methods on high noise levels (seen during training, such as 40 and 50, or
not even seen), and the results support our hypothesis presented in Section 2.3.2 that the higher the noise
level the more similar denoising is to SR and the more applicable SFM is. Indeed, the higher the noise level
the larger the improvement of SFM, and this trend is true across all methods. Figure 2.6 presents sample
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# raw images for averaging
Mixed test set [158] Two-photon test set [158]

Method 16 8 4 2 1 16 8 4 2 1
PURE-LET [86] 39.59 37.25 35.29 33.49 31.95 37.06 34.66 33.50 32.61 31.89
VST+KSVD [2] 40.36 37.79 35.84 33.69 32.02 38.01 35.31 34.02 32.95 31.91
VST+WNNM [56] 40.45 37.95 36.04 34.04 32.52 38.03 35.41 34.19 33.24 32.35
VST+BM3D [29] 40.61 38.01 36.05 34.09 32.71 38.24 35.49 34.25 33.33 32.48
VST+EPLL [165] 40.83 38.12 36.08 34.07 32.61 38.55 35.66 34.35 33.37 32.45
N2S [9] 36.67 35.47 34.66 33.15 31.87 34.88 33.48 32.66 31.81 30.51
N2S 50% SFM 36.60 35.62 34.59 33.44 32.40 34.39 33.14 32.48 31.84 30.92
N2N [80] 41.45 39.43 37.59 36.40 35.40 38.37 35.82 34.56 33.58 32.70
N2N 50% SFM 41.48 39.46 37.78 36.43 35.50 38.78 36.10 34.85 33.90 33.05

Table 2.4 – PSNR (dB) results on microscopy images with Poisson-Gaussian noise. We train under blind
settings and apply SFM on noisy input images to preserve the fact that N2S and N2N can be trained without
clean images.

results.

(a) Noisy (b) DnCNN (c) N2N (d) N3Net (e) MemNet (f) RIDNet

(g) GT (h) +SFM (i) +SFM (j) +SFM (k) +SFM (l) +SFM

Figure 2.6 – Denoising (σ = 50) results with different methods (top row), and with our SFM added (bottom
row), for the last image (#67) of the BSD68 benchmark.

2.5.4 Denoising: Real Poisson-Gaussian Images

Methods. In the absence of ground-truth datasets, classic methods are often a good choice for denois-
ing. PURE-LET [86] is specifically aimed at Poisson-Gaussian denoising, and KSVD [2], WNNM [56],
BM3D [29], and EPLL [165] are designed for Gaussian denoising. Recently, learning methods were pre-
sented, such as N2S [9] (and the similar, but less general, N2V [72]) that can learn from a dataset of only
noisy images, and N2N [80] that can learn from a dataset of only noisy image pairs. We incorporate SFM
into the learning-based methods.

Setup. We train the learning-based methods on the recent real fluorescence microscopy dataset [158]. The
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noise follows a Poisson-Gaussian distribution, and the image registration is of high quality due to the
stability of the microscopes, hence yielding reliable ground truth obtained by averaging 50 repeated captures.
Noise parameters are estimated using the fitting approach in [50] for all classic denoisers. Additionally, the
parameters are used for the variance-stabilization transform (VST) [89] for the Gaussian-oriented methods.
In contrast, the learning methods can directly be applied under blind settings. We train N2S/N2N using
a U-Net [107] architecture, for 100/400 epochs using the Adam optimizer with a starting learning rate of
10−5/10−4 [158].

Results. We evaluate on the mixed and two-photon microscopy test sets [158]. We also train the learning
methods with 50% SFM as explained in Section 2.4.2, and we present the results in Table 2.4. A larger
number of averaged raw images is equivalent to a lower noise level. N2N with SFM achieves the state-of-
the-art performance on both benchmarks and for all noise levels, with an improvement of up to 0.42dB. We
also note that the improvements of SFM are larger on the more challenging two-photon test set where the
noise levels are higher on average. SFM does not consistently improve N2S, however, this is expected. In
fact, unlike other methods, N2S trains to predict a subset of an image given a surrounding subset. It applies
spatial masking where the mask is made up of random pixels and interferes with the frequency components.
For these reasons, N2S is not very compatible with SFM that, nonetheless, improves results on the largest
noise levels in both test sets.

(a) Noisy (b) N2S (c) + SFM (d) N2N (e) + SFM (f) GT

Figure 2.7 – Cropped sample results for denoising image (a) from the real fluorescence microscopy denoising
dataset. The top row averages 16 raw images (MICE scan) to obtain (a), and the bottom row directly denoises
from 1 image only (BPAE scan). The ‘ground-truth’ image (f) is estimated by averaging 50 raw images [158].

2.6 Ablation Studies

2.6.1 Super-Resolution

Varying Masked Bands

This ablation study investigates the effect of the frequency-domain masking on SR when applied on different
targeted narrow frequency bands rather than on the wide-band frequency masking carried out by the central
mode of SFM. We test on two different frequency bands, namely Low-Frequency Masking (LFM), in which
the target band is set to rC = 0.25 rM , and High-Frequency Masking (HFM), in which the target band is
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Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [159] 29.18 23.80 24.08 23.76 23.35 22.98 22.38 22.16 21.86 21.72
RCAN 50% LFM 29.23 23.91 24.50 24.12 23.70 23.29 22.53 22.25 21.91 21.77
RCAN 50% SFM 29.32 24.21 24.64 24.19 23.72 23.27 22.54 22.23 21.91 21.79
RCAN 50% HFM 29.20 23.78 24.07 23.79 23.39 22.98 22.40 22.17 21.88 21.75

Table 2.5 – PSNR (dB) results of blind image SR on the DIV2K validation set for RCAN, trained with
different frequency-domain maskings, on different degradation kernels. Kernels seen in the training are
shaded in gray. The proposed SFM outperforms not only the baseline but also the low-frequency masking
(LFM) and high-frequency masking (HFM) on almost all the degradation kernels.

set to rC = 0.75 rM . We control the average width of the band by setting σδ = 0.15 rM , as in the targeted
mode used for denoising.

We train RCAN [159] without any masking, with 50% SFM, with 50% LFM, and with 50% HFM on x4

SR on the DIV2K dataset by using the same experimental settings as earlier. Table 2.5 shows the PSNR
results. We see that with SFM (and LFM), RCAN gains improvements on all the test degradation kernels.
This further supports the premise that frequency-domain masking improves the learning of SR networks.
SFM outperforms LFM and HFM on most of the degradation kernels, which shows the effectiveness of the
proposed central mode frequency masking of SFM.

Varying SFM Rates

Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [159] 29.18 23.80 24.08 23.76 23.35 22.98 22.38 22.16 21.86 21.72
RCAN 25% SFM 29.35 24.18 24.59 24.21 23.67 23.25 22.48 22.31 21.90 21.78
RCAN 50% SFM 29.32 24.21 24.64 24.19 23.72 23.27 22.54 22.23 21.91 21.79
RCAN 75% SFM 29.21 24.02 24.32 24.04 23.62 23.17 22.46 22.24 21.95 21.82
RCAN 100% SFM 29.28 23.78 24.11 23.69 23.44 23.05 22.41 22.25 21.93 21.85

Table 2.6 – PSNR (dB) results of blind image SR on the DIV2K validation set for RCAN on different
degradation kernels. We present an ablation study over different rates of SFM. Note that 100% SFM means
we mask every training input using SFM. Kernels seen in the training are shaded in gray. The results show
that with any rates between 25% and 75%, SFM improves the performance of the SR network on all the
degradation kernels.

This ablation study investigates the effect of varying the rate of SFM that is applied during training. We
train RCAN [134] on x4 SR with a varying percentage of patches being masked with SFM. The results are
shown in Table 2.6. With 25% and 50% SFM, we achieve the best performance on most of the degradation
kernels. The network trained with rates [25, 50, 75]% SFM outperforms the baseline method under all test
degradation kernels, and even the one with 100% masking outperforms the baseline on all test kernels except
for two. This shows that our proposed SFM is effective with different rates and is not very sensitive to the
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chosen percentage of masked training patches.

2.6.2 Denoising

Low-Frequency Masking

In this ablation study, we investigate the effect of the frequency-domain masking when it is applied on
low-frequency components rather than the high-frequency masking carried out by SFM. We use the same
name as in the SR experiments and call this masking LFM, for low-frrequency masking, although the target
frequency is smaller, as described next. The same denoiser training pipeline is used, with the same approach
for applying the masking, except that the central band is set to rC = 0.15 ∗ rM rather than rC = 0.85 ∗ rM
as in our SFM.

Test noise level (standard deviation of the stationary AWGN)
10 20 30 40 50 60 70 80 90 100

DnCNN-B [150] 33.33 29.71 27.66 26.13 24.88 23.69 22.06 19.86 17.88 16.35
DnCNN-B 50% LFM 33.01 29.36 27.31 25.87 24.71 23.65 22.25 20.39 18.61 17.08
DnCNN-B 50% SFM 33.35 29.78 27.73 26.27 25.09 24.02 22.80 21.24 19.46 17.87
Noise2Noise [80] 32.67 28.84 26.61 25.02 23.76 22.69 21.74 20.88 20.11 19.41
N2N 50% LFM 27.32 26.15 25.16 24.21 23.34 22.57 21.83 21.10 20.40 19.73
N2N 50% SFM 32.55 28.94 26.84 25.31 24.11 23.05 22.14 21.32 20.61 19.95
Blind∗ N3Net [103] 33.53 30.01 27.84 26.30 25.04 23.93 22.87 21.84 20.87 19.98
N3Net 50% LFM 29.24 27.62 26.42 25.44 24.56 23.72 22.90 22.10 21.35 20.65
N3Net 50% SFM 33.41 29.86 27.84 26.38 25.19 24.15 23.20 22.32 21.51 20.78
Blind∗ MemNet [125] 33.51 29.75 27.61 26.06 24.87 23.83 22.67 21.00 18.92 17.16
MemNet 50% LFM 32.90 29.27 27.21 25.76 24.61 23.55 22.40 21.01 19.64 18.45
MemNet 50% SFM 33.36 29.80 27.76 26.31 25.14 24.09 23.09 22.00 20.77 19.46
RIDNet [6] 33.65 29.87 27.65 26.04 24.79 23.65 22.25 20.05 18.15 17.09
RIDNet 50% LFM 31.48 28.06 25.99 24.55 23.45 22.52 21.70 20.96 20.27 19.65
RIDNet 50% SFM 33.43 29.81 27.76 26.30 25.12 24.08 23.11 22.08 20.74 19.17

Table 2.7 – PSNR (dB) results of blind AWGN image denoising on the standard BSD68 test set for different
methods and noise levels. SFM improves the various methods, and the improvement increases with increasing
noise levels, validating our hypothesis. We clamp noisy test images to [0,255] as in camera pipelines, to
follow practical settings. LFM stands for low-frequency masking, which is similar to applying SFM but on
low-frequency components rather than high-frequency ones, i.e. opposite to our proposed SFM approach.
∗We re-train under blind noise settings. The gray background indicates noise levels seen during training.

In Table 2.7, we present the results on additive white Gaussian noise removal, without any masking, with
50% SFM, and with 50% LFM. The results are given for the various denoising methods. The masking of
low-frequency components is always worse than the high-frequency masking of SFM (the only exception is
the RIDNet at noise level 100). LFM is almost always worse than the baseline, with some exceptions when
the noise level is significantly high and even relatively low-frequency components are actually overtaken by
the additive noise. The results show the importance of not simply masking any frequency components but
specifically high-frequency ones.
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Varying SFM Rates

In this ablation study, we investigate the effect of varying the rate of SFM that is applied during training. In
other words, we vary the percentage of total training patches that are masked by using SFM and we analyze
the resulting performances. We conduct this ablation study on the state-of-the-art method, namely N2N [80],
on the real fluorescence microscopy image benchmark test sets [158]. All training settings follow exactly
the description, with the only variable being the percentage of SFM-masked training patches. We repeat the
training with 0, 10, 25, 50, 75, 90 and 100% of images masked by using SFM.

# raw images for averaging
Method 16 8 4 2 1

Mixed test set [158]
N2N [80] 41.45 39.43 37.59 36.40 35.40
N2N 10% SFM 41.35 39.35 37.73 36.32 35.45
N2N 25% SFM 41.50 39.45 37.79 36.41 35.52
N2N 50% SFM 41.48 39.46 37.78 36.43 35.50
N2N 75% SFM 41.40 39.44 37.75 36.46 35.50
N2N 90% SFM 41.38 39.46 37.76 36.47 35.50
N2N 100% SFM 41.25 39.40 37.70 36.43 35.45

Two-photon test set [158]
N2N [80] 38.37 35.82 34.56 33.58 32.70
N2N 10% SFM 38.68 35.98 34.79 33.90 33.03
N2N 25% SFM 38.81 36.06 34.84 33.95 33.10
N2N 50% SFM 38.78 36.10 34.85 33.90 33.05
N2N 75% SFM 38.71 36.02 34.76 33.81 33.01
N2N 90% SFM 38.69 36.07 34.80 33.87 33.05
N2N 100% SFM 38.39 35.78 34.52 33.61 32.84

Table 2.8 – PSNR (dB) denoising results on real fluorescence microscopy images with Poisson-Gaussian
noise. We present an ablation study over different rates of SFM. Note that 100% SFM means we mask every
training input image using SFM. We highlight with gray background the results that do not outperform the
previous state of the art on both benchmark datasets. Results confirm that even with very small (10%), or
with very extreme SFM rates (100%), using SFM improves the results on the high noise level scenarios
where our theory is most applicable.

We present the results of the real-image denoising task on the mixed microscopy test set and the two-
photon test set [158] in Table 2.8. The top results are distributed between 25 and 90% SFM, with the best
ones being usually at 25 or 50% SFM rates. The gray background highlights the cases where N2N with a
certain SFM rate does not improve the baseline. These few exceptions are either at extreme SFM rates (10 or
100%) or at very low noise levels (the lowest one, in fact). This further validates the theoretical proposition
we make that SFM becomes more applicable when the noise level is higher. The results also show that they
are not very sensitive with respect to the SFM rate, as all SFM models with rates in [25, 90]% outperform
the previous state-of-the-art method on almost all noise levels in both test sets.
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2.7 Extended Experimental Evaluation

2.7.1 Super-Resolution

Different Upscaling Factors

Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [159] 32.07 27.01 25.92 24.97 24.27 23.73 23.00 22.72 22.36 22.24
RCAN 50% SFM 32.20 27.19 26.21 25.35 24.63 24.10 23.38 22.91 22.44 22.29
RRDB [134] 31.93 27.00 25.95 24.83 24.16 23.69 22.89 22.65 22.19 22.13
RRDB 50% SFM 31.99 27.08 26.14 25.21 24.49 24.02 23.25 22.88 22.29 22.18
ESRGAN [134] 30.87 26.72 24.07 22.53 22.74 22.26 21.52 21.29 20.89 19.99
ESRGAN 50% SFM 30.90 26.81 24.25 22.66 22.94 22.49 21.78 21.40 21.95 20.03
IKC [54] 31.68 28.65 27.43 26.33 25.78 25.29 24.44 24.20 23.89 23.61
IKC 50% SFM 31.60 28.64 27.51 26.46 25.99 25.42 24.67 24.51 24.08 23.79

Table 2.9 – Image SR PSNR (dB) results, with x2 upscaling factor, on the DIV2K validation set. Kernels
seen in the trainng are shaded in gray. SFM improves the results of the various methods on different test blur
kernels.

We present the PSNR results of RCAN [159], RRDB [134], ESRGAN [134] and IKC [54]; all were
trained without and with SFM. The results with x2 and x8 upscaling factors are given, respectively, in
Tables 2.9 and 2.10. We evaluate all the different degradation kernels analyzed earlier. We note that SFM
improves the results of the various methods, on both SR upscaling factors, and on practically all degradation
kernels, except the smallest Gaussian standard deviation ones for only IKC [54] that explicitly models and
estimates all the test blur kernels during training.

DCT Evaluation

In this section, we analyze the reconstruction performance of x4 SR networks, trained with and without
SFM, in the DCT frequency domain. We present the results of RCAN [159], ESRGAN [134] and IKC [54]
in Figure 2.8, with one method per row. The first column shows the image PSNR improvement of models
trained with SFM compared to the models trained without it, for different Gaussian blur kernels. The
second and the third columns show the MSE (mean squared error) improvement on low-frequency and
high-frequency components in the DCT domain. Low and high frequencies are split in the DCT domain
by using an ideal frequency filtering with cutoff at π/4. We choose this separation cutoff rather than, for
instance, π/2, because the SR network performs x4 upscaling. Hence, to avoid high-frequency aliasing, the
anti-aliasing filter required before the downsampling must filter frequencies above π/4. Therefore, we adopt
this definition for high- vs. low-frequency content.

The results show that SFM improves the reconstruction of SR networks for both low-frequency and high-
frequency components (note that the scales are different because the typical image PSD is not uniform with
respect to frequency, as discussed earlier). This improvement is consistent across the different test degradation
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Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [159] 22.67 21.49 21.61 21.80 21.86 21.86 21.51 21.51 21.45 21.20
RCAN 50% SFM 22.89 21.70 21.85 22.09 22.17 22.19 21.80 21.78 21.86 21.35
RRDB [134] 22.52 21.38 21.47 21.58 21.63 21.65 21.30 21.26 21.14 21.08
RRDB 50% SFM 22.59 21.45 21.56 21.80 21.82 21.87 21.53 21.48 21.37 21.18
ESRGAN [134] 21.64 18.94 19.16 19.35 19.63 19.72 19.12 19.08 19.01 18.97
ESRGAN 50% SFM 21.92 19.04 19.37 19.62 19.87 19.99 19.36 19.31 19.29 19.15
IKC [54] 22.33 22.64 22.87 22.93 23.02 22.87 22.65 22.61 22.58 22.33
IKC 50% SFM 22.28 22.58 22.84 22.97 23.09 23.01 22.78 22.73 22.69 22.50

Table 2.10 – Image SR PSNR (dB) results, with x8 upscaling factor, on the DIV2K validation set. Kernels
seen in the training are shaded in gray. SFM improves the results of the various methods on different test
blur kernels.

kernels and SR methods. The results also show that the improvement on reconstructing high-frequency
components does not come at the expense of the low-frequency reconstruction.

Visual Results: Synthetic Kernels

We present more visual results of synthetic x4 SR. We show the results of RCAN [159], ESRGAN [134]
and IKC [54]; all were trained with and without 50% SFM, with different degradation kernels, in Fig-
ure 2.9, 2.10, 2.11, and 2.12. For each of these methods, in the bottom row, we show the results of the same
method trained with the same settings and starting from the same network initialization, but we use our
proposed SFM with a 50% rate. With SFM, the SR networks are able to produce sharper results.

Visual Results: Real Datasets

We present more visual results from real SR datasets, in Fig 2.13, 2.14 and 2.15. We show the SR results
of RCAN [159], KMSR [164] and IKC [54]. For each of these three methods, we also show the results of
the same version trained with 50% SFM. We clearly see that SFM improves the visual quality of the SR
networks’ results.

2.7.2 Denoising

DCT Evaluation

So far, we have evaluated the performance of the trained denoisers, with and without SFM, by using the
standard PSNR metric. In this section, we are interested in analyzing the reconstruction performance in
the DCT frequency domain. Figure 2.16 shows results with different methods, one method per row. The
first column shows the image PSNR improvement of methods trained with SFM relative to without it, for
every noise level in the range 10 to 100, with steps of 10. The second and third columns also show the
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Figure 2.8 – The first column shows the PSNR improvements due to SFM for blind SR on the DIV2K for
varying degradations. The second and third columns show the improvements in MSE computed, respectively,
on low and high frequencies. The results show that the improvements obtained on reconstructing the high-
frequency content do not come at the cost of low-frequency content reconstruction; on the contrary, both are
improved.

improvement per noise level but are evaluated in the DCT domain. In the second column, we show the
improvement with SFM in terms of MSE computed on the low frequencies of the image. Similarly, in the
third column, we show the MSE improvement of using SFM but on the high-frequency components. Low
and high frequencies are split in the DCT domain into two equal ranges, thus simulating an ideal frequency
filtering with cutoff at π/2.

The results illustrate the increase in improvement as the noise level increases, hence supporting our
hypothesis. Furthermore, we see that the improvement in reconstruction is notable in both low and high
frequencies, for the different methods. SFM does indeed improve the reconstruction of high frequencies by
forcing the network during training to predict them from their low-frequency counterpart (corresponding to
the bottom conditional distribution in Equation (2.8)). Also importantly, this procedure is not damaging the
denoising of low frequencies (corresponding to the top conditional distribution in Equation (2.8)), as shown
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(a) Input (σ = 2.3) (b) RCAN [159] (c) ESRGAN [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN + SFM (h) IKC + SFM

Figure 2.9 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same methods
trained with our SFM (bottom row), for image 0829 of the DIV2K benchmark.

by the results in the third column. Our SFM even improves the reconstruction of those low frequencies,
possibly because the network has a direct view of them during training when SFM masks the high-frequency
counterpart in the input.

Visual Results: AWGN

We present visual denoising results for additive white Gaussian noise removal. We show the results of
DnCNN [150], N2N [80], N3Net [103], MemNet [125], and RIDNet [6]; all are on different images
from the BSD68 benchmark, for different noise levels. For each of these methods, in the bottom row,
we also show the results of the same method trained with the same settings and starting from the same
network initialization, but we use our proposed SFM with a 50% rate. The results are shown in Fig-
ure 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, and 2.25. The first column shows the noisy input image
(and the corresponding standard deviation of the AWGN) in the top row, and the ground-truth image in the
bottom row.

Visual Results: Real Poisson-Gaussian Images

We present visual denoising results from the real-image fluorescence microscopy dataset in Figure 2.26, 2.27,
and 2.28. The first column shows the noisy images obtained by averaging a different number of raw images
to indirectly control the noise level; and the last column shows that the ground-truth images are estimated
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(a) Input (σ = 3.5) (b) RCAN [159] (c) ESRGAN [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN + SFM (h) IKC + SFM

Figure 2.10 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image 0832 of the DIV2K benchmark.

by averaging 50 raw images for every scan. We present the results of the two methods that can be trained
without ground-truth data for such real-image datasets, namely, N2S [9] and N2N [80]. For each of these
two methods, we also show the results of the same version trained with 50% SFM.

2.8 Conclusion

In this chapter, we have analyzed the degradation-kernel overfitting of SR networks in the frequency domain.
Our frequency-domain analysis reveals an implicit conditional learning that also extends to denoising,
especially on high noise levels. This highlighted form of a learned prior not only provides extended
understanding of the inner workings of the networks but also enables us to improve their learning. Building
on our analysis, we present SFM, a technique for improving SR and denoising networks, without increasing
the size of the training set and without incurring any cost at test time. We have conducted extensive
experiments on state-of-the-art networks for both restoration tasks. We have evaluated SR with synthetic
degradations, real-image SR, Gaussian denoising and with real-image Poisson-Gaussian denoising. We have
shown improved performance, notably on generalization, when SFM is used.

One of the drawbacks of our SFM is that an additional processing of some of the training images is
needed. To apply the SFM masking, the image is transformed to a frequency domain; in our case through the
DCT, where the mask is applied, and is then transformed back. Although this has no effect at test time, it does
increase the needed computations during the training phase. Another limitation is with the masks themselves.
In SFM, our masks are limited to binary masks; this forms a spanning set of kernels. Although these masks
need not be binary, a more important point is that our spanning set theoretically covers non-realistic kernels
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(a) Input (σ = 4.1) (b) RCAN [159] (c) ESRGAN [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN + SFM (h) IKC + SFM

Figure 2.11 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image 0872 of the DIV2K benchmark.

or those that are not physically realizable. Limiting the simulated masks to span only a realistic set of kernels
could potentially ease the learning and improve the performance of the networks. Furthermore, such masks
could be applied in the spatial domain with convolutions, hence removing the need for the frequency-domain
transformations.
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(a) Input (σ = 1.7) (b) RCAN [159] (c) ESRGAN [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN + SFM (h) IKC + SFM

Figure 2.12 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image 0825 of the DIV2K benchmark.

(a) Input (b) RCAN [159] (c) KMSR [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) KMSR + SFM (h) IKC + SFM

Figure 2.13 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image Canon_013 of the Real SR benchmark.
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(a) Input (b) RCAN [159] (c) KMSR [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) KMSR + SFM (h) IKC + SFM

Figure 2.14 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image Nikon_004 of the Real SR benchmark.

(a) Input (b) RCAN [159] (c) KMSR [134] (d) IKC [54]

(e) Ground-truth (f) RCAN + SFM (g) KMSR + SFM (h) IKC + SFM

Figure 2.15 – Cropped SR results (x4 upscaling) with different methods (top row), and with the same
methods trained with our SFM (bottom row), for image Nikon_011 of the Real SR benchmark.
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Figure 2.16 – The first column shows the PSNR improvements due to SFM for blind AWGN denoising
on the BSD68 benchmark for varying noise levels from 10 to 100, with steps of 10. The second and third
columns show the improvements in MSE computed, respectively, on low and high frequencies. The results
show that the improvements obtained on reconstructing the high-frequency content does not come at the
cost of low-frequency content reconstruction, on the contrary, both are improved. We also note that the
improvement increases with increasing noise levels, supporting our original hypothesis.
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(a) Noisy (σ = 70) (b) DnCNN [150] 21.25 (c) N2N [80] 20.51

(d) Ground-truth (e) DnCNN+SFM 21.65 (f) N2N+SFM 21.18

(g) N3Net [103] 21.64 (h) MemNet [125] 21.59 (i) RIDNet [6] 20.96

(j) N3Net+SFM 21.88 (k) MemNet+SFM 21.80 (l) RIDNet+SFM 21.88

Figure 2.17 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 14 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 80) (b) DnCNN [150]
18.27

(c) N2N [80] 17.78 (d) N3Net [103]
18.93

(e) MemNet [125]
18.35

(f) RIDNet [6] 18.41

(g) Ground-truth (h) DnCNN+SFM
18.81

(i) N2N+SFM 18.48 (j) N3Net+SFM
19.22

(k) MemNet+SFM
19.06

(l) RIDNet+SFM
19.01

Figure 2.18 – Denoising results with different methods (top row), and with the same method trained with
our SFM (bottom row), for image 20 of the BSD68 benchmark. We also show the PSNR values of every
denoised result (in dB).
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(a) Noisy (σ = 60) (b) DnCNN [150] 21.92 (c) N2N [80] 20.98

(d) Ground-truth (e) DnCNN+SFM 22.12 (f) N2N+SFM 21.42

(g) N3Net [103] 21.95 (h) MemNet [125] 21.74 (i) RIDNet [6] 21.98

(j) N3Net+SFM 22.26 (k) MemNet+SFM 22.13 (l) RIDNet+SFM 22.12

Figure 2.19 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 21 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 50) (b) DnCNN [150] 23.51 (c) N2N [80] 23.04

(d) Ground-truth (e) DnCNN+SFM 23.87 (f) N2N+SFM 23.36

(g) N3Net [103] 23.40 (h) MemNet [125] 23.05 (i) RIDNet [6] 23.15

(j) N3Net+SFM 23.95 (k) MemNet+SFM 24.01 (l) RIDNet+SFM 23.84

Figure 2.20 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 23 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 50) (b) DnCNN [150] 23.77 (c) N2N [80] 23.21

(d) Ground-truth (e) DnCNN+SFM 24.26 (f) N2N+SFM 23.83

(g) N3Net [103] 24.10 (h) MemNet [125] 23.58 (i) RIDNet [6] 23.45

(j) N3Net+SFM 24.30 (k) MemNet+SFM 24.31 (l) RIDNet+SFM 24.30

Figure 2.21 – Denoising results of different methods (1st and 3rd row), and of the same methods trained
with our SFM (2nd and 4th row), for image 47 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 30) (b) DnCNN [150] 25.35 (c) N2N [80] 24.30

(d) Ground-truth (e) DnCNN+SFM 25.60 (f) N2N+SFM 24.99

(g) N3Net [103] 25.49 (h) MemNet [125] 25.48 (i) RIDNet [6] 25.47

(j) N3Net+SFM 25.58 (k) MemNet+SFM 25.63 (l) RIDNet+SFM 25.66

Figure 2.22 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 49 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 30) (b) DnCNN [150] 28.82 (c) N2N [80] 26.92

(d) Ground-truth (e) DnCNN+SFM 29.25 (f) N2N+SFM 28.69

(g) N3Net [103] 29.08 (h) MemNet [125] 28.81 (i) RIDNet [6] 27.22

(j) N3Net+SFM 29.37 (k) MemNet+SFM 29.38 (l) RIDNet+SFM 29.47

Figure 2.23 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 51 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 90) (b) DnCNN [150] 17.36 (c) N2N [80] 18.46

(d) Ground-truth (e) DnCNN+SFM 18.65 (f) N2N+SFM 19.43

(g) N3Net [103] 19.29 (h) MemNet [125] 18.03 (i) RIDNet [6] 17.62

(j) N3Net+SFM 19.93 (k) MemNet+SFM 19.39 (l) RIDNet+SFM 19.44

Figure 2.24 – Denoising results with different methods (1st and 3rd row), and with the same method trained
with our SFM (2nd and 4th row), for image 62 of the BSD68 benchmark. We also show the PSNR values of
every denoised result (in dB).
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(a) Noisy (σ = 80) (b) DnCNN [150]
19.95

(c) N2N [80] 20.67 (d) N3Net [103]
21.45

(e) MemNet [125]
20.72

(f) RIDNet [6] 20.35

(g) Ground-truth (h) DnCNN+SFM
20.99

(i) N2N+SFM 21.14 (j) N3Net+SFM
21.89

(k) MemNet+SFM
21.72

(l) RIDNet+SFM
21.71

Figure 2.25 – Denoising results with different methods (top row), and with the same method trained with
our SFM (bottom row), for image 63 of the BSD68 benchmark. We also show the PSNR values of every
denoised result (in dB).
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(a) Noisy (16 raw avg) (b) N2S [9] (c) N2N [80]

(d) GT (e) N2S + SFM (f) N2N + SFM

(g) Noisy (4 raw avg) (h) N2S [9] (i) N2N [80]

(j) GT (k) N2S + SFM (l) N2N + SFM

(m) Noisy (one raw) (n) N2S [9] (o) N2N [80]

(p) GT (q) N2S + SFM (r) N2N + SFM

Figure 2.26 – Confocal microscopy sample results for denoising the noisy input image from the real
fluorescence microscopy denoising dataset [158]. The first image (a) averages 16 raw images to obtain the
noisy input, the second one (g) averages 4 raw images, and the last one (m) is directly a raw image. The
‘ground-truth’ images are estimated by averaging 50 raw images [158].
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(a) Noisy (16 raw avg) (b) N2S [9] (c) N2N [80]

(d) GT (e) N2S + SFM (f) N2N + SFM

(g) Noisy (4 raw avg) (h) N2S [9] (i) N2N [80]

(j) GT (k) N2S + SFM (l) N2N + SFM

(m) Noisy (one raw) (n) N2S [9] (o) N2N [80]

(p) GT (q) N2S + SFM (r) N2N + SFM

Figure 2.27 – Widefield microscopy sample results for denoising the noisy input image from the real
fluorescence microscopy denoising dataset [158]. The first image (a) averages 16 raw images to obtain the
noisy input, the second one (g) averages 4 raw images, and the last one (m) is directly a raw image. The
‘ground-truth’ images are estimated by averaging 50 raw images [158].
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(a) Noisy (16 raw avg) (b) N2S [9] (c) N2N [80]

(d) GT (e) N2S + SFM (f) N2N + SFM

(g) Noisy (4 raw avg) (h) N2S [9] (i) N2N [80]

(j) GT (k) N2S + SFM (l) N2N + SFM

(m) Noisy (one raw) (n) N2S [9] (o) N2N [80]

(p) GT (q) N2S + SFM (r) N2N + SFM

Figure 2.28 – Two-photon microscopy sample results for denoising the noisy input image from the real
fluorescence microscopy denoising dataset [158]. The first image (a) averages 16 raw images to obtain the
noisy input, the second one (g) averages 4 raw images, and the last one (m) is directly a raw image. The
‘ground-truth’ images are estimated by averaging 50 raw images [158].
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Chapter 3

Exploring Bayesian Optimality in Deep
Gaussian Image Denoising

In the previous chapter, we gained further insight into the actual data fidelity and prior learning of deep
restoration networks. In this chapter, we investigate the optimality of network learning by synthetically
defining our own theoretical prior model on a denoising, or generally a signal unmixing, problem. We also
propose internal network modifications for guiding the network towards that statistically optimal learning.

Blind and universal image denoising uses a unique model that denoises images with any level of
noise. It is especially practical as noise levels do not need to be known when the model is developed nor
at test time. We propose a theoretically grounded blind and universal deep learning image denoiser for
additive Gaussian noise removal. Our network is based on an optimal denoising solution that we call fusion
denoising. It is derived theoretically with a Gaussian image prior assumption. Synthetic experiments show
our network’s generalization strength on unseen additive noise levels. We also adapt the fusion denoising
network architecture for image denoising on real images. Our approach improves PSNR results of real-world
grayscale additive image denoising on the training noise levels and on the noise levels not seen during
training. It also improves state-of-the-art color image denoising performance on every single noise level, by
an average of 0.1dB, whether trained on or not.

Our code and models are made publicly available at https://github.com/majedelhelou/BUIFD
This work is published in the IEEE Transactions on Image Processing (TIP), vol. 29, 2020. [45]
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3.1 Introduction

Aside from being a fundamental image restoration task, image denoising can also be part of deep net-
work models in order to improve the training of high-level vision tasks [82] or can be used as a general
regularizer [28]. However, as it is an ill-posed inverse problem, denoising is challenging [47]. After the
development of the best analytical solution, BM3D [29, 58], little improvement in denoising performance
had been achieved until the advent of deep-learning-based denoisers [150]. Recent convolutional neural-
network-based methods achieve state-of-the-art image denoising performance and are even faster than
traditional optimization-based approaches [143]. The increased capacity of deep CNN models also addresses
the limitation of previous multi-layer perceptron methods when it comes to denoising different levels of
noise [17]. Well-designed CNN architectures can also outperform adversarial training methods in image
restoration tasks [121].

Neural networks can be deep and wide hence have a large capacity to model complex functions [147, 152],
by using network regularization or normalization [62] and residual learning [59]. However, the complex
functions modeled by the networks are not interpretable and have little connection to stochastic denoising.
This is a limitation for training general models for denoising different noise levels. Denoisers are blind when
they require no information about the noise level at test time, and universal when a single model can handle
all noise levels. Blind universal models are important because knowing the noise level, at test time or ahead
of training, is not a practical scenario for most applications.

We first mathematically derive a blind and universal denoising function under the theoretical assumption
that the image prior is Gaussian. Our denoising function, which is optimal in stochastic expectation, is
referred to as fusion denoising because it fuses the input with a prior weighted using the signal-to-noise ratio.
It is optimized for additive Gaussian noise removal. Our experimental results show that the state-of-the-art
denoiser DnCNN [150] can model an optimal fusion denoising function. However, it only models it for
noise levels that are seen by the network during training. For unseen levels, our synthetic experiment’s
fusion network, called Fusion Net, far outperforms DnCNN. We show on synthetic data our improved
generalization results.

The assumption that the image prior is Gaussian does not necessarily apply to real-world images.
Building on the foundations of our theoretical solution, we adapt our Fusion Net by designing a second
network that learns a fusion function for additive Gaussian noise removal. We call this new network Blind
Universal Image Fusion Denoiser (BUIFD). BUIFD improves state-of-the-art denoising performance on
noise levels seen in training for grayscale and color images on the standard Berkeley test sets (BSD68 and
CBSD68) [108]. Furthermore, we show that our generalization results on unseen noise levels obtained in
our synthetic experiment extend to the denoising of the grayscale BSD68 test set. Indeed, the denoising
performance on noise levels not seen by the network during training improves by multiple PSNR points. We
present an extended denoising evaluation that covers other test datasets and other traditional and learning-
based denoising methods.

Our main contributions in this chapter are as follows: (1) We theoretically derive an optimal fusion
denoising function and integrate it into a deep learning architecture (Fusion Net) in order to evaluate the
optimality of deep networks on a theoretical additive Gaussian noise removal task with a known prior. (2)
We show, on synthetic data, that the integration of the auxiliary fusion loss into our Fusion Net improves the
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network’s generalization strength and brings it closer to the optimal solution. And (3) we develop a blind
universal image fusion denoiser (BUIFD) network adapted to real images, and we show that it outperforms
the state of the art for Gaussian noise removal on multiple standard image processing test sets.

This chapter is organized as follows. After a review of related work, we first lay the groundwork for
our theoretical experiments. Our experiment enables us to assess the optimality of the networks on training
noise levels and on the generalization of trained networks to unseen Gaussian noise levels, in comparison to
the optimal Bayesian solution. We then extend the Bayesian-framework solution into our network designed
for real images (BUIFD) whose exact prior is unknown to improve generalization. Experimental results on
standard denoising benchmarks show that our denoising network outperforms the state of the art, especially
on unseen noise levels.

3.2 Related Work

Image denoising approaches in the literature can be divided into classical methods and the more recent
deep-learning-based methods. One common aspect is, however, the use of image priors for the improvement
of denoising results. For practical reasons, it is important for a denoiser to be blind and universal as the noise
levels in noisy images might not be constant or known.

Image Priors. Image priors are essential for denoising, whether they are in the form of assumptions made
on image gradients [71, 95, 110, 136], sparsity [48, 36], self-similarity within images [37, 16, 139], hybrid
approaches [88], or neural network weights given a certain architecture [150, 14]. Even traditional methods
based on diffusion or filtering (in space [101] or in other domains [119]) rely on some priors. In all their forms
and for multiple image restoration problems, they can be discovered and tested heuristically [71, 43], learned
with dictionaries [48], learned with Markov random fields [108], or learned with deep neural networks [150].
In our network, the prior takes the explicit form of learned feature representations.

Noise Modeling. Additive white Gaussian noise is not necessarily the best model in practical scenarios
such as denoising raw images [14]. Nevertheless, a large part of the image denoising literature focuses on
Gaussian denoising as it remains a fundamental problem. Images with noise that follows different, potentially
data-dependent, distributions can be transformed into images with Gaussian noise and can be transformed
back [90, 102]. Furthermore, a Gaussian denoising solution can serve as a proximal [98, 79] for image
regularizers. It can be a substitute for the costly step in half-quadratic splitting (HQS) optimization, typically
responsible for non-differentiable regularization in image processing. This approach is taken in the recent
HQS method that uses the denoiser for image restoration [151]. Therefore, we work with the assumption of
an additive white Gaussian noise model.

We refer the reader to Section 1.2 for related work on image denoisers and, in the following section, we
focus specifically on the blind and universal properties of image denoisers.

Blind Universal Denoisers. The state-of-the-art Gaussian denoiser DnCNN is both universal and
blind [150]. It is a deep network that is jointly trained on patches with a randomly sampled noise level in
order to generalize denoising to a range of noise levels. It has not yet been outperformed by other methods,
whether blind or not [128, 53]. Only the recent FFDNet [152] by the same authors of DnCNN [150]
improves on DnCNN for noise levels 50 and 75 by 0.06 and 0.15dB, respectively, on the Berkeley BSD68
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set, whereas it performs similarly or worse for other levels. It is, however, not a blind network as it requires
a noise-level map as input. Lefkimmiatis [79] recently studied universal denoising, by building on prior
work for modeling patch similarity in CNNs [78]. His methods are, strictly speaking, not universal as two
networks are trained separately, one for low (≤ 30) and one for high noise levels (∈ [30, 55]). Hence, they
are non-blind because a noise-level-based choice must be made at inference time. Furthermore, the published
results do not outperform the blind DnCNN denoising results. Therefore, we conduct evaluation comparisons
of our BUIFD method with the state-of-the-art DnCNN and the classic BM3D approach [29, 31], which is
the best non-learning-based denoiser. It uses image self-similarities by jointly filtering similar image patches.
The authors also present a blind version of the BM3D algorithm, and we compare it to both the blind and
non-blind versions.

Our proposed image denoiser BUIFD learns to disentangle its features in order to predict a prior and
a noise level intermediate results. They serve as inputs to the fusion part of the network, the part that is
responsible for the final denoising. Disentangling the feature space is fundamental for interpretability [23],
partial transfer learning [148], domain translation [142], domain adaptation [149], specific attribute manipu-
lation [42, 83, 161] and multi-task networks [13]. In our case, it is fundamental for our theoretical denoising
function as the different representations serve as its inputs.

3.3 Single-Image Fusion Denoising

In this section, we present a theoretically designed experiment that enables us to evaluate the optimality
of a deep denoiser. We incorporate, based on our theoretical framework’s optimal solution, a structural
modification to the network, and we show the improved generalization strength of our novel architecture.
We discuss the internal disentangled learning that takes place in this architecture and we propose a partial
supervision on the intermediate feature space. We extend, to a deep network for denoising real images, this
theoretical framework where we synthesized our image prior, and we discuss its relation with the Bayesian
framework out of which we derived this more general solution.

3.3.1 Theoretical Framework

Although some specific applications can have a more accurate modeling [74, 133], an additive white
Gaussian noise model is often assumed in denoising tasks, as it models common acquisition channels [137].
Hence, we assume that the additive independent and identically distributed noise n follows a Gaussian
distributionN (0, σ2n) and is uncorrelated with the data x. The noise standard deviation σn is called the noise
level. In a Bayesian framework, the conditional probability distribution of the noiseless data x given a noisy
observation y (where y = x+ n) is given by the relation

PX|Y (x|y) =
PY,X(y, x)

PY (y)
=
PY |X(y|x)PX(x)

PY (y)
, (3.1)
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where X and Y are the random variables corresponding, respectively, to x and y. We are interested in the
conditional distribution as we search for the Maximum A Posteriori (MAP) estimate x̂ of x. The former is

x̂ = arg max
x

PX|Y (x|y). (3.2)

We also model the data prior on x as a Gaussian distribution N (x̄, σ2x) centered at x̄ [106]. We later modify
this assumption in Section 3.3.4 to the practical case of real-world images. The conditional probability of y
given a noiseless x value is

PY |X(y|x) =
1√

2πσ2n
e
− (y−x)2

2σ2
n , (3.3)

and the probability distribution of y is the convolution of those of x and n, given in the Gaussian case by

PY (y) = PX(x) ~ PN (n) =
e
− (y−x̄)2

2(σ2
x+σ2

n)√
2π(σ2x + σ2n)

, (3.4)

where ~ is the convolution operator. With these probability distribution functions, we can obtain an
expression for the conditional distribution of x, given its noisy observation y by substituting Equation (3.3)
and Equation (3.4) into Equation (3.1)

PX|Y (x|y) =
e
− (x−x̄)2

2σ2
x
− (y−x)2

2σ2
n

+
(y−x̄)2

2(σ2
x+σ2

n)√
2π(σ2xσ

2
n)/(σ2x + σ2n)

. (3.5)

And PX|Y (x|y) can also be written in the following form of a Gaussian in x, given an observation y

PX|Y (x|y) =
1√

2πσ̂2x
e
− (x−µ̂)2

2σ̂2
x . (3.6)

By matching the expanded expression of PX|Y (x|y) with Equation (3.6) for all possible x values, we obtain
the expressions for µ̂ and σ̂2

µ̂ =
σ2nx̄+ σ2xy

σ2x + σ2n
, σ̂2 =

σ2xσ
2
n

σ2x + σ2n
. (3.7)

For the Gaussian shown in Equation (3.6), the MAP estimator is also the conditional expected value (mode
and mean being equal), hence it is given by

x̂ = E[x|y] =

∫ ∞
−∞

x · PX|Y (x|y)dx, (3.8)

which, by using Equation (3.6), can be directly derived to be

x̂ =
x̄

1 + S
+

y

1 + 1/S
, (3.9)

where S , σ2x/σ
2
n and stands for signal-to-noise ratio. We call this operation fusion denoising as it fuses the

prior and the noisy image, based on the SNR.
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(a) DnCNN

(b) Fusion Net

(c) BUIFD

Figure 3.1 – (a) Schematic of the DnCNN residual-learning approach for denoising. The network predicts
the noise in an image. (b) Our Fusion Net that explicitly learns the SNR function for optimal fusion of the
noisy image with the learned prior, following Equation (3.9). (c) Our real-image fusion denoiser, BUIFD,
where fusion is carried out with a pixel-wise product stage followed by three convolution layers for learning
a general fusion function (Section 3.3.4).

Image denoising models are typically trained to maximize PSNR or equivalently minimize mean squared
error (MSE) loss. This means that with close-to-optimal convergence of a neural network model (MSE loss
→ 0+), its output tends towards the minimum MSE estimator (MMSE). With our Gaussian modeling, this
leads to the MAP estimator x̂ of Equation (3.9). Hence, an MSE reconstruction loss in a neural network leads
to the estimator x̂, iff S and x̄ are correctly predicted and correctly used in the fusion with the noisy input y,
as in Equation (3.9). The optimal fusion, used as reference in our experimental evaluation in Section 3.4.2,
is given the exact S and x̄ values for Equation (3.9).
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Blind training noise levels
Noise σ 5 10 15 20 25
Optimal Fusion 34.325 28.778 25.947 24.261 23.185
DnCNN [150] 34.158 28.736 25.920 24.245 23.169
(Ours) Fusion Net 34.158 28.734 25.922 24.249 23.173
p-value 0.760 0.568 0.465 0.100 0.053

Higher levels not seen during training
Noise σ 30 40 50 60 70
Optimal Fusion 22.464 21.604 21.138 20.860 20.681
DnCNN [150] 22.281 20.490 18.925 17.548 16.372
(Ours) Fusion Net 22.346 21.310 20.908 20.609 19.669
p-value ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.1 – Test set PSNR (dB) results for the noise standard deviations given in the top row. The networks
are trained on noise levels randomly chosen in [5, 25]. Noise levels in the right half of the table are not seen
during training. We also report the optimal Bayesian denoising (Optimal Fusion). The bottom row shows
the independent two-sample T-test results between DnCNN and our Fusion Net. The two-tailed p-values
validate the null hypothesis of equal average PSNR between DnCNN and the Fusion Net on training noise
levels, with significance level 0.05.

3.3.2 Fusion Net Architecture

We incorporate the basic structure of the optimal fusion solution into the architecture of a neural network,
which we call Fusion Net. We build the main blocks of our Fusion Net, based on the blind DnCNN
introduced in [150] and illustrated in Figure 3.1(a). In Figure 3.1, the noise-predicting CNN of DnCNN
(Figure 3.1(a)), the prior-predicting CNN, and the one predicting f(S) (where f(S) , 1

1+S ) in our Fusion
Net (Figure 3.1(b)), all use the same DnCNN architecture design. The CNNs are all constituted of a sequence
of convolution layers, rectified linear units (ReLU) [94] and batch normalization blocks [62]. Note that
f(S) is inversely proportional to the SNR and proportional to the noise level. It is the factor multiplying the
prior in Equation (3.9). To summarize, the f(S) CNN predicts 1

1+S where S is the SNR of the input image
(determined by the noise level and the image model used in our theoretical settings), and the prior CNN
predicts x̄ defined in Equation (3.8).

Unlike the DnCNN that predicts the noise values in the input noisy image then subtracts them from
the noisy input to yield the final denoised output, our network learns optimal fusion denoising given by the
function in Equation (3.9), as illustrated in Figure 3.1(b). The same depth and capacity of the DnCNN are
retained to learn separately the image prior and the SNR function, f(S), which is required for the weighted
fusion of the prior and the noisy input image. Note that SNR learning also contains a form of prior knowledge,
but of variance rather than of expectation. We subtract from the prior our noisy input image and multiply
the result, pixel-wise, with the SNR function. This yields the noise prediction given a noisy input that we
subtract from the latter to obtain the denoised output. This architecture is mathematically equivalent to
Equation (3.9). However, the wiring of Figure 3.1(b) enables us to have a clear residual-learning connection
and to keep the parallelism between the two aforementioned networks.
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3.3.3 Fusion Net Feature Disentangling

To mimic the optimal fusion between an image prior and a noisy image based on the SNR, as in Equation (3.9),
both the architecture and loss function are adapted. For the fusion, the network needs to predict the image
prior x̄ and f(S) per pixel (Figure 3.1(b)). We obtain that, with close-to-zero MSE reconstruction loss of
our Fusion Net, the ground-truth target and the network output are approximately equal

x̄ · f(S) + y · (1− f(S)) ≈ a · b+ y · (1− b), ∀y ∈ DT , (3.10)

where a and b are the outputs of intermediate layers in the Fusion Net, and y is the noisy input. Specifically, a
is the output of the final layer of the prior CNN in Figure 3.1(b), and b the output of the last layer of f(S) in
the same figure. After gradient descent convergence, when the MSE reconstruction loss is close to zero, we
obtain the approximate equality of the left and right terms in Equation (3.10). We can view this equation as
a first-degree polynomial in the variable y. As Equation (3.10) holds for all y in the training dataset DT , we
can apply coefficient equating, where the coefficients are {a · b, 1− b} and {x̄ · f(S), (1− f(S))}. We thus
obtain the approximate equality between a and x̄ and between b and f(S). Hence, the network intermediate
outputs {a, b} are, respectively, equal to the prior and the SNR function {x̄, f(S)}, with close-to-zero
MSE reconstruction loss ∀y ∈ DT . This extends to other y outside the dataset assuming that the latter is
sufficiently general. We can further incorporate optimal-denoising information in the Fusion Net, under the
theoretical settings described in Section 3.3.1, through explicit SNR learning with a dedicated loss term. The
fusion representations, i.e., the prior x̄ and f(S), are further enforced through a penalty term for predicting
f(S) in the loss function. The full loss function Lf of the Fusion Net is given by

Lf = α||a · b+ y · (1− b)− x||22 + (1− α)||b− f(S)||22, (3.11)

where α is a weight parameter, the first term is the MSE reconstruction loss similar to that of the DnCNN,
and the second term is a reconstruction loss for f(S). Following Equation (3.10), a · b+ y · (1− b) is the
denoised output of the Fusion Net.

As a result, the Fusion Net minimizes the reconstruction loss over the denoised image by learning
to predict the image prior and the SNR function values separately. Unlike the DnCNN residual-learning
network, which only uses ground-truth noise-free images during training, the Fusion Net also uses explicit
SNR information.

3.3.4 Denoising Non-Gaussian Images

Here, our main objectives are (1) to design a Blind Universal Image Fusion Denoiser (BUIFD) for real
images, by adapting the theoretical fusion strategy integrated in our Fusion Net, (2) to evaluate the denoising
performance of BUIFD on training noise levels, and (3) to assess the generalization to unseen noise levels
with real images.

As a real image cannot be modeled with a simple Gaussian prior, our image fusion denoising network
used for real images (BUIFD), shown in Figure 3.1(c), is adapted from the theoretical Fusion Net, shown in
Figure 3.1(b), by modifying the fusion part. We replace the optimal mathematical fusion by a product fusion
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step, followed by trainable convolution layers. We use three convolution layers to learn the data-dependent
fusion function. The optimal fusion function F is to be applied on the noisy input image y, the prior
prediction, and the noise-level prediction

x̂ = F (y, fP (y, θP ), fN (y, θN )), (3.12)

where the prior-predicting and noise-level-predicting network functions are, respectively, fP and fN ; their
corresponding learned parameters are θP and θN , and the denoised estimate is x̂. Intuitively, the prior-
predicting network (fP ) is used to predict the expected value of the unknown real-word distribution, out
of which the intensity of a given pixel is sampled, for each pixel. The noise-level-predicting network (fN )
predicts the noise level, which is used to control the weighted average between a prior and an observation.
When the noise level is low, the actual observation can be given more weight, and when the noise level
is high, the current observation is less reliable and the fusion increasingly resorts to the use of the prior
estimation.

The optimal fusion F can be approximated by F̂ modeled with three convolution layers. However,
we expect F to contain pixel-wise inter-input multiplications similar to those of Equation (3.9). As such
pixel-wise multiplications cannot be replicated with convolutions, we pass two additional inputs into the
convolution layers that model F̂ . These two additional inputs are given by

fP (y, θP )� fN (y, θN ), y � (1− fN (y, θN )), (3.13)

where � is pixel-wise multiplication. They are concatenated with the inputs of F given in Equation (3.12),
yielding five different inputs that are sent to F̂ . The two additional inputs reduce the learning burden of
the convolution layers and improve the denoising performance. Note that we normalize fN (·, ·) ∈ [0, 1].
We call this pixel-wise multiplication step and the concatenation of the additional inputs the product fusion
(shown in the pipeline of Figure 3.1(c)). These two fusion steps, specifically the product fusion and the three
convolution layers, form F̂ and realize point (1) above. The BUIFD’s optimization loss is given by

Lf = ||F̂ (C)− x||22 + ||fN (y, θN )−N ||22, (3.14)

where C is the concatenation of the inputs listed in Equation (3.12) and Equation (3.13), namely, {y,
fP (y, θP ), fN (y, θN ), fP (y, θP )� fN (y, θN ), y� (1− fN (y, θN ))}, x is the ground-truth original image,
and fN (y, θN ) and N are, respectively, the predicted and ground-truth noise level values, normalized to
[0, 1]. We discuss the relation between BUIFD (Figure 3.1(c)) and our theoretical Bayesian network Fusion
Net (Figure 3.1(b)) in detail in the following section.

3.3.5 Relation with the Bayesian Framework

The Fusion Net in Figure 3.1(b) explicitly models the relation with the Bayesian solution in the theoretical
experiments. We discuss, in this section, the relation between BUIFD (Figure 3.1(c)) and the Bayesian
solution Equation (3.9). We first note that a Gaussian prior does not perfectly model real images, hence we
expect that the real-image BUIFD network (Figure 3.1(c)) deviates from the Fusion Net (Figure 3.1(b)), from
which it is inspired, to adapt to real images. However, as addressed in Section 3.3.4, the relation between
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BUIFD and the Bayesian framework is very pertinent.

First, the product fusion Equation 3.13 explicitly creates the same components as in the Bayesian
equation Equation (3.9). This product fusion, based on SNR, weighs noisy input and learned prior as in the
Bayesian fusion. The fusion layers are only three convolutional layers with no non-linearities, in order to
ensure that mostly an additive fusion of our Bayesian terms takes place with local smoothing and that the
relation with the Bayesian solution is preserved as much as possible.

Second, we do not predict an image prior in the sense of a pixel intensity probability distribution, but only
the expected mean of that unknown distribution. In the literature, priors are often probability distributions
of image gradients, but our definition is quite distinctive. Our prior is, per pixel, the expected value of the
distribution out of which the pixel’s intensity was sampled. Even with noise-free images, we cannot know
exactly the distribution (nor its mean), per pixel, in order to assess how much this definition is still respected
in the BUIFD network with real images. However, all other Bayesian components are consistent, as well as
the empirical results. Our improvement of 3.30dB at the unseen noise level 70 in the theoretical experiment
is paralleled by an improvement of about 3dB at noise level 75 in the real-image BSD68 experiment.

We hope our methodology motivates future work in analyzing deep network optimality on theoretical
experiments that are designed such that an optimal solution is known, and that it motivates deep network
design inspired from Bayesian solutions.

3.4 Experiments

3.4.1 Fusion Net Experimental Setup

The networks are trained (and tested) with data generated synthetically according to the theoretical as-
sumption of a Gaussian image prior, as defined in Section 3.3.1. The training data is composed of over
200k patches of size 40× 40 pixels. Image pixel intensities for the training data are drawn at random from
N (127, 252), following the Gaussian image prior assumption, and all values are normalized to [0, 1] before
the training through division by 255 and clipping of all values outside the interval to the interval’s closer
bound when noise is added. For the testing data, 256 images of size 256× 256 pixels are used, and they are
created with the same procedure as that of the training data.

We train the networks for 50 epochs with mini-batches of size 128. We use the Adam optimizer [70] with
an initial learning rate of 0.001 that is decayed by a factor of 10 every 30 epochs; the remaining parameters
are set to the default values. The weight α in Equation (3.11) is set to 0.1. We train the networks with multiple
levels of noise. The standard deviation of the additive Gaussian noise is chosen uniformly at random within
the interval [5, 25] during the training. At the end of every epoch, the noise components are re-sampled,
following the same procedure, but not the ground-truth images. For the testing phase, the networks are
evaluated on test images where the added noise is also Gaussian, with a given standard deviation.
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3.4.2 Fusion Net Evaluation

PSNR results of DnCNN, our Fusion Net, as well as the optimal upper bound, are presented in Table 3.1. The
optimal upper-bound denoising performance is that of the optimal mathematical solution in Equation (3.9).
We can see that both the DnCNN and the Fusion Net perform similarly on the training noise levels (left half
of the table) and are very close to optimal. To validate that the results are indeed statistically similar, we
analyze the distribution of PSNR values across the test set. A two-sided T-test (independent two-sample
T-test) is used to evaluate the null hypothesis that the PSNR results of both networks have similar expected
values. This test is chosen as we have the exact same sample sizes defined by the test dataset, and the
variances of PSNR results are very similar. The T-test results are given in the bottom row of Table 3.1; and
the null hypothesis holds for all configurations in the left half of the table (for a 0.05 significance level, i.e.,
a p-value ≥ 0.05). This shows that the Fusion Net, despite the modeling that mimics optimal denoising
fusion and the additional training information to learn SNR values, performs similarly to the DnCNN.
Therefore, DNCNN has enough capacity and learns optimal denoising. This, however, only holds for the
noise levels seen during training by the networks, shown in the left half of Table 3.1. The confidence in the
null hypothesis decreases with increasing test noise levels. With a significance level above 0.053, the null
hypothesis would be rejected even for noise level 25.

The evaluation results on noise levels larger than 25, which are not trained on by any of the networks,
are reported in the right half of Table 3.1. For these larger noise levels, the null hypothesis is very clearly
rejected because there is a growing performance gap between DnCNN and our Fusion Net. As variances
are very small in our results, the p-value quickly drops to zero when there is a PSNR gap. The Fusion Net
generalizes better to unseen noise levels, even performing close to optimal up to noise level 60. The further
we increase the noise level, the larger the performance gap becomes between the Fusion Net and the DnCNN.
Although both networks perform well for the training noise levels, the Fusion Net learns a more general
model and clearly outperforms on unseen noise levels.

3.4.3 Real-Image Experimental Setup

We use the referenced implementation by the authors of DnCNN and the same datasets. As mentioned in
Section 3.3.4, the architecture of our prior-predicting network is identical to that of DnCNN. All the network
details are available in [150], and we omit the repetition. The same network depth and feature layers are used
in the prior-predicting network (18 main blocks) in Figure 3.1(c). The noise-level network is a more shallow
one that consists of five blocks similar to those used in the prior predictor. Each block is a convolution
followed by a batch normalization and a ReLU, and we append to the noise-level predictor a convolution
followed by an application of the logistic sigmoid function to obtain the normalized fN (·, ·) ∈ [0, 1]. The
noise level values are mapped during the training to the range [0, 1] by dividing by the largest training noise
level. The three convolution layers approximating the final fusion have 16 channels. Both the BUIFD and
the DnCNN networks are trained with the same training parameters and optimization settings, similar to
Section 3.4.1 except for the patch size. For completeness, we provide all the details of the training hyper-
parameters. We use the Adam optimizer [70] with an initial learning rate of 0.001 that is decayed by a factor
of 10 every 30 epochs, the remaining optimizer parameters being set to the default values. The networks are

https://github.com/SaoYan/DnCNN-PyTorch
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Test noise level (standard deviation)
Method Blind 5 10 15 20

BM3D [29]
No 37.57/0.964 33.27/0.916 30.98/0.871 29.45/0.831
Yes 29.34/0.806 29.18/0.802 28.95/0.799 28.69/0.798

DnCNN55 [150] Yes 37.70/0.967 33.61/0.926 31.31/0.882 29.65/0.838
BUIFD55 Yes 37.49/0.966 33.58/0.926 31.40/0.888 29.91/0.852
DnCNN75 [150] Yes 37.64/0.967 33.62/0.927 31.37/0.886 29.79/0.844
BUIFD75 Yes 37.25/0.964 33.47/0.924 31.35/0.886 29.88/0.851

25 30 35 40

BM3D [29]
No 28.32/0.797 27.42/0.766 26.66/0.739 25.98/0.714
Yes 28.32/0.797 27.32/0.762 25.13/0.638 22.39/0.494

DnCNN55 [150] Yes 28.31/0.795 27.17/0.754 26.19/0.717 25.31/0.682
BUIFD55 Yes 28.75/0.819 27.80/0.787 27.00/0.758 26.30/0.731
DnCNN75 [150] Yes 28.55/0.804 27.52/0.768 26.65/0.736 25.84/0.704
BUIFD75 Yes 28.74/0.819 27.82/0.788 27.01/0.759 26.32/0.732

45 50 55 60

BM3D [29]
No 25.28/0.686 24.79/0.667 24.30/0.648 23.86/0.632
Yes 20.01/0.389 18.22/0.317 16.83/0.262 15.78/0.222

DnCNN55 [150] Yes 24.50/0.648 23.75/0.616 23.07/0.586 22.29/0.546
BUIFD55 Yes 25.65/0.704 25.06/0.680 24.52/0.658 23.97/0.637
DnCNN75 [150] Yes 25.14/0.675 24.48/0.647 23.90/0.621 23.34/0.597
BUIFD75 Yes 25.68/0.706 25.11/0.682 24.55/0.658 24.03/0.636

65 70 75 Mean

BM3D [29]
No 23.43/0.618 23.02/0.603 22.67/0.591 27.13/0.74
Yes 14.86/0.189 14.10/0.165 13.48/0.147 22.17/0.51

DnCNN55 [150] Yes 21.06/0.460 19.42/0.352 17.88/0.278 26.08/0.67
BUIFD55 Yes 23.31/0.603 22.28/0.536 20.97/0.451 27.20/0.73
DnCNN75 [150] Yes 22.87/0.577 22.41/0.558 22.01/0.541 27.01/0.72
BUIFD75 Yes 23.56/0.617 23.10/0.598 22.66/0.582 27.37/0.75

Table 3.2 – PSNR (dB)/SSIM comparisons of grayscale image denoising on the BSD68 standard test set. We
compare the non-blind BM3D, the blind BM3D, DnCNN, and our BUIFD. DnCNNσ or BUIFDσ indicates
that the network sees noise levels only up to σ during the training. Bold indicates the best blind result, for
each range of training noise levels, and that best result is selected before rounding. Note that small deviations
in reported PSNR values compared with the literature, notably on higher noise levels, are due to clipping
noisy inputs, as a practical consideration.

trained for 50 epochs each, and the progress of the different losses can be seen in Figure 3.2. We use a patch
size of 50× 50 with a stride of 10 on the training images. The training mini-batch size is set to 128 patches
per mini-batch. The added noise is drawn from a Gaussian distribution of given standard deviation based on
the noise level. This standard deviation is sampled uniformly at random from a specified range (details in
Section 3.4.4), and it is the same for all pixels in a given training patch. We use the training hyper-parameters
of DnCNN to train it and to train BUIFD; the hyper-parameters are not tweaked for BUIFD. The noise-level
predictor is jointly trained within BUIFD, hence both network branches always see the same training data
(with the same simulated noise distributions) as each other in the experiments of Sec 3.4.4. We use the 400
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σc 15 25 40 55 65
Non-blind BM3D 29.30 27.80 25.75 24.28 23.41

BM3D 28.94 27.80 21.63 16.78 14.85
DnCNN55 31.24 28.32 25.41 23.17 20.83
BUIFD55 31.38 28.74 26.22 24.33 22.81
DnCNN75 31.31 28.51 25.80 23.87 22.83
BUIFD75 31.34 28.73 26.29 24.52 23.53

Table 3.3 – We evaluate PSNR values, with spatially varying noise level, on the BSD68 test set. The noise
level increases linearly within the image over the range [σc − 10, σc + 10]. The non-blind BM3D is given
the central noise level σc.

(a) DnCNN and BUIFD (b) MemNet and BUIFD(M)

Figure 3.2 – Training losses of the different learning-based methods. Per epoch, we plot with a full black
curve the overall loss (i.e., reconstruction loss) of the base methods DnCNN and MemNet, in (a) and (b)
respectively. The same reconstruction loss with our fusion method is plotted with a dotted red curve, the
noise-level loss computed on the corresponding intermediate output (i.e., the output of the noise level CNN)
is plotted with a dotted blue curve, and the overall loss for the fusion methods (the sum of the former two
losses) is plotted with a dotted green curve. Note the abrupt small improvement in loss reduction at epoch
30; this is when the learning rate is exponentially decayed. We can see that the different learned function
converge by the end of training (logs shown for the methods with upper training noise level 55).

Berkeley images [24, 112] for grayscale training and the 432 color Berkeley images for color training, as
in [150]. The same architectures are retained for grayscale and color networks.

3.4.4 Real-Image Evaluation

Grayscale denoising evaluation is made over the standard Berkeley 68 image test set (BSD68) [108] taken
from [91]. Table 3.2 reports the results of our fusion approach and of the state-of-the-art blind DnCNN,
when they are both trained with noise levels up to 55 or up to 75. Note that for our fusion approach that is
trained up to noise level 55, we map the maximum network prediction of 1, during training, to 55 and not to
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(a) Original x (b) Noisy y (level 25) (c) fP (y, θP )

(d) fN (y, θN ) (e) (Ours) BUIFD55 25.43dB (0.84
SSIM)

(f) DnCNN55 24.23dB (0.66 SSIM)

(g) Original x (h) Noisy y (level 75) (i) fP (y, θP )

(j) fN (y, θN ) (k) (Ours) BUIFD55 20.18dB (0.55
SSIM)

(l) DnCNN55 17.22dB (0.36 SSIM)

Figure 3.3 – Left to right: original and noisy images, prior and noise-level predictions of BUIFD, our fused
denoising result and the DnCNN denoised image. Our denoising result is created by fusing the noisy image,
the prior, and the noise level values, for instance (e) is F̂ ((b), (c), (d)). All the networks are trained on noise
levels in [0, 55]. Whether the noise level is seen (25), or not seen (75), during training, our denoised results
show better noise removal: sky in (e-f), window, wall and arms in (k-l). We show the PSNR in dB and the
SSIM [135] between parentheses for the different results. Best viewed on screen.

the maximum test noise level, for a more fair comparison. The results of the blind version of BM3D, as well
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Test noise level (standard deviation)
Method Blind 5 10 15 20

CBM3D [31]
No 40.19/0.979 35.75/0.950 33.26/0.919 31.52/0.888
Yes 28.17/0.772 28.08/0.769 27.94/0.765 27.74/0.760

CDnCNN55 [150] Yes 40.05/0.979 35.92/0.953 33.57/0.927 31.93/0.902
CBUIFD55 Yes 40.07/0.979 36.01/0.955 33.66/0.930 32.02/0.905
CDnCNN75 [150] Yes 39.75/0.978 35.74/0.953 33.46/0.928 31.86/0.903
CBUIFD75 Yes 40.05/0.980 35.98/0.955 33.65/0.930 32.03/0.906

25 30 35 40

CBM3D [31]
No 30.18/0.859 29.07/0.830 28.09/0.801 27.18/0.771
Yes 27.49/0.754 27.21/0.748 26.90/0.743 26.58/0.738

CDnCNN55 [150] Yes 30.66/0.877 29.61/0.853 28.71/0.830 27.92/0.808
CBUIFD55 Yes 30.75/0.881 29.72/0.858 28.81/0.835 28.01/0.813
CDnCNN75 [150] Yes 30.61/0.879 29.59/0.855 28.70/0.833 27.92/0.812
CBUIFD75 Yes 30.76/0.883 29.71/0.860 28.81/0.838 28.01/0.816

45 50 55 60

CBM3D [31]
No 26.53/0.751 25.85/0.729 25.21/0.708 24.62/0.689
Yes 26.23/0.733 25.85/0.729 25.41/0.720 24.83/0.695

CDnCNN55 [150] Yes 27.16/0.786 26.49/0.766 25.84/0.747 25.23/0.729
CBUIFD55 Yes 27.27/0.793 26.59/0.773 25.94/0.754 25.33/0.737
CDnCNN75 [150] Yes 27.19/0.792 26.52/0.772 25.89/0.753 25.27/0.735
CBUIFD75 Yes 27.28/0.796 26.60/0.776 25.96/0.758 25.34/0.740

65 70 75 Mean

CBM3D [31]
No 24.05/0.670 23.51/0.653 22.99/0.637 28.53/0.79
Yes 24.05/0.647 23.07/0.581 21.93/0.508 26.10/0.71

CDnCNN55 [150] Yes 24.65/0.713 24.09/0.697 23.52/0.677 29.02/0.82
CBUIFD55 Yes 24.75/0.720 24.18/0.703 23.62/0.684 29.11/0.82
CDnCNN75 [150] Yes 24.69/0.717 24.13/0.701 23.59/0.684 28.99/0.82
CBUIFD75 Yes 24.76/0.722 24.18/0.705 23.64/0.689 29.12/0.82

Table 3.4 – PSNR (dB)/SSIM comparisons of color image denoising, similar to Table 3.2, on the CBSD68
standard test set. Bold indicates the best blind result, for each range of training noise levels, and that best
result is selected before rounding.

as those of the non-blind BM3D that is given the correct test noise level at inference time, are also reported
for reference. We restrict all noisy test images to the range [0, 255], as having negative intensities, or values
exceeding 255, is not a configuration encountered in practice.

Figure 3.3 shows our intermediate feature results, the prior, and the noise level values, along with
denoising results. The denoised image is created by fusing the noisy input image with the network-derived
prior and the noise level values. The fusion is implemented by the product fusion step and the three
convolution layers. As in practical scenarios, the denoised outputs are clipped to [0, 255], as are the noisy
input images. Our results remove, over low-frequency regions, the noise better than those of DnCNN, and
the details are better reconstructed over the high-frequency content. We note that, at high noise levels, there
is a smudging effect most visible around low-frequency regions (Figure 3.3 (k) and (l)), which creates blurry
and noisy edges. These are created by both networks, but are more salient in our result (k) as it is less noisy
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(a) Original\Noisy (level 25) (b) BM3D (non-blind) 31.71dB (0.834 SSIM)

(c) DnCNN75 31.25dB (0.792 SSIM) (d) (Ours) BUIFD75 31.81dB (0.841 SSIM)

Figure 3.4 – Grayscale image denoising example from BSD68. All networks are trained on all noise levels
[0, 75], and we test on noise level 25. Non-blind BM3D loses edge details due to blur smoothing. The
network results are sharper, with the better PSNR being that of BUIFD75. Best viewed on screen.
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(a) Original\Noisy (level 45) (b) BM3D (non-blind) 24.31dB (0.675 SSIM)

(c) DnCNN75 23.67dB (0.618 SSIM) (d) (Ours) BUIFD75 24.43dB (0.677 SSIM)

Figure 3.5 – Grayscale image denoising example from BSD68. All networks are trained on all noise levels
[0, 75] and we test on noise level 45. Non-blind BM3D results are very smoothed, and details are lost.
DnCNN preserves more details, but at the expense of PSNR. Our blind approach preserves details and
outperforms the non-blind BM3D in terms of PSNR. Best viewed on screen.
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(a) Original\Noisy (level 25) (b) CBM3D (non-blind) 29.81dB (0.852 SSIM)

(c) CDnCNN75 30.44dB (0.878 SSIM) (d) (Ours) CBUIFD75 30.62dB (0.880 SSIM)

Figure 3.6 – Color image denoising example from CBSD68. All networks are trained on the full range of
noise levels [0, 75], and we test on noise level 25. Best viewed on screen.
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(a) Original\Noisy (level 45) (b) CBM3D (non-blind) 25.79dB (0.711 SSIM)

(c) CDnCNN75 26.43dB (0.764 SSIM) (d) (Ours) CBUIFD75 26.68dB (0.775 SSIM)

Figure 3.7 – Color image denoising example from CBSD68. All networks are trained on the full range of
noise levels [0, 75], and we test on noise level 45. Best viewed on screen.
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than (l). The higher the noise level and standard deviation of the Gaussian noise are, the larger the number
of averaged samples needs to be such that the statistical mean converges to zero. This makes the local
mean of the noise across small patches vary randomly around zero from region to region and causes the
smudging-like or wave-like effect (notice over low-frequency regions how almost all these artifacts have a
curve shape, rather than a linear one that is modeled by the various different mean values around them).

As seen in Table 3.2, our fusion approach improves the PSNR at every single noise level, starting from
15− 20, which includes seen levels for both training ranges. Comparing DnCNN75 and BUIFD75, which are
trained on all noise levels, we also note, with our approach, an improvement of up to 0.7dB and an average
improvement of 0.36dB. We outperform even the non-blind version of BM3D by an average of 0.25dB

with our version trained on all noise levels and, when training only up to level 55, we perform as well as
the non-blind BM3D. Comparing the results of DnCNN55 and of BUIFD55 in Table 3.2, for unseen noise
levels in the range (55, 75], we see that the generalization of the fusion approach to unseen noise levels
indeed applies to real images. The improvement of multiple PSNR points for level 75 is consistent with that
obtained in our synthetic experiment in Table 3.1.

The results in Table 3.3 illustrate denoising images with spatially varying noise levels, without re-training
the networks. Noise is added across an image with a level that increases linearly with rows. For the non-blind
BM3D, we input the average noise level as a guide. The BUIFD network can handle spatially varying noise
that neither the prior nor the noise level predicting network branches are trained on. It outperforms DnCNN
on all noise setups, whether the networks are trained on the full range or only up to level 55.

For color image denoising, we use the standard color version of BSD68 (CBSD68) for testing. Noise is
simulated and added to each test image before running it through a denoising method. PSNR results are
reported in Table 3.4. The high inter-channel correlation between the RGB color channels [43] enables
all methods to perform significantly better in terms of denoising PSNR on color images, compared with
grayscale images. We note that this advantage of having multiple correlated channels, as in color imaging, is
not always available: for instance, with single-wavelength imaging [84]. We hypothesize that this correlation
also enables the networks to implicitly learn the noise-level prediction. High correlation means that the
network sees multiple approximately equal data samples with different noise instances drawn from the same
distribution. Thus, it more easily learns an estimate of the noise variance compared with the grayscale setup.
Each of the two networks therefore performs more or less the same, when trained up to noise level 55 and
when trained up to noise levels 75. Our fusion approach, however, consistently outperforms CDnCNN on
every single noise level for both training noise ranges. Our average improvement over CDnCNN is about
0.1dB. We also note that the networks outperform, on average, even the non-blind CBM3D by about 0.5dB

for CDnCNN and 0.6dB for our CBUIFD.

Sample image denoising results for grayscale and color images are illustrated in Figure 3.4, 3.5 and
Figure 3.6, 3.7, respectively, for the non-blind BM3D and the blind networks DnCNN and BUIFD trained
on the full range of noise levels. The main trade-off seen between the results of BM3D and those of DnCNN
is in the details of the reconstruction. The non-blind BM3D achieves good PSNR reconstruction but at the
expense of blurring the results. This causes a loss of details (visible on the large rock in Figure 3.4, and the
zoom-in insert in Figure 3.5) and a loss of edge sharpness (visible on the borders of the lake in the zoom-in
insert in Figure 3.4). The DnCNN results suffer less of a blurring problem, but the noise removal is not
optimal in certain areas such as smooth surfaces (visible on the inner area of the lake in the zoom-in insert
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in Figure 3.4). Our approach achieves a good performance in terms of this trade-off. BUIFD achieves good
PSNR results, with significantly less blurring than the non-blind BM3D (see Figure 3.5 for example).

3.4.5 Extended Benchmark Comparisons

We present more denoising experimental tests on different benchmark datasets, and we compare the results
of different denoising approaches on these datasets. We report blind denoising results for noise levels 10 to
80 (with a step size of 10) on the BSD68 dataset, Set14, Sun_Hays80, Urban100, and Manga109 datasets.
Set14 comprises 14 images used traditionally for testing image-processing algorithms. Most of these images
are smaller than 512× 512. The Sun_Hays80 dataset is made up of the high-resolution version of the 80
images presented in [123], with sizes smaller than 1024× 1024. The Urban100 dataset is a collection of
100 high-resolution images taken from Flickr by using urban keywords [60]. The Manga109 dataset is
constituted of 109 professional artist drawings [92], of size 827× 1170. We present in Tables 3.5 and 3.6 the
denoising results of the blind non-learning methods BM3D, EPLL [165], KSVD [2], and WNNM [56] that
were developed for Gaussian denoising. These methods are given, to enforce the blind setting, the default
noise level set by the non-blind BM3D (set to 25). And we also present the results of the learning-based
methods DnCNN [150] and BUIFD, on denoising the luminance of the images with added Gaussian noise
levels ranging from 10 to 80. We also evaluate another learning-based method with the same training hyper-
parameters as those of DnCNN, namely, the MemNet architecture [125]. We extend our fusion technique to
this architecture and call it BUIFD(M). It is constructed following Figure 3.1(c), with the exception that the
MemNet architecture replaces that of DnCNN for the prior-predicting CNN. All the learning-based methods
in this section are trained up to noise level 55. Tables 3.5 and 3.6 show the PSNR and SSIM metrics for each
method, and highlighted in bold are the best-PSNR and best-SSIM method between DnCNN and BUIFD,
and between MemNet and BUIFD(M). A sample visual result is shown in Figure 3.8, taken from Set14.

3.5 Conclusion

In this chapter, we have defined a theoretical framework under which we derive an optimal denoising
solution that we call fusion denoising. This theoretical setup enables us to study the statistical optimality of
the network’s learning, which is close to optimal for training noise levels but fails to generalize well for
unseen noise levels. We integrate the fusion denoising approach into a deep-learning architecture to guide its
learning and we compare with the optimal mathematical solution and with a state-of-the-art blind universal
denoiser. Our synthetic experimental results show that our Fusion Net generalizes far better to higher unseen
noise levels.

We have learned a data-dependent fusion function to adapt our fusion denoising network approach to
real images. Our blind universal image fusion denoising network (BUIFD) improves the state-of-the-art
real-image denoising performance, both on training noise levels and on unseen noise levels. This highlights
the importance, both in terms of the interpretability and performance, of guiding the network towards
learning more explicit priors and performing the proper integration with the data-fidelity terms. In this
chapter, we have defined our prior, over the statistical distribution of pixel intensities rather than over the
image space. In the following chapter, we extend this approach of prior decoupling to an image-space prior.
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(a) Noisy image (level 25) (b) KSVD 27.59/0.691 (c) BM3D 28.3/0.758

(d) EPLL 28.18/0.743 (e) WNNM 28.21/0.748

(f) Ground-truth (g) DnCNN 28.13/0.77 (h) BUIFD 28.35/0.777

(i) MemNet 28.03/0.77 (j) BUIFD(M) 28.29/0.774

Figure 3.8 – Sample visual result from Set14, with PSNR(dB)/SSIM values. The top row shows non-blind
results with the traditional methods KSVD, BM3D, EPLL and WNNM, as the noise level is 25, which is
the default set when the noise level is unknown. And the bottom row shows the results with the different
learning methods.
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Dataset Method 10 20 30 40

BSD68

KSVD [2] 27.10/0.713 27.71/0.750 26.56/0.715 21.48/0.444
BM3D [29] 29.18/0.802 28.69/0.798 27.35/0.763 22.44/0.495
EPLL [165] 29.51/0.798 29.14/0.808 26.07/0.707 20.82/0.430
WNNM [56] 27.83/0.750 28.35/0.779 27.06/0.743 21.89/0.468

DnCNN [150] 33.61/0.926 29.65/0.838 27.17/0.754 25.31/0.682
BUIFD 33.58/0.926 29.91/0.852 27.80/0.787 26.30/0.731

MemNet [125] 33.33/0.927 29.59/0.848 27.32/0.769 25.63/0.701
BUIFD(M) 33.59/0.928 29.90/0.856 27.83/0.794 26.36/0.740

Set14

KSVD [2] 27.73/0.729 28.19/0.755 26.74/0.711 21.50/0.447
BM3D [29] 30.58/0.832 29.68/0.818 27.85/0.772 22.55/0.502
EPLL [165] 30.45/0.814 29.70/0.815 26.28/0.707 20.89/0.435
WNNM [56] 28.89/0.777 29.24/0.796 27.49/0.748 22.00/0.476

DnCNN [150] 33.81/0.914 29.98/0.832 27.39/0.757 25.40/0.688
BUIFD 33.73/0.914 30.34/0.852 28.18/0.795 26.55/0.742

MemNet [125] 33.45/0.912 29.91/0.842 27.43/0.767 25.56/0.701
BUIFD(M) 33.70/0.914 30.29/0.854 28.19/0.801 26.62/0.751

Sun_Hays80

KSVD [2] 28.80/0.767 29.22/0.778 27.21/0.681 21.45/0.374
BM3D [29] 31.35/0.848 30.63/0.837 28.93/0.787 23.11/0.465
EPLL [165] 31.09/0.826 30.76/0.833 27.16/0.710 21.12/0.380
WNNM [56] 29.89/0.795 30.30/0.810 28.56/0.750 22.43/0.416

DnCNN [150] 34.94/0.933 31.08/0.853 28.48/0.771 26.24/0.689
BUIFD 34.99/0.935 31.44/0.871 29.36/0.814 27.77/0.763

MemNet [125] 34.65/0.932 31.07/0.864 28.74/0.792 26.88/0.726
BUIFD(M) 34.97/0.935 31.42/0.872 29.39/0.819 27.86/0.771

Urban100

KSVD [2] 27.49/0.793 27.93/0.808 26.05/0.726 21.21/0.487
BM3D [29] 30.98/0.884 29.93/0.868 27.87/0.818 22.64/0.565
EPLL [165] 30.06/0.857 29.16/0.851 25.99/0.748 20.90/0.489
WNNM [56] 28.03/0.796 28.54/0.805 27.16/0.768 21.93/0.529

DnCNN [150] 34.10/0.935 30.01/0.870 27.10/0.797 24.76/0.723
BUIFD 33.72/0.933 30.18/0.882 27.86/0.833 26.04/0.783

MemNet [125] 33.46/0.930 29.65/0.869 26.89/0.799 24.81/0.734
BUIFD(M) 33.63/0.933 30.03/0.881 27.73/0.832 25.99/0.785

Manga109

KSVD [2] 29.91/0.871 29.69/0.868 27.08/0.763 22.02/0.519
BM3D [29] 33.45/0.924 31.52/0.910 28.80/0.858 23.54/0.607
EPLL [165] 33.31/0.915 31.29/0.905 27.22/0.795 21.73/0.531
WNNM [56] 31.58/0.870 31.31/0.872 28.80/0.803 22.83/0.511

DnCNN [150] 35.57/0.936 30.50/0.831 26.78/0.725 23.98/0.638
BUIFD 35.88/0.947 31.86/0.907 29.09/0.864 26.92/0.820

MemNet [125] 34.88/0.940 30.58/0.867 27.34/0.777 24.92/0.699
BUIFD(M) 35.81/0.948 31.84/0.912 29.19/0.878 27.15/0.848

Table 3.5 – PSNR/SSIM evaluation of the blind BM3D, EPLL, KSVD, WNNM, DnCNN, BUIFD, MemNet,
and BUIFD(M). Bold indicates the best denoising result in terms of PSNR or SSIM between each pair of
learning methods, for different Gaussian noise levels, with clipped noisy images.
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Dataset Method 50 60 70 80

BSD68

KSVD [2] 18.12/0.297 15.85/0.212 14.28/0.165 13.09/0.134
BM3D [29] 18.19/0.316 15.73/0.220 14.10/0.166 12.90/0.132
EPLL [165] 17.54/0.289 15.70/0.215 14.53/0.175 13.61/0.149
WNNM [56] 18.22/0.306 15.83/0.217 14.21/0.166 13.00/0.134

DnCNN [150] 23.75/0.616 22.29/0.546 19.42/0.352 16.67/0.233
BUIFD 25.06/0.680 23.97/0.637 22.28/0.536 19.63/0.374

MemNet [125] 24.35/0.646 23.34/0.606 21.53/0.499 18.43/0.320
BUIFD(M) 25.15/0.690 24.14/0.655 22.14/0.537 18.92/0.363

Set14

KSVD [2] 18.12/0.304 15.90/0.219 14.28/0.169 13.08/0.138
BM3D [29] 18.24/0.326 15.82/0.231 14.14/0.172 12.91/0.137
EPLL [165] 17.58/0.298 15.76/0.221 14.54/0.179 13.61/0.152
WNNM [56] 18.28/0.316 15.92/0.227 14.24/0.173 13.01/0.138

DnCNN [150] 23.66/0.625 22.09/0.553 19.35/0.364 16.54/0.239
BUIFD 25.23/0.694 23.98/0.650 22.33/0.556 19.69/0.391

MemNet [125] 24.17/0.649 23.06/0.609 21.34/0.506 18.29/0.331
BUIFD(M) 25.33/0.706 24.19/0.670 22.27/0.557 19.08/0.388

Sun_Hays80

KSVD [2] 18.05/0.233 15.82/0.161 14.24/0.122 13.03/0.097
BM3D [29] 18.44/0.268 15.89/0.175 14.20/0.126 12.94/0.097
EPLL [165] 17.68/0.236 15.79/0.167 14.57/0.133 13.63/0.110
WNNM [56] 18.51/0.246 16.06/0.164 14.36/0.120 13.09/0.094

DnCNN [150] 24.33/0.617 22.55/0.535 19.53/0.306 16.63/0.183
BUIFD 26.41/0.716 25.14/0.674 23.24/0.561 20.17/0.364

MemNet [125] 25.39/0.670 24.17/0.629 22.34/0.520 18.78/0.297
BUIFD(M) 26.55/0.728 25.37/0.696 23.19/0.575 19.44/0.373

Urban100

KSVD [2] 18.05/0.353 15.88/0.274 14.32/0.224 13.12/0.188
BM3D [29] 18.43/0.387 15.97/0.287 14.30/0.227 13.04/0.189
EPLL [165] 17.73/0.354 15.89/0.280 14.65/0.236 13.69/0.205
WNNM [56] 18.33/0.367 15.98/0.268 14.33/0.208 13.08/0.168

DnCNN [150] 22.87/0.656 21.17/0.579 18.84/0.414 16.41/0.303
BUIFD 24.54/0.736 23.23/0.690 21.67/0.597 19.45/0.454

MemNet [125] 23.25/0.679 22.10/0.638 20.61/0.547 18.17/0.396
BUIFD(M) 24.57/0.742 23.36/0.704 21.64/0.602 19.00/0.455

Manga109

KSVD [2] 18.70/0.355 16.42/0.245 14.73/0.187 13.45/0.152
BM3D [29] 19.20/0.428 16.63/0.296 14.79/0.208 13.39/0.160
EPLL [165] 18.34/0.365 16.31/0.252 14.93/0.198 13.87/0.167
WNNM [56] 18.93/0.335 16.48/0.234 14.73/0.171 13.41/0.132

DnCNN [150] 21.82/0.569 20.03/0.493 17.88/0.331 15.74/0.236
BUIFD 25.13/0.777 23.58/0.731 21.89/0.632 19.63/0.480

MemNet [125] 23.11/0.641 21.79/0.603 20.28/0.512 18.05/0.369
BUIFD(M) 25.45/0.822 23.97/0.795 22.13/0.692 19.53/0.556

Table 3.6 – PSNR/SSIM evaluation of the blind BM3D, EPLL, KSVD, WNNM, DnCNN, BUIFD, MemNet,
and BUIFD(M). Bold indicates the best denoising result in terms of PSNR or SSIM between each pair of
learning methods, for different Gaussian noise levels, with clipped noisy images.
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Chapter 4

Decoupling Learned Prior Hallucination
and Data Fidelity in Image Restoration

In this chapter, we decouple the data fidelity and the learned prior components in image restoration, while
exploiting the modeling strength of deep neural networks.

Classic image-restoration algorithms use a variety of priors, either implicitly or explicitly. Their priors
are hand-designed and their corresponding weights are heuristically assigned. Hence, deep learning methods
often produce superior image restoration quality. Deep networks are, however, capable of strong and hardly
predictable hallucinations of the data to be restored. Networks jointly and implicitly learn to be faithful to
the observed data while learning an image prior; and the separation of original data and hallucinated data
downstream is then not possible. This limits their wide-spread adoption in image restoration applications.
Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting, as we show in
Chapter 2.

We present an approach with decoupled network-prior based hallucination and data fidelity terms. We
refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method
is rooted in a Bayesian restoration framework and tightly connected to classic restoration methods. In fact,
our approach can be viewed as a generalization of a large family of classic restoration algorithms. We use a
recent network inversion method to extract image prior information from a generative network. We show
that, on image colorization, inpainting and on denoising, our framework consistently improves the prior
results through good integration of data fidelity. Our method, though partly reliant on the quality of the
generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration
methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed,
the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed
framework.

Our code and models are made publicly available at https://github.com/majedelhelou/BIGPrior
This work is under review in the IEEE Transactions on Image Processing (TIP), 2021. [44]
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4.1 Introduction

Image restoration recovers original images from degraded observations. It is based on two fundamental
aspects, specifically, the relation to the observed data and the additional assumptions or image statistics
that can be considered for the restoration. The relation to the observed data is referred to as data fidelity.
The remaining information, brought in by the restoration method based on prior assumptions, is referred to
as prior hallucination. It is termed hallucination because the added information is derived from a general
model or assumption and might not faithfully match the sample image.

The data fidelity and prior terms emerge theoretically in the MAP formulation, but can also be implicitly
induced by the restoration algorithms. For instance, non-local means [15] and BM3D [29] utilize the prior
assumption that there exists different similar patches within an image. Diffusion [101] methods build on
local smoothness assumptions. Data fidelity is typically enforced through the squared norm [71] that is
equivalent to a MAP-based Gaussian noise model.

Classic image-restoration algorithms often rely on optimizations over explicit priors. An advantage of
explicitly defined priors is the ability to easily control the relative relation between the weight of the data
fidelity term and the weight (β) of the prior term. The general approach consists of an optimization

arg min
x

ψd(f
′(x), y) + β · ψp(f ′′(x)), (4.1)

where y is the observation, f ′ and f ′′ are various manipulation functions, ψd enforces the data fidelity, and
ψp enforces the prior information. The optimal point is the estimate of the original image x. By making
the prior term explicit, it is possible to have control over its contribution hence often better intuition and
understanding of the reliability of the final restoration result. However, we note two shortcomings of these
methods and we expand upon them in the following: (1) β is not adapted based on the confidence in the
fitness of the prior, and (2) the priors are hand-designed heuristics.

(1) The parameter β should be inversely related to the quality of the observed degraded signal, but it
should also be directly related to how well the assumed prior corresponds to the input image distribution
or statistics. Although some methods, discussed in the section on related work, adjust their priors to the
input data; they do not control β based on the confidence in the fitness of the prior to the current sample. (2)
Recent methods with implicit data-learned priors, notably relying on deep CNNs, outperform the classic
methods with hand-designed priors on various image restoration tasks. This is due to the rich prior learned
by discriminative networks or generative networks that, with adversarial training, can even learn image
distributions to synthesize new realistic photos [65, 66, 67]. It is worth noting, however, that domain-specific
prior information can still be explicitly enforced to improve the performance of the networks [45, 118].

One shortcoming of the deep learning methods is the loss of interpretability and control between data
fidelity and prior-based hallucination. Given an image restored by a network, it is not possible to know how
faithful it is to the observed signal versus how much prior-based hallucination was integrated in the image.
And these hallucinations are not always reliable and can be prone to overfitting [46]. Hence, it is important
to have a grasp of the prior hallucination taking place in the restoration process.

To obtain decoupled prior-based hallucination and data fidelity terms, we propose a novel framework

88



Σ

z1

𝛂𝛂1

zN

𝛂𝛂N

G1

G1

G2….. degradation
f(∙)

Generative inversion iteration loop

loss

Σ

g-1(∙)

invert

TargetOutput

Input

Input

ϕ

loss

fidelity-
prior

fusion

deterministic 
functions

pretrained
generators

learnable
parameters

feature
layers

Figure 4.1 – Weights that are optimized are shown in green, and the sub-networks of the pre-trained
generative network are shown in yellow. The generative network inversion process is optimized over a fixed
set of iterations, which regularizes the output [131]. The final output is obtained through the fusion of the
prior-based hallucination and the signal information, based on our φ map estimation.

that we call the Bayesian Integration of a Generative Prior (BIGPrior framework). We replace the implicit
data prior learned in feed-forward restoration networks with an explicit generative-network prior. This prior
is then integrated following a MAP setting, where the data fidelity and prior terms are combined with a
fusion weight that is adaptive to both. The BIGPrior framework is a generalization of a large family of
classic restoration methods where the prior and its contribution weight are both learned, and the weight can
adapt to both the signal quality and the fitness of the prior to the observed data.

Our framework structurally provides a reliable metric for per-pixel data fidelity in the final output to
answer the question,“How much hallucination is there - at worst - in the output?". We present and analyze
this metric by using blind denoising experiments. We also apply our method to various image restoration
tasks and show consistent improvements, notably over the direct use of the generative prior, and we provide
our faithfulness, a.k.a. data fidelity, metric.

4.2 Related Work

4.2.1 Classic Image Restoration

A variety of classic restoration methods, such as non-local means (NLM) [15], BM3D [29], their variants [30,
75] or combinations with sparse coding [35, 88], and diffusion-based methods [101, 25], make use of various
prior assumptions on self-similarity or frequency-content distribution. Other algorithms formulate the prior
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explicitly. For instance, dictionary-based methods [109] that assume images can be well represented by a
fixed set of elements, which we discuss in the next section. Other examples are shrinkage methods [38, 138].
They can be directly connected with the family of MAP estimators, by deriving from the foundational
work of Bayes and Laplace [73]. Considering an example with a hyper-Laplacian prior on image gradients,
originally used in the context of deblurring in [71], optimizing the MAP negative log-likelihood

arg min
x

− log(PY |X(y|x)PX(x)), (4.2)

yields the estimator

x̂ = arg min
x

||x− y||22 + β ·
J∑
j=1

|x⊗ fj |γ , (4.3)

where y is the signal we observe, x̂ is the estimate of the target x, {fj} are J first-order derivative filters
and β is a weight parameter. Setting γ to one, with the corresponding filters, gives the special case of
total-variation methods [110]. Generally these approaches are an optimization of the form

x̂ = arg min
x

ψd(x, y) + β · ψp(T (x)), (4.4)

where ψd is the data-fidelity loss term, and ψp incorporates the prior information on a transformation T of x
that could be the identity. T can also be based on derivatives [71], or wavelet [111] and other sparsifying
transformations. For instance, WNNM [56] assumes that subsets of similar image patches are low-rank and
uses a weighted nuclear norm for the low-rank minimization problem on similar patch groups. As with
many classic image denoising methods, WNNM adapts β based on the noise level and controls the data
fidelity weight as such. However, as we noted in our introduction, these methods face two shortcomings.
First, β is not adapted based on the confidence in the prior given the degraded observation, but only on the
quality of the latter. Hence, it is adapted based on the signal quality, such as the noise level, but also only
following certain heuristics. Second, the prior itself is fixed based on hand-designed heuristics. We preserve
an interpretable control over the contribution of the prior and decouple it from data fidelity, and we exploit
learned network priors and increasing the flexibility in the fusion weight. Therefore, this weight is learned
in our framework and can adapt both to the quality of the observed data, as well as the fitness of the prior,
given the test observation.

4.2.2 Deep Neural Networks

The rich priors that convolutional neural networks are able to learn have improved image restoration
results [63, 150, 155, 146]. These methods use sample-based learning and can extract prior information from
large image datasets. This has enabled these deep learning methods to improve the state of the art on many
restoration tasks [160]. However, the learned priors are implicit, meaning neither the prior nor its contribution
can be disentangled from the data fidelity component in the final restored output. As recently shown for
super-resolution and denoising tasks [46], networks can learn a frequency-conditional hallucination that is
prone to overfitting to the training degradation models. Another recent example is in 3D reconstruction [126],
where networks learn to recognize observations and to use memorized data samples, rather than to perform
the reconstruction. In other words, the prior contribution can dominate over the data fidelity. Controlling
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this trade-off is, however, not attainable within the neural networks. Our proposed framework enables us to
exploit the strength of learned network priors and keep both control and insight over the data fidelity and
prior trade-offs.

Extracting prior information from neural networks is possible through an inversion process [34, 4]. By
searching the network-learned space of image distributions, it is possible to project on it in a fashion similar
to dictionary-based methods. Generative networks are sufficiently powerful to be trained to learn different
distributions, such as image or noise distributions [22]. A network inversion is carried out in [55], where
it is used for different image processing tasks. We discuss this in more detail in the following section. A
generative network inversion is also conducted in [96]. However, the method performs a fine-tuning of the
pre-trained generator that goes against our objective to project on a fixed learned space. We also emphasize
that our goal is not to improve such priors, rather to use them in our framework as image-projection spaces.

4.2.3 Signal Adaptation of Priors

As described in our discussion on classic methods, some of them [56] adapt the weight assigned to their
prior term according to the quality of the observed signal. However, the fitness of the chosen prior can itself
be image dependent. In other words, the prior can be accurate on certain images, but not as fit to be applied
to others. Yet this is rarely accounted for in the literature. In the content-aware image prior presented in [26],
although the weight of the prior itself is not adaptive, the hyper-Laplacian prior used is tweaked to adjust to
the texture in the observed signal. Similarly, the method in [27] carefully selects its filters upon processing
of the observed signal, hence altering its implicit priors. Also in the same spirit, some recent deep learning
methods have tried to adapt to the observed inputs, through self-supervised weight modification [77], or
novel learning [10]. This approach has even appeared in recent classification work to adjust to distribution
shifts [124]. Such methods address the issue of the fitness of the prior to the given input by modifying the
former on the fly. However, once a prior is selected, its fitness relative to the observed signal’s quality is
dismissed. The weight of the prior term is therefore not adaptive, and the prior’s contribution cannot be
decoupled from data fidelity.

4.3 Method

In designing our method, we address the shortcomings discussed in the introduction. We present a framework
where the prior and the data-fidelity terms are explicit. This enables us to exploit the modeling strength of
deep neural networks for the prior and enables us to learn a weight between the prior and the data fidelity that
is doubly adaptive to the quality of the observation and to the fitness of the prior to the input’s distribution.
Rather than combining the contribution of the prior and the data-fidelity terms through an optimization,
we explicitly enforce their fusion in the final output. This explicit decoupling of the two terms enables us,
as well as downstream applications, to gain in restoration interpretability. In this section, we present the
mathematical details of our proposed method and its relation to classic families of restoration algorithms. We
also present a network-based prior that relies on generative-network projection and introduce our approach
for learning the adaptive weight without guided supervision.
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4.3.1 Mathematical Formulation

Given an observed signal y that is a degraded version of the image x, our restoration estimate x̂ is formulated
as

x̂ = (1− φ(y; θ1))� g−1(y)︸ ︷︷ ︸
data fidelity

+φ(y; θ1)�G(z∗; θ2)︸ ︷︷ ︸
prior

, (4.5)

where g−1(·) is a bijective function that we discuss in what follows, φ(·; θ1) is an estimator for the fusion
factor, parameterized by θ1, and that assigns adaptive weights to the prior-based hallucination and the data
fidelity. It is a generalization of β that we learn internally from sample-based training. G(z∗; θ2) is the
prior-based hallucination, parameterized by θ2, described in detail in the following, and � is the pixel-wise
multiplication operator. To ensure a very strict lossless data-fidelity term, we restrict g−1(·) to the set of
bijective functions. We can choose it such that g(·) is close to the degradation model f(·) of the restoration
task, as described in our experimental setup. We note that this formulation is closely related to the classic
restoration methods based on explicit prior optimizations discussed in our related work. The difference
is that our prior is based on a trainable neural network G, and that our fusion factor is also learned to be
adaptive, per sample, both to the quality of the observed data and to the fitness of the prior.

We present the relation to MAP estimation in connection with the work in [45]. The authors derive a
MAP estimate for additive white Gaussian noise removal where the additive noise (yi = xi + ni) follows
the normal distribution N (0, σn), and an explicit image prior is enforced. More precisely, the solution is
derived with the assumption of a Gaussian prior [106] on the pixel distribution. With this model, the prior
distribution for a pixel value xi follows N (x̄i, σxi), and this yields a MAP estimate

x̂i = arg max
xi

PXi|Yi(xi|yi) =
yi

1 + 1/Si
+

x̄i
1 + Si

, (4.6)

with Si being the signal-to-noise ratio defined as

Si ,
σ2xi
σ2n

. (4.7)

Note how Si is, in fact, dependent on signal quality (through σn), as well as the confidence in the prior
(through σxi). Indeed, intuitively the larger σxi is, the less reliable the prior term x̄i is; and the smaller it is,
the more reliable the prior term is. In this special case of our general formulation,

φ(yi) =
1

1 + Si
, (4.8)

g(·) is the identity mapping, and the prior is the expected value over the distribution of the input EXi [xi].
Our formulation in Equation (4.5) generalizes this solution to non-Gaussian, as well as image-wise prior
distributions, while taking into account signal quality and prior confidence.

We also describe the relation to dictionary-based methods. Dictionary-based methods [52, 109]
generally follow the formulation

x̂ = arg min
x,d(x,Dv)<ε

ψd(x, y) + β · ψp(v), (4.9)
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φ explicitly known φ relation to data fidelity
Colorization 7 Luminance and edge related
Inpainting 3 Binary mask based
Denoising 7 Noise-level adaptive

Table 4.1 – The φ map values are only explicitly known for inpainting, but are always related to the data-
fidelity and prior-confidence terms discussed in our mathematical formulation. Indeed, in colorization there
exist strong relations between luminance and the fidelity of the observed data, in inpainting this directly
matches the applied mask, and in denoising the noise level determines the fidelity of the observation. The φ
map also, across all tasks, depends on the confidence in the prior.

Bedroom set Church set
Method AuC [155] ↑ AuC [155] ↑
Colorful colorization [155] 88.55 89.13
Deep image prior [131] 84.33 83.31
Feature map opt. [10] 85.41 86.10
mGAN prior [55] 88.52 89.69
Ours 89.27 90.64

Table 4.2 – Quantitative AuC (%) results for image colorization on the Bedroom and Church test sets. The
higher the value is, the lower the cumulative colorization error curve is. We highlight, with background
shaded in gray, the widely used task-specific supervised method. The best results are shown in bold, and the
second best are underlined.

where D is the dictionary, specifically, a vector set that spans the dictionary space, v holds the coordinates
of a point in that space, d(·, ·) is a distance function, and ε is a small value in R+. It is typical to use a ψp
that encourages sparsity, thus to assume that the dictionary captures the main directions of variation in an
image. This sparsity of v parallels restrictions on the generative latent space. Effectively, enforcing

d(x,Dv) < ε (4.10)

is a subtle relaxation of the constraint x ∈ span(D), which enforces the prior assumption that the image must
belong to the dictionary space. This would correspond in our formulation of Equation (4.5) to x ∈ span(G),
where in our case the dictionary space is instead the learned space of a generative network. In our formulation,
the restriction is enforced only on our decoupled prior element, rather than having to enforce it on x itself
and then relaxing it through a tweaking of ε.

In summary, our formulation can be viewed as a general framework of MAP estimation and as a
generalization of dictionary-based methods. We choose a strict data-fidelity term that preserves a bijective
relation to the observed signal, and a fusion factor that takes into account both signal quality and prior
confidence. The following two sections discuss in more detail the prior term and the φ fusion factor learning.
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(a) GT (b) Input (c) CIC (90.70) (d) mGAN (91.12) (e) Ours (93.89) (f) φ (0.47)

(g) GT (h) Input (i) CIC (94.17) (j) mGAN (93.87) (k) Ours (94.75) (l) φ (0.52)

Figure 4.2 – From left to right are the ground-truth image (GT), the grayscale input, the results of colorful
image colorization (CIC) [155], mGAN [55], and ours, with the AuC (%), and our channel-averaged φ map
(with global average between parentheses). The darker colors indicate values of φ closer to 0, whereas bright
yellow indicates those closer to 1.

4.3.2 Generative-Space Projection Prior

Theoretically, an inference method can be used to replace the prior term. For instance, a feed-forward
network’s output can replace G(z∗) in Equation (4.5). However, such a network trained with supervision
takes into account both the data-fidelity and prior terms, albeit without any insight as to how much prior-based
hallucination occurs or any control over the different contributions. Therefore, in order to best decouple data
fidelity from prior hallucination, we opt for a pre-trained generative network inversion to act as the learned
prior. Effectively, this is a better strategy for decreasing the upper bound on a worst-case hallucination
contribution. The inversion produces a sampling from the generative space, or a projection on that space as
in dictionary-based projections discussed earlier. The latent code z∗ for the generative-space projection is
obtained as

z∗ = arg min
z

LG(f(G(z)), y), (4.11)

where LG can be a weighted average of `1, `2, and perceptual losses, and f(·) is the degradation model of a
restoration task. When using a single latent code, very limited information can be encoded, which yields
a coarse prior, notably for high-resolution images. To avoid this loss of expressiveness, we use the recent
multi-code GAN inversion method that splits the generative network G into two stages, at layer l [55]. The
first stage G(l)

1 generates multiple feature space representations, each corresponding to one of N latent codes
{z∗n}Nn=1, where every α is a vector of length equal to the number of feature-space channels. The second
stage G(l)

2 generates the output image based on a fused feature representation by using adaptive channel
weights {α∗n}Nn=1. The latent codes and adaptive weights are obtained, as in Equation (4.11), by an inversion
optimization

{z∗n}Nn=1, {α∗n}Nn=1 = arg min
{zn}Nn=1,{αn}Nn=1

L(f(xinv), x), (4.12)
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Method PSNR ↑ SSIM ↑ LPIPS ↓
DeepFill v2 [145, 146] 26.56 0.9555 0.0191
Feature map opt. [10] 14.75 0.4563 -
Deep image prior [131] 17.92 0.4327 -
mGAN prior [55] 20.55 0.5823 0.2070
Ours 25.32 0.9240 0.0376

Table 4.3 – Quantitative PSNR (dB), SSIM, and LPIPS results for central image inpainting. We mask out a
64× 64 patch from the center of each input image. The task-specific state-of-the-art method is highlighted
with background shaded in gray. The best results are shown in bold, and the second best are underlined.

where the inverted image xinv is given by

G(z;α, θ2) , xinv = G
(l)
2

(
N∑
n=1

G
(l)
1 (zn) · αn

)
. (4.13)

Our image prior term in Equation (4.11) is then given byG(z∗;α∗, θ2), where θ2 are the frozen weights of the
generative sub-networks G1 and G2. We also note that randomly traversing the latent space of a generative
network can potentially produce hallucinated images that lie outside the natural image manifold [93]. This is
averted by the guided inversion loss that maps the generative output, through the degradation model, to the
observed image. The case of the generative projection being outside the natural-image manifold, which can
occur when the degradation is extreme, still does not pose an issue in our framework. Indeed, this projection
is already treated in our approach as a prior hallucination that might not be faithful to the original image.

4.3.3 Guide-Free φ Learning

A guided learning of the parameters θ1 to predict φ is possible for a task such as inpainting but impossible for
other tasks. This is simply because inpainting is the extreme case where signal quality is binary, specifically
zero at the masked areas. For other tasks, a target φ cannot be readily obtained. We thus train a network
with weights θ1 to predict φ in an end-to-end manner, with φ effectively being an intermediate feature space
having no explicit learning loss. Our mini-batch training loss L(x, y; θ1) for learning θ1 is given by (we use
φ to also denote the network outputting it, for better readability)

L(x, y; θ1, θ2) = || (1− φ(y, θ1))� g−1(y)

+ φ(y, θ1)�G(z∗;α∗, θ2)− x||22 + ρ · ||φ(y, θ1)||1,
(4.14)

where ρ is a scalar weight that we discuss next, and the parameters θ2 of the generative network are the
frozen weights of a pre-trained generative network. This end-to-end training enables the network predicting
φ to learn to assess, based on the observation y, the quality of that observed image, as well as the fitness of
the prior to this observation.

Fidelity-Bias Balance. For certain image test cases, the quality of the data-fidelity term can be very
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Test Method PSNR ↑ SSIM ↑ LPIPS ↓

B
ed

. mGAN prior [55] 20.34 0.5902 0.2134
Ours 23.22 0.8598 0.0775

C
hu

. mGAN prior [55] 19.33 0.5359 0.2235
Ours 21.94 0.8509 0.0855

C
on

f. mGAN prior [55] 19.38 0.5641 0.2062
Ours 22.20 0.8318 0.0785

Table 4.4 – Quantitative PSNR (dB), SSIM, and LPIPS results for randomized-masking inpainting on the
Bedroom, Church (Outdoor), and Conference test sets. The randomized masking increases the difficulty of
predicting our φ maps. To analyze the effect of mask randomization on the performance of our φ prediction
compared to the central inpainting task, we compare the prior-based results to ours.

similar to that of the learned prior, at least over some subsets of pixels. This would induce no change in the
loss term for varying values of our fusion factor φ, as all would result in similar final outputs. However,
for these cases, it is not necessary to hallucinate information as the data fidelity is also just as accurate.
Therefore, we address these edge cases by adding an auxiliary loss on the `1 norm of φ in Equation (4.14),
which can additionally regularize the feature learning process [41]. This term enforces that the training
favors smaller values of φ such that the overall contribution of the data fidelity term is maximized when
this is not detrimental to the quality of the final output. This fidelity-bias term is weighted by the scalar ρ in
Equation (4.14).

4.4 Experiments

We conduct experiments on image colorization, inpainting, and blind AWGN removal. Colorization does
not induce an explicit solution for φ, aside for certain exceptions that we discuss in the next section, such as
edges and extreme luminance areas. Inpainting induces an explicitly known solution for φ. Whereas, AWGN
does not have an explicit solution for φ, as the image prior is not explicitly formulated. However, the AWGN
experimental setup enables us to analyze the guide-free learning of φ, which would intuitively fluctuate
mainly with the noise level (direct relation), but also marginally with the uncertainty in the prior (opposite
relation), as described in Section 4.5. This is summarized in Table 4.1 and discussed in the following
sections.

4.4.1 Experimental Setup

As described in Section 4.3, we use the multi-code GAN inversion approach for our generative-space
projection prior. The pre-trained GAN models, which correspond to each dataset used, are all different
versions of the PGGAN [65] network. They are pre-trained on the Bedroom, Church (Outdoor), and
Conference room datasets taken from the LSUN database [144]. The details for each experiment follow the

mGAN [55]: https://github.com/genforce/mganprior
PGGAN [65]: https://github.com/tkarras/progressive_growing_of_gans
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(a) GT (b) Input (c) DeepFill
(21.88)

(d) mGAN (20.41) (e) Ours (25.20) (f) φ (0.14)

(g) GT (h) Input (i) DeepFill (29.38) (j) mGAN (21.45) (k) Ours (24.59) (l) φ (0.13)

(m) GT (n) Input (o) DeepFill
(17.95)

(p) mGAN (16.04) (q) Ours (17.98) (r) φ (0.22)

Figure 4.3 – From left to right are the ground-truth image (GT), the masked input, the results of DeepFill
v2 [145, 146], mGAN [55], and ours, with the PSNR in dB, and our channel-averaged φ map (with global
average between parentheses). The first two rows show example images from the standard central-inpainting
benchmark, and the third row is an example from our randomized-inpainting experiment.

settings given by the authors of [55] and are given in the following sections. We note that any generative
network, such as DCGAN [104], LR-GAN [141], CVAE-GAN [8], StyleGAN [66], StyleGAN2 [67], or
even any future method allowing projections or sampling from a learned image distribution, can be used for
the projection prior of our method. To enable direct comparisons with with mGAN [55], we use the PGGAN
in our experiments. We use AuC [33, 155], PSNR, SSIM [135], and the perceptual metric LPIPS [156] in
our quantitative evaluations.

For our fusion factor learning, we train the same backbone network with the same settings for all of
our experiments. The architecture is inspired by [150] and is a residual learning made up of a sequence of
convolutional, batch normalization, and ReLU blocks. We omit further architecture details that can be found
in our code. We use a batch size of 8, a starting learning rate of 0.01, and a fidelity-bias balancing weight
ρ = 1e− 5. We train for 25 epochs with random shuffling and update the learning rate following a cosine
annealing with warm restarts scheduler [85]. The restart period is adaptive to the batch size such that it is
always 4 epochs. We also note for reproducibility that training with images that are normalized to [0, 1]

and then zero-centered is empirically observed to improve the final results. The same normalization is then
performed before inference and inverted once the output is obtained. We train our model with the loss of
Equation (4.14) on a subset of the LSUN validation set that corresponds to each of the large training sets
used for pre-training the PGGAN models, and we test on the remaining subset.
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(a) GT (b) Input (σ = 7) (c) DnCNN (32.69) (d) mGAN (28.76) (e) Ours (33.60) (f) φ (0.68)

(g) GT (h) Input (σ = 14) (i) DnCNN (26.87) (j) mGAN (21.57) (k) Ours (27.63) (l) φ (0.59)

(m) GT (n) Input (σ = 17) (o) DnCNN (25.32) (p) mGAN (23.33) (q) Ours (27.63) (r) φ (0.61)

(s) GT (t) Input (σ = 24) (u) DnCNN (23.00) (v) mGAN (20.06) (w) Ours (23.70) (x) φ (0.65)

Figure 4.4 – From left to right are the ground-truth image (GT), the noisy input with the AWGN standard
deviation, the results of DnCNN [150], mGAN [55], and ours, with the PSNR in dB, and our channel-
averaged φ map (with global average between parentheses).

4.4.2 Colorization

For the colorization of a grayscale input image, unlike inpainting for example, it is much less predictable
what an ideal φ map would be. We conduct colorization experiments, where the grayscale input is the
luminance channel, and we evaluate the error on the ab color space. The AuC metric [33, 155] computes
the area under the cumulative percentage `2 error distribution curve in the ab space. The percentage is that
of pixels lying within an error threshold that is swept over [0, 150] in steps of one. For generative network
inversion, we use the sixth layer of the PGGAN for the feature composition, with 20 latent codes, and `2
and VGG-16 perceptual loss [117], optimized with gradient descent for 1500 iterations, following [55]. Our
g−1(y) function duplicates the grayscale channel over each of the color channels. The remaining details
follow the experimental setup of Section 4.4.1

We present our quantitative image colorization results in Table 4.2, along with those of the deep image
prior [131], the feature map optimization [10], the colorful image colorization [155], which is a feed-
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Test Method PSNR ↑ SSIM ↑ LPIPS ↓

B
ed

. DnCNN† [150] 24.96 0.5804 0.1859
mGAN prior [55] 22.72 0.6257 0.1978
Ours 26.80 0.7279 0.0998

C
hu

rc
h DnCNN† [150] 22.40 0.5166 0.2046

mGAN prior [55] 21.12 0.5643 0.2065
Ours 23.38 0.5959 0.1435

C
on

f. DnCNN† [150] 22.81 0.5310 0.2167
mGAN prior [55] 21.49 0.5962 0.1968
Ours 24.70 0.6578 0.1192

Table 4.5 – PSNR (dB), SSIM, and LPIPS results for AWGN removal on the Bedroom, Church, and
Conference sets. The noise follows a Gaussian distribution with standard deviation sampled uniformly at
random from [5,50] per image. †We retrain and test DnCNN with the same data and setup as ours.

forward method supervised specifically for colorization, and the mGAN prior [55]. We note the considerable
improvement of our method, despite the restriction of enforcing a strict data fidelity.

Visual results are shown in Figure 4.2 for the different image colorization methods. We can observe that
φ is lower on image edges, which indeed generally constitute information that is not lost by the grayscale
degradation. We observe as well that φ tends to be low when the luminance is around extreme values, as
in such cases the grayscale images are faithful to the original color images. In both of these cases, it is the
confidence in the data fidelity that is adapted to the observation. We also note, for instance in the sample of
the second row, that φ can be very insightful. It indicates that the color of the sky was heavily hallucinated,
whereas the bottom half and the church dome use almost no prior hallucination. This is advantageous for
downstream tasks as the dome was, in fact, incorrectly hallucinated by the generative-network projection
prior. This is similar for the grass, where green was incorrectly added.

Visual results are shown in Figure 4.3 for the different methods. For our method, there is little flexibility
in terms of the fusion factor φ for the inpainting tasks, which are tasks with binary degradation, i.e., the
signal is either perfectly available or not at all. The φ map effectively predicts the inpainting mask, a mask
that is taken as input in the DeepFill method, and the quality of our results is tied mostly to those of the
generative-network inversion, as can be visually observed.

4.4.3 Inpainting

We present results on the standard central-crop inpainting task in Table 4.3. A 64 × 64 patch is masked
from the test image, and the task is to recover the hidden crop. For generative-network inversion, we use
the fourth layer of the PGGAN for the feature composition, with 30 latent codes, and `2 and VGG-16
perceptual loss [117], optimized with gradient descent for 3000 iterations, following [55]. We use an identity
function g−1(y) = y for the data fidelity, and the remaining setup follows that of Section 4.4.1. The PSNR,
SSIM and LPIPS results show a significant improvement of our approach, due to the use of the data fidelity,
over the mGAN prior results (+4.77dB in terms of PSNR). The inpainting results are averaged across
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the Bedroom, Church (Outdoor), and Conference datasets. We compare them with the deep-image prior
method [131] and with the recent feature map optimization approach [10] that is a method using GAN priors
with test-image specific adaptation. For reference, we compare the results with a task-specific supervised
inpainting method, namely, the most recent version [146] of DeepFill [145], trained on the Places2 dataset.
DeepFill takes the mask as input and uses gated convolutions to account for invalid pixel locations, and
contextual attention [145] to exploit similar patches across the image. The output is refined by using an
adversarial GAN loss on every neuron in the feature space [146]. For inpainting, our approach cannot use
anything out of the signal over the masked area hence is dependent on the prior hallucination.

The aforementioned benchmarking setup, however, makes the task simpler for our method in terms of
predicting φ. Therefore, we design a randomized-masking inpainting setup and present experimental results
on it in Table 4.4. Our randomized-masking algorithm selects uniformly at random a number of patches
to be masked, in [2, 4]. Then, per patch, a random pixel location for the corner of that patch is selected.
The algorithm samples from a normal distribution N (64, 32), truncated to [9,+∞), a width and a height
for each patch, with re-sampling in case the patch extends beyond the image coordinates. We compare
the mGAN prior results with ours in Table 4.4. We omit the other methods because the purpose of this
randomized-masking experiment is specifically to analyze the effect of randomizing the mask on our φ
prediction, and to analyze how the incurred errors in φ affect the performance relative to the prior. We
can first note that the mGAN performance decreases, by almost 0.02 SSIM points on average. With the
randomization of the mask, our performance decreases more significantly, by almost 0.1 SSIM points, but
still significantly improves over the mGAN results. This comparison highlights the increased difficulty of
our internal φ prediction when the mask is randomized relative to the central inpainting task where the mask
location is immutable.

4.4.4 Blind Denoising

We conduct experiments on blind denoising, specifically on AWGN removal. For blind denoising, we follow
the standard setup [150, 45, 46] of sampling a noise level, uniformly at random over the range [5, 50]. This
level is the standard deviation of the AWGN. For generative network inversion, we use the fourth layer of
the PGGAN for the feature composition, with 30 latent codes, and `2 and VGG-16 perceptual loss [117],
optimized with gradient descent for 3000 iterations, following [55]. We set f(·) (Equation (4.11)) to the
identity. Our g−1(y) function is also the identity function as the noise is zero-mean. Generally, g−1(·) can
be the subtraction of the noise mean value. For the remaining setup details, we follow the experimental setup
of Section 4.4.1.

We present the AWGN removal results in Table 4.5, along with those of DnCNN [150], which we retrain
on the same data as ours. Our approach achieves the best performance, consistently across the different
datasets and evaluation metrics.

Visual results are shown in Figure 4.4 for the different methods. We observe that DnCNN preserves
details well, but at the cost of poorer denoising on low-frequency regions (e.g., walls). The mGAN results are
worse than DnCNN, but with our framework the final results become more visually pleasing and accurate.
The φ map illustrates, per pixel, the contribution of hallucination relative to data fidelity and is again lower
around edges, as with colorization. We analyze φ in more detail, in the context of AWGN removal, in the
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next section.

4.5 Discussion

The AWGN experiments provide the ideal setup for an analysis of φ that we carry out in this section. We
know that φ should be inversely related to the signal quality, the poorer the signal is, the higher the φ values
are. And φ is then also directly related to the confidence in the prior, or the fitness thereof. With AWGN, the
quality of the signal is also inversely related to the noise level, in this case, to the standard deviation of the
Gaussian noise. We analyze the correlation between the mean φ value for a test image, and the standard
deviation of the noise in this test image. Results are shown in Figure 4.7(a), with the Pearson correlation
factor, for three datasets. We can clearly observe the positive correlation between the two variables, with a
factor of 0.83 and 0.81 for the bedroom and conference sets, respectively. The correlation is lower, at 0.6,
for the church dataset. The remaining factor of variability in φ is the fitness of the prior, which we analyze
in Figure 4.7(b). The correlation between the average φ value and the generative PSNR is the highest for
the church set, reaching 0.56, and supporting our claims with regard to φ. Indeed, we observe that φ is
well-correlated with the signal’s quality, and when that correlation is somewhat lower it is matched with a
higher correlation between φ and the fitness of the prior, exactly as expected from the MAP framework’s
perspective. To summarize, we make two supporting observations from our aforementioned analysis. First,
the φ estimation, which is learned with no guide in our framework, strongly correlates with the signal
quality. Second, a lower correlation with signal quality, as in the church set, is directly justified by a higher
correlation between φ and the fitness of the prior to the test data. These two observations align exactly with
the intuitions derived from the MAP estimation framework, as presented in Section 4.3.1.

The framework we present can be a novel basis for image restoration as it can counter the obstacle of
degradation-model overfitting, common in image-restoration tasks. This is because hallucination is the key
part prone to overfitting to the chosen model. Our framework can guard against this type of overfitting by
relying on decoupled data fidelity and prior hallucination, and by using a pre-trained and frozen generative
network, independent of the degradation model, for the hallucination part. Our fusion factor could also be
used to increase the robustness and reliability of down-stream computer vision tasks, by making the latter
aware of the extent of per-pixel hallucination in the restoration result. For instance, when a computer-vision
algorithm deals with degraded images, rather than training the downstream network only on the restoration
output, further information regarding the degree of hallucination can be used to increase robustness, notably
against adversarial attacks. Our fusion map φ conveys such hallucination information, which can also be
used for better interpretability of the results by human users.

4.6 Conclusion

We have presented a framework for image restoration that enables the use of deep networks for extracting
an image prior while decoupling prior-based hallucination and data fidelity. We have shown how our
framework is a generalization of a large family of classic restoration methods, notably of Bayesian MAP
estimation setups such as the one presented in Chapter 3, and of dictionary-based restoration methods. We
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have conducted experiments on image colorization, inpainting, and Gaussian denoising. Our results, which
structurally come with a pixel-wise map indicating data fidelity versus prior hallucination contributions,
outperform prior-based methods and are even competitive with state-of-the-art task-specific supervised
methods. We have also presented an analysis of this fusion factor φ estimation that supports our different
claims.

As we show in the failure cases, one of the current limitations of our framework is the quality of the
generative-network prior modeling (Figure 4.5) and that of the network inversion for projecting on the
learned-prior space (Figure 4.6). Another drawback, which we discuss in the following section on future
work, is that the fusion between the data-fidelity and the prior-based terms is limited to the spatial domain.
The fusion of the two terms is carried out pixel-wise, but could theoretically be conducted over the frequency
domain or a combination of the two. This could be of interest for restoration tasks where the degradation
model is not pixel based and where the learning, as we note in Chapter 2, is frequency based.
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(a) GT (b) Input (σ = 10) (c) DnCNN (29.70)

(d) mGAN (19.86) (e) Ours (26.32) (f) φ (0.52)

(g) GT (h) Input (σ = 6) (i) DnCNN (34.09)

(j) mGAN (25.89) (k) Ours (31.85) (l) φ (0.66)

Figure 4.5 – Failure cases of AWGN removal. The quality of the generative-network inversion, which
remains a very challenging task, is detrimental to our final results. Although our results significantly improve
on the prior by exploiting the input observation by using our fusion weight, they still fall short of the
task-specific DnCNN denoiser’s results.
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(a) GT (b) Input (c) DeepFill (27.01)

(d) mGAN (18.91) (e) Ours (20.26) (f) φ (0.33)

Figure 4.6 – Failure case in a randomized inpainting experiment. We note a misprediction in the φ mask in
(f), in the bottom right corner. Our network mistakenly assumed the very dark region was a masked region.
Note that in inpainting, data fidelity cannot be used in the masked area, and our results become directly
dependent on the quality of the prior that, in this example, is not high.
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(a) Correlation between φ and the AWGN σ

(b) Correlation between φ and the generative PSNR

Figure 4.7 – (a) Shows across three datasets the relation between the AWGN standard deviation in test
images, which is directly related to signal quality, and our corresponding mean estimations for φ. (b) Shows
the same analysis but with respect to the PSNR of the generative network inversion results, which is directly
related to the fitness of the prior. The results show a strong Pearson correlation factor between φ and signal
quality (a), with the remaining factor of variation explained by the fitness of the prior (b) (e.g., Church set).
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have studied the relations between data fidelity and learned image priors, for deep-learning-
based image-restoration methods. Image restoration is centered around an interplay between these two terms,
and although deep learning has improved quantitative restoration quality, it has come at the expense of the
understanding of the underlying mechanisms, their generalization, and the interpretability and control over
their hallucinations. We have analyzed, in Chapter 2, the behavior of deep learning SR and denoising methods
in the frequency domain. We have noted a frequency-conditional learning, which is prone to degradation-
model overfitting, for hallucinating missing components. We have designed a stochastic masking method,
based on these findings, to regularize and improve the conditional learning of these restoration networks. In
Chapter 3, we have investigated the optimality of a deep neural network on the fundamental denoising task,
through a theoretically designed experimental setup. We observe that the network approaches a statistically
optimal solution over its training range but fails to generalize. We have extended our solution, derived
in our controlled experiment, to apply it to more general real images. By integrating internal learning of
the noise level, and assuming a pixel-wise Gaussian prior on the underlying pixel distribution, we have
shown improved real-image denoising results within a more interpretable architecture. This method however
assumed a pixel-wise prior, and we have generalized it in Chapter 4 to full image priors that are learned
using a generative network. We have presented a restoration framework that decouples the data fidelity
information and the prior information that is extracted by projecting onto a generative network’s space
through regularized network inversion. These two terms are then fused by an adaptive learned module that
adjusts to the observed data quality, as well as to the fitness of the prior to the input test image. This was
supported by a correlation study over the relevant variation factors across multiple datasets. Our fusion weight
provides spatially a structurally valid assessment of the amount of hallucination, which can be beneficial for
user interpretability and potentially for downstream tasks. The framework we have presented also forms
a theoretical generalization of a variety of classic restoration methods from the Bayesian restoration of
Chapter 3 to dictionary-based restoration methods. We discuss, in the following section, future research
directions related to each of the thesis chapters.
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5.2 Future Research

We discuss in this section some future research directions that are closely connected to the chapters presented
in this thesis.

5.2.1 Frequency Learning in Image Restoration

In Chapter 2, we noted how restoration networks can learn to add the missing frequencies in the degraded
input image, but do so with little signal adaptation. With SFM, the networks become more aware of the
actual content and degradation of the input image, rather than overfitting the training settings. This enables
the networks to achieve better reconstruction by not adding frequency components that are already present
in the input image, and also by adaptively adding more bands when those are missing.

If this reconstruction is disentangled per frequency band, every frequency band being restored separately
by a dedicated sub-module, some bands would be reconstructed with a higher confidence, some with a
lower confidence. At least in SR and in denoising, the higher the absolute frequency value is, the lower the
reconstruction confidence would be. Furthermore, the more frequencies are lost in the degraded image, the
lower the reconstruction confidence is.

A future research direction would be the design of a restoration approach that reconstructs images
by reconstructing frequency components band by band, in a discretized or continuous way. Along with
this reconstruction, a confidence curve could be implemented, as a function of spatial frequency. Such an
approach would

• provide the user with more interpretable results through the disentangled component reconstruction,
and the corresponding confidence values,

• and enable the user to select a variable reliability threshold, thus determining how much high fre-
quency is desired to be added or how low of a confidence could be afforded and tweaking the final
reconstruction accordingly.

This setup can be implemented over the DCT/Fourier domain, learned dictionaries, or more user-interpretable
domains where basis vectors would be interpretable textures. Biomedical images with relatively constrained
or limited texture patterns [162] would be a good test bed for developing such a method, and are also an
important application where a control over non-confident hallucinations is crucial.

5.2.2 Estimation Theory Integration

We have designed, in Chapter 3, a theoretical setup tightly connected with additive denoising, where the
image prior was pre-determined, hence leading us to having a closed-form optimal solution and enabling us
to investigate the network’s performance on this controlled experimental setup. In turn, we have extended
this theoretical solution to a real-image denoising scenario with an observable improvement in the final
denoising results. This was in part due to the explicit and disentangled learning of the noise level in the
network’s architecture.
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This design approach can be used in other machine-learning-based tasks. Although it has recently
become more common to add more explicit or disentangled internal learning, the use of theoretically defined
experiments to guide novel architectures is still limited. It could be used to inspire more optimal methods,
first under the theoretical setup, and then to extend them to real applications. This could also enable further
insight into the inner workings that lead to the final solution.

Future research could explore tackling other imaging, computer vision, etc., problems by modeling the
stochasticity of the ultimate solution of this problem with numerically tractable distributions that are as close
to reality as possible. With this model taken as a given theoretical assumption, the solution could then be
derived and its different terms integrated into the learning pipeline. This would

• provide more interpretable results through the intermediate terms,

• and reduce overfitting by enforcing certain theoretical rules and by the indirect regularization obtained
from the learning of the different sub-tasks.

A more general, and more vague, research direction would ultimately be an optimal mixture between the
rigid estimation theory solution, which is constrained by its theoretical assumptions, and the flexibility of
data-driven empirical learning solutions. The integration between the two would need to be supervised by a
meta-learned module that determines when to follow reason and when to follow experience, by understanding
the current application’s needs, as well as the strengths and shortcomings of each method. We began to
touch on this direction in Chapter 4, where (1) our reason part was a simple bijective restoration step to
completely preserve data fidelity, and (2) our supervising module for the mixture of the two approaches
learned a pixel-level fusion of the two solutions.

5.2.3 Restoration with Decoupled Hallucination

In Chapter 4, our proposed method structurally provides a per-pixel map for fusing the prior information
with the data-fidelity term. Future research can exploit this information, in addition to the restoration results,
for downstream applications that currently take only the restored image as input. By training downstream
methods to be aware of the faithfulness of the restoration result, the final results could be made more robust
if not also more accurate. Our map would also enable us to train a judge that is able to disregard, or raise
an alert, when restored input images have a too large φ map. This would either indicate that an image was
severely degraded or that it contains significant hallucination in its restored version, both cases being prone
to induce downstream errors.

Another research direction would be to extend our φ learning to classic methods. As discussed in
Chapter 4, although some classic methods account for the quality of the signal, for example, the noise level,
they do not account for the quality or fitness of the prior to the input image. A prior that fits rural images
might fit differently and less accurately, for instance, urban images or biomedical images. Therefore, our
adaptive approach could benefit classic methods, by learning the suitable weight to assign to the prior,
according to its fitness to the input image, and also adapt in relation to the quality of the input data itself.

We have defined, in Chapter 4, both the fusion and its weight to be carried out over the spatial domain.
This provides a visually interpretable map that spatially disentangles prior and data fidelity across pixels. It
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would also be possible to define the hallucination in other domains, for instance, in the frequency domain.
Such an approach could be designed by simply performing the fusion in the frequency domain or by
transforming the entire pipeline into the frequency domain. On one hand, the former approach would
transform the data-fidelity and the prior terms to the frequency domain and learn to predict a fusion weight
map directly for the frequency domain. On the other hand, the latter approach would already transform the
input to the frequency domain, thus relying on frequency-domain-based generative networks and performing
the fusion in the frequency domain. Although this provides less interpretable fusion maps for users and for
downstream tasks designed in the spatial domain, it can be useful for downstream applications designed in
the frequency domain, and it would more directly correspond with the frequency-domain hallucination that
we analyzed in Chapter 2.
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